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/= rf ABSTRACT

In [1, 125] and again in [3] Jesse Douglas established the following

Theorem 1. Let

N = (zo,zl,z A2, (z = zv),

2 ngitng v+5

- 3 ]
be a closed skew pentagon in R, viewed as a vector space. Let

1
' = — =
2 2(2 42 * 2,.5) (v=0,1,2,3,4)

be the midpoint of the side [zv—2'2v+2] which is opposite to the vertex z .

For each v determine on the line joining zv to z; , the points

fl,f2 , such that
VL
l_l_]' [ e 2_|__1 []
£, z) = 7m (zv zvl fv B, | (zv z )
Then
1 Lol
I = (fO fl f2 f f )
is a plane and affine regular pentagon, and
2 420 2 2
n = (fo fl f2 f )

is a plane and affine regular starshaped pentagon.

By an affine reqular (starshaped) pentagon we mean an affine image of a

regular (starshaped) pentagon.

It is shown here that the natural and inevitable source of Theorem 1

is the finite Fourier series of five terms. The affine regular pentagons ||
and ﬂ2 represent essentially the harmonic analysis of the pentagon ||

; bt 3 : . .
Placing the origin 0O of R in the centroid of the vertices of 11 , the

complete harmonic analysis of I is summarized by the relation
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The Figure 1 shows a 2~dimensional illustration of Theorem 1, but this
gives only a faint idea of the appearance of a 3-dimensional structure. The author
made a 3-dimensional structure out of 20 thin wooden sticks, and was struck by its
appropriateness as a source of outdoor sculptures.

Theorem 2 (§4) describes the analogue of Theorem 1 for skew heptagons in RJ.
Figure 3, of §5, shows a 2-dimensional illustration of Theorem 2. A 3-dimensional

model would be very desirable.

AMS (MOS) Subject Classification: 42A12
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Significance and Explanation

It is shown that a beautiful theorem of Jesse Douglas, of Plateau :
problem fame, on skew pentagons [3], should be derived by using the so- 4
called finite Fourier series. Douglas' result (stated as Theorem 1 in our
Introduction) states that in a certain figure formed of ten straight lines | 3
in space, there appear two pentagons nl and H2 which are plane pentagons

and affine regular, meaning the following: nl looks like a regular pentagon ! i

which is viewed for some distance (slantingly) in space. Likewise H2 looks 3
like a regular starshaped pentagon seen under similar circumstances. The {
entire figure depends on the arbitrary choice of a skew pentagon I in space.
Our Figure 1 shows the case when the pentagon II , having the vertices

Zy1Zy 12502902, is in a plane. This, however, gives only a faint idea of the
aspect of a 3-dimensional structure. The author made a 3-dimensional structure
out of 20 thin wooden sticks, and he was struck by its appropriateness as a |
source of outdoor sculptures. Theorem 2 (§4) describes the analogue of
Theorem 1 for skew heptagons (7-sided polygons) in space. Figure 3, of §5,

shows a 2-dimensional illustration of ‘Theorem 2. The author is now making an

illustration of Theorem 2 in space.
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THE FINITE FOURIER SERIES II.

THE HARMONIC ANALYSIS OF SKEW POLYONS
AS A SOURCE OF OUTDOOR SCULPTURES

I. J. Schoenberg
;\\‘T:)

1. Introduction. The ptev1ous paper [4] on the subject of the finite Fourier ser:es)

(f.F.s) dealt with some knowngand some new applxcatxons to problems of elementary geometry,

In the present second paper» applxed'a.t)to a boauetfu}theorem of Jesse Douglas ﬂ?’on skew
pentagons in space. It is shown here that Douglas' theorem amounts to the graphical harmonic

analysis of skew pentagons and that it is also the source of striking outdoor sculptures.

[

This last opinion is shared by two great art experts, Allan and Marjorie McNab, whom I wish

to thank for their encouragement.

