
A0 A0 70 210 NAVAL INTELLIGENCE PROCESSING SYSTEMS SUPPORT ACTIVIT— ETC P/S 9/2
STRUCTURED PROGRAMMING IN A DATABASE ENVIRONMENT. (U)
MAY 79 I. E TOWNER

I
;

UNCLASSIFIED

I I

~O7O2 70

I
END

OAT

7 -79
DOC

LO ~L 128 ~ 25

I.’
llI~U8

11111’ .25 Illui~ 1111116

MI~ I~l (I I I L) N II I P \ I L I
NAP IPLNAL PUPA ALP UP AM A L L ~‘ L A P

Nava l In te l l igence Processing Systems
Support Activ ity

(/
STRUCTURED PROGRAMMING IN A DATABASE ENVIRONMENT.

,‘(L. S. /Towner
2 ~ ~~

‘ /
~~~~~~ Abstract -

1 I- ’ i
~Structured programming has been actively endorsed by

~~ pro ponen ts of improve d data proces sing managemen t technique s

© for several years. Many examples of reduced costs and
improved project control have been cited. Unfortunately,

~~~ applic at ions of these tec hniques have f aile d to mee t the
expectation in many cases.

The advent of the database management system (DBMS)
as a major suppor t tool in the data proce ssin g pic ture has
also resul ted in mixe d resul ts , often falling far short of
the pre—installation build—up . Frequently this lack of DBMS
achiev emen t can be traced to ina dequa te con trol •of the
applications projects which will utilize the DBMS.

This paper describes the use of structured
techniques, both analysis and programming, in overcoming the
problems of database applications software support.
Struc ture d techni ques are par ticul arly applica ble to the
database environment because of the centralizing of
proce dural and logical pro grammin g func tions aroun d the DBMS
software.

INTRODUCTION

Stru ctured pro grammin g is one of those terms which
has been tossed about in the data processing community for
the last eight to ten years. It created some excitement and
a great deal of controversy.

