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ABSTRACT

A differential equation attrition model is used to
deterministically simulate an infantry squad frontally
attacking a four-man defensive position. The simulation

results are used to determine the optimum rush distance.
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SUMMARY

The rush distance an infantry squad uses in the frontal
attack could be critical. If the rush distance is too short,
it may take the attackers too long to close with the defenders.
If the rush distance is too long, the attackers could possibly
receive heavier casualties because they will be exposed to the
defenders' fire for a longer time while rushing the longer rush
distances.

This study sought the optimal rush distance by first modi-
fying a differential equation attrition model which had been
developed by Donald E. Christy in 1969. The modified model
was then used in a deterministic computer simulation of a
frontal attack involving a twelve-man infantry squad against
a four-man defensive position. Several engagements were simu-
lated with the varying parameters being rush distance, attack-
ing squad organization and opening range.

The results of the simulations indicated a direct relation-
ship between optimal rush distance and range. At ranges greater
than 175 meters the numerical superiority of the attackers did
not outweigh the more accurate fire of the defenders. However,
at ranges less than 175 meters the accuracy of the attackers'
fire was much closer to the accuracy of the defenders' fire
and the attackers could take advantage of their superior numbers
to inflict damage upon the defenders. This suggests that, at
greater ranges the attackers should try to get closer to the
defenders as quickly as possible, using longer rush distances
(10-40 meters). At closer ranges the attackers should perform

better with shorter rush distances (5-10 meters) to reduce

their casualties.
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I. INTRODUCTION

The problem addressed in this paper is that of searching
for the optimal rush distance for a small infantry force that
is using fire and movement tactics in the frontal attack.

The size of the force considered is twelve combatants, each
armed with a semi-automatic rifle. This is approximately the
size of a squad in most infantry organizations. The size of
the defense force considered is four combatants, each armed
with a semi-automatic rifle.  The frontal attack is probably
the form of maneuver most frequently used by infantry squads.[1]

The fire and movement tactic in the frontal attack has the
entire attacking force closing frontally with the defenders.

A designated portion of the attacking force rushes forward a
short distance while the rest of the attackers fire at the
defenders. The rushing attackers then take cover and fire at
the defenders while another designated portion of the attack-
ing force rushes forward. (In this paper those designated
portions of the attacking force will be referred to as rush
teams.) In such a manner the entire attacking force moves
forward to an assault position. The distance covered during

any of the rushes 1is called the rush distance. The assault

position is normally just out of hand grenade range of the
defenders' position, about 50 meters. It is a position where
the entire attacking force can come on line and move forward

as a single unit, non-stop, in an effort to overrun the

~1
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defender's position. Long rush distances maintain the momen-
tum of the attack and total time duration of the attack is
relatively short. However, the attackers are completely
exposed to the defenders' fire for long periods of time while
rushing. Short rush distances expose the attackers for a
shorter period of time for each rush but slow down the attack.
Total time exposed to fire is the same, regardless of rush
distance.

Rush distance depends in a large part on the terrain and
the training the attackers have received. Other factors which
influence rush distance include the physical condition of the
attackers, the weight of the equipment they are carrying, and
the nature of the weapons against which they are engaged.
Nevertheless, terrain and training are often the overriding
factors. When a combatant receives the command to rush
forward, he searches the terrain to his front for a position
which offers both cover from the enemy's fire and concealment
from the enemy's observation. If his training has stressed
that the rush distance should be about 20 meters, he will
probably look for a position approximately 20 meters to his
front. If there is a covered and concealed position in that
vicinity, that is where he will probably go, even if there
are similar positions located 10 meters to his front and
30 meters to his front.

Terrain encountered in ground combat may never present
good positions consistently at the designated rush distances
but ""trained" attackers should seek positions in that general

area and will attack using rush distances as close to that




value as the terrain will allow. Therefore, a good reason
for seeking the most efi:ctive rush distance is to improve
the performance of small infantry units in which may be their |
most frequently used maneuver.
In 1969, Donald E. Christy, then a Captain in the United
States Marine Corps, while studying certain tactics of infan-
try small units in the frontal attack, developed a differen-
tial equation attrition model for homogeneous forces which

was an adaptation of Lanchester's Square Law.[‘]

The study
in this paper approached the problem of optimal rush distance
by first modifying Christy's attrition model, then using the
modified model in a computer simulation of ground combat and
analyzing the results.

Chapter II describes Christy's attrition model, his com-
puter simulations and the results from those simulations.
Chapter III describes the modifications made to Christy's
model. Chapter IV describes the computer simulation used in
this study and Chapter V presents the results of the simulated
engagements. Conclusions drawn from those engagements and
recommendations for further study are found in Chapter VI.

4
The appendix contains a more detailed description of the 1

single-shot kill probability function developed in this study.




IT. CHRISTY'S ATTRITION MODEL

As was noted in the introduction, Donald E. Christy, in
1969, developed a differential equation attrition model for
homogeneous forces. He did this by adapting Lanchester's
Square Law to better reflect the dynamics of ground combat
in fire and movement. In this chapter we will examine the
basic structure of Christy's model, the scenario he used and

the results of his computer simulation.

