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SIGNIFICANCE AND EXPLANATION

When an axially symmetric shaft is subjected to a small torque the shaft

deforms elastically. As the torque increases, the maximum stress reaches the

largest value permissible in elastic deformation and a plastic enclave forms

and grows.

In this paper the problem of the elastic-plastic torsion of a shaft is re-

formulated as a variational inequality. This is mathematically equivalent to the

principle of Haar and von Karman according to which the strain energy must be

minimized subject to the constraint that the stress should not exceed its per-

missible limit.

The advantages of formulating the problem as a variational inequality are:

(i) The elastic and plastic regions are treated in a unified manner and there

is no need to determine the boundary of the plastic region.

(ii) Mathematical questions, such as existence and uniqueness, are readily

answered.

(iii) The variational inequality lends itself to numerical approximation.

We establish existence and uniqueness of the solution, and also obtain bounds

for the size of the plastic region. Numerical results for a two-diameter shaft

will be given in a later paper. Aocessio -For
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THE SOLUTION OF THE AXISYMMETRIC ELASTIC-PLASTIC TORSION

OF A SHAFT USING VARIATIONAL INEQUALITIES

C. W. Cryer

1. Classical formulation of the oroblem.

The problem to be considered is shown in Figure 1.1. Equal and opposite toraues T are

applied to the ends of a shaft of length L which is axially symmetric about the x -axis

and has (variable) radius R(x1).

x 2 '

\..

- L 

Figure 1.1: A circular shaft of varying diameter.

Because of axial symmetry it suffices to consider the problem in the two-dimensional

domain

= {x = (Xlx : 0 < x I <L; 0_x <R(x) ,

corresponding to the cross-section of the shaft.

The boundary F of Q consists of three parts: r., F1, and = F u F as shown
2 21 22

in Figure 1.2. F and I' are parallel to the x -axis. F is the curve x R(x
21 22 2 12

0 < x < L. F0  is a segent of the xl-axis.

As regards the boundary F1 it is assumed that:

(i) R c C 2(0,L), that is, R is twice continuously differentiable. This assumption

allows us to prove that the solution is differentiable (see Theorem 5.9).
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(iJ) dR/dx2 = d R/dx 2 =0 when x= 0 and x= L. This is true if the shaft has con-

stant radius near its ends as often hc.oens in practice. This assumption allows us to

reflect S in 1"21 and F22 and obtain a smooth solution in the enlarged domain (see

L.emma 5.1).

.iii) dR/dx2 > 0, so that r1 is of the form shown in Figure 1.2. This assumption allows us

to conclude that R(x1) > R(0) for xI c (0,L]. It also allows us to conclude that

only one characteristic nasses through each point on F21 (see Theorem 4.2).

22

r F21
T rf

SA rO B CT

Figure 1.2: Cross-section of an axisymnetric shaft.

In analogy with the theory of torsion of prismatic bars due to Saint-Venant (Love (1944,

p. 3111), it is assumed that the only non-zero stresses are shear stresses on the planes S.

It can then be shown (Love (1944, p. 3251, Eddy and Shaw [19491, Zienkiewicz and Cheung (19671)

that the problem reduces to finding a stress function u. The stress components TrO = 23

and T -1 are given in terms of u by

2T2 3  - u,I/(x2 ) (

T13= + u'2/(x2)

-2-



where u,~ Al/ 3XV The stress q is given by

q 13 23 l,2 1 2, 2/2 2- ~a (1.3)

Whenl the tolXque1 T is smal1l, the stre sea Are sm~all and the resgxonne ist olastic. As T

increases a small plastic enclave tomefi. ill genoral, 0 is divided into two subregions, the

elastic roij ion QI 0And the plastic region $1 The %inknown tree boundary between Q 0And

0 1it denoted by I' (neo r'igire 1.2).
pf

In% i the miaterial lit elastic And it satisfies the differential equation

Au W, - (u/X 2 ) 2 in x x14

Tho m~ato~tial is Aasumed to yield accoidlng to the criterioni of von Minott that W., tho

mat ov it-% ytolds When the altioess q roachos the maximulm perinntiblo valueo k (a qivon con-

atra %%It .x 2 hus,0 .

2

IVAtI- -x2 il (1 .

The Nmlndau y ('nd it tols tfo %I onl I' ale ( see )'iqklv 1 .2)1

%% olln I ,( i0

Aln %I (l-0 Nli~A

codti t 1o 11 . T 1 ou fo k "IM thIt ax i'A I ax' tty of the Isvtelem. k'onldititn kI .8) oxploullca the
tat~t t hat the total tot-oklo it;s '110an that thete is nlit. tiactiten onl tho oeutet murfawoV

'uhti tto 0.1)) OXIt eases the A11t%%mp~iiOn1 thAt dt 0he entS of the shlaft zhe ttlo~ta ot I (1pond'

to AINI' totlqxl So that 1~ %1-0



F.

The formulation of the problem is completed by the requirement that u and its first

derivatives be continuous across rf. The problem defined by (1.4) to (1.9) will be called

the Classical Problem.

