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PREFACE

This report was prepared by Dr. Theodore S. Boils , of the State
Un i versity of New York at Oneonta, in residence at the Rome Ai r Development
Center (RADC), under the ‘1978 USA F-ASEE Suniner Facility Research Program .
The work presented Is a part of an RAOC program to develop Bayesian and
other statistical techniques based on the use of prior data for practical
application to Reliability Demonstration.
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‘1. INTRODUCTION

‘1.1 We consider equipment with exponentially distributed time- to -failure ,

i.e., the probability density function of the t ime-to-fai lure is given by

(1 .1.1) 
~
p (t n) ~~~ exp ( — t / t ~), t ~

where the parameter ~ Is the mean-time- to- failure (MTTF) of the equipment.

We assum e that 0 itse lf has a prior distr ibution of the inverted ganina type ,

I.e., the prior probability densit y f u n c t i o n  of t~ Is g iven by

(1. 1 .2) g (0 ; \,~~) exp (-~ /~
); 0 ~~; \ ,

where \ Is the shape pa rameter and ~ is the scale parameter of the prior

distribution .

1.2 Bayesian Rel iability Test Plans based on the prior (1 .1 ..’) have been

developed by Scha fer et a) [4] and Goel [1] under various combinations of

risks . The Imp lementation of these plans require the estimated values of

\ and ‘, in (1.1 .2). Since the true MITE 0 of an equipmen t is not ohservabl~

we cannot direct l y fit existing data to the inverted qanvia distribution

(1.1.2). To get around this difficu lty , we consider the probabi lity

function of the number of failures r in a fixed I, given o. Because

of the expon entiality assumption (1.1. 1). this probabilit y function is

Poisson with parameter T b , 1. e.

(1.2. 1) P1 (rfO ) 
_
~J~

_
1
_ (T,{~)

r exp (—I/o), r ~~, 
; I “

Thus , the unconditional probability function of the number of failures r

In a fixed time I is

(1 .2 .2) P1 (r) f ’
~
’ P1 (r~o) g (o ; \ . ~ ) 1o

1
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By using (1.1.2) and (1.2.1) and performi ng the integration , we obtain

(1.2.3) P (r) - ( 
~~~ ~ 

T )
r 

, r = 0, ‘1, 2 whichT T+\

is a negative binomial distribution w i th parameters \ and T/(T+~). If

e\t sting data on a type of equipment are of the form “number of failures in

a fixed comon time 1”, then the parameters \ and ~ can be estimated

by us i ng (1.2.3). Schafer et al [3] used the method of moments for this

purpose , whereas Goel and Joglekar [2] used the maximum likelihood method.

1.3 An extreme and rather hypothetical case results when we keep the

number of failures r fixed and observe the time I until the rth failure .

Since I is the sum of r exponential random variables , its probability

density is ganina with parameters r and 0-i .

(1.3. 1) f (T~o) = ~~ 1r 1  exp (-I/o), T~or (r- 1)!

Thus , the unconditional probability density function of I is

(1.3.2) 
~r 

(T) ,j’ ‘
~r 

( T j o )  g (o ; \ , ~
) do

A
= 

r 
- 

\~~I’- 1 ) (_1) ( T ) I ~ oI r T+Y T+~

This is just a scale transform of the Inverted beta distribution written

In this form to show its similarity wi th (1.2.3).

1.4 Existing failure data (especially field data) usually do not exhibit

any of the two features discussed above. Usually the test or operational

time varies from equipment to equipment of the same type. Thus , the data

will usually be of the form (r1 I.), 1=1 , ..., n, where r1 Is the number

of failures of the ith equipment in time T~. In a test situation , it Is

2



feasible to control either r1 or T~, but cost considerations reconinend the

control of T~ . Thus , it is desirabl e to est imate \ and Ii this more

genera l situation , which encompasses the situations discussed in sections

1.2 and 1.3 as special cases . Schafer et al [3] present a method of

est imat ion akin to the method c’f moments . This method however is not

app l icable if a sing le equipment had no failures at all .

1.5 In this report we present a general estimation method which we cal l

The Generalized Maximum Likelihood Method. A suf f ic ient  condit ion for the

existence of the estimators is g iven. In the case of fixed tim e data ,

It is shown that the condition is also necessary . The method has the

advantage of being usable to update the p,rior when new data become available ,

e.g., from reliability demonstration tests.

If the data used for the estimation of the prior distributio n are generated

by a p l a n n e d  t es t , the est imabi l i ty  condit ion d ic tates ways of choosing

(~~ntrolling) either the test times I~ or the number of failures r1 i n  such  a

way that the resulting Generalized Maximum Likel i hood Equations have a

solution , I.e. , the estimators ex is t .

In the case of fixed time data , if the estimabi lity condition is violated .

some alternate estimation methods are presented .

L _ _ _  
_ 

____ ____________________________ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  



2. THE GEN ER A L I Z E D  M A X I M U M  L I K E L IHOOD E S T I M A T I O N  METHOD

2 .1 We suppose that n identical equipments with exponential time-to-

failure distribution are tested in the following way : the ith equipment

is tested for T 1 hours , i = 1 , ..., n . Let r 1 denote the number of failures

of the ith equipment. We assume that the prior distribution of the MTTF e

is given by (1.1.2). Then , the unconditional probability function of r1 is

given by (1.2.3). i.e.,

(2 .1 .1) P1 (r .) (\+ r l ~ (_
~~~~~ 