The case of a pentagon is discussed in §§2 and 3. Again with possible sculptures in

mind, we present in §§4 and 5 the harmonic analysis of a skew heptagon.
The theorem mentioned above is as follows. (See Figure 1).
Theorem 1. (J. Douglas). Let
B -

(1.1) n = ( 'z ,24), (z = zv) i

i L L V45
3
be a skew closed pentagon in R , viewed as a vector space. Let

X
(1.2) z:) = E(z\,+2 + zv-Z) vi=0,1,2,3,4)

be the midpoint of the side [z

1 which is opposite to the vertex =

For each v determine, on the line joining zv to z; , the points ft,

that
I el el s ke bl i
€1:3) fv zy 7 (zv zv) ’ fv zv - (z; zV) <
then
k IS R 1 gl |
(1.4) nm = (fO'fl'f2'f3'f4)
is a plane and affine reqular pentagon, and
2 AR ST B~ e T
1<5) n = (fO'fl'fZ'f3'f4)

is a plane and affine reqular starshaped pentagon.

v-2'zv+2 v’

f2
v

such

“vonsored by the United States Army under Contract No. DAAG29-75-C-0024.
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By an affine regular (starshaped) pentagon we mean an affine image of a regular J

(starshaped) pentagon.

Theorem 1 was easy to verify, but was not easily discovered. 1In several papers [1],
(21, (3], Douglas thoroughly explores these problems. He uses the classical eigenvalue
properties of cyclic (or circulant) square matrices. Theorem 1 is stated as an example
of general results in [1, 125], and is also proved directly in [3], with a short ad hoc
proof which does not seem to be particularly transparent. The author's contributions go in A
two different directions.

1. The natural foundation of Douglas' theory seems to be the finite Fourier series.
To be sure, the f.F.s. is essentially equivalent to the properties of cyclic matrices used
by Douglas. However, it is shown in §2 that if we invert the f.F.s. for a pentagon, not
in its usual complex form, but in its so-called real form, we are inevitably led to Douglas'
Theorem 1. From this point of view Douglas' idea easily generalizes to the harmonic analysis
of skew heptagons in R3 (Theorem 2 of §d4).

2. The author constructed out of 20 thin wooden sticks a 3-dimensional model, well
over two feet in size, illustrating Theorem 1. The appearance of the plane affine regular

1 2
pentagons ! and 17 was expected, but enjoyable just the same, especially as they lie
1 2

in two different planes. For contrast, the sides of the pentagons 1, II", II7, were
painted in three different colors. The shape of the entire structure, i.e. ignoring rigid
motions, depends on 9 real parameters. This diversity and total lack of symmetry allows
for artistic effects and makes the presence of the affine regular pentagons more striking:
Order out of chaos. Made of metal bars and of a more heroic size, it would provide a
striking outdoor sculpture. Our Figure 1 shows the case when the pentagon |l , having the
is in a plane. This, however, gives only a faint idea of the

vertices zo,:l,:z,z‘,

41
aspect of a 3-dimensional structure.

3

We also construct a 3-dimensional illustration of Theorem 2 out of 63 thin wooden
\ y
sticks. Based on a skew heptagon [, it shows the three affine regular heptagons 11, 1,

3 N ;
, painted in three contrasting colors. This model is yet to be shown to the art experts ¢

for their comments on its suitablilty as an outdoor sculpture. Our Figure 3} shows an ex-

ample when the heptagon 1 (?0"1""'50) is in the plane.
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2. Apxeet of Theoxem 1 for pentagong 0. An the complex plang, 1 T wo ca
consider all symbols rv.zs.(t.(: , of Thearem 1, as complex numbers, With . exp (271

the f.F.s. of the z is the expansion

(2.1) T

(R
N 0 i S

Cow ; EA § - \

\:..\. + \_:«.\. Sa¥, {\ R sn &l

where the f.¥. coefficients arve given by the inverse formulae
v

-2 -1 -4
+ 2.0 + 2w +2 j S
b S

2.2) TvEleg v R T

v

)
lu G

Both formulae extend the definitions of (&) and (L) to periodic sequences of period S,
v U

Since 83 =Ly ¢ Eu ™= ¢ p * Ve may rewrite (2.1) as
=1 A -2

(2.3) o= L& (Bow % Tow )b e * g aw )
1% i R

¢ ) =2\

which is the so-cailed real f.¥F.s. of the (:v\' Writing
. = | -1 i | 2 =2
2.4 f = + T, ' Gat AR