Struc ture d progr ammin g has been viewse d from two
~~~ primary angles:
C-’

1. From management, who was looking (and still
is ) for a better and more effe ctive way to
control data processing costs. Management
hoped tha t struc ture d pro grammin g woul d

C~~ 
provi de a basis for accura te es timatin g of
software cos ts and , even more important,
improve the quality of the developed
software.  Thu du ument ha.s been a~~’~~~.d

kr public r.lca2o and iclc: its
ID C distribufion is unlimited.

M~
( 29 1979 ~•Y .J

4io ~~
j



2. From the programming staff , who frequently
saw the advent of structured programming as a
harnessing of their “creativity ”. Many
programmers felt (and many have not changed
their minds) that the structured programming
approach was not worth the effort to learn
and use.

Data base is another term which is currently being
used by the industry with increasing frequency . During the
past five years, the prospect of new ways of organizing data
has created its share of excitement and controversy . The
parallel between structured programming and data base is
amazing.

As with structured programming, data base is being
viewed from two angles:

1. From management , who is faced with the
increasing complexity of business.
Management must rely on computers more and
more. Computers must have access to data to
perform their job. The costs of managing
data continues to grow. Management
recognizes that data base may be their only
hope to slow the escalating data management
costs.

2. From the programming staff , wh o v iew
generalized data base software with
suspicion . Programmers are comfortable with
software they know and understand. For many ,
this means software they have written. In
the past, many of the commercial data base
software packages were poorly documented and
contained logic errors. Applications
programmers were reluctant to use these
packages because they could not fix the bugs
or understand the documentation .

Structured programming, according to Ed Yourdon , one
of best—known proponents of the technique, has lost its first
round in the fight for acceptance. The round was lost
because too much was said about the advantages of structured
programming and not enough said about how it use it
effectively . Programmers were turned off by “GO TO—less”
rules and other factors which were poorly explained at best.

2

U

£

~

- - -

~

-

~ 

-— -



Dat a  base faces  a s im ihu  problem. There ha~; been no
d i f f i c u l t y  c o n v i n c i ng  da ta  processing management  about the
v i r t u e s  of data  base . It  has even been r e l a t i v e l y  easy to
convince company mana qement  t hat  the cost of a da ta  base
package was w o r t h w h il e .  L i t t l e  e f f o r t , however , has been

made to convince pro gr ammers  t hat  da ta  base w i l l  reall y
b e n e f i t  them.

The s i m il a r i t ie s  between s t r u c t u r e d  programming and
data  base do not end with the visual pictures of management
and pro gramming s t a f f .  Fu n c t i o n a l l y , both f a c i l i t i e s  provide
tools and techniques wh ich  are comp lementary . When used
together , they provide a power fu l  h i g h l y — e f f e c t i v e  data
processing capab i l i t y .

The remainder  at  t h i s  pape r w i l l  describe the
e f f e c t i v e  j o i n i n g  of s t r u c t u r e d  programming and da ta  base in
an ac tua l  product ion e n v i r o nm e n t .  None of the techniques
described are r e a l l y  new . They have been app l ied in such a
way that the pos i t ive  aspects of s t r u c t u r e d  programming and
data base are emphasized and many of the negative aspects are
overcome .

STRUCTURK PROGRAMMING FKATURKS

There are many techniques  and f e a t u r e s  which  arc
gathered under the  umbre l l a  called st ruc tu red  programming.
Some are more u s e f u l  than  others;  some are , f r a n k l y ,  a
deterrent to the acceptance and use of s t r u c t u r e d  techniques.
The features described below are those which were selected
and implemented because of their particular match to the
needs of data base development.

Modularity

Many proqrainmers say they have written modular
programs long before the structured approach was
“discovered” . True, but the? manner in which modularity was
practiced was quite different (in most cases) from that
proposed by s t ruc tu red  advocates.

The concept of a program , subrout ine , or log ic L
section hav ing  a s ing le  e n t r y  and e x i t  point  is important  to
c l a r i t y  of program code. Where t h i s  approach is practiced ,
t l e x ib i l i t y  is improved and logic complexi ty  ( w i t h  i ts
accompanying test t ime ) is d r a m a t i c a l l y  reduced . 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



A secon d aspec t of modular ity is the develop ing of
librarie s of common logic code. In the COBOL world , these
“source library books” provide the abil ity to copy repea ted
log ic in to programs , savin g cod ing, punchin g, errors in data
preparation , and logic errors from omi t t ing  essential
statements.

Top Down Desi gn

The- h ierarchical  s t ruc ture, known also as the tree
s t ructure, has been used in business (organiza t ion  charts,
accounting , e tc . )  for hundreds of years. It is well known
as an e f fec t ive  way of organiz ing  a business or a chart  of
accounts. I t  is also an e f f e c t i v e  was of organizing
software.  Programs wr i t t en  which progress i terat ively
downward require l i t t le  if any integrat ion testing because
the testing goes on all of the time . In turn , the
f l e x i b i l i t y  to enhance the program is improved. This permits
rap id response to changing requirement, the Achilles heel of
most data processing installations

Main ta inab i l i t y

This fe ature is more of a by—product to structured
pro gramming ra ther than a primar y feature. It is, how ever , a
major factor in any software project. It has become as
important to design for long—term maintainability of software
as to meet today ’s user requirement.

Structured programs ARE more maintainable. They are,
that is, if modular ity and top down design techniques were
followed and adequate comments were included in the program.

DATA BASE FEATURES

Database management systems come in all sizes,
shapes, and flavors. No two are exactly alike, although
those adhering to the CODASYL DBMS specifications appear
alike on the surface. More about that later.

It is imp ractic al, therefore , to def ine  fea tures of
all DBMS packa ges which wil l assis t the develo per in
improving the quality of the finished application while
reducing costs over batch file systems. The list of features
will be limited to a few major items which , if no t present,
will reduce the cost—effectiveness of a DBMS package in any
environment.

4 ~~~~~~~~ 

—
~~~~~~~-—--~~~~~ - —— ~~~~~~~~~~~~~ -~~~-~~~~~~~- - -~~- -


In tegra l Data D ic t i ona ry

A data d i c t i o n a r y is essent ia l to e f f e c t i v e use of a
DB MS. W i t h o u t t h i s too l , the DBMS des igner is handicapped by
hav ing to m a i n t a i n database design data manua l l y . When the
data d i c t i o n a r y is s p e c i f i c a l l y designed to support the DBMS ,
instead of one gene ra l ly designed for m u l t i p l e use , i t should
be possible to d r ive the schema d e f i n i t i o n so f tware DIRECTLY
f rom the d ic t ionary . This d r a m a t i c a l ly reduces the design
e f f o r t and dupl ica t ion of d e f i n i t i o n mater ia l . .

Language Preprocessor

Al l DBMS products of a genera l ized form u t i l i z e call
s ta tements to communicate between the DBMS and the
applicat ion program . The s t ruc tu re and complexi ty of these
calls is t requently complex. A preprocessor which permits
the programme r to use verbs , such as STORE , MODIFY , ERASE ,
instead of calls is an important i tem in potential error
e l i m i n a t i o n and program self-documentation .

