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SUMMARY
The application of optimization techniques to the derivation of predictive information

for flight displays is being investigated in connection with operational situa t ions involving
large disturbances and manoeuvres. This note surveys curren t gradient methods for
computing extremal solutions of optimal control problems for systems having boundary
conditions but without stale or control constraints. Is is concluded that a Iwo stage
procedure is required, with the first stage using a first order gradient, while the second
stage would use a higher order variable metric method. Proposals are advanced for
further research on optimization algorithms.
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I. INTRODUCTION

The extension of flight director capabilities to a wide range of operational situations includi ng
major manoeuvres and disturbances is becoming feasible through advances in digital avionics
and displays. This will permit the timely presentation of alternative strateg ies to th e aircrew , for
their use in decision and control. These types of predictive aids , which for example would be
usefu l for STOL aircraft landing at forward tactica l airfields , and for combat aircraft involved
in tact ical engagements, are receiving i ncreased attention in the United States and NATO
cou ntries. 1 5  Research work is being initiated at ARL to gain an improved understanding of the
potentialities and limitations of these systems.

The dete rmination of the optimal manoeuvres required to achieve specific objectives , whilst
taking into account physical and operational constraints , would enhance the value of a director
unde r normal operating conditions , and would be of especial value in emergency situations.
This note surveys current methods used for computing extremal solutions of optimal control
problems for systems having boundary constraints , but witho ut state or control constraints.
The extension to the general case with constraints through penalty function and other tech-
niques will be the subject of further work.

Part icular attention is focused on the so-called “direct methods” and as many of these
methods cannot be immediatel y appli ed to problems having terminal constraints , a discussion
of techniques for adapting them to this need is presented . Finall y a number of approaches not
studied i n the literature , which are worthy of further examination will be briefl y considered.

2. ALGORITHMS FOR UNCONSTRAINED PROBLEMS

Computational algorithms for seeking the extremal solution of general optimal control
problems fall into two main groups, which are know n as

(a) Indirect Method s, and

(b) Direct Methods.

In addition to the methods mentioned above, special algorithms for finding the optimal
control of systems described by linear differential equations have also been extensively developed .
As the equations of motion for the flight mechanics problems of interest are generally non-
linear these method s are inapp licable and so will not be considered further.

The flight mechanics optimization problems being considered can be formulated within the
fra mework of the general optimization problem of Bolza : for a fixed final time , t~, find an un-
bounded control function u(t),  t e [t a, If) wh ich minimizes the cost functional

f.:~1(u) = ~[x( I~) , I ,] + 
~ 

L(x, u, t )dt (2.1)
J f o

subject to the di fferential equation

(1) = fix , u, r), x (t 0) = x0 (2•~)

and terminal conditions

4~i [x ( t,’), t,) = 0
(2.3)

~,bq[X(lj), t,) 0,



where q ~ n. and n is the dimension of the state vector x(t ). It will be convenient to write the
terminal conditions (2.3) in the vector function form

~4x( r1) , tf]  = 0. (2.4)

where we define the vector function ~ = W~i 41q) T .t In the present work it will be assumed

that the functions ~ : RN . R’ R’ , L : RN R~ • R’ —~~ R’, f :  RN 
~~ R ‘

~ R’ RN and
R N • R’ R~, which define the optimization problem , are continuousl y differentiable in *

all arguments .

2.1 Indirect Methods
These method s use an iterative scheme to solve some of the necessary conditions for

opt i ma l i t y.  while sat isfying the remaining conditions exactly. Two methods which have met
with a degree of success in applications are

(a) the nei ghbouring extremal or shooting method , and

th) the quasi-linearization method.

The necessary condit ions 6 for optima l ity of the problem definei by (2. l )— (2 .3) are most
easily stated by use of the Hamiltonia n H ( x . u. A , t)  which is defined by

H(•r, u. A, I) = L(x, u, i) AT(t~f (x. u, I). (2.5)

wher e A ( t )  is the Lagrang ian m ultiplier function. These conditions give rise to the two-point
boundary value problem of finding functions x(t) ,  u ( t)  and M’). t ~ [:~, 1~) which simultaneousl y
satisfy

1x ~H(i )  the it state equations , (1) — (v . u, A, I ) :

J A( ii ) the n adjoint equations . ( I )  — (x , a. A. I ) :

~lt

( i i i )  the a: opt ima lity conditions , — 0:

( i s )  the a init ial  conditions x( t 0) =

(~ ) the q terminal conditions ~/4x( l j) .  t,] 0: and

(vi) the ~:- q adjoint t erminal conditions AT(t ,) I • ~‘~~
‘ 

. I . where ~ is an
L~’ ~~~ ~arbitrary q-vector.

2.1.1 Neighbouring Ext remal Algorithms

These method s which are also known as shooting or root finding method s in RN. attempt
to solve conditions ( iH ii i)  exactly by d i rect integration of the diffe rential equations , while us ing
an iterative procedure to converge to the satisfaction of conditions (ivHvi) . as discussed in
References 6 and 7.

I n the case where condition ( i i i ) .  above , can be exp licitly solved for s RI)  in terms of x( r )
and A(t ) .  this variable can be eli minated from the differential equations given in ( i ) and (ii ) above.
Adjoi ning vectors x ( t)  and A (t) to form the 2n-vector

(2.6)

it can easil y be seen that the equations given in (i) and (ii ) above, with .4r) eliminated , takc the
form of the two-point boundary value problem

t The transpose of a matrix A will he denoted by 4” .

