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SIGNIFICANCE AND EXPLANATION

When an axially symmetric shaft is subjected to a small torque the shaft
deforms clastically. As the torque increases, the maximum stress reaches the
largest value permissible in elastic deformation and a plastic enclave forms

. and grows.

In this paper the problem of the elastic-plastic torsion of a shaft is re-
formulated as a variational inequality. This is mathematically equivalent to the
principle of Haar and von Karman according to which the strain energy must be
minimized subject to the constraint that the stress should not exceed its per-
missible limit,

The advantages of formulating the problem as a variational inequality are:

(i) The elastic and plastic regions are treated in a unified manner and there

vt it 0 g Lo Pty

is no need to determine the boundary of the plastic region.

(ii) Mathematical questions, such as existence and uniqueness, are readily

T

answered,
(iii) The variational inequality lends itself to numerical approximation.
We establish existence and uniqueness of the solution, and also obtain bounds
for the size of the plastic region. Numerical results for a two-diamecter shaft

will be given in a later paper.
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THE SOLUTION OF THE AXISYMMETRIC ELASTIC-PLASTIC TORSION
OF A SHAFT USING VARIATIONAL INEQUALITIES

*
C. W. Cryer

1. Classical formulation of the nroblem.

The problem to be considered is shown in Figure 1.1. Equal and omposite toraues T are
applied to the ends of a shaft of length L which is axially symmetric about the xlnaxis

and has (variable) radius R(xl).

*2

/‘I‘
\ S

&
< L >

Figure l.1l: A circular shaft of varying diameter.

Because of axial symmetry it suffices to consider the problem in the two-dimensional

i

,gi domain
%
, @={x=(x;,x,)) : 0<% <Li 0<x, <R(x,)} (1.1
i

ue corresponding to the cross-section of the shaft.
ER
%; The boundary T of Q consists of three parts: Po, Fl' and Fz r21 v r22 as shown
%g in Fiqure 1.2, F21 and 122 are parallel to the xz-axls. Fl is the curve x2 = R(xl),
%; 0<x <L. I, is a sequent of the x, -axis.

As regards the boundary T, it is assumed that:

1

(i) R e C2(0,L), that is, R is twice continuously differentiable. This assumption

allows us to prove that the solution is differentiable (see Theorem 5.9).

*
Computer Sciences Department and Mathematics Research Center, University of Wisconsin,
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(ii) dR/dx2 = dzR/dxg = 0 when X, = 0 and x, = L. This is true if the shaft has con- .

M e

stant radius near its ends as often hi_oens in practice. This assumption allows us to

ST T

Egis
4

SR

reflect © in le and r22 and obtain a smooth solution in the enlarged domain (see L

Lemma 5.1).

Wiii) dR/dx2 > 0, so that rl is of the form shown in Figure 1.2. This assumption allows us

to conclude that R(x,) > R(0) for x, e [0,L]. It also allows us to conclude that

only one characteristic nasses through each point on F21 (see Theorem 4.2).

Figure 1,2: Cross-section of an axisymmetric shaft.

In analogy with the theory of torsion of prismatic bars due to Saint-Venant (Love [1944,

p. 311}), it is assumed that the only hon-zero stresses are shear stresses on the planes Q.

It can then be shown (Love [1944, p. 325}, Eddy and Shaw [1949], Zienkiewicz and Cheung [1967])

<t e s 2o b AN AR, B A T 0 s

that the problem reduces to finding a stress function u. The stress components Teg = 123
»
and T ° 113 are given in terms of u by
T, == U /(x)2
23 ‘1 2 '

(1.2) .

2
113 =+ u’2/(x2) '

-2-
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where Wy o= 3\\/3xi‘ The stresaz q is given hy

172
2 1 2 2 1
Q= by, ¢y, " 5 ]+ wgl w = |grad w} . (1.3)

2

- 2
(xa) (xn)

When the torque T {a small, the strosses are small and the vemponse is elastic., An 70
incroases a amall plastic enclave forms. 1In gensral, € {8 divided into two subregions, the
alaatic region ﬂa and the plastic region Qp. The unknown free boundary between nﬁ and

np inx denoted by I‘(, (sen Figure 1.2).

n u“ the matovial {u elastic and u  satisfies the differential equation

2
O 1 i
T 3 % in 0 (1.9

3
A= - (w, /(x,)7),, T~ ) '
PO M\ ™ ®

Tho material {a araumed to yield according to the critovion of von Mises) that ix, the
\ matorvial yiolda whon the stieng q reachos the maximum permizgibleo value X (a given con-

atant) . Thun,

' farad v| . kxf. in \}0 ' (1.5
lavad u} = K2, in ow . (1.6
2 P

The boundary conditions for o on ' ave (see Piguve 1.2

w0, on |‘0 . (.
u o« VA oon Fl ' .y
R .

n AN \\.l = 0, on l.‘ . (1o

condition (1.7 avises thiam the axial symmetyy of the pmoblem.  Condition (1,8} aaprosses the

tact that the total torane is T and that theie is no tiraction on the outer surtace l‘\.

condition (1.9 oxpregses the assumpt ton that at the ends of tho shaft the stivases cottoespond

to A pate toraue 50 that o, w0,

2 1
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The formulation of the problem is completed by the requirement that u and its first

x§ derivatives be continuous across rf. The problem defined by (1.4) to (1.9) will be called
% the Classical Froblem.

The remainder of tho paper is organized as follows. Iu che remainder of this section we

make some brief remarks about related work in the literature, and indicate the reasons for

choosing the method of analysis used in this paper. 1In section 2 we introduce certain weighted

2 Sotalev spaces; in section 3 we analyse the one~dimensional problem; in section 4 the classi-~
e

b cal problem is reformulated as a variational inequality; and in sections 5 and 6 the existence
b,

5»

7N

of a solution and various properties thereof are proved.

\ Numerical results will appear in a subsequent paper (Cryer [1979a)).

In recent years the elastic-plastic torsion of cylindrical bars has been intensively

=
o gtudied: see Ting [1973); Lanchon [1974); for othoer references see Cryer [1977, section
: | 1.5.3.1]. If the cross-soction of the bar is denoted by 5. then it is required to find a

stross function ¢ such that

i? Ay = - ¢.11 - ¢.22 + 20 = 0, in ne ' ‘

; larad ¢ | = k, in ép ’ {1.10)

¢ =0, on wm .

1; Hore, the constant k denotes the maximum stress, and the constant 6 > 0 denotes the anqle

of twist per unit length of the bar, while ﬁp and Qe denote the plastic and elastic re-
gions, respactively.

-

There are close sinlarities between the problem considered in this paper and the problem

{1.10), but there are al.»n two important differences:

(i) The differential ojerator A of (1.4) can be written in saeveral forms.

Ay w div(x:3 grad u)

o 3 B el e e

!
(1.11) ~
A
|
o
20 3 )
3 0 RAAY RIN] 4
- = S8y EIgELE 1) !
x2 Au A 3 2 X, %, ' ( :
\xl n}\z - - ,
2 ) - 4
1T u Ju
- xY Aue x [ lo -3 , SIEY
2 2 ol L X,
‘s‘ x2 1 2

a——




= 0.

but one cannot avoid the singularity at x

2

(ii) The boundary conditions (1.7) through (1.9) are a combination of Dirichlet and Neumann
conditions while tho boundary conditions for (1.10) are Dirichlet,

The singularity of the operator A is the most significant difference between the pre-
sent problem and problem (1.10). There is an extensive literature on degenerate elliptic
equations (Visik {1964}, Oleinik and Radkevic {1973), Fichara [1956, 1960], Xohn and Nirenberg
{1967, 1967al, Baouendi and Goulaouic [1972}).

