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ABSTRACT

GGG ey

N

This paper presents an algorithm for computing the optimal

target path for two aircraft traversing a target area from

e

different directions. There are constraints on the maneuver-
ability of each aircraft which prohibit it from attacking every
target. The algorithm chooses a subset of targets whose de-
struction will yield maximum value to the attacking force.

] The basis of the algorithm is the branch and bound method,

with upper bounds computed by dynamic programming. Several

variations are considered, such as payload limit, an increased

number of aircraft from each direction, and a three-directional

attack. An example problem is solved using the basic model.

A Fortran IV computer program is included. Computation

\
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time versus problem characteristics is discussed. I
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I. INTRODUCTION

Optimal assignment of targets to aircraft on a strike
mission can greatly increase the effectiveness of an air attack
against ground installations. The purpose of this paper is to
present an algorithm which will, given the location and rela-
tive military/industrial worth of key enemy positions, select
a sequenced subset of targets whose destruction will yield
maximum value to the attacking force. It assumes that the
decision maker has complete knowledge of the targets and their
value. A stochastic extension can easily be incorporated
when considering hardened targets. This is done by multiply-
ing the probability of killing a particular target by its value.

The initial course of an aircraft approaching a target
area is denoted by ¢. Due to anti-air defenses, there is a
limit placed on the maximum number of degrees which an aircraft
may deviate from its initial course. This angular deviation is
denoted by 8. 1Its effect is to restrict the aircraft's movement
at any point to a cone whose vertex angle, 26, is bisected by
the aircraft's initial course, ¢. Thus at any point (x,y) in
the target area, the aircraft's course options are between
¢-6 and ¢+€. This creates an ordering among the targets which
dictates the sequence in which they must be considered. The

allowable deviation is pictured in Figure 1.
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Figure 1. Cone of Allowable Course Deviations

Because of the course constraint, there are only a limited
number of paths through the target area which are feasible.
The task of the decision maker is to choose that set of tar-
gets which yields the optimal combined value.

References (1] and [2] present a method for determining
the optimal set of targets for one aircraft traversing an area
containing MN targets. The problem is formulated as an MN+l
stage dynamic programming problem [Ref. 3]. The targets are
numbered in decreasing order from an imaginary line drawn tan-
gent to the boundary at which the aircraft enters the target area.
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The stages are represented by straight lines drawn through

the targets, parallel to the boundary tanéent line. Stage n
corresponds to the parallel line drawn through target n.

The starting point of the aircraft, outside the target area,
is stage MN+l. It is located so that any target is accessible
from stage MN+1l. The stage diagram is depicted in Figure 2.
Should two targets be equidistant from the boundary tangent
line, either one may be assigned thé next sequential number,

and the problem reduces to MN stages.

STAGE ¥
1

Figure 2. The Stage Diagram for One Aircraft

Entering from below the Target Area.
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It is important to realize that were the aircraft to enter
the target area, say, from the right, the'stage diagram would

appear as in Figure 3.

STAGE

3

Figure 3. The Stage Diagram for One Aircraft Entering Target ‘
Area from the Right. |




The state variable X, denotes the lateral position of the
aircraft at stage n. D, is the decision as to the heading of
the aircraft as it moves from stage n to stage n-1. Dn is
restricted to lie in the set of feasible headings sn, from

$-8 to ¢+6. The state variable Xp is then a function of Ko+l
and Dn+l' This function is referred to as the stage trans-
formation t.

The return function for stage n is denoted by T, Letting

Pn be the lateral position of target n, and Vn be its value,

rn(xn) = v if X ™ By

0 otherwise

The problem is then written as

MN
Maximize z £, (% )
Rl n n
Subject to: xn=t(xn+l’Dn+l) n=l,...,MN
D. &S n=2,...,MN+1

n n

An efficient algorithm for solving this problem is dis-
cussed in Section VI, but the problem can also be easily solved

graphically. To do so, the course deviation angle must be

viewed from the perspective of the stage diagram. Figure 4

shows whether target n is feasible for various values of Xog1®

10
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% # *n+1

STAGE n+1l n+1l
n+1l not feasible feasible not feasible

Figure 4. Cone of Feasibility

Using Figure 2 as an example, the maximum return possible
for stages (n-1l) to 1 is recorded on each stage line n,

n=1, ..., MN+1, for every possible value of X, - Assuming

the value of each target is one, Figure 5 gives the solution
for one aircraft entering from kelow the target area.