The remainder of the paper is organized as follows. la che remainder of this section we

make some brief remarks about related work in the literature, and indicate the reasons for

choosing the method of analysis used in this paper. In section 2 we introduce certain weighted

Sololev spaces; in section 3 we analyse the one-dimenslonal problem; in section 4 the classi-

cal problem is reformulated as a variational inequality; and in sections 5 and 6 the existence

of a solution and various properties thereof are proved.

Numerical results will appear in a subsequent paper (Cryer 11979a)).

In recent years the elastic-plastic torsion of cylindrical bars has been intensively

studied: see Tinm 19731; Lanchon 119741; for other references see Cryer 11977, section

1.5.3.11. If the cross-section of the bar is denoted by ii then it is required to find a

stress function * such that

S- 0''1 - 0 + 26 - 0, in 6e

jgrad I j - k^, in Q , (1.10)

0O, on

Here, the constant k denotes the maximum stress, and the constant 0 ' 0 denotes the anqle

of twist per unit length of the bar, while r)p and ;e denote the plastic and elastic re-

gions, respectively.

There are close sinolarities between the problem considered in this pao;er and the pioblem

(1.10), but there are al.ro two important differences;

(i) The differential oierator A of (1.4) can be written in several forms.

7' 1 - AU - div(x grad u) , (1.11)

S 2 u 3u 3 3u
- Au A --, 4 ' (.12)

1 2~

- Au x) , ,lI

2 'I'2tl + -,



but one cannot avoid tho singularity at x2 -0.

(ii) Tile boundary conditions (1.7) through (1.9) are a combination of Dirichlet and Neumann

conditions while tile boundary conditions f'ir (1.10) are Dirichiet.

The singularity of the operator A is the most significant difference between the pre-

sent problem and problem (1.10). There is an extensive literature on degenerate elliptic

equations (Visik 119641, Oloinik and Radkevic 11973] , Fichara 11956, 19601, Kohn and Nireiiberg

(1967, 1967a] , !aouendi and Goulaouic 119721).

Unfortunately, much of the literature is not applicable to the problem ir. hand. One

reason for this is the following. The equation (1.13) is doqenerate on Ho Uwever, the

00

I~o is(0) xc (0) + (- 3) (1) - 3

which is positive so that boundary conditions must be imposed on V 0 (Fichera (1960O, Oleinik

and Radkevic 119731 , Friedman and Pinsky !19731) . Onl thle other hand, for the equation

2u 3 NI +u al u 0i 3Iu X -+-1 i + 3 2 ~ -0 2(x _X 2K J 1-21 x,
2I

thle inner-product of the f irst order coefficientsl with the outward normal onl s' ti' I to

-3 So that no bou:l~laly condtiions Call bo imposed onl 1' . This means that 1poise onl dCeJeno)1ate

elliptic equations in which only boundn oen the absolute values of the Coefficients of the

equation ate impostit (Mui thy and Stampaicchjai 119681 , Trudinger 119731) , cannot be of use in

thle present Case.

However, the opeiatol A gives ise to qenoralizzed axiilly symmtric potentials whi,,h

have1 been extensively studied (see Weoinstein (19531. , ube 11954, 19551 , Quinn and Weinacht

I 197b1 , Quinnl I1978] , and the 1eferenceis below) . Vai ious methods have beeni used to stuidv

boundary value problemsit for Viono~l iced atxial ly Symmetric pottentials:

(a) Maximum Ih inciJpQ. ,Iamot 11967, 19681 , Parter 1196S, 196Sal , Lo0 (1973, 19701.



(b) Perturbation of 11. The problem is considered in

Q ((x 1 ,X2) C Q x2 >

and then the limit is taken as c - 0. (Schechter (1960), Greenspan and Warten (1962)).

(c) Weicthted Sobolev spaces. The problem is reformulated as a minimization problem in the

space of functions u such that

n 3 1 + U,2)dx Idx 2 <
x2

(Leventhal 11973, 19751, Jakovlev (1966), Necas [1967, chapter 61).

For the present problem the natural setting is a weighted Sobolev space, but we also use

the maximum principle and perturbation of Q.

Noncoercive variational inequalities have been considered by Lions and Stampacchia

[19651, Lewy and Stampacchia (19711, and Deuel and Hess (1974), but none of these results are

applicable to the problem considered here.

Acknowledgement
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2. Some weighted Soboleo spaes.

3Because of the tezrm 1/(x..) in the operator A defined by (1.4), it is necessary to

introduce Sobolev spaces with a weight function

p(x) - n(xlX 2 ) - . (2.1)

There is an extensive literature on we; hted Sobolev spaces (Necas 119671, Kudrjacev

(1974], Kadlec (19661, Kadlec and Kufner (1966, 1967), Kufner 11965, 1965a, 1969], Jakovlev

(19661). The present problem presents several aspects which, taken together, are not covered

in the literature:

(I) The weight function p involves the distance to the plane x2 - 0.

(ii) P - x- whereas most references consider the case P . xO, (1 0.

(iiI) The boundary conditions on 30 are of the third kind (Dirichlet and Neumann).

(0) ,l
Thu results of this section hold whenever 0 is of type N0 , that is, I is a

bounded domain whose boundary is Lipschitz continuous (Necas (1967, p. 55]). This condition

iS satisfied as long as I'1 consists of a finite number of Lipschitz continuous curves, with-

out cusps, and is certainly satisfied when sl is as in Fiqure 1.2.