Unfortunately, much of the literature is not applicable to the problem ir hand. One
reason for this is the following., The equation (1.13) is degenerate on YO. However, the
inner product of the coefficients of the first order derivatives with the outward normal on

r is
(0) % {0) + (-3) % (~1) =3 ,

which is positive so that boundary conditions must be lmposed on Po {Fichera ({1960}, Oleinik

and Radkevic [1973), Friedman and Pinsky [1973)). On the other hand, for the equation

-21 2 ( 3} d J 3 3\1) A" . ATy u RIN

x e IR mem e R e w X == % =)+ Qe 3 =] =

2 10 22 h) 23 2], 2 K R !
le %, X, Xy 2 3“1 ax% X, X,

the imnnor-product of the first order coefficients with the outward normal on FO is egual to

-3 so that no boundary comlitions can be imposed on PO. This means that papers on degenerate
olliptic equations in which only bounds on the absolute values of the coefficients of the
equation are imposad (Munrthy and Stampacchia [1968], Trudinger [19731), camnot be of use in
the presont case,

However, the operator A gives rise to generalized axially symmetric potentials which
have been extensively studied (see Woeinstein [1953), Huber [1954, 1955], Quinn and Weinacht
[1970], Quinn {1978), and the refevences bhelow). Various methods have been used to studv

boundary value problems for goneralized axaally symmetric potentials:

(a) Maximum Eﬁiﬁgiﬁlﬁ' Jamet. 11967, 1968], Parter (1965, 1965al, Lo (1973, 1976].

-5
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{b) Perturbation of \I.

The problem is considered in

Q€ - ((xl'x2) € fl: X, 2 el

and then the limit is taken as ¢ -+ 0. (Schechter [1960), Greenspan and Warten (1962}).

{c) Weighted Sobolev spaces.

The problem is reformulated as a minimization problem in the
space of functions u such that

1 2 2
f ) (u,1 + u,2)dxldx2 < w
x5

(Leventhal (1973, 1975), Jakovlev [1966]), Necas {1967, chapter 6]).

For the present problem the natural setting is a weighted Sobolev space, but we algo use

the maximum principle and perturbation of 0.

Noncoercive variational inequalities have been considered by Lions and Stampacchia

[1965], Lewy and Stampacchia (1971}, and Deuel and Hess [1974), but none of these results are
applicable to the problem considered here.

Acknowledgement

The author is grateful to Seymour Parter for drawing his attention to the work of
Leventhal,
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2. Some weighted Sobolev spaces.

Because of the term 1/(x2)3 in the operator A defined by (1.4), it is necessary to

introduce Sobolev spaces with a weight function

-3
plx) = "("1"‘2) = ("2’ . (2.1)

There is an extensive literature on we. thted Sobolev spaces (Necas [1967], Kudrjacev
[1974), Xadlec {1966], Kadlec and Kufner [1966, 1967), Kufner [1965, 1965a, 1969], Jakovlev
[1966]) . The present problem presents several aspects which, taken together, are not covered

in the literature:

(i) The weight function p involves the distance to the plane x, = O,

2

(i) p = x23 whoreas most references consider the case p = xg, a > 0.

(iii) The boundary conditions on 3t are of the third kind (Dirichlet and Neumann),.

(0),1
1]

The results of this section hold whenever & 1is of type N that is, Q is a

bounded domain whose boundary is Lipschitz continuous (Necas [1967, p. 55)). This condition
is satisfied as long as Pl congists of a finite number of Lipschitz continuous curves, with-
out cusps, and is certainly satisfied when 9 is as in Fiqure 1.2.
nz(u) and wm'p(n) denote the usual Lebesgue spaces and Sobolev spaces defined over 8.
Wo denote by L = Lg(ﬂ) the veal linear space of real measurabhle functior: v defined

on 8 with finite norm

1/2 1/2
Hviel] = ”v:%?(u)‘] = {f p(x)v> dx] = x:av2 dx) . (2.2)
2 1.

)
Thus, v e 1, iff 01/"v ¢ L2(Q). We assert that L is complete. To see this let

. . 172 . . 2 .:
lvn¥ be a Cauchy sequence in L. Then {p /‘vnl is a Cauchy sequence in L7 (§}). Since

2 . 2 . 2 2 .
17 is vomplete, pl/ v *»u in Lz(n) for some u ¢ L7(). Thus ol/2v ’ pl/ v in

n n
1/2

2 - . . C
() where v s up ¢« L. That iy, v“ » v in L, so that I 1is indeed complete.

1,2 . . R . .
We denote by W = W" ()  the space of functions v ¢ L with generalized derivatives
+

Ve, u‘v, 1 ~ 1+ 2, which also belong to L. As noim we take

2 1/2
2 S 2
O] = tvsnd]” + ,IDiv;L” ] . (2.3)
=]

1,2

HV;N‘H = ”\':Np

-7-
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We assert that W i3z a Banach space. To see this, let (v } bpe a Cauchy sequence in W.
n

1/2 1/2

Then, by the arqunonts of the previous varagraph, o v = p"" "w ¢ Lz(m for some w ¢ L,

n

while ;'1/21)ivn - 01/2\;1 ¢ x.zm) for some w, ¢ L, 1 $1 2 2. We must show that

Wy Dw. To do so, choose a test function v e D(), the set of infinitely differentiable

functions with compact support in 1. By definition,

[ (ov)vax = -~ [ v (D, Wax .
Q i'n Qni

Now ¢ has compact support on (I, Thus v = 0 outside some compact subset & of . On

5, 2 € > 0., Since 91/2\’" - 01/2

. 2 i 2
that "nl“c wlnc in L7 ). similarly, °1"n'“c ~wilnc in LM, Thus,

nc we have that, for dome ¢, X

fw(Div)dx - fﬂ w(Dte)dx - lim[ vn(Div)dx -

2 e nev Qc

= - lim [ (l)iv“)»"dx .- W, vdx -

nw Q Q
(] c

"‘IW vdx
Ql

and we conclude that indeod W, Diw.

The preceding arguments used only the fact that p is continuous and positive in

The arguments which follow use the fact that p = x:3.

1,2

We denote by V = Vp

(37} the set of reval measurable functions v defined on
that x:lv ¢« L and v has weak derivativas Div ¢ L. As norm, we take

1,2

-1 2 :': 2 1/2
NRRGUT LI FOSZEN | R Ilniv;x.il'l .

vl = flviv
i=]

Using the arguments proviously applied to W it follows that V is a Bandach space.

If veV then v ¢ W and
fviw) s (max (1 + X)) fvivll .
N

80 that V cdi. be inbedded in W.

8=

2

w in Lz(m, we conclude

2.

such

(2.4)

o

pe——




For small positive h let Sh be the strip

sh-(xc0:0<x2<h), (2.6)

and let

a = {xen:x,>nl=as5 . 2.7

2

Let C;(l'i) - C;(R2|ml‘i) denote the set of restrictions to 8 of functions which aro

infinitely differentiable in R2 and which vanish in some neighhorhood of I‘i. In particular,

) then ¢ vanishes in some S . We denote by °w - 0w1,2

L d
P .
1€ ve¢ Co(l' h b

(R) the completion

o 8 O

in W of c_(l)), and sot

0
0 2 , 172
s Wil = 01 legvinll™y . (2.8)
i=1

Theorems 2.2 and 2.3 below are based on rosults due to Xadlec and Kufner [1966].

We use the folloving inequality due to Hardy (Hardy, Littlewood, and Polya (1934, p.245)).