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



( I )  = F(y,  1), (2.7)

where

(x, u(x , AX :), ,)

F(y, :)=( (x, u(x , AX :), A, :)

and the boundary conditions are

~4x( tj) ,  1,’)
= [~:1 , and [ — — ~~ 

=0. (2.8)

For simplicity, in the remainder of this discussion it will be assumed that x( i j )  = x~, where x1
is a giv en vector. In this case the terminal condition given in (2.8) simplifies to

= (2.9)

One approach to solving this problem is to consider that (2.7) implicitly defines a function ,
P. mappi ng A(:0) a R” into (x(t j) — x1) E R6, so that it now becomes a problem of finding a
A(:0) such that P(A(: 0)) = 0. This can be solved by using the classical Newton-Raphson method
where the interates are constructed as follows

= A1(:0) — 

[
~~f ’ ]  P(A~(t 0)), i = 0, I , 2, 3, . . . (2 .lO)

assuming that [~tP/~A(t 0)]-’ exists. In apply ing this method , Bryson 6 suggests the following
three approaches for determining the multip lier matrix [~P/~A(:0)) ‘:

(i) direct numerical differentiation by perturbing each component of A( :0) i n turn , followed
by int egration of(2 .7) and matrix inversion of ~P/~A(t 0) :

(ii) unit solutions using second variation equations , followed by matrix inversion of

( iii) using the backward sweep method , which y ields [~P/~A(:0)] ‘ directl y.

Methods (i) and (ii) often suffer from severe numerical sensitivity because the matrix ~P/bA(r0)
is often ill-conditioned. However , the third approach tends to be much less sensitive to this
conditioning problem.

The main disadvantage of this approach is that it often suffers from severe conditioning
problems , where small changes in A(:0) lead to very la rge changes in x(:~) . This can result in the
algorithm failing to converge, unless the initial trajectory is close to an extremal trajectory. In
addition it is quite sensitive to the effects of numerical rounding. However, because of the quad-
ratic convergence properties of Newton’s method it is quite useful for conducting parametric
perturbation studies once an extremal solution has been found by some other means , such as
the gradient method to be discussed subsequently.

2.1.2 Quasi-LInearIzatIon Algorithm
An alternative approach to that discussed was proposed by McGill and Kennet h ,8 and

Bellman and Kalaba .’’° In their method , instead of iterating on the boundary conditions the
procedure now iterates on the entire solution trajectory yO’). I a [t o, 1,).

Considering the same problem as defined in (2.7)—(2.9), define a function space operator ,
F, as

FQ ’) = — F(t’, :). (2.11)

It can be seen that if y(:) is to satisfy (2.7) it is necessary for F ( )  = 0, that i s v  has to be a root

3
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of the operator 5. Applying Newton ’s method in function space to (2.11 ), where we let
y~ . i (t )  t’k(i) 8Vk(i ) ,  and denote the partial derivative ~F (v , i ) ~~~ by F~4 v , 1) , yields

0 f ( lk  6Vk ) F(lk, 1) (‘ — F,(~’k, i))~~Vk. (2. 12)

Consequentl y the linear two-point boundary value problem

8.1k F~( rk . i)&yk F( Vk , ~ 
dYk (2.13)

with boundar) conditions &v ( i 0)  &v(:;) 0, must be solved for the iterate 6yk(i), for
k 0, I. 2 This problem can be easily solved by standard methods.

This approach, while exhibiting quadratic convergence near an extremal solution again
suffers with the problem of iIl-conditioning,~ which may lead to the algorithm failing to con-
verge unless the initial trajectory is near an extremal trajectory.

2.2 Direct Methods on Control Function Space

The direct method s of computing the extremal controls for optimal control proble ms
largel y overcome the convergence difficulties of the indirec t methods. In these methods the cost
fu nctional , J. i n (2 .1 ) , is mini mized directl y without recourse to the necessary conditio ns, by
it erati sel y adjusting the control function u ( :) .  I ~~ :j] . These method s, which are well suited
to ha ndling problems without termina l constraints , cannot be i mmediately applied to problems
of the typ e defined h~ Equations ( 2. l)— ( 2. 3). Methods of apply ing the al gorithms under con-
sideration to this latter class of problems will he discussed in the next section.

2.2.1 First Order Gradient Methods

Applications of fi rs t ordet gradient methods have been extensively studied.~ 
19 because

of their relative simplicity on the one hand , and their reliability in solving a broad class of
problems with an acceptable speed of convergence on the other.

(‘onsider t he case where the term inal constraints (2.4 ) are not present. The cost functional .
J. defi ned h~ (2. 1) can be considered as mapp ing the control u L2[1 0. :j] into R’ . In this case
t he gradient , VJ(u) . of (2 . 1) .  subjec t to the diffe rential equation constraints 122 )  can be
deter mined h~ expa nding (2 . 1 )  using a truncated Taylor series . Th us if 8u denotes a variation in
the control a, we obtai n

“I
J(u 6u) = ~[xu,). ‘iI L( x, U, ( kit . i~x[x(if), h W y

~ ‘0

[LA~. u. :) &v( f)  L~(x . u. f )&u(i ) J di (2.14)