The preprocessor should also per form DBMS—associated
housekeeping func t i ons . The most impor tant of these is to
copy the d e f i n i t i o n s of the database records to be used into
the program in the appropriate place . This f e a t u r e enforces
data naming conventions , insures consistent record
d e f i n i t i o n , and reduces the volume of code prepared by the

• programmer.

Da ta Independence

The DBMS must provide the capabi l i ty to change the
s t ruc tu re of the database i t se l f w i t h o u t a f f e c t i n g the
programs which do not require the resul ts of the change. The
subschema approach of the CODASYL speci f ica t ion typical ly
provides th i s type of capab i l i t y . The cost of f u t u r e changes
to the database can be s i g ni f i c a n t l y reduced w i t h this
f ea tu r e .

Ful l Network Data S t r u c t u r i n g

Few non—CODASYL DBMS packages support th i s f e a t u r e .
Many potent ia l users of DBMS are fooled in to bel ieving that
t h i s fea tu re is unnecessary. It is possible to work around
the problem. But t hi s increases the design t ime and the
programming e f f o r t goes up by an order of magni tude . -

S

-

• When the da tab ase st r u c t u re is prepared w h i c h matches
the ac tua l i n te r r e l a t i o n s h ip of t he da ta , i t is possib le to
reduce program c o m p l e x i t y . The database has assumed , in
e f f e c t , a po r t ion of the program log ic, i t has been possible

• to w r i t e COBOL database progr am s where the Procedure D i v i s i o n
is less than a page to accomp l i s h f un c t ion s wh i c h p rev ious l y
required three to four t imes the s tat ement s .

Physical Database Independence

• S t a t i s t i c s, d i spu tab le of course , i n d i c a t e t hat
near ly one—ha l t of convent iona l programming logic er rors are

• somehow associated w i t h I/O . The phys ica l and st r u c t u r a l
a t t r i b u t e s of a database should be t r anspa ren t to the
programmer. Whether the record is stored randoml y or
accord ing to a sort order should be of m i n i m u m concern.
C e r t a i n l y , the programmer should be unconcerned where in the
database the record is located.

STRUCTURING DBMS DATABASE DESIGNS

Jus t as s t ruc tu r ed progr amming is based on three
• log ic b u i l d i n g blocks , database s t r u c t u r a l r e l a t i onsh ip s can

be establ ished us ing s p e c i f i c selected fo rma t s . CODASYL
de f ines seven d i f f e r e n t da ta r e l a t i onsh ips wh ich DBMS
implementa t ion should suppor t. indeed , t hose DBM S p roduc ts
w h i c h c l a im to conform to the CODASYL s p e c if i c a t i o n implement
a l l seven. I t is not necessary t h a t a l l seven be USed to
develop e f f e c t i v e database des iqns .

F i gur e 2 i l l u st r ates fo ur basic bu i ldi n g block
s t ruc tu res for database deve lopment . Each has s u f f i c i e n t
f l e x i b i l i t y t ha t , when combined such ~is shown in Figure 3 , a
completely networked da ta r e lat i o nsh i p r e su l t s . The record
b u i l d i n g blocks are:

1. The BASE record , wh ich is a p r i m a r y e n tr y
point i n to the database . T h is record type is
stored for d i rec t r et r i e v a l .

2. The R1:I ,ATIONM~ record , whose job i~; to
provide assoc ia t ions between o ther record
types , usua l ly BASE bu t occasional ly
INT E RMEDI A T E records. This record t y p i c a l l y
conta ins l i t t l e s u b s t a n t i v e da ta .

6

3. The INTERM ED IA TE record , ca l l e d su ch beca u se
It is both a member and an owner of one or
more o ther record types. This record n e a r l y
always conta ins s u b s t a n t i v e d a t a .

4. The SUBSIDIARY record , wh ich is a lways a
member of some other record type . i t a lways
con ta ins s u b s t a n t i v e da ta .

Developers of s t ruc tu red programming found t h a t i t
was easier to create e f f e c t i v e so f t w a r e when a l l logic was
based on the F i g u r e 1 forms . The same lesson has been
applied success fu l ly to database development .

