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3 SUMMARY

The application of optimization techniques to the derivation of predictive information
Jor flight displays is being investigated in connection with operational situations involving
large disturbances and manoeuvres. This note surveys current gradient methods for
| computing extremal solutions of optimal control problems for systems having boundary
conditions but without state or control constraints. It is concluded that a two stage
procedure is required, with the first stage using a first order gradient, while the second
stage would use a higher order variable metric method. Proposals are advanced for
Surther research on optimization algorithms.
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1. INTRODUCTION

The extension of flight director capabilities to a wide range of operational situations including
major manoeuvres and disturbances is becoming feasible through advances in digital avionics
and displays. This will permit the timely presentation of alternative strategies to the aircrew, for
their use in decision and control. These types of predictive aids, which for example would be
useful for STOL aircraft landing at forward tactical airfields, and for combat aircraft involved
in tactical engagements, are receiving increased attention in the United States and NATO
countries.! =5 Research work is being initiated at ARL to gain an improved understanding of the
potentialities and limitations of these systems.

The determination of the optimal manoeuvres required to achieve specific objectives, whilst
taking into account physical and operational constraints, would enhance the value of a director
under normal operating conditions, and would be of especial value in emergency situations.
This note surveys current methods used for computing extremal solutions of optimal control
problems for systems having boundary constraints, but without state or control constraints.
The extension to the general case with constraints through penalty function and other tech-
niques will be the subject of further work.

Particular attention is focused on the so-called “direct methods™ and as many of these
methods cannot be immediately applied to problems having terminal constraints, a discussion
of techniques for adapting them to this need is presented. Finally a number of approaches not
studied in the literature, which are worthy of further examination will be briefly considered.

2. ALGORITHMS FOR UNCONSTRAINED PROBLEMS

Computational algorithms for seeking the extremal solution of general optimal control
problems fall into two main groups, which are known as

(a) Indirect Methods, and
(b) Direct Methods.

In addition to the methods mentioned above, special algorithms for finding the optimal
control of systems described by linear differential equations have also been extensively developed.
As the equations of motion for the flight mechanics problems of interest are generally non-
linear these methods are inapplicable and so will not be considered further.

The flight mechanics optimization problems being considered can be formulated within the
framework of the general optimization problem of Bolza: for a fixed final time, t;, find an un-
bounded control function u(t), 1 € [t,, ;] which minimizes the cost functional

Iy
J(u) = $[x(ty), 17] +J L(x, u, t)dt 2.1
to
subject to the differential equation
Zj (’) :f(x' u0 ’)' x('o) = Xo (2.2
and terminal conditions
dlx(tp), 17 = 0
: (2.3)
Yalx(ty), 17} = O,




where ¢ < n, and n is the dimension of the state vector x(7). It will be convenient to write the
terminal conditions (2.3) in the vector function form

Ylx(ry), 1/] = 0, (2.4)
where we define the vector function ¢ = [, . . ., ¥]7.1 In the present work it will be assumed

that the functions ¢ : R* ~x R' » Rl L :R* x Rm x R' > R! f:R" X R™ X R! > R* and
¢ R* x R' » Re, which define the optimization problem, are continuously differentiable in
all arguments.

2.1 Indirect Methods

These methods use an iterative scheme to solve some of the necessary conditions for
optimality, while satisfying the remaining conditions exactly. Two methods which have met
with a degree of success in applications are

(@) the neighbouring extremal or shooting method, and
(b) the quasi-linearization method.

The necessary conditions® for optimality of the problem defined by (2.1)-(2.3) are most
easily stated by use of the Hamiltonian H(x, u, A, r) which is defined by

H(x,u, A 1) = L(x, u, t) + AT(Of(x, u, 1), 2.5)

where A(f) is the Lagrangian multiplier function. These conditions give rise to the two-point
boundary value problem of finding functions x(1), u(1) and (1), € [t,, t;] Which simultaneously
satisfy

’ Ix YH
(1) the n state equations, o (1) (X, 4, A 1):
dt QA

YH
(X, 14, A 1),
hRS

\S

: A
(11) the n adjoint equations, ‘ll )
¢

: . H
(iii) the m optimality conditions, “ 0:

Ju
(iv) the n initial conditions x(f,) = Xo:

(v) the g terminal conditions y[x(t/), 7] = 0: and

~

b oW

(vi) the n-q adjoint terminal conditions A7(ty) [ z =

, where v is an
r— 1y

~

arbitrary g-vector.

2.1.1 Neighbouring Extremal Algorithms

These methods which are also known as shooting or root finding methods in R*, attempt
to solve conditions (i)-(iii) exactly by direct integration of the differential equations, while using
an iterative procedure to converge to the satisfaction of conditions (iv)-(vi), as discussed in
References 6 and 7.

