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ABSTRACT

Bayes estimation of the arrival rate of a Poisson process is studied in
this paper. For any loss function in the family Lp = (6-6)26-p. - < p < w,
a simple sequential procedure t is introduced which, based on the criterion
of minimizing expected cost (estimation error plus sampling cost), is either
optimal or asymptotically optimal. The procedure Tp is compared to Type I

and II censoring - the comparison should be useful to experimenters choosing

between the three sampling plans.
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SIGNIFICANCE AND EXPLANATION

; ] When trying to explain or analyze events that occur randomly in time or in
space, one tends first to test whether the events are governed by a Poisson dis-
tribution. The classic example concerns the number of soldiers killed per year
from the kick of a mule in the Prussian Army in the early 1800's, and applications
- have continued to this day in many different contexts, military and otherwise.

Usually, the mean arrival or occurrence rate, 6, of a Poisson process is un-

known. This paper derives optimal and approximately optimal procedures for
sampling from a Poisson process and estimating the value of 6. Three classes of
procedures are considered. First is "Type I censoring”" in which the length of time
the Poisson process is observed is fixed in advance. Second is "Type II censoring"
in which the number of arrivals or occurrences observed is fixed in advance. The
final class of procedures is "sequential"” in the sense that neither the length of
observation nor the number of occurrences observed are fixed in advance. Instead,
the outcome of the process prior to any point in time may be used to decide

whether to continue observing the process beyond that time.

R

The best procedures in each of the three classes are compared. The results

{ are usetul to the experimenter who wants to choose an efficient sampling plan.
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A COMPARTSON OF SAMPLING PLANS FOR BAYESIAN ESTIMATION
OF A POISSON PROCESS RATE

Robert L. Wardrop

Section 1: Introduction and Notations

conditional on the value of 6 > 0, let X(t), t > 0, be a Poisson process with arrival
rate 0. Set t =0, and for i = 1,2,..., let ¢t = inf{t : X(t) = i} be the time of the

1th arrival. Bayes estimation of 0 will be studied in this paper.

A

Assume that the loss incurred from estimating 6 by 6 is given by
(1.1) L (0,8 (0-0)%P

for some p, =% < p « w, Joss functions of the form (1.1) have been proposed by numerous
authors, including Hodges and Lehmann (1953) (p = 1), Dvoretzky, Kiefer and Wolfowitz (19,1)
(p = 1), El-Sayvad and Freeman (1973) (p = 0,1, or 2), Novic (1977) (0 < p < 3), and Shapiro
and Wardrop (1977, 1978) (0 < p < 3). These papers present some justification of various
choices of p, especially p = 0,1, or 2. Results will be obtained for all real p because
this does not increase the difficulty of the proofs and, more importantly, because it prov:des
additional insight into the behavior of the sampling rules considered.

Assume © has prior distribution

a, o =1

- (
) = [ R Al 3 - ) 2
\p(o) I (\\(‘) l\o ¢ exp( BO()

with ﬁn » 0 and Gy 2 0 Vv p.  (Many of the results obtained are true with ay P, this will

be discussed again in Sections 3 and 4.) Denote this distribution by F(uo,ﬁn). For t 0
let  F(t) denote the sigma-algebra of events generated by (X(s), 0 « s « t}. The posterion
distribution of © qgiven F(t) is ['(a(t),;(t)), a(t) = NG ¢ X(t) and R(t) = ﬁn '« - Poy

loss Lp' the Baves estimator of 0 given F(t) is
(1.2) UNTI (a(t)=p) (B(eN ",

and the posterior expected loss is
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(1.3) B(L (0,8 (0) [F(t)) = B()P 2r(a(e) + 1 - pIT(alen™r .

/

It can be shown that (1.2) and (1.3) remain true with t replaced by 0, a stopping time with
respect to F(t), t > 0, if F(o) 1is given its usual definition (Shapiro and Wardrop (1977)).

For a precise method to discourage sampling indefinitely, let Ca > 0 be the cost of

observing one arrival of the process, let CT > 0 be the cost of observing the process for one
unit of time, and assume that cA v cT > 0. The total cost of observing the process for t

units of time is defined as
(1.4) C(t) = Cp(t) = 8(t)P%r(a(e) + 1 - p)r(a(t))'1 +CX(t) + it .

Different sampling plans will be compared on the basis of expected total cost.