A. MODEL STRUCTURE

Christy's attrition model consists of a set of differen-
tial equations which express the sizes of the opposing forces
as decreasing functions of time, implying continuous attrition
without replacement. Let A(t) and D(t), respectively, be the
size of the attacking force and the size of the defending
force at time t, where t = 0 represents the beginning of the
engagement. Let PA and VA , respectively, be the single-shot
kill probability and rate of fire for an individual attacker.
Let PD and T be similarly defined for the defenders. The
product of kill probability and rate of fire is the rate at
which an individual combatant attrits the opposing force.
Using this notation, the two simultaneous differential
equations of Brackney's version of Lanchester's Square Law

can be expressed in the following form:[s]




d A(r) _ PD Ty D(t)
dt
and
d D(t) _ . PA 4 AEE),
7 y

This model thus describes the opposing force sizes as
decreasing functions of time. Reinforcements are not con-
sidered because the engagements investigated were of such
short duration so as to preclude their use. The rate at
which a force is attrited at any time t depends upon the
size of the opposing force at that time and the ability of
each element of the opposing force to inflict casualties.
The theory of differential equations allows one to use these
equations to determine the number of survivors in each force
at any time t.

There are two aspects of ground combat which are not
considered in Brackney's equations. The first is that the
intensity of the engagement tends to increase as the attack-
ers close with the defenders. The second is that some of
the combatants are not firing their weapons at any given
time during the engagement. Christy addressed this short-
coming by treating both kill probability and rate of fire as
functions of force separation and considering suppression
effects.

Since the closer a combatant is to the target the better
is his chance of hitting it, Christy's kill probability was
a decreasing function of range, or distance between the
opposing forces. Since in a frontal attack the range decrea-

ses as time increases (if retreats are not considered), kill

11




probability can be expressed as an increasing function of
time. As the attackers move closer to the defenders, the
accuracy of fire on both sides increases. Christy did not
give both forces the same kill probability function. His
kill probability functions reflect the facts that the de-
fenders will probably present a more difficult target to

the attackers than the attackers present to the defenders,
and that the attackers present different target characteris-
tics to the defenders when they are rushing than they do
when they are not.

The rates of fire in Christy's model can also be expressed

as increasing functions of time. The attackers had a single
rate of fire function and the defenders had two rate of fire
functions. The defenders had a rate of fire function for

firing at those attackers who were actually rushing forward

and a second function which gave higher rates for firing at

those attackers who were not rushing. Both of the detfenders'

rate of fire functions approached the same limiting value as
the attackers approached the offenders' position. In Christyv's
model, then, as time advances and the attackers move closer

to the defenders' position, the intensity of the engagement
increases in that both sides are firing more accurately and
more rapidly.

Christv's model included consideration of suppression
effects since some combatants do not fire their weapons all
of the time due to reloading of weapons, confusion, fatigue

’ and fear. Christy also assumed that if a combatant is not
firing his weapon, he is not exposing himself to the enemy's

fire.
12
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Before we can examine a general form of Christy's
attrition model some additional notationsmust be defined.
Let,

Al(t) = number of attackers rushing,

Ay(t) number of attackers not rushing,

D(t) = number of defenders,

Dl(t) = number of defenders firing at rushing attackers,
D,(t) = number of defenders firing at non-rushing
! = attackers
r‘(t) = rate of fire for an element of force x,
Pt(t) = single-shot kill probability for an element
) of force x
and
S(t) = suppression factor (a number between zero and

one) .

Using this notation a general form of Christy's model is
as follows:

The attrition rate for rushing attackers is

MBS | Py (8] Ty (8 (%) By(D)
dt il 1

and the attrition rate for non-rushing attackers is

Mtt) | =By (1) Tp () s(2) Dylr).
A% . 2 -

For defenders the attrition rate 1is

i
i d D(t) -PA (t) Ty (t) slt) Aslt)-
| w0 “2 -

Note that in this portrayal the defenders are not attrited

by the rushing attackers, only by those attackers who are not

13




rushing. In Christy's model the attackers do not fire while

rushing.

B. CHRISTY'S SCENARIO

In the scenario used in Christy's study, both sides were
armed with the M14 rifle and fired it semi-automatically.

The attackers carried 300 rounds of ammunition per man
whereas the defenders were given an unlimited ammunition
supply. The range at the outset of the engagement was

600 meters. The terrain presented no obstacles to the
attackers and offered them uniform cover from the defenders'
fire and concealment from the defenders' observation.