2, NO and Wmd (I) denote the usual Lebesque spaces and Sobolev spaces defined over sI.

We denote by h - L"(0) the real linear space of real measurable functio," v defined

on i: with finite norm

I 1/2 I 1/2
11v;I.I1 -= v;1 I v dx] (2.2)

Thus, v 1, iff p/2v L2 (M). We assert that L is complete. To see this let

1/22(V I be a Cauchy sequence in L. Then (p v n is a Cauchy sequence in , () . Since

2 i 2 2 1/2 1/2
1 (1) is ('omplete, s/v •u in 1,2(0) for some u , (0) . Thus s) /2v in

2(1,) whele v - up- L. That is, v 1 v in I., so that 1. is indeed complete.

We denote by W = W2 the space of functions v t L with generalized derivativesp

%"I V %, I - 2, which also belonq to L. As 1o1m we take

,v 2, )1/ 2iivW1 i! - ; 0 "  11 11 Vllv , 112  1) i vllD¢, ll2.3
-=7

-7-
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We assert that W is a Banach space. To see this, let (v ) be a Cauchy sequence in W.
n

Then, by the arguments of the previous paragraph, P 1/2v - 1/2w < L2(Q) for some w t I.,

while C, 1/2Div n . 1/2w I L2(Q for some wi e L, i < i < 2. We must show that

wi - Diw. To do so, choose a test function V e D(P.), the sot of infinitely differentiable

functions with compact support in 1. By definition,

f (Divn)Idx - - f vn(D 10dx

Now € has compact support on 11. Thus o 0 outside some compact subset nl of i0. On

1/2 1/2 21) we have that, for some 4, x > > 0. Since p v 0 w in 1) , we conclude2 n

that Vn1b * will in L2(a ). Similarly, Dlvn tfc 'o wcild in L2 (1c). Thus,

f w(D)dx f f W(Didx - lim f Vn(Di)dx -

c C

- - r (Dv ),Pdx - O w ,dx .

c c

- - f w1  dx

and we conclude that indod wj - D W.

The preceding arguments used only the fact that s is continuous and positive in .l.

-3
The arguments which follow use the fatct that O - x,

1.2We denote by V - V I(0) the set of real measurable functions v defined on Q such
P

that x.v L and v has weak derivatives D.v t L. As norm, we take

1 1/2
yv~vii - flv~Vt"m)I - (-lx Iv:Lj1 + Hlv; L '.' . (2.4)1 i Il

Using Owl arguments previously apphed to W it follows that V is a aniach space.

If v c V then v c W and

Iv;WU_ Imax (I + X,') llv;vt! (2.S

so that V ca;. be imbedded in W.

~-8-
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For small oositive h let S be the strip
h

S h fx C fl 0 < x 2 h (2.6)

and lot

n (x C nl x 2 .h) S'/Sh .(2.7)

Let c (r )-C'(R Ina, denote the set of restrictions to n) of functions which aroo i 0 i
infinitely differentiable in R 2and which vanish in some neighborhood of r1 . In particular,

i f 0 4 C"(r ) then 0 vanishes in some S *we denote by 0%~ W 0 W 1,2 MS) the completion0 0 h' P

in W of C*(r )and set0 0

11w 0 2 vL12, 1/2 (2.8)

Theorems 2.2 and 2.3 below are based on results due to Kadloc and Ktifnor (1966).

We use the follodvng inequality due to Hardy (Hardy, Littlewood, and Poly& 11934, P.2451).

1A 2.1. (H1ardy)

If p >1, (% < p 1, and 9(t) is a measurable function on (0,-) such that

I k(t)Ip'tt
0

then

p

Theorem 2.2.

yaw

Tho normq

I~11 2  ! (w grad w12 Idx

IlW;w1 2 =fpw + Igrad wldx



and

0112ww0 1 f pograd w12 dx

are equivalent on W, and satisfy

SIIwivll 2 
. IIw,°WI 2  l lw;W1l 2 < max (1 + x 2

2 11wv11 2  (2.9)

If w c W then w(xlx 2) 0 as x 2 - 0 for almost all x . Indeed,

2

2 1 1 0/21
f - w x ,s xIWWaj . (2.11)

S1 x 2

Proof: Lot w c W. Then w belongs to the Sobolev space H 1 (1) and so w(x,) is

absolutely continuous as a function of x2  for almost all x1  (Morrey (1966, p. 661). Thus,

t
w(xlft) - w(x1 ,n) - f D2w(xlu)du (*)

s

Furthermore, since lIwiwll < 
' it follows from Fubiniis theorem that

R(x 
U1S -3 ID2W(X11u) 

2du < (*)

0 x 2

for almost all x Thus, using Holder's inequality,

t
Iw(xt) - w(xls)l f ID2w(xu)Il . lul "-3/ 2.1u l 3/ 2du

S

r t D 2w(xu) 12d/u

.1 I D w(x 1u) du ] 1/2 3 5u /2

-10-



from which we conclude that w(x1 ,O) lim w(x1,s) exists for almost all x1. However, from
s+0

Fubini's theorem,

RNxx)

f _ Dw(xixu) 12du < ax 2

0 u3

so that w(x1,t) 0 a.e. Indeed, we have (2.10).