Tracing back from stage MN+l, the optimal set of targets
i8 8, 7, 6, 4, 3, 2, for a value of six.

Dynamic programming can extend this problem to M aircraft

by increasing the number of state variables to M [Refs. 1, 2,
and 3], as long as all M aircraft are attacking from the same
direction. But when the aircraft enter the target area from

different directions, a pure dynamic programming solution is

no longer possible, since the association between the target

and the stage is no longer valid. A target in stage three

11




for one aircraft may be in stage ten for another, and the re-

cursive equations have no meaning.

Y
STAGE
1 0 1
1 0 n it
1

Figure 5. Graphical Solution to the One-Aircraft Problem.
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This paper presents a solution to the problem of two air-
craft attacking a target area from different directions. A
model is formulated, and the algorithm developed. An example
problem is included. Also included is a computer program for
implementing the algorithm and a discussion of its effective-
ness. Because the terminology becomes quite involved, a

glossary of terms is provided in Appendix A.

13
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II. PROBLEM FORMULATION

In formulating this problem, it is assumed that if an

aircraft attacks a particular target, that target is destroyed.
In other words, there are no misses. As was stated in Section

I, this does not preclude a stochastic approach for hardened

targets where each has a probability of being destroyed.

For ease of notation, the two aircraft are denoted air-
craft A and aircraft B.

The targets are numbered as in Section I, but now each
target has two numbers, one with respect to aircraft A, and one
with respect to aircraft B. They are demoted Ai and Bj , respec-
tively, 1 = 1, «co; MN, 0 = 1, cs., MN. It is critical to real=-
ize that if any target Ay has the same coordinates as any tar-
get Bj' then that Ay is the identical target Bj‘ In fact, for
every Ai there will be a Bj identical to it. Figures 2 and 3,
which are identical target areas, should clarify this point.

The value of Ai will be denoted by V[Ai]' and the value of
Bj by V[Bj}.

A feasible set of targets for a single aircraft is cne in
which the course required to go to each successive target is
within the allowable course deviation cone described in Sec-
tion I. PA(I) denotes one of the feasible sets of targets
for aircraft A. 1It is convenient to think of PA(I) as a
path of targets which aircraft A will attack. Any PA(I) com-

pletely disregards aircraft B in that it is computed as if only

14




one aircraft were attacking. Similarly, PB(J) denotes one
of the feasible sets of targets for aircraft B.

The value of a set of targets, or a path, is the summa-
tion of the individual target values comprising that set. The
values of PA(I) and PB(J) are denoted by V[PA(I)] and
"[PB(J)], respectively.

In order for the solution of a two-aircraft problem to be
feasible, the sets of targets for éircraft A and aircraft B
must be mutually exclusive, that is, they must have no targets
in common. This is so because one aircraft is sufficient to
destroy the target. No additional return would be realized
by the other aircraft attacking the same target. If this
feasibility constraint were not required for optimality, aircraft
A (or aircraft B) might forego the opportunity to attack other
targets in order to attack the target that both aircraft have
in common.

The optimal solution is achieved when PA(I) and PB(J) are
chosen so as to

Maximize VIPA(I)] + VI[PB(J)]

Subject to: PA(I) N PB(J) = 4.

15




ITII. THE ALGORITHM

The branch and bound method forms the basis of the solution

algorithm for the two-aircraft problem. It is discussed in
theory in Refs. 4, 5, 6, and 7. Only a small fraction of the ﬂ
possible solutions to the problem is actually enumerated. The

! remaining solutions are eliminated from consideration through

the application of bounds that establish that such solutions

cannot be optimal.

The algorithm begins by considering all possible combina-
tions of paths for both aircraft. It then breaks this set of
all possible combinations into smaller and smaller subsets, and
calculates for each an upper bound on the value of the best
paths contained therein. The bounds determine the partitioning
of the subsets and eventually identify an optimal path for both
aircraft. The branch and bound method represents the subsets
as nodes of a tree and the partitioning of the subsets as a
branching of the tree.