T 1

1 r . / ~ 
T.÷) / ~~T+ ’~’ / H

The Genera l ized Likelihood Function of the sample (r i, Tj, i = 1 , ..., n

is defined to be

n r.

(2. 1.2) L = (
\+ r . _ i  

~ ~~~~~~~~ ( T1 1

i= i \ r~ / V ~~~ / \T 1 +~ /

Just as in the classical Maximum Likelihood Estim ation technique , the best

explanation of the data (r1, I.), = 1 , ..., n is provided by the values

( \ , ~) of (~, ‘,)  at which the function L attains its maximum , i f  L has a max-

imum. As usual , in order to maximize L , It i s enough to maximize Its natural

logarithm.

n \+r .-l n n 1.
(2 .1.3)  lnL ~ in 1 

+ \ ~: ln + 
~ r. ln 1

1=1 r1 1=1 T ÷ ~ i=l 1 T 1+~

In order to obtain the critical point of L , we have to so lve simultaneously

the Genera l ized Likelihood Eq~iat ions.

4
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(2.1.4) ~ m l  = o, H lnL = o

which in our case become

(2 .1.5)  ~~lnL = z ( !.— + • . .  + - 

~: ln(l + 
T . ‘)

i l  I,~ \ ,\ +r 1— i 1=1 \ ~~
n r~(2.1.6) ~~lnL = —2~__ y _J - y =

1=1 T1+1 i=l T~+~

If we set a. = E 1 the above equations are reduced to
~ r1 >j

(2.1.7) 
~ = in (~ +
p1 \+j -] 1=1 ~ /

[ n r. jn  T.
(2.1.8) .\ = 1

i=l T~+’~ i=1 T-j +~

Since \ is given explicitly in terms of ~ by (2.1.8), we can substitute in

(2.1.7) to obtain an equation in ~ alone . The resulting equation can be

solved numerically (when a solution exists) to obtain the estimator ‘~ and

then, by means of (2.1.8) obtain the value A

2.2 If we control the number of failures r~ and let T1 be random , the

distribution of T~ is given by (1.3.2). It is i ninediate that the new

Generalized Likel i hood Function will be the same as the one given by

(2.1.2) up to a factor

n
IT r./T .

1=1 1 1

which is indej,endent of the parameters \ and ~~~. Theref ~re, the resulting

5
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Generalize d Likelihood Equations will be exactly the same as the ones

given by (2.1. 7) and (2.1.8). Thus , the Generalized Maximum Likelihood

estimators w i ll have the same form, irrespectively of whether we control

the T 1 ’ s or the r1
1 s or ~~Lcom bination of them (e.g., control ling r~ for

= 1 , .. ., k and T~ for j = k + 1, ... , n).