To motivate later results, note that the values of cA and cT represent the cost of
sampling measured in the units of the loss function Lp (this is clear from the definition of
C). Intuitively, asymptotic results should be obtained by letting the cost of sampling relative
to the cost of estimation error decrease,because this will encourage longer observation of the
process. One way to achieve this is to let Ca and Co tend to 0. Another approach (follow-
ing El-Sayyad and Freeman (1973)) would be to define total cost as C*(t) = DE(Lp|F(t)) +
cAX(t) + cTt and let D » = while holding Cp and o fixed. The two methods are obviously

mathematically equivalent; in this paper the first method will be used.

The total cost function may be written in two other ways which will be useful later:

(1.5) co) = B PR B TN + oxit) + ot
and
2-p =l
(1.6) C(t) = E(6° F|F(t)) (a(t) + 1 - p) ~ + c X(t) + ot o

For t >0, let Y(t) = E(el_p|Ft) and 2z(t) = E(Bz-p|F(t)). By a well known theorem

{v(t), t >0} and {z(t), t > 0} are uniformly integrable martingales. Thus Y(«) = lim Y(t)
t o
and 2(w) = 02-p' For b > “Qye i

1-
and Z(») = lim 2Z(t) exist almost surely and Y(®) = 6 P
t >

define

-2=
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b -1 _-b
(1.7 Yy E(07) = F(uo#b)r(uo) Bo .
In Section 2 a stopping time 71 will be defined and shown to be either opt mal or asymp-

totically optimal for all p, Car Cpr 9, and So. In addition, the limiting form of E(((1))

will be given.

In Section 3, nonsequential sampling plans will be considered, namely Type I censoring

(observing the process for a predetermined length of time) and Type II censoring (observing the

process until a predetermined number of arrivals are observed). Using the criterion of mini-

mizing expected total cost, the Bayes Type 1 censoring (Bl) and Type II censoring (B2) proced-

ures are obtained explicitly along with their respective expected costs (vl and V2). The

values vl and V2 are compared asymptotically to determine the cases in which Bl is

superior (inferior) to B2.

In Section 4, the results of Sections 2 and 3 are combined to determine how much better

T performs than Bl or B2. An explicit asymptotic measure of the improvement is given.
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Section 2: Sequential Sampling Plans

All stopping times are with respect to {F(t), t > 0}). The stopping time o is called
optimal if, and only if E(C(0)) = inf E(C(p)) with the infimum taken over all stopping times
©. In such problems, it is often useful to compute the infinitesimal generator of the
stochastic process ((t). It is defined to be

AC(E) = 1im W ME(C(tan) - SO [Fo)
h40

Using (1.5), it is easy to show that

2 1

Y(t) + cAa(t)B(t)- +c ’

AC(t) = =B(t) X

for Y(t) defined in Section 1. Intuitively, as long as AC(t) < 0, sampling should continue

since the total cost is "expected" to decrease. A natural stopping time to consider is

(2.1) T = least t > 0 such that AC(t) >0 ,
or
1

Y08® ™ < campm™ e .

For p an integer, the rule 1 is easy to use; for example if p = 0, 1 stops the first time

(2.2) a8 < cualt) + c () .

The left side of (2.2) is the posterior variance of € while the right side is approximately

the total cost of sampling. In fact, for any p, 1 stops the first time

E(Lp(ﬂ.o)lF(t)) < ealt) + e Bt

which generalizes the above.
The following result on the optimality of 1 was obtained independently, using different
methods of proof, by Novic (1977) and Shapiro and Wardrop (1977).
Theorem 2.1. 1In the cases
(1Y 0 «<p <1l and cT-o,
(1) 1 < p <2 and all ¢, c., oOFr




—

a13) 2 < p <3 and o 0.

T given by (2.1) .z optimal for all ﬁo > 0 and ﬂo > p

For situations not covered by Theorem 2.1, including the interesting case p = 0 and
C. T 0, the optimal stopping time is not known, MNMoreover, there are not any general existing

T
results on the limiting torm of the expected total cost of the optimal rule. In this section

it will be shown that t 18 asymptotically optimal for all p, ch. S ﬁu and a“() P}y and H

the limiting form of E(T(1))  will be obtained. First a lower bound for the asymptotic expect-

od total cost of any sequence of stopping times is obtained in Theorem 2.2,

1 1/2

Lemma 2,1. For U, V > 0 random variables, min BUV C + V) = 20077

\Y

—
L

Proof: For x, y > 0, g(x) = yx'l 4+ x  achieves a unigque minimam of :yl;' at X =y .