Christy wrote a deterministic computer simulation which
used his attrition model. He simulated several engagements
and in each engagement a constant rush distance was used
which was 5, 10, 20, 30 or 40 meters. Christy also varied
defensive fire distribution, attacking force size, and number
of rush units. The percentage of the defensive force which
fired at those attackers who were rushing was 90%, 50% or
10% in any given engagement. The defensive force started
with four combatants in every engagement while the attackers
started with either 12 or 24 combatants. In any given engage-
ment the number of rush units was 2, 3 or 5. Thus, by varying
five rush distances, three defensive fire distributions, two
attacking force sizes and three rush unit sizes, Christy

simulated a totla of 90 different engagements.

14




The measure of effectiveness Christy used was victory or
defeat. Victory went to that side which had the larger force
size when the attackers had closed the range to 50 meters.

In those cases where one of the forces had been annihilated
before the 50 meter range had been attained, victory went to

the force which still had survivors.

€. CBRISTY"'S RESULTS

The results of Christy's simulations are quite interesting.
In 84 out of the 90 simulated engagements one or the other
of the two forces was annihilated before the 50 meter range
was attained. The simulated engagements indicated that using
five rush teams was relatively ineffective for the attackers.
The coordination and movement required for an attack with
five rush teams took too much time. There did not appear
to be any significant difference between using two or three
rush teams. The defenders fared better when they directed
a greater percentage of their fire towards the rushing
attackers.

Christy's simulated engagements also indicated that rush
distances of 30 or 40 meters were more effective than smaller
distances. Christy speculated that this result was due to
the long distance traversed by the attackers (550 meters).

He also suggested making the rush distance a function of

time. That is, the rush distances would become shorter as

the attackers moved closer to the defenders' position.
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ITI. THE MODIFIED ATTRITION MODEL

The attrition model used in this study has the same general
form as Christy's model, which was described in the previous
chapter. However, the kill probability functions, the rate of
fire functions, and the suppression functions are not the same
ones used by Christy. In this study single-shot kill probability
is defined to be the product of aiming point probability and
target probability. These two probabilities are defined and
explained in this chapter. This chapter also includes a de-
scription of the rate of fire functions and the suppression

functions developed for this study.

A. AIMING POINT PROBABILITY

The development of the single-shot kill probability function
used in this study begins with the assumption that a combatant
will rarely encounter a visible, stationary target due to the
fact that his enemy is usually either concealed or in motion.
Nevertheless, it is asserted that more than likely a combatant
will aim his weapon at a point where he thinks the enemy is
located. If his enemy is running, it is asserted that a
combatant will aim his weapon at a point where he thinks the
enemy will be by the time a round gets there. Such a point,
which will be referred to as an aiming point, can be anything
from a bush or clump of grass to a spot on the ground. It will

very seldom be a stationary, visible enemy combatant. An

16
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example of a good aiming point would be a bush which an enemy

combatant is hiding behind or a tree which an enemy combatant

will run in front of at the same time a round arrives there.
If we visualize a silhouette target centered at a good aiming
point, it can be assumed that if a combatant places a round
close enough to that aiming point to hit the silhouette, he
b will hit the enemy combatant. Thus, the probability that a
combatant hits an opponent is the product of the probability
l that he places a round close enough to a good aiming point
given that he has selected a good aiming point and the proba-
bility that he selects a good aiming point.

When defending against fire and movement in the frontal
! attack, a defender is normally able to see the attackers when
they are running but has to select an aiming point ahead of
an attacker and "lead" that attacker as he is running. When
the attackers are not running, they normally conceal themselves.
In that case a defender may not know their exact positions but
will have a good idea of their approximate positions by the
sound of the attackers' fire and by having observed where they
took cover after running their latest rush distance.

Since defenders can be expected in most situations to take

camouflage and concealment measures, an attacker may not see
a defender until he is within 50 meters of the defenders'

position. Until then the attacker has estimated the defenders'

position by the sound of the defenders' firing, an occasional
muzzle flash, the attacker's ability to evaluate the terrain
for likely defensive positions, or a combination of these and

( other factors, including military intelligence.

17




In both cases, the ability to select a good aiming point
should become better as range decreases. Also, it should be
easier to select a good aiming point if the opposing force
is relatively large than it would be if the opposing force
were smaller since there would b4 more good aiming points

available with a larger opposing force. Thus aiming point

probability, the probability that a good aiming point is

selected, can be expressed as a function of range and si:ze
b of the opposing force, varying inversely with range and

directly with the size of the opposing force.

B. TARGET PROBABILITY

It has been stated that a combatant's kill probability is
the probability that he hits what he is shooting at, given he
is shooting at the right thing, multiplied by the probability
that he is shooting at the right thing. We have discussed the
probability that he is shooting at the right thing, or aiming
point probability. Now let us turn our attention to the
probability that, given a good aiming point, a combatant
places a round close enough to that aiming point to hit an
enemy combatant. This probability will be referred to as

target probability.

Target probability is taken from rifle range data for a
target of certain size, a combatant with a certain level of
marksmanship ability with a certain rifle, firing from a certain
firing position at a range of so many meters; the probability

that the target is hit is well tabulated. Assuming a uniform
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level of marksmanship skill, target probability is a function
of target size, range and firing position.