3. A SUFFICIENT CONDITION FOR THE EXIST [NCE OF THE GENERALIZED MA XIM LiM

LIKELIHOOD ESTIMATORS

3.1 The system of equations (2 .1 .7) and (2.1.8) does not always have a

solution . Although we could produce examples of actual data for wh i ch the

Generalized Maximum Likelihood estimators do not exist , for simplicity ’ s

sake we resort to the following rather contrived

EXAMPLE 3.1 .1 Let n = 3, r~ = o, r2 = 1 , r3 2, T1 = T
2 

T = T.

Then the equati ons (2 .1 .7 )  and (2 .1.8) are reduced to

(3.1. 1)  2 + i __ = 3ln ( m + T
\ \4l

(3.1.2) \ = ‘~/T

whose simultane ous solut ion cal ls for the zero of the function

= 2 + ______ - 3ln (1 + 1 ) x > 0.

We c laim that actual l y ‘f (A)> o for all \>o . Indeed , l l m(X )=+co and lim ‘~( X ) o

and thus, it is enough to show that ~ is strictly decreasing. This is

so since the derivat ive of ~ is negative.

2 1 3 - \+2
~ ( \ )  = - — + _____ - - 2 2 < 

~~2 (x÷1 ) \ (\ + l  ) \ (x+l )

6
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3.2 We now give a sufficient condition for the solvability of the

Generalized Likel i hood Equ -~ ions (2.1.7) and (2.1.8). We use the ftliowing

notation :
1 n n 2 2

r = —_-_-L_ : r., s~
- = r - r

~ 1= 1 •
1 r ~ i=l i

2 1 n 2
T = — ~ I., S = — 12 — T

n i= l 1 1 n i=l i

Coy (r, T) = —
~~

--—- 
J 

r. T . - r I

We s hall p rove the follow i ng

THEOR EM 3.2 .1 If
2 2  2 2(C) 2 ~ coy (r, T) < i~ (S - ~

) + ~~ S

r T

then the Generalized Likelihood Equation s (2.1.7) and (2.1.8) have a solution .
PROOF. It suffices to show that the function defined by

(3.2.1) W(y) = _ _ _ _ _ _ _ _  - ~ In (1 + ), 
~ 0

j~ l A(y)+j—l i l  y

where

r• /n 1
1 

/ ~- 1

i= i l1+~
y 
/ 

i=l Tj~Y

has a zero. We observe that ci14o, because , otherwise , all = o which

implies t h a t  a ll r~ = 0 and the condition (C) violated (it is reduced to

o < o). Since X(y) tends to zero when ~, tends to zero and s ince  a1~ o we

get lim W (y) = +

7
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Thus , it suff ices to show that W(y) is negative for large y. To this end
we observe that

(3.2.2) A(y) = y[ E r1 - E r~T1y~~+ o(~~~)]/[~ T1 - Z T2y~~+ o(y~~)]i=l i=1 1=1 i=l 1

= _.L- ~ + L.~L..~~LCOV (r ,T) + o (l) as y + + ~

Substitu ting (3.2.2) into (3.2 .1) we obtain

(3.3 3)

w (y)  = ~ a ./ [  ~ + ~ S~ Tcov (r, T) 
+ j 1+o(1)] - Z in (1+ IL)j>l Jj  T 

~~2 i=l

2 _
— r s  - I c o v (r , T) — -1= ~~~ 

_ ,~-l ~ ~ 
-[ 1 __ 

~ a~+ ~~~~~~~~~ ( j- l)a .]y +r T  j>1 r j>l

- l  1 n 2-2 -2
~ O( y ) J  - z T~~ + 1 ~ T~-~ + ~ (y )

