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ABSTRACT

This paper presents an algorithm for computing the optimal

target path for two aircraft traversing a target area from

different directions. There are constraints on the maneuver-

ability of each aircraft which prohibit it from attacking every

target The algorithm chooses a subset of targets whose de-

struction will yield maximum value to the attacking force.

1 1 The basis of the algorithm is the branch and bound method ,

with upper bounds computed by dynamic programming . Several

variations are considered, such as payload limit, an increased

number of aircraft from each direction, and a three-directional

attack. An example problem is solved using the basic model.

A Fortran IV computer program is included. Computation

time versus problem characteristics is discussed.
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- I. INTRODUCTION

Optimal assignment of targets to aircraft on a strike

mission can greatly increase the effectiveness of an air attack

against ground installations. The purpose of this paper is to

present an algorithm which will, given the location and rela-

tive military/industrial worth of key enemy positions, select

a sequenced subset of targets whose destruction will yield

maximum value to the attacking force. It assumes that the

decision maker has complete knowledge of the targets and their

value. A stochastic extension can easily be incorporated

when considering hardened targets. This is done by multiply-

ing the probability of killing a particular target by its value.

The initial course of an aircraft approaching a target

area is denoted by 4,. Due to anti—air defenses, there is a

limit placed on the maximum number of degrees which an aircraft

may deviate from its initial course. This angular deviation is

denoted by e . Its effect is to restrict the aircraft’s movement

at any point to a cone whose Vertex angle, 2~ , is bisected by

the aircraft’s initial course, 4,. Thus at any point (x,y) in

the target area, the aircraft’s course options are between

• 4,—8 and $+O. This creates an ordering among the targets which

dictates the sequence in which they must be considered . The

allowable deviation is pictured in Figure 1.
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POSSIBLE COURSES

Not Possible Not Possible

(x,y)

(

4
Figure 1. Cone of Allowable Course Deviations

Because of the course constraint, there are only a limited

number of paths through the target area ‘~hich are feasible.

The task of the decision maker is to choose that set of tar-

gets which yields the optimal combined value.

References (1] and (2] present a method for determining

the optimal set of targets for one aircraft traversing an area

containing MN targets. The problem is formulated as an MN+l

stage dynamic programming problem (Ref . 3]. The targets are

numbered in decreasing order from an imaginary line drawn tan-

gent to the boundary at which the aircraft enters the target area.

7
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The stages are represented by straight lines drawn through

the targets, parallel to the boundary tangent line. Stage n

corresponds to the parallel line drawn through target n.

The starting point of the aircraft, outside the target area,

is stage MN+l. It is located so that any target is accessible

from stage MN+l. The stage diagram is depicted in Figure 2.

Should two targets be equidistant from the boundary tangent

line, either one may be assigned the next sequential number,

and the problem reduces to MN stages.

STAGE Y

2 _  _ _ _ _ _

3

4

5 1
6 _ _ _  _ _ _ _ _

7

8 - x

9

Figure 2. The Stage Diagram for One Aircraft

Entering from below the Target Area. 

-—-- - .-~~~~~~~~~~ —-



‘‘~~~~ ~~~~~~~~~~~~~~~

It is important to realize that were the aircraft to enter

the target area, say, from the right, the stage diagram would

appear as in Figure 3.

STAGE

1 2 3 4 5 7

(3)

( )

(
~)

-___ _

Figure 3. The Stage Diagram for One Aircraft Entering Target
Area from the Right.
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The state variable x~ denotes the lateral position of the

aircraft at stage n. D~ is the decision as to the heading of

the aircraft as it moves from stage n to stage n—i . D~ is

restricted to lie in the set of feasible headings S~ , from

4,—O to 4,+6. The state variable x~ is then a function of x~41

and D
~+i. 

This function is referred to as the stage trans-

formation t.

The return function for stage n is denoted by r~ . Letting

• p~ be the lateral position of target ii , and Vn be its value,

rn (xn) = if x~

0 otherwise

The problem is then written as

H Max imize r (xI • n=l n

Subject to: xn=t(xn+i~
Dn+i) ~~~~~~~~~

~z S~ n=2,...,MN+1

An efficient algorithm for solving this problem is dis-

cussed in Section VI, but the problem can also be easily solved

• graphically . To do so, the course deviation angle must be

viewed from the perspective of the stage diagram . Figure 4

shows whether target n is feasible for various values of

10 
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STAGE 
xn+l xn+l xn_4_ 1

ni-l not feasible feasible not feasible

Figure 4. Cone of Feasibility

Using Figure 2 as an example, the maximum return possible

for stages (n—i) to 1 is recorded on each stage line n,

n = 1, •. .,  MN+l, for every possible value of x~ . Assuming

the value of each target is one, Figur e 5 gives the solution

for one aircraft entering from below the target area.

Tracing back from stage MN+l, the optimal set of targets

is 8, 7, 6, 4, 3, 2, for a value of six.

Dynamic programming can extend this problem to M aircraf t

by increasing the number of state variables to M (Ref s. 1, 2,

and 3], as long as all M aircraft are attacking from the same

direction. But when the aircraft enter the target area from

different directions, a pure dynamic programming solution is

no longer possible, since the association between the target

and the stage is no longer valid . A target in stage three

11
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for one aircraft may be in stage ten for another, and the re-

cursive equations have no meaning.

Y
STAGE

9 —x

Figure 5. Graphical Solution to the One—Aircraft Problem .
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This paper presents a solution to the problem of two air-

craft attacking a target area from different directions. A

model is formulated , and the algorithm developed. An example

problem is included. Also included is a computer program for

implementing the algorithm and a discussion of its effective-

ness. Because the terminology becomes quite involved, a

glossary of terms is provided in Appendix A.

H
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II. PROBLEM ?ORMULATION

In formulating this problem , it is assumed that if an

aircraft attacks a particular target, that target is destroyed.

In other words, there are no misses. As was stated in Section

I, this does not preclude a stochastic approach for hardened

targets where each has a probability of being destroyed.

For ease of notation, the two aircraft are denoted air—

craft A and aircraft B.

The targets are numbered as in Section I, but now each

target has two numbers, one with respect to aircraft A , and one

with respect to aircraft B. They are denoted A~ and B. , respec—

tiveli, i = 1, ... , MN , j = 1, ... , MN. It is critical to real-

ize that if any target A1 has the same coordinates as any tar—

get B~ , then that A~ is the identical target B~ . In fact, for

every A1 there will be a B~ identical to it. Figures 2 and 3 ,

which are identical target areas, should clarify this point.