Since only infantry engagements are being considered here,

it is reasonable to assume that a hit is equivalent to a kill.
Therefore, a combatant's single-shot kill probability at any
given time t is equal to his aiming point probability at time t
multiplied by his target probability at time t. The exact

form of the single-shot kill probability function as well as
function values in certain situations can be found in the

appendix.

C. THE RATE OF FIRE FUNCTIONS

Two rate of fire functions are used, one for the attackers
and one for the defenders. Both are functions of time. The
defenders' rate of fire is expressed as a linearly increasing
function of time, since normal policy for defensive forces is

: o [
to increase the rate of fire as the attackers move closer.‘J]

No distinction will be made in the defenders' rate of fire
function for firing at rushing or non-rushing attackers. 4

Attackers, however, normally should not move forward in

the attack until they have gained fire superiority.[1] A U.S.
Army studv defines fire superiority as "attaining a greater
magnitude of target effects.”[sl [t isn't enough that the
attackers fire more rounds than the enemy; the rounds they fire
must be effective rounds. Effective rounds are roundswhich
either hit an enemy combatant or are placed close enough to

have a suppressive effect on him. We know from an earlier

19
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discussion that every round fired is not an effective round,

due to the firer either not being able to see the enemy or

trying to hit a rapidly moving enemy. However, it is asserted
that if a combatant has chosen good aiming point as defined
earlier, the rounds he fires will be effective rounds. Thus,
an operational definition of "magnitude of target effects"
was chosen to be the product of rate of fire and aiming point
probability, expressed in terms of effective rounds per minute.
As was stated earlier, the attackers should not move forward
until they have gained fire superiority. In order to gain fire
superiority, the attackers must fire at a rate which will attain
a greater magnitude of target effects than the defenders. Since
the defenders' magnitude of target effects is a function of time,

so is the attackers' rate of fire.

D. THE SUPPRESSION FUNCTION

As we noted earlier, at any given time during the engagement
a proportion of the combatants will not be firing their weapons
because of fatigue, confusion, fear and other suppression
factors. It is important to note that, while they are not
tiring their weapons, they are not inflicting any damage upon
their opponents and they are not incurring any damage from their
opponents since it was assumed that a combatant who is neither
rushing nor firing is not exposed to fire. Therefore, at any
time during the engagement, the ability of the attackers to
attrit the defenders is reduced by the proportion of the

attackers who are not firing. It is also reduced by the

20




proportion of defenders who are not firing since those defenders
are not exposed to the attackers' fire. The same could be said
for the ability of the defenders to attrit the attackers.

In this study the proportion of combatants not firing their
weapons (and thereby not exposed to fire) is taken to be a
constant for both sides except for when an attacking rush team
is rushing. When this happens the entire rush team is exposed
to the fire of those defenders who are firing and the rest of
the attackers have a higher proportion of firing combatants
due to the added incentive of providing covering fire for their
totally exposed comrades. Thus the suppression function used
is a function of time and gave, at any time t, the product of

the proportion of firing defenders and the proportion of firing

attackers.




[V. THE SIMULATION

This chapter sets the stage by describing the scenario
used in this study, the measure of effectiveness, and the
computer program which simulated several engagements in that
scenario by using the attrition model described in the previous
chapter. Since we are already familiar with the scenario used
by Christy, the scenario used in this study will be described

by pointing out where it differs from Christy's scenario.

A. THE SCENARIO

The major departure made in this scenario from Christy's
scenario was range. The opening range in each of Christy's
simulated engagements was 600 meters. Such a range may be
too large for engagements of the type modelled.[l] Much
smaller ranges appear to be more appropriate.[6] In this
study opening ranges were varied among engagements and ranges
of 250, 200, 150 and 100 meters were used. Both defenders
and attackers were armed with the M16 Al rifle, fired semi-
automatically. All combatants were given an unlimited supply
of ammunition and the computer simulation kept track of ex-
pended ammunition.

The initial defender force size was always four and the
initial attacker force size was always twelve. The attackers
were organized into three rush teams of four combatants each

or two rush teams of six combatants each. This was done as an




interesting sidelight to explore, inasmuch as U.S. Army infan-
try squads are organized into two rush teams whereas U.S.
Marine Corps infantry squads are organized into three rush
teams. Defensive fire was distributed uniformly over the
entire attacking force, both rushing and non-rushing.

This study used the same constant rush distances that
Christy used; 5, 10, 20, 30 and 40 meters. The parameter
values for the times used to rush these distances were,
respectively, 1.8, 2.8, 4.6, 6.0 and 7.7 seconds. The coordi-
nation time used by the attackers between rushes was ten
seconds. These time values were taken from Christy's study.[zl

Values used in determining single-shot kill probabilities
can be found in the appendix. The constant proportion of
combatants who were not firing due to suppression was taken
to be 0.5 for both sides. When an attacking rush team was
rushing, the proportion of non-firing combatants for the rest
of the attackers was taken to be 0.25. When a rush team was
rushing, fire superiority was considered achieved by the rest
of the attackers when they had a magnitude of target effects
of two effective rounds per minute greater than the defenders'
magnitude of target effects. When there were no teams rushing,
the attackers only needed an edge of one effective round per

minute to achieve fire superiority.