In the case where condition (iii), above, can be explicitly solved for wu(r) in terms of x(1)
and (1), this variable can be eliminated from the differential equations given in (i) and (ii) above.
Adjoining vectors x(r) and A7) to form the 2n-vector

x(1) 5
) [A(l)]' (2.6)

it can easily be seen that the equations given in (i) and (ii) above, with (r) eliminated, take the
form of the two-point boundary value problem

t The transpose of a matrix 4 will be denoted by AT.
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dy 1 ]
- (t) = F(y, 1), 2.7

where

dH 5
3 (x, u(x, A)1), 1)
F(y, 1) = ’

~dH
(x, w(x, A1), A, 1)
ox

and the boundary conditions are

Wx(ty), ty)

Xo
, and d =/{. 2.8
Ato) Mty) — Dt — vrbbf =5

MWito) =
For simplicity, in the remainder of this discussion it will be assumed that x(t;) = xs, where x;
is a given vector. In this case the terminal condition given in (2.8) simplifies to

S lexs
Wiy) = [A(l!)]' 2.9)

One approach to solving this problem is to consider that (2.7) implicitly defines a function,
F, mapping A(t,) € R" into (x(fy) — xs) € R", so that it now becomes a problem of finding a
Xto) such that F(X(1,)) = 0. This can be solved by using the classical Newton-Raphson method
where the interates are constructed as follows

oF T
Ais1(t0) = Ailto) — F(Xi(t0)), j=0,1,23...5 :
1+1(t0) = Mi(to) I:M(lo)] (Ai(10)) i=01213 (2.10)
assuming that [DF/dA(1,)]! exists. In applying this method, Bryson® suggests the following
three approaches for determining the multiplier matrix [DF/dA(10)] !:
(i) direct numerical differentiation by perturbing each component of A(#,) in turn, followed
by integration of (2.7) and matrix inversion of dF/dA(t,);

(ii) unit solutions using second variation equations, followed by matrix inversion of

dFX(t,);
(iii) using the backward sweep method, which yields [dF/dA(fo)] ! directly.

Methods (i) and (ii) often suffer from severe numerical sensitivity because the matrix dF/dA(to)
is often ill-conditioned. However, the third approach tends to be much less sensitive to this
conditioning problem.

The main disadvantage of this approach is that it often suffers from severe conditioning
problems, where small changes in A(#,) lead to very large changes in x(ty). This can result in the
algorithm failing to converge, unless the initial trajectory is close to an extremal trajectory. In
addition it is quite sensitive to the effects of numerical rounding. However, because of the quad-
ratic convergence properties of Newton's method it is quite useful for conducting parametric
perturbation studies once an extremal solution has been found by some other means, such as
the gradient method to be discussed subsequently.

2.1.2 Quasi-Linearization Algorithm

An alternative approach to that discussed was proposed by McGill and Kenneth,® and
Bellman and Kalaba.? 10 In their method, instead of iterating on the boundary conditions the
procedure now iterates on the entire solution trajectory y(1), f € [to, ).

Considering the same problem as defined in (2.7)-(2.9), define a function space operator,
F, as

dy
Flvy = — — Fiy. 1} 2.11
(82 at F(y, 1) 2.11)
It can be seen that if y(¢) is to satisfy (2.7) it is necessary for #(y) = 0, that is y has to be a root
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of the operator #. Applying Newton's method in function space to (2.11), where we let
viaa(t) = ye(t) + 8yi(r), and denote the partial derivative dF(p, 1)dy by Fy(y, t), yields

d\'k d
. " 4 Sy . : I = ; g
0 Flu Vi) dr F(ye, t) (d, F'()hl))s)k (2.12)
Consequently the linear two-point boundary value problem
d dyk
8y Fy(ye, t)8y ks - — :
a Wk 8yk — F(ye, 1) dt (2.13)

with boundary conditions dx(f,) - 8x(ff) — 0, must be solved for the iterate dyi(r), for
k - 0,1,2,.... This problem can be easily solved by standard methods.

This approach, while exhibiting quadratic convergence near an extremal solution again
suffers with the problem of ill-conditioning,!' which may lead to the algorithm failing to con-
verge unless the initial trajectory is near an extremal trajectory.

2.2 Direct Methods on Control Function Space

The direct methods of computing the extremal controls for optimal control problems
largely overcome the convergence difficulties of the indirect methods. In these methods the cost
functional, J, in (2.1), is minimized directly without recourse to the necessary conditions, by
iteratively adjusting the control function (1), t € [to, 17]. These methods, which are well suited
to handling problems without terminal constraints, cannot be immediately applied to problems
of the type defined by Equations (2.1)-(2.3). Methods of applying the algorithms under con-
sideration to this latter class of problems will be discussed in the next section.