The value of A~ will be denoted by V[A~]~ and the value of

by V(B~).

A feasible set of targets for a single aircraft is one in

which the course required to go to each successive target is

within the allowable course. deviation cone described in Sec-

tion I. PA(I) denotes one of the feasible sets of targets

for aircraft A. It is convenient to think of PA(I) as a

path of targets which aircraft A will attack. Any PA(I) corn—

pletely disregards aircraft B in that it is computed as if only

14
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one aircraft were attacking. Similarly, PB(J) denotes one

of the feasible sets of targets for aircraft B.

The value of a set of targets, or a path, is the summa-

tion of the individual target values comprising that set. The

values of PA(I) and PB(J) are denoted by V (PA(I)] and

F ‘(PB(J)], respectively.

In order for the solution of a two—aircraft problem to be

feasible, the sets of targets for aircraft A and aircraft B

must be mutually exclusive, that is, they must have no targets

4 in common. This is so because one aircraft is sufficient to

destroy the target. No additional return would be realized

by the other aircraft attacking the same target. If this

feasibility constraint were not required for optimality , aircraft

A (or aircraft B) might forego the opportunity to attack other

targets in order to attack the target that both aircraft have

in common.

The optimal solution is achieved when PA(I) and PB(J) are

chosen so as to

Maximize V (PA(I)] + V( P B ( J ) ]

Subject to: PA(I) 1 PB(J) = 0.

15
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III. THE ALGORITHM

The branch and bound method forms the basis of the solution

algorithm for the two—aircraft problem. It is discussed in

theory in Ref s. 4, 5, 6, and 7. Only a small fraction of the

possible solutions to the problem is actually enumerated. The

remaining solutions are eliminated from consideration through

the application of bounds that establish that such solutions

cannot be optimal.

The algorithm begins by considering all possible combina-

tions of paths for both aircraft. It then breaks this set of

all possible combinations into smaller and smaller subsets, and

calculates for each an upper bound on the value of the best

paths contained therein. The bounds determine the partitioning
4

of the subsets and eventually identify an optimal path for both

aircraft. The branch and bound method represents the subsets

as nodes of a tree and the partitioning of the subsets as a

branching of the tree.

Node one consists of all possible combinations of paths for

both aircraft. Using the single aircraft dynamic programming

(D..P.) method of Section I, the optimal path for aircraft A

is computed for the direction from which A enters the target

area. This path is denoted by PA(l). By the same method , the

optimal path for aircraft B is computed for the direction from

which B enters. This resultant path is denoted by PB(l). It

is important to realize that both PA (1) and P3(l) are computed

16
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as single aircraft optimnizations, and that all MN targets are

possible elements of PB(l), even those in PA(l).

If PA(l) and PB(l) have no targets in common, then the

paths form the optimal solution to the two—aircraft problem, the

value of which is V (PA(l)] + V(PB(l)], and the algorithm stops.

However, if there are targets in common, then as was mentioned

in Section II, the solution is not feasible. The summation

V (PA(l)] + V (PB(l)] represents instead an upper bound, denoted

by UB(l), for the optimal solution. The summation of the

values of the points of intersection of PA(1) and P3(l) is de-

noted by VINT(l). The target in the intersection which has

the highest value is denoted by XAS(l). This target could be

written in terms of aircraft A or aircraft B. When the dis~

tinction is necessary, XAS(lY will be written as either XAS(l)A
or X (1) , for aircraft A and aircraft B, respectively. Geo—AS B
graphically, however, XAS(l), XAS(l)A~ 

and XAB (l)Bare identical .

The goal is to find optimal paths for aircraft A and B

which have no targets in common. The nature of the D.P. solution

for a single aircraft path is such that it seeks out those fea-

sible targets with the highest value. In node one, both A and

B sought XAB (l). If the set of path combinations in node one

was restricted so that aircraft A had to take XAS(l)A and air-

craft B could not take XAS(l)3, the same target, then that

point of intersection would be eliminated . But perhaps the

optimal solution requires B, not A , to take XAB (l). It could

even require that neither path include XAB (l). Therefore,

to include all possibilities, the set of node one is broken

17
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into two subsets, one which requires tha t the path of aircraft

A exclude XAS(l)I giving aircraft B the option of taking it

or not, depending on the single aircraft D.P. solution for B.

The other subset requires that the path of aircraft B exclude

XAS(l), giving aircraft A the option. Thus node one branches

to form nodes two and three.

The restrictions placed on each aircraft at node I are de—

noted by R(I). If, for example, R(I) = ~~ Bj, B~~, the path

of aircraft A would be required to exclude target A1, and the

path of aircraft B would be required to exclude targets B~

and Bk.

The branching, with restrictions, is illustrated in

Figure 6.

• Figure 6. The Start of a Tree

Now consider node two with the restriction vector R(2)

containing the single element XAS(l)A . Again using the

18
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singl~ aircraft D.P. method , only this time with the restric-

tion that the path of aircraft A not include target XAS(l)A ,

the optimal path for aircraft A is computed . The restriction

can be incorporated into the solution techniques of Section I

by temporarily assigning a large negative value to XAS(l),

thereby making it highly unattractive as an element of the

I optimal path. Denote the resultant path PA(2), and return

I I the original value to XAS(l). As was noted , restricting

PA(2) to exclude XAS(l)A places no restrictions on aircraft

B. Therefore, PB(2) will be identical to PB(l). Just as

with node one, UB(2), VINT(2), and XAS(2) can be computed.

Node three is considered next, with restriction vector

R(3) containing the single element XAS(l)3. Since this means

that the path of aircraft B must exclude XAS(l)3, a large

negative number is assigned to XAS(l)B, P3(3) is computed ,

and the original value is returned to XAS(l)B. Since R(3)

places no restrictions on PA(3), it is identical to PA(l).

Next, UB(3), VINT(3), and XAS(3) are computed.

A terminal node is one from which branching may still

occur. Nodes two and three are terminal nodes. Since only

two branches may emanate from any node, node one is no longer

terminal, and need not be considered further.

The next step in the algorithm is to choose the terminal

node which has the highest upper bound . Assume it is node

J (at this point, 3 is either two or three, whichever has the

higher upper bound). Nod e J then branches to form nodes four

and five. The restriction vector R(4) will equal R(J) with

19
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the addition of element XAS(J)A. The restriction vector

R(5) will equal R(J) with the addition of element XAB (J)B.