* 

i= l 1 2 i=l

2 2
Since = nr and ~ (j—l) L . = 1 (S + ~~~~~_ 

~ ),j~l 3 j >l ‘~ 2 r

(3.3.3) i s reduced tc
2 2 2 2 2 -2W (

~
. )  - _.!!~ C - 2 ~ coy (r, 1) + 

~~~ ~ r 
- ~F ST ) y + 0(y

2r

as y -
~ +

Because of the condition (C) , W(y ) < a for larg e Aand the theoren isproved .
3.3 We observe tha t in case T~ = 1 for all i=l , ..., n, the condition (C )
is reduced to (C 1) ~

8
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whic h is exactly the condition for the appl icabi l i ty of the method of

moments to the estimation of the parameters of a negative binomial dist r i -

bution . In the next section we wi ll show tha t the condition (C 1 ) is a lso

necessary for Maxim~*n Likelihood estimabi lity in the case of the negative

binomial distr ibution .

If , on the other hand , r~ = r for a l l  i = 1 , . . ., n , then the conditi on (C)

Is reduced to

(C 2) i ~/7 ST
which is exactl y the condition for the applicabili ty of the method of

moments to the estimation of the parameters of the  inverted beta distri-

bution (1.3.2). Of course , i f the method of moments is applied to this

situat ion , the va l ue of \ will always he greater than 2, because this

distribution does not have a second moment if \ .~- 2.

Another remark about the condition (C) is i n  order . Since the values of T 1
are usually large , both sides of the inequality become rat her la r ge . It

i s , the re fore, convenient to write condition (C) in the follow inq equivalent

form (3 .3 . 1)

—

~~~ 
~: (r 1 - Y~

3.4 tIe now p rove the fol lowing

THEOREM 3.4 .1 The Maximum Like lihood estimators of the parameters of the

negative binomial di \tr ibution (1.:’.3) ex is t  i f an d onl y If ~ <

The su fficient part ~~t th is theorem is contained in the Theorem 3.2. 1.

For the necess t -~ p ar t  we need the following l eiiiiia :

9
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LEMMA 3.4. 2 For all positive lnteqt ’rs n and a ll positive \ we have

(3.4 . 1)  n
L. -~ 

Ii

j-l (~~j-l) ’

The Inequali ty is str ict  if ii ‘ 1.

The proo ~ of the I en~na i s i oduc t i vt ’ . 1 he I nt’qua Ii tv Is obvious I v true for

n 1 . As sum i n~i i t true for n , we ha Ii ‘ro Vt’ it for n 1 . I ndt’t’d

nf l 0
1 - 1 

- - 
1 ii +

j  1 (~ fj-1)’ 1 ( \ +  I - I) ’  ( \ + n )  \ ( \ f n - 1 )

I 
- , n 4 1 

~
- n - . n+ 1

\ ( \ 4 0)  \ (\ t h - 1)  (~~4 n ) ’ ~

Tb- I s comp letes the proo t ot the l emma

PROOF OF flIt TIWORIM: We need only ~~~~ the nect’ss i ty  of the rood it ion .

‘-~i nce 1 I for a l l  I = 1 , . • ., n , th equations (.‘.l .~~
) and ( i ’ . 1 . t I ) are

reduced to
0

( 3 .4 .2 )  y ( - + + 1 - nb ( 1 + T
jsl \fr i —l

(3.4 .3)  T /~ rf \ .

ObV IOUSly, it I s enough to prove that. the funct ion ‘i def I ned 1w

0 I

‘
~ 

( \ )  ~: ( ~ -4 . . . - ‘ ) — nb (1 + r ) , \
i~ l \ + r — I

has 00 ,‘eros i t r , If a l l r ~it•e :t’ro , then the funt t ion q
r

is Ident ic ally .ero , the log— i ikel i hood twirL Ion (2 .1. 3 ) is reduced to