Lomma 2.1, (Hardy)

If p>1l,a<xp-=-1, and qg(t) is a measurable function on (0,~) such that

[ late)|Pelae < o,
0

then

>t P D W
!opo I‘J(s)lds] " Pae < <I>'—°::Tf> [ later Pt .
0

Theorem 2,2,
V=yw
Tha norms

vl = [ otx23%% + lorad w|%1ax |
2 “

"w;w”z = f p[wz + [grad \~'|2]dx f
Q

-9-




and

"w;w°||2 = {2plgtad w|2 dx

are equivalent on W, and satisfy

£ Twsvll? < %2 < howll? < max 1w ) ®llwavil® (2.9)
2

If we¢ W then w(xl,xz) + 0 as x, <+ 0 for almost all xl. Indeed,

2
x
2 1/2 .
1 1 2 5/2
|w(x1,x2)| < 7 f 3 IDzw(xl,s)| ds X, ¢ a.e. (2.10)
0 x
2
Also,
L2, Ly 0y .
f g dx < = [|w; “wi| . (2.11)
Q% 4
2
Proof: Let w ¢ W. Then w belongs to the Sobolev space nl(ﬂ) and so w(xl,') is ,

absolutely continuous as a function of X, for almost all X (Morrey (1966, p. 66]). Thus,

t 0
wix,, t) - wix ,a8) = / Dwix,u)du . "

8

Furthermore, since "w;wll <o jt follows from Fubini's theorem that
R(x.)
1 2
= |p,w(x,,u)|du < » , (*%)
3 2 1
0 x2

for almost all x Thus, using Holder's inequality,

1

|-3/2.|u|3/2du

t
lwix, . t) - W(xl.S)I / |02W(x1r0)|-|“

I~

® ‘,
!
. 1/2 ‘
rt Vit g
1 2 3
<5 Iowix | du] |/ vl du] .
Ls u N
, |
X
2
b sls/z . (*a%)

| 1 2 172
[! =3 ‘Dzw(xl.u)| du |t-
0 u

-10-
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from which we conclude that w(xl,O) = lim w(xl,s) exists for almost all Xy However, from

5+0
Fubini's theorem,

R(x,)
1 2

f 3 |w(x1,u)| du <> , a,e.,
u

so that w(xl.O) = 0 a.e. Indeed, we have (2,10).

Applying Lemma 2,1 withg = Dzw, a=-3, and p = 2, we see that, for almost all Xy

R(x,) R(x,} X 2
1 1 2 1 1 2
f 5 Iw(xl.xz)l dx2 = < f Dzw(xl,a)ds ax,
0 X 0 b 0
2 2
R(xl) . X, 2
< f 3 f |Dzw(x1,s)|ds dx2 '
0 X 0
2 L
R(xl)
1 1 2
23 7 [Dpwix %) [%ax, .
0 x2

Integrating with respect to X, we obtain (2.11)., The remainder of the Theorem now follows

immediatoly.

Ramark 2.1.
then inequality (2.11) is related to the Poincaré inequality. For
Q

If v=0 on 3N

general mixed boundary conditions, one obtains an inequality such as (2.11) only when

satisfies certain restrictions (Stampacchia [1969, p. 145}).

Theorem 2.3. Given v < V and ¢ > 0 there exists ¢ ¢ CE(PO) such that

v =wswll <e o
If, in addition, v -~ y ¢ C:(Pl) for some constant y then ¢ can be chosen so that
' ()
U] Y(Co(l.

Congseguently, V = wO = W.

-11~




Proofy

Choone  €(t) « Cm(Rl) such that 0 € f(t) <1, £= 0 “or t <1, and f=1 for

£ > 2. Guch an £ can bo constructed using wollifiers. Let o « max |£'].

Lat ¥ (x).Xg) = f{xy/h), so that O < H < 1,

0, if X, b,

Py (X xgh = 1, Af xy 220
Thon K, € CZ(PO) and

o, ¥, < ot

For any v ¢ VvV let VW" Fh v, Thom v, ¢ A\ vh(x) »w0 for Xx ¢ Sh' vix) = vh(x)

for ¥ ¢ nzh; lv(x) - vh(x)l M lv(x)l. Ao,

2 2
Jo tv=v) |* <t - ASLRY I LIS D

ia

21|°3V|2 b valuivhlzl '

go that

|°1(V'Vh)‘2 |01V|2 vodnos

h

lDl(v-Vh)l2

{n

2||D1v]2 vveliady

S

2[|Dlv|2 * dvzcz/xil. in os,./8

Thug, rememboring that v - n " 0 in ﬂ2h,

2 1 2
"(V‘Vh)l“|| < g = Ivlfaxo

X
2h T2

2

. 2 ‘ p

! 1£1 2{‘ [33 o, vl ac? Jg |v|{]dx .
Sanl*2 \ Xq

Since v ¢ V oach Integral is convergent. Since the weasure of Sgp 0 as ho g, we con-

alude that

“v—vhxwl\ YO0, am b0 .

“l2-

e A s B % T X s S

R oo TSR




b b B

o

Chooss « > 0, and then plek h a0 that

v owll < er2 . ")

(3 R . 1'2 i "
Since W " 0 in §, wo soee that vhlnI va b W mh /:) « bt Ql V2 natlaflos tha segment

h
proparty (Adams (1978, p. 54]1) and ao there exiasta LN C‘S(Rz) such that whlﬂh 22 la
arbltrarily closa to \'h|nl Vi in the wl.:lmh /2) norm.  Farthexmore, rewembering that
vh » 0 in Sh' oxamination of the proof of Theorem 3.18 of Adams shows that w
chosen to be nevo in a nelghborhood U of the bonudary component

\\ '
I may bu

“h/'k w (x e Xy = W/2)

o 1,2
of “l\/'é' that in, ¢ = whlﬂ < CO(IO). Since the norma ll';wl'a(uh/g) || and Ilwwp' mh,’:‘) I

are equivalent oun Qh /2 wa can choodo w80 that

h

1,2 .
Mevy 1l e 10y W T8 | s e (0

combining (*) and (%)

e - viwll < ¢

Noxt, lot  wv-y ¢ ko(ll). that "W " l~hv natiation Y)Y e Co(l“) and from tho cone
1%

atruct ton of W, (Adama (1975, p. 551) wo can eloarly choose W, HO that ey e “\u(l'l)-

. ‘\\‘ . (
Sinco ¢ e (0“0)' Ve \v. andd we conelude that O\\‘ ta denre in Vo Uning Theorvem 2,2

wo have V. 0W C W oWV,



3. The one~-dimensional problem.

It is instructive to consider the one-dimensional problem which arises when the shaft has

constant diameter. In this case wu depends only upon Xy It is convenient to set X, = I,

We normalize u and r so that the shaft has radius 1, and u = 1 on the outer surface of

the shaft, To be consistent we should sot @ = (0,L) x (0,1) but wo set 2 = (0,1) since

no confusion can arise., We look for a solution for which Qe = (0,1) and np = (1r,l) for

some constant T,

conditions (1.4) through (1.9) bocome:

3 ,1 Ju
Au = - 3% (t3 ar) w 0, 0O<rxer ,
Iggl = krz, T<re<l ,
|§%| < k€, 0O<r<l ,
u"O. r=0 ,
u =1, r=1l .
Integrating (3.1) we see that
3
5% - 4ar3. 0<r<rt ,

for some constant a. Integrating again we obtain
4 .
u=ar +b, 0O<r<t ,

for some constant b, It follows from (3.4) that b = 0 so that

= ard, 0O<re<zt .
From (3.2),
Ju 2
v i kr”, t<r<1l .

Since u is required to be continuously differentiable at r = 1,

(3.1)

(3.2

(3‘3)

(3.4)

(305)

(3.6)

(3.7

tho constants a and

tk  must have the same sign, so that Jdu/dr has the same sign throughout (0,1). From (3.4)

and {3.5) we see that 3Ju/3dr must be positive.

~14-
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Thus (3.2) becomes

- = kr°, Tt<r<l . {3.8)

Integrating and using (3.5) we obtain
u=ke/3 + (1 - k/3), Te<r<l . (3.9)

The expressions (3.7) and (3.9) involve two unknown constants T and a. We determine

these by requiring that u and u, be continuous at r = 1. From (3.6) and (3.8) we have

du . 3_3du 2
ar(r-o)-—«%ax a!_(-;'4-0)-')“ '

so that

a=k/4t . (3.10)

From (3.7) and (3.9) we have

Wt -0 =at? =u(t+0) =ke¥/3+ (1 -k/3) .

Substituting from (3.10) and re-arranging, we obtain

= 12(k/3 - /K . (3.11)

The solution 1t of (3.11) depends upon the value of k. There are three possibilities:
1, k< 3. Then Tt < 0. Physically this means that the torque T is too great and no
solution exists.
2, k> 4. Then

/3,

T = (4~ 12/k]l 1 .