Again the restricted paths are computed and the algorithm

continues until the stopping condition is met.

The branching is always done in pairs, a left branch and

a right branch, as was shown in Figure 6. No valid upper

bound comparisons can be made until both branchings have

been performed and the upper bounds of both new nodes have

been computed.

The stopping condition for the algorithm occurs when,

following a double branching , a terminal node is found whose

upper bound is greater than or equal to all other terminal

node upper bounds, and whose paths for aircraft A and aircraft

B are mutually exclusive, that is, they have no targets in

common. This solution is optimal because its value is equal

to the upper bound of that node, making it the best solution

possible for that node. And since its value is at least as

good as the best solution possible for all other terminal

nodes, it is a global optimum.

The steps of the algorithm are summarized in Figure 7

at the end of this section.

There is one other calculation which can be made at each

node which is of some interest. The lower bound for each

node I is denoted by LB(I) and is equal to U 3(I) minus VINT(I).

This is a lower bound because if all the points of intersection

on PA(I) and PB(I) were given to either aircraft A or air-

‘
, 

craft B, the value of the resultant solution would be LB(I).
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If any terminal node I has a lower bound on the optimal value

which is greater than or equal to the upper bound of any other

terminal node 3, then node 3 may be completely dropped from

consideration. It is said to be fathomed , and is no longer

terminal. This will not speed up the algorithm or reduce the

number of branchings required, since the algorithm would

never branch from node 3 anyway. However, if computer storage

space were critical, it would be advantageous to incorporate

lower bounding, since once a node was fathomed it could be

r emoved from storage. It will not be employed in this al-

gorithm.

The algorithm guarantees that an optimal solution will be

found. However, it suffers from a limitation common to all

branch and bound methods. For any untried problem, it is im-

possible to tell beforehand exactly how much computation will

actually be necessary to find the optimal solution . Depending

on the way the problem is set up, it could converge to the

optimum very quickly , or for a large, difficult problem it

could require such excessive branching that it becomes compu-

tationally prohibitive. This would be the case if the allow-

able course deviation were very large, the angle between at-

tackers very small, and there were multiple optimal paths.

However, in sample problems of target optimization, the al-

gorithm converges very quickly , as will be shown in Section

vi.

21
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CALL DP(A)*
CALL DP(B)
COMPUTE VINT(I)
CO~tPUTE X (I)
COMPUTE U~~ t)

ItT

CALL DP(A)
CALL DP(B)
COMPUTE VINT (I)
COMPUTE XAB (I)

~~ ILECT J SUCH THAT
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Figure 7. Flow Chart o~ the Algorithm.
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~J A TEST PROBLEM

Two aircraft are to attack a target area. Aircraft A

has an initial heading of due north, and aircraft B is heading

due west as they approach the area. Each aircraft has an

allowable course deviation of forty—five degrees.

The target positions and values are given in Table I.

The positions are given in terms of the cartesian plane, with

the positive Y axis pointing due north.

TABLE I

TARGET POSITIONS AND THEIR VALUES

Target Positions (X, Y) Target Values

9, 12 1

13, 5 2

4 , 0 4

8 , 6 2

6, 7 1.

• 11, 14 3

2, 1 2

10, 11 1

5, 10 5

7 , 4 1

3, 8 3

1, 13 5

15, 15 2

23
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1
2
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Figure 8. Stage Diagram for Aircraft A
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F igure 9. Stage Diagram for  A i r c r a f t  B
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The stage diagrams for aircraft A and aircraft B, including

allowable course deviation cones, are illustrated in Figure 8

and Figure 9, respectively.

Beginning with node one,R(l) equals the null set, meaning

there are no restrictions on the path of either aircraft.

Using the single aircraft  D .P .  method for a ircraft  A , it is

found that

PA(1) = A13 , A11, A7, A3

PA(l) = A,3, A11, A7, A
6 
is also optimal , and either may be

chosen . For this example , the former is used . Similarly ,

for aircraft B ,

P8( l) = p13’ ~~~~ 
89f B5, 

~i

From PA(1) and PB(1), the following values are computed:

X~~~( l)  A3 B1

VINT(1) = S

tJB(l) = V [PA(1)1 + V (PB(l)] = 29

Since both paths have target A3 = B1 in common , they do not

• repr esent a feasible so lution for the two—aircraft  problem .

Node one branches to form nodes two and three.

R ( 2 )  = X~~~
( l ) A = A3

R (3) = X~~~( l )
3 

=

The tree at this point is illustrated in Figure 10.

26
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: Rc3

~~

Bi

• 
Figure 10. Start of the Tree

Considering node two, PA (2) and PB(2) are computed sub-

ject to the restriction that PA(2) may not include target A3.

There are no restrictionz on PB(2).

PA(2) = A13, A11, A7, A
6

P B ( 2 )  = B 13, B11, B9, B 5, 
~~

The target of intersection is A6 = B5.

