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ABSTRACT

This report presents a group-theoretical interpretation of the structure of
certain completely integrable Hamiltonian systems. These systems generalize the
nonperiodic Toda Lattice system. Since all of them owe their special properties
to the same group-theoretical mechanism, we call them systems of Toda type.

This mechanism also provides a foundation for understanding many other completely
integrable systems, including the Korteweg-de Vries equation, which will not be
discussed here. We give an invariant definition of the class of systems of Toda
type, and a method for explicit integration of all systems in this class in terms

of rational combinations of linear exponential functions.
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SIGNIFICANCE AND EXPLANATION

It is very unusual to be able to give explicit solutions of nonlinear dynami-
cal systems in terms of well-known "elementary" functions. When this is possible,
some special underlying algebraic structure of the dynamical system is usually
responsible. Often a continuous (Lie) symmetry group appears in such problems, and
its role is worth understanding, for application to other problems which might bear
a similar relation to group theory. 1In this report we describe how certain con-
structions in the representation theory of Lie groups enable one to solve a number
of differential equations, including the well-known Toda Lattice equations, in terms
of rational functions of exponentials. Some of our results also illuminate the
behaviour of a number of other integrable dynamical systems, among them the Korteweg-

de Vries equation and the Euler equations for motion of a rigid body.
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ON SYSTEMS OF TODA TYPE

W. Symes

§1. Introduction

This report presents a group-theoretical interpretation of the structure of certain com-
pletely integrable Hamiltonian systems. These systems ({1}, [2])) generalize the nonperiodic
Toda lattice system. Since all of them owe their special properties to the same group-theoreti-
cal mechanism (Theorem 2.2 below), we call them systems of Toda type. This mechanism also pro-
vides a foundation for understanding many other completely integrable systems, including the
Korteweg-de Vries equation, which will not be discussed here. We give an intrinsic definition
of the class of systems of Toda type, and a method for explicit integration of all systems in
this class in terms of rational combinations of linear exponential functions.

Our results amplify and extend in various directions the work of Moser (2], Adler (3], (4],
Kostant [5], and others.

The study of completely integrable systems proceeds in three stages: (i) identification
of the symplectic structure which gives the system its Hamiltonian character; (ii) identifica-
tion of first inteqgrals (action variables or constants of motion); (iii) identification of a
complementary set of variables, and computation of their evolution under the various Hamiltonian
flows associated to the first integrals, if possible in terms of “elementary" functions. This
program was the stuff of early mechanics, and has long since been abandoned, for very good
reasons, as an approach to the study of general Hamiltonian dynamics. The systems considered
here, however, admit this approach because of their basic connection with certain Lie groups,
which provides a remarkable amount of structure not otherwise to be expected. In fact, each of

the above steps, as carried out below, is the reflection of group-theoretic circumstances.

(1)  The symplectic manifolds on which the systems are defined are orbits of the coadjoint
action of a Lie group G on the dual of its Lie algebra, with the natural symplectic structure.

This observation, which p'7ys a crucial role, is due independently to Mark Adler and

Bertram Kostant.

Sponsored by the United States Army under Contract No. DAAG29-75-C=0024. This material s
based upon work supported by the National Science Foundation under Grant No. MCS78-09052%.




(i1) The constants of motion are coadjoint-invariant polynomials of a larger Lie group L in
which the Lie group G of (i) is embedded as a subgroup; their involution is equivalent to the
existence of a complementary subgroup H (Theorem 2.2).

This result is due independently to Kostant, and generalizes a theorem of Adler (3]. 1In-
deed, the work reported here began as an attempt to reconcile Adler's results with some puzz-
ling computations in [6].

Points (i) and (ii) are explained in section 2.

(1ii) On certain orbits, the coadjoint action of G coincides, along the common level sets of
the integrals (ii), with an action defined by the inclusion G ¢ L. Under a natural nonde-
generacy hypthesis, these turn out to be exactly the orbits on which the L-invariant poly-
nomials provide Lagrangian polarizations, i.e., completely integrable systems (Theorems 4.3,
4.5). This result is explained in §4, and generalizes a well known fact about Jacobi (sym-
metric tridiagonal) matrices, which are in a natural way a coadjoint orbit of the group of
lower triangular matrices: any two Jacobi matrices (with discrete exceptions) which have the

same simple spectrum, are similar by a lower triangular matrix.

(iv) The class of systems of Toda type is defined as follows. The Lie algebra 2 of L is

a normal real form of a complex semi simple Lie algebra m. The Lie algebra h of H is the
+1 eigenspace of a Cartan involution of £, 1i.e., the intersection of a compact real form
of m with 2. The Lie algebra g of G is the complementary (to h) Borel subalgebra in

2. The dual g* is identified with E} in the natural way (via the Killing form). Let

¢ c h} be the corresponding Cartan subalgebra. A coadjoint orbit O of G in E} is called
a Toda orbit if (i) it contains a regular point a ¢ ¢ (this condition is the guise assumed in
this setting by the nondegeneracy condition mentioned in (iii) above); (ii) dim O = 2 rank R&.

{l:

A system of Toda type is a Hamiltonian system on a Toda orbit O in h™, with the restriction

of an L-invariant function to ( as Hamiltonian.




&
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In §5 a set of coordinates (not quite canonical) is constructed on each Toda orbit. Half

of these are L-invariant functions, which generalize the eigenvalues of Jacobi matrices. The

other half are analogous to the norming constants of Sturm-Liouville Theory.

In §6 the representation theory of U is used to describe the trajectories of systems of
Toda type. A scheme 1s given based on the results of section 4, which enables the matrix ele-
ments of representers of trajectories in each irreducible representation of € to be expressed
as rational functions of linear exponentials in "time" with coefficients rational in the matrix
elements and spectrum of the initial representer.

For this last stunt, we use a Euclidean structure on each irreducible representation space,
for which the Cartan involution on R goes over into metric adjoint. In an appendix to §5 we
give a completely algebraic proof, which seems to be new, of the (well-known) existence of such
a metric, by way of the Verma module construction.

We mention several ways in which the theory developed here falls short of what has been
achieved by others in specific examples. First, the results of Section 6 amount to a partial
solution, in the stvle of Gel'fand-Levitan (7], of a brand of inverse spectral problem. We
fail, however, to give an a priori characterization of the set of spectral data for all repre-
sentations and all Toda orbits. Also we are able to parameterize only a Zariski-open subset
of the representers of points in Toda orbit having the same spectrum as a fixed point. These
omissions contrast with the satisfactorily complete solutions of the inverse spectral problem
for Jacobi matrices (which form a Toda orbit), described by Moser [2], Golub-Welsh (8], Golub-
de Boor [9], and Case-Kac ([10], on which the present theory is modeled. Kostant (5] has also
given a much more complete treatment of the inverse spectral problem for the Jacobi sets in
split semisimple real Lie algebras. His work includes the treatment of Moser (2] as a special
case (Moser's work in turn seems to qo back to work of Stietjes). Despite these failings, how-
ever, our results suffice to solve explicitly all of the systems of Toda type as described
above.