1

- /2
Therefore eV 4 vim > 2pu'd),

Theorem 2.2,

aae

t3}y I © =y Jet O = o(vr) be any family of stopping times, then

A
g 1 P & . 172 yan a (P=1) 72, vl
ltm.gnf g BECO)) Y 2BY (™) - Ir\uo + (l-p)/.\ﬂo l(uo) .
v
i1y 1f Gs * 0, write Cp * avA(a >0 Let o= ﬂ{cA) be any family of stopping foine:
thon
-l 79 N = N B
Vim inf rA‘ "I > 2RGar () + s T apaet P 4 @ TR
S
A
< “-Jl\‘A
Proof: wor (i),
gLl “1/2. . : " =1/72,=1 172,
Lim ant UT E{(0)) = lim anf h(Y(o\cT B, ¢ Oy ‘\
€ >0 g0 g ‘
1/2 1

S LimoAng 2RV DT s aev T

o)
b

“-he
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Lemma 2.1 and the fact that (Y(t)‘/‘, 0 <« t < «} is a supermartingale.

For (11)

lim inft c;lx:ﬁ( (0)) =

~ )) c. = ~
\A Q, T aLA

1 (aB (o) +a(0) +1=-p) '(a(0) +1-p)

lim inf E 17 12!
\CA‘ “(ag(0)+a(0)+1-p) B(0) LF(\I(u))

1/2 > \ S -1
+ Cn (a(a) + 1=p + af(o)) ) = lim inf E(UV + V)

/9
U = ay(o) + 2(0) and V = ci"(aﬁ(o) + a(o) + 1 - p). The result now follows as in (i).

To obtain the limiting value of E(((1)), the following result is needed.

Lemma 2.2,

(i) If c_= 0, then

A
S - /2
lim C;/-B‘ 0 Eo(l P)/
c 0
T
i B % Oy T ~Q0 )
(11) If a ( and Co 1cA(a_(), then
3 gasrilife
tim o *E@a8(n) +a() = B@' P 4 o*H i
c 0
A
\.‘T'ACA

Proof: In case (i), from the definition of 1, Y(1) :»cTR(T)z. Thus,

/2 2
e BB 2 B

€ >0, on the set t > ¢, Y(t=¢) > cTB(x-e)z, yielding

-6=
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y 1/2 /3
() Sp EB(Rl1=)) < strtv-a /%) .

It 18 easy to see that as ‘.1‘ * 0, v »» and Y(1) *» ¥Y(=) with probability one. Moreover,

/2

49 /s
both Y(:--)l" and Y(l)l'z are bounded above by (sup Y(t)) . Thas latter random variable

t>0
18 integrable because

P ((sup v(e)) % 5 o) = Lim Bt sup  Y(t) > a’) < a—’R(YO)
t>0 Tew  O<EST

Part (1) now follows from (2.3) and (2.4).

For case (11), the definition of 1 gives
>
ay(t) + =(1) < cplagin) + a()) ™ o+ CA(I-P)(AK(Y) + a(t))
and on the set 1t > ¢ > 0,
2
aY(t=¢) + 2(t=¢) « cA(aS(t-.) + alr=¢)) ™ cA(l-p)(aﬁ(\-«) + al{r=¢))

The remainder of the proof i1s similar to case (i) and will not be given.
Theorem 2.3.

(i) IF ¢, = 0; then

«) /2 -p) /2
lim cT‘ B(C(1) = 2p(@ PR3
c
T
(31) 1t “A\ 0, and cTw .\ck\a:\\), then
1\/2
-1/2 1=p 2«
lim vkl B(C(1)) = 2E(a0 B 8" F)
\.A.O
\“r"l\‘a
Proof: For (i),
M) = Y 4 ot € 2¢,8
( - O S & '
B ) ™

and for (ii),

Clt) = \‘(\)s“)'l + \-A(M ¢ X(1)) < .!\‘A(a:\(t) ¢ aft))

Sl




! The desired results follow from Theorem 2.2 and Lemma 2.2,

In view of the results presented in Theorem 2.2 and 2.3, say that 1 1s asymptotically

-1/2 X
optimal. Note that if both e and Cp Aare positive then lim vAl' E(C(1)) must be com-
 »0
. \A’k
L‘T‘\‘l(‘

puted numerically.
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Section 3. Types 1 and I1 Censoring
By Theorem 2.1, the optimal sequential procedure is type I censoring 1f either Cp ™ P

or c, = 0 and p =1, and it is type IT censoring if either Co ™ 0 and p =2 or Ca )
and p = 3 (the cases with p = 1,2 were obtained by El-Sayyad and Freeman (1973)). 1In some
applications 1t may not be feasible to use 1, and the experimenter must choose either Type 1
or II censoring. The results of this section should be helpful in making that choice.