XAB (2) = A6 = 85
• VINT (2) = 5

UB(2) = 29

• Mov ing to node three, PA (3) and P3(3) are computed sub—

ject to R(3) which states that P3(3) must exclude target 
~
1•

PA(3) = A13, A11, A.?, A3

PB(3) = B13, 
~~~~ 

B~~, B5, 33

27
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The target of intersection is A7 = B3.

XAB ( 3) A7 B3
VINT(3) = 3

UB (3) = 27

Since a double branching has been completed, the upper

bounds of all terminal nodes must be compared. The terminal

nodes are nodes two and three. Node two has the highest upper

bound . Since PA(2) and P3(2) have a target in common, the

paths cannot be feasible for the two—aircraft problem . There-

fore , node two branches to form nodes four and five. The

branching tree expands to Figure 11.

3.

R (2)=A3 R(3)=B1

2 3

R(4)=A
3~

A
6/

0

Figure Il. Expand ed Branching Tree

• Node four is subj ect to the restrictions from node two

in ad.~ jtjon to the restriction that PA(4) cannot includ e A6.

PA(4) = A13, A11, A9, A5, A4 ,  A2

P3(4) — B13, B11, B9~ B5, B1

____ _ _ _ _ _ _  
_ _ _ _ _ _



Here there are two targets of intersection , A4 = B9, and

A2 = B11. -

XAB (4) A2 = B11
VINT(4) = yEA 4 = B9] + yEA 2 = B11] = 4

U B ( 4 )  = 28

Node five has R (5) equal to R(2) with the added restric-

tion that PB(5) not include XAB (2)a. Thus R (5) = A3, B5.

PA (5) must exclud e target A3, and PB (5) must exclude target

85.

- ~

. PA(5) = A13, A11, A7, A
6

PB(5) = B13, B11, B
9~ 

B
1

There are rio targets of intersection, but this does not mean

that the optimal solution has been found , since terminal node

upper bounds have not yet been compared .

XAB (S) =

VINT (5)  0

UB(5) = 24

• Having completed a double branching , upper bounds are

now compared for terminal nodes three, four, and five , and it

is found that node four has the highest upper bound . PA(4)

and P3(4) have a target in common , arid are therefore not

feasible for the two—aircraft problem. Since no other ter-

minal node has an upper bound as high as node four, the

algorithm branches from node four to form nodes six and

seven.

The algorithm continues in this manner with the upper

bound compu~ed for each new node, and following each double

29
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branching , a compar ison of terminal node upper bounds and

a check for feasibility is performed. When nodes eight and

nine branch from node three arid the bound of each is com-

puted , it is found that node eight has the highest upper

bound of terminal nodes five, six, seven , eight, and nine.

It is further found that PA(S) and PB(8) have no targets

in common . Therefore, the algorithm stops and PA(8) and

PB(S) form the optimal solution with a value of 26.

Table II summarizes the progress of the algorithm in the

example. Figure 12 illustrates the complete branching tree

for the problem , and Figure 13 shows the optimal path of
• each aircraft through the target area.
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1
R (2) =~~~~~~~~~~~~~~~~~

_—
~~~~~ ~~

-.‘ 
~~~~~~~~~~~~

R(4) A3,A6 / \<(5)A3~
BS R(8)=B1,A7

7
~~~~~~~~~9)=31,B3

A3,~~
7
~ \~~7~=A3,A6,B11

*Optj lfla l

Figure 12. Branching Tree for Test Problem
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P 8( 8)

H

0

I .  0 
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PA(S)

Figure 13. Optimal Path of Each Aircraft
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V. VARIATIONS

The model which has been formulated can be modified to

solve more difficult problems having additional constraints.

One constraint would be to limit the number of bombs on

each aircraft, thus limiting the number of targets allowed

in the optimal paths of the aircraft. To incorporate this

restriction, the single aircraft D.P. method of Section I

must be modified. This can be done by increasing the num-

ber of state variables from one to two. At each stage there

will be one state variable, x~ . representing the lateral

position of the aircraft at stage n. Another state variable,

NBOMBS~~ denotes the number of bombs remaining in the air-

craft at stage n. Although the computation required for the

D.P. portion of the algorithm increases exponentially with

the number of state variables, practical problems can still

be quickly solved with this added constraint. The bomb

limitation has been incorporated into the computer program

contained in Appendix B .

In a similar manner, a restriction on the total lateral

deviation of the aircraft or on the total number of course

changes allowed in the target area could be considered .

Another modif ication would be to have M aircraf t attack-

ing from each direction. The single aircraft D.P. portion

of the algorithm becomes instead an optimization for a single

group of aircraft , where a separate mutually exclusive path

34 



_~~~~~~~ •~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ - - r W ~~~~~~~~~~~~~~r - -
~~ 

- - - - -

is computed for each aircraft in the group (the group con-

sisting of all aircraft coming from one direction). The op-

timization for a single group of M aircraft is a dynamic

programming problem with M state variables. The lateral

position of the ~th aircraft at stage n is denoted by x1~ .

• The one directional problem is discussed in detail in Ref. 2.

I i To solve the two dir ectional problem , the group of aircraft

coming from one direction is viewed as group A , the other as —

group B. Since there will be no intersection of targets

within a group, the only concern will be with targets in corn—

mon between the two groups. As in Section III, the highest

valued commo n target at node I , XM (I), can be found and the

branching performed with one node of the branch restricting

group A to exclude target XAB (I)A, the other node restricting

group B to exclude XAB (I)8.

Again , it is critical to realize that doubling the nuni—

ber of state variables far more than doubles the computations

requ ir ed , and eventually the problem will become computationally

infeasible.

The next modification to be considered is the problem

of aircraft attacking from more than two directions . The

general theory of the two-directional problem can be extended

to the N directiona l case , but the rules governing branching

become more involved, and the number of nodes required for

solution greatly increases. One possible approach where N = 3

will be briefly considered, with the aircraft designated A ,

B, and C.
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At each node, there are two types of intersection possible,

a two—aircraft intersection, and a three—aircraft intersection.

Branching will be done on the highest valued target of inter-

section, whether it is common to two aircraft or three. At

• node I this point will be designated INT(I). Assume that at

node L, INT (L) = A~ = B~ . A double branch would emanate

from node L, one restricting aircraft A to exclude A~ 1 the other

restricting aircraft B to exclude B~ . Should IN T (L) instead

equal A~ = B~ = Ck, a tri~1e branching would be required .

One branch would restrict aircraft A and B to exclude A. and

B~ 1 respectively. The second branch would restrict aircraft —

A and C to exclude A
~ 

and Ck, respectively . The last branch

would restrict aircraft B and C to exclude B~ and Ck, respec-

tively .

The paths at each node are calculated as described in

Section I, using the single aircraft D.P. optimization, sub-

ject to the restrictions above. The upper bound for any node

is the summation of the values of the three paths. The stop-

ping condition is reached , as in Section III , when the terminal

node with the highest upper bound has no targets in common on

the paths of the three aircraft.

If computer time is critical , a suboptimal solution, as

close to optimal as the decision maker desires, could be found .