Also, we fail to explicate the mapping between the coordinates of §5 and the matrix ele-
ments of various representers. It will be clear to the reader that information is needed about

the orbit under the subaroup H of a maximal vector for each irreducible representation of (.,




This matter is related to the problem of characterizing spectral data, mentioned above.

The Jacobi matrices (symmetric tridiagonal matrices with positive off-diagonal entries)
form a Toda orbit (this is explained, for instance, in (3]). Their immediate generalizations
are the Jacobi sets in split semisimple Lie algebras (see {5]), which are the orbits of certain
principal nilpotent elements. The Jacobi sets are the appropriate phase spaces for the general-
ized Toda lattice systems first described by Bogoyavlensky (24]. These are not, however, the
only Toda orbits.

The author has described a 6-dimensional non-Jacobi Toda orbit of the aroup of lower tri-
anqular 4 x 4 matrices of determinant 1, and computed Darboux coordinates and a family of
3 Poisson-commuting functions ((25)). The author has also located a number of other Toda orbits
in the n x n lower trianqular group ({26]);: they appear to be quite numerous. The Jacobi
orbit appears to be the only such Toda orbit consisting entirely of regular elements, however,
although we have not proved this.

It is interesting to note that the basic result on systems in involution (Theorem 2.2
below) has a range of applicability far beyond the class of systems of Toda type, as defined
here. Some finite-dimensional examples, including a very interestina one due to Mumford,
van Moerbeke, and Adler, are described in §3, with detailed matrix computation of various
Hamiltonian vector fields. With slight modifications, this result also yields the various sys-
tems in involution associated with the Korteweg-de Vries equation, the "nonlinear schrdenqer"
equation, the Euler-Arnold generalized rigid body motion, and the equations of geodesic flow on
an ellipsoid: see (3], (11], [(12]. Adler and van Moerbeke [11] use this theorem in the context
of Kac-Moody Lie algebras, in their work on periodic generalized Toda lattices. It also vields
the constants of motion for the sine-Gordon [13) and Kac-Moerbeke [14] equations though with

the wrong symplectic structure.
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§2. A Theorem on Systems in Involution
A Poisson Structure is a pair (M, { }), M a smooth manifold and { } a map
{Y:cTmn xc my »cT(m
satisfying:
(i) { } is antisymmetric and bilinear

(ii) { } is a derivation in each argument

(iii) {F{G,H}} + {H{FG}} + {G{H,F}} = 0 for all triples F, G, H € C (M)

Any H ¢ Cm(M) defines a vector DH field via the prescription

DHF = {F,H}

DH is the Hamiltonian vector field of the (Hamiltonian) function H.

Symplectic structure provides a special instance of Poisson structure. Suppose M comes
equipped with a closed nondegenerate two form w. For any H € C (M) specify the vector field

DH by

and define

(F,H}w = w(DF A DH) .

Then {,}w is a Poisson bracket, and

DHF = {F,H}w s

Poisson structures form a larger class than symplectic structures. Still it is not hard
to convince oneself that any Poisson structure is stratified by symplectic substructures; see
some remarks in [3].

The following class of Poisson structures, studied initially by Kirillov [15], will be
central in what follows. Its relevance in this context was observed independently by Adler [3)
and Kostant [5].

Let G be a connected Lie group over R, g its Lie algebra, g* its dual. To evervy

X € g is associated the endomorphism ad x of g. To every X ¢ G is associated the

=8
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automorphism Ad X of g:

Ad X : y» dL °de(y)

X

where vy ¢ g 1is interpreted as a left-invariant vector field on G and Lx, Rx denote re-

spectively left and right multiplication by X &n G.

Denote by ad', Ad' the contragredients to ad, Ad, that is

ad'x = - (ad x)*

Ad'X = (Ad X 1)+

Thus for a ¢ g* x, ye g
(ad'x(a), y) = (a, [y,x])

The representations ad', Ad' of g, G in End (g*) are called coadjoint.

For a smooth function F : g* » R, define the gradient VF : g* + g by
(@, VF(a)) = dF(a,d), (a,4) € g* x g* = Tg* .

Kirillov's Poisson bracket on g* is now defined by

{F,G}(a) = (alVF(a),VG(a)])

for F,G e Cw(gf). The proof that (g*,{ }) is a Poisson structure can be found in [16],
Ch. 2, as can the following facts:

The Hamiltonian vector field for H ¢ Cc(gf) is

DH(u) = (a, ad'(VH(a)) (a)) .

Obviously DH is tangent to the orbit Og = Oa of G through o (under Ad'). These orbits

are symplectic manifolds: for
- Al = =
Uv (a, ad xv(u)) € Taoa =V P 32
define
wa(Ul A UZ) z (o, [xllle) .

Then wy is a symplectic form on Oa.

-6—
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S0 the stratification mentioned above is actually effected by the Ad'G - orbit decompo-

sition of g%, 1n this case.

Note that each orbit O‘ is a homogeneous symplectic manifold, i.e. the action of G 1is
C

symplectic and transitive. Note also that the restriction of the Hamiltonian vector field D

H

ro 1s determined already by the restriction of the Hamiltonian H to (O .

x

a
Now suppose that g 1s a subalgebra of another real Lie algebra &, with connected

aroup L. Let h ¢ U be a complementary subspace. Then the dual of the inclusion g ¢ ¢ 1is

a linear 1somorphism when restricted to El. Use this isomorphism to identify g* with gl

L
Qf course g =~ h*

also, but only one of these identifications will be of much use. Denote by

- > = 4 s . L
bt & e B the projections relative to the decompositions ¢ =g & h, (* = g @& h
1 2 SAN

(1} TPexr: F ¢ Cm(q'), denote also by F the restriction to EI: g*. Denote by

V'P : g* » g the gradient of F as a function on g*, and by VF : * » % the gqradient as

&

. 1
a function on h ¢ i. Then for a ¢ h,

VEF(A) = REVF(Q\ .

(11) Denote by ad'l the representvation of g 1in Bnd(hl) induced by the coadjoint re-
q L

. : s : 1
presentation of g on g* by the identification g* ~ nl. Then for x ¢ g, a ¢ h™ ¢ t*

ad'gx(n) = Il 1ad'x(a\
h

where on the r.h.s. ad' means ad' : & » Bnd(®%).
The proof is trivial. The notations introduced in the statement will be used throughout.
; : L 5
You compute easily that Jd'l induces a Foisson bracket on h given by
q

{F, ,F Ha) = (a, [N _VF
1 “ qQ

ol 5 5 ‘
l(m) ? .Ag\i-z(n)l

and Hamiltonian vector fields

"

A’F(l‘) = (a, N lad'(!‘.g\‘?(u)) (a))

h

Now introduce the class & ¢ ¢ (%) of ad'-invariant functions on t*, defined by

-

e




S={FeC (9 : (W(a), ad'x(a)) = 0 for all a « Re, x ¢ @)

These are, of course, exactly those functions constant on the Ad'-orbits of L in (e,

-~

The following Theorem is basic to what follows:

Theorem 2,2

- Suppose that h is also a subalgebra of . Then:

1) :11 1 IS a system in involution, j.e. for Fl'F‘ e 8 3 u‘l,}'," Q
h ' h E

(il) PFor F ¢ :’] + the Hamiltonian vector field is Qiven by

nx
Do (a) = (a, ad' (1 VF(a)) (a))
H a
=- (a, -.\d'(!‘.h\‘F(.\)\ {a)) .
Remarks
1) In his paper (5}, B. Kostant has gqiven a version of this theorem. Its proof i1s a Qeneral-

lzation of Adler's proof of Theorem 1 in Ref. ().
2 The formulae (11), especially the second, generalize the tormula for infinitesimal iso-
spectral deformation of matrices or Operators, the utility of which is the context of the

KAV eguation, Toda lattice, etc., was pointed out by P. Lax in [17]. The thing to notice

is that the projection I 3 is missina in front of ad' in both right-hand sides.
h

Proot.
1) Por ae h, x ¢ L, and F ¢ 8, we have
0 = (ad'x(a), VFla)) |

= (@, [VF{Q), x]) = (=ad'(VF(a)) (a), x)

ie. F¢ & if and only 1f
O = ad' (YF(a)) (a)

VE () - TR
h\P(\\ a

= ad' (1 VF(a)) (a) + ad'(n
9

So for Fl, F.eS,ach




(FI,F:}(J) = (a, lWﬂVFX(d). HEVFz(u)D
= (ad‘(ngva(u)) (a), niVFl(aH
= -(ad'(HhVFz(a)) (a) , HQVFI(Q”
= -(a, ngVF(u). HEVFZ(R)D
= (a [HDVFz(a), HgVFl(n)D
= (ad'(ﬂgVFl(m)) (a), “DYFz(an
= —(ad'(nnYFl(u)) (@), HEVFz(“”
= -(a, [”hVFZ(u)' HEVFI(Q)D

=0

Note that the last step works only if h 1is a subalgebra of .

P 5 4
(if) PFPoxr F e &, o € h,

D.(a) = (a, T ad' (N VF(a)) (a))
H hl g

(a, -ad'(nhVF(u)) (a))

"

i ;
where the 1 ¥ becomes superfluous because ad'h(ﬁl) < h', as can easily be checked. However,

h
because of the ad'-invariance of F, this is the same as

= (a, ad(ll VF(a)) (a))
g
q.e.d.
Since the proof of Theorem 2.1 depends only on the properties of the gradients VF(a),

F « &, we have the following local version:

Cor. 2.3. Let &()) denote the collection of locally ad-invariant functions in the open set

@
t*, i.e. those F ¢ C (U) satisfying

ad' (VF(a)) (a)

i
o
=

Then S() ] 1s a system in involution on U/ n h”, and formulae (ii) above hold at all
h nl/

-Qu
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§3. Examples

All of the instances of Theorem 2.2 investigated to date involve the compact/Borel decom-
positions of semisimple algebras, at least so far as this author knows. This section is devoted
to a description of several such decompositions & =g ® h, and a display of exemplary computa-
tions for each resulting system in involution.

The computations get rather explicit in part II. This explicitness is meant on the one
hand to connect our invariantly-formulated results with many matrix manipulations found in
other papers on the subject. On the other hand, a collection of apparent computational coin-
cidences suggests the need for a systematic study of the behaviour of the sy.tems of Theorem
2.2 under various algebraic and functorial manipulations of the underlying Lie algebras. Such
a program remains to be carried out.

The decompositions are presented in part I, in terms of a root system for the split semi-
cimple real Lie algebra 2%.

The Cartan-Killing form of £ allows a canonical identification & = 2*, under which the
adjoint and coadjoint representations coincide. Explicit formulae are given for the Hamiltonian
vector fields and Poisson bracket, and hl is determined.

The first three examples are variations on the compact/Borel decomposition theme. The
first is the real compact/Borel decomposition of a normal real form (see [18], Ch. 1 for the
definition), and forms the subject of the last two articles of this paper. It was first con-
sidered in this context by Mark Adler and Bertram Kostant. Examples 4 and 5 are due to Ken
Macrae and the author. Example 6 was invented by Mark Adler [11] to treat the asymmetric Toda
Lattice systems of van Moerbeke and Mumford [19]. Our contribution is to show how Adler's re-
sult follows from Theorem 2.2. Example 7 is particularly noteworthy: it shows that Theorem
2.2 may actually have no punch in certain situations, i.e. the collection of commuting vector
fields may collapse to the zero field.

In part II 2 becomes uniformly s&(n,R) , and explicit matrix computations of all

quantities mentioned in Theorem 2.2 are given.

-10-
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I. Some decompositions of semi

l. Let m be a complex semisi

A be the root system for the pair (m,j), P a system of positive roots,

the root space decomposition.

there are basis vectors '4‘.‘ of

where ¢ =0 unless a + 8
Yo B8

where K(,) denotes the Killing form, viewed also as a (nondegenerate) form on i* in the

obvious way.

simple Lie algebras

mple Lie algebra, and select a Cartan subalgebra ] € m. Let

m=je §moen,
)(“

According to [20], Ch. 4, there is a Weyl basis of m: that is,

!\" such that

8 o2, = o .8 -R

ll"lﬁ] 1\"*1‘”( e Y ¥ ~f

is a non-zero root and ¢ = - «  Also
YR =y,=R

2 = K(y,B) 2 |
l"yi ﬁl (Y B) A

Denote by € the R-linear span of lo\.?.\ ty ¢ Al. Let 0 be the linear map ¢ » ¢

defined by

Facts: (see especially [18] Ch. 1)

1) ¢ 1s a semisimple Lie algebra over R. ( is called a normal real torm of m, thanks |

to 5) below (see [18]).

3y

Y0 is an anti=automorphism of ¢, and o R

1) h = {we L o(w) = -wl s

definite.

a subalgebra of ¢, and K restricted to I 18 negative-

& K = tweid s K(w,x) = 0 ¥x ¢ h}
= (we € ¢ o(w) = w),
%) ¢ = R-linear span of 1-‘, a ¢ A, 1is a Cartan subalaebra of ¢, and ¢ « h'.
k!

“11=




; 1 . ¢
6) [E},Ell € h, and K is positive-definite when restricted to h, which consists of semi-
simple elements.

L 7) Write n = ® R - Z*Y' Then n, are nilpotent subalgebras of & and g=cén is a

YEP i

ki subalgebra of & complementary to h. In fact, g is a Borel subalgebra - i.e. a maximal

1 solvable subalgebra of %.

Since K is nondegenerate, you may use it to identify 2 with g*. Having done this,

you compute, using the antisymmetry of ad with respect to K,
ad' = ad .

When g* is identified with gf as before, for F € S (which is now the class of ad-

i S ; £ : 1
invariant functionson 2 i.e. the class functions), a € h

DF(u) = (a, HDYF(u)]

= [l VF(a), a] .
[ g

The Poisson bracket is (a € h , FI,F € cw(&')):{Fl,FZ}(a) = K(a, (RSYFl(u), HEYFZ(")])' The

2
number of independent differentials of functioms in S at regular points is equal to the rank

¥ of & (which is the same as the rank of m).