2.2.1 First Order Gradient Methods

Applications of first order gradient methods have been extensively studied,'> 1% because
of their relative simplicity on the one hand, and their reliability in solving a broad class of
problems with an acceptable speed of convergence on the other.
Consider the case where the terminal constraints (2.4) are not present. The cost functional,
J. defined by (2.1) can be considered as mapping the control u € L*[t,, 17] into R!. In this case
the gradient, VJ(u), of (2.1), subject to the differential equation constraints (2.2) can be
determined by expanding (2.1) using a truncated Taylor series. Thus if 3u denotes a variation in
the control u, we obtain
.’I
L(x, u, 1)dt + ¢e[x(ty), t7]dx

lo
I’I

. J [Le(x. w, 1) dx(1) + Lu(x, u, 1)ou(t)}dt (2.14)
lo

J(u -+ du) — $[x(ty), ty]

L

where 8x(7) is the variation in the solution of (2.2) caused by du(r). The variation dx(1), 1 € [to, t]
is the solution of the variational differential equation

:'8.:(1) SAx(r), () 3x(r) -+ fu(x(t), w(t), 1)du(t), dx(to) = 0. (2.15)

Introducing the adjoint differential equation
d\

3 (1) L2T(x(0), w(r), OXE) — LaT(x(2), wlt), 1), Aty) = $eTx(tp), 1), (2.16)
it can be shown that
ty “ty
be[x(ty), t7)dx(r) ! J LAx, u, 1)8x(1)dt = J AT(0)fu(x, u, t)Su(t)dt. 2.17)
’o ’0

Substituting (2.17) into (2.14) it follows that




Al

iy
Ju + du) — J(u) +J AT )fu(x, u, 1) 4 Lu(x, u, 1))5u(t)dt,
lo

and as a consequence the gradient VJ(u) can be identified as
VI(u)(t) = AT(0)fulx(), u(t), 1) + Lu(x(t), u (1), 1), 1€ [to, 1y]. (2.18)

Assuming that the initial estimate of the control, u(-), is given, and using the usual gradient
procedure, the (k + I)th iterate of the control, ug,1(-), is given by

ugi1 = Urk — axVJI(ug), (2.19)
where VJ(ux) is given by (2.18). Provided that an appropriate procedure is used for selecting
the parameters {xx};" g it can be shown that such an algorithm converges to an extremal solution

of the above problem. One such procedure is the method of steepest descent where the para-
meter ax is chosen by conducting a one-dimensional search so that

J(ug) — axV(ur))

is minimized. This procedure is very robust because at each iteration step the value of the cost
functional, J, must decrease until a limit is reached.

The main advantages of methods using a first order gradient are:

(1) it is simple to program;

(2) it requires first order derivative evaluations only;

(3) global convergence to local minima can be proved so that the algorithm is reliable:

(4) the algorithm coverges rapidly during the initial iterations.

However, these methods exhibit the significant disadvantage of slow convergence once the
iterates are in the neighbourhood of an extremal solution. In fact it can be shown that they only

have a linear rate of convergence near a solution so that the convergence error only decreases
with a geometric progression on the convergence factor.

2.2.2 Second Order Gradient Methods

Because of the poor speed of convergence of first order gradient methods many researchers
have studied second order gradient methods.20.21.22.23.24 Essentially these methods involve
expansion of the cost functional (2.1) to include quadratic terms, thus leading to a linear quad-
ratic optimization problem, which has to be solved for the new control iterate.

Again consider the case where the terminal constraints (2.4) are not present. Following
Miele!® a multiplier function A(t), t € [t,, t;] is introduced which satisfies (2.16) and is used to

2 d; 5
augment the functional (2.1) with the term AT(1)( f(x(2), u(1), 1) — d: (1)), thus yielding the new

functional
K dx
J(u) = $lx(ty), t5] + L(x,u, t) + AT()( f(x, u, 1) — d (1))dt,
’o .
K dx
= ¢[x(ty), ts] + J H(x,u, A, 1) — AT(t) & (t)dt, (2.20)
to

where H(x, u, A, t) is defined in (2.5). Expanding (2.20) using a truncated Taylor series including
quadratic terms, we obtain

"f
J(u -+ du) = J(u) + $(x(ts), t7)8x(ts) +~J [Hu(x, u, A, t)8u(t) + Hy(x, u, A, 1)8x(t)
to

d
— /\T(!)d’ dx(1)]dt + }Sx(l,)"'qSu(x(t,), tr)8x(ty)

Ir Hazx,u, A, 1) Hzu(x, u, A, 1) Sx(r)
t1 [8xT(1)8uT(1)] d, (2.21)

to

Huz(x, u, A 1) Huu(x, u, A, t) Su(t)
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where dx(1), 1 € [1,, t/] is the solution of (2.15). It follows from (2.17) that (2.21) becomes

"ty "ty Hee Hed[ox
Jw - duw) - Jy Hududt + ) [dxT8uT) dt
1 Jita Hur Huu||du
boA[OxTdradx], . (2.22)

Applying the Newton-Raphson method to (2.22) the problem becomes one of finding a
3ui(t), 1 € [to, ty] which minimizes the quadratic cost functional (2.22) subject to the linear
variational differential equation (2.15). Once du; is computed, the next control iterate w;.; is
determined from w1 wi + dui, and the process then repeated in a manner similar to the first
order gradient procedure.