The Bayes type 1 censoring procedure (Bl) is that t* which minimizes E(C(t)) over all

t > 0. Using representation (1.5) for C(t), it is easy to verify

1/2
= +
- ) e = ~
t l[\l_P((A\1 + LT) ] BO; v
and for £* > 0,
{3.1) vV, = E(C(tY)) = 2[v (c.v. + ¢ )]l/2 RSN e Y, o
1 I=p A} P 0""A"1 &

with Y given by (1.7).
Y

The Bayes type Il censoring procedure is that integer n* which minimizes E(f(t“)) over
n o= 0,1,2,... . Treating n as a continuous variable and using representation (l1.6) for

O(t), it is easy to show

-1 1/2 %
3.2 * = ) - : - -p}
(3.2) n {lxz_p(cA * Cuvy) ) (ay + 1-p) ,
provided that either O *» X o cT i PO GO <1 and Cn > 0, then n* = 0 since
CTR(tl) = ™, For the remainder of this section assume that either “0 R oy fT = Q. If
n* > (0, then set
(3.3) v, = B ) = 21y, (e, + e v 1% < (o, + lepile, + £ ) -
2 n* 2=p A T ~1 0 A Tl

For the remainder of the section assume CA and CT are small enough to insure n¥%,
t* > 0.
Remark 3.1. The value n* given by (3.2) is not necessarily an integer, so, strictly speaking,

B2 is either [n*] or [n* + 1], [¢] the greatest integer function. Also, the expected total

G




cost of B2 is not exactly v2 if n* is not an integer. For given values of 00’ Bo, P

Ca and Cop? one may compare V1 and v2 (or V2's 'exact' version) as an aid in choosing

between Bl and B2. In the remainder of the section v1 and V2 will be compared asymptotic-

ally as sampling costs go to zero (the effect of n* not being an integer disappears in the
limit, .

Comparison of V1 and V2 when A 0

If p=2, then V., =V for all b > 0. Define

17 VY
(3.4) Bobg = e s e S 11/2
: a'Pr% ey e S
c_-+0
T
CA=

[(uo-l)(uo+1-p)]-l, for a. »pVvVi ,

0

by (3.1), (3.3) and (1.7). It is not difficult to show that result (3.4) remains true for

o > (p-1) v 1. Moreover, if 0 V (p~l) < a < 1, then RA(p,ao) = 0. Clearly RA(p,uO) <1

if and only if p < 2. 1In words, asymptotically Bl gives a lower expected cost than
B2 iff p < 2. As shown above, the asymptotic expected savings in using Bl instead of B2

can be 100% (when RA = 0). Conversely, the asymptotic expected savings in using B2 instead of
1/2
1

Bl can approach 100% when RA + o (e.g. take p = 3, ag = 2 +e€, € > 0; then RA= [(1+e)e 71 > o

as ¢ » 0). Thus, depending on the values of p and eq there can be a tremendous difference be-

tween Vl and vz. b5 RA(p,an) is near unity then the difference (based on expected total cost)

between Bl and B2 is not dramatic and the experimenter may choose to use the procedure which is

easier to implement.

Comparison of v1 and V2 when Cp = (05

If p=1, then V, =V for all cA > 0. Define

1 2
= -1 1/2

3 = i =
(3.5) RT(p,ao) lim v,v, (vl_pvlvz_p)

¢,>0

A

cT=0

=1 1/2
= [ao(ao+1-p) ] v for ao s pYvag ,
=10-

T iy
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by (3.1, (3.3) a

ay > (p=1) v 0

nd (1.7). It is not difficult to show that (3.%) remains true for

(for B2 one need not require 0y > 1 since G ™ 0). Clearly K‘.(P.uu) e

if and only if p < 1 and R takes on all values in (0,®) (e.g. Ry »~ as a, 3 (p-1)
fox p = Q, R'I‘ » 0 as Xy *» 0). The discussion given above for e, = 0 is also relevent
in this case.
T et
For a » 0 define
(1.6) R(p B = 1im VN
. [,\\0; 0 12
c 0
A
vT-acA
> . of 1/2
+ap +1- - 4
(u0 ato) {(no 1 p)(loaﬂo(m0 1)
for ay > P v 1l, by (3.1), (3.3) and (1.7). Result (3.6) remains true for a, > (p=1) v 1,
and if (0 Vv (p=1)) < u(‘ < 1, then R(p,uo,aﬂo) = 0,
Clearly, R 1 if p>2 and R<1l 1IFf p < L. Seat
p* = (o =1+2aR ) (a - L+ag g pr <2 .
Q (4] QO Q
Simple algebra gives R =1 {f p=p% and R>1 (R<1l) if p > p* (p < p*). If
1 < p< 2, and ay > 1, set
a* =1 + af (:—p)(p-l)" and
Q 0 ¢
(ag ) * = («a -l\u\-l)(:-l‘)-‘ .
0 Q
Simple algebra gives R = 1 if 8y ™ u\" , equivalently al*\‘ = (m%”\‘, and R > X (R« 1) &t
. P 4 313 4 8 5 @ « > " o P | G paay y gee
@, d"‘ (S .xl") or, eguivalently, ali(‘ (ati“) (ali” (alin) ). Finally, it is casy to sec

that R takes on all values in  (0,®).