Applying Lea 2.1 withg a D2 yw, a a -3, and p 2, we see that, for almost all xor

R(x 1 on 1 R(X 1o11 x2  12

Thoe2 f 2e Vdx 2 - f - D 02w(x's)ds dx20 X 2  0 x 2 0

<R(x 1  [) Dwxf~d x

5-i

0

1R(x 1  wxX)1

0 2

Integrating with respect to x1  we obtain (2.11). The remainder of the Theorem now follows

imediately.

0

Remark 2. 1.

If V - 0 onl O then inequality (2.11) is rulated to the Poincare inequality. For

general mixed boundary conditions, one obtains an inequality such as (2.11) only when

satisfien certain restrictions (Staxnpacchia (1969, p. 145)).

0

T1heorem 2.3. Gx'~el V V and c > 0 there exists h t: C 0(11 0 such that

liv -;WIl

If, in addition, v - y cC 0 (I1 ) for some constant y then ~Pcanl be chosen so that

Consequently, V W W.



Proof I

Choose f (t) e i 2,ucil that o < f (t) 1 , f -0 for t < 1, and f 1 for I
t > 2. Smoh all f can ho conatrtictod using mollif lorn. Lot o max If I.

Lsot l5,(X(x) - f (x 2 /h). no t Ia t 0 < P,1,

r0 if 2 1
10 if X2  211

Thf F 0 I 0 and(

Itoan 0 c 0 o I

For~ ~ ~ an vcVltv FV. Thonli V It V) v1(x) W 0 for x e S1 ItIV(x) V h W

for x (" 9 21 Vx I x Vx Aluo,

1ri (V-v1 12 11( - v )D VI +f IV 1IF 2

no that

ID i(V-V t1
2  2 111)v 12  v2211

<. 211t) v12 t 4v'c2/x~1, ill

Thkti. roillonborintj thlat v - 0 in 211

11 V-v 1wtt2 1,I - Vt"1x4

211 2

221
S2f J§1 1 V12 f'c ~ ~ d

SinCe Vt V oach Iintogra1 in convergont. Sinlce the monaltre of r,1 0 an 1% 0, wecon -

chido that

11VVItI~ 0. anI h 0



Chooue c > 0, aiu1 thon pick 11 ao tha~t

siica 0 Ai Sb wt non that v l W''2(%~ 01 Pt $1 Hatiloua tho 00(311011t

propurty (Ada%$'u (1975, it. 541) altd no there tuxiItt w. IxC0(R Uih that w I~ Ill

arbitrarily oo to vhIh/ ill tho (0 1, h2) norm. rtirthormoro, romo bori tha~t

Il "0 ,nS, oxmilftIn Of tho proof Of Theorum 3.111 Of Adams ishows that whI amy bo

ulIokton to ho vtovo Ii a i olqhborltood U of thtt bomidary componeont

n equivAlont on o wo can chootut w It14 that

Hq- h ~I

Next , let v-y (I ).Thenl v~ - v lnt of le v~- t00 mi ro

otrut lon of wh (Ahalmo I V975. p. 551) we vall c leanv C11001e w~ no th"AL 11-Y t~ 0

Ml ( 0 ). 0 ' t Mid woi U11kidt Lhat 0 14 t donna h% V. k liti q 'Thoorom,

wo have V W W V.

1L1



3. The one-dimensional problem.

it is instructive to consider the one-dimensional problem which arises when the shaft has

constant diameter. In this case u depends only upon x It is convenient to set x r.

We normalize u and r so that the shaft has radius I, and u a I on the outer surface of p
the shaft. To be consistent we should sot ft (0,L) x (0,1) but we set i - (0,1) since

no confusion can arise. We look for a solution for which fe W (0,T) and Op- (Tl) for

some constant x.

Conditions (1.4) through (1.9) become,

Au - - --3 Iu

o h I kr0, T < r < 1 (3.1)
r

-~ kr# 0 < r < 1 ,(3.2)

u 0, r -0 , (3.4)

u - 1, r- 1 . (3.5)

Integrating (3.1) we see that

u 4at 3 ,  0 < r < T ,(3.6)3r

for some constant a. Integrating again we obtain

u - ar4 + b, 0 < r < r

for some constant b. It follows from (3.4) that b a 0 so that

u - ar4, 0 < r < . (3.7)

From (3.2),

u m " kr2 ,  x < r < I
5r

Since u is required to be continuously differentiable at r - r. the constants a and

1k must have the same sign, so that 3u/3r has the same sign throughout (0,1) . From (3.4)

and (3.5) we see that 3u/3r must be positive.

-14-
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Thus (3.2) becomes

u= kr 2 ,  T < r < 1 (3.8)ir

Integrating and using (3.5) we obtain

3u = kr3/3 + (1 - k/3), T < r < 1. (3.9)

The expressions (3.7) and (3.9) involve two unknown constants T and a. We determine

these by requiring that u and u be continuous at r = T. From (3.6) and (3.8) we haver

Bu3 au 2
i-r 4a r (T + O) -kT

so that

a = k/4T . (3.10)

From (3.7) and (3.9) we have

u(T - 0) =aT4 -u(T + 0) = kT3/3 + (- k/3)

Substituting from (3.10) and re-arranging, we obtain

3T= 12(k/3 - 1)/k . (3.11)

The solution T of (3.11) depends upon the value of k. There are three possibilities:

1. k < 3. Then T < 0. Physically this means that the torque T is too great and no

solution exists.