B. MEASURE OF EFFECTIVENESS

The measure of effectiveness used was victory or defeat.

The attackers would be victorious if they reached the 50 meter
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mark with a force size greater than the defenders or if
they annihilated the defenders. Any other outcome would
result in victory for the defenders. An at ucker victory
was considered more effective than another attacker victory
if it resulted in a larger attacker force size at the end

of the engagement.

C. THE PROGRAM

An event-step, deterministic computer simulation program

was written which had two events, a rush event and a coordina-

tion event. A rush event consisted of one rush team rushing
one rush distance. A coordination event was the time between
successive rushes. Figure 1 shows a flowchart of the simula-

tion program.

FSPR—

START

f*——ﬁA\TTACKER COORDINATING TIME |

| |
!

L

i

UPDATE CLOCK, FORCE SIZES,
{ | RANGE AND AMMUNITION EXPENDITURE.
! | IF EITHER FORCE SIZE = 0, STOP.

i | |
T

-
|
|

| ONE RUSH TEAM RUSHES |
| ONE RUSH DISTANCE. |

UPDATE CLOCK, FORCE SIZES, RANGE
| AND AMMUNITION EXPENDITURE. IF
| | EITHER FORCE SIZE = 0, STOP. IF
| ALL ATTACKERS ARE AT RANGE OF
|| 50 METERS, STOP.

Fig. 1. Simulation Flow Chart for an Infantry Squad in the
Attack Using Fire and Movement.
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V. RESULTS

There were two sets of results in this study. The first
set of results was from the initial simulated engagements,
which used constant rush distances. Since these results
suggested that variable rush distances may be more effective,
additional engagements with variable rush distances were

simulated.

A. RESULTS WITH CONSTANT RUSH DISTANCES

In the initial computer simulations the attacking squad
was organized into either two or three rush teams. The open-
ing range was either 250, 200, 150 or 100 meters. The rush
distance (constant throughout any single engagement) was
either 40, 30, 20, 10 or 5 meters. Thus, 49 engagements
were initially simulated. In each engagement the attackers
were victorious, that is, in each engagement the defenders
were annihilated before the attackers had advanced to a range
of 50 meters. Table I displays the constant rush distance
results in numbers of surviving attackers.

One thing immediately apparent from the results shown in
Table I is that the closer the attackers can come to the
defenders before starting the attack, the better off they are.
There does not appear to be any correlation between rush
distance effectiveness and whether two or three rush teams were

used. However, it does appear that at greater ranges long rush




TABLE I

CONSTANT RUSH DISTANCE SIMULATION RESULTS
IN TERMS OF SURVIVING ATTACKERS

(Surviving (Surviving
(meters) (meters) Attackers) Attackers)
Rush Distance Opening Range Three Rush Teams Two Rush Teams
5 250 4.86 5.08
10 250 5.43 3 .97
20 250 5.86 5.84
30 250 6.03 5.94
10 250 612 5.92
5 200 6.77 6.66
0 200 6.81 6167 |
20 200 6.83 6.57
30 200 6.80 6.553
10 200 877 .64
5 150 7.43 ".26 |
10 150 7.33 7.12 ]
20 150 7.20 6.92 '
30 150 7.13 6.84 |
40 150 7.09 7.04 J
5 100 7.64 rgn- v
10 100 7 .82 7.46
20 100 7.58 T3 |
30 100 105 Tudid
10 100 7.54 715
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distances were more effective for both two and three rush team
squads whereas at lesser ranges short rush distances were more
effective. This suggests that perhaps rush distances which

vary directly with range would yield better results.

B. VARIABLE RUSH DISTANCES

It was decided to simulate engagements in which variable
rush distances were used. Two methods for varving rush
distance were derived from the initial results; an exponential
method and a linear method.

The exponential method was derived by examining the most
effective rush distance for various opening ranges. Table II,
which was derived from Table I, shows the most effective (in
terms of surviving attackers) rush distance for a given
opening range. Applying curve fitting techniques to the data
in Table II suggested an exponential relationship between

opening range and rush distance of the form:

where Y 1s rush distance, x 1s opening range and b and m are

constants. Attempts to fit such a curve to the data in

]

Table II yeilded b 1.11 and m = 0.012 for two rush teams

and b = 0.82 and m

0.015 for three rush teams.

In the variable rush distance simulations, rush distance
was taken to be a function of whatever the range was at the
start of a particular rush event instead of opening range.

Thus, rush distance decreased as range decreased. Also, the
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TABLE II

MOST EFFECTIVE CONSTANT RUSH DISTANCE
FOR A GIVEN OPENING RANGE

Rush Distance

Opening Range Three Rush Teams Two Rush Teams
250 meters 10 meters 350 meters
200 meters 20 meters 10 meters
150 meters 10 meters 5 meters
100 meters 5 meters 5 meters

variable rush distance simulations only considered rush
distances between 5 and 40 meters.

