v AD=AO70 270 NAVAL INTELLIGENCE PROCESSING SYSTEMS SUPPORT ACTIVIT==ETC F/6 9/2
STRUCTURED PROGRAMMING IN A DATABASE ENVIRONMENT: (U)

END
fitueD
7 7Q

MAY 79 L E TOWNER
UNCLASSIFIED

sl

|
‘u
122

o

I [f

© e gz

il

* 2
L

22 fie

——

|

¥

- Naval Intelligence Processing Systems " § £ : m; '
; Support Activity L

{
STRUCTURED PROGRAMMING IN A DATABASE ENVIRONMENT ,

~

L; E. /Towner —)
/s <
Abstract 27 47/ 7 /' /l/) /

&

I>‘ ‘Structured programming has been actively endorsed by

C,\] proponents of improved data processing management techniques
for several years,. Many examples of reduced costs and

C:D improved project control have been cited. Unfortunately,

IF‘ applications of these techniques have failed to meet the

-

expectation in many cases.

The advent of the database management system (DBMS)

‘5: as a major support tool in the data processing picture has

Q also resulted in mixed results, often falling far short of

< the pre-installation build-up. Frequently this lack of DBMS

achievement can be traced to inadequate control of the
applications projects which will utilize the DBMS.

This paper describes the use of structured
techniques, both analysis and programming, in overcoming the
problems of database applications software support.
Structured techniques are particularly applicable to the
database environment because of the centralizing of
procedural and logical programming functions around the DBMS

software. :

INTRODUCTION

Structured programming is one of those terms which
has been tossed about in the data processing community for
the last eight to ten years. It created some excitement and

a great deal of controversy.

Structured programming has been viewsed from two
primary angles:

1. From management, who was looking (and still
is) for a better and more effective way to
control data processing costs. Management
hoped that structured programming would
provide a basis for accurate estimating of
software costs and, even more important,
improve the quality of the developed

software. [This document has been oo -io . ed ‘

-

-

DDC FiLE COPY

for public relcase and sclc; lis
' distribution is unlimited.

= - 040

B> S8

— i R

2o

2, From the programming staff, who frequently
saw the advent of structured programming as a
harnessing of their "creativity". Many
programmers felt (and many have not changed
their minds) that the structured programming
approach was not worth the effort to learn
and use.

Data base 1is another term which is currently being
used by the industry with increasing frequency. During the
past five years, the prospect of new ways of organizing data
has created its share of excitement and controversy. The
parallel between structured programming and data base is
amazing.

As with structured programming, data base is being
viewed from two angles:

1. From management, who 1is faced with the
increasing complexity of business.
Management must rely on computers more and
more., Computers must have access to data to
perform their job. The costs of managing
data continues to grow. Management
recognizes that data base may be their only
hope to slow the escalating data management
costs.

2. From the programming staff, who view
generalized data base software with
suspicion. Programmers are comfortable with
software they know and understand. For many,
this means software they have written. In
the past, many of the commercial data base
software packages were poorly documented and
contained logic errors. Applications
programmers were reluctant to use these
packages because they could not fix the bugs
or understand the documentation.

Structured programming, according to Ed Yourdon, one
of best-known proponents of the technique, has lost its first
round in the fight for acceptance. The round was lost
because too much was said about the advantages of structured
programming and not enough said about how it wuse it
effectively. Programmers were turned off by "GO TO-less"
rules and other factors which were poorly explained at best.

2

Data base faces a similar problem. There has been no
difficulty convincing data processing management about the
virtues of data base. 1t has even been relatively easy to
convince company management that the cost of a data base
package was worthwhile. Little effort, however, has been

made to convince programmers that data base will really
benefit them.

The similarities between structured programming and
data base do not end with the visual pictures of management
and programming staff. Functionally, both facilities provide
tools and techniques which are complementary. When used
together, they provide a powerful highly-cffective data
processing capability,

The remainder ot this paper will describe the
effective joining of structured programming and data base in
an actual production environment. None of the techniques
described are really new. They have been applied in such a
way that the positive aspects of structured programming and
data base are emphasized and many of the negative aspects are
overcone,

STRUCTURE PROGRAMMING FEATURES

There are many techniques and features which are
gathered under the umbrella called structured programming.
Some are more useful than others; some are, frankly, a
deterrent to the acceptance and use of structured techniques.
The features described below are those which were selected
and implemented because of their particular match to the
needs of data base development,

Modularity

Many programmers say they have written modular
programs long before the structured approach was
"discovered". True, but the manner in which modularity was

practiced was quite different (in most cases) from that
proposed by structured advocates.