2. k > 4. Then

1/3T =4 -12/k] > 1

Physically this means that there is no plastic region, and the analysis must be modified.

Setting a = 1 in (3.7), we obtain a solution u = r4  of the elastic problem which

satisfies '.he constraint (3.3) namely <'rj _.kr2.

3. 3 < k < 4. Then

T = (4 - 12/k] 1/3 E (0,1) (3.12)

and there is both an elastic region Q = (0,T) as well as a plastic region (T,1).
e

From (3.7), (3.9), and (3.10),

-15-



- - 7 777 T"7=7

u fkr4 4T, in R.
Uu (3.13)

r /3 + (l- k/3), in ,
P

We now show that u, as given by (3.13), satisfies two altornatave formulations of the

problem.

Direct computation shows that

( o 0 , in f

Au e (3.14)

k/r 2 > O, in n

Let ' be s':ch that

grad 21 - kr2, 0 < r 1 1 (3.15)

'P(i) 1

so that

kr3 /+ (1 k/3), 0 < r < 1 (3.16)

is called the obstacle.

3Noting from (3.11) that k/3 - I - kT /12, direct computation shows that

k(r-T) 2(3r 2+2rT, 2)/12T > 0, in (o f (0,T)u- - (3.17)

0, in 0 - (T,1)

Combining (3.14) and (3.17) it follows that u satisfies the one-dimensional Complementary

Problem

Au >0, in $1

U - > 0, in 0 , (3.18)

(Au) (U - =, in S)

Now, with the notation of section 2 let

V V - (1(3) . (3.19)
P P

Set

K (v c V v(1) - 1 ; v(r) > '(r) for r ( (0,1)) (3.20)



V W 0e) and so If v e V then v is eq'dvalent to an absolutely continuous

function. Thus, utatements such as v(l) - i .n the definition of K can bo interpratod in1

the classical sllne, Furthnore, since

1 3- vdr .4 w
S0 r3

we nee that the condition

v(O) - 0 (3,21)

is satisfied by all v c V.

Let a be the bilinear function on V N V,

SaI,,,,) r Ur .(r).(r, ,(3. .

0 r

1 untogratillg by partt,

%0 %1) t 4 f (v - u) Au dr 4
161- r 0 0

4 v - u) u + f (v - u)Au dr

Sinco v(O) - uO) 0, v(1) - u(1) ., Ai - 0 00 i) - (0,1), u -%1 in i (tI), alie p

r it; contiuous at " - t \ % obtain
1

au,v - 1) - f (v - 14)Au dr

MUt, v ( K so that v and, by (3.14), Au 0 it% Q- (, 1) , no that u in a

solution of We oto-dimaousioual Variational -uItualityi F'ind u K ,uch that

aI(XIv - 0) O for M 1 v ,K,.I,1

-17-



4. The Two-dimensional VariatnaL Inequality.

In the previous section it was shown by direct computation that the solution u of the

classical one-dimensional ola:tic-pl stic problem satisfies the one-dimensional complementarity

problem (3.10) and the ono-dxmensional variational inequality (3.23). This suggests that we

consider the corresponding ewo-dimensional problems.

Th- two-dimensional c *plementarity problem is very useful conceptually, and also very

helpful when one consider. numerical approximations. However, this problem gives rise to

technical difficulties s.nce it is necessary to carefully define tie moaning of statements

such as (Au)(u - #) > 0. This can be done, but we will not do so here.

In cnntrast, the two-dimensional variational inequality is relatively easy to apply since

we can use the following fundamental result of Stampacchia [19641:

Theorem 4.1: Let V be a real Hilbert space. Let a be a real bilinear operator on V x V

such that a is coercive and continuous, that is, there are real strictly positive constants

a and (12' such that

a(vv) >a111v112, for v c v

la(v,w) 1 1 q2 Iv11 liwl1, for vw C V

Let f be a real cont:inuous linear functional on V. Let K be a closed convex non-empty

subset of V. Then the variational inequality: Find u c K such that

a(u,v - u) > (f,v - u), for all v K , (4.1)

has a unique solution.

0

General references on variational inequalities include: Duvaut and Lions [19721,

Glowinski, Lions, and Tremoliores [19761, Daiocchi [1978], Glowinski [19781, Kindorlehrer

11978), and Cryer (1977 section 11.11, 19791.

In order to apply Theorem 4.1 to the problem in hand we must define V, a, K and f.

In doing so, we have been guided by the work of Eddy and Shaw [19491, Brezis and Sibony (19711,

and Leventhal [1973, 19751.
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The space V is taken to be the space

V W (w2lS) . OwlI2() O WW (4.2)

defined and discussed in section 2. It was shown in Theorem 2.2 that there are several equi-

valent norms on V. Here we use the norm
i/2

tIvl - Ilv,0w1- if plgrad v12dx • (4.3)

The bilinear operator a is defined on V x V by

a(v,w) - a p(vl w l + v,2 w,2]dx

f p grad v . grad w dx . (4.4)

Since

ia(v,v)l = j1v11 2

a is coercive, and since

la(v,w) l <. llvil •IIlI

a is continuous.