2. Complex Borel decomposition

The complex Lie algebra m = £ O’QI may also be decomposed over &. The subalgebra 9

is now a maximal solvable complex subalgebra:

Ge=ie ] ®eqg )

aeP
and its complement is the (-1) eigenspace of 0, extended complex-linearly:

« ) EsiE =85
aecP v o

hE
The expressions for Hamiltonian vector fields and Poisson brackets remain as in Example 1.

The class functions on m are holomorphic, and yield r = (rank m) C-linearly independent

holomorphic differentials at each regular a ¢ m.

-12-
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3. Hermitian Borel Decomposition

The complex Lie algebra m may also be considered as a real Lie algebra which leads to

EL

the decomposition m = i ®

=ce } €-z
YEP

M

Y

=/1-.cehe /1 -nt

=

Here é is a maximal solvable real subalgebra of m, and ﬁ is a compact real form of m.
Again the Hamiltonian vector fields and Poisson brackets are given by the expressions in
Example 1. Since the underlying action is the same as in Example 2, the class functions are
still holomorphic, hence there are r linearly independent (over W) differentials at each
reqular «a ¢ m (Cauchy-Riemann equations).
The following two examples are based on st(n,R) . The standard choice of CSA is

c = do(n,R) , the n xn diagonal matrices with zero trace. Then Dy = Dy (n,R) , the

(upper,

1 - triangular matrices. The involution o turns into ordinary matrix transpo-
owe

strictly

sition, denoted by superscript t. Also convenient are

t,(n,R) = do(n,R) ® ":("'m) .
4. Let & = sf(2n,R), and select g and h according to

9y = {(2 B) :Aet (n,R, B, C, De n_(n,]R)\l

D
f o

L

sp(n, R) =<1('A Bt) : B =8, c= ct\
\\cl-a J

In these formulae the matrix blocks are n x n. An easy computation shows that

( : \
Ein =<(A Bt> R =R, E ==y .
\c|a J

At each regular «a « El there are n independent differentials of class functions on L.

=13~




5. Let U = si(n,R ,
g=t (R, h=n(nKR ,

L

h* = t'(n,R) . .

Note that the class functions for a ¢ h depend only on the diagonal entries.

6. In this example, (& is as in example 1.

let p =@, and mke p into a Lie algebra according to the prescription
[(x,y), (z,w)) = (Ix,z}, -ly,w])
Then p is semisimple with Killing form
i((x,y). (z,w)) = K(x,2) - K(y,w) .
Denote by h the antidiagonal subalgebra: i
h o= {(x,=x) : x ¢ t}
Then hl, identified with a subset of p, 1s just h itself: h = h.

Set

g={(x+tz, 2¢y) : x e n ,yen, zecl

Then g 1is a subalgebra of p - in fact, I[g.,gl < n @ n,. It will be verified in part 11

below, in the course of computing projections, that

R=geh .

L ,
Claim: The class S[h of restrictions of class functions on p to h = h, coincides with

the class SK of functions on h of the form
Fx,-x) = f(x)

where f 1is a class function on .
To see this denote by A the antidiagonal map : x » (x,-x), and compute the differential

of f=F oA, for any F ¢ CO(E):

-14-
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Af (x,x) = dF © dA(x,%)
¥ = dF((X,=X), (X,-%)) .

\ In particular, 1f x%x = (x,ul this is

8 df (x, [x,u]) = dF((x,-x), (Ix,u), =-[x,u)))
= dF((x,~x), [(x,=x), (u,=u)]) .

So, 1f F is a class function on p, then f is a class function on £, and coincides with
the restriction of F to h as above.
Conversely, suppose f is a class funtion on L. A function of p whose restriction to

h may be identified with f as above is, for instance

F(x,y) f(x) .
Then
AF((x,-x), [(x,-x), (n,v)))
= dF ((x,-x), ([x,u), [x,v]))

= df (x, [x,u]) = 0

since f 1s a class function on (. So any class function on ¢ is the restriction of a
class function on p to h, and the claim is proved.

Note that the pairing via K between g and h s
KO(Ln), (x,=%)) = K(E4n, %) .

Theorem J.2 now implies Theorem 2 of Adler and van Moerbeke [11]: the ad~invariant functions

" o 1 3 ; i
on  {, transferred to the antidiagonal h = h" ¢ p as above, form a system in involution.

7. Same as Example 1 with ¢ = s¢(n,R) , but reverse the roles of g and h.

1. Computations for sQ(n)

In examples 1, 2, 31, and 5, make the following choices:
t = sl(n, R) m = s(n,T)
i- d“(n,r) C = ‘u)h\.R)

n, =n (n,R) .

«]5=
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The basic decomposition is ¢ = n_+ Ew + c. A useful notation for the projections relative

to this decomposition is

-
Matrix transpose realizes the antiautomorphism o, and is denoted by superscript &
The rest of this section is a list of useful projections and Hamiltonian vector fields.

The Killing form is, up to an irrelevant constant,

K(A,B) = tr AB .

In each example, the class S is generated by functions of the form FK = % tr AK. The most

interesting (or most ubiquitous) such Hamiltonian is Pz = % tr Az. The gradient is easily
computed:

VFz(A) = A .

The Hamiltonian vector field for Fz is written out explicitly in each case: it is

R o= (A'nhAl .

) nh§ - A+ - A

+r 4+

NA=A +A +A
g - 0

=4

'{A_#A0+Af) .

and the H.V.F. for F is

For A€ h , nsf = 2A_ + LY 2

A=A +A +A5, A% -a)

0
t t
o zlA_IA_l + lAOA~l = [AO'R'] .

The restriction of this V.F. to the Jacobi orbit of G = exp g in hl

(to which the V.F.

if tangent, of course) yields Flaschka's version of the Toda Lattic equations. The matrix

~

-16-
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formulae above were first written by Flas “ka [21), and were used by Adler to prove the involu-

tion of & in this case [3). See also van Moerbeke [ & 1 2

2. The formulae in this case are the same as in example 1, except that each matrix is

now complex. In terms of the real and imaginary parts,

F2 is
A' = T(A',A') - T(A",A")
il' - T(AI'A") ‘ T(A"IA.)
where,
T(A,B) : = (A, nhg1 L
3. g ={al+iar+eal e ) =D
ho= (A" = a'Y 4 A" + A" + avY)) (= u())
2 + + g Q = =
-} t

R = (Al e Ay At e aant - am

For A« h', A = A' 4+ A"

A = A = AL+ aar + ah

So the H.V.F. for F2 is
A' = [A*, HDA‘] - R nhlk"l

= T(A',A') + T(N lA"' n 1A")
h h

.n - . " 1 . "
A (A, thk ] + IHEA + A"]

)=

A= A"+ v/-_l A", the H.V.F. For




% H%) . (’:‘1’%)

+-
with X = -A_ - L A, Y=B +B,2=C + (‘+

The H.V.F. for F2 become s

A = [A,X] + BZ - YC

- AY - BX* - X5 % YA*

Cwcx+a’z-zaexte .

Notice that B = C = 0 is an invariant submanifold for this flow, on which the vector

field reduces to

A= [AX] = 2(A_ + Aj, A

which is an asymmetric version of the Toda lattice system - compare examples 1, 6.