The concept of a program, subroutine, or logic
section having a single entry and exit point is important to
clarity of program code. Where this approach 1is practiced,
flexibility is improved and 1logic complexity (with its
accompanying test time) is dramatically reduced. \ _

i

3

/n

4
-« ™

< =
| #5Y P
3 \n

r
-

™

oy 13

!\llll" : 2
3 < E:".

PR SR AR e Sk vw et o

A second aspect of modularity is the developing of
libraries of common logic code. In the COBOL world, these
"source library books" provide the ability to copy repeated
logic into programs, saving coding, punching, errors in data
preparation, and logic errors from omitting essential
statements.,

Top Down Design

The. hierarchical structure, known also as the tree
structure, has been used in business (organization charts,
accounting, etc.) for hundreds of years. It is well known
as an effective way of organizing a business or a chart of
accounts. It is also an effective was of organizing
software. Programs written which progress iteratively
downward require little if any integration testing because
the testing goes on all of the time. In turn, the
flexibility to enhance the program is improved. This permits
rapid response to changing requirement, the Achilles heel of
most data processing installations

Maintainability

This feature is more of a by-product to structured
programming rather than a primary feature. It is, however, a
major factor in any software project. It has become as
important to design for long-term maintainability of software
as to meet today's user requirement.

Structured programs ARE more maintainable. They are,
that is, if modularity and top down design techniques were
followed and adequate comments were included in the program.

DATA BASE FEATURES

Database management systems come in all sizes,
shapes, and flavors. No two are exactly alike, although
those adhering to the CODASYL DBMS specifications appear
alike on the surface. More about that later.

It is impractical, therefore, to define features of
all DBMS packages which will assist the developer in
improving the quality of the finished application while
reducing costs over batch file systems. The list of features
will be limited to a few major items which, if not present,
will reduce the cost-effectiveness of a DBMS package in any
environment.

Integral Data Dictionary

A data dictionary is essential to effective use of a
DBMS. Without this tool, the DBMS designer is handicapped by
having to maintain database design data manually. When the
data dictionary is specifically designed to support the DBMS,
instead of one generally designed for multiple use, it should
be possible to drive the schema definition software DIRECTLY
from the dictionary. This dramatically reduces the design
effort and duplication of definition material.

Language Preprocessor

All DBMS products of a generalized form utilize call
statements to communicate between the DBMS and the
application program. The structure and complexity of these
calls 1is frequently complex. A preprocessor which permits
the programmer to use verbs, such as STORE, MODIFY, ERASE,
instead of calls is an important item in potential error
elimination and program self-documentation.

The preprocessor should also perform DBMS-associated
housekeeping functions. The most important of these 1is to
copy the definitions of the database records to be used into
the program in the appropriate place. This feature enforces

data naming conventions, insures consistent record
definition, and reduces the volume of code prepared by the
programmer.,

Data Independence

The DBMS must provide the capability to change the
structure of the database itself without affecting the
programs which do not require the results of the change. The
subschema approach of the CODASYL specification typically
provides this type of capability. The cost of future changes
to the database can be significantly reduced with this
feature.

Full Network Data Structuring

Few non-CODASYL DBMS packages support this feature.
Many potential users of DBMS are fooled into believing that
this feature 1is unnecessary. It is possible to work around
the problem. But this increases the design time and the
programming effort goes up by an order of magnitude. '

When the database structure is prepared which matches
the actual interrelationship of the data, it is possible to
reduce program complexity, The database has assumed, 1in
effect, a portion of the program logic. 1t has been possible
to write COBOL database programs where the Procedure Division
is less than a page to accomplish functions which previously
required three to four times the statements.

Physical Database Independence

Statistics, disputable of course, indicate that
nearly one-half of conventional programming logic errors are
somehow associated with 1/0. The physical and structural
attributes of a database should be transparent to the
programmer., Whether the record 1is stored vrandomly or
according to a sort order should be of minimum concern,
Certainly, the programmer should be unconcerned where in the
database the record is located.

