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PREFACE

This report was prepared by Dr. Theodore S. Bolis, of the State
University of New York at Oneonta, in residence at the Rome Air Development
Center (RADC), under the 1978 USAF-ASEE Summer Facility Research Program.
The work presented {s a part of an RADC program to develop Bayesian and
other statistical techniques based on the use of prior data for practical
application to Reljability Demonstration.
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1. INTRODUCTION

1.1 We consider equipment with exponentially distributed time-to-failure,
i.e., the probability density function of the time-to-failure is given by
(1.1.1) ¢ (t]e) = 0'] exp (-t/0), t > 03 0 > 0,

where the parameter ¢ is the mean-time-to-failure (MTTF) of the equipment.

We assume that © itself has a prior distribution of the inverted gamma type,

i.e., the prior probability density function of © is given by

A
Y 0-(\+])

v(\) exp (-y/8); 8 > 03 X >0, Y > 0,

(1.1.2) g (9 Ay) =

where A is the shape parameter and y is the scale parameter of the prior

distribution.

1.2 Bayesian Reliability Test Plans based on the prior (1.1.2) have been
developed by Schafer et al [4] and Goel [1] under various combinations of
risks. The implementation of these plans require the estimated values of

A and y in (1.1.2). Since the true MTTF ¢ of an equipment is not observable,
we cannot directly fit existing data to the inverted gamma distribution
(1.1.2). To get around this difficulty, we consider the probability
function of the number of failures r in a fixed T, given v. Because

of the exponentiality assumption (1.1.1), this probability function is

Poisson with parameter T/0, i. e.

(T70)" exp (-T/0), r =0, 1,2, ...s T>o0.

(1.2.1) Py (rfe) =

Thus, the unconditional probability function of the number of failures r

in a fixed time T is

(1.2.2) Pr(r) = /7 Pp(r[0) g (03 1, ) do




By using (1.1.2) and (1.2.1) and performing the integration, we obtain

\4r-1 : A r
= .__1.._._ ._.T-.« =
(1.2.3) Py fry=»f ¢ )¢ == | o ) ., r=0,1, 2, .... which

is a negative binomial distribution with parameters X\ and T/(T+Y). If
existing data on a type of equipment are of the form "number of failures in

a fixed common time T", then the parameters 1\ and y can be estimated

by using (1.2.3). Schafer et al [3] used the method of moments for this

purpose, whereas Goel and Joglekar [2] used the maximum likelihood method.
1.3 An extreme and rather hypothetical case results when we keep the
number of failures r fixed and observe the time T wuntil the rth failure.
Since T is the sum of r exponential random variables, its probability

density is gamma with parameters r and o1,

r r-1
(1.3.1) f.(T]e) = — T exp (-T/8), T>0

Thus, the unconditional probability density function of T is
(1.3.2) £ (1) = f O f.(T]0) g (03 A, v) do

A i
« (N G ) T,

This is just a scale transform of the inverted beta distribution written

in this form to show its similarity with (1.2.3).

1.4 Existing failure data (especially field data) usually do not exhibit
any of the two features discussed above. Usually the test or operational
time varies from equipment to equipment of the same type. Thus, the data
will usually be of the form (ry Ti)' i=l, ..., n, where r; is the number

of failures of the ith equipment in time T;. In a test situation, it is




feasible to control either ry or Ti' but cost considerations recommend the
control of Ti' Thus, it is desirable to estimate \ and y in this more

general situation, which encompasses the situations discussed in sections

1.2 and 1.3 as special cases. Schafer et al [3] present a method of
estimation akin to the method of moments. This method however is not
applicable if a single equipment had no failures at all.

1.5 In this report we present a general estimation method which we call

The Generalized Maximum Likelihood Method. A sufficient condition for the

existence of the estimators is given. In the case of fixed time data,
; it is shown that the condition is also necessary. The method has the

advantage of being usable to update the prior when new data become available,

e.g., from reliability demonstration tests.