The necessary conditions for optimality when applied to (2.22) and (2.15) yield the following
two point boundary value problem

“III dx A(r) B(r) dx r(r) dx(t,) = 0
4 ; o (2.23)
d,a.\ C(r) A7) SA s(1) SA(ty) = brrlx(ty), 1(r)0x(1r))
where
A1) — fr — fuHuu "Hux. (2.24)
B(t) — fuHuu VT, (2.25)
Ct)~ Her — HerMHuw "Hur, (2.26)
r(t) = fuluu YT, (2.27)
and
s(r) — HeyHu' H T (2.28)

The functions in equations (2.24)(2.28) are assumed to be evaluate along x(r), and w(r), for
1€ [to, ty].

Two main approaches have been proposed for solving the above two-point boundary problem.
Breakwell2? and Kelley2!-22, by determining a set of n linearly-independent solutions to the 2n
differential equations (2.23) such that each solution satisfies the final boundary conditions,
have used the principle of super-position to find a solution which also satisfies the initial boundary
conditions. Unfortunately this method can suffer from severe ill-conditioning problems; a fact
which led to the development of the sweep methods proposed by Jacobson,?2:25> McReynolds26:27
and Mitter2! which tends to overcome this problem.

The main advantages of this method are -

(1) The step size of du is automatically determined, so that a one-dimensional search is not

required at each algorithm iteration.

(2) The algorithm exhibits quadratic convergence properties near an extremal trajectory,
and as a consequence will converge much more rapidly to a final solution than the first
order gradient method.

However, there are two disadvantages which limit its usefulness. These are

(1) The algorithm may not always converge, particularly if the initial trajectory is far from
the extremal trajectory. In fact for this algorithm to be applicable it is necessary for
Huu to be positive definite for ¢ ¢ [1,. t7]. which is difficult to ensure unless the initial
trajectory is near a minimal trajectory. As a consequence it is often necessary to initially
use an alternative algorithm, such as the first order gradient method, as a preliminary
to its use.

(2) Programming and problem preparation requires much greater effort compared with
first order gradient methods, because of the large number of second derivatives which
need to be evaluated.

2.2.3 Conjugate Gradient Methods

The application of the conjugate gradient algorithm to optimal control problems was

6
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proposed by Sinnot and Luenberger*¥, Lasdon, Mitter and Waren, 2 and Pagurek and Woodside30
about 1967. More recently Hestenes?! has discussed its use with his “Method of Multipliers™
for solving constrained problems, while Mieled? has considered its use in conjunction with
his method of constraint restoration.

The method is essentially a generalization of the conjugate gradient algorithm of Fletcher
and Reeves™ to function space problems. Supposing the gradient SJ(u) of the control u, denoted
by g(u) 1s computed as in Section 2.2.1 above, and that the initial estimate of the control, u, is
chosen arbitrarily. The algorithm proceeds as follows:

(1) let g, g(u,) and set d, a:
(2) find x 2 such that J(u; + xdy) is minimized :

Q) set iy wi oo oxdy;

(4) find giov g, and Bi o (i, gio1) (i £i). where (g, g/) is defined by

",
(gi. g1) e (g e

J o

(S) set d; i+ Bidi:

(6) Return to step (2) until algorithm has converged to problem solution,

It has been shown in Reference 29 that not only does this algorithm exhibit many of the
theoretical properties of the finite dimensional conjugate gradient algorithm, but numerical
experience shows that it converges more rapidly than first order gradient algorithms.

The principal advantages of this method are:

(@) The algorithm only requires the evaluation of first order derivatives:

(b) 1t appears to exhibit quadratic convergence near an extremal trajectory, although some
doubt about this is expressed in Reference 11.

(¢) Programming effort required is only a moderate increase over the first order methods.

The main disadvantages are

(@) A significant amount of computation time is required to evaluate the conjugate direc-

tions in function space.

(h) The algorithm is quite sensitive to numerical rounding, which means that some com-

putations need to be performed in double precision.

(¢) A one-dimensional search is required at each iteration, which can consume a significant

amount of computation time.

(d) The algorithm may fail to converge if the initial estimate of the trajectory is too far from

an extremal trajectory. As a consequence a first order gradient method may be needed
to obtain a starting solution for the algorithm.