Physically this means that there is no plastic region, and the analysis must be modified.

4

Setting a =1 in (3.7), we obtain a solution u = r  of the elastic problem which

satisfies ‘he constraint (3.3) namely |%%| < Ke2.

3. 3 <k <4. fThen
t=14- 127013 ¢ (0,1) (3.12)
and thers is both an elastic region Qe = (0,7) as well as a plastic region (71,1).

From (3.7), (3.9), and (3.10),

-15-
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krd/dr. in

ke3/3 + (1 - k/3), in i, -

(3.13)

We now show that u, as given by (3.13), satisfies two alternatave formulations of the

problem,

Direct computation shows that

0 [ ln Q ’
Au = e
k/22 >0, in QO .
n
Tet ¢ be auch that
grad ¢ = %& " krz, 0<y<1l
r
Y(l) =1 ,
80 that
Yo xeS/3 4 (1= k), 0<r<l

¥ is called the obstacle.

Noting from (3.11) that k/3 - 1 = kt3/12, direct computation shows that

U=y =

o, in Qp = (1,1} .

k(r=-1)2(3rds2rterd) /12t > 0, in 2= 10,0)

(3.14)

(3.15)

(3.16)

(3.17)

Combining (3.14) and (3,17) it follows that u satisfles the ono-dimensional Complementary

Problem:

A >0, in 9 ,
u=-9¢>0, in o ,
(Aw){u=-y) =0, in & .

Now, with the notation of section 2 let .
1,2 0,1,2
VeV W .
" (N) = 0 )
Set

K= {vev:v(l) =1; vir) > ¥(x) for

w16~

(3.18)

(3.19)

(3.20)

WWMW‘ T



Ve w1'2(0.1) and 80 4F v ¢ V then v i equivalent to an absolutely continucus
function. Thus, statements such as v{l) = 1 in the definition of K can be interpreted in
the classical sense. Furthewmore, since

1
/ 3-5 vir <,
0 r

we 8ee that the condition

vi{0} = 0 (3.2)
is gsatisfied by all v ¢ V.

Let a Dbe the bilinear function on V x v,

1
atu,v) = f %ur(r)vr(r)dr . (3.22)
0 r

Then, for any v ¢ K, and vemonbering that u = &1‘4 in 00),

1
1
alu, v ~w) = [ Sou (v, = w)ddr
0 r3 ror X
v 1
1 1
-f == (v = uldr %f == (v = ul)dr |
o 3 YV Y i Y

Integrating by parts,

v 1
Alwyv =) = Ev -w A “r] [ v - waudr b
0

\"‘ 0

\ 1 1
v =) Seg ot f (v = wan e
r LU

Since v(0) = u(0) = 0, v(1) = u{l) =1, Au =0 in nu w (0,1), u=y§ in “p « (1,1}, and

u. is continwons at » = 1, wao obtain
1
alu,v = u) = f (v -~ Wau dr .
v

But, v ¢ K so that v > ¥, and, by (3.14), Au> 0 in \}p « {t,1), so that u s a

golution of the one-dimenzional Variational Tnequality: ¥ind u ¢ X such that

afu,v = v) >0, for all v ¢ X, (3.0

-17-
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4. The Two-dimensional Variatir.nal Ineguality.

In the previous section it was shown by direct computation that the solution u of the
clagsical one-dimensjonal aelastic-pl.stic problem satisfies the one-dimensional complementarity
problem (3.18) and the onc-dimensional variational inequality (3.23), This suggests that we
consider the corresponding cwo-dimensional problems.

Tha two-dimensional c:mplementarity problem is very useful conceptually, and also very
helpful when ono congider. numerical approximations, However, this problem gives rise to
tachnical difficulties s.nce it is necessary to carefully define tine meaning of statements
such as (Au){u - §) > 0. This can be done, but we will not do so here.

In c~ntrast, the two-dimensional variational inequality is relatively easy to apply since
we can use the following fundamental result of Stampacchia (1964):

Theorem 4.1t Let V Dbe a real Hilbort space., Let a be a real bilinear operator on V x V
such that a is coercive and continuous; that is, thore arc real strictly positive constants

“1 and Qg guch that

alv,v) _>_01||v||2, for vev ,
latvow | < a,lvll lIwlly for viwev .
Let f be a real continuous linear functional on V. Let K be a closed convex non-empty
subgot of V. Then the variational inequality: Find u ¢ K such that
afu,v = v} > (€,v -u), forall veX , {4.1)

has a unique solution.

General references on variational inequalities include: Duvaut and Lions {1972},
Glowinski, Lions, and Tremolieres [1976], Baiocchi [1978], Glowinski (1978), Kinderlehrer
[1978), and Cryer [1977 section II,11, 1979].

In erder to apply Theorem 4.1 to the problem in hand we must define Vv, a, X and f.

In doing so, we have been guided by the work of Eddy and Shaw [1949}, Brezis and Sibony (1971),

and Leventhal [1973, 1975).

~18-
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The space V is taken to be the space

v = wi'z(m = °w‘1)'2(m =% a=w (4.2)

defined and discussed in section 2. It was shown in Theorem 2.2 that there are several equi-

valent norms on V. Here we use the norm
1/2
Ivil = vs%)| = (f plgraa v|%a1 . (4.3)
Q

The bilinear operator a 1is defined on Vv x V by

a(v,w) = ,f Q(Vll Wll + V'2 W'Z]dx '
Q

= [pgradv . grad wdx . (4.4)

Q

Since
latviw | = Ivl}?

a 1is coercive, and since

latvan | < fivlt « NIl

a is continuous,

The obstacle ¢ is the solution of the initial value problem for a first order partial

differential equation:

Jgrad wlz = kzx:. in o ,
(4.5)

Y = T/2n, on PI; v <T/21 in Q ,

where the restraint ¥ < T/2n resolves the ambiguity in the sign of grad y.

The set K is defined by:

K={vevVv:v="T/2n on I, (in the sense of Hl(ﬂ)) '
1 (4.6)

v > ¢ a.e. (almost everywhere) in @} .

Hlere, the statement 'v = T/2n c¢n Fl in the sense of HI(Q)‘ means that there exists a

sequence of smooth functions {¢k} such that: (i) % € Vi (ii) 4 = T/27 in a neighborhood

of Pl; and (iii)

~19~
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“wk ~vll»0 as kow

X is closed and convex.

The boundary conditions (1.7) and (1.9) are incorporated into the definition of X:

avory v ¢ V gatisfles v =0 on U

is a ‘natural' boundary condition in a variational formulation of the problem,
Pinally, the funchjonal £ dis zero in tho present problem.

Wa claim that the Vardational Inaquality corresponding to the Classical Problem (1.4) -

{1.9) is: Find u ¢ X such that

afu,v ~u) >0, forall veX ,

where a and X are as defined in {4.4) and (4.6).

Bafore procoeding further we heed some information about the function

Theovem 4.2,

For x ¢ i,

3 !
%(xl.x2) < q(x2) - lkx2/3 + T/2% - kR(0)"/3) .

For x ¢ FO'
&(x‘.o) - 3~ g(0) .

Proof: ¥ is defined by (4,5). On Po,

Jarad ¢] = kxf =0 ,

80 that ¥ = § on PO for some constant 6.

To detormine £ we note that ¥ satisfies the first order equation

F(xl.xw,é.p.q) I 92 + q2 - k2x; =0 ,

0 in a woak sense; and the condition

Mfdn =0 on I

2

(4.7

v,

{4.8)

(4.9)

(4. 10)

where p = ¢.1 and q = ¥,,. ‘The corresponding chavacteristic systom of diffarential equa-

taions along a trajectory parametorised by s is (Courant and Rilbert {1962, p. 78}),

=20~
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dx

1
NI (4.11)

dx,
.dT!- " }‘q = 2q , (4.12)

2 2
%ﬁ- = PRy aF = 2p" + q°) = 2x2xg ' {(4.13)

.. (b, + £, ) =0 (4.14)
; 1

a ., . - a3
e SN sz’ a*xy . (4.15)

We integrate this system starting at the point (0,R(0)) where

%,(0) = 0, x,(0) = R{O), P(0) » O, q(0) = kxJ, ¥{0) = T/21 . (4.16)

From (4.14) we seo that p(s) 5 0. It then follows from (4.11) that xl(s) 2 0, and from

o
(4.10) that q = + kx;. We are thus integrating along I and we obtain the same value for

2
v as for the corcesponding one-dimensional problem.