S, g =~ +al he={a)
1
h o= {A) + Al

1

for Ae¢ h', I A=A, sothe H.V.F. for F_ is

h + 2

A,=0 , A = le,A’l .

Notice that this system is linear, and that AO is fixed under all the flows FR'

6. The projections on g and h are

1 1
Mg(AB) = (A & B_ + 3(Ag*By), S(A4B) + B, + A

1 1
My (AB) = (=B_ + 3(A,~By) + AL B_ + 3(Bo=Ag) = A)

-8~
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:
which shows that p = g @ h as asserted in part 1. To carry out the prescription of
Theorem 2.2, you need an Ad-invariant function on { @ ¢ which reduces to F_, on the
diagonal subspace, as per part I. Since any such extension will do, choose

1

F,(A,B) to AS .

L

Then

VF,(A,B) = (A,0)

= 1 1
T\h\FI(A,-A) =(GA, A - FA, A )
and the H.V.F. for Fw is  (A,A) with
A= 2a +a
o G,

which are the non-symmetric Toda equations of Mumford - van Moerbeke [19] and Adler - van

s

Moerbeke [11]).

In general, for F a class function on st (n,R) and Efx,y) F(x), vyou obtain

A= A, {-t\'vmno +VEAN )

(compare [11]).

. Notice that with g = o(n,R) , h = t_ (n,R) , you have h} = n_(n,R) . Since all the
ad-invariant functions on  st(n,R) vanish identically on n_, Theorem 2.2 yields exactly

nothing in the way of nontrivial commuting vector tields in this case, the problem being

; 1 5 y "
that the isotropy algebra for a ¢ h 1s actually contained in h. Much more is
- ' .

made of this idea 1n the next section.
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§4. Completely Polarized Orbits

This section is devoted to the proof of a remarkable fact about those orbits of g on

which the -~ ad’-invariant class & defines a complete polarization. This property 1s a

generalization of the following observation from linear algebra:

Any two nearby symmetric Jacobi matrices with the same spectrum are conjugate by a lower

triangular matrix.

As might be suspected, this fact is behind the Gel'fand-Levitan - style solution of the in~
verse spectral problem on certain orbits, to be presented in §6.

In this section L is an arbitrary Lie algebra over R with connected group L. 1In parti-

cular, R is not required to be semisimple. As in §2, £ is decomposed as a direct sum of

subalgebras g and h.

The central object is the class S of ad'-invariant functions on *. The main facts

about this class are contained in the next lemma. In it, the ad'-isotropy algebra of a ¢ c*

is denoted £ ¢ 1@
-

Lo=lwe t:ad'wia) =0} .
Lemma 4.1

a) For some open set R ¢ (*, a ¢ R implies

dim‘ =d ° inf dim ¢

—a Bet* .

The elements of R are called co-regular. KR is a Zariski = open set of the affine

space *.

b) For a ¢ A there is a neighborhood U ¢ & of a so that

5" {W(a) : F e SN}

and
oL n v = (Re g%+ F(B = F(QVF ¢ 5))

In particular, (a,d) is tangent to oz if and only if (&, VF()) = 0 for all

Ps S,
The proofs are elementary.

-20-
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Obviously situations like that of exsn, le 7, §3, are uninteresting: there are no non-

trivial orbits in that example comuicicly polarized by S. Some restriction must be imposed on
the decomposition g @ h; the one that does the job is

[T] For a (necessarily open) set P c ﬁl, a ¢ P implies

"

0} = {0}

{x ¢ g : ad'x(a)

g“ :

hy {z € h:ad'z(a) = 0} = {0} .

Remarks.

1) The ad' appearing in [T] refers to £, so g, =gn Eu’ Eu =hn &u' So the hypothe-

sis may be rephrased: &u intersects both g and h transversally. (hence "T").

2) Situations midway between example 7 and hypothesis (T] have not been explored at all.
All the examples of §3 except #7 satisfy [T].

The first point to make is that [T] means roughly that functions in § have as many inde-
! pendent differentials as possible when restricted to Oi nRn P, in a local sense. In fact,
if a € R, then the AdL-otbit through a 1is cut out by the locally adi—invariant functions

S(U), which have dim &Q independent differentials, according to Lemma 4.1. Hence the co-

dimension of 02 in &* is dim ga. According to the next lemma, if a ¢ K n P, then the

codimension of O n 0° in 0° is setill dim g :
a a a bt |
Lemma 4.2

Suppose [T] holds, and let a« ¢ # n P. Then
aim 1 0% = @im T 0% 0 T OF + Qim ¢
aa a o aa -0

Proof: Denote

L

T0, = W, = {ad'w(a) : we £}
rC=v = {ad'x(a) =TT ad'x(a) : x € g}
aa a g . > n

Using Lemma 4.1 for a suitable open U > a,

-21-




V. nW = (BeV : dF(a,B) = O¥F ¢ S(I))
0 0 a

SO

dimV._nW_ = dim V - dim{dF fPe St} .
a a Qa T (.,(y
a Qa

. & AR > ;
Since U‘ 1s a symplectic manifold,
)

dim {dF o F e S(N)
wu

= dim (f%(u) : Fe S(N}

= dim (-ad'(nhVF(m))(a) 1 F e S(U)}

according to Cor. 2.3. According to Lemma 4.1, this is the same as

= dim {ad'll. x(a) : x ¢ &} .
h =0

’ = Vs o , , (i1), = i se,
Suppose ad ﬂhf(u) 0 for = ¢ Lo Then nhx € Dﬂ But by [T). Hi1) ﬂhx 0 in that case

SO X ¢ gn Eo' Then [T], (i) implies x = 0. So the linear map x » ad'ﬂhx(n) is injective,

hence the above is
= dim ¢ .
-
qg.e.d.

Remark. By Lemma 4.1, for a suitable open neighborhood U of a ¢ R n P, the set 0: n UL n U

a

is cut out by S(U) G’ and is a manifold (since the number of independent differentials re-
0G
a

mains constant over [/, and equal to dim gq). On the other hand, by Cor. 2.3, this manifold
is coisotropic in OS, being cut out by & Poisson - commuting family of functions. Hence its
dimension is > dim 3“, and OS n I/ is completely polarized by O(U/) if and only if
aim 0% 0 0% o U = dim ¢
a a -
which is equivalent to

dimW_n V_ = dim ¢ %
a a -

) §

Call an orbit of G in h~ co-regular if it contains a point in A n 7. Then the above argu-

11

ment shows that the co-reqular orbits completely polarized by &(/) in some neighborhood

.




of & € R { are of mlnxma{_ggmensxon amongst all co-regular orbits.
The actions of g and h, as subalgebras of R, on i+ produce another pair of sub-

spaces

vl = fad'x(@) : x ¢ g}
h

U; = {ad'z(a) z ¢ h}
:

h
Note that w‘ = l‘% + U—; (not direct), and U'r:- < h if o e hn
[ u J _—
The main result of this section is

Theorem 4.3.
Suppose [T] holds, and a ¢ ® n 7. Then (/) defines a complete polarization of
( n U for some neighborhood ! of a if and only 1f