I U 
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n u n  i__
T+y

and it is obvious tha t this function has no maximum in the range of the

parameters. Thus , we may assume that at least one r1 is different than

zero. Then

J i m  ‘P(A )  = + and J im ‘P( u ) = o.
A + o +

Hence , in order to s how that the function ~Y has no zeros , it suff ices to

show that its derivative is nonposit ive. By using the inequality (3 .4 .1)

we get 

—
(3.4.4) ~ (u )  = - C —~-—--- + 

~~~~~ 
+ - 

1 + nr
i l  A 2 (A+r..l)2 A ( X + )

n —
- r 1 

+ 
nr— i=l A (A+r1-l )

We now use the convexity of the function

w (x)  = l / ( x—l  + x ) ,  x 1; A o

t with the rj ’ s in the numerator of the sumand of the right hand side of

the inequality (3. 4 .4) used as weights and the r1 ’ s in the denominator

as points In the domain of w. The so-called Jensen ’s inequality yields

I
2

rj 1r1 
— = 

_ _ _ _ _ _ _ _ _

1=1 A+r1-l 
— 

A-i + Ir~~ /1r1 + S~ + -
Therefore, going back to (3.4.4) we get

— 2  —
w~~ 1~~ - - 1 n r  + nr =I’ / ~. — ., 

~~~~~~~~~~~~~ --A A r + SC + r — r A (A+r )
r

11
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~~~~~~~~ --~~~~~~~~~~~~~~~ -- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

— -  2n r ( r - S )
= . . j ~~ ~~~~~~~~~~~~ 

\~ ‘o—

s i nce

~ s
2 

~2 
+ ~ ~: (j-l) ~~~~.— r r n j~l

This completes the p roof of the theorem .

12
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4. CONTROLLING FOR ESTIMABILITY

4.1 If we l e t n = 2 m , T1 s T f o r i l, ... , m afld Tj klfOr i m + l ,

. .. ,  2m, k > 1, then

(4.1.1) .~ = k+1 1, S2 4k-1 \2 T
2
, coy (r, 1) = 

k-i 
~ r~— ~m 

r12 T~~~ 2 I  2 L~ 
i=m J

By substituting (4.1 .1) Into (C ) we obtain

2m 2 3k÷1 2
(4.1.2) 2 ~ ~ r < k+l (S - 

~
) + ______

m 1 m  k—i r k+i

a condition Independent of 1. ThIs kind of test designing enhances the

possibility of having S~ > ~ and the condit ion (C) satisfied . In particular ,

if k = 2, the condition (4.1.2) is reduced to

• —~~~~~ 24.1.3 — r 
i~ m 

r1 < 3 (S~ -F) +— ~~i .

4.2 In the more expensive case of controlling the number of failures and

letting the test time be random , we can always assure < S~ . We cons id er

the following design: n = 2m, r1 = r for I = 1, ...,  m and r 1 = kr for

1 m + 1 , ..., 2m, k > i .  Then
2m

(4.2.1) ~ = k+1 r, S2 = (..JS..L)
2r2

~ coy (r, 1) = !S~~!_ r~~ — 
~=m 

T1 _T ]

and the condition (C) Is reduced to

(4 .2. 2) ~. ~
. m 

T
~ 

< 
2 r~.L r + 2 k~ 1 + ~~~ s2 

.

1=m Lk÷l k_1J k+1 
T

13



By choosing k = 2 and r 12, or k — 3 and r 7, or k = 4 and r = 5, or
k = 5 and r = 4, this condition is always satisfied. Of course , one does not
have to go to such extremes . For k = 2 and r 6 for example , the condition
wi ll u suall y be satisfied .