By thoe appropriate modification of (3.16}, we obtain

p(0,x,) = alx,) . (4.17)
whore
. 3 3
9(x,) = [kx5/3 + 7/2n - KR(0) /3] . (4.18)
In particular,
§ = (0,00 = /21 - KR(O)>/3 . (4.19)

1t should be pointed out that theve is a hidden complication in the above arqgument,

bocause if we follow the same approach starting from the point (L, R{L)) we apparently obtain
PL,0) = T/20 - KR(W /3 A4 8 .

The explanation for this apparent paradex is that two or more characteristics may intersect.

A more dotailed study of ¢ (Cryer [1979a]) shows that when X

X, is small, two characteris-

tics pass through points (L,X,) « [,,. This does not happen on rql because, as is roadily
svan from (4.11) and (4.14), if, as in Rigure 1.2, dR/dx, > 0, the characteristics always

have dxlfds > 0 ¢md only the characteristic starting at  (0,R(0)) passes throwgh the point

-1~
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oyl < lorad ¥] = ka3

we seg that x

2
|°(xl.x2) = ¥, 0 |= % [oe,lax, g_kxg/3 .
Thus,

3
Bl ax,) < B+ kxo/3 = q(xz) .

Romark 4.1,

At first sight it may seem surprising that ¢ is constant along Po on which no condi-
tions were imposed. This can bo understood moro clearly after considering the detailed cal-

culation of ¥ as dona by Cryor [1979a).

Alternatively, since |grad ¢] s kxg, wo know that

Hvxowl|2 - ] olgrad wlgdx < w
Q

It is known (Kadlac and Kufner {1966, p. 469), Loventhal [1973, Lemma 6,2)) that this imp.:os
that ¥ is constant on FO.
Theorem 4.3,

Lot

kg = Gar2nro S . (4.20)

If k< ko then X is ompty and the variational inequality (4,7) has no solution,

v

f k> ky then (4.7) has a unique solution u.

*

Proof: iIf k ¢ ko then, from (4.8) and (4.9), ¥ =8 >0 on Po. Thus, if v ¢ K,
)
Nvswll? > [ ovdax > [ evdax =+
Q Q

Hence, K is empty, and {4.7) has no solution.

-22-
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If k 2k, then 820, and v = max{0,4} ¢ K. Since K is not empty, it follows from

Theorem 4.1 that the variational inequality (4.7) has a unique solution.

Remark 4.2.

In section 3 for the case T = 21 and R(xl) 2 1, we saw that there were three possi-
bilities: % < 3 (no solution); 3 <k < 4 (an elastic-plastic solution); k > 4 (an
elastic golution). In Theorem 4.3 we only distinguish between two possibilities: k < ko

(no solution); k > ko (either an elastic-plastic solution or an elastic solution).

Further properties of the solution of (4.7) are discussed in the next two sections;
these properties are such that they justify our claim that the variational inequality (4.7) is

an appropriate extension of the Classical Problem.




;
{
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5. Regularity of the solution u of the variational inequality.

We assume henceforth that

37 -3
k> kg = <2—ﬂ>n(0) . . (5.1)
and set
n = RO - 3r/2mk1 35 0 . (5.2)

0

We prove that u, the solution of the variational inequality (4.7), is regular by first
proving that u 1is reqular in the strip Sh near Po, and then proving that u is regular

0

in Qh , where Sh and nh are as in (2.6) and (2.7).

0 0 0
We recall certain pcoperties of the Sobolev space Hl(ﬂ) = wl'z(ﬂ) which are proved,
for example, by Gilbarg and Trudinger (1977, Chapter 7 and p. 168].

If vwe HI(Q) then max(v,w) ¢ Hl(ﬂ) vhere max(v,w) is defined by
max{v,w) (x} = max{(v(x),w(x)) . (5.3)

If ve Hl(ﬂ) then, by definition,

sup v = inf(s ¢ R : vix) < sa.e. in Q} , (5.4)
1]
sup v = inf{f ¢ al vix) =2 <0 on 3} . (5.5)
N
where
u(x) - £ < 0 on 3 iff max{u ~ 2, 0} ¢ Hé(ﬂ) . (5.6)

As a preliminary step in the analysis we show that it is possible to enlarge the domain
® by reflection in the vertical sides so as to avoid the difficulties associated with rz.
This is a well-known trick for handling Neumann boundary conditions (see, for example,
Baiocchi, Comincioli, Magenes and Pozzi ([1973], p: 25 footnote 33]). The arguments are ele-

mentary and rather tedious but we are not aware of any detailed treatment in the literature.

Let 90 = Q. Let Ql be the reflection of Qo in le and set 6 = Qo v F21 ] 91 '

with boundary io U il U P21 U 522 (see Figure 5.1). Let u be defined on Q by reflect-

ion:

-24~
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u(+xl,x2), X € Ro '

u(x) = L (5.7)

u(-xl.xz). xe " .

The spaces v, W, Oﬁ. and the convex set K are defined for { in the same way that they

1,2

were proviously defined for fi in section 2 and (4.6). That is, V = V;'z(ﬁ). W o Np ",

O w O4102,3

W 0 (), while K is the subset of V consisting of thosa functions which are greater
or cqual to @ (the roflaction of ) in § and are aqual to T/2n on Fl‘
Lenma 5.1,

- ~

ue K and u is the unique solution of the variational inequality: Find ne R such

that
a(u,v=u) > 0, for all veK , ~ (5.8)
whore
a(viw) = [ p grad v . grad w dx .
1
Furthermore,
u|Q -y,
X2
'y
l 7
\ 1
- 1 ! 0 -
t * N v
a1 8 p fp B0 ETI P9
i
| r
|(010) 0 ~
(-L,O) i‘o (!HO) x‘,
Figure 5.1: The enlarged domain Qow no 1] P2l anl .
Proof: We first show that u has weak derivatives in Lz(ﬁ):
0
+ \u, ("x X ). in Q []
B (X, %) = 1 )
1'%

- u.l(-xl.x2). in Q@

¥




o2

oy (%) 0%,) = + u,z(lxll,xz), in (**)

Thae values of fx,i need not be defined on 1‘21 since it is a set of measure zero.

Wo introduce the strips parallel to 1‘213

'f‘d-(xeﬁxlxllf_Zd) '

For any d ¢ (0,L/2) let 93 be a cut-off function with the following properties:

(a) 9q € c:(R") '

-1
(b) lgd'll 2207 gy, %0,

(e) 94 is symmotric about x, = 0 ,

1

@ gg=1 if x| <d and g =0 if x/ 7T, .
@ s
For any ve CO(Q).

1 0
V= "’d + \pd + Wd
where

0 ® 0 1 e,
$ ™ 9q¥ ¥y € ColRD), and wdcco(n) .

For i = 1,2, amd G'i defined by (*) and (**)

Lu.i 9ddx-f~ Uy, ¢ dx >0 as d>0
Q Td

. ~ 2 = ~
because »"d is bounded, Uy ¢ L {2), and tne moasure of T, goes to zero as d + 0, For

d
the same reason,

jg_‘ﬁ%'zdxajﬁﬁgd\o,zdx-»o as a-+0 .

Finally,

s mr wICRRNSRRR




As bafore, I‘(ll) +0 as d -+ 0. Using the symmetry of 94 and ﬁ.

Iéz) -'{r u{x) gd,l(X) [w(xl,xz) - w(-xl,xz)]dx +0 as d=-+ 0
d

-1
ooand e, 0x,) = wl=x, o) <24 sup leny 2]y on 4.