{ ) v 1% v e o e TR

we obtain the final formm of the f.F.s. as

2.5 TR N N L

( ) U Rt \ \

By (2.2) {, is the centroid of the =z . Selecting this centroid as the origin O of the
2 \

complex plane, (2.5) simplifies to

2 | ot |
(2.6) . wig % ¥ (v = 0,.0..,8.
v \ \\
Introducing the two new pentagons
(2.7 =g ama e ted)

we may represent the pentagon I = (zv\ in the form
(2.8) Tell” ¢+ 1

The simple nature of the pentagons (2.7) is shown by the following statoments:

(2.9) It is an affine regular pentagon,
Al
(2.10) 17 is an affine regular starshaped Pentagon.
: d 3 . g =1
A proof is immediate: Setting in the first relation (2.4) AT T RS gy WAd bi,
\ \
L_‘ = ¢+ di, we find that
P AN v
X = (atc)oos == ¢+ (=bed)sin ——
v 5 S
LAY Jnv
y\‘ = (b¢ed)cos = + (a=clain <=
and (2.9) is established. Replacing in the right sides v by v,  we obtain (2,10,

So far we have only made general remarks on the €,.F s, of § terms which veadily

extend to the series for X terms. To obtain Theorem ! we want to invert the veal .0,

S

L

Gk

o




(2.6), i.e. find the individual terms ft and fi . This is where Douglas' idea comes in.

From (2.3), with Eq ™ 0 , and writing o = Wy, we obtain

2 =1 =2 2 =1 -2
By ™ (Clwvw + C_lwv w )+ (Czwvm + T, (it

=2 =1 2 2 =2 =1
ez ” (clwvw TR, ) ¥ (c2wvw t B, @)

and therefore

p! L, 2 -2 - 1 -1 2
z; 9 5(zv+2 % zv-z’ - 2(w i )(Clwv & C-lwv ) e 5(w L )(Czwv %

But then, by (2.4), we have

(2.11) 2! = fl cos L. + f2 cos &% 8
v v 5 v 5
Since cos(4n/5) = -cos(n/5), all that we have to do now, is to invert the system of
equations
2z - f1 + f2
(2.12) el M e 2
S 1 i 2 2m
2' =-f cos—+f cos — .
v v e v 5

Since cos(n/5) = (1+/§)/4, cos (271/5) (—1+/§)/4, we readily find the solution of (2.12)

[}

to be given by

Shal 1, ,, 1-/8
(-1 13) f\) ., (-Vs z\) az (l & ; S )z\’). 2
et £2 - (1 S (R 1\2-).ﬂ

v 75 v 75 %y 20 -

Introducing the new points

LR 1
fv =-ZE2, + (1 + 7;) z; ’
(2.14)
fz = . R A s )z!
v 5 %y V5 oy

we obtain the f.F.s. (2.6) in the form

_1-/5 & . 1+/5 £2

L v 2 v 2 v

Let us now establish Theorem 1 for the case where I ¢ € . From the first relation

(2.14) we find that

D BT e i
(2.16) fv 2y =T (zv z“) =
while the second relation (2.14) shows that

2 ,__1 ¥ =
(2.17) fv L. 7= (zv zv) s

(2.16), (2.17), are identical with the relations (1.3) that we wished to establish.
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Why are the polgons ‘.‘.1 and 1" , Qefined by (1.4) and (1.%), affine reqular?

(2.13) and (2.14) we find that

. /1=vS
(2.18) gt - 1S5,
\ A -

£ = ¢

\'

2 /1448
RS

From

while we know by (2.7), (2.9), (2.10) that the polygons ‘11 and 117 are affine reqular.