5. VARIABILITY OF THE ESTIMATORS

5.1 The variance-covariance matrix of the Generalized Maximum Likel ihood
estimators x and y Is given by 

-1
var (A) coy (A ,1TJ E a2 m l  E a2 m l  i(5.1 .1) 1 = - 

~ 
au~ axay

t coy (i, )  var (;)J 
m l  £32 mnL

,j
From (2.1.5) and (2.1.6) we obtain

2 n
(5.1.2) -~~1nL = - 

~~~~ (A+r j~ 1) 2
~ 

- 

j>1

n T
— lnL = 1 E ‘Iaxa1 ~ 1=1

n n
lnL = - A E 11(2y+ T~) + ~ r1(5.1.4) aT ~~~~ (T~ .f .y) 2 i=l (T~ ~~)

2

5.2 Assuming the T.~ non-random and the r1 random, we obtain

n
(5.2.1) E ~2 lnL = - 

~~ ~ 
T1 ; A)

T1 + y

14



where
~ X+j-l

(5.2.2) F(p;A ) E pi/j~ ( j  )
j= l

(5.2.3) E a lnL = 1 ~ T1
~ 1=1 

+ y

(5 .2.4)  E a2 lnL = - 

2 -ly 1-

By substituting (5.2.1), (5.2.3)  and (5.2. 4) in (5.1.1) we get

A T(5.2.5) var (A) A/ [A ~ F ( I ;A )  — 1 T 1 ];
1=1 T1 +y

T T~ Ti “ T
(5.2.6) var (-y ) = y E F ( i ~X)/ ~ —i—— [A E F ( ;A)  — z ~~~ ];

i=l T
~ 

+y / i 1  T~+y 1 1  T~+y i=l I
~

4 y

A A fl n .,.
(5.2.7) coy (A ,y) = y/[A 1 F(’i ;X) - E ‘ I ] .

1-1 T~ +y 1=1 T1 +y

5.3 By assuming T.~ random and r~ non-random , we obtain

(5.3.1) E ~2 ~~~~
.

___ 
lnL _ Z 

~ 2j>1 (x+ j-1) ‘

( 5 . 3 . 2 )  E 2 
m l  = 

1 ~ r1axay ~ 1=1 A +r1

15
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( 5 . 3 . 3 )  
2 k nE ~ m l  = - —2 

~~

Substituting into (5.1 .1), we get

n
(5.3.4) var ( k )  = k E r1 / ~

\ + r., +1

(5.3.5 )  var N) 
~~ j~ l ( A ~ j -1) 2 / A;

fl
( 5 . 3 . 6 )  coy (\ ,y )  = r1 / A

1=1 A + r 1

where

(5.3.7) ~\=  ~ 

r. 
— ~ 

r. )2

j >l (A +j — l )2 1= 1 A + r1 +1 1=1 A+r 1

The case of mixed contro ls can be handled similarl y. In order to estimate

these variances and covariances , we substitute in the above formulas the

estimated values A and ~ instead of A and ‘y .

6. NUMERICAL CONSIDERATIONS

6. 1 In writ ing up a computer program for the numerical solution of the

Genera lized Maximum Likel ihood Equations (2.1 .7) and (2.1.8) the fol lowing

observations should be taken into account. The solution of these equations

is reduced to finding the zero of the function W defined by (3.2.1). The

shape of this function is given by figure 1.
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If the Newton-Raphson iterative method is employed , care should be exercised

in choosing the initial value. If the initial va lue  is greater than the

minimum m of the function W , the Newton—Raphso n process will diverge to

Infinity (initial value y1 in Figure 1), whereas , i f  the i n i t ia l  v a lue  is

less than m but near m , the first i teration will produce a negative value

for y (Initial value y~ in Figure 1). Therefore , an i n i t ial va lue , at which

W is positive , should be chosen , if the Newton—Raphson method is to be use d .

Because of the compl exity of the derivati on of W and since onl y nearest

integer accuracy is required for y, some slower converg ing interpolative

method may be more suitable.

L



7. ALTERNAT E ESTIMATORS (NEGATIVE BINOMIAL )

7.1 In the case of fixed time testing (I.e. T1 T for all i - 1 , . . .,  n),

we saw that the distribution of the number of failures is the negative

binomial given by (1 .2.3) and tha t the Max imum Likelihood estimators exist

I f and onl y i f

(7 .1.1)

by the theorem 3. 4 .1 . SInce the solution of the Likelihood Equations

requ i re numerical techni ques , several alternate methods are often used .

Amon g them , the method of moments is the most popular. It yields

(7.1.2) ? 2 2= r / 
~~~~~ ~ 

= r I / (Sr_r)

and  i t  i s  hi gh l y eff icient in a wide range of the parameters . Of course ,

this method is usabl e If and only if (7 .1.1) is satisfied .

Other simple methods are :

(A) Matching first moments and first frequencies (the zero c lass of the

samp le with the expected number in the zero class). The resulting equations

are

(7.1.3) \T = r1- , fl 0 = (\/(r +\))

where n0 is the zero c ass of the sample. It Is not hard to prove that this

method Is usable if and only if

(7.1 .4) ~~ ln (n /no ) .