Thus, for i = 1,2, and 6,1 defined by (*) and (**),

. .0 S
I = {3“'1 pdx = fﬂo“'i ¢y dx + fnl“'i ¢y dx + o(l)
0 i 1
- fn°“" vy 4% + (1) fnlu,i(-xl,x;) vilx)dx + o(l)

0 LA
- fuu.l(x)wduxl.xz) =D wiex k) 1dx 01

But \1,j is the weak derivative of u on f, 8o that

0 1
I = fnu(x) (03,1 4%y o%y) + Wy ok ix ) 1Ak + 0l

. - 1
-—{)ou v’d,i dx-fnlu vd'idx+o(l) '

m-fueg ax+o) . ;
)

We conclud. *hat the functions Uy as defined by (*) and (**) arc indeed the weak durivatives
of .
Clearly, ue V and [juiv|| = 21/2||u:v||.

Finally, we note that if Ve K then vo,v1 ¢ K whera

v - Wy o

1 ~
v (xl,xz) = VIX;0X)) o, X € Y

For any (r ¢ K,

atu,v-u) = foo gradfx . grad (v-u)dx + ]lp grad uw  grad (veuddx .
Q Q
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Making the substitution x, = -x

1 in the second integral, we obtain,

1

a(u,v-u) = fop grad u ., grad(vo-u)dx + fop grad u . grad (vl-u)dx '
] 1]

a(u.vo-u) + a(u,vl—u) '

>0

since u solves the variational inequality (4.7). That is, U solves the variational in-
oquality (5.8). From Theorem 4,1, we sce that tho solution of the variational inequality

(5.8) is unique, and the lemma follows.

Remark 5.1.

We can also reflect 8 in P22 and obtain results analogous to those of Lemma 5.1,

Theorem 5,2,

u 1is non-negative a.e. in @, That is,
u = max(u,0) .

Proof: The proof is a modification of the proof of the woak maximum principle in Gilbarg

and Trudinger (1977, p, 168].
Lot
g = {xe:ux 200 ,
O_={xeQ:ux <0} ,

v = max(u,0) .

Then v ¢ HI(Q). Furthermore, v = 0 and hence |grad v| =0 on @_. Thus,

/ olxgzv2 + |grad vlzldx - [ plx;2u2 + |grad u|2]dx R
Q 11

+
and we conclude that v ¢ V.
Similarly,
a(v,v) = [ p|grad vi%ax < [ olorad ul¥ax = a(u,w) . (*)
Q Q
+
Obviously, wv(x) > u(x) > ¥(x) a.c.
We now show that v = /21 on I in the sense of u’(n). Since uw = 1/2v on [ in

1

the sense of ul(ﬂ), there is a sequeonce (v

1

k k
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| £34

v, = max(vk,o) .

Than Vi belongs to Vv and v " /21 in some neighborhood of Pl {but Vg " ™an ¢ C:(F])).
Since ¥, > w in Vv we kuow that Py (x) ul{x) a.c. and that the norms kall are bownded.
tongequently, v, (x) + v(x) a.e. and the norms ||vk|| are bounded, V is a Hilbert space.

In a Bilbert spaco bounded sets ars waakly saquentlally compact, so thore exlsts a subsequonce
(vi}. which converges weakly to somo +' ¢ V., Weak convergence in V  implict woak convor-
gonce in Lz(n) which {n turn implies polntwise convergence a.e. Thus, v&(x) + v (xR) a.e.,
from which it follows that v{x) = v'(x) a.e. and honca that v = v', Taking finite convex
lincar combinations of tho vi wo obtain a sequance {GR} which converges in norm to v = v,
Bach Gk ir a finite linear combination of the Ve 80 Qk o T/2n  in some helghborhood ot

Pl. Finally, applying Theorem 2.3, we approximate Gk by wk whare wk ¢V and

wk - /2 ¢ C;(Pl). Sinco wk + v, we concluda that v = T/2n  in the sonse of lllhn.

In gunmary, v ¢ X,

Now, u solves the variational inequality (4.7), and so

afu,veu} = - f plgrad ulzdx <0
1t

which implios that afu,v-u) = 0, But then, by (%),

a(v=u, v=u) = a{v,v) = a{u,u) « 2af{u, v-u)

af(v,v) = aflu,n)

s

o .

80 that v = u.
0
Remark $.2.
Paxter [1965, p.281] gives an example involv;nq qonoralized axially aymmetric potentials
where the maximum principle does not apply. In Parter's oxample, howover, the veqion o iy
symmetric about PO and o the line of degoneracy is contained in .  In Lthe prosont papor

the line of degeneracy iz on the boundary of .

0=




Theorem 5.3,

In the strip S u satisfies the differential cquation Au = 0 in the weak scnse;

13
h0
that is, *
f pgradu . grad vax =0 , (5.9) ;
Q ;
£ (s, ) .
- or any v ¢ C0 Sho . .
3{ Proof: If k> ko then, from Theorem 4.2,

Vix, 0x,) 2 glx,) <0

in the strip s .
ho

By Theorem 5.2 we know that u > 0 a.e. in %, Thus, u > 0> Y a.e. in §, + More
0

- specifically, given a compact subset G of Sh there exists ¢ > 0 such that u > ¢ + ¢

;; ne 0

- a.a. in G. For any v CO(G) choose § > 0 so that |8w| < ¢+ Thon, v, "u+ fv ¢ X .
; ) and v_= u - §¢ ¢ K. Hence,

é alu, v+-u) = afu, v_-u) = f p grad u . grad(dp)dx = 0 ,

; Q .

“ 0 .
ﬁ»« Remark 5.3.

‘Wrg [
‘,:kt Theorems 5.2 and 5.3 depend on Theorem 4.2 which agsumes the specific geometry of

¥ ' 1
;; 1 Figure 1.2 to evaluate . If Pl is not as shown in Figure 1.2, lot %
L | - |
5 R = Rix,) = min{R{x;) + 0 < LI T :
f; We believe that Theorem 5.3 remains true if in the definition of ho. R{0) 1is replaced by R

3. i

The proof would require a detailed study of the function ¢ in the case of a general domain,
along the lines of the study by Ting [1966] for the case of the torsion of & prismatic bar.
Remark 5.4.

Theorem 5.3 provides a bound for the size of the plastic region. This is particularly

interesting pbecause in the numerical computations of Eddy and Shaw [1949] the plastic region

dips down near the corner £ on rl (see Figure 1.2), and it is far from clear that the

plastic region will not grow very rapidly as the torque increases. For the second problem

considered by Bddy and Shaw (1949}, Kk = 49, T = 6349 x 2n, R(0) = 8. 1In their numerical cal-

culations
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X, = min{x2 : (xl,xz) € Qp} 1695 .

From (5.1), {(5.2) and Theorem 5.3, k 3720, and

ite

0

>h 513 .

2—-'0

Remark 5.5.

The fact that there is an elastic strip near FO as long as k > ko is analogous to
the situation for the elastic-plastic torsion of prismatic bars where an elastic core also
remains until the entire bar becomes plastic (Lanchon [1974]).

Remark 5.6.

Our analysis is not adequate to handle the limiting case k = ko. We conjecture that if

k=%k, then u=y for 0 < X, 2 ;i, where

0

X

" max(xl : R(X) = R(0) for 0 < x < xl) .

Theorem 5.3 asgerts that Au= 0 in the weak sense in § We may thus expect that u

Po

is regular in S This does not appear to follow from known results about ellintic eauations,

h*
0
and we therefore prove this by modifying the corresponding proof for uniformly elliptic equa-

tions. We use Gilbarg and Trudinger [1977] as a basic reference, since this i< a comprehensive
and readily accessible test.

The basic idea is to obtain bounds for the differences of the solution u and then pro-

ceed to the limit,

The difference quotient in the x, direction is defined by:

1

v(x+hel) - v(x)

h +h#0 , (5.10)

vt = e = avin =

where e is the unit vector in the X direction. If v ¢ V, then the difference quo-

1

tient Ahv is defined on Qh,

92 =l s (xeQix+ te, € @ for te (onl) . (5.11)

. As is customary, the weak derivatives of u are denoted by Diu, Diju' etc.
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Lemma 5.4.

et veV and h> 0, Let @' c ﬁkl‘ n Q;h. Then Av = Al{v € Li(ﬂ') and

2 2
HA?v ; Lp(ﬂ')“ < oy s LD(Q)“ .