Node one consists of all possible combinations of paths for
both aircraft. Using the single aircraft dynamic programming
(D.P.) method of Section I, the optimal path for aircraft A
is computed for the direction from which A enters the target
area. This path is denoted by PA(l). By the same method, the
optimal path for aircraft B is computed for the direction from
which B enters. This resultant path is denoted by PB(l). It
is important to realize that both PA(l) and PB(l) are computed

16
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as single aircraft optimizations, and that all MN targets are
possible elements of PB(l), even those in PA(l).

If PA(l) and PE(l) have no targets in common, then the
paths form the optimal solution to the two-aircraft problem, the
value of which is V[PA(l)] + V[PB(l)], and the algorithm stops.
However, if there are targets in common, then as was mentioned
in Section II, the solution is not feasible. The summation
V[PA(l)] + V[PB(l)] represents inétead an upper bound, denoted
by uB(l), for the optimal solution. The summation of the
values of the points of intersection of PA(l) and PB(l) is de-
noted by VINT(l). The target in the intersection which has
the highest value is denoted by XAB(l). This target could be
written in terms of aircraft A or aircraft B. When the dis=~
tinction is necessary, XAB(l)'will be written as either XAB(l)

A

or XAB(l) for aircraft A and aircraft B, respectively. Geo-

Bl

. ! o
graphically, however, XAB(l), XAB(l) and XAB(l)Bare identical.

A’
The goal is to find optimal paths for aircraft A and B

which have no targets in common. The nature of the D.P. solution

for a single aircraft path is such that it seeks out those fea-

sible targets with the highest value. In node one, both A and

B sought XAB(I). If the set of path combinations in node one

was restricted so that aircraft A had to take XAB(l)A and air-

craft B could not take XAB(l)B, the same target, then that

point of intersection would be eliminated. But perhaps the

optimal solution requires B, not A, to take X It could

even require that neither path include Xpg(l) . Therefore,
to include all possibilities, the set of node one is broken

17




into two subsets, one which requires that the path of aircraft
A exclude XAB(l). giving aircraft B the oétion of taking it

or not, depending on the single aircraft D.P. solution for B.
The other subset requires that the path of aircraft B exclude
XAB(l)' giving aircraft A the option. Thus node one branches
to form nodes two and three.

The restrictions placed on eagh aircraft at node I are de-
noted by R(I). If, for example, R(I) = A, Bj’ By, the path
of aircraft A would be required to exclude target Ai, and the
path of aircraft B would be required to exclude targets Bj
and Bk‘

The branching, with restrictions, is illustrated in

Figure 6.

R(2)=Xpg (1) 5 R(3)=Xpp (1) g

Figure 6. The Start of a Tree

Now consider node two with the restriction vector R(2)

containing the single element XAB(I)A. Again using the

18




single aircraft D.P. method, only this time with the restric-
tion that the path of aircraft A not include target XAB(l)A,
the optimal path fdr aircraft A is computed. The restriction
can be incorporated into the solution techniques of Section I
by temporarily assigning a large negative value to XAB(l),
thereby making it highly unattractive as an element of the
optimal path. Denote the resultant path PA(2), and return
the original value to xAB(l)‘ As was noted, restricting
PA(2) to exclude XAB(I)A places no restrictions on aircraft
B. Therefore, PB(2) will be identical to PB(l). Just as
with node one, UB(2), VINT(2), and XAB(Z) can be computed.
Node three is considered next, with restriction vector
R(3) containing the single element XAB(I)B. Since this means

that the path of aircraft B must exclude XAB(l) a large

B’
negative number is assigned to XAB(l) , PB(3) is computed,

and the original value is returned to XAB(l)B. Since R(3)
places no restrictions on PA(3), it is identical to PA(l).
Next, UB(3), VINT(3), and XAB(B) are computed.

A terminal node is one from which branching may still
occur. Nodes two and three are terminal nodes. Since only
two branches may emanate from any node, node one is no longer
terminal, and need not be considered further.

The next step in the algorithm is to choose the terminal
node which has the highest upper bound. Assume it is node
J (at this point, J is either two or three, whichever has the
higher upper bound). Node J then branches to form nodes four

and five. The restriction vector R(4) will equal R(J) with

19




the addition of element XAB(J)A' The restriction vector
R(5) will equal R(J) with the addition of.element XAB(J)B.
Again the restricted paths are computed and the algorithm
continues until the stopping condition is met.