.1 : 0
where S x ( i)  is the variation in the solution of (2.2) caused by & u (I) . The variation 8 x ( t) .  I a [ia, t~]

is the solution of the variational differential equation

d
di 
8x(t) =f ( x ( t) .  u ( i ) 8 x ( i )  . f~(x ( t) .  u ( t) ,  t) ~u ( t ) ,  8x (i 0) = 0. (2. 15)

Introducing the adjoint differential equation

(t )  f,”(v( v ) , u(,’) , t )A(t) L17( x (t ) ,  u ( t) ,  r) ,  A(t1) - - ql’1T[.v(F,), 14, (2. 16)

it can be shown that

I” ‘I~
4~.[x ( 1j ) ,  :jJ8x(:) L~(x , a, :~&x(t)dt = A T ( t )f N ( x, a , i )8 u(t )di . (2 . 1 7)

J 10 ~~~ 10

Substituting (2 .1 7)  into (2 .1 4)  it follows that

4
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J(u &u) J(u) + [AT(I)fk(x, u, I )  L~ (x , u , i ) J ~u(t)dt ,
J ( o

and as a consequence the gradient VJ(u)  can be identified as
V J ( uX ()  :~ AT(1)JN(x(f), u (t) ,  I )  Lk( x ( t ) ,  u (1) , 1), 1 E [‘a, (4. (2. 18)

Assuming that the initial estimate of the control , u0( ’), is given , and using the usual grad ient
proced ure, the (k I )th iterate of the control , Uk. j( .

), is given by
Uk.I = Uk Xk VJ(Uk), (2. 19)

where VJ(Uk) is given by (2.18). Provided that an appropriate procedure is used for selecting
the para meters { 2 k } ~ ~ it can be shown that such an al gorith m converges to an extremal solution
of the above problem. One such procedure is the method of steepest descent where the para-
meter 

~ k is chosen by conducting a one-dimensional search so that
J(Uk) — YkVJ(Uk))

is minimized. This procedure is very robust because at each iteration step the value of the cost
func tional , J , must decrease until a limi t is reached.

The main advantages of methods using a first order gradient are:
(I) it is simple to program;
(2) it requires first order derivative evaluations only:
(3) global convergence to local minima can be proved so that the algorithm is reliable;
(4) the algorithm coverges rapidl y during the initial iterations.
However, these methods exhibit the significant disadvantage of slow convergence once the

ite rates are in the nei ghbourhood of an extremal solution , In fact it can be shown that they only
have a linear rate of convergence near a solution so that the convergence error onl y decreases
with a geometric progression on the convergence factor.

2.2.2 Second Order Gradient Methods
Because of the poor speed of convergence of first order gradient methods many researchers

have studied second order gradient methods.~O.2l 22.23.21 Essentially these methods involve
expansion of the cost functional (2.1) to include quadratic terms, thus leading to a linear quad-
ratic optimization problem , which has to be solved for the new control iterate.

Again consider the case where the terminal constraints (2.4) are not present. Following
Miele ’8 a multiplier function A (t), h a  [ta , :4 is introduced which satisfies (2. 16) and is used to

augment the functional (2. 1) with the term A”(:)( f ( x ( :) ,  u( :) , z)  — (1)), thus yielding the new

functional

j I f dvJ(u) = ç6[x( ,), :j ]  L(x, u, 1) + )tT(1)(f(.v, u. t )  — (t))dt ,
J (0

j l i dv
= ~ [x(t j ) ,  t~) H(x , u, A, :) — A T( ’)~~ ( () d(, (2.20)

~1 1 0

where H(x , a, A, ~‘) is defined in (2.5). Expanding (2.20) using a truncated Taylor series including
quadra tic terms , we obtain

1~11
J(u  -

~~ ~u) = J(u) f çS~(x(t 1), (j)& y (i1) + [ H ,~(x , U, A , t) ~u( t)  + H~(x, a, A, i)Sx(t)
J I0

— A”(~~~ 8x (() Jd ( + ~&v(h,)T~zx(x(1,), (4&v(11)

H 1~(x , u, A, 1) HX N ( x , u, A, I )  8x(t)
+ ~ I E&x ”(I ) Su ”U)] di, (2.21)

J 10 H~~(x, ii, A, t ) H~~(x, ii , A, :) 8u(i)

S
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sshere A ’.~t ) ,  I [t i.. t j )  is the solution of (2.1 5). It follows from t2 17) that (2.2 1) becomes

gI , 111% HXSI &v
f ( u  . l~u)  J ( u )  !i~Sudi 

~ I I&V TSU TJ
. J ‘~ 

H.~ Ii ,~ iSu

U- . (2.22)

Apply ing  the Newton-Raphson method to (2.22) the problem becomes one of finding a
Su~( : ) .  : ~ [ia. :j ] which minimizes the quadrati c cost functional (2.22) subject to the linear
variat ional  dif ferential  equation ( 2 . l5 ) .  Once Sag is computed , the next control iterate ul.I is
determined from u~. i ii Sue. and the process then repeated in a manner similar to the first
order gradient procedure.

The necessary conditions for optima l i ty when app lied to ( 2 2 2 )  and (2 .15) yield the following
two point boundary value problem

‘I .4(1)  8(1)  St r(1 ) Sv( 0) == 0

(2.23)
(I
/ ~ .\ C(t I 4T 1~ ) ~1,k .c(l ) SA(t j ) ~1.,4x(i 1) . / (j )& v( (j ))

ss herc
.4(i) f~ ~~~~ ‘!I ,~r. (2.24)

BU) - f. II~~ ‘1.”, (2.25)
Cl:) ~~~ H11H,~. 1H~1. (2.26)

r(i) ~~~~ if ~ T, (2.27)
and

s ( t )  H1~H~~ l I T  (2.28)

The funct ions in equations (2.24) (2 .2~ ) are assumed to be evaluate along .r(t), and t41), for
[t ,,. h i .