If the data used for the estimation of the prior distribution are generated
by a planned test, the estimability condition dictates ways of choosing
(controlling) either the test times Ti or the number of failures r in such a
way that the resulting Generalized Maximum Likelihood Equations have a
solution, i.e., the estimators exist.

In the case of fixed time data, if the estimability condition is violated,

some alternate estimation methods are presented.

T




2. THE GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION METHOD

2.1 MWe suppose that n identical equipments with exponential time-to-

failure distribution are tested in the following way: the ith equipment
s is tested for T, hours, i = Ly «sss B L8t ry denote the number of failures
| of the ith equipment. We assume that the prior distribution of the MTTF o
is given by (1.1.2). Then, the unconditional probability function of ry is

given by (1.2.3), i.e., 4

; (21.0) Pp () (w -1) (T)?T) (f’fw‘)

The Generalized Likelihood Function of the sample (ri,

is defined to be

n \ r.
\+ ._'l y T 1
(2.1.2) L= T ! (;) ( ! )
i=1 ry Tih Tty

Just as in the classical Maximum Likelihood Estimation technique, the best

explanation of the data (ri, Ti)' i=1, ..., nis provided by the values

N A

(A, y) of (\, y) at which the function L attains its maximum, if L has a max-

imum, As usual, in order to maximize L, it is enough to maximize its natural

logarithm. }
o

B

n Atry -1 n n T; :

(2.3.3) L= ) 5 * 3 r; 1n i
: = +\ i=] Ti+w i:

2

In order to obtain the critical point of L, we have to solve simultaneously u
the Generalized Likelihood Equations. L




e o i bl i

(2.1.4) 3 InL =0, 3 1InL =o0

A Yy

which in our case become

n n
(2.1.5) 3 InL = % L HER . I Infl+ Ii =0
9A i=1 A Atry-1 i=1 Y
n . n r
(2.1.6) 3 1InL = . L X : =0
Ay Y i=] Ti+y i=1 Ti+y

If we set a. = 1 the above equations are reduced to

T
In (1 + 1 )
1 Y

P, Ti
(2.1.8) r=y ¢ L .
i=1 Ti+y i=1 Tity

Since X is given explicitly in terms of y by (2.1.8), we can substitute in

)

o

(1.2 = % .
321 a+j-1 i

= i |
o = §

(2.1.7) to obtain an equation in y alone. The resulting equation can be

solved numerically (when a solution exists) to obtain the estimator ; and
then, by means of (2.1.8) obtain the value ; 4

2.2 If we control the number of failures r; and let Ti be random, the
distribution of T; is given by (1.3.2). It is inmediate that the new
Generalized Likelihood Function will be the same as the one given by

(2.1.2) up to a factor

. STAF

which is independent of the parameters )\ and y. Therefore, the resulting

n=33S

i
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Generalized Likelihood Equations will be exactly the same as the ones

given by (2.1.7) and (2.1.8). Thus, the Generalized Maximum Likelihood

estimators will have the same form, irrespectively of whether we control

the T;'s or the ri's or any combination of them (e.g., controlling r;

i for

1=V «..s k and Tj for 3 = k% 1, .y 0},

3. A SUFFICIENT CONDITION FOR THE EXISTENCE OF THE GENERALIZED MAXIMUM
LIKELIHOOD ESTIMATORS

3.1 The system of equations (2.1.7) and (2.1.8) does not always have a
solution. Although we could produce examples of actual data for which the

Generalized Maximum Likelihood estimators do not exist, for simplicity's

sake we resort to the following rather contrived

EXAMPLE 3.1.1 Let n = 3, r;

§ 7 Gy Vg 1, Py ™ 2, R P T =T.

Then the equations (2.1.7) and (2.1.8) are reduced to

(3.1.1) 2 + 1__= 3In (1 + T
A A+

(3.1.2) X = 47

whose simultaneous solution calls for the zero of the function

‘ o 2 1
\) = + - + ]
Y)) ; =y 31n (0 1

B A > Ox

We claim that actually VY (A)>o for all A\>o0. Indeed, lim(\)=+e and lim ¥()\)=0
A0+ A0

and thus, it is enough to show that VY is strictly decreasing. This is
so since the derivative of VY is negative.