18
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(B) Matching fi rst moments and the ratio of the first two frequencies .

The result ing estimators are

(7.1.5) A = n~~/(n1~ -n0) , y= n0T/(n1~ -n0).

Obv iousl y this method is usable if and onl y if

(7.1.6) >

The efficiency of these two methods has been investi gated by Katti and

Gurlan d [5). They found that there are ranges of the parameters , where

these methods are superior to the method of moments .

7.2 Another estimation investigat ed by Kat ti and Gurland [5) is the minimum

chi-squared method . It is a highl y eff ic i en t and rather  com pl i c a t e d me thod

for which numerical techniques are required . We d id not attempt to find

necessary or sufficient conditions for the app l icabi l i ty of th i s metho d .

8. CONCLUSIONS AND RECOMMENDATIONS

In this report we presented a met hod for estimating the shape and scale

parameters of an inverted gamma prior distribution of the mean -time-to-

failure for equipment having exponential time-to-failure distribution. All

sorts of existing failure data on the equipment in question are usable

provided a certain sufficient condition is satisfied . Further , the method

can be use d to u pdate the prior when new failure data become available.

This periodic updating will give rise to a solid prior which can confidentl y

be used in Reliability Demonstration.

It is recommended that a computer program be written to solve the

Genera lized Likel ihood Equations that define these estimators and to compute

19 
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their v a r ianc e_ cov a r lanc e matr ix . To this end , the recommendations put
forwa rd In Section 6 should be taken into account . The program can then be
used for the periodic u pdatin g of the prior distribu tion .
Exampl es of the appl icati on of the theory developed in this report are 

-presented in the App endix.

.‘
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APPENDIX

In this appendix we present some examples of failure data , for which the

theory developed in this report is appl i ed .

EXAMPLE 1. Three pieces of the equipment AN/ASK-6 were tested with the

following results (time measured in hours):

r1 = 4, 11 = 1 961 ; r2 = 2, 12 
= 1814; r3 = 1 , T~ = 1890

t h u s  ~ = 7/3 , 1 = 5665/3 and t he r i g ht hand  side of (3.3.1) is 1 .4427 1 ,

whereas the left hand side is 2.3333. Therefore , the condition (C) is not
I

satisfi ed .

EX AMPLE 2. Equipment: AN/ASN— l08 , n=3 , r1 = 3 , 11 = 1522; r2 0,

T2 = 1725; r3 = 1 , T3 = 997

It is easil y verif ied that the con d i t ion (3 .3 . 1)  is satis~’ed

(1.333 < 1.699). Obviously a.1 = 2, c~2 = a3 = 1 and = o for j 4 .

and the generalized maximum likel ihood equations (2.1 . 7) and (2. 1 .- )  b~~~~~..
(Al ) W( y ) = 2 + 1 + 1 — ln(l + 1522) - ln ( l  + ~~~~~~~~ 

-

A (y ) A(~-)+1 ~fy)+2 -
,

ln (l + 997) = o
I

where

(A2) x (y) = y ( 3 + 1 \ /(‘l522 + 1725 + 99 ’

~~
l52 2 + y 997 + ~J/ 1j522 + y l725 T~~ ~~~~ • ‘V

In order to find the estimators A and y , we start with a moderate

initial value y = 1 000 and fi nd W(l000) = .267688. SInce W(y0) 
‘~o

we try 
~l = 2000 and find W(2000) = .039124 . By linear extra polation we
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try the next value:

) — ‘ V

‘V 
1 ~ 

W ( ’ V
1

) 2,171 .17

and find W ( ’~.,) = .028774. Linear ex t rapo la t i on  produces

— ‘I - I

‘V ‘ V - ~ - - - - - -— - ‘ - • -  
w (~ ) .‘ ,647.04

~ 
W(~~) — W(\ 1 )

with W( ’V3) = .011590. Continuing th is way, we find

w (~4 ) = .005417 , 3250, w ( -~5 ) .001931 . • 3406 , W (’V 6) •.0005~
’5

= 3464 , w( ~ 7 ) 76 .1807 .10 6 . ~ 3474 . w (~8 ) - .~~4 .l i 7 .10~~~~~

W(3475) •~~ . Ac tua l l y  
~, 

= 3474 \ = 3. 3.l. .