Two main approaches have been proposed for solving the above two-point boundary problem.
Breakwell2° and Kelley~~

2
~, by determining a set of it linearly-independent solutions to the 2n

differential equations (2.23) such that each solution satisfies the final boundary conditions,
have used the princi ple of super-position to find a solution which also satisfies the initial boundary
conditions. Unfor tunately  this  method can suffer from sesere ill-conditioning problems: a fact
which led to the development of the sweep method s proposed by Jacobson ,22 ’25 McReynolds26 ’27
and Mit t er 24 which tends to overcome this problem.

The main advantages of this method are - -

( I )  The step size of Su is automaticall y determined , so that  a one-dimensional search is not
required at each al gorithm iteration.

(2) The algorithm exhibits quadrati c convergence properties near an extremal traj ectory,
and as a consequence wil l  converge much more rap idl y to a final solution than the first
order gradient method.

However , there are two disadvantages which l imit  i t s  usefulness. These are -

( I )  The al gorithm may not als~ays converge , particularl y if the initial t rajectory is far from
the extremal trajectory. In fact for this algorithm to be app licable it is necessary for

~~~ to be positive definite for , I t o. ,4. which is difficult to ensure unless the initial
trajectory is near a minimal  trajectory. As a consequence it is often necessary to initiall y
use an alternative al gorithm , such as the first order gradient method, as a preliminary
to i t s  use.

(2 )  Programming and problem preparation requires much greater effort compa red with
first order gradient methods, because of the large number of second derivatives which
need to be evaluated.

2.2.3 Conjugate Gradient Methods

The app lication of the conj ugate gradient al gorithm to optimal control problems was 
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proposed h~ Sinnot and I uenberger 29 . l as-don . Mi t ter  and Waren .29 and Pagurek and Woodside3°
about 1967 More recently lies-tenes ” has discussed its use with his  “Method of Mul t i pliers ”
for so l s in g constrained problems . w h i l e  Miele~ has considered its  use in conjunction w i t h  I -

his method of constraint  restoration.
The method is e ss ential l y a generalization of the conjugate gradient al gorithm of Fletcher

and Reeses 33 to func t ion space problems . Supposing the gradient V.1(u) of the control a, denotedby g (u) is computed as in Section 2 .2. 1 ahose . and that  the in i t ia l  estimate of the control , u0. is
chosen a r b i t r a r i l y .  The algor i thm proceeds as follow s:

( I )  let L’.~ l,’) u , )  and set ~A. .e..:

( 2 )  f ind ~, such tha t  J(ii, ~~ ) is minimi zed :
(3 ) set u, u, ~,.I, :
( 4 )  f ind 

~
‘ - i ,L ’( U  - ) . and t~ ( i .’ . i .  .c. i I I .e.. .e. I. w here ( .e1.g,) is defined h~

(~~~. ~~~ ) ~ T11 ).e~’ k/t :

I S )  sCt ./ . i s’ -

(6 i  Retur n  to step ( 2 )  t int  if al g or i thm has cons erged to problem solution.
I t  h a s  been shown in Reference 2’) tha t  not only does th is  al gorithm exhibit  many of the

theoretical properti es cii the f ini te  dimensional conjugate gradient al gorithm , hut numerical
experience shows tha t  II conserge s more rap id l~ than first  order gradient al gorithms.

The principal ads ant age s- of thi s  method are :
(a) The al gor i thm onl~ requires the es aluat ion of first  order derivatives:
(5) It appear s- to ex hibi t  quadrati c cons-ergence near an extre mat traj ector~, although some

doubt about th is  is expressed in Refi~rencc I I .
( e)  Programming effort requ ired is only a moderate increase oser the first order methods.
The main di sadsa nt ages ire
(a) A s ignif icant  amount  ol’ computat ion t ime is required to esaluate the conjugate direc-

tion s in funct ion space.
(/~) The al gor i thm is qu i te  sensit i s e to num eri cal  rounding .  which means that  some corn—

p uta t ions  iie~d to be p erformed in doubl e precision.
(e ) A one—dimensiona l search is requir ed at each iterat ion,  which can consume a si gnif icant

amount  of computation t im e.
( / )  The al gori thm may fail to cons.erge if the in i t i a l  estimate of the traj ectory is too far from

an extremal trajector y .  As a consequence a first  order gradient method may he needed
to obtain a s ta r t ing  solution for the al gori thm.

2.2.4 Variab le Metric Methods
Variable  metric methods were in i t ia l l y  des-eloped for minim izat ion of ’ t’unct ions of a f ini te

numbe r of variables. The best known of these being the Dav idon algori thm , was subsequentl y
refined by Fletcher and Powell34 and has become known as the Davj don-Fletcher-Powell (DFP)
method . The application of this  method to function space minimizat ion  problems is discussed
in References 35. 36. 3 1 . 37 . Al though only a l imited amount  of computational experience with
the DFP method has been reported . t7 39 this  stork shows that  its  speed of convergence is superior
to t lie conjugate gradien t met hod .

TI,,’ flu i n/On— H,’ - h er— Powell %f( tho(I
Suppose the gradient VJ (u) .  denoted b~ g (u) .  is comp uted as in Section 2.2.1 , and the initial

estimate of the control . u, ,  is chosen arbi t r ar i l y. The al gorithm proceeds as follows :
( I )  let g,, i,’(u,,) and s-ct J,, it ,,:

(2)  f ind ~ ~, such tha t  J ( u 1 ~~/ )  is minimized :



(3) set u ,.~ -~~ ~zo/ , and find g~~. i  g (u , . l) :

(4) find .~ ~— Ug . u~ and t - g~. g,;

(5) find

1- I- , , I 0,
fI~vg = 