W 5 3 \+2

(A ) \(\+1) 2 (x+1)2 bk

v ()= -




3.2 We now give a sufficient condition for the solvability of the

Generalized Likelihood Equ-tions (2.1.7) and (2.1.8). We use the fcllowing

notation:
n n Vi
P R B PR L W -
n i=] .‘ g n ]:] i
]V
" n 2
T=-1 7 PR iy gl T
n i=] T n  i=1 i
P =
Cov (r, T) = O To=prh
n . ]
i=1
We shall prove the following
THEOREM 3.2.1 If
Sy 2 B ot . 2
(C) 2r TewwdlrsTi<T 1S ~Fl+¥r 5 ,
r T

then the Generalized Likelihood Equations (2.1.7) and (2.1.8) have a solution.

PROOF. It suffices to show that the function defined by

Qs n T-i
(3.2.1) Wy} =z —Jd = < zta O+ }s Y >0
21 A(y)+i-1 i=1 Y
where
n L n .
My) =y 1 W
i=1 Ty [ i1 Ty

has a zero. We observe that u1¢o, because, otherwise, all aj =0 which

implies that all r; = 0 and the condition (C) violated (it is reduced to
i

0o < o0). Since \(y) tends to zero when y tends to zero and since ;>0 we

get 1im W (y) = + « .
Yo+




Thus, it suffices to show that W(y) is negative for large Y. To this end

we observe that

n e -1 -1 " N -1 -3
(3.2.2) AMv) =¥[Z rj- 1 rToy" '+ oy Iz Ti=Z Ty +o(y™')]
i=1 i=] i= i=1 1
e S SR
# by + E57 - ¥ cow [r,T) 4 o(1) as vy » 4 o
E3

TZ
Substituting (3.2.2) into (3.2.1) we obtain

; (3.3.3)

2
e = - 'T n 5
Wly) = = Olj/[_;—‘Y » T3] " tegw e, 1), j-1+0(1)]1 - £ 1n (1+5._
j>1

e i=] ¥
¥ - Teow (v, T)
- res. =~ T cov (r, = -1
sadeylf2 g op T Ioagt L3 (§-No;lv +
=7 J =% N J
r i1 rT J>1 .
-1 n -1 n 2 =2 -2
* Ny M+-2 Ty +1 1 Tsy +o0 (v )
i=] 2 i=1
as y » +
2 2 _
Since I a_=nrand I (j-1) a, = 1(5S +r-7¥),
J_’] J _]_] J 2 r
(3.3.3) is reduced to

" P N RS . -2
W (y) =- - (-2r Tcov (r, T)+T (Sr -r)+Tr ST)Y +0(y )
2r

'
as Y > 4+ @ .'*ii
Because of the condition (C), W(y) < o for large land the theorem isproved.

\
3.3 We observe that in case Ty =T for all i=1, ..., n, the condition (c) i

is reduced to 1) »r <S§




which is exactly the condition for the applicability of the method of
moments to the estimation of the parameters of a negative binomial distri-
bution. In the next section we will show that the condition (C]) is also
necessary for Maximum Likelihood estimability in the case of the negative

binomial distribution.

If, on the other hand, rj = r for all i =1, ..., n, then the condition (C)
is reduced to

(c,) T s,

which is exactly the condition for the applicability of the method of
moments to the estimation of the parameters of the inverted beta distri-
bution (1.3.2). Of course, if the method of moments is applied to this
situation, the value of i will always be greater than 2, because this
distribution does not have a second moment if \ < 2.

Another remark about the condition (C) is in order. Since the values of T
are usually large, both sides of the inequality become rather large. It

is, therefore, convenient to write condition (C) in the following equivalent
form (3.3.1)

2

r< -

n'i':_

] (Y‘i o .T‘: Ti)
3.4 \le now prove the following

THEOREM 3.4.1 The Maximum Likelihood estimators of the parameters of the
negative binomial distribution (1.2.3) exist if and only if r < Si .