2.2.4 Variable Metric Methods

Variable metric methods were initially developed for minimization of functions of a finite
number of variables. The best known of these being the Davidon algorithm, was subsequently
refined by Fletcher and Powell3* and has become known as the Davidon-Fletcher-Powell (DFP)
method. The application of this method to function space minimization problems is discussed
in References 35, 36, 31, 37. Although only a limited amount of computational experience with
the DFP method has been reported.37:38 this work shows that its speed of convergence is superior
to the conjugate gradient method.

The Davidon-Fletcher-Powell Method

Suppose the gradient VJ/(u), denoted by g(u), is computed as in Section 2.2.1, and the initial
estimate of the control, u,, is chosen arbitrarily. The algorithm proceeds as follows

(1) let go - g(uo) and set d, Lo!

(2) find «  ; such that J(u; ' ad;) is minimized:

T ARl

g
§
b
i
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(3) set wi.y — ui + adi and find gy — glugn);

(4) find s Ui+ ui and yq Liit £,
(5) find
Yo s i 0:
,[‘. i 1 S, ¥ fl',"
ik L T T i 0;
i o L0sh yi) (Hjyy, yi)
(6) find
. (57, &i+1) (Hyyy, gi:1)
dy; Hi g, (il + 3 8§ + ————— Hyy.
i1 i18i+1 {gl 1 : 0[ (55 ¥) J (Hyyp 1) I.I]}

(7) return to step (2) & times;
(8) return to step (1) until algorithm has converged to problem solution.

In the above algorithm the inner product (x, y) is defined as

»

Iy
(x, 1) J xT(1)y(t)dr.
1y

Steps (7) and (8) in the algorithm, where it is re-started after every k iterations, have been
introduced to overcome the difficulties of excessive storage requirements and the large increase
in computation time per iteration as k increases. In fact to compute d;., it is necessary to store
2(i + 2) functions. The experience of Tripathi3? indicates that k should lie in the range 5-12,
while Pierson?® has found evidence that selecting k to be 3 or 4 actually enhances the convergence
rate.

Apart from the DFP method discussed above, other variable metric algorithms whose
application to the computation of optimal controls has been studied are the Davidon ‘“Rank-
One” method by Garg3® and the Broyden quasi-Newton algorithm by Edge and Powers.40
Both of these methods have similar memory storage requirements to the DFP method.

The “rank-one’ method, discussed by Garg, has a unique feature of not requiring a one
dimensional search at each iteration. Since a considerable amount of computation time is often
consumed in these searches, there is a possibility of speedier convergence when this method is
applied to optimal control problems. His experience, albeit on a simple problem, indicates that
this may be the case.

Edge and Power’s study on the Space Shuttle ascent trajectory optimization is the only
example, of which the author is aware, where one of these methods has been applied to a realistic
aerospace problem. Their experience shows that the Broyden algorithm (which is closely related
to the DFP method) can be successfully used for studying these types of problems although
they make no attempt to compare its efficiency with other types of algorithms.

Since only limited experience of the use of these methods has been reported our conclusions
are to some extent tentative. However, reported experience with the finite dimensional algorithm
plus analytical results leads to the following observations—

(1) Only first order derivatives are required.

(2) Algorithm exhibits quadratic convergence near an extremal trajectory. Experience with
finite dimensional algorithms indicates that this method converges more reliably than
the conjugate gradient methods.

(3) Analytical studies show that the method starts like a first order gradient method and
gradually becomes like a Newton method.

(4) Experience with finite dimensional problems shows that it is less sensitive to numerical
rounding than the conjugate gradient method.

(5) In References 37, 38, 39 it is reported that these methods converge more rapidly than
other comparable methods.

Their most significant disadvantages are:

(1) They require considerable memory storage when compared with first order gradient
and conjugate gradient methods.

o, P (I XY
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(2) A considerable amount of computation time must be used in computing the variable
metric operator.

2.2.5 Balakrishnan Epsilon Method

T'his method, proposed by Balakrishnan,* differs from the direct methods discussed above,
in respect of the state variable x(r) which is here treaied as an independent variable rather than
as being causally dependent on the control u(r) through the differential equation (2.2) To ensure
Equation (2.2) is satisfied he proposed that it be adjoined to the cost functional (2.1) by use of
a penalty function. Thus (2.1) becomes

", -,’

] dx
J(x, u) — $[x(ty), ty] L(x, u, t)dr - > Il . (1) — f(x, u, 1)||2dr, (2.29)
lo 16 di
where (||| denotes the Euclidean norm.
By taking a sequence of ¢, i 1,2,..., where ¢, ~0 as i » o, and minimizing J,; for
each i — 1,2, ... it can be shown that the trajectory and control approach a solution of the

problem defined by (2.1)-(2.3). It has been found*:43 that the convergence of this method is
not particularly sensitive to the value of €, and as a consequence only a small number of values
of € need to be chosen for practical application.