STRUCTURING DBMS DATABASE DESIGNS

Just as structured programming 1is based on three
logic building blocks, database structural relationships can
be established using specific selected formats. CODASYL
defines seven different data relationships which DBMS
implementation should support. Indeed, those DBMS products
which claim to conform to the CODASYL specification implement
all seven. It 1is not necessary that all seven be used to
develop effective database designs.

Figure 2 illustrates four basic building block
structures for database development, jJach has sufficient
flexibility that, when combined such as shown in Figure 3, a
completely networked data relationship results. The record
building blocks are:

1. The BASE record, which 1is a primary entry
point into the database, This record type is
stored for direct retrieval,

2. The RELATIONAL record, whose job 1is to
provide associations between other record
types, usually BASE but occasionally
INTERMEDIATE records. This record typically
contains little substantive data.

p—

3. The INTERMEDIATE record, called such because
it is both a member and an owner of one or
more other record types. This record nearly
always contains substantive data.

4. The SUBSIDIARY record, which 1is always a
member of some other record type. It always
contains substantive data.

Developers of structured programming found that it
was easier to create effective software when all logic was
based on the Figure 1 forms, The same lesson has been
applied successfully to database development.

At this point, it must be said that the technique is
not limited only to CODASYL DBMS products. The technique
itself is applicable to any DBMS. Like structured
programming, however, the case of use is greater with some
products (in this case, CODASYL implementations) than others.

The advantages of structured database design include
more than the visible initial investment savings. Long-term
maintenance, frequently taking the form of changes to
database structure and content, is reduced. Using already
defined set structures, additional relationships can be added
without forcing a restructuring of the physical database
contents,

The application of structured techniques can be
carried a further step. The composition of the database
record itself can be designed to minimize the impact of
change and to standardize the processing logic which supports
the record. Figure 4 illustrates the general database record
structure which is composed of four main parts:

1. The database pointers, controlled by the DBMS
software, are fixed by the type of record.
Predefining the possible relationships
freezes the number of these pointers.

2. Fixed data fields, data elements which appear
in such a large percentage of record types
that they have been placed in all records.
This part will be discussed in more detail in
the next section,

NRPLUNSET —FIE ¥ AT S

3. Record identification fields, data elements
which the DBMS and its users need to uniquely
identify a record occurrence in the database.
This group is used to define the random
placement of BASE records in the database,
and the sequence of placement of INTERMEDIATE
and SUBORDINATE record occurrences.

4. The main data storage area, a fixed-length
space which is converted to variable physical
length for disk storing. This area will also
be discussed in more detail, Analysis of
repeating data ' requirements frequently
identifies data elements which are heavily
and commonly employed. The elements shown in
Figure 5 will change under different
organization requirements. The important
aspect 1is that significant savings in
software support can be achieved by always
treating these fields identically. Some
storage space waste can be expected where the
fields are not required for individual record
types but this 1is of less concern than the
software costs necessary to handle individual
cases.

The most frequent change to databases occurs within
the makeup of record elements. Elements are added, deleted,
or modified to satisfy changing organizational requirements.
When such changes occur, they require corresponding changes
to the physical database. Figure 6 illustrates an approach
while eliminates the need to physically restructure the
database while still satisfying the need for change.

A fixed general data area of 800 bytes is established
for all record types in the database. Few record
definitions, except those storing text, actually reach this
size. Actual data usage, shown as n-bytes, is stored in the
record. The remainder, 800-n, is logically present as far as
the DBMS and application programs are concerned, but is
physically compressed out of existence by DBMS data
compression software. New elements simply reduce the 800-n
value without affecting existing physical data storage.

Lasahr

e ey Ty T NN T T T R

R s e e]

r‘_ e —— . , o m

The processing overhead required to compress and
decompress physical records is, again, less costly than the
effort required to periodically restructure the database, a
cost which grows as the size of the database grows. It has
been conservatively estimated that the actual computer time
necessary to effect ONE database restructure would exceed the
accumulated processing overhead for compression and]
decompression for six months of normal operation. Adding
labor costs for restructuring clearly makes the technique !
cost-effective,]

STRUCTURING DBMS APPLICATIONS SOFTWARE

The techniques addressed in the sections above lend
themselves to developing highly modularized software. Common
processing routines and functions are readily developed
which, once implemented, are used repetitively throughout
DBMS application development.

Figure 7 illustrates the logic used by input data
processing software following this approach. Over 80 per
cent of the average input processing program logic is common
from one program to the next. The remaining 20 per cent
deals with the validation of specific data elements and
database access.