The sufficient part of this theorem is contained in the Theorem 3.2.1.

For the necessity part we need the following lemma:

e i Nt o

e ———————— e -



LEMMA 3.4.2 For all positive integers n and all positive A we have

(3.4.1) n
) i ] > n

o R ) L v ¢ v
The inequality is strict ifn > 1.

The proof of the lemma is inductive. The inequality is obviously true for

n = 1. Assuming it true for n, we shall prove it for n + 1. Indeed

]
ny ‘ ] =y - '\‘ i 1 dni 4 ] - < ¥ =+
j=1  (A+j-1)°¢ =1 (A+j-1)€ (\4n)© \(\tn-1)
. | R n ~ nhl
. BIRRERAR | NS . £
(\+n) (vin) V(=) (\#n)e \(\tn)

This completes the proof of the lenma.
PROOF OF THE THEOREM: We need only prove the necessity of the condition.
Since T, = T for all i = 1, ..., n, th equations (2.1.5) and (2.1.6) are

reduced to

(3.4.2) A i Loy ot (1 Ty=o0
i=1 \ Atry-] |
(3.4.3) Yy /s

Obviously, it is enough to prove that the function Y defined by

=

B e ek R F B % 2 6

'
i:] \ \+[““ \

¥ (V)

5
‘

has no zeros if » =~ Sr S r‘ are zero, then the function ¢

is identically zero, the log-likelihood function (2.1.3) is reduced to

10



nAln Y __
T+y

and it is obvious that this function has no maximum in the range of the
parameters. Thus, we may assume that at least one rj is different than
zero. Then

lim Y(A) = + and lim Y(X) = o.
A >0 + A >+ ®

Hence, in order to show that the function ¥ has no zeros, it suffices to

show that its derivative is nonpositive. By using the inequality (3.4.1)

we get
n 1 s
(3.4.4) % ()= - 5 ( ¥ # L ) + _nr
i=1 A2 (Mrg-1)2 A(F)
n -
& = 4 rj nr

+ —
i=1 A(A+ri-1) A(A+r)

We now use the convexity of the function

wix) =1/(x-1+x), x>1; x>0

with the ri's in the numerator of the summand of the right hand side of
the inequality (3.4.4) used as weights and the ri's in the denominator

as points in the domain of w. The so-called Jensen's inequality yields

n 2
g > Iri - B&F
i=1 A+ry-1 A-1 + Eriz /Ery Ar + ?r‘[ srtarp
Therefore, going back to (3.4.4) we get
¥ (A) & - - nr T Y . S
A Ars Si +¥ o A(A+r)
11




el 2
nr (r - Sr)

5 €0y A2>0
A(A+r) (AF + sr +F r)

ro(§-1) a
32 3

| v

O -

This completes the proof of the theorem.




4, CONTROLLING FOR ESTIMABILITY
4,1 If we let n = 2m, Ti =T fori=1, ... , mand T1 = kT for i =m + 1,
vees 2my k > 1, then

(4.1.1) _ 2 2m —
¥ o L g 8 =(——k" )2 ¥,cov (r, )2 EL 7| L 5 -
2 T \N2 2 m  j=m

By substituting (4.1.1) into (C) we obtain

i 2m i +] e’ 2
a.1.2) 2. .08  #x . 5t P L F ;
m i=m k=1 J k+1

a condition independent of T. This kind of test designing enhances the
possibility of having SE > r and the condition (C) satisfied. In particular,
if k = 2, the condition (4.1.2) is reduced to

¥

Z

m .

w1 25 P a2 edr
1=m

4.2 In the more expensive case of controlling the number of failures and

letting the test time be random, we can always assure r< SE . We consider
the following design: n =2m, r; = r for i = 1, «..o mand ry = kr for

i=m+1, ..., 2my, k> 1, Then

zm ——
(4.2.1) T=—k 62 o k1 Y22, cov (r, T) =K1 L. 3 T; =T
2 r 2 2 m =m

and the condition (C) is reduced to

s

2m 2
(4.2.2) 2 vy £ 1,<7 kel a2 k2 & k-1 g2
. AL T
m k+1 k-1 k+1

13
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By choosing k = 2 and r =12, or k= 3 and r = 7,ork=4andr =5, or

k =5and r = 4, this condition Is always satisfied. Of course, one does not

have to go to such extremes. For k = 2 and r = 6 for example, the condition

will usually be satisfied.