The branching is always done in pairs, a left branch and
a right branch, as was shown in Figure 6. No valid upper
bound comparisons can be made until both branchings have
been performed and the upper bounds of both new nodes have
been computed.

The stopping condition for the algorithm occurs when,
following a double branching, a terminal node is found whose
upper bound is greater than or equal to all other terminal
node upper bounds, and whose paths for aircraft A and aircraft
B are mutually exclusive, that is, they have no targets in
common. This solution is optimal because its value is equal
to the upper bound of that node, making it the best solution
possible for that node. And since its value is at least as
good as the best solution possible for all other terminal
nodes, it is a global optimum.

The steps of the algorithm are summarized in Figure 7
at the end of this section.

There is one other calculation which can be made at each

node which is of some interest. The lower bound for each

node I is denoted by LB(I) and is equal to UB(I) minus VINT(I).

This is a lower bound because if all the points of intersection

on PA(I) and PB(I) were given to either aircraft A or air-
craft B, the value of the resultant solution would be LB(I).

20
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If any terminal node I has a lower bound on the optimal value

which is greater than or equal to the upper bound of any other
terminal node J, then node J may be completely dropped from
consideration. It is said to be fathomed, and is no longer
terminal. This will not speed up the algorithm or reduce the
number of branchings required, since the algorithm would

never branch from node J anyway. However, if computer storage
space were critical, it would be advantageous to incorporate
lower bounding, since once a node was fathomed it could be
removed from storage. It will not be employed in this al-
gorithm.

The algorithm guarantees that an optimal solution will be
found. However, it suffers from a limitation common to all
branch and bound methods. For any untried problem, it is im-
possible to tell beforehand exactly how much computation will
actually be necessary to find the optimal solution. Depending
on the way the problem is set up, it could converge to the
optimum very quickly, or for a large, difficult problem it
could require such excessive branching that it becomes compu-
tationally prohibitive. This would be the case if the allow-
able course deviation were very large, the angle between at-
tackers very small, and there were multiple optimal paths.
However, in sample problems of target optimization, the al-
gorithm converges very quickly, as will be shown in Section

VI.
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R(I) = =

CALL DP(A)*
CALL DP(B)
COMPUTE VINT(I)
COMPUTE X, o (1)
COMPUTE UBRI)

STOP
, L vINT(1)=07 _ | ¥Es PA(1),PB(I)
. OPTIMAL
]
:
| NO
é
i I=I+1
IeT
J R(I)’R(J)vaB(J)A**
' k=0
‘
{ CALL DP(A)
~ CALL DP(B)
COMPUTE VINT(I)
COMPUTE X, 5 (1)
i COMPUTE UB(I) Tutel
IeT
o K=1
; {_k=07 L xes RUD)=R(3) X5 (g -
' NO UB(J)= 0
1]
i SELECT J SUCH THAT
UB(J)> UB(T) V T
[ VINT(J)=0? |_YES | STOP
PA(J),PB(J)
. OPTIMAL 3
‘ NO «
—<-N0_| UB(L)=UB(J) FOR ANY

| OTHER NODE L?

{
YES NO
[ VINT(L)=0? bgd ;
YES !

L >—

*CALL DP(A) MEANS TO PERFORM THE SINGLE
AIRCRAFT D.P, MITHOD USING AIRCRAFT A
WITH THE TARGET VALUES ADJUSTED AS
REOUIRFD BY R(I).

"R(I)-R(J),XAB(J)A MEANS R(I) INCLUDES

IE FLIMENT X,,(J), IN ADDITION TO ALL
THE ELEMENTS OF R(D).

Figure 7. Flow Chart of the Algorithm.
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IV. A TEST PROBLEM

Two aircraft are to attack a target area. Aircraft A
has an initial heading of due north, and aircraft B is heading
due west as they approach the area. Each aircraft has an
allowable course deviation of forty-five degrees.
! The target positions and valués are given in Table I.
The positions are given in terms of the cartesian plane, with

the positive Y axis pointing due north.

TABLE I

TARGET POSITIONS AND THEIR VALUES

! Target Positions (X, Y) Target Values
{ 9, 12 1
{ 13, 5 2
4, © 4
8, 6 2
6, 7 i
11, 14 3
' 2, 1 2
10, 11 1
5, 10 5
7, 4 1
3, 8 3 §
i, 13 5 :
|
15, 15 2 ’
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Figure 8.