In summarvy,

readily, either

Bl and B2 can be compared

tor given values of p, ¢ Ciw oy and g

o

tsing exact values of V and V) or an asymptot ic approximat ion

-11~-

0
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Section 4. An Asymptotic Comparison of 1 with Bl and B2

Analogous to the earlier Qefinitions of V1 and V2, let V0 = B(C'(1)). The exact value

of V0 must be computed numerically, but its limiting value is given in Theorem 2.3. The class
of sequential procedures includes Bl and B2; hence, 1lim Vov;1 <1, for i = 1,2, with the

limit taken as sampling costs tend to zero. Thus, based on the criterion of expected total cost,
neither Bl nor B2 are ever better than 1 in the limit. However, in real applications,

other considerations (such as case of implementation) are important and an experimenter may

prefer BR1(B2) if VUVIl(VOVIl) is near unity. In this section the limiting value of Vovzl,

t = 1,2, will be given in the case of exactly one sampling cost positive. In the case of both
sampling costs positive the limit of Vu must be computed numerically; hence it is not a con-
venient case to determine general patterns.

It ia not difficult to see that the conclusions of Theorem 2.2 and 2.3 remain true if the

hypotheses are weakened to %y 2 0 Vv (p-1}. 1In fact, if e 0, then the hypotheses can be

weakened to o« > 0 VvV (p-2). Similarly, results given on the limiting form of V

0 can be ex-

)
«

tended to a 1V (p=2), where { =1 |if Cq > 0O and j = 0 if Cq ™ 0. As mentioned in

Section 3, results given on the limiting form of V., require only a * 0 v (p-1).

1

For =« <« r<w and b > 0 v (r-1), define

1/ 1/2

H(b,x) = 1 (b + (1=1) /)7 (b) "> 2p (beler)”

For 1 =1,2, set
Q (T, i) = lim v vt
p ’ 0'i
ch-b()

CT'O

and define Qp(A,i) in the analogous way. It follows easily from Theorem 2.2 and 2.3, formu-

las (1.7), (3.1) and (3.13) and the remarks above that

QP(A.l) = H(uo.p) ' a, > 0 v (p=1)
Qp(h,:) = H(no-l.p-2) a, > 1 v (p=1)
(4.1) = Q0 1 >a, >0v (p-1) X

Qp(T.l) = u(un¢l,p01) » 0V p=1

Qp(""“ - “(“n,p—\) > 0 v p=2
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Some Examples of (4.1)

For simplicity, only compare T to the "better" of Bl and B2 (i.e. Bl if
B2 if p > 2, see Section 3).

p. = 0: 1In this case

Qo(Te1) =1 , a, >0, and

(¢]
3 1 -1/2 -1/2
QO(A.I) F(uO + 2)?(00) r(u0+1) ¢ Qg >0 .
Note lim Q(A,1) = 0 and 1lim Q(A,1) = 1.
00+0 u0+°
p.=1: In this case,
QA1) =1 ,
1 -1/2 -1/2
QL(T.I) P(ao + 2)P(ao) r(ao+1) v ay > 0 .,
and the remarks of the previous case apply.
p.=2: In this case,
QZ(T'z) =1 v
0 ook 2 -1/2 -1/2 X
Qz(A'Z) P(uo 2)P(uo 1) F(ao) v Ay 1,

and the remark of case p = 0 apply with the modification a_. + 1 instead of a_ ¢ 0.

[\ Q

p. = 3: In this case,

Q,(a,2) =1

‘1/2r(an)"/2, et

r 1
Ql(T,z) = F(uo - 5)r(a0-1) 0

and the previous remark applies.
p_< 0: 1In this case,

1/ 1/2

-1/2 -
Qp(?,l) » F(u0+1-p/2)r(uo+l) F(ao+l-p) » and

-13-

<1,

4




1/

1/2

-1/2 -
QP(A.I) - l‘(uo + (l-p)/2)r(uo) l‘(uoﬂ-p) 3

Note that lim Q (T,1)=1 for all a, * 0. Thus it Oy = 0, v is little better than Bl
P.—-

even for a vague prior, when p (s large and negative.
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