Wwov sfav .
a Q a Q

Proof. Thanks to an elementary result from symplectic geometry, () will completely polarize

G

1f and only if the tangent spaces to the common level surfaces are spanned by the
Hamiltonian vector fields of functions in S(U). The common level surfaces are exactly the sets

o D

v 07, according to Lemma 4.1. At a ¢ R n P this means

Wony = (-ad'(;thvr‘(a))(m) t: Fe SO}

"

{ad' (1 VF(a))(a) : F ¢ S}
9

= {ad l.hw T W ¢ 3“)

= {ad'lllw 1 we 2}

by Cor. 2.3 and Lemma 4.1.
3 G ;
Now suppose that J(U) completely polarizes \“ near a, 1.e. the above formulae hold,
and suppose z ¢ h so that

s
ad'z(a) ¢ 1= 0 V
Q

h "
Certainly U= nV_ _cW nV , so
a a a I\




ad'z(a) = ad'nhw(a) = —ad'ﬂgw(a) € u% nv,

for some w ¢ Eu' Thus U% n Va (- U% n Va. The opposite inclusion is established the same way,

SO

Suppose conversely that this last equality holds, and select w ¢ £ with ad'w(a) ¢ Vu, §.e.
ad'w(a) € w,nV,. Set w=x+z, x €g, z¢€h. Then ad'x(a) = ad'w(a) - ad'z(a) € h} since
ad'w(a) € Vu [ E} and ad'z(a) € U& c h}, a being in E}. However this means that

[ - [ ~ ' \
ad'x(a) nhlad x(a) adgf(a, € Vu

Hence ad'x(a) € Ug n Vu. The assumption means that there must be some 2z, ¢ h with

ad'zl(a) € UE n Va and ad'x(a) = ad'zl(a). But then ad'w(a)

L

h ’
1 ey
ad (z+zl)(u) € Ua n vu. Using
the assumption again, there is also x1 € g such that ad'w(a) = ad'xl(u). Then of course

2+ 2 =X

1 1€ }h, so you have proved that

wu n va c {ad nhu(a) T u e &u} .

But the other inclusion is trivial, and, using [T] as in the proof of Lemma 4.1, you show

dim W_n V= dim {ad Mufa) : ue _ll,a}

(]
[N
=
3
=

Te

[}
o7
v
3
o

g.e.d.

Call o« a G- L point if a e Rn P and ¥

waov =ttav .
a a a Q

Cor. 4.4. Suppose o is a G - L point. Then OS nRnP consists of G - L points.

Proof: Count dimensions. "

q.e.d.
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Theorem 4.5.

Suppose a is a G - L point “hen there exist a neighborhood 7 of a and real analy-
PE F )

tic maps
X tUn0®noCsg
a a a
Y i Pl meS -n
a a a
= ! .\[' G
so that for any R « U n QO n O,
I\t a
R = Ad'X _(B) (a) = Ad'Y (B) (a)
a a

on A+,

where both Ad' - actions are of

The proof depends on the following:

Lemma 4.6.

Let g be a real Lie algebra, G the corresponding connected group. Then:

(i) Suppose x : (0,1} > g is a Cl map. Then the initial value problem

X(t) = £(t, X(t)) , X(0) =1
with

E(t,X) ¢ = de(x(())

N
has global solutions (i.e. defined on all of [0,1]) of class C ([0,1]:G).
(11)  Suppose additionally that x depends continuously (or Ck, or analytically) on some
parameters.  Then the solution to the above initial value problem depends continously

k ! : 2
(or ¢, or analytically) on the parameters, as a map into C ((0,1]:G).

Proof (of Lemma). Using standard theorems on existence uniqueness, and continuous dependence
on parameters for initial value problems, and a compactness argument, you show that there is

« * 0 50 that the initial value problem

X(t) = de(t)(x(tos)) ¢+ X(0) =1

has a ¢° solution on = « t < ¢ for all s ¢ [0,1]. cCall this solution X,




Let Y ¢ G, t(‘ « (0,11 and set

2(t) = YR‘ (Q-t(‘) B e g €8 € E. b4 .

0 QO Q
2
The :’.(to\ =Y, 2¢€ C, and
Rl o q . .
ay (% = an, = \n“' o
- d[.Y dl.xt “'ln) (x(t))
(0]
- dLYx (t=t ) (x(t))
t Q
[4)
= dr,
\1'7-(() (x(t))

This shows that any solution of the problem

X(t) = &(v, X(t)) , X(O) =1

defined on [0,8), § < 1, may be extended to [0, min(8 + ¢/2, 1)]; hence a alobal solution

exists.

(ii) follows from standard theorems on dependence on parameters,

t].(*.\i.

Proof of Theorem 4.5:

(¢
According to Cor. 4.4, 0& N R n P consists entively of G = I, points, so

G L
0 )
dim(T 0" 0 TOQ
s

G I : (¢ . 2 G
rank, so 0‘ 0 U& n R n P is a submanifold of 0; nRaP Since U‘ and o,
d ( | \

G y i
) = dim 3“ for 8 ¢ 0; a® a Pooin particular, this intersection has constant
¢

are real-

analytic (see (20], Ch. 2) s0 is the intersection. Also therve is some neighborhood 7o & o P

G L
of a so that [/ n N; n 0‘ is arc-wise connected and =imply connected.
! A

arc with

X . 5
Select B ¢ U n (“"\¢JQ and denote by y ¢ (0,11 > 0 o O ¢ ob any 7 -
a a a a
Y(O) = a, y(1) = 8. Since ;(t) 3 Ty(t)(”: n N:\, there must exist  x(t) ¢ g, y(t) « h tom
\

which (Theorem 4. 3)

YOO = ad'x(t) (y(t)) = ad'y(t) (y(t))

=26




according to Lemma 4.1. We claim that x : (0,1] * g, y : [0,1] » h are Cl maps. In fact,

because of [T] the map

x * ad'x(R)

is a linear isomorphism of g onto a subspace of TGO:, for R ¢ A n . Also, the collection

of such subspaces

Ei. {(B, ad'x(B)) : x « g, 8 ¢ R aPr)

is a smooth subbundle of T¢* Hence the map Ag : Eg * g defined by

RapP®

A ((R, ad'x(B)) = x
g9

is well-defined and smooth. Since
X(t) = A _(Y(t)
b §

and ; is a Cl map, it follows that x is Cl: similarly y is Cl.

Set &(t,X) = de(x(t)).
According to Lemma 4.6, the initial value problem
X(t) = E(t, X(t)) , X(0) = I
has a solution in Cz(lo,llxu). Set
Y(t) = Ad'(X(t)) (@)

Then {(0) = a, and

YO = ad'@L (X)) (v()
L)

= ad' (d1L, £(t, X(0)) (Y(t))

x Yo

fad' (x(t))] (y(v)) .

Since y and Q obey the same differential equation and have the same initial point, they

coincide. In particular

Y1y = R = ad'X(1) ()




so set xu(B) 2 X(1).

Similarly, Yu(B) ZY(l), where Y is the solution of

Y(t) = n(t,Y(t))
Y(0) =1

n(t,y) = DLv(y(t)) .