Proof: The proof is a modification of the proof of Lemma 7.23 of Gilbarg and Trudinger {(1977).

We begin by agssuming that v ¢ C:(I‘o) . If x ¢ 0}1‘. then

1/2 [v(x+he1) - vi{x)]

o2 avix) = o3 (x0) - '

h
1 172
“n fo P (x)Dlv(xH:el)dt '

g0 that, using the Cauchy=-Schwarz inequality,

2 1 2
p(x) {av(X)1” < & [ p(x) (Dvix+to )] dt .
L 1 1

Since o(xnai) = p(x) = x23,
llav 5 20 )
2
a [ o0 lavix))Tax
Ql
h ”
I dx[f px+te ) (D v(x+tel)]"dt) .
Q 0 1 1
1 h )
=5 fodt {p p(xuel) [l}lv(xnol)] dx

h
1 2 2
iﬁ fo "Dlv : l.p(Q) ” d.

and the lemma follows for v ¢ (‘:(I‘O)

But, by Theorem 2.3 therv exists ¥ « C;(l‘o) such that "v-!’a i w!l < ¢ for any « > 0,

Thus,

R oo R S
S

PN




llav + s2tan )

in

faw » Lgm')ﬂ * 2e/m

fr

floye n‘f(m N+ 2em

A

"Dlv ; Lim) | +2em+c

Letting ¢ = 0 the lemma follows,

0

Using the arguments uged to prove Lemma 7,24 of Gilbarg and Trudinger [1977] we obtain

Lemna 5.5,

Let v ¢ 1.§(m and let 0 ce R XIf for h < distance (', IN)  we have
} 2
(IR UL I

then v has a weak derivative Dlv which satisfies

oy + 2@l so

Thoorem 5.6.

Let u ¢ V satisfy Aau =0 in Sh in the weak sense. Lot
0

§ = X = (xpixy) ¢+ B <X ¢ 34 and 0 < x, < hy/2} .

Then:

AL
) wlsecs) .
5 2
(i “'llls and \\,”]b belong to L‘\(S)‘

1 2
(iid) ] = Ur,, AX v
s X2 22

. 2 N b
{iv) u e H°(8). u can be extended as a continuous function to §, and u =0 on

GSnlo.

4 . N =
(v) u=x, v, where v is analytic in 8.

2
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Proof:r The proof is a madification of the proofs of Theorem 8.8 and 8.2 of Gllbarg and

Teadingor (19771,

Proof of (i): Statement (i) follows from Coxollary 8.11 of Gilbarg and Trudinger [1977].

Proof of tii): We dunote by cl(ash fTy)  the sut of functions which are continuwously aiffer-

Q

(]
l\Q

ontiable in @, vanish outuide 8§ and vanigh in some neighborhood of ash /ro.
0
Lot e 01(03 JP.)  ba such that
h0 0

a) n»1 for x¢ 8§,

{b) ‘Dlnl. !“3“| 3¢ for gome congtamt ¢, ¢ n ia veadily conutructed aw the product of

1

two one=dimensional cuteoff functions.
Por small positive h, set

) )
U] n‘A?“ P I L RS

"
N ) RIS h3(9¥"2 .
N ¢

Then, for b« distlaupp n, asl ) .
\00

i)

v = o

N . Y[ ot awm o awax
! t

o]
- ) f ‘““D‘x“) Dy = 2D vl

el t
3
« - ¥ [ tenwaT v 4 2pu0, ntanw dlax 0
{1 W D RS W i i

whore wo have uged the identity, valid for any f « c‘(ash /l‘o) v 9 ¢ Voand sufficiently

small b,

{ h\\l‘f)q A | fa\'{hg an .
i Y

Since Au * 0 weakly in 8 wo know that for any v« CO(SI ),

™ ’
h0 N
2
Yo oeopnvaxso
iml s !
\“

- 4=

.
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{
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T

Now u € V and thus, by Theorem 2.3, u is the limit in W of functions
va € C;(Fo). Consequently, Azh v A;h(nza?u) is the limit in W of the functions

Azh(n20?¢3) € C:(Sh )+ By proceeding to the limit we find that

0

2
! | ecomma™ax=o ,

1=l Sh
0

30 that the first term on the right of {*) is zero.

Thus, using the Cauchy-Schwarz inequality and Lemma 5.4,

2
N 2 %, I/ plnADiu| |aulax
iwl

S
ho

< 2c1(21/2N)"Dlu ; Lg(ﬂ)“ .
and hence

N < depjiull .

This bound holds for all sufficiently small h, In consequence, appealing to Lomma 5.5 and

"
(i) abovo, we see that |S amd o, |5 = “'1°!s balona to L;(S).

Yo 21

Proof of (iii): FPFrom Theorem 8.8 of Gilbarg and Trudinger wo know that oxists in §

LI

and satisfies
Uigy ™ = Wiy # 3u.2/x2 .
o 1 . 2 <
a.e, in 8. If o= X, then Wiy and 0,2/52 belong to ho(s)' and thus so does Winge

Proot of (iv): 1t follows from (ii) and (iii) that u belongs to the Sobolov space Hg(ﬁ).
From the Sobolav embedding theorems u ¢ C(§) (Adams [1975, Theorem 5.4)).

Furtheimore, since w ¢ Vv, it follows from Theorem 2.2 that

u(xl.x2) * 0 as X, R

-38-




e & e e St b e A e+ et

T Y
TR Y

for almost all X;. Since u is continuous on § we conclude that u =0 on 3§ a Fo.

proof of {v): This is an immediate consequence of Theorem 2 of Huber [1954].
(0]

Theoxem 5.6 informs us that u is well-behaved near T Away from T the operator

0’ 0
A is well-behaved. There are many results on the regularity of solutions of variational ip-
equalities fcr coercive operators (Lewy and Stampacchia {1969], Frehse [1972], Gerhardt [1973],
Brezis and Rinderlehrver [1974)). However, there is a d{ifficulty te be overcome before these
rosults can be applied: the function ¥ 1is not smooth. This is bwecause when we integrate
along the characteristics of ¢ as in Theorem 4.2 we find that certain points in 2 lie on
two characteristics. This is best seen by considering F22. It follows from an analvsis of
tho characteristic equations (4.11) to (4.15) that if dR/dxl(xl) > 0 then the characteristic
atarting at (xl, R(xl)) intorsects P22 {Cryar [1979a]). On the other hand, the character-
iatic starting at (L, R(L)) coincides wikh r22' At points which lie on two charactervistics,
¥ must be taken to be the larger of the two values obtained by intagrating along the charac-
teristics,

The motivation for the following arguments is as follows. We cannot prove directly that
u e H2'p(9) because ¢ ¢ H2'p(ﬂ). However, the discontinuities of ¢ ocuar in the upper

right cornor of § where in general the material is elastic and u > Y. We therefore soek

to raplace % by a smooth function *c which agrees with ¥ when u = 9,

Lot u, denote the solutjon of the elastic problem corresponding to the clastic-plastic

problem.  That is, Aue =0 in § and Uy satisfies the boundary conditions (1.7) to {1.9).
v satisfies ue K and
e b}

- = . ’ ¢ el
a(ue. ve u“) 0 for Vo € ko ' (5.12)

where

K, = {\'e Vv - T/2n on [I'. in the sense of Hl(ﬁ)} . (5.1

1

As in Theorem 5.6 we conclude that v, is smooth i1n some Sh. From the standard theory of
elliptic eyguations we conclude that u, is at least twice continuously differentiable in

ﬂ}. so that u 02(53.
] Q
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Lemma 5.7,

u>u .
- e

Proof: See Stampacchia [1965) and Cryer and Dempster (1978). Let ¢ = max(u,ue). The

theorem will be true if we can prove that u = . §

Now (as in the proof of Theorem 5.2) ¢ ¢ X and since u satisfies (4.7), ¢

a(u-g, u=g)

au, u=g) + alg, Z-u)} , !

tA

+ a(g, -u) ,

a(ue. T-u) + A(ue-c, u=%) .
But,

a(ue. L-u) = a(ue. ve—uo) =0 ,

where

v =u + - .
o o L-u ¢ Ke

Furthermore, either §{ = u or ¢ = LR and so

a(u0~(, u-) = 0 .