Stage Diagram for Aircraft A
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STAGE

12345678 91011 12 1
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Figure 9.

Stage Diagram for Aircraft B



The stage diagrams for aircraft A and aircraft B, including

allowable course deviation cones, are illustrated in Figure 8

and Figure 9, respectively.

Beginning with node one,R(l) equals the null set, meaning

there are no restrictions on the path of either aircraft.
Using the single aircraft D.P. method for aircraft A, it is
found that

PA(1l) = A13, All' A7, A3

PA(l) = Al3’ All’ A7, A6 is also optimal, and either may be
chosen. For this example, the former is used. Similarly,
for aircraft B,

From PA(l) and PB(l), the following values are computed:
XAB(l) = A3 = B1

VINT (1) = 5

UB(1l) = V[(PA(1l)] + V([PB(1)] = 29
Since both paths have target Ay = Bl in common, they do not
represent a feasible solution for the two-aircraft problem.

Node one branches to form nodes two and three.

[
]

R(2) Xap L)y = Aq

R(3)

]

Xag(l)g = By

The tree at this point is illustrated in Figure 10.




Figure 10. Start of the Tree

Considering node two, PA(2) and PB(2) are computed sub-

ject to the restriction that PA(2) may not include target A

3‘

There are no restrictions on PB(2).

PA(2) = Ajyr Aqqs Aq, Ag

PB(2) = By, By;s By, Bg, By
The target of intersection is A6 = BS'

XAB(Z) iRy - 85

VINT(2) = 5

UB(2) = 29

Moving to node three, PA(3) and PB(3) are computed sub-

ject to R(3) which states that PB(3) must exclude target Bl.

27




The target of intersection is A7 =B

XAB(B) =.A7 = B3
VINT (3) = 3
UB(3) = 27

Since a double branching has been completed, the upper

) bounds of all terminal nodes must be compared. The terminal

nodes are nodes two and three. Node two has the highest upper
bound. Since PA(2) and PB(2) haveva target in common, the f
paths cannot be feasible for the two-aircraft problem. There-

fore, node two branches to form nodes four and five. The

branching tree expands to Figure 1ll.

Figure 11. Expanded Branching Tree

Node four is subject to the restrictions from node two
in addition to the restriction that PA(4) cannot include A6.

...... p— : » " e ' nll i ; . T o H




Here there are two targets of intersection, Ay = By, and

Az = Bll'

Lun &l = g »Byy

VINT(4) = V[A4 = 39] + V[A2 = Bll] = 4

UB(4) = 28

Node five has R(5) equal to R(2) with the added restric-

tion that PB(5) not include xAB(z)B. Thus R(5) = A3, BS'
PA(5) must exclude target A3, and PB(5) must exclude target
Bg.

PA(S) = Al3’ All' A7, A6

PB(5) = Bl3’ Bll' Bg, Bl
There are no targets of intersection, but this does not mean

that the optimal solution has been found, since terminal node

upper bounds have not yet been compared.

Xap(5) = 8
VINT(5) = 0
UB(5) = 24

Having completed a double branching, upper bounds are
now compared for terminal nodes three, four, and five, and it
is found that node four has the highest upper bound. PA(4)
and PB(4) have a target in common, and are therefore not
feasible for the two-aircraft problem. Since no other ter-
minal node has an upper bound as high as node four, the
algorithm branches from node four to form nodes six and
seven.

The algorithm continues in this manner with the upper

bound computed for each new node, and following each double

29




branching, a comparison of terminal node upper bounds and

a check for feasibility is performed. When nodes eight and

nine branch from node three and the bound of each is com-

puted, it is found that node eight has the highest upper

bound of terminal nodes five, six, seven, eight, and nine.

It is further found that PA(8) and PB(8) have no targets

in common. Therefore, the algorithm stops and PA(8) and

PB(8) form the optimal solution with a value of 26.

Table II summarizes the progress of the algorithm in the
example. Figure 12 illustrates the complete branching tree
for the problem, and Figure 13 shows the optimal path of

each aircraft through the target area.

30
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Figure 12. Branching Tree for Test Problem
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Figure 13.

Optimal Path of Each Aircraft
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V. VARIATICNS

The model which has been formulated can be modified to i
solve more difficult problems having additional constraints.