Even these functions may be modularized to reduce the
amount of wunique 1logic necessary. COBOL source library
"books" have been developed which permit consistent
verification of nearly all data conditions. Similar books
take advantage of DBMS access ease to define standardized
access processing.

Each of these highly structured programs is compiled
as a separate processing entity, the implementation of

another level of program structuring. Figures 8 and 9
illustrate the interaction of the input processing programs
with batch and on-line program controllers. These

controllers select the appropriate input program based on
incoming data, creating a flexible transaction-driven
database maintenance capability. .

. " .
s ————— - s o o

THE BOTTOM LINE

It is possible to achieve dramatic gains in
productivity of software personnel through use of structured
programming. Combining the features available in many DBMS

products with structured technigues can result in even more
significant productivity improvements.

The approaches described above are in use and have
been successful beyond any expectations. Actual labor costs
to develop input processing programs have been reduced by an
average of 95 per cent, Calendar time to develop these same
programs decreased by nearly 60 per cent,

The bottom line of data processing is the timely and
effective support of the wuser community. Applying a
combination of structured analysis and programming techniques
with the supporting facilities of a good DBMS package may
mean the difference between being a hero or unemployed. The
end user, qualified or not, is the final judge.
logoo

10

3
BASIC STRUCTURED LOGIC BUILDING BLOCKS | ?

!

v DO WHILE

SIMPLE SEQUENCE

Tt g "y g g g T

PR B Y A

&

T e

IF-THEN-ELSE

13 |

FIGURE 1

BASIC ST§H?E%§EB gﬁg & SE RECORD

A L

SUBSIDIARY INTERMEDIATE
RECORD

RECORD
Vo

FIGURE 2

L v -

ORGANIZATION
BASE
B A
J{ e r———
POSIHON PgOPL%/ORGAN PEOPLE
DESCRIPTION ASSOCIATION
INT REL BASE
A B JL B A
(I’DU-MMY._:’
\'A PERSONAL
D/ETA
KRRRATIVE SUB
SUB
FIGURE 3

5 e - e e o — - =
‘ "

b dNLINGLS T¥0d3y 3SYavLvd Tvd3

SY3INICd 3S¥E Y1V

dN049 01314 Y1va a3yl m
SA1314 NOILYIISILINIAI QMO 3
STT1314 VLYQ 11Y130 ©¥073Y =

| (g
7

GRE ! _

W
e

-

¢ JdNoIz

NOILYII4ISSYTd ALIYNI3S
NOILYIIISSYT-4nS ALINNI3S

Q3141004 LSY1 Q40034 31T

43I141INIAT 3SvavLiva ¥3sn
3dAL Q¥0IY T¥I1907

d340LS T¥023y 31va III@ i 5
v
.ﬁ 1 | 1 | 1 _

dN0¥9 @314 ¥YLYQ Q3xI4

9 JEN91I4
IS ATLNIEYM)
NOISNYdX3 404 TIE¥IIVAY
v M
ﬁ — 5 _ T i T t
SILAS N-008 SILAG z......mi |
SILAG 008 ;mb |

v3dY @314 V1Ya 1IY13C @0I3y

I —

CON§§8TLER
!

PROCESS G

v

INITIAL
DATA
VALIDATION

GENERAL INPUT PROCESSING
PROGRAM LOGIC FLOW

SECONDARY
DATA
VALIDATION

DATABASE
MAINTENANCE
L ?:tf é]t
RETURN TO
CONTROLLER
FIGURE 7

i

e ey

CENTRALIZED BATCH INPUT PROCESSING

BATCH e
INPUT INPUT
PROCESSING

L PROGRAM

BATCH INPUT

PROCESSING & INPUT
CONTROLLER [, PROCESSING :
l ' PROGRAM '
\ '
.]
L H e e, MR
TRANSACTION W INRUT v
REPORTS \ PROCESSING v~

| PROGRAM '
FIGURE 8

m

DATABASE

N

LD G R A T o e

T

CENTRALIZED ON-LINE INPUT PROCESSING

?NEb%"E

ON-LINE
INPUT
PROCESSING
Y PROGRAM

TRANSACTION ON-LINE

PROCESSOR \ INPUT

. PROCESSING
PROGRAM

ovcie - T

DON-LINE
% INpUT P
! PROCESSING

L PROGRAN___ ;

L-----

FIGURE 9

DATABASE