The obstacle ' is the solution of the initial value problem for a first order partial

differential equation:~~ir d 2 2 4

grad 1= k x2 , in Q (2 (4.S)

= T/2n, on r1. vI< T/2r in Ql

where the restraint 'P < T/2n resolves the ambiguity in the sign of grad '.

The set K is defined by:

K = (v C V : v = T/21 on F1  (in the sense of H (M))
(4.6)

v > ' a.e. (almost everywhere) in 0)

Here, the statement 'v = T/2n cn F in the sense of H (S)' means that there exists a

sequence of smooth functions { Vk such that: (i) C V; (ii) 4P T/2u in a neighborhood

of rI; and (iii)

-19-



jjIp),V11 0 as k'

K Is closod and convex.

The boundary conditions (1.7) and (1.9) are incorporated into the definition of KZ

every v C V satisfies v - 0 on r 0  in a weak sensow and the condition u/tn - 0 on | 2

Is a 'natural' boundary condition in a variational formulation of the problem,

Finally, the funakional f is zero in the present problem.

We claim that the Variatlonal Inequality corresponding to the Classical Problem (1.4) -

(1.9) is: Find u e, K such that

a(u,v - u) > 0, for all v c K , (4.7)

where a and K are as defined in (4.4) and (4.6).

Before proceding firther we need some information aboit the function '.

Theorem 4.2.

For x c Q,

(xlx 2  < g(x 2  [kx 2/3 + T/2 - ki (0) /31

tFor x 1'0

O1(x,0) - $ g(0) (4.9)

Proofz is defined by (4.5). On r0 .

g rad fl kx -0

so that - 8 on 1"0 for some constant 8,

To determine 8 we note that 1, satisfies the first order exuation

N P(X , , p,q) - p2 4 q 2 -k2 x4 02 * 2- k 24 -0O , (4,tO)
2

where P - I and q ' The corresponding characteristic system of differential equA-

tLons along a trajectory parametorised by s is (Courant and Hilbert 11962, p. '),M)

-20-



?-' -- 7777 7K7-77 7--= '7

-Zx

- F - 2p , (4.11)

dx
ds q - 2q * (4.12)

ds Pp + qF 2 (p2 + q 2 kx2  , (4.13)

(pF ' ) " 0 (4.14)

(qF + F U) 2(15

We integrate this system starting at the point (OR(O)) where

x 1 0, x2(O) u R(0), p(O) - 0. q(O) - kx2 , 2 (0) -T/2v. (4.16)

From (4.14) we see that p(s) M 0. It then follows from (4.11) that xI(s) 0, and from

(4.10) that q a + kx . We are thus integrating along r, and we obtain the same valto for

as for the corresponding one-dimensional problem.

By the appropriate modification of (3.161, we obtain

*(0,x,1 . glx 2) , (4.17)

where

l 1  [kx 3/3 f T/2n- kR(O) 3/31 , (4.18)

In p.Articuilar,

- (0,0) - T/2' - kR(O) 3/3 (4.19)

It should be Xpintted out that there Is a hiddol omplication in the above argulelnt,

bocaute if u follow tht. saeto approach starting from the point (L. R(I)) we apparently obtain

(1,0) 
- 1/2v - kR() 3/3 #

The eXplanation for this apparent paradox is that two or more characteristics may intersect.

A more detailed study of ' (Cryer 11979a)) shows that when x, is small, t\o\ characteris-

tics pass through lXOilnts (l,x.,) t r,,. This does not happen Ol I1 because, as is readily

suen troil (4.11) and (4.14), if, as in Pigure 1.2. dR/dx '- 0, the characteristics always

have dxI 'ds ' 0 lld only the characteristic starting at (0,R(0)) passes throukgh the 1.oInl~t
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(o. x, ) t r~l [

Since

1'*2 1 Igrad l " kx2

we see that x2
Iox - (:clolI- f , j ld kx /3

o
Thus,

Xltxl2  6 + kx2/3 - g(x 2)

0

Remark 4.1.

At first sight it may seem surprising thiat is constant along I' on which no condi-

tions were imposed. This can be understood more clearly after considering the detailed cal-

culation of as done by Cryor [1979a).

Alternatively, since Igrad fl , kx2 we know that

I1101112 - .grao' fladx < w'

It is known (Kadloc and Kufner 11966, p. 4691, Leventhal [1973, Lemma 6.21) that this imp,,.s

that is constant on r0

Theorem 4.3.

Let

k0 - (3T/2n)R(0) 3  (4.20)

If k < k0  then K is empty and the variational inequality (4.7) has no solution.

If k 5 k0  then (4.7) has a unique solution u.

Proof; if k < k0  then, from (4.8) and (4.9), ' - 6 0 on r0 . Thus, if v e K,

I1v;W 112  f Pv2dx 'f p0'2dx +.