One constraint would be to limit the number of bombs on
each aircraft, thus limiting the number of targets allowed
in the optimal paths of the aircraft. To incorporate this
restriction, the single aircraft D.P. method of Section I
must be modified. This can be done by increasing the num-

ber of state variables from one to two. At each stage there

will be one state variable, X, representing the lateral
position of the aircraft at stage n. Another state variable,
NBOMBsn, denotes the number of bombs remaining in the air-
craft at stage n. Although the computation required for the

D.P. portion of the algorithm increases exponentially with

the number of state variables, practical problems can still
be quickly solved with this added constraint. The bomb
limitation has been incorporated into the computer program
contained in Appendix B.

In a similar manner, a restriction on the total lateral
deviation of the aircraft or on the total number of course
changes allowed in the target area could be considered.

Another modification would be to have M aircraft attack-
ing from each direction. The single aircraft D.P. portion
of the algorithm becomes instead an optimization for a single
group of aircraft, where a separate mutually exclusive path
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is computed for each aircraft in the group (the group con-
sisting of all airqraft coming from one direction). The op-
timization for a single group of M aircraft is a dynamic
programming problem with M state variables. The lateral

th

position of the i aircraft at stage n is denoted by Xy

n*

) The one directional problem is discussed in detail in Ref. 2.

| To solve the two directional prob;em, the group of aircraft
coming from one direction is viewed as group A, the other as

1 group B. Since there will be no intersection of targets

{ within a group, the only concern will be with targets in com-

| mon between the two groups. As in Section III, the highest

I | valued common target at node I, XAB(I), can be found and the

branching performed with one node of the branch restricting

{ group A to exclude target XAB(I) the other node restricting

AI
R group B to exclude XAB(I)B'
Again, it is critical to realize that doubling the num-

ber of state variables far more than doubles the computations

required, and eventually the problem will become computationally
infeasible.
The next modification to be considered is the problem

' of aircraft attacking from more than two directions. The

general theory of the two-directicnal problem can be extended

to the N directional case, but the rules governing branching

become more involved, and the number of nodes required for

—

solution greatly increases. One possible approach where N = 3
will be briefly considered, with the aircraft designated 3,
B, and C. |
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At each node, there are two types of intersection possible,

a two-aircraft intersection, and a three-aircraft intersection.
Branching will be done on the highest valued target of inter-
section, whether it is common to two aircraft or three. At
node I this point will be designated INT(I). Assume that at
node L, INT(L) = A; = Bj. A double branch would emanate
from node L, one restricting aircraft A to exclude Ai’ the other
restricting aircraft B to exclude Bj. Should INT(L) instead
equal Ai = Bj = Ck' a triple branching would be required.
One branch would restrict aircraft A and B to exclude Ai and
Bj' respectively. The second branch would restrict aircraft
A and C to exclude Ai and Ck, respectively. The last branch
would restrict aircraft B and C to exclude Bj and Ck, respec-
tively.

The paths at each node are calculated as described in
Section I, using the single aircraft D.P. optimization, sub-
ject to the restrictions aktove. The upper bound for any node
is the summation of the values of the three paths. The stop-
ping condition is reached, as in Section III, when the terminal
node with the highest upper bound has no targets in common on
the paths of the three aircraft.

If computer time is critical, a suboptimal solution, as
close to optimal as the decision maker desires, could be found.
This is done by selecting a value which represents the maximum
difference the decision maker can tolerate between the highest
upper bound and its corresponding lower bound. When this value

is achieved, the suboptimal solution is obtained by randomly
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assigning the targets of intersection at that node to either

aircraft, thus making the solution feasible.
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VI. THE COMPUTER PROGRAM

Appendix B contains a computer program, written in For-
tran IV, which will solve the target optimization problem for
two aircraft traversing, from different directions, a target
area of up to 100 targets. The difference, a, in the initial
courses of the two aircraft, may vary between 0 and 360 degrees.
The aircraft may have between two and twenty bombs on board.

The computer program gives the user the number of branchings

~required for solution, the optimal value of the targets

chosen, the path of targets each aircraft is to attack, and
a plot of the target area and the optimal paths through it.
Appendix C contains the output from a one hundred target
area, with an allowable course deviation of forty-five de-
grees, six bombs per aircraft, and a = ninety degrees.