This is done by selecting a value which represents the maximum

dif ference the decision maker can toler ate between the highest

upper bound and its corresponding lower bound . When this value

is achieved , the suboptima]. solution is obtained by randomly

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -..------ . -‘ —
~ 

— -.-— -

~~~~~

‘.--- - .--- 

~

-

~~~~~~

-
-
~~~

.- ---,- - —•.--. .--- • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

assigning the targets of intersection at that node to either

aircraft, thus making the solution feasible.
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VI. THE COMPUTER PROGRAM

Appendix B contains a computer program, written in For—

tran IV , which will solve the target optimization problem for

two aircraft traversing, from different directions, a target

area of up to 100 targets. The difference, c~, in the initial

courses of the two aircraft, may vary between 0 and 360 degrees.

The aircraft may have between two and twenty bombs on board .

The computer program gives the user the number of branchings

required for solution, the optimal value of the target.s

chosen, the path of targets each aircraft is to attack, and

a plot of the target area and the optimal paths through it.

Appendix C contains the output f rom a one hundred target

area , with an allowable course deviation of forty—five de—

grees, six bombs per aircraf t, and ~ = ninety degrees.

The input parameters are the total number of targets,

the number of bombs on board each aircraft, the allowable

course deviation angle, the d ifference in the initial courses

of the aircraf t, and the location and value of each target.

The target positions are given in cartesian coordinates, with

the X axis perpendicular to the initial course of aircraft A.

The angle -~~ is measured counter-clockwise from aircraft A ,

and is input in degrees. The allowable course deviation

angle is identical for both aircraf t, although the program

could easily be modified to allow each a separate deviation .

This angle is also input in degrees.

38 
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The program begins by sorting and numbering the targets,

first with respect to the initial course of aircraft A , and

then with respect to aircraft B.

An MN by MN matrix is formed for determining for either

aircraft whether one target position may be feasibly reached

from another. A “1” indicates feasibility , and a “ 0” infeasi-

bility. The diagonal elements from upper right to lower left

are all zero, indicating that the aircraft may not remain at

one target for more than one stage. Denoting any element

as FEAS(I ,J), the elements below the diagonal give the feasi-

bility of aircraft  A going from target I to target J. The

• elements above the diagonal g ive the feasibility of aircraft

- I B going from target J to target I. This matrix eliminates

the need to geometrically compute feasibility at every stage

of the algorithm.

A vector AB is formed to correlate the target numbers with

respect to A with the target numbers with respect to B. If

AB( i ) — j ,  then A~ = B~~.

The path restrictions for every node are stored in a 100

by 50 matr ix R. The matrix permits up to one hundr ed branch-

ings of the algorithm, and restrictions of up to f i f t y  targets

at each node. Either of these may be increased by the user .

The restrictions for node I are stored in row I of R by denot-

ing a target A
~ 

as negative i, and a target B~ as j ,  thus

signifying whether a. particular numerical element rest: icts

aircraft A or aircraft B.
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The single aircraft D.P. portion of the algori:hm is per-

formed in subroutine D.p . of the program . A si:’~~1y modified

version of the doub1~.~ DO 3.~op method suggested in Ref . 2 is

used . It is presented in Fortran in a simplified form in

Figure 14.

DO 30 I = 2 ,MN

DO 20 J = 1,1—1

C Is it feasible to go from target I to target J?

DO 10 K = 2,NBOMBS

C If I have K bombs on board at target I, is J

the best target to go to?

10 Continue

20 Continue

I lj 30 Continue

C Trace back to find the best path

Figure 14. The Simplified Tr iple DO Loop of

Subroutine D.P.

A one—bomb limitation is not allowed , since the solu tion

to the one—bomb problem is merely to choose the two highest

valued targets and assign one of them to aircraf t A and one

to aircraft B. If an unlimited number of targets is possible

on a path, as might be the case in planning a photo recon—

naissance mission , the bomb limitation should be completely

removed from the program , rather than using a very lar ge

number for the limitation. This is so because increasing the

number of bombs on board increases the computational effort

r~ t- ired .

_ _
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The score ordering method suggested in Ref . 8 was tested

in the program . This method requires that for target I, the

targets I-i, ..., 1 are stored in a list in order of non-

increasing cumulated value. At target I, the list is scanned,

starting from the top, until a feasible target J is found .

The cumulative value of J is then added to the value of I,

and target I is placed in the lis-t, its position depending on