By averaging the constant values from the curves which
were fitted to the data in Table II, mean constant values
of b = 0.97 and m = 0.14 were obtained. These were used in
the variable rush distance simulations for both the two-rush
team and the three-rush team case. Figure 2 shows the graph
of the exponential rush distance formula which was used.

The linear method of varying rush distance was derived
by examining, for each 50 meter range interval in the initial
simulations, the most effective rush distance in terms of
fewest attackers killed in that 50 meter interval. This was
done by resimulating the initial engagements after revising
the program to extract the needed data. Table III presents

these results.




v Rush Distance (Meters)

0 50 100 150 200 250 Range (meters)

Fig. 2. Rush Distance as a Constrained
Exponential Function of Range




TABLE IllI
MOST EFFECTIVE CONSTANT RUSH DISTANCE ‘
7 FOR A GIVEN RANGE INCREMENT
Range Increment Rush Distance

i From To Three Rush Teams  Two Rush Teams

250 meters 200 meters 40 meters 40 meters

200 meters 150 meters 40 meters 40 meters
3 150 meters 100 meters 40 meters 50 meters

100 meters e 5 meters 5 meters

An attempt was made to fit both exponential and linear
curves to the data in Table III. Linear curves gave the best
fit as measured by the sum of the squared residuals. Express-
ing rush distance as a linear functionof the range at the
start of a 50 meter increment, a slope of 0.21 and an intercept
of -5.5 fitted the two-rush team data whereas a slope of 0.23
and an intercept of -11.5 fitted the three-rush team data.

For the variable rush distance simulations a slope of 0.22 and
an intercept of -8.5 was used for both two and three rush
teams and rush distance was taken to be a function of the

range at the start of a rush event. Figure 3 represents the

graph of the linear function which was used.
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Fig. 3. Rush Distance as a Constrained Linear
Function of Range
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C. RESULTS WITH VARIABLE RUSH DISTANCES

Sixteen additional engagements were simulated using varia-
ble rush distances. As before, attacker organizations of two
rush teams or three rush teams were used, as well as opening
ranges of 250, 200, 150 or 100 meters. Rush distance was
either a linear function or an exponential function of range.
The results are presented in Table IV. The best results which
had been obtained using constant rush distances are presented
in Table V. The results in Table IV seem to compare favorably
with the results in Table V.

Results in Table IV suggest, as did the values in Table I,
that shorter opening ranges favor the attacker. Also, rush
distances which are exponential functions of range seem to be
more effective than rush distances which are linear functions

of range.

TABLE IV

VARIABLE RUSH DISTANCE SIMULATION RESULTS
IN TERMS OF SURVIVING ATTACKERS

Linear Variation Exponential Variation
Opening Three Two Three Two
Range Rush Teams Rush Teams Rush Teams Rush Teams
(meters) (attacking survivors) (attacking survivors)
250 6.15 6.00 5.99 5.99
200 682 6.5l 6.82 6.66
150 716 6.88 7.38 .19
100 7.58 7.38 795 7493

(92}
[39]




Opening
Range

250
200
150
100

TABLE V

BEST CONSTANT RUSH DISTANCE SIMULATION RESULTS
IN TERMS OF SURVIVING ATTACKERS

Rush Rush
# Survivors Distance # Survivors Distance
6.12 40 5.94 30
6.83 20 6.67 10
;473 10 7.26 5
7.64 5 v J - 5
33
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VI. CONCLUSIONS AND SUGGESTIONS

This study offers two conclusions from the results pre-
sented in the previous chapter. In this chapter those con-
clusions and a possible explanation for them is presented,

as well as suggestions for further study.

A. CONCLUSIONS

The first of the two conclusions offered by this study
is that the attackers should get as close as possible to the
defenders before beginning their attack. The second conclu-
sion is that, for the scenario considered, rush distances of
from five to ten meters should be used at ranges less than
175 meters, whereas rush distances of from 10 to 35 meters
should be used at ranges greater than 175 meters. These

are the values given by the exponential rush distance formula

-

depicted in Figure 2, but it must be stressed that these are,

at best, rough guidelines.

Perhaps an explanation for these conclusions can be given
by an examination of Figure 4, which depicts single-shot kill
probability as a function of range. Data points are not
shown because thev are not needed. It should be safe to assume
that the defenders' single-shot kill probability is always
Jreater than the attackers' single-shot kill probability and
that both probabilities approach the same limiting value of

one as the range approaches :zero. Thus, at greater ranges the
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A - Attacking Force Kill Probability
D - Defending Force Kill Probability

(1.0 (Single-Shot Kill Probability)
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Fig. 4. Single-Shot Kill Probability
As a Function of Range

35




defenders have a distinct advantage in single-shot kill
probability. It is in the best interests of the attackers

to reduce the range as quickly as they can because a reduction
in range means a reduction in the single-shot kill probability
advantage the defenders have. The attackers should reduce the
range by moving as close as possible to the defenders before
beginning the attack and by using long rush distances at
greater ranges after the attack has begun. At lesser ranges
the single-shot kill probability of the attackers is close
enough to the defenders' single-shot kill probability that

the attackers should have the advantage due to their superiority
in numbers. Moreover, at shorter ranges the single-shot kill
probability of both forces could become so high that exposure

to fire during a rush would certainly be fatal if the rush

were too long, hence short rush distances.