The input parameters are the total number of targets,
the number of bombs on board each aircraft, the allowable
course deviation angle, the difference in the initial courses
of the aircraft, and the location and value of each target.
The target positions are given in cartesian coordinates, with
the X axis perpendicular to the initial course of aircraft A.
The angle a is measured counter-clockwise from aircraft 3,
and is input in degrees. The allowable course deviation
angle is identical for both aircraft, although the program
could easily be modified to allow each a separate deviation.
This angle is also input in degrees.
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The program begins by sorting and numbering the targets,
first with respect to the initial course of aircraft A, and
then with respect to aircraft B.

An MN by MN matrix is formed for determining for either
aircraft whether one target position may be feasibly reached
from another. A "1" indicates feasibility, and a "0" infeasi-
bility. The diagonal elements from upper right to lower left
are all zero, indicating that the aircraft may not remain at
one target for more than one stage. Denoting any element
as FEAS(I,J), the elements below the diagonal give the feasi-
bility of aircraft A going from target I to target J. The
elements above the diagonal give the feasibility of aircraft
B going from target J to target I. This matrix eliminates
the need to gecmetrically compute feasibility at every stage
of the algorithm.

A vector AB is formed to correlate the target numbers with

respect to A with the target numbers with respect to B. If

AB(i) = j, then Ai = Bj‘

The path restrictions for every node are stcred in a 100

by 50 matrix R. The matrix permits up to one hundred branch-
ings of the algorithm, and restrictions of up to fifty targets
at each node. Either of these may be increased by the user.
The restrictions for node I are stored in row I of R by denot-
ing a target Ai as negative i, and a target Bj as j, thus
signifying whether a particular numerical element restricts

aircraft A or aircraft B.




The single aircraft D.P. portion of the algorithm is per-
formed in subroutihe D.P. of the program. A si.tlcly modified
version of the double DO loop method suggested in Ref. 2 is
used. It is presented in Fortran in a simplified form in

Figure 14.

DO 30 I 2,MN
DO 20 J = 1,I-1

C Is it feasible to go from target I to target J?
DO 10 K = 2,NBOMBS

C If I have K bombs on board at target I, is J

the best target to go to?

10 Continue
20 Continue
30 Continue

Ty Trace back to find the best path

Figqure 14. The Simplified Triple DO Loop of

Subroutine D.P.

A one-bomb limitation is not allowed, since the solution
to the one-bomb probklem is merely to choose the two highest
valued targets and assign one of them to aircraft A and one
to aircraft B. If an unlimited number of targets is possible
on a path, as might be the case in planning a photo recon-
naissance mission, the bomb limitation should be completely
removed from the program, rather than using a very large
number for the limitation. This is so because increasing the
number of bombs on board increases the computational effort

required.

. s o
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The score ordering method suggested in Ref. 8 was tested
in the program. This method requires that for target I, the
targets I-l, ..., 1 are stored in a list in order of non-
increasing cumulated value. At target I, the list is scanned,
starting from the top, until a feasible target J is found.

The cumulative value of J is then added to the value of I,

and target I is placed in the list, its position depending on
its now cumulative value. This eliminates the need to scan
all the lower numbered targets from target I to find the

best one. It did in fact result in reduced computation for up
to three bombs on board. But with more than three, the com-
putation required to update the list at each stage outweighed
the savings, and therefore score ordering was not included in
the program.

For each node I in the problem, the values of R(I), UB(I),
XAB(I)' and VINT(I) are saved. PA(I) and PB(I) are discarded
as soon as the above four values are computed. Since the
branching {tree grows norizontally as well as vertically (see
Figures 12 and 20), a large amount of storage would be used
up in saving the paths. For this reason, new paths are com-
puted at each new node from R(I) and XAB(I) of its predecessor
node I.

Figures 15, 16, and 17 are time comparisons for various
input values of NBOMBS, course deviation angles, and a. The
data points on the graphs represent averages for three dif-
ferent random target areas. However, the trends were almost

identical for each set of targets.
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Increasing the number of bombs per aircraft causes an al-
most linear increase in execution time. An increase in the
course deviation angle approximates an exponential increase
in the time required. Decreasing o causes execution time to
increase. This should be expected, since the closer to parallel
the two aircraft are, the larger the number of targets in com-
mon at each node is likely to be,'resulting in more branching
being required.