5. VARIABILITY OF THE ESTIMATORS
5.1 The variance-covariance matrix of the Generalized Maximum Likelihood

estimators X and y is given by

-1
~ ~ A_ r =
i var (1) cov (A,y) E_g? TnL E_gi InL
{5.1.1) iy ne A3y
cov (A.v) var (y) E 82 TnL Ea2 InL
o andy -
e, s
From (2.1.5) and (2.1.6) we obtain
2 n o
,. = g (Lteet o,
1 (s.1.2) 37 ol X (“"1‘”2 1 (A+j-1)
2 n
: axd ¥ =1 T
n n
_a_:_]nu-__x_z s _Nlere T o o 2, ol
Bl oy R L Rt

5.2 Assuming the Ti non-random and the r; random, we obtain

2 i T
(5.2.1) E 3 InL=-53 F( i s A)
a i=] T1 +y
14




P m—— 7

where .
o A+j-1
(5.2.2) Flpi\) =z pisi2 (3 ) 5
3= :
2 n
(5.2.3) E 3" 4 .y 3 ¥, i
ardy el e
2 " X
) InL = - X I i
(5.2.4) E———g— -, i
Y YZ i) T'i + Y

A n n
(5.2.6) var M) =n/ xz F( - & T, I

i=1 Ti +y 1 ]T—i-*Y
A n n s n T n T+
(5.2.6) vair W)=+t 2 ed B ol L fag Pty -z Ay
i=1 i=1 Ti+y i=1 Tity i=1 Tity
Ti +y
A n 1 n ¥
(5.2.7) cov (A,y) =vy/[XZ F('1 3:A)-t: o
=1 T}'?V i=1 T{”?y

5.3 By assuming Ti random and ry non-random, we obtain

2
{(5.3.1} E 2?3 O
InL=_Z X
e 21 O+ j-'l)2 2
2 n
oAy i=1 \ g

15




£y ws. B ry
y L
ayz ¥ =1 A+ ry + 1
Substituting into (5.1.1), we get
P n r
(5.3.4) var (A\) = ¢ i / A;
¥=1 A+ ris +1
5.3.5 e 5 B 2 / b
(5.3.5)  var (v) =¥ gLy /o
AR n
(5.3.6) cov (A,y) =y & 1 1A,
i=1 A+ r,
where
n n
(5.3.7) a=1r £ % 5 o -z T ).
jZJ(A+j'])2 i=1 A+ r +1 i=] A+ri

The case of mixed controls can be handled similarly. In order to estimate
these variances and covariances, we substitute in the above formulas the

estimated values A and Yy 1instead of A\ and Yy

6. NUMERICAL CONSIDERATIONS

6.1 In writing up a computer program for the numerical solution of the
Generalized Maximum Likelihood Equations (2.1.7) and (2.1.8) the following
observations should be taken into account. The solution of these equations
is reduced to finding the zero of the function W defined by (3.2.1). The

shape of this function is given by figure 1.

16

TR ST R 0!




If the Newton-Raphson iterative method is employed, care should be exercised
in choosing the initial value. If the initial value is greater than the
minimum m of the function W, the Newton-Raphson process will diverge to
infinity (initial value M in Figure 1), whereas, if the initial value is

less than m but near m, the first iteration will produce a negative value

for y (initial value y, in Figure 1). Therefore, an initial value, at which
W is positive, should be chosen, if the Newton-Raphson method is to be used.
Because of the complexity of the derivation of W and since only nearest
integer accuracy is required for y, some slower converging interpolative

method may be more suitable.