its now cumulative value. This eliminates the need to scan

all the lower numbered targets from target I to f ind the

best one. It did in fact result in reduced computation for up

to three bombs on board . But with more than three, the corn—

putation required to update the list at each stage outweighed

the savings, and therefore score order ing was not inc luded in

the program.

For each node I in the problem, the values of R (I), UB (I),

X~~ (I), and VINT(I) are saved . PA(I) and P3(I) are discarded

as soon as the above four values are computed. Since the

branching t ree  grows norizontally as well as vertically (see

Figures 12 and 20) , a large amount of storage would be used

up in saving the paths. For this reason , new paths are com-

puted at each new node from R(I) and XAB (I) of its predecessor

node I.

F igures 15, 16, and 17 are time comparisons for various

input values of NBOMBS, course deviation angles, and ct. The

data points on the graphs represent averages for  three dif-

L 

ferent random target areas. However, the trends wer e almost

identical for each set of targets.
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Increasing the number of bombs per aircraft causes an al-

most linear increase in execution time. An increase in the

course deviation angle approximates an exponential increase

in the time required . Decreasing a causes execution time to

increase. This shou ld be expected , since the closer to parallel

the two aircraft are, the larger the number of targets in corn—

mon at each node is likely to be, resulting in more branc hing

being required .

Figure 18 plots execution time versus the number of tar-

gets in an area. Figure 19 illustrates the corresponding num-

ber of branchings required . As the total number of targets

increases , the execution times tend to cycle. One possible

explanation for this is that as the number of targets increases,

the amount of computation in the dynamic programming subroutine

increases. However, when a path intersection occurs, more

targets provide more alternative paths which may be feasible

and optimal , thereby reducing the number of branc hings re-

quired. For certain numbers of targets, the time savings from

the reduced branchings override the increased subroutine

computation required , thu s reducing total solution t ime.

Similar trend s wer e found with other target arrangements.

This again points out the unpredictability of the computation

r equired for solution.
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Figure 15. Execution Time Versus Bombs Per Aircraft
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Figure 16. Execution Time Versus Course Deviation Angle
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VII. CONCLTJSIONS

The algorithm and computer program presented can solve the

• two—aircraft target optimization problem for up to one hundred

targets, with an aircraft payload of up to twenty bombs, using

a minimal amount of computer time. In addition, it can be

expanded by the user to suit his specific needs, including

more targets, larger payloads , more aircraf t, and a mul tiple

direction attack scenario .

The algorithm itself could be improved if there were some

way to recognize the optimal solution before the stopping

• condition was met. Oftentimes, an early node will produce the

optimal path, but the algorithm continues , because the node ’s

upper bound is not the highest. This is the case where multi-

pie optimal solutions exist, and each level of the branching

tree produces equivalent upper bounds. This is illustrated

in Figure 20. The upper bounds are indicated above each node.

At node 13, an upper bound of thirty-seven is achieved with

no targets in common for PA (13) and P3(13). Yet the branch-

ing must continue, since other terminal nodes have higher

upper bounds. Finally, by nod e 2 5, it is realized that the

solution found at node 13 was in fact optimal . Had this been

realized at node 13, the computation required could have been

cut in half.

The computer program was developed to test the algori thm,

and should not be considered as an end-product software package.
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Figure 20. A Branching Tree with Alternative Optimal

Solutions .

It is storage inefficient, especially in the area of the R ma—

trix and the fact that information is kept in storage for all

nodes rather than just the terminal ones. Improvements in these 
- •

areas could be implemented if desired. 
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APPENDIX A

GLOSSARY OF TERM S

Allowable Course Deviation = the allowable number of degr ees

that an aircraft is permitted to

deviate from its initial course

upon entering the target area.

MN = the total number of targets in the target area .

A~ = the ~
th target, ordered non—increasingly by its parallel

distance from the boundary at which aircraft A enters

the target area , i = 1, . . . ,  MN.

B~ = the j
th target, ordered non-increasingly by it s parallel

distance from the boundary at which aircraft  B enter s

the target area, j = 1, ... ,  MN.

V (A~} the value of target A1.

V ( B~ ] the value of target B~~.

PA(I ) the set or path of targets for aircraft  A computed at

node I. It is feasible and optimal for the single