Hence, K is emty, and (4.7) has no solution.

| -22- y



If k > k0  then 0 < 0, and v max({O} C K. Since K is not empty, it follows from

Theorem 4.1 that the variational inequality (4.7) has a unique solution.

0

Remark 4.2.

In section 3 for the case T - 2r and R(x1 ) 1, we saw that there were three possi-

bilities: k < 3 (no solution); 3 < k < 4 (an elastic-plactic solution); k > 4 (an

elastic tolution). In Theorem 4.3 we only distinguish between two possibilities: k < k0

(no solution); k > k0  (either an elastic-plastic solution or an elastic solution).

Further properties of the solution of (4.7) are discussed in the next two sections;

those properties are suuh that they justify our claim that the variational inequality (4.7) is

an appropriate extension of the Classical Problem.
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5. Regularity of the solution u of the variational inequality.

We assume henceforth that

k>k 0 = ITR(O)-3 , (5.1)

and set
h Rf3 1 T2nl/3

h RO) 3 T/2rkl > 0 • (5.2)

We prove that u, the solution of the variational inequality (4.7), is regular by first

proving that u is regular in the strip Sh near ro, and then proving that u is regular

in where Sh and Q are as in (2.6) and (2.7).

We recall certain pzoperties of the Sobolev space H (l) - W1'2(f() which are proved,

for example, by Gilbarg and Trudinger (1977, Chapter 7 and p. 168].

1 1If v,w e H (0) then max(v,w) c HI(f) where max(v,w) is defined by

max(v,w) (x) , max(v(x),w(x)) . (5.3)

If v c H (R) then, by definition,

sup v - inf{ s c R v(x) < s a.e. in 0) , (5.4)

sup v = inf{ E 't 1 v(x) - Z < 0 on fl) . (5.5)

an

where

u(x) - < 0 on an iff max{u - Z, 0) H() . (5.6)
0

As a preliminary step in the analysis we show that it is possible to enlarge the domain

n by reflection in the vertical sides so as to avoid the difficulties associated with F2'

This is a well-known trick for handling Neumann boundary conditions (see, for example,

Baiocchi, Comincioli, Magenes and Pozzi (19731, p. 25 footnote 331). The arguments are ele-

mentary and rather tedious but we are not aware of any detailed treatment in the literature.

Let n 0 Q. Let Q be the reflection of n0 in r and set no u r u 1I
21 21

with boundary U 1 U P21 U F22  (see Figure 5.1). Let u be defined on Q by reflect-

ion:

-24-



r u(+x 1x2 ) , x C $0

(x ,(-xl.x 2 )  x C i S?

The sp.ce V, W, 0, and the convex set K are defined for f in the same way that they

were previously defined for n in section 2 and (4.6). That is, V V_(f}, W W,'2rn
p p

% " 0W1, 2 (6), while K is the subset of V consisting of those functions which are greaterp

or equal to J (the reflection of 41) in f and are equal to T/2t on an .

Lemma 5.1.

u c K and u is the unique solution of the variational inequalityi Find u c K such

that

a(u,v-u) > 0. for all v c K , (5.8)

where

1~) fp rad V.grad wdx

Furthermore,

Tx2

1 21 2 '2 .22

Ii(0.0) 10

Figuro S.,I. Tho onlarqeod doxmin a - I U 1,21 to aI

Proof: We first show that u has weak derivatives in 1().

r+ U,1 (l+x 1 5 X2 ) ,* in

ii, 1 i(x9 x2) - ( (A)

1- u,. 1 (-x1 ,x2 1 , in I

-25-
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u,2(xlx 2) + u,2 (1x11,x2), in f (**)

The values of u,i  need not be defined on 1'21 since it is a set of measure zero.

We introduce the strips parallel to r21

T d ' d n .

For any d e (0,L/2) let 9d be a cut-off function with the following properties:

d n(a) d o( ) '
(b) 0d,l *- 2d: gd,2 " 0

(c) g is symmetric about xI - 0

(d) 1-I if IxlI.d and d 0 if xTd

For any P Co0

where

0 0 1 1

S9d 0 e CO)( and % CO (M)

For 1 U 1,2, and u i defined by (') and (**)

f u i dxL i od dx-- 0 as d 0

because sd is bounded, ui c L (i)) and the measure of Td goes to zero as d 0 0. For

the same reason,

f 2 dx i g d P,2 dx 4 0 as d 0

Finally,

fi dxdx v dx

1() + _(2) say,

d d  d y

• -26-



As before, 1 0 as d 40. Using the symmietry of g and u

I(2 d f u (X) g (x) fo(xpx) 2 0(-x#X 2)1 dx 4 0 as d 40

T d

* snc 'd~ ~2d-', and So (, ,x) - P(-xi #x2)j<2d sup I V,(x)I Ond

Thus, for i 1,2, and Z11 defined by (*) and(*)

Isfi, vodxmfi~ P dx +f~j 0ddx+ O(l)
fSi Od

% ~, d + (l'f1 U,(xlx. 1 4~d o(l)
f Si %i

j t u(x)C~(+x ? 0 (1 1 dxlx 2) )dx + 0(l)

SI

But t,. is the weak derivative of it on si, so that

-- Iu(x)( 0 (+xI1 X) 1 1 - )x+Ol
'Pd 1 2 + d.i~lx d 1 1(12

V- - d f0 i dx - fIuv dx + o(l)

L i dx+ R

We conclut: Iliat the functions u,~ as defined by M* and (*)aro indeed the weak dorivativesl

of u1.