In th i s examp le , we approxi ma t ’d ‘V by stay in g on the left side ot it s

true value and by using 1 m eat’ extrapolation. Of cou rst’ we could have start ed

w i th , say = 2000 , ‘V i 
— 4000 , observe that W (~ 0 ) ~~~‘ and W(’V 1 ) •~~~- and use

linear interpolation to find and continue thi s way. Of course in th is

exa mp i e , the number of the equ ipments Is too smal 1 to rely on the es t m a t  ~~i’ s

I t is onl y presented for the purpose of demonstrating the numeric a l  techni q ue.

The var iab i l i t y  of \ and ‘~ can be computed from the formula s (5.~’.5), (5 ..’.t~)

and (5.2.7) If we assume that the T1 ’ s are controlled and the r1 s are random .

Th i s a ssum p t ion  was not exact l y me t In  t hi s ex per im en t , hut it Is more

real istic than the other way around . We find

standard deviat ion of \ 10.27

‘-3
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standard deviation of y = 10 ,903 .56

covariance of ( A ,y) = 109 ,985.92

correlation coefficient of (A ,y) = .9821

Thus , the var iabi l i ty of the est imators  Is extremel y high , which is expected

in view of the low value of the number of equi pments tested .

EX AMPLE 3. The fol lowing fiel d failure data of a Ground El ectronic

Di gital Processing System were col l ected :

r I r T

1. 3 5068.6 17 . 6 6435.2
2. 15 7486.2 18. 7 4624.5
3. 10 7587.4 19. 14 5327 .0
4. 5 4978.4 20. 11 7486.2
5. 7 6000.0 21. 3 6271 .7
6. 5 5187 .5 22. 9 6934.5
7. 3 7808.5 23 . 16 7114 .8
8. 3 2246.4 24. 9 7626 .1
9. 7 4735.2 25. 7 4372.2
10. 13 7670.9 26. 10 5409.2
11. 3 4320.2 27. 8 5617.6
12. 3 3599.1 28. 4 2844.8
13. 6 7865.8 29. 10 1 976.3
14. 1 194 1.5 30. 7 1987.3
15. 21 7273.6 31. 3 4952.5
16. 17 6891.8

The cond i t i on (3.3.1) is satisfied . The values of the a’s are a1 = 31 ,

a2 - 3 0 ,~ ’t 3 - 3 0 , a4 — 2 3 , a5 — 2 2 , a6 — 2 0 , a7 — 1 8 , cz8 — 1 3 , a9 — 1 2 ,

a18 = 
~19 = “20 = “21 =

By starting wi th the values ’
~, 

= 3000 and = 5000 , we obtain

3000 A~ = 4 . 4313261 W0 = .41345261

= 5000 ,

~~ 

= 7.3422691 = - .07330695
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= - w 1 (y1 - ‘~0 )/ (w 1 - W0 ) 4700

A 2 = 6.901791 3 W2 = - .0328700

= 
~2 

- W 2 (y 2 - 

~l)/ 
(W 2 - w 1 ) 44 56

= 6.55 14034 W 3 = - .0128367

= ~
(3 - W 3 (y 3 - ~2 ) / (w 3 - W 2 ) 4300

= 6.3297434 W4 = - .0040735

Since calculations on a pocket calculator are very tedious , we stop by just

extrapolating once mo re . Thus ,

= 

~4 - W
4 

(
~~ 

- 
~3)/ (w 4 - w 3 ) 4222

X = \ 4 - W 4 (A 4 - \ 3 ) / (w 4 - W 3 ) 6.227

The variabi l i ty of these estimators is relatively low . For example , the

s.d. of A computed by means of the formula (5 .2 .5 )  is approximately 2.918.

Large test times and large number of equipments tested naturall y decrease

the variance of the estimators .
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