~ t th i s point , i t must be said t h a t the technique is
not l i m i t e d onl y to CODA SYL DBMS pr oducts. The technique
i t s e l f is appl icab le to any DBMS . Like s t r uc tu red
progr amm i ng , however , the ease of use is grea te r w i t h some
products (i n t h i s case , CODASYL imp l e m e n tat i o n s) than others.

p
The advantages of s t ruc tu red database design inc lude

more than the v i s i b l e i n i t i a l inves tment sav ings . Long—term
main tenance , f r e q u e n t l y t a k i n g the fo rm of changes to
database s t ruc ture and content , is reduced. Using already
d e f i n e d set s t ruc tu re s, add i t i o n a l r e l a t i o n s h i p s can be added
w i t h o u t fo rc ing a r e s t r u c t u r i n g of the physical database
contents .

The app l i ca t ion of s t r u c t u r e d techniques can be
carr ied a f u r t h e r step. The composition of the database
record i t se l f can be designed to m i n i m i z e the impact of

• change and to s tandard ize the processing logic wh ich supports
the record . Figure 4 i l l u s t r a t e s the general database record
s t ructure which is composed of four m a i n par t s :

1. The database pointers , controlled by the DBMS
sof tware , are f i x e d by the type of record.
P r e d efi n i n g the possible r e l a t ionshi ps
freezes the numbe r of these pointers .

2. F ixed data f i e l d s , data e lements which appear
in such a large percentage of record types
tha t they have been placed in a l l records.
This part w i l l be discussed in more deta i l in
the next section.

7

F--- —
—

3. Record i d e n t i f i c a t i o n f i e l d s , data e lements
which the DBM S and its users need to uniquely
identify a record occurrence in the database.
This group is used to define the random
placement of BASE records in the database,
and the sequence of placement of INTERMEDIATE
and SUBORDINATE record occurrences.

4. The main data storage area , a fixed—length
space which is converted to variable physical
length for disk storing . This area will also -

•

be discussed in more detail. Analysis of
repeating data requirements frequently
identifies data elements which are heavily
and commonly employed. The elements shown in
Figure 5 will change under different
organization requirements . The important
aspect is that significant savings in
software support can be achieved by always
treating these fields identically. Some
storage space waste can be expected where the
fields are not required for individual record
types but this is of less concern than the
software costs necessary to handle individual
cases.

The most frequent change to databases occurs within
the makeup of record elements. Elements are added , deleted ,
or modified to satisfy changing organizational requirements.
When such changes occur, they require corresponding changes
to the physical database. Figure 6 illustrates an approach
while el iminates the need to physically restruc ture the
database while still satisfying the need for change .

A fixed general data area of 800 bytes is established
for all record types in the database. Few record

• def initions, except those storing text , ac tually reach this
size. Actual data usage, shown as n—by tes , is stored in the
record. The remainder , 800—n, is logically present as far as
the DBMS and application programs are concerned , but is
physically compressed out of existence by DBMS data
compression software. New elements simply reduce the 800—n
value without affecting existing physical data storage.

8

• ~~~~~~~~~~~~~~~~ ~~~

The processing overhead required to compress and
decompress physical records is , aga i n , less costly than the
e f f o r t required to pe r iod ica l ly restruc ture the database , a
cost which grows as the size of the database grows. It has
been conservatively estimated that the actual computer time
necessary to effect ONE database restructure would exceed the
accumula ted pro cessing overh e ad for compr ession and
decompression for six months of normal operation . Adding
labor costs for restruc tur ing clearly makes the technique
cost—effective.

• STRUCTURING DBMS APPLICATIONS SOFTWARE

The techniques addressed in the sections above lend
themselve s to developin g hi ghly modularized software. Common
processing routines and functions are readily developed
wh ich , once implemented , are used repetitively throughout
DBMS application development.

Fi gure 7 il lustra tes the logic used by input data
processing software following this approach. Over 80 per
cent of the average input processing program log ic is common
from one program to the next. The remaining 20 per cent
deals with the validation of specific data elements and
database access.

Even thes e fun ct ions may be modularize d to reduce the
amount of unique logic necessary . COBOL source library
“ books ” have been developed which permit consistent
verif ication of nearly all data conditions. Similar books
take advantage of DBMS access ease to de f ine s tandardized
access processing.

Each of these highl y s t ruc tu red programs is compiled
as a separate processing en t i ty , the implementation of
another level of program s truc tur ing. Figures 8 and 9
i l lus t ra te the interact ion of the inpu t processing programs
wi th batch and on—line program controllers. These
controllers select the appropriate input program based on
incoming data , creating a f lexib le t ransact ion—driven
database maintenance capabili ty.

9

THE BOTTOM LINE

It is possible to achieve dramatic gains in
• productivity of software personnel t h r o u g h use of structured

programming . Combining the features available in many DBMS
products w i t h s t r u c t u r e d t echn iques can result in even more
significant productivity improvements.