~~~ ~ ~~~ ~~~~~~(6) find

I . I ( 
~i. 

g. . i )  (H j vj , g~ . 1 )  11d1. - Il’. igt. i = 
~ ~~~~ ~

.. .Sj Hj ) j  I?
o L ~‘. ‘i) ( Hj vj , .v)

(7) return to step (2 ) k times :

(8) return to step ( I )  un t i l  al gorithm has converged to problem solution.

In the above algori thm the inner product ( v , v ) is defined as

(x , i)  1T(j  ) v (t  ) dt.
.j ’o

Steps (7) and (8) in the al gorithm , where it is re-started after every k iterations , have been
introduced to overcome the difficulties of excessive storage requirements and the large increase
in computation t ime per iteration as k increases. In fact to compute d~~. i it is necessary to store
2(i  - 2) functions. The experience of Tripathi 37 indicates that  k should lie in the range 5— 12 ,
while Pierson 38 has found evidence that selecting k to be 3 or 4 actually enhances the convergence
rate.

A part from the DFP method discussed above , other variable metric al gorithms ,vhose
app lication to the computation of optimal controls has been studied are the Davidon “Rank-
One” method by Garg 39 and the Broyden quasi-Newton algorithm by Edge and Powers .4°
Both of these methods have similar memory storage requirements to the DFP method.

The “rank-one ” method , discussed by Garg. has a uni que feature of not requiring a one
dimensional search at each iteration. Since a considerable amount  of computation time is often
consumed in these searches , there is a possibility of speedier convergence when this method is
applied to optimal control problems. His experience , albeit on a simp le problem , indicates that
this may be the case.

Edge and Power ’s stud y on the Space Shuttle ascent trajectory optimization is the only
examp le , of which the author is aware , where one of these methods has been applied to a realistic
aerospace problem. Their experience shows that the Broyden al gorithm (which is closely related
to the DFP method) can be successfully used for studying these types of problems althoug h
they make no attempt to compare its efficiency with other types of algorithms.

Since only limited experience of the use of these methods has been reported our conclusions
are to some extent tentative. However , reported experience with the finite dimensional al gorithm
plus anal ytical results leads to the following observations—

( I )  Only first order derivatives are required.
(2) Algorithm exhibits quadratic convergence near an extremal trajectory. Experience with

finite dimensional al gorithms indicates that this method converges more reliably than
the conjugate gradient methods.

(3) Analytical studies show that  the method starts l ike a first order gradient method and
graduall y becomes like a Newton method.

(4) Experience with finite dimensional problems shows that it is less sensitive to numerical
rounding than the conjugate gradient method.

(5) In References 37, 38, 39 it is reported that these methods converge more rapidl y than
other comparable methods.

Their most significant disadvantages are :
( I )  They require considerable memory storage when compared with first order gradient

and conjugate gradient methods ,
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( 2 )  .-~~ considerab le amount of computat ion t ime must be used in computing the variab le
met r ic  operator.

2.2.~ Balakrishnan Epsilon %Ief hod

t h i s -  method , propo sed h~ Bala kr ts hn an . U ditkr s from the direc t methods discussed abose.
in respect of the st a t e  saria hl e ‘( 1) which Is here treated as an independent variable ra ther than
as being cau sall~ depend ent on the control u U)  through the differential  equation (2.2) To ensure
E quat ion ( 2 . 2 )  is satisfied he proposed that it be adjoined to the cost functional  (2 .1 )  by use of
a penalt s funct ion .  Thus ( 2 . 1 )  becomes

v , i i )  ‘b [.s - I ij ) .  t j ~ 
. f ( v , u . I ) di - ii (1) f ( s -. u, I )f l2dt . (2 .29)
i t o • 

to

where l i i i  denotes the I uc h id ea n norm.
By t a k i n g  a sequence of .. I - 1 . 2 where q .0 as I - .‘., and minimizing J .~ for

each i I . 2. - . - it can be shown that the traje ctory and control approach a solution of the
problem defined by ( 2 . 1 )  ( 2 . 3) .  Ii has been found4~~

43 t ha t  the convergence of this method is
not particularl y sensit is e to the s-alue o f . . and as a consequence onl y a small number of values
of need to be chosen for  practical application .

The techni que used for minimiz ing  (2 .29) in References 42 and 43 is to trar sf ’orns this
funct ional  using the Ra y le i gh-Ri tz  method , and then s- oh s- c the resulting f in i te  .limensiona l
minimi z a t ion  problem u s ing the is-~ewton -Rap hson al gori thm. Their experience seems to
indicate that  it is a method wor th y  of further Invest igat ion when mul t ip le state space and control
constraint s are present. Tas (or and (‘onst ant inides 44 found the indirect relationship between
the error in the sati s faction 0 1 ( 2 .2 )  and the error in the satisfaction of the terminal constraints
(2.3 ) made it d i f f icul t  to gain an insight  in to  the convergence behaviour of the al gorithm. This
pro s-es to be a significant disadvantage.