These definitions make sense only if the choice of path Yy is immaterial. To see that this is

the case, let 7 : [(0.1) » U n Oﬁ n 02 be a C2 path with ;(0) =a and Y(1) = B. Reason-

ing as before, obtain an expression

B = Ad'X(1) (a)

for some path X in G. In particular,

1;(1) € GL ’

a

X(1) "~

where

c;‘ = (X €G: Ad'X(a) = a)

is the isotropy subgroup of a ¢ g* = h‘l under the Ad' action of L on L*, restricted to

G: that is, Gk = Lu N G. We will show that x(l)_li(l) is in the connected component of I
in G:; since the Lie algebra of G: is g " {0} according to the transversality hypothesis,

the connected component of I is (I}, hence X(1) = X(1) as desired.
Since U n 0: n 0: is simply connected, there is a C2 homotopy
G
Tt [0,1] x [0,1] » U n OF n oS
with
r(t,0) = y(t) rq,s) =g
r(t,1) = y(t) ro,s) = a

VXL XY .

“
You apply the construction explained above to each path t » TI'(t,s) to obtain a c°

homotopy
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-

X ¢ o) * [0,1] * @

with x(t,0) = X(t), x(t,1) = X(t'  (n particular

B = Ad'x(l,8) (@) , 0 <& <]
s0 that

wl L
x(l,u‘) x(l.s2) € G |

for s s. ¢ (0,11, However, the image of the connected set [0,1) x [0,1] under the con-

1'%

tinuous map

-1
(51'“2) »ox(1,8) x(l.s2)

is connected, hence lies in a component of G:. since x(l,o)-lx(l.o) = 1, you conclude that
this must be the component of 1, namely {(I}. In particular, \(1,0)-1\(1.1) - ;
x'l(l)i(l) = I, as was asserted.

This shows that the map x“ is well=defined in U n U: a 0:. Similarly the map Y, is
well-defined.

The analyticity of x“ and Y“ follows from (ii} of Lemma 4.6.

q.e.d.

Since ¢ = g @ h, there is some neighborhood ! of I ¢« L and unique analytic maps

X:U+»G and Y : U * H s0 that for any X ¢ U, X = X(X)Y-l(x). In particular,

X(I) = Y(I) = .

cor. 4.7. The followina diagram commutes

= L“ o U
-
X Y

G Ad'Y () (a) ‘ H E
ﬂ i
X N \

a N\
s // !
o® a 0% {

a

|
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§5. Norming Constants

; y ; : 0 .
This section explains another set of functions on h™, complementary to the Ad-invariant

class functions, when ¢ is a normal real form of a complex semisimple Lie algebra, decomposed

according to the compact-Borel decomposition as in §3, Example 1. These are a direct analoa of

the 'norming constants"of Sturm-Liouville theory (or rather, their reciprocal squares). They

are equal in number to the rank of R, and are denoted B below. The immediate ancestors of

; 2 ; . ” . y
the g's are the residues ri of Moser [ 2], which in turn date back to the work of Stieltjes.

The main fact about the norming constants is that they form, together with certain convenient

Ad-invariant functions generalizing the eigenvalues of symmetric matrices, a system of functions

with 2r independent differentials at "“most" points of an orbit of G in hl; this is Prop

S.11. This result gives a complete set of coordinates on a "completely polarized" orbit (Cor.

5.12) . Curiously, we have not been able to prove these results without resort to representa-

tion theory, even though the definition of the R's has nothing to do with representations of

%. On the other hand, the irreducible representations of ¢ will be needed to solve the

various completely integrable systems, implied in this situation by Theorem 2.2, by means of

rational functions of exponentials (§6). An appendix to this section exposes the basic facts

about the "highest weight" construction of irreducible representations of ¢ via the Verma

Module, and uses this construction in a proof of the existence of a unique Euclidean structure

on each irreducible representation for which the Cartan involution ¢ 1is represented by the

metric adjoint. This can be done more concisely by integration over the compact subgroup H,

but perhaps the algebraic proof given here (which seems to be new) might be useful in contexts
where the analytic machinery is not available.

Let ¢ be a normal real form of a complex semisimple Lie alaebra as in §3, Example 1, and

let =g ®h be the compact/Borel decomposition relative to a vector Cartan Subalgebra ¢

Ca

i

According to fact (6) listed in §3.1, nl consists of semisimple elements, so for a ¢ h

L = gﬂ ® Range (ad a) .

(Remember that ¢ and (* are identified by the Killing form K. In honor of this identifi-

1

cation elements of h will henceforth be denoted by small Latin, rather than Greek, letters.

=30~
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In the same spirit, 5 will henceforth denote the set of regular points of L+ Occasionally,

an element of U will be denoted also by a Greek letter when viewed as an element of (¢, wvie.

¢ and L below. The reader will be warned by the phrase “"dual to ... under K".)

Lemma 5.1

3 = ] 1 TR i
(1) Suppose j ¢ U dis a CSA and a ¢ j o0 h is rveqular. Then j ¢ h .

2 (G g ; " " :
(31) Suppose a ¢ h 18 regular. Then there exists a neighborhood ! of the CSA (ﬂ in

hA SO that for any regular b ¢ U, ¢ = Ad Y(L ) for some Y ¢ H.
- - —a

Proof: (1) Under the hypotheses, - !ﬂ. Clearly

dim ker (ad a )) S v = rank ¢
h

Now dim R - r is even, and
; 1 B x ; | 5
dim h™ = S(dim € + r) dim h = S(dim ¢ - 1)
- - - - e

since lhl, hll h,

dim ker (ad a] ) + dim Range (ad a] ) = dim n'
nt nt :

< r ¢+ dim h
and equality can only be attained - as it must be = if

dim ker (ad nl pF =
h

dim Range (ad a' 1) = dim h
h

The first equality implies j = ¢ h7, and the second implies that h = Ranye(ad a ”.

h

(i) since (h', n) oo n', o, nt) o on, it is clear that

Range (ad a) n g‘ = Range(ad a h)

s0 h = 61 ® Range(ad a h) for a « hl n A. This implies, by elementary arguments, that
2 n

«jl=




there is some neighborhood V of the identity in H, and a neighborhood ' of a, so that
consists of regular points b for which b = Ad Y(a'), some Y ¢ V, a' . {4+ But then

U = = U ad Y(iﬁ)
Ye V

15 a neighborhood of Sa'
gq.e.d.

Cor. 5.2. The compact/Borel decomposition t = g®h satisfies [T].

1
Proof: It's clear from Lemma 5.1 that sa n h = {0} for reqular a ¢ h' . On the other hand,

1 ; ; : ; 1
g " h = c¢. Since a reqular element a is contained in a unique CSA &ﬂ = c(a) c h, gn ?a

=cnc(a) = {0} unless a « ¢. Therefore you may take for ' in the notation of the state-

ment of [T] in 54 the set

P= (}_\l \ c) n P

which is open and dense as required.
\].t‘.d-

Remark. As noted in the introduction, an orbit is coreqular in this context if it contains a
reqular point a ¢ c.

Lemma 5.3
(1) Let a e g‘. Then a is contained in a CSA of R contained in nl.