• The approaches described above are in use and have
been successful beyond any expectations. Actual labor costs
to develop input processing programs have been reduced by an
average of 95 per cent. Calendar time to develop these same
programs decreased by nearly 60 per cent.

The bottom line of data processing is the timely and
effective support of the user community . App ly ing a
combination of structured analysis and programming techniques
with the supporting facilities of a good DBMS package may
mean the difference between being a hero or unemployed. The
end user , qualified or not , is the final judge. t I
logoo

10

•--—- - •• --- --- • . ---• •-
a -

-•

7

BAS IC ST RUCTU RED LOGIC BUILDING BLOCKS

_ \I,

IDOWHILE

S IMPLE SEQUENCE

IF-THEN-ELSE

FIGURE 1
•

~~~~~~~~~ _ _  _ _ _ _ _



BASIC SJ~WjiUR~D 
~~~~~~ 

RECORD

R~M8~D RE~~ ç~NAL

_ _ _ _
“

SUBSIDI ARY INTERMED IATERECORD RECORD

~i~~~~~~~~ 1

FIGURE 2

- ~~~~~~~~~~~~~~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _

F • —

•

- ORGAN IZATION

BASE
B A

POSiTION PEOPLE/ORGAN PEOPLEDESCRIPT ION ASSOCIATION
I T REL BASE

~~~~~~~

(DUMMY ,

PERSONAL
DATA

~~RRATIV E SUB

I-
FIGURE 3



C,)

V) LiJ
~~~ 1__J LL_

Li
‘—~~~~~~

- :~~iIL L~ (~I—, t~
~:c I— U) C-f,

cc
~~~~L) ç’~ w
c1.— . ____J I—

IL W~~~~,—-. ,—1 •—--‘
.~~—4~~~--- IL. C)

Li t -
~ I— Li

~~~~~~~~~ ~~~~ w
~~ .~iii 1-)o .c c c~(D C) LU .-t(

~)L~) >< I-”
L.&J LJ p—.
a~ cc 1L ~

LU
cc
I—
L)

cc
I----
C.,)

cc
- cDL)

LU
cc

-
I—

LU

LU

~“I (UJRE 4

C)

Li .—~ ~~~~
- IL Li C)
IL -~

~~ IL F-Li F- C)
‘R cc ~~ Li
w >- Li C,) -,cc ~—

~~ F- ~~ ILC) — C,) ~JF- ~~ Li V)V) C~ Li J scD v)
R ~~
Li
L U J~~~~~~~~~ -
cc cc

Li
Li .—. cc w
F- (D Li F- U) Li
_

C) v ~~ LU Li
~~ =) ~~ Cj) C/)

U-,

I
p.

cc
=~
(D

-J

LU

F-

—LU

LU

-~~~~~~~~~~
- -

~~~~~~~~~~~~~~
--- • -

C)

C,,

cc
LU

C) ’,)

L i>-
-i -i

C,,
— cc

>-

i
i 

_ _cc 

.j ~L - •-~~ -~~~~ ~~~—-— -~~~~~~~~ -



CON~~8~LER

‘11?

~ING 
GENERAL INPUT PROCESSING

_ _ _ _ _ _ _ _ _ _ _ _  
PROG RAM LOGIC FLOW

INITIAL
DATA
VALIDAT ION

• SECONDARY
DATA
VALIDATION

DATABASE
MA I NTENANCE

RETURN TO
CONTROLLER

FIGURE 7

L ~~~~~~~~~~~~~~~~~~~~~ • • • ~~~
-

~~~


r

CENTRA LIZED BATCH INPUT PROC ESSING

I N PUT

I I’
PROCESSING —

BATCH iNPUT _ _ _ _ _ _ _ _ _ _ _ _ _•

PROCESSING ~ DATABASE
PROGRAM

U

J

SACT 1O N ~~~~~

F~ C J t ~E B

.1

-~~~ -

~~~

CENTRALIZED ON- LINE INPUT PROCESS ING

I ON-LINE
I PROCESSING
‘V______ PROG RAM

I 

~~~~~~

INPUT
—

TRANSACTI ON ON-LINE
PROCESSOR

- PROC ESSI NG — DATABASE
_PROG RAM

I
I — — — — — _ •_I I

~~ ON-LINE p

“ INPUT ‘ i -

•‘ PROCESSING ~‘ PROG RAML _ _ — — — — —

FIGUR E 9

L ~~~~~~~~~~~~~~~~~~ ~~~~~~ • •
• —~~~~~~~~-