2.3 Discussion

It can be obsersed from the preceding section s tha t  no sing le method exhibi ts  all the charac-
teristic s of an ideal al gor i thm . A .  a consequence it is usefu l to examine them from the s- iewpoint
of how the strengths of one al gori thm may he used to complement the weaknesses of others.

Since the first order gradient methods reliably converge to extrema l trajectories , even thoug h
they have poor terminal  convergence beha s- j our , it appears that  they are well suited for computing
the star t ing trajectories for methods which are not g loball ~ convergent , but have rap id terminal
convergence. In this case no at tempt would he made to obtain complete convergence using a
first order gradient method : instead it would he used to execute a small number of iterations
before transferring to a more rapidl y convergen t al gorithm.

Of the techni ques discussed , the variable metric methods seem to offer the greatest potential
for general purpose use. Computational experience , particularl y with f ini te  dimensional prob-
lems , has show- n them to be globall y convergent for a broad class of problems . even thoug h th is
fact has not been universa l l y  proved by anal ytical means. In addition these methods exhibit
excellent terminal  convergence behaviour. Exp erience in use has also shown them to have a
superior convergence rate , and to be less sensitive to numerical rounding errors , than the conjugate
gradient methods. One si gnificant disadvantage of the variable metric methods , and something
which is not apparent for the finite dimensional case, is the large memory storage require-
ments when they are applied to function space problems. In cases where memory storage is at
a premium it may be necessary to use second order gradient or conjugate gradient ‘methods
as their  memory requirements are quite modest ,

3. ALGORITHMS FOR PROBLEMS WITH TERM iNAL CONSTRAINTS

In Sections 2.2 .1—2.2 .4  methods for solving unconstrained optimization problems of the
type defined by equations (2 .1 )  and (2.2) . hut wi thout  the presence of the terminal  constraints
(2. 3), were examined. In this section a number of techniques are discussed , which can be used in
conjunction with  the above methods for solving problems with terminal constraints.
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3 1  Pena lty Function Methods

In the penalty func t ion method discussed by Kell ey , i4  an optimization problem with ter-
minal constraints is transf ’ormed into one without constraints. In applying this method to the
problem defined by (2. 1) - (2 .3) the terminal constraints (2.3) are ignored. However, to ensure
that  the constraints (2.3) are satisfied a new cost functional , J K (u ) ,  is defined by adjoining a term
proportional to the magnitude of the constraint error , ~4x( t ,) ,  tj ] ,  to the cost functional (2 . 1 ),
thus giving

j’It
JK (u) /4x(t j ) ,  h i  I L(.v . u, t)iht 1 ~ ,r [ .~(11), t,)K,/ , [x (t,),  hi ,  (3.1)

,j ’~where K is a positive definite diagonal penal ty f unc t ion weighting matr ix .
By taking a sequence of matrices K1, i = I . 2 where II K d l • ~ as I - ~~~~, and mini-

m iz ing ( 3 . l )  for each K,, subject to (2 .2) using one of the methods given in Section 2.2 , it can be
shown that  the corresponding sequence of trajectories and controls converge to a solution of the
problem defined by ( 2 . l ) - (2.3) . Schemes for adjusting the elements of the weighting matrix K
after each cycle of the algorithm are discussed by Kelley, ’4 and Moyer and Pinkham. ’8

Experience with  this method i615. 17 has shown that it can lead to failure of convergence when
using an optimi zation al gorithm which is otherwise reliable. The dif T iculty appears to partially
arise from rounding errors , as the magnitude of the elements of matr ix  K approach inf ini ty ,
causing the penalty function to dominate the ori ginal cost function. Also for finite dimensional
problems , where penalty functions are used , it is well known that when the elements of K are
large the augmented cost functional often has long narrow ravines , which lead to slow con-
vergence to the final solution. Similar difficult ies appear to manifest themselves for function space
problems.

In sp ite of these difficult ies the ease of application of the penalty function method has meant
that it has been widel y usedI6 .38 .28 .2i .ii , i 7 . i ~,40 with many of the computational al gorithms
discussed above.

3.2 Shifting Boundary Method
Moyer and Pinkh am ~ proposed a sli ght variation of the penalty function method using the

idea of successive approximation which they found gave more reliable results. In this method
the penalty function wei ght ing matrix K is held constant while the cost functional

I’ ll
JK(U) .~.[.v(hj ). tj ] L(.v. u, t)c ht . l ( i /4 x (Ij ) ,  i.t] e) T K(iI , [.v (t ,), hj ] e) (3. 2)

i I,,

i s minimized subject to (2.2), where the q-vector c is introduced to shift the terminal constraints.
The ith iteration of this vector , denoted e~, is defined recursivel y by the relation

(‘g = Ci I - s~Ixi i( t ~ ), t,j. (3.3)

Noting th at  .s--~ i ( t j ) is a function of c~ it follows that the al gorithm will converge provid ing
that  the term ~4.v, i(Ij) . if) define s a contraction mapp ing. This method does not appear to have
been exte nsively studied in the literature , since M oyer ’s early work , althoug h it has some
similarities to the gradient projection method to be discussed below. r