aircraft  problem.

P B ( I )  the set or path of targets for aircraft B computed

at node I. It is feasible and optimal for the single

• aircraft problem.

V [PA (I)] = the summation of the values of the targets in PA(I).

V (PB(I)1 the summation of the values of the targets in PB(I).

X~~~(I) = the target common to both PA(I) and PB(I) which

has the highest value.
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XAB(I)A = X~~~(I) in terms of aircraft A.

XAB (I)B = X~~~(I )  in terms of aircraft B.

VINT(I) = the summation of the values of all targets common

to both PA(I) and PB(I).

UB (I) = V (PA(I)] + V (PB(I)] = an upper bound on the optimal

solution at node I.

LB(I) UB(I) - VINT(I) = a lower bound on the optimal

solution at node I.

R (I) = a set of restrictions on PA (I ) and PB (I) consisting

of a listing of targets which each must exclude.

NBOMBS = the number of bombs with which an aircraft enters

the target area.

a = the difference in the initial courses of the two aircraf t,

measured in degrees counter-clockwise from aircraft A.
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APPENDIX B

THE COMPUTER CODE

C A TWO DIRECTIONAL TARGET JPT IMI ZA T ICN MCDEL USING THE
C BRANCH AND BOU ND ALGORIT HM ~ITri DYNAMIC ORJGRAM M ING.

• C
C
C ‘HIS PRCGRAM COMPUT ES OPTIMAL TAR T PA THS FOR Thfl
C AI RCRA FT TRAVERSING A TARGET AREA FROM CIFFERENT
C DIRECTIONS. IT ~ ILL PERFORM UP TO 100 BR ANCH INGS. THE
C TAR (~ET POSITI CNS ARE IN TERMS OF T HE CAR TES IAN PLANE, W ITH• C THE X AXiS PERPENDICULAR 13 ONE OF THE 4IRCR~~FT’S INIT IAL

• C COURSES . THE NUMBER OF BO M BS ON ~04RD EAC:-I A I R C R A F T  ~iUSTC BE BE WEEN T’40 AND TWENTY . THE TARGET AR EA ‘~AY HAVE LIP TO
C ONE HUNCRED TARGETS.
C
C THE INPIJ T PA R AMETERS ARE• C ~IN = TOTAL NUMBER OF TA RGETS
C N8c-I~B S = NU M BER OF ~O~~ B5 ON B-3A~~J E A C H  MRC .~~A F T
C A~~GLE = ALL OWA BLE COURSE DEVIAT ION ( AN DEGR EES
C ALPHA = DIFFERENCE IN INITIAL COURSES OF THE TW3 AI PO RAF T
C AX (I ) X COCRO L NAT E OF TA R G E T  I
C A Y (I) = 1’ CJORDINA T~ 9~ TARGET £
C V A I l ) = VALUE OF TARGE T I

L.

C ~ A 1N  PR~~~R4M
C
C
C D I ~4ENSl ’JN THE A R~~4YS AND A SSLN VAR I A B L E  ~YPEREAL AX ILCO ), AY(lQO ),VA( 1DQ),x ,~( LOG ) YA (100) ,BX (130) ,

YUDO),VB (100),xB(100).Yo (loo),TvA(joo),TvE (100),
IVINT (100) ,UB(  100 ) V (  100)
INTEGER FEAS (1 30,iOOhR(1DQ,5jI,4~~(1Qo), x4B( 1CC),

1~~ATH (1O0) ,~~4 ( 1 0 0 )
INTEGER ~~~ JNT

C READ IN ~HE 
\1UMB E~ OF TARGETS, fl-tE NU~~BER OF BOVB~ P E R

C AIRCRAFT , THE DEV~~A I3N ~N G L E ,  ~NC T~~E ~ I F F E~~E N C E  I~C INITIAL CO URSES D~ THE TWO AI R C RA F T .
READ (5,1 0) BOMBS ,AN GLE,~~.?HA10 FOR MAT

C.

C R EA D  I N  THE TATh ET P 3S IT ~~O~’S A N D  ~~~LJ E S00 20 I=I ,~~N
RE4C (5 ,3 0 )

• 20 CONTINUE
3D FO RMAT (3F 12.3)
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C
C
C SORT T A R C •ET S FOR A I RCRAFT A

MN M 1  = MN—I.
00 50 I=i, MNM- 1
1P1 = 1+1
IOPT = 0
CO 40 J= I P1,MN
IF (AY (I).GE .AY (J)) GO TO 40

= A Y( I)
TEM FX = AX( I)
TEMPV = VA Il )

= AY( J )
= AX(J)

VA (I) =
AY (J) =

• AX (J) =
VA (J ) =

40 CONTINU E
50 CONTINUE

C
C
C SORT TARGETS FOR AIRCRAFT B

AL PI- A =
DO 60 I=~~,MN
BX (I) = A X (I )~~COS (ALPHA )+~~Y(I)~~SIN (ALPHA )
BY (I) = — A X ( I ) * S I 9 ( A L P H A ) + A Y (  I ) * C O S ( A L P H A )
v8 (A ) = V A ( I )

6U CONTINUE
CD SO

• I P I  =
DO 70 J=IPL , MN
IF (BY (I).GE .3Y(J)) GO TO 70
TEMPY =
TEMPX =
IEMPV = V B U )

= BY(J )• BX (I) = BX(J )
\iB (I) = V 3 ( J )
3Y (J) =

• B X ( J )  TEM PX
• VB (J) = T E M PV

70 CONTINUE
• 80 CONTINUE

C
C
C COMPUTE FEA SI3ILITY MATRIX

• ANGLE = 1(9O. 0_ANGLE)*3.141592654/180.3)_1.OE_B
• FEA S ( l ,1)  = 0

CD 120 I=2 , MN
= 1—1

FE AS (I,1) =
DO 110
IF (AX II ) .EQ .AX (J )) GO T3 90
IF (BX (I).EQ .BX (J)) GO 13 100
SLOPEA = ATAN (ABS ((AY (J )—AY (I))/(AX( J )—AX (I))))
S L O P E B  = AT AN (AB St (BY (J )— BY (I))/(B )c(J )— 3X (l ))))
FEA c (I,J) = 0
~E A S ( J , I )  = 0
IF (S L O P E4 .  OT .A’IGL E)  FEAS ( I,J =1
IF

TO 110• 90 F E A S ( 1 , J )  = I.
73 110

100 FE~~S (J ,I) = 1
.~I.O CON I’-I UE
120 C ON T iN UE

C
C
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C SET UP 48 CORRELA TION VECTOR
DO 140 L=j,MN
DO 130 M=1,MN
T W O P I E  = 2.0*3 .141592654
TP~~A = T WC P I E—A L PH A
I~ (~~BS (AX (L )— (8X (M )*COS (TPMA ~ ÷3Y (M)*SlN(TPMA )) ).GT.l1.OE—2 ) GO TO 130
I F  (AB5 (AY (LI— (—BX (M)~~5 I N (T~ MA1+ 8Y (~’)*COS (TPMA )fl.GT .11.OE—2) GO TO 130
A B I L ) = M
GO 10 140

130 CONTINUE
140 CONTINU E

C
C
C BEGiN BRANCH AND B O J N D
C
C
C ZERO OUT RESTRICT ION M A T R I X

DO 160 L 1,LOC
CO 153 M 1,50
R( L , M) = 0

150 CONT INUE
• 160 CONT INUE

C
C
C D E T E RM I NE R VECTOR FOR NODE I

XAB (lè = 0
1 = 0

K = 0
• • 170 1 = 1 +!.

I F  (L.E0.1Ot) GO TO 490
00 150 L 1,50

• LAST = L
iF RcJ,L).EQ .O) GO TO 190
IF ( L . E Q . 50 )  GO TO 510
~(I,L) = R ( J , L )

• 180 CONT INU E
190 IF ( I .EQ.2)  K = 0

I~ ( K . EQ . 1)  GO TJ 200
R (i,LAST ) = — X A B ( J )
(= 1
GO TO 210

200 R U, L . A ST )  = A E ( X A B ( J ) )
l < = 0

• C

C ADJUST TARGET VALUE S TO EXC LUDE TARGETS IN RU )
21) 03 230 L=],50

IF (R(I,L).EQ.O ) GO T~ 240IF (2(I,L ).GT.3) GO 10 220
~VA(— R (1,L)) =V 4 (— R( I,L ))
VA (—PiI ,L)) = —l000C .O
CO 10 23)

220 TVB (R( I,L)3 = ‘ I B ( R ( t , L ) )
V3(R (I,L) ) = —10000 .0