A proof of Theorvem 1, for the case where

"

T

’

follows fram the relations

(2.18) .
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3. A proof of Theorem 1 if Il ¢ R™ ., We point out first that the definition of

the pentagons (1.4) and (1.5), by the relations (1.2) and (1.3), remains valid in any

real vector space, in particular for R3 . The only statements still in doubt are (2.9)
and (2.10).
Let
ST S
(3.1) P o R R R

denote the space figure obtained by (1.2) and (1.3), and let

(3.2) F - (. Hl ,H2 P = (I ,Hl ,Hz )
Xy xy' ‘xy' xy Xz xg" xe’ xe

be its orthogonal projections onto the coordinate planes xOy and x0z , respectively,

Since the construction of F 1is affine invariant, it is clear that we can apply to the

plane figures (3.2) the results of the last section, in particular

(3.3) the pentagons Hl and nl are affine regular.
xy — 'xz
We now appeal to the following most elementary

Lemma 1. If the space pentagon

(3.4) Hl m e oY B ) (v =0,1,2,3,4
v \Y v

has plane projections

S 3 e
(3.5) ny = (xv.y“) i sz = (xv,zv)

which are affine reqular pentagons, then nl itselrf is a plane pentagon which is affine

regular.
Proof : The affine regular pentagons (3.5) admit representations of the form
) 2 N )
X = a cos an + b sin 3% % (% = a' cos &I 4 b' sin 253
(3.6) ' 2 g g~V s g
& = 21V ¥ s 2n\v 5 e s 21V S e 2m\v
{ y, = ¢ cos == sin =, ks B sin =g

On comparing the first two equations of (3.6) we conclude that we must have a = a' ,

b=Db", and so
21V ., 21V
xv = a cos 5 + b sin T
2 vo &RV
3:7) y, = ¢ cos -§3+ d sin Tl
z = e cos 25y 4+ £ sin 3.0 .

v 5 5

e - T




T ; :
It follows that I is an affine regular pentagon in the plane defined by the obliqgue

coordinate system of the two vectors u = (a,c,e) and v = (b,d,f). This complete:
our proof of Theorem 1.
1 2
| Remarks. 1. The two pentagons |l and ! of Theorem 1 lie in different planes,
T
but have as common center the centroid 0O of the vertices of Il . The problem of choosing
I

so as to maximize the artistic effect of the entire structure is not mathematical and is,

of course, hopeless.

2 Douglas' fortunate idea is to construct the pentagons and |1 , and not the

! pentagons
| (3.8) I I R
i which provide the final harmonic analysis

(3.9) SR L

according to (2.8). This idea simplifies considerably the final construction, because

Y

finding the pentagons (3.8) themselves would require two homothetic images with center 0 ,

a cumbersome complications.

-




4. The harmonic_analysis of a skew heptagon. Our application of the f.F.s.

to Douglas' theorem readily suggests the way to generalize his result to closed skew poly-
gon having k vertices. Having in mind further outdoor sculptures, we restrict our dis-
cussion to the case when k = 7 , hence

(4.1) n= (zo,zl,...,ze)

is a heptagon. We have omitted the case when k = 6 for the reason that regular star-
shaped hexagons are not particularly interesting. We commence our discussion by assuming that
(4.2) net,

when the zv are complex numbers. Their f.F.s. and its inverse formulae are
6 6

o a 1 -a =

(4.3) Z = Z camv . Cv 7 Z z w (vi=10,...76)

a=0 a=0
where w, = exp(2mv/7) . Again we assume that z0 + zy TE Serien G zg = 0 , hence CO =0,
and folding the f.F.s., as in (2.3), we obtain

8 -1 2 -2 3 -3
(4.4) z = (o + L j07) + (L + L0 )+ (L + T 0 7)

The midpoint of the side of I that is opposite to the vertex z, is
s 1
4. e =
S 2= 3 Cog * Eyaa !
However, now we also need the further midpoint
(4.6) z" = l-(z + z )
G 2 Tw2 v-2"
From (4.4), and writing wy = w , we obtain
£3 -1 *3 20 %] -2 +1 3 2 -3 ¥2
= @ + 0 + (g
Z 43 (cl WY + T_qu, Y (czmvm o0, © ) (53wvw + C_Bwv w ),
whence
-3 -1 . 2 =2/ .
(4.7 2 o W fl+m+m f2+m + w f3,
. v 2 v ¢ v 2 v
if we write
‘j =TI j -j i = . =
(4.8) fv ’jmv + L_jmv (5 1,2,3 5 v Qe eenB)e
Likewise we obtain from (4.4) that
! i 2 -1*2)+(( - BT
vi2 QW W L0, W W W S

whence

P — =3 -1 .
(4.9) Zn o= W + fl S S f2 sotw f3

2 2 2 v
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By (4.4) and (4.8) we see that the real f.F.s. of Il is