3.3 The Aug mented Penalty Function Metho d
An alternative approach for improving the penalty function method , called s- ari ou slv the

Method of Multip liers and the Method of Augmented Penalty Functions, has been presented
by Hestenes.-17 A number of variants of this method have also been proposed by- Tripathi and
Narendra,-’TM O’Doherty and Pierson,-1° (‘onnor and Vlach ,5° and Connor and Saltavarc as . Si

In the method proposed by Hestenes the cost functional (2 . 1)  is augmented with a quadratic
and a linear penalty function of the terminal constraint functions (2.3), th us y ieldi ng
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I’ll
W(u , A, K)  -= #Ex (h,), ‘i] I L(x , U , t ) di A~~i[x(tj ),t1) ~ ,/~T[X(t,), t1] K./4x(t1) , t ,.], (3.4)

,) to

where K is a diagonal positive definite penalty function weighting matrix and A is a q-vector
multiplier which is to be deter mined. The matrix K is chosen and held fixed throughout the
computation. The method proceeds by selecting a it0 and then minimizing W(u, At,, K )  with respect
to u, thus givi n g u0. In general , given the multiplier A~ the nex t estima te is determined fro m

A,, + = A,, -
~ K~/4x ,,(i j ) ,  t~J, (3.5)

afte r which U , , +~~ is determined by minimizing W(u , A 0+1 , K) .
Since the problem defined by the augmented cost functional (3.4) and the differential

equation (2.2) has no terminal constraints the optimization algorithms discussed in Section
2.2 can be used for minimizing W(u , A, K). From the limited amount of experience reported it
appears to be a reliable method . Connor and Saltavareas 5’ claim that their variant of the basic
algorith m appears to give superior computational performance to all the others of this class
which they have tested .

3.4 Gradient Project ion Technique

The application of the gradient projection technique to optimal control problems with
terminal constraints was proposed by KelIey, ’4 and Bryson and Denham.’5 More recentl y
Leese52 has presented a generalization of this method which is also applicable to opt imization
problems of the type defined by (2.lH2.3). Experience with this method has shown that it
functions well for problems with linear constraints but is often unreliable when the constraints
are non-linear. Recent work on improving its performance when used with non-linear constraints
has been carried out by Kefley and Speyer ,53 Kehley, Lefton and Johnson,54 and Rosen and
Kreuser. 55

The essential idea of the gradient projection method is to minimize the variation
8J = J(u  -

~~- 8u) — J (u )  of the cost functional (2. 1), due to a variation ~u of the control function.
This minimization is carried out subject to satisfying (2.2) and (2.3) to first order , and in addition
satisfying a quadratic integra l constraint on the control va ria tion Su. The Jatt er condition is
introduced to ensure that the problem has a meaningful solution. If it is assumed that the state
trajectory x(t), I e [t a, tj) satisfies the boundary conditions a control iterate Su( t) ,  I E It o, t,1 is
sought so as to minimize

(‘1/
= [A 7’(t ) fu(x, u, 1) -f L,,(x, u, t ) J .Su(t)d t , (3.6)

,.1 io

subject to

~x (t) =f2(x( t), u(t), t) 6x (t) +f,,(x( t) , 141), t) Su(t) , &x(10) = 0, (3.7) h

#x[x( tr) , 1118x( li) 0, (3.8)

and

f. t,
~ I ~u”(t ) 8u(t~dt I, (3.9)
J t 0 5-

wh ere A(t ) is the solution of (2.16). This is a standard linear quadratic optimization problem
whose solution is presented in Reference 6.

After each iteration of the control function it is necessary, if the terminal constraint function
sl ’[X Of) ,  I ,] is non-linear , to apply a constraint restoration procedure . Bryson and Ho8 proposed
the simple approach of combining the restoration procedure with the basic gradient algorithm
using the method of successive approximation. In this case (3.8) is replaced by

i/’g(x(I,), lj’]8x(tj) = —e~4x(t j ) ,  ti], (3.10)

I I

- —— -- - — —~~~~ - - - -~~~~ --— -. - . ~~.—-- -~~~~~~~- - - L~J



n~~~~~~~~~~

..

svhere the parameter e C (0 , I ]. This method of constraint restoration should be compared with
the shif t ing boundary method discussed above, and also the combined gradient-restoration
al gorithm of Miele.~~

More recently Kelley and Speyer53 have presented a gradient projection version of the
1)as-idon-}- letcher-Powcll al gorithm , which has been found to give good performance for finite
dimensional  optimi zation prob lems . when the constraints are linear. In order to improve the
perf’ormance for non-linearly constrained optimization problems Kelley ci a!.54 have introduced
the curs ilinear projection version of the Davidon method which appears to give a further
improvement in performance oscr the previous methods.

3.5 Constraint Restoration Methods

The need for a constraint restorat ion procedure has been previously mentioned in relation
to the use of ’ the gradient projection method with non-linear constraints. The work of Miele’8’32
and his collaborators has led to a family of optimization-restoration algorithms which ensure
constraint satisfaction. Moyer 45 has also proposed an algorithm which combines an optimiza-
tion phase with  a constraint restorati on phase. In his approach , instead of the cost functional
being minimi z ed it is treated as an addit ional  terminal constraint.

The .%Iiele .41i5’t ’rith,,z
Each cycle of the sequential gradient-restoration algori thm of Miele i M consists of two phases.