230 CONT INU E

~ CALL OP FOR A AND B
240 ICHh ( = I.

CALL OP (FE AS ,VA,ICHK ,MN ,NBJMSS, P 4 T H ,~~,COUN T)
VPA = W
N P A  = COUNT
CD 250 L=1,N~~4PA ( L )  = PATfflL )

250 CONTINUE
I C H K  2
C A L L  OP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IF (I 3PT.E~~.1~ GO TO 350
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C
C RES ET TARGET V A L J E S

00 270 L=1,50
IF (R (l,L).E Q.0) GO 13 ~80IF (R (I,L).GT .O) GO TO 260

• VA.(—R (I,L)) = TVA (—R (I,L ))
• GD TO 270

260 ~B (R(I,L) ) = TVB (R (1,L ))
• 270 CONTINUE

C
C
C COMPUT E XABU ), VINT (I), AN ) UB(I)

280 XMAX = 0.0
SUM = 0.0

• DO 3C 0 L 1,NP .A
CD 290 M=1,COUNT
iF (48 (P4 (L)).NE.PATH(M)) G O  TO 290
SUM = SUM+VA (PA(L ))
IF (VA (PA (LH .LE.XMAX) GO lD 303
~M4~ = VA (PA (L))

• 
• X 4B (1) = P4 ( L )

GO TC 300
290 CON T I N U E
300 C O N T I N U E

V I N T ( 1 )  = SUM
U8( I) = VPA +W
IF ( I . E Q . 1 .A N D .V I N T ( I) . E Q .J .Q ) GO T O  340

• IF (K.EQ. 1) GO TO 17C
U B ( J )  = 3.0

C
CHOOSE ~AG HES T UPPER SOUND OF ALL TER M INAL NODES

• C ANJ CHECK IF IT IS F EAS I BLE
UBMAX = 3.0
03 310 L=1, L-• IF (U8 (L) .LE .UBMAX ) GO TO 313
UBM AX = JB (L )

310 CONTINUE
IF (V I N T ( J ) . EC . 0 . 0)  GO TO 330

C
C

• C CHECK FCR T I E  FOR HIGHEST UPPER BOUND.
C IF THERE IS A TIE, IS A T FEA S ISLE?

CO 320 L 1 , I
IF (UB (L).NE.’JB (J)) GO TO 320
IF (‘IINT ( L).NE.3.O) GO TO 320
J = L
GO I C 333

320 CO N T I N U E
GO T O 17 0

C IF N E C E S S A R Y , RECOMP JTE 3PTIM~ L ~ AT -i
330 NODES = I

IF (1.EQ .J) GC TO 350
1 = 0
IJPT = 1
GO TO 213
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C PRINT OUT THE NUMBER OF BR ANCH ING NOL)ES, THE OPTIMAL
C VALUE, AND THE O PTIMA L PATHS .
340 NODES = I
350 WRITE (6,360)
360 FORMAT (‘1’) -

WR ITE (6,370) NODES
370 FJR f~AT ( ‘  OPTIMAL SOLUT iON FOUND 1N ’,13, ’ BRANCHI NGS ’ ,

1 / / I / f / / I)
WRITE (6,383 ) U8 (J)

• 380 FOR MAT ( ‘  THE VALUE OF THE OPTIMAL SOLUT ION IS ‘SF12.4
1,/I//I//I)
~4R1TE (6,390)390 FOR~ AT ( ‘  OPTIMAL AIRCRAFT PATHS ’,f/f)
WRITE (6,400)

403 FORMA T (ÔX, ’AIRCRAFT A ’,/// )
WRI T E (6 ,4 10)

• 410 FORMAT (4X ,’X’ ,12X ,’Y’,//)
DO 420 1=1,NPA• X A ( i )  = AX (PA (I))

• V A I L )  = AY(PA( L ))
WR IT E (6 ,430)  X A ( I ) , Y A ( 1)

• 420 CONTINUE
• 

• 430 FORMA T (LX ,F8 .2,5X ,F8.2,f )
• WR I TE (6,440)

440 FOR MAT (///,oX ,’AIRCRA FT S ’ ,/ f / )
WRiTE (6,410)
DO 450
X B (l ) = BX (PA TH (I))~~COS (TP~i4 I8Y (2ATH(I))*SIN (TPM4)

-
- : ‘vB(I ) = — Bx (PATH (I I*SIN (TPM4)+EY (~~ATH (1))*COS (l~ MA)

WR ITE (6 ,4 3 0 )  X B ( I ) , YB ( I)
45 3 C O N T IN U E

C
C
C PLOT T HE TARGET S AND THE PATHS

w RITE (6 ,4 6 0 )
460 FOR MA T (‘1’)

C A L L  PLOT P ( A X , A Y ,MN, 1)
CALL  PLOIP ( X 4 , Y4 , N P A , 2 )
CALL  PLOT P (X E, Y B, COUNT ,3)
WRITE (6,47 0)

• 470 FORMAT (///,40X, ‘PA TH OF A IR C R AFT A DENOTED BY + ‘
W R I E (6 , 4 8 0 1• 480 FORMAT (f,~~~X , ’PA TH CF A i R C R A F T  S DENOTE D BY *‘ ,i/ / f / I / I / f/ / I )

• 03 TO 530
C
C
C CHEC K FOR 3I .MENSIGNAL ERRORS
493 WRITE (6,500 )
530 F O R~~AT (Il/f ,’ REQUIRED BRANCHIN G EXCEEDS 133 NODES ’ ,1//I,)

GO TO 530• 513 ~R I1E (6 , 5 2 3 )
523 F3RMA T (I / / i, ’ R E S T R I C T I ON V E C T O R  EXCEEDS 50’  ,// /l )

• 530 STCP
E N D
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SUBROUTINE OP (FEAS,V,ICHK,MN ,NBOMBS,PA ’H ,W ,CCUNT )
C
C THIS SUBROUTI NE CCMPUTES THE 3PTI MA L PAT I1 FOR A S I N G L E
C A iRCRAFT TRAV ERSING THE TARGET AREA .
C
C

REAL VVLL OO,20),V(100),CVAL (20)
iNTEGER P (100 ,20),FEAS (100,100),MOVE (20),PATH (100 )
I N TEGER C O U N T
CVAL (1) = 0.0
MOVE (l) = 200
DO 20

= V(1)
= 200

2 0 CON T I N UE
C
C

• C I IS THE TARGET THAT THE A IRCRAFT IS AT PRE SENTL Y
00 70 L=2 ,MMV V ( I , 1) = VU )
CO 30 K=2 ,N BO MBS
CVAL (K) = 0.0• MJVE (K ) = 200

• V V ( I , K )  = VU )
30 CONTiNUE

IM1
C
C
C J IS THE TARGET THAT THE A IRCR A FT MAY GO TO FR O M I

• 00 50 J = L , I M 1
• IF (IC HK.EQ.3..AND.FE AS (I,J).EQ.O ) GC TO 50

IF U C~-fK .EQ.2 .AND.FEAS (J,I).EQ.0) GO 13 50
C
C 1< 15 TH~ NU MBER OF BOMBS L E F T  AT T A R G E T  I

DO 40 K2,NBOMB S• IF ((VV (I,K)+ ~~V (J, (K—1 ))).LE .CVAL (K)) GO TO 4C
= VV L I,K)+VV (J,(K—1))

• MOVE (K) = J• 40 CONTINUE
53 CONTINUE

• 
• 03 60 K=t ,NB O MB S

• IF (CV AL (K).NE.0.O) VV (I,K)=CVAL (K)
P(I,K) = MCVE (K)

• 60 CONTINUE
• 73 CONT INU E

C
C
C COMPU T E FIRST TARGET

CV AL ( N8O MB S )  = 0.0
DO 80 J=I ,MN
IF (VV(J,t’~8CMeS ).LE.CV AL (N8OM8$ )) GO TO 30
C V A L ( N B O M BS )  = VV(J,NB O MBS)
MOVE (NBO MBS I = J

80 C O N T I N U E
w = CVAL ( NBOMBS)

C
C
C COMPUT E OPTI MAL PATH

• PA T H ( j )  = MOVE(NBOMES )
C O U N T = I
LE FT = N B O M B S +1
CO 90 1 2,MN
COUNT = I
LEFT = LEFT — I.
PATH (I) = P((PATH (I—1 )),LEFT )
I~ ( P U P A T H (  I )), ( L E F T — I .  ) )  .EQ. 300 )  RETURN

90 C O N T I N U E
R E T U R N• END
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APPENDIX C

THE COMPUTER OUTPUT

GPT IMAL SO LUTIO N FOUND L N 7 E Q4 ~~C~~(NGS

THE V A L L E CF THE GP T I ~~A L  SC~~L T I C ~ I S 21é.223 l

~~T ( MA L  A IRCRAFT PATHS

A I R C R A F T  A

x Y

‘.7.71 68.91
31.71

t11.~~1 297.32
3 I7.C5 445.82
6d9 .Q~ 886 .ZZ

7~~4.S 6  C6f .23

A I R C R 4 F T  e

‘V

154.25 411.59
4~1.i9 285.44
s24.49 262.81
3 8 3 .66  378.05

324.02
209.62 3e~~.97
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