= e 3

(4.10) z = fl + f + £ .
v \Y) v \

As in the case of pentagons, the analogue of Douglas' theorem will arise

the 3x3 system of equations (4.10), (4.7), (4.9). Writing

: s o
(4.11) fy 2w + ) = cos S, @m1a9.
We are to solve the system
3 = =3
z = f1 + £ + £
\Y v v v
1 2 >3
2 " = 0 ) )
(4.12) EN Lafv + Llfv + Lva s
ey e 23
" = \ > Y
z) szv + L3fv + Llfv
In terms of the inverse matrix
A B ) g L
1 1 1
v = ) y )
(4.13) Az 3, C2 3 8 LQ
3 y
A3 B3 C3 nz LB Ll
the solutions are
i i
(4.14) £y - Aj L + Bj z; + Cj z; ’ 3 =1,2,3).
By (4.8) it is clear that the three heptagons
(4.15) 1w S, RD. B0, 0 BT £5, £0). 43 = 13,30,

are affine images of the three regular heptagons

2.3 ¢ 5 6 2 4 6 s
Liwiw s 0,0 0), (Lo ,0 0 yw,0 yw )
(4.16)

3 6 >.5 4
(o ,w WIS e 8 g

respectively. In terms of the heptagons (4.15) we may write (4.10) as

(4.17) = ﬁl + ﬁz + ﬁB

However, the heptagons (4.15) are not the ones that we wish to construct.

following Douglas' lead, we introduce the weights

A, B, ¢,

(4.18) a, == , B, ==, y, =-L, where s, =A +B, +C,,
B 3, 3 8 3 3 3 3

and want to construct the heptagons,

(4.19) e teg, £, 0, 3, B £5, £, U = 1,29,

-~10=-

if we invert

Rather,




having vertices given by

(4.20) f\‘. - ay 2 [ H, r\'y [ Y 7;“ " i 1;2,:3),
We state our results as
Theorem 2. Let
(4.21) N - (:o,zl,...,:h)
3
be a skew heptagon in R, and let
1 X
) Vo e Wom e
(4.22 & "2 (z\'.‘ ¢ z\‘_‘), Bl =3 (7\‘” \‘_.‘)

be the midpoints of appropriate sides and chords of 1l . By (4.11), (4.13) and (4.18) we

define the three sets of numerical weights

(4.23) a,e By e R -1, -1,2,3)
g St L T L T -
In each of the seven triangles
(4.24) Tow R e, 1Y 0 = Qe 8)
\ \' AY A
we define the three points
(4.2%) (l, £, f‘
v N v

as _the centroids of T, with the three sets of woights (4.21), respectively. Fquivalently,

(4.25) are defined by the equations (4.20). Then the three heptagons

. P R [ 1 S [
4.20) I (€5, £ v far for £

e, 8, ¢ Yo (3 =1,2,3),

are plane heptagons and they are affine images of the regular heptagons (4.16), respectively.

Oour Theorem 2 is, of course, fully established if we assume that 11 ¢ T. That 1t

]
remains true if 1 ¢ R follows from reasonings similar to those used in extending Theorem

2 } : . 3
1 from R° to R, in particular from the lemma: 1f a heptagon 11 in R, has two attine

regular plane projections, then (I itself ix plane and affine regular.

PR
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The construction of a space model illustrating Theorem 2. By this we mean the

construction of the figure
(5.1) r = (nut,n%,nh,

where 11, Hl, Hz, ﬂ3 , are the heptagons of Theorem 2. This could be done graphically on

a sheet of paper by the methods of Descriptive Geometry. However, we have in mind a 3-

dimensional structure made out of thin (wooden) sticks.

For this purpose we need the numerical values of the weights (4.18). With sufficient

accuracy for any physical construction, these are as follows:

oy B1 Yy -.08627 .69859 .38768
(5.2) a 82 Yy = .78485 1.08626 -.87111

ag 83 Yy .30141 +21515 .48344
(5.3) Sy -1.24697, s, = .44504, s, = 1.80193

3

The construction of the 14 points z; and 2z" Dby the formulae (4.22) presents no

difficulties. These also determine the 7 triangles (4.24).