B. SUGGESTIONS

Perhaps these results or something similar could be

stressed when training infantry units, but certainly not

without further investigation into this area, to include
field exercises. It would be interesting to extend this
model to consider automatic weapons and to use a stationary
base of fire for the attackers. Another interesting study
would be looking into the relative efficiency between using
two or three rush teams for the infantry squad in the frontal

attack.



APPENDIX
SINGLE-SHOT KILL PROBABILITY

This appendix gives a more detailed description of the
single-shot kill probability function used in this study as

well as kill probability values at certain ranges.

BASIC ASSUMPTIONS

Consider a single combatant firing a single shot at a
single opponent. The combatant will rarely encounter a visible
stationary opponent. His opponent will either be running or
camouflaged and concealed. The combatant will nevertheless
select an aiming point where he surmises his enemy is located
(or will be located, in the case of moving opponents). Let
the universe set U be the set of outcomes when a combatant
fires a shot at an opponent. The result is the situation

depicted in Fig. 5. Referring to Fig. 5, let

e
[}

event the opponent is hit

and

w
i

event the combatant has selected a good aiming
point.

Assuming a hit is equivalent to a kill, the single-shot kill
probability is defined as the probability that the combatant
has a good aiming point and hits his opponent; i.e., P{ANB}.
[t is assumed that the probability that he does not have a

good aiming point but hits his opponent anvway, P{ANB}, is




U = {All Possible Outcomes?’

Combatant has a
good aim point.

Combatant does not hav
a good aim point.

oo

|
!
: k

A Opponent is not hit.

A Opponent @
0 Alsiehlint '

1
Good aim point.

Opgonent is

Fig. 5. Possible Outcomes When a Combatant Fires
a Single Round at an Opponent.




negligible, since,

P{A|B} = S

It follows that,

P{ANBf= P{A/B} P{B} = single-shot kill nrobability.

Thus, single-shot kill probability may be cocmputed as the
probability that a combatant hits what he is shooting at, given

he is shooting at the right thing, multipli

5

W

d by the probability
s

that he is shooting at the right thing. The probability that

he hits what he is shooting at given he is shooting at the right

thing may be called Target Probability, P{A|B}, and is a function
of target size, range and firing position. The probability that

he is shooting at the right thing may be called aiming point

probability, P{B}, and is a function of range and size of the

opposing force.

v
0%

AIMING POINT PROBABILITY

Aiming point probability is the probability that the com-
batant has chosen a good aiming point. It is reasonable to
expect this probability to vary inversely with range and
directly with the size of the opposing force. It is assumed

that the target area is a rectangular area within which a com-

batant knows his opponent is located. Then target angle mav
PT g g :

be defined as that angle subtended by the front sight of a
rifle as it is swung along the diagonal of the target area
(with the rear sight held stationary). Since target angle

varies inversely with range and directly with opposing force




size, aiming point probability can be defined as follows:
Aiming point probability = Eéﬁl,
at time t 5

where

target angle at time t,

G(t) if target angle <z

z, 1f target angle >z

The actual computation of aiming point probability was not

dif

Hy

icult. The target area used for a four-man defensive
position had dimensions of 20 meters by 2-5 meters. This was
taken from the ground combat confrontation model (G C C).[‘-I
The value of z used for the attackers' aiming point probability

-G " - o . \
was 17°. This value was chosen so that the aiming point proba-

bility for an attacker 150 meters away from a four-man defensive

position would be approximately 0.5, a subjectively chosen
value which had intuitive appeal. Table VI contains the
attackers' aiming point probabilities against a four-man
defensive position. Table VII contains the target area di-
mensions of a twelve-man attacking force. These were the
target areas used to compute the defenders' aiming point
probability and were proportional adjustments of the dimen-
(7] .

sions used in the G C C model. The value of z used when

: JELN 2 a R
computing aiming point probabilities for the defenders was 227.
This value was chosen so that the aiming point probability
for the defenders against a twelve-man attacking squad 200

meters away would be approximately 0.5. Table VIII contains

the aiming point probabilities for the defenders.