Thus, afu-%, u=%) < 0 and we conclude that u = &,

pafinition 5.1.

y satisfies Condition C if there exists Yo € Hz'm(n) such that Yo @V whenever
u, LY and ¢ < Yo 2 Yy whenever u, > Y.
Remark 5.7.

Condition C can be checked knowing only ¥ and ue, both of which can be evaluated

fairly easily and do not depend upon u. Conditibn C is satisfied in some practical cases

(Cryer [1979al).

If ¢ satisfies Condition C we introduce the variational inequality with unique solution

u : Find u, € Kc such that }

- 9 S,
alu., Ve uc) 20, for v e K, . (5.14)
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where
. . , 5.15) -
K, v ek s v 2 b} ( |
Lenma 5.8.

If ¢ satisfies Condition C then u = u,-

Proof: u and u, are the unique solutions of the variational inequalities (4.7) and (5.14),
respectively.

Let v, e K. Then v, ¢ K since v_>¢ > ¢. Thus,

c ¢
a{u, vc-u) 20 if v, ek, .

Furthermore, u > ¢, because either u_ < ¥ in which case u 2 b=y, or u > Vv in

which case u >u_ > ¢ . )

e [o]

We conclude that u also solves the variational inequality (5.14), so that u = u..

Theorem 5.9, Lot

If { satisfies Condition € then u = u, € Hz'P(ﬂ) n cw(sh /2), for any r € (1,%).
0

Qutline of Proof: It was shown in Theorem 5.6 that uls € C (S) where

S = {x = (x,,%,) + L/4 <x, <3L/4, 0<x,< hy/2} .

The restrictions on the length of § can be easily removed by enlarging 2 to 5 by re-

flection as in Lemma 5,1, We conclude that u ¢ Cm(sh /2). By Lemma 5.8, u = u.
0

Now let

1 1
= . = = 3
Kl {v1 € H (Qh /2) v, Tu u, in the sense of H () on

0
_ . 1
asho/Z n 3Qh0/2’ v, =7/21 on T, in the sense of H (R;v, > v oo
and let a, be defined on H'(2_ ) x K'(® ) by
1 h0/2 h0/2
al(vl,wl) = {2 p Dileiwldx .
h0/2
~38-
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The variational inequality: Find uy Kl satis:ying

- *
a, (uy, vy w) >0, forall v, K *

has a unique solution Y-

Now let u = u|Qho/2.
by setting v(x} = u(x) for x €S

Then, u, ¢ Kl' Furthermore, for v e K. let v € K be obtaired

1 1

. Then
h0/2

al(u, v-u) = a(u, v=u) >0 ,

so that u 2also solves the variational inequality (*). Thus U= ulﬂh /2 =u.
0
Since ulsh 72 is smooth, it only remains to show that the solution u1 of (*) belongs
0
to Hz’p(n). m¢om Condition C we know that wc € Hl(n) n Hz'p(n). Furthermore, al is well~-

behaved on The regularity results in the literature (Lewy and Stampacchia [1969,

h /2’
0
Theorem 3.1], Brezis and Stampacchia [1968, Corollary II.3), Stampacchia [1973, Theorem 6.4))

are not immediately applicable because they consider the case K1 = H;(Qh /2).
0

2,p
L € H (Qho/z).

It is, however,

clear that the arguments can be modified so au to show that u

-39-
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6. Bounds for grad u.

v e e _gE kST R gEewe
B

We introduce the elliptic operator

Lemma 6.1,

Mv = div(x2 grad v)

Let ve¢ C3(Qh) n C1(§£) satisfy Av =0 in Q‘. Let w= lﬂEﬂQ_!L

1 2

Xy

SUPp W = SuUp W .

Qh 3Qh

Proof: Since Av = 0 in Qh we have, using summation notation,

L, L3,
x3 'ii xd 2 !
2 2

go that, by differentiation,

Lot

v - (-3- Via)
'ii3 X, 27y

W=

lgrad v]? _ ey vyl
3

X x4
2 2

Then W ¢ Cz(Qh)l\C0(5£). Also,

Using (6.3) to replace

4
Mw = (x2(v'j\'j/x2)'i)'i [
. (20,,v, /) - ALY, Y, /K
Voj '137%97 14 MR X2 1y

. 3
¢ v, v, V239

2.3
= 2veg )/ 13V11137%2

2
4 4
- 6v,jv,2j/x2 - 8v,jv,zj/x2 +
+ 16v, v,./x5
b I M

v i1 and collecting termms,
14

-40=-

(6.1)

Then

(6.2)

(6.3)

(6.4)

o oot
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Mo = 20V, ) 2/KD + 6V, Ve, /Xg -
Vpij /x2 Vlj '2j 2

4 4
- 6(v,2)2/x2 - 6v,jv,2j/x2 - Bv, /x2 +

3¥23

+ 16(v.j)2/x§ .

2,3 4
o 2(v,ij) /x2 - av,jv,2j/x2 -
2,5 2,5
- 6(v.2) /x2 + lG(v,j) /x2 .
Thus,

2,3 2,5 2,5
Mw = 2(v,lj) /x2 +2(v.,) /x2 + 8(v.1) /x2 +

"
2 3,7
+ 2x2[v,2j/x2 - 2v,j/x2] '
?-o . (6.5)

Since M is an olliptic operator in . we conclude from the maximum principle (Gilbarg

h

and Trudinger [1977, p. 31]1) that w attains its maximum on the boundarty of ﬂh.

Theorum 6,2,

If k » kO' 1f ¢ satlufles Condition €, and if u is the solution of the variational

inequality 14.7) then

W <k, dn @ . (6.6)

9 e
Proof: We know from ‘theorom 5.9 that u ¢ n*'p(n). In particular u ¢ C‘(Q). Lot
Q* w{xeiu>yl ,
@y = {xe¢ Q1 u=y9)l

In Qo woe have that grad u = grad ¥ so that, from the definition of ¢,

w=k, in QO . (6.7
From Theorem 5.6 we know that u = x:v in Sh . ‘fhus, for somo hl s h0 wo have
0

wdl=-
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Now,

(i)

(ii)

(iii)

(iv)

Let t and n denote the normal and tangential directions, so that

Since u = T/2n on PO, we have u_ = 0, On the other hand, along the inward normal n we

have

Remembering that ¢ = T/2n on Fl, we conclude that

so that w < k on T

Theorem 6,1 is analogous to the result of Brezis and Sibony {1971) for the elastic

Now consider the set i = Q+/sh « Applying Lemma 6.1 we conclude that
1

30 consists of several components which we consider in turn.

we<k/2, in S5 . (6.8)
hy

max w = max woo.
Q a0

Fo = 30 o 3s, . Using (6.8) we conclude that w <k on f‘o.
1

P2 =30 Pz‘ Since we can use Theorem 5.1 to enlarge {, we know that

max w < max w .

Fz Q

-3

+ 3 n ano. Since w 1is continuous, it follows from (6.7) that

max w=k ,
" - }
r+

I, =30 n Fl. on Fl we have u = ¢ = 7/2n, Since Au= 0 in ﬁ, and u < T/2n

on 3, it follows from the maximum principle applied to Au = 0 that u < 7/2n on i

0. Now consider a point on El'

ot it bt o iR 4

2 2 2
|grad u]* = upug .

t

Y <u< /2 .

2

2 2 2
lgrad u|® = fu |® < o | = e,

1

Remark 6.1. b

wwr B AL

ot
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plastic torsion of prismatic bars. They showed that the solution ¢ of the corresponding

obstacle problem satisfies the condition |grad ¢| < k.
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