The technique used for minimizing (2.29) in References 42 and 43 is to transform this
functional using the Rayleigh-Ritz method, and then solve the resulting finite dimensional
minimization problem using the Newton-Raphson algorithm. Their experience seems to
indicate that it is a method worthy of further investigation when muitiple state space and control
constraints are present. Taylor and Constantinides?! found the indirect relationship between
the error in the satisfaction of (2.2) and the error in the satisfaction of the terminal constraints
(2.3) made it difficult to gain an insight into the convergence behaviour of the algorithm. This
proves to be a significant disadvantage.

2.3 Discussion

It can be observed from the preceding sections that no single method exhibits all the charac-
teristics of an ideal algorithm. As a consequence it is useful to examine them from the viewpoint
of how the strengths of one algorithm may be used to complement the weaknesses of others.

Since the first order gradient methods reliably converge to extremal trajectories, even though
they have poor terminal convergence behaviour, it appears that they are well suited for computing
the starting trajectories for methods which are not globally convergent, but have rapid terminal
convergence. In this case no attempt would be made to obtain complete convergence using a
first order gradient method; instead it would be used to execute a small number of iterations
before transferring to a more rapidly convergent algorithm,

Of the techniques discussed, the variable metric methods seem to offer the greatest potential
for general purpose use. Computational experience, particularly with finite dimensional prob-
lems, has shown them to be globally convergent for a broad class of problems, even though this
fact has not been universally proved by analytical means. In addition these methods exhibit
excellent terminal convergence behaviour. Experience in use has also shown them to have a
superior convergence rate, and to be less sensitive to numerical rounding errors, than the conjugate
gradient methods. One significant disadvantage of the variable metric methods, and something
which is not apparent for the finite dimensional case, is the large memory storage require-
ments when they are applied to function space problems. In cases where memory storage is at
a premium it may be necessary to use second order gradient or conjugate gradient methods
as their memory requirements are quite modest.

3. ALGORITHMS FOR PROBLEMS WITH TERMINAL CONSTRAINTS

In Sections 2.2.1-2.2.4 methods for solving unconstrained optimization problems of the
type defined by equations (2.1) and (2.2), but without the presence of the terminal constraints
(2.3), were examined. In this section a number of techniques are discussed, which can be used in
conjunction with the above methods for solving problems with terminal constraints.
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3.1 Penalty Function Methods

In the penalty function method discussed by Kelley,'4 an optimization problem with ter-
minal constraints is transformed into one without constraints. In applying this method to the
problem defined by (2.1)-(2.3) the terminal constraints (2.3) are ignored. However, to ensure
that the constraints (2.3) are satisfied a new cost functional, Jx(u), is defined by adjoining a term
proportional to the magnitude of the constraint error, ¢[x(ty), t/], to the cost functional (2.1),
thus giving

Ji(u) — $[x(ty), 1] | L(x, u, t)dt | WT[x(ty), t7)Kp[x(ty), 1), 3.1
’0

where K is a positive definite diagonal penalty function weighting matrix.

By taking a sequence of matrices Ky, i — 1,2,..., where ||Ki|| » o0 as i » oo, and mini-
mizing (3.1) for each Ky, subject to (2.2) using one of the methods given in Section 2.2, it can be
shown that the corresponding sequence of trajectories and controls converge to a solution of the
problem defined by (2.1)-(2.3). Schemes for adjusting the elements of the weighting matrix K
after each cycle of the algorithm are discussed by Kelley,'* and Moyer and Pinkham.!6

Experience with this method!%:45:47 hag shown that it can lead to failure of convergence when
using an optimization algorithm which is otherwise reliable. The difficulty appears to partially
arise from rounding errors, as the magnitude of the elements of matrix K approach infinity,
causing the penalty function to dominate the original cost function. Also for finite dimensional
problems, where penalty functions are used, it is well known that when the elements of K are
large the augmented cost functional often has long narrow ravines, which lead to slow con-
vergence to the final solution. Similar difficulties appear to manifest themselves for function space
problems.

In spite of these difficulties the ease of application of the penalty function method has meant
that it has been widely used!6:38:29.21.14,17.46.40 with many of the computational algorithms
discussed above.

3.2 Shifting Boundary Method

Moyer and Pinkham!® proposed a slight variation of the penalty function method using the
idea of successive approximation which they found gave more reliable results. In this method
the penalty function weighting matrix K is held constant while the cost functional

ly
Jr(u) — $[x(ty), t/] L(x, u, )dt -+ Ylx(tr), /] + OTKEx(tr), 1] 4 ) 3.2)
'0

is minimized subject to (2.2), where the g-vector c¢ is introduced to shift the terminal constraints.
The ith iteration of this vector, denoted ¢;, is defined recursively by the relation

¢ = ci1 — ylxi a(ty), ty]. 3.3

Noting that x; 1(fy) is a function of ¢; 1 it follows that the algorithm will converge providing
that the term ¢[x; 1(¢s), 7] defines a contraction mapping. This method does not appear to have
been extensively studied in the literature, since Moyer's early work, although it has some
similarities to the gradient projection method to be discussed below.