Supposing that  the terminal constraints are satisfied at the beginning of a cycle, then in the
first phase one step of an unconstrained optimi zation procedure, such as described in Section
2 2 , is used to decrease the cost functional  (2 . 1) .  In Miele ’s work he has concentrated on the
use of the first order gradient methods for this purpose. Since in this first phase no account is
tak en of the terminal constraint requirements it is likel y that condition (2.3) is violated . The
second phase consists of adjusting the control determined in phase one so that the terminal
constraints  are satisf Ied h~ minimi zing the cost functional

C(u) ~~7’[. v(I j ) .  ‘1J~s [x(i j ) .  ij) . (3. 1 I )

suh ~ect to the differential equation (2. 2). After this  phase is completed a new al gorithm cycle
begins. As the cost functional (2 .1 )  does not appear in (3.11) explicitly, care needs to be taken,
by adjus t ing  the iteration step-size in phase one, to nsure that  the algorithm will  converge to a
soluti on of the problem defined by (2.1) (2.3). Miele’s experience has shown that this can easily
he done.

A large number  of variations of thi s  basic algorithm are described by Miele in Reference 32 .
where an extensive bibliography to this work is given.

Tilt ’ .%Iove r ~4 !t ’orithn,
The algori thm described h~ Moy er-t5 can be best illu strated by examining the problem

defined by ( 2 . l )  (2.3).  where it is assumed that  L(.v . u, t )  0, so that the cost functional , denoted
by J - 4 (u) ,  becomes

J - ’(u )  ~4v( i j ) . t j ) . (3. 12)

In addit ion it will  be assumed that the terminal constraints have the simp le form

.s, (i 1) v 1~. I I,. .  , q ~ n I, (3.13)

which will be denoted in vector f’orm by ~(t ~ ) .t j .

In the first phase the proble m defined h~ (3. 12) , (2.2 ) and (2 .3) ix solved using a.,,penalty
funct ion approach , where the penalty function weighting matrix A . in (2.30), ix held fixed . This
yields an estimate of the optimal value of the cost functional , which will be denoted by J ,~. In
the second phase of the algorithm , where the ter minal constraint s are ‘~stored. the cost functional
(3 . 12)  ix treated as an additional terminal constraint by setting

/4.v(t,), i,,) J ,~, (3. 14)

and then seeking to min imi ze  the functional

.J ”( u) ~. (~I s ( t r ) ,  t ,) J ,;~) 2 ( . c ( t ,)  ~1) TK( c1,,) ~~~~~ (3.15)
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subject to ( 2 2). To improve the estimate ofJ ,~ an iterative scheme is used , where the (I ~
- l ) th

iteration. J ,~ • ~ 
is defined recursively by the relation

J4(u,.) J4 (.~,4tj) .c1)TK(.~ (t,) — .~j ). (3. 16)

The subscripted variables u~ and .
~~
,. indicate that  they are obtained from the minimization

Of (3. 15).
A disturbing feature of the Moyer algorithm ix that it will only converge to an extremal

solu tion of the problem defined by (3. 1 2) , (2.2) and (2.3) if the estimated optimal cost J ,~ is
less than the true value of the cost for this problem. If this is not so then the algori thm will
converge to a non-extremal solution.

4. coNcu’DIN(; REMARKS

An examination of methods for computing the extremal solutions of optimal control
problems. which are suitable for handling typical fli gh t mechanics problems , has led to the
conclusion th at a two stage computational procedure should be used. This is necessary because
at the present time no sing le algorithm exhibits the desirable features of rapid convergence in
the neighbourhood of an optimum solution on the one hand , and reliable convergence from a
starting solution which is not necessarily close to the optimum on the other. Experience has
shown the Bryson first order gradient projection method to converge reliably from an arbi trary
start ing solution , and to have a hig h init ial  rate of convergence . Thus it is well suited for com-
puting the init ial solution estimate in a two stage procedure. This al gorithm has been imp le-
mented and will be the subject of a subsequent report.

For the second stage an algorithm exhibiting a hi gh rate of terminal convergence is desired.
Of the hi gher order algo rithm s variable metric methods are preferred over the Newton and
conjuga te gradien t procedure s because of their greater reliability and speed of convergence.

Arising from this work the author has become aware of two approaches to algorithms for
optimal control problems which are worthy of further consideration. The first relates to the
Moyer al gorithm. Po ssibilities exist to improve the performance of this al gorithm by using
variable metric methods for cost functional minimizat ion , and improved techniques for adjusting
the cost functional estimate. In addition the applicability of this class of al gorithms to optimal
control problems involving state space and terminal inequa lity constraints needs to be
investigated.

The second approach is of a more fundamenta l  nature relating to methods of generating
optimal algorithms for classes of problems. These ideas arose from a consideration of the form
taken by the iterat ion relations (2. 18) for gradient methods. The steepest descent method can be
considered as a one-step optimization where the parameter ~~ is chosen so that J [uk - - ~kVJ (uk))
is minimized. A development of this notion would be to choose simultaneously the parameters

~~~~~~ 
so as to minim ize J[uk — - ~kVJ (u k)  - . .. — ~k, ( VJ( u k4 I) J  using a multi-stage

optimization procedure . It is conjectured that this will y ield an i mproved speed of convergence
over the steepest descent method . Whether this will be achieved , or achieved at excessive
“computational cost ” remains to be determined. The concept is easil y generalized to variable
metric methods , and so is capable of generating whole families of new algorithms.
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