In the plane of each Tv we are now to construct the centroids (4.25) for the three

sets of weights (4.23). Here we use the following lemma which is too elementary to require

a proof (The reader is asked to supply a diagram).
Lemma 2. Let

(5.4) T

(Z, z|’ z")

be a triangle, and let

(5.5) f=oaz + Bz' + yz"

be its centroid for the weights a,B,y, with a+B+y = 1.

If h denotes the intersection of the line joining =z

to 2z' , with the line joining

z" to £ , then the relations

(5.6) h-z' = p(z' - 2z) , f-h = og(h - 2")

hold, where

(5.7)




[ p—

— ! e ; ——————— R

e e

Figure 2

We apply Lemma 2 to each Tv with the sets of weights (5.2). We drop the subscript v |

. and show in Figure 2 the location of the centroids fl, f2, f3 in the plane of the tri-

angle T = (z,2',2"). Using Lemma 2 and the numerical values (5.2), we obtain the rela-

relations

A L o le' = &), £l -n'a ul(hl - 2"

5

(5.8) h2 -2z2' = 0y (z' - 2), f2 - h2 = az(h“ -z")
3 3

h3 -~2' = 93(2' -2), f] - h = 03(h3 - %) o

The numerical values of the ratios Oj and oj , given by (5.7) and (5.2), are
hy = .14089 By -.38768

(5.9) by = -.4194¢6 G - 87111
Py = -.58350 U ™ -.48344 .

The locations of the points h! and fj in Figure 2, are drawn to scale. For any other
triangle Tv = (zv,z;,zc) the corresponding diagram is the image of Figure 2 by the affine

transformation mapping T onto Tv.

13-




B e .

Our Figure 3 shows a 2-dimensional illustration of Theorem 2. It shows the three

1 2 3
affine regular heptagons !, ', and II' . 1In order to simplify the drawing it shows only

SE—

the construction of the three vertices
1 2 3

R —

. f { ’
| fl 1 fl
! corresponding to the triangle T1 = (zl, £Y% z;)
T, i |
W, .
- 'ﬂ
i i
L
s
v.
\ |
‘
\\» ¥
]
/
L I 1'
~ /
/ |
. /
/ |
F
/
‘/
/
/
\ /

\

1
/
1, ]
v1
Figure 3
E | -14-
!
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Abstract (continued)

be the midpoint of the side [z ] which is opposite to the vertex 2z .

z
2" Tue2 v

V=

; : TR : i .2
For each v determine on the line joining =z to z' , the points fv,f‘ , such
A T LN S —— \

L T A T
that
tl “g' m—p (g' -1 ), fﬁ -2' =~ 7 (z' = 3 )
\V \ A \ \ \ v } \
Then
e, e, el

is a plane and affine regular pentagon, and

2 2 2 3
" - (25, £, ¢

2 2
e f3' f4)

-
B
-

is a plane and affine regular starshaped pentagon.

By an affine regular (starshaped) pentagon we mean an affine image of a regular

(starshaped) pentagon.
It is shown here that the natural and inevitable source of Theorem 1 is the
finite Fourier series of five terms. The affine regular pentagons Hl and ﬂ2

represent essentially the harmonic analysis of the pentagon [I. Placing the origin

3 . . -

O of R in the centroid of the vertices of I , the complete harmonic analysis of
Il is summarized by the relation

1-V5 1 1+/8 2

+——5——ﬂ

M= =2

The Figure 1 shows a 2-dimensional illustration of Theorem 1, but this gives
only a faint idea of the appearance of a 3-dimensional structure. The author made
a 3-dimensional structure out of 20 thin wooden sticks, and was struck by its appro-
priateness as a source of outdoor sculptures.

g 3
Theorem 2 (54) describes the analogue of Theorem 1 for skew heptagons in R .

Figure 3, of 5, shows a 2-dimensional illustration of Theorem 2. A 3-dimensional

model would be very desirable.