TABLE VI

ATTACKERS' AIMING POINT PROBABILITIES AGAINST
A FOUR-MAN DEFENSIVE POSITION

Aim Point

Range Target Angle Probability
: 250 meters 4.8456° 0.2850
’ 200 meters 6.0549° 0.3562
150 meters 8.0675° 0.4746
« 100 meters 12.0764° 0.7104
50 meters 23.8903° 1.0
TABLE VII

TARGET AREA DIMENSIONS FOR A TWELVE-
MAN ATTACKING FORCE

Target Area Dimensions

Three 4-Man Teams Two 6-Man Teams

Entire Squad (Not 35 x 5.25 meters 35 x 5.25 meters
Rushing)

One Rush Team 12 x 7.34 meters 18 x 7.34 meters
(Rushing)

One Rush Team (Not 12 x 5.25 meters 13 x 5.25 meters
(Rushing)

Two Rush Teams (Not 24 x 5.25 meters = se-------

(Rushing)
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TABLE VIII

DEFENDERS' AIMING POINT PROBABILITIES
AGAINST A TWELVE-MAN ATTACKING FORCE

(meters) Aim Point, Three Probability, Two
Range Four-Man Teams Six-Man Teams
Entire Squad 250 0.4005 0.4005
(Not Rushing) 200 0.5001 0.5001
150 0.6655 0.6655
100 0.9925 0.9925
50 1.0 I 0
' One Rush Team 250 0.1594 0.2227
(Rushing) 200 0.1993 0. 2782
150 0.2656 0.3708
100 0.3980 0.5552
50 0.7922 1.0 |
One Rush Team 250 0.1484 0.2148
(Not Rushing) 200 QL3S 5 0.2684
150 0.2473 0.3576
100 0.3707 0.5350
50 0.7382 620
Two Rush Teams 250 AT
(Not Rushing) 200 A T2
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TARGET PROBABILITY

In deriving the target probabilities, a set of single-shot
hit probabilities were obtained from the infantry weapons
branch of the Army Materiel Systems Analysis Agency (AMSAA)
in Aberdeen, Maryland. These probabilities were for a soldier
of average marksmanship ability firing in M16 rifle from the
prone position.
In a study on human error and firing positions, Arima
found no difference in marksmanship error between the prone
and supported foxhole positions.[S] Thus the AMSAA probabilities,
unmodified, were used for the defenders' target probabilities.
The attackers, however, are expected to use the standing or
kneeling position 65-80 percent of the time.[ol Arima estimated
a 55 percent error increase from the prone to the kneeling
position and a 60 percent increase from the prone to the
standing position.[s] Thus for the attackers' target probabilities,
the AMSAA probabilities with a 42 percent error increase were

used. Table IX contains the target probabilities.

SINGLE-SHOT KILL PROBABILITY VALUES

Tables X, XI and XII contain the single-shot kill probabilities
used in the computer simulations. Linear interpolation was used

to obtain kill probabilities for those ranges not given in the

tables.




TABLE IX
TARGET PROBABILITIES

Target Probability

Range Defender Attacker
250 meters 0.370 0.106
200 meters 0.508 0.301
150 meters 0.616 0.455 !
100 meters 0.637 0.485 ?
50 meters 0.765 0.666 :
‘
:
TABLE X
SINGLE-SHOT KILL PROBABILITIES :
(ATTACKERS AGAINST FOUR DEFENDERS)

Single-Shot Expected Number %
Range Kill Probability of Shots to Kill [
250 meters 0.03 3.3 g

200 meters 0 7 9.3

150 meters gl 4.6

100 meters 0.34 2.9

50 meters 0.66 Lo

’
i
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TABLE XI

SINGLE-SHOT KILL PROBABILITIES
(DEFENDERS AGAINST THREE FOUR-MAN TEAMS)

(meters) Single-Shot Expected Number
Range Kill Probability of Shots to Kill

Entire Squad 250 0.1482 O 7
(Not Rushing) 200 0.2541 4.0
150 0.4094 2.4
100 06322 1.6
3 50 0.7650 L
One Rush Team 250 0.0590 L7 0
(Rushing) 200 0.1012 100
150 0.1636 il
100 0.2535 4.0
50 0.6060 a7
One Rush Team 250 0.0549 18.2
(Not Rushing) 200 0.0942 10.6
150 0L 1523 6.6
100 0.2361 4.2
50 0.5647 1.8
Two Rush Teams 250 0.1030 97
(Not Rushing) 200 0.1764 Sl
150 0.2853 St
100 0.4412 A
50 0.7650 1.5
’
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TABLE XII
SINGLE-SHOT KILL PROBABILITIES
i (DEFENDERS AGAINST TWO SIX-MAN TEAMS)
:
‘ (Meters) Single-Shot Expected Number
Range Kill Probability of Shots to Kill
] Entire Squad 250 0.1482 6.7
(Not Rushing) 200 0.2541 1.0
150 0.4094 2.4
100 0. 6322 1.6
v 50 0.7650 1.3
One Rush Team 250 0.0824 Ji2 ol
(Rushing) 200 0.1413 il
150 0.2284 4.4
100 01,3557 2.8
50 957650 L3
One Rush Team 250 0.0795 12 .5
(Not Rushing) 200 0.1363 7.3
150 0.2203 4.5
100 0.35412 2.9
50 0.7650 13
’
i
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