Figure 18 plots execution time versus the number of tar-
gets in an area. Figure 19 illustrates the corresponding num-
ber of branchings required. As the total number of targets
increases, the execution times tend to cycle. One possible
explanation for this is that as the number of targets increases,
the amount of computation in the dynamic¢ programming subroutine
increases. However, when a path intersection occurs, more
targets provide more alternative paths which may be feasible
and optimal, thereby reducing the number of branchings re-
quired. For certain numbers of targets, the time savings from
the reduced branchings override the increased subroutine
computation required, thus reducing total solution time.
Similar trends were found with other target arrangements.

This again points out the unpredictability of the computation

required for solution.
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VII. CONCLUSIONS

The algorithm and computer program presented can solve the
two-aircraft target optimization problem for up to one hundred
targets, with an aircraft paylocad of up to twenty bombs, using

' a minimal amount of computer time. In addition, it can be
| expanded by the user to suit his specific needs, including
more targets, larger payloads, more aircraft, and a multiple

‘ direction attack scenario.

{ The algorithm itself could be improved if there were scme

way to recognize the optimal solution before the stopping

e

condition was met. Oftentimes, an early node will produce the

) optimal path, but the algorithm continues, because the node's

upper bound is not the highest. This is the case where multi-

o

{ ple optimal solutions exist, and each level of the branching
tree produces equivalent upper bounds. This is illustrated
in Figure 20. The upper bounds are indicated above each node.

At node 13, an upper bound of thirty-seven is achieved with

no targets in common for PA(l13) and PB(l3). Yet the branch- §

b ing must continue, since other terminal nodes have higher

upper bounds. Finally, by node 25, it is realized that the
solution found at node 13 was in fact optimal. Had this been
1 realized at node 13, the computation required could have been
cut in half.

The computer program was developed to test the algorithm,
and should not be considered as an end-product software package.
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It is storage inefficient, especially in the area of the R ma-
trix and the fact that information is kept in storage for all
nodes rather than just the terminal ones. Improvements in these

areas could be implemented if desired.
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APPENDIX A

GLOSSARY OF TERMS

Allowable Course Deviation = the allowable number of degrees
that an aircraft is permitted to
deviate from its initial course
upon entering the target area.

MN = the total number of targets in the target area.
th

)
[

the 1 target, ordered non-increasingly by its parallel
distance from the boundary at which aircraft A enters
the target area, i =1, ..., MN.

B. = the jth

target, ordered non-increasingly by its parallel
distance from the boundary at which aircraft B enters
the target area, j = 1, ..., MN.
V[Ai] = the value of target Aj.
V[Bj] = the value of target Bj.
PA(I) = the set or path of targets for aircraft A computed at
node I. It is feasible and optimal for the single
aircraft problem.
PB(I) = the set or path of targets for aircraft B computed
at ncde I. It is feasible and optimal for the single
aircraft problem.
V[PA(I)] = the summation of the values of the targets in PA(I).
V(PB(I)] = the summation of the values of the targets in PB(I).
XAB(I) = the target common to both PA(I) and PB(I) which
has the highest value.

50




——— =

RS-

XAB(I)A = XAB(I) in terms of aircraft A.

XAB(I)B = XAB(I) ig terms of aircraft B.

VINT (I) the summation of the values of all targets common

to both PA(I) and PB(I).

UB(I) = V(PA(I)] + V[PB(I)] = an upper bound on the optimal
solution at node I.

LB(I) = UB(I) - VINT(I) = a lower bound on the optimal
solution at node I.

R(I) = a set of restrictions on PA(I) and PB(I) consisting

of a listing of targets which each must exclude.

NBOMBS the number of bombs with which an aircraft enters
the target area.
a = the difference in the initial courses of the two aircraft,

measured in degrees counter-clockwise from aircraft A.
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APPENDIX B

THE COMPUTER CODE
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APPENDIX C

THE COMPUTER QUTPUT

THE VALULE QF THE GPTINMAL SCLLTICAN IS

CPTIMAL AIRCRAFT PATHS

AIRCRAFT A
X Y
47.71 48.91
3l.71 5S.13
171.€1 297.32
317.G5S 445.82
649.03 886,22
754.56 €8£.25
AIRCRAFT B
X Y
154425 411.59
48l.19 285.44
424449 2¢2.81
3&83.¢8¢ 378.05
328455 324.02

209.62

363.97
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