3.3 The Augmented Penalty Function Method

An alternative approach for improving the penalty function method, called variously the
Method of Multipliers and the Method of Augmented Penalty Functions, has been presented
by Hestenes.?? A number of variants of this method have also been proposed by Tripathi and
Narendra,*8 O'Doherty and Pierson,*® Connor and Vlach,% and Connor and Saltavareas.5!

In the method proposed by Hestenes the cost functional (2.1) is augmented with a quadratic
and a linear penalty function of the terminal constraint functions (2.3), thus yielding

10




Iy
W(u, A, K) = ¢[x(ty), t7] + j L(x, u, t)dt + ATp[x(tp)ts] + WT[x(ty), t7)K[x(1y), 1),  (3.4)
to

where K is a diagonal positive definite penalty function weighting matrix and A is a g-vector
multiplier which is to be determined. The matrix K is chosen and held fixed throughout the
computation. The method proceeds by selecting a A, and then minimizing W(u, A,, K) with respect
to u, thus giving u,. In general, given the multiplier A, the next estimate is determined from

Ani1 = An + K[xa(ty), ty], (35)

after which uy, ) is determined by minimizing W(u, An+1, K).

Since the problem defined by the augmented cost functional (3.4) and the differential
equation (2.2) has no terminal constraints the optimization aigorithms discussed in Section
2.2 can be used for minimizing W(u, A, K). From the limited amount of experience reported it
appears to be a reliable method. Connor and Saltavareas5! claim that their variant of the basic
algorithm appears to give superior computational performance to all the others of this class
which they have tested.

3.4 Gradient Projection Technique

The application of the gradient projection technique to optimal control problems with
terminal constraints was proposed by Kelley,!4 and Bryson and Denham.l5 More recently
Leese®2 has presented a generalization of this method which is also applicable to optimization
problems of the type defined by (2.1)-(2.3). Experience with this method has shown that it
functions well for problems with linear constraints but is often unreliable when the constraints
are non-linear. Recent work on improving its performance when used with non-linear constraints
has been carried out by Kelley and Speyer,> Kelley, Lefton and Johnson,¢ and Rosen and
Kreuser.53

The essential idea of the gradient projection method is to minimize the variation
8J = J(u -+ du) — J(u) of the cost functional (2.1), due to a variation du of the control function.
This minimization is carried out subject to satisfying (2.2) and (2.3) to first order, and in addition
satisfying a quadratic integral constraint on the control variation du. The latter condition is
introduced to ensure that the problem has a meaningful solution. If it is assumed that the state
trajectory x(1), t € [t,, t;] satisfies the boundary conditions a control iterate du(t), t € [t,, 5] is
sought so as to minimize

"/
8J :J [AT(e )fu(x, u, t) + Lu(x, u, t)18u(t)dt, 3.6)
to
subject to
;Itsx(t) :fz(x(')’ u(’), ’)sx(t) ’*' fu(x(’)v ll(l), ')8"(’)’ 8x(’0) = 0) (37)
'/’x['x(’f)v ’f]sx(’f) 0 0‘ (38)
and
Iy
} 8 T()du(t)dt = 1, 3.9
to ~

where A(¢) is the solution of (2.16). This is a standard linear quadratic optimization problem
whose solution is presented in Reference 6.

After each iteration of the control function it is necessary, if the terminal constraint function
Y[x(t), t7] is non-linear, to apply a constraint restoration procedure. Bryson and Ho® proposed
the simple approach of combining the restoration procedure with the basic gradient algorithm
using the method of successive approximation. In this case (3.8) is replaced by

Y[ x(ty), t710x(ty) = —ep[x(ty), ty], (3.10)

T T Y T

T TN T T

=




where the parameter € ¢ (0, 1]. This method of constraint restoration should be compared with
the shifting boundary method discussed above, and also the combined gradient-restoration
algorithm of Miele.'8

More recently Kelley and Speyer®® have presented a gradient projection version of the
Davidon-Fletcher-Powell algorithm, which has been found to give good performance for finite
dimensional optimization problems, when the constraints are linear. In order to improve the
performance for non-linearly constrained optimization problems Kelley et al.5 have introduced
the curvilinear projection version of the Davidon method which appears to give a further
improvement in performance over the previous methods.

3.5 Constraint Restoration Methods

The need for a constraint restoration procedure has been previously mentioned in relation
to the use of the gradient projection method with non-linear constraints. The work of Miele!8:32
and his collaborators has led to a family of optimization-restoration algorithms which ensure
constraint satisfaction. Moyer? has also proposed an algorithm which combines an optimiza-
tion phase with a constraint restoration phase. In his approach, instead of the cost functional
being minimized it is treated as an additional terminal constraint.