<

iz el

—
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7. ALTERNATE ESTIMATORS (NEGATIVE BINOMIAL)

7.1 In the case of fixed time testing (i.e. Ti =T forall i -1, ..., n),
we saw that the distribution of the number of failures is the negative
binomial given by (1.2.3) and that the Maximum Likelihood estimators exist
if and only if

- .2
(7. 1.1) r\Sr

by the theorem 3.4.1. Since the solution of the Likelihood Equations
require numerical techniques, several alternate methods are often used.
Among them, the method of moments is the most popular. It yields

(7.1.2) . :
3 = F) (sf-F) o e (sf-?)

and it is highly efficient in a wide range of the parameters. Of course,
this method is usable if and only if (7.1.1) is satisfied.

Other simple methods are:

(A) Matching first moments and first frequencies (the zero class of the
sample with the expected number in the zero class). The resulting equations

are

(7.1.3) AT = vy, Be

n

\
(\(r #2))

where "o is the zero ciass of the sample. It is not hard to prove that this
method is usable if and only if

(7.1.4) r>1n (n/no).
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(B) Matching first moments and the ratio of the first two frequencies.
The resulting estimators are

~

(7.1.5) = nOF/(n]F-no) ) ys noT/(n]?-no).

Obviously this method is usable if and only if

(7.1.6) ro> No/n; *

The efficiency of these two methods has been investigated by Katti and
Gurland [5]. They found that there are ranges of the parameters, where
these methods are superior to the method of moments.

7.2 Another estimation investigated by Katti and Gurland [5] is the minimum
chi-squared method. It is a highly efficient and rather complicated method
for which numerical techniques are required. We did not attempt to find

necessary or sufficient conditions for the applicability of this method.

8. CONCLUSIONS AND RECOMMENDATIONS

In this report we presented a method for estimating the shape and scale
parameters of an inverted gamma prior distribution of the mean-time-to-
failure for equipment having exponential time-to-failure distribution. Al1l
sorts of existing failure data on the equipment in question are usable
provided a certain sufficient condition is satisfied. Further, the method
can be used to update the prior when new failure data become available.

This periodic updating will give rise to a solid prior which can confidently
be used in Reliability Demonstration.

It is recommended that a computer program be written to solve the

Generalized Likelihood Equations that define these estimators and to compute

19
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their variance-covariance matrix. To this end, the recommendations put

forward in Section 6 should be taken into account. The program can then be

used for the periodic updating of the prior distribution.

Examples of the application of the theory developed in this report are
presented in the Appendix.
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APPENDIX

In this appendix we present some examples of failure data, for which the 4

f theory developed in this report is applied.

EXAMPLE 1. Three pieces of the equipment AN/ASK-6 were tested with the

following results (time measured in hours):

Py ® 4, T] = 1961; By = 2, T, = 1814; o = 1, T, = 1890

2 3

thus v = 7/3, T = 5665/3 and the right hand side of (3.3.1) is 1.44271,
whereas the left hand side is 2.3333. Therefore, the condition (C) is not
satisfied.

EXAMPLE 2. Equipment: AN/ASN-108, n=3, r = 3 T1 = 1522; r, = 0,

T2 = Y125 ry = 5 Ty =997

3
It is easily verified that the condition (3.3.1) is satisfied

(1.333 < 1.699). Obviously ay = 2 a, = 03 = 1 and a; =0 for j»4,
and the generalized maximum likelihood equations (2.1.7) and (2.1 & be ome

(A1) Wiy) =2 +_1_+ _1__ -1n(1 +]1522) - In(1 + 1225) -
Ay Aly)+l aly)+e Y

Tn(1 +997) = o
Y :

where 1

(A2) Ay) = v 3 + 1 1522 + 1725 + 997
1522 + y 997 + y, 1622 + v 1725 + v 997 + 4

In order to find the estimators XA and Yy , we start with a moderate

initial value b 1000 and find W(1000) = .267688. Since N(yo) >0

we try y; = 2000 and find W(2000) = .039124. By linear extrapolation we
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try the next value:

\] -

9 W(y,) = 21717

2N T T

and find W(v,) .028774. Linear extrapolation produces

G il ¥
M(v,) - W(y))

Y3 Y, w(\z) = 2,647.04

with N(y3) = ,011590. Continuing this way, we find V4 2968

N(\A) = .005417 3250, N(\S) = .001931 < 3406, N(\6) =.00052%

'\6
= 3474, H(\a) 2 34.177.10'7

' Yg =

- 3464, W(y,) = 76.1807.1076, |

8
N(3475) <o . Actually vy = 3478 ) = 3.332.

In this example, we approximated 1y by staying on the left side of its
true value and by using linear extrapolation. Of course we could have started
with, say 2000, ¥y 4000, observe that N(\O) ~o and N(\]) <o and use
linear interpolation to find Y3 and continue this way. Of course in this
example, the number of the equipments is too small to rely on the estimators.
It is only presented for the purpose of demonstrating the numerical technique.
The variability of { and { can be computed from the formulas (5.2.5), (5.2.6)
and (5.2.7) if we assume that the Ti's are controlled and the ri's are random.
This assumption was not exactly met in this experiment, but it is more

realistic than the other way around. We find

standard deviation of { = 10.27
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A

standard deviation of vy = 10,903.56

covariance of (;.;) 109,985.92

correlation coefficient of (K,;) = ,9821
Thus, the variability of the estimators is extremely high, which is expected
in view of the low value of the number of equipments tested.

EXAMPLE 3. The following field failure data of a Ground Electronic

—
e et
INSES——————

Digital Processing System were collected:

r T r T

¥a 3 5068.6 7., 6 6435.2
2. 15 7486.2 18. 7 4624.5
3, 10 7587 .4 19. 14 5327.0
4, 5 4978.4 20. 11 7486.2
5. 7 6000.0 21. 3 6271.7
6. 5 5187.5 22. 9 6934.5
7 3 7808.5 23. 16 7114.8
8. 3 2246 .4 24. 9 7626.1
9. 7 4735.2 25. 7 4372.2
10. 13 7670.9 26. 10 5409.2
) A A 3 4320.2 27. 8 5617.6
V2. 3 35991 28. 4 2844 .8
13, 6 7865.8 29. 10 1976.3
14. 1 1941.5 30. 7 1987.3
15. 21 7273.6 31. 3 4952.5
16. 17 6891.8

The condition (3.3.1) is satisfied. The values of the a's are ay 31,

a, = 30, ag = 30, A, = 23, ag = 22, ag = 20, ay = 18, ag = 13, ag = 12,
o = 10, 4y = i Wy = 6, 43 = 6, A4 = Oy Ay = 4, N = % gy = 25
dla - (119 b 0.20 s (12] - ]

By starting with the values-B = 3000 and i T 5000, we obtain

o 3000 Ao 4.4313261 No

5000 X 7.3422691 W

41345261

Y

-.07330695

1A 1 1
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Ya = vy - W (= vg) fluy - W) = 4700
A, = 6.9017913 W, = -.0328700
Y3 =Y2'w2 (YZ ‘Y])/(NZ

Ay = 6.5514034 N3 -.0128367

Y4 - Y3 i wa (Y3 = Yz)/(“3 = wz) o 4300

N]) ~ 4456

Yq = 6.3297434 N4 = -.0040735

Since calculations on a pocket calculator are very tedious, we stop by just

extrapolating once more. Thus,

Y =Y4 = N4 (Y4 X Y3)/(w4 - Na) ~ 4222

A=Ay - W, (x4 - )\3)/(w4 - w3) ~ 6.227

The variability of these estimators is relatively low. For example, the

T ———

s.d. of A computed by means of the formula (5.2.5) is approximately 2.918.

e T S

Large test times and large number of equipments tested naturally decrease

the variance of the estimators.
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