(11) g‘ is the Ad H-orbit of c.

1 Sz id
Proof: Select a ¢ h'; then a is in the boundary of an arc-wise connected subset of
1 > 1
h™ n A, Let a h” n A so that a, *a. By connecting successive a 's with arcs in
n
L
h™ n & and using Lemma 5.1 and an easy compactness argument, you deduce the existence of a

se > b H B
quence lYn so that S‘n Ad Yn(sal).

- 1 3 -
Set bn = Ad Yn (an) € 5. . Since H is compact, (Y 1) has a convergent subsequence.
1 n
; -1 ’ ; )
Denote it also by (Yn }. Since Ad is continuous, Ad Y:(an) «ab *bhedt , 0 being
n -a ' -a
1 1
closed. Let Y = lim Y“ and select a neighborhood V' of 0 in .
new i

32«




:
|
l

The convergence of the adjoint 1opa tatives of a converaent subsequence i1s uniform oy

y Il
compacta, so there is a neighborhood . < b in hand an integer N, so that

Al \'“(X‘ - Ad Y(x) « V' for

X ¢ Y l‘\‘N‘..

On the other hand there is another integer N‘. s0 that
Ad Y (b)) = Ad Y(b ) « V for
- n

n > nax(Nl.. N‘.). Thus (V' being arbitrary)

ad \'n(b“) - Ad \'(l\“) +* O nse

Oon the other hand
Ad \'(h“) - Ad Y(b) » 0 n o>
S0

Ad Y (b)) - Ad Y(b) » O n oW
n n

However, Ad Yn(hn) - an »a, so Ad Y(D) = a. Therefore a

A YL ) n', and (1) is proved.
)

R L . . 3 :
Since h 15 the union of the CSA's contained in it, th

b ¢ U, for n > M, hence
n \ \

is contained 1n the COSA

e quotient space obtained by

: Ve L .
wdentifyina elements of h belonging to the same CRA 18 connected and locally compact .

Temma 5.1 (11) may be interpreted as asserting that Ad B ac

ta locally transitavely on thas

quotient space.  Then a simple compactness araument establishes (11) .

Remark. By a very similarv argument, you can show that each

CSA c(a) < n'.

Lemma 5.4
- L
For any CSA j <« h the tsotropy subaroup N = (X « R
1

fact, finite).

q.e.d,

\
ach 18 A member of a unigue

¢+ Ad X{1) = i} is discrete, (in

AR




Proof: First note that “.i 18 a closed subaroup of H - which 18 obvious, since § s a
closed set. By a basic H\v‘orem of Lie Theory, “i is a Lie subgroup, s0 it suffices to observe
that 1t has a trivial Lie algebra. But this 1s clear, since its Lie alaebra 1s contained in
the normalizer of 3, which is j, and 1 and h intersect transversally.

q.\‘.\‘.

\ y ;
If J€h 18 a CSA, there is some neighborhood (1) of 3§ in the space of CSA's an

h‘ and a neighborhood V(j) of T in H so that j' « \"'(j\ has a unigque expression (Lemma
5.4) as
7Y = A YA
wieh ¥3.0') € v
Select a basis §

s ‘l‘ of 1 For a « 1'. i' « .:'\i\. set

Vi@ = Ad Y(3 3D 4 = iy,
o 1 .
W" () *h 1= 1, oD s an Ad-anvariant chotce of basis for the Csa's in U1, where
T : : ; 1 ; Nia : -
(j)) is the neighborhood in h™  coverina '(j). Fix 3§ for the moment, and wrate (1) =

Vi) = V.
For an arbitrary ¢ ¢ ¢ and reqular a « ' you can write

¢ = Rl(a)uv‘(.\) deeey :R‘_(a\;-‘ (a)

+ [E(a), &) .

The B8's are uniguely determined as functions on ' by ¢, and are constant as  a
varies along a fixed CSA:; & may be fixed by requirinag {(a) ¢ Ranae(ad a). The next thee
Lemmas are devoted to the computation of \‘ﬁ‘.

Lemma 5.5. The functions

\ ) = X a), a)
\(J\ k(\‘n a

-4




are ad-invariant. The polynomial ring in (\l‘ contains the

e e

Ad-invariant polynomials to
Proof: By definition, for a ¢ !', Y ¢« H close to the identity.

vl(Ad Y(a)) = Ad Y(Vi(a)\ = Ad Y(@j)

ring of restrictions

s0 K(%l(Ad Y(a)), Ad Y(a)) = K(vx(a), a) which shows that \ ...\l are Ad-invariant.

1

second assertion, note that for each a ¢ h, i\i? are affine coordinate

so the polynomial ring m[\l...\rl is the polynomial ring on c¢(a).

functions on

Accordina to Cheval h‘\‘. ‘g

theorem ( (23], Thm. 23.1) the restrictions of the Ad-invariant polynomials to c(a)

the polynomials on c¢(a) invariant with respect to the Weyl group of the pair

Since the basis (Wi) 1s Ad-invariant, it's clear that the coefficients of powers of

\

pendent of a, which finishes the proof.

Lemma 5.6. V\l(a\ - wl(a\. ae U,

1t \r in the restriction of a given Ad-invariant polynomial to c(a)

Proof: Suppose that a 1is reqular. Select b € c(a), x ¢ h. Then

d\‘(a, b + [a,x]) = d\i(ﬂ' b)
= K(du"i(a,h), a) + K(u-i(.ﬂ y B)
= K(w\(a), b) = R(w‘(a\. b + la,x])

since the y's are constant on c¢(a) and orthogonal to Range ad

1 A
For general a ¢ h, the same formula holds by continuity.

Denote by A the inverse of the (positive-definite) matrix

is clearly independent of a ¢« ).

r
a 5.7 78 = ¥ £ (s po(a)].
Lemma 5.7. \bi(a) RS \‘jl (a), \1(i\l

=35~

a.

KV, ,¥))
1 ¥

are

q.l‘.d.

\].(‘.d.

(which

are exactly

(L, c(a)).

actually




i
Proof: sSince the £'s are constant along c¢(a), a regular, you need only compute
db‘\a, [x,a)).
Now
$
aK(c, ¥.) (a, (x,a)) E
g §
- jZl Wievp A8 (@, (x,aD)
However ¥, (a ¢ e [x,a)) = wi(a) + ¢ ad x(w‘(a)) + 02(')' SO
ax(c,v.) (a, (x,al)
= K(c, [x,y (@1)
= -K(x, (e, v (a)])
= ~Kix, [[L@), ¥;(a)], al)
= K(lE@) v (@1, (x,a))
Now equate the two expressions for dK(C.Wi) to obtain the asserted formula.
q.e.d.
Cor. 5.8. The (Sl‘ are in involution on nl in the Poisson structure on * = ¢, that 1s,
(a, lVBi(a).Vej(a)l) =9
Proof:
K(a [VBi(a). VSj(a)])
= K(a, lli(a).wi(a)l. lE(a).Wj(a)ll)
= -K([E(a).wj(a)l. ((E(a), v, (a)], al)
- -K(Ii(a).wj(a)l e, ?j(a)l)
= K(e, [lE(@) ¥y @1y @) 3
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