The Micle Algorithm

Each cycle of the sequential gradient-restoration algorithm of Miele!8 consists of two phases.
Supposing that the terminal constraints are satisfied at the beginning of a cycle, then in the
first phase one step of an unconstrained optimization procedure, such as described in Section
2.2, is used to decrease the cost functional (2.1). In Miele’s work he has concentrated on the
use of the first order gradient methods for this purpose. Since in this first phase no account is
taken of the terminal constraint requirements it is likely that condition (2.3) is violated. The
second phase consists of adjusting the control determined in phase one so that the terminal
constraints are satisfied by minimizing the cost functional

C) — WLty W), 1), (3.11)

subject to the differential equation (2.2). After this phase is completed a new algorithm cycle
begins. As the cost functional (2.1) does not appear in (3.11) explicitly, care needs to be taken,
by adjusting the iteration step-size in phase one, to cnsure that the algorithm will converge to a
solution of the problem defined by (2.1)-(2.3). Miele’s experience has shown that this can easily
be done.

A large number of variations of this basic algorithm are described by Miele in Reference 32,
where an extensive bibliography to this work is given.

The Moyer Algorithm

The algorithm described by Moyer?5 can be best illustrated by examining the problem
defined by (2.1)-(2.3), where it is assumed that L(x, u, t) = 0, so that the cost functional, denoted
by J4(u), becomes

JAu) — Slxtry), 1] 3.12)
In addition it will be assumed that the terminal constraints have the simple form
Xi(ty) Xif. i | PR qsn I, (3'3)

which will be denoted in vector form by (¢y) — 7.

In the first phase the problem defined by (3.12), (2.2) and (2.3) is solved using a_ penalty
function approach, where the penalty function weighting matrix K, in (2.30), is held fixed. This
yields an estimate of the optimal value of the cost functional, which will be denoted by JA In
the second phase of the algorithm, where the terminal constraints are zestored, the cost functional
(3.12) is treated as an additional terminal constraint by setting

dlxt) 1] — I 3.19)
and then seeking to minimize the functional
JOW)  Mbx(n). 1] — ID2 L (X(1y) — SOTK(R(y) — F)) 3.15)
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subject to (2.2). To improve the estimate of J;4 an iterative scheme is used, where the (i + I)th
iteration, J; . is defined recursively by the relation

4 JA(ue)

m, il

1
t B, e A — (3.16)
The subscripted variables w. and <. indicate that they are obtained from the minimization
of (3.15).

A disturbing feature of the Moyer algorithm is that it will only converge to an extremal
solution of the problem defined by (3.12), (2.2) and (2.3) if the estimated optimal cost JJ is
less than the true value of the cost for this problem. If this is not so then the algorithm will
converge to a non-extremal solution.

4. CONCLUDING REMARKS

An examination of methods for computing the extremal solutions of optimal control
problems, which are suitable for handling typical flight mechanics problems, has led to the
conclusion that a two stage computational procedure should be used. This is necessary because
at the present time no single algorithm exhibits the desirable features of rapid convergence in
the neighbourhood of an optimum solution on the one hand, and reliable convergence from a
starting solution which is not necessarily close to the optimum on the other. Experience has
shown the Bryson first order gradient projection method to converge reliably from an arbitrary
starting solution, and to have a high initial rate of convergence. Thus it is well suited for com-
puting the initial solution estimate in a two stage procedure. This algorithm has been imple-
mented and will be the subject of a subsequent report.

For the second stage an algorithm exhibiting a high rate of terminal convergence is desired.
Of the higher order algorithms variable metric methods are preferred over the Newton and
conjugate gradient procedures because of their greater reliability and speed of convergence.

Arising from this work the author has become aware of two approaches to algorithms for
optimal control problems which are worthy of further consideration. The first relates to the
Moyer algorithm. Possibilities exist to improve the performance of this algorithm by using
variable metric methods for cost functional minimization, and improved techniques for adjusting
the cost functional estimate. In addition the applicability of this class of algorithms to optimal
control problems involving state space and terminal inequality constraints needs to be
investigated.

The second approach is of a more fundamental nature relating to methods of generating
optimal algorithms for classes of problems. These ideas arose from a consideration of the form
taken by the iteration relations (2.18) for gradient methods. The steepest descent method can be
considered as a one-step optimization where the parameter ax is chosen so that J[ux — axVJ(ux)]
is minimized. A development of this notion would be to choose simultaneously the parameters
ke . .. akse SO as to minimize J{ux — axVHuk) — ... — axeVJ(uril)] using a multi-stage
optimization procedure. It is conjectured that this will yield an improved speed of convergence
over the steepest descent method. Whether this will be achieved, or achieved at excessive
“computational cost” remains to be determined. The concept is easily generalized to variable
metric methods, and so is capable of generating whole families of new algorithms.
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