Clearly, Ui E V and juzv J 2 11 2 11uIVI.

F'inally, we note that if v C then v , v c K where

vVIS,

v (x1 X 2) v(-x 1 ,x 2) x C Si

For any v K,

a~~-) f0 grad u .grad (v-u)dx 4 J p grad u grad (v-u)dx
Si SI
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Making the substitution x- -x1  in the second integral, we obtain,

a(u,f-u) - 0 grad u . grad(v0-u)dx + f0 P grad u . grad (v -u)dx
n

0- 1-- a(u,v -U) + a(u,v -U)

> 0

since u solves the variational inequality (4.7). That is, u solves the variational in-

equality (5.8). From Theorem 4.1, we see that the solution of the variational inequality

(5.8) is unique, and the lemma follows.

Remark 5.1.

We can also reflect A in r22 and obtain results analogous to those of Lemma 5.1.

Theorem 5.2.

u is non-negative a.e. in 0. That is,

u max(u,0)

Proof: The proof is a modification of the proof of the weak maximum principle in Gilbarg

and Trudinger [1977, p. 168).

Let

- fxe : u(x) >0)

- {x 1 1 : u(x) < 0)

V - max(u,O)

Then v ( 11 (SO). Furthermore, v - 0 and hence Igrad vj - 0 on S . Thus,

fr .22 v2 I-2u2 12)
P 2v+ Igrad vi dx f l 2 u ~-Irad d

+

and we conclude that v c V.

Similarly,

a(vv) - f pgrad vj2dx < f pigrad ul2dx a(u,u) (*)

Obviously, v(x) > u(x) > f(x) a.e.

We now show that v = T/2i onl I' in the sense of iI (). Since u - '/2r on I' In

the sense of H (Q) , there is a sequence { V) with k -> u In V, and k" 'r/2v C(I'
2k 0
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V k maxF (0k0)

Than vk balonl?; to V and vk T/211 in some neighiborhood of V(but vk- T/2ft '0

Since 4 u in% V %?e know that P (x) - u(x) a.c. and that thle norms 110I are bouinded.

Consequently, v k W * v(x) a. a. and thle normo U1vk1 are bouinded. V in a Hilbert space.

In a Itibert space bounded saoto weakly sequlentially compact, so theure exints a tiubsequonco

(vkp, whichi convorgen weakly to some *.0 C V. Weak convergence in V implie. weak conver-

ganco in I., (Ql) whichi in turn implian pointwiae convergence a.e. Thun, v '(x) 4* v' (x) 4.0.1

from wich it follown that v(x) - v1 (x) a.e. and heonce that v w v' . Takinq finite conivex

litcr combiniatiotn of thle v ' we obtain a nequonco 0vk whichi converges in norm to v' "v.

Each V I in a finite linear combination of thle vkt no v k - lr/2it in none neighiborhiood of

F1 . Finally, applying Thenorem 2.*3, we approximate v k by k wera ~k C V and

T/2 c r1 ) . Since 4 k v, we conclude thant v - T/2ti in the utunne of It~ (s)

In tunmary, v< K.

Now, %I nolvas thle variational inequlality (4.7) , and no

a~l~v-u) -- f p 1grat ul 2,IX < t)

whichl Implio Mcinht I(u,v-tl) - 0. But then, by M*)

a(v-u . v-u) % o(v'v) - au'u) *~2aW, v-ul)

-a(v~v) -a(u.1u)

'0

23o thlat v %Iu.

Remark 5.2.

Partr 11965, p.2011 given an example ilnvoivinq generalized axially nyuliuotric IpoLontiala

where thle maximum principle does ntot apply. inl Parter' s example, however, Lite regiion ii Is

symetric about 1' 0anld 1o thle I inco of deqIolor-acy Is conitaineod ill 0. Inl the pronent, pa1pol

thle line or degeneracy in on thle boundary or $1.
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Theorem 5.3.

In the strip Sh0, u satisfies the differential equation Au 0 in the weak sense;
10

that is,

f P grad u . grad dx 0 , (5.9)
n

for any 0 Co(Sh0)
0

Proof: If k > k then, from Theorem 4.2,
0

'(x 11x2 ) g(X2 ) < 0

in the strip Sh
0

By Theorem 5.2 we know that u > 0 a.e. in S1. Thus, u > 0 > ' a.e. in S h0 More

specifically, given a compact subset G of S there exists c > 0 such that u , + e

a.o. in G. For any 0 c C0 (G) choose 6 > 0 so that I So < c. Then, v+ - u + 0 C K

and v- u - 60 c K. ||ence,

a(u, v+-u) - a(u, v-u) 1 1 0 grad u . qrad(60)dx - 0
C)3

Remark 5.3.

Theorems 5.2 and 5.3 depend on Theorem 4.2 which assumes the specific geometry of

Figure 1.2 to evaluate q1. If I' is not as shown in Figure 1.2, lot

R-I(x ) minti 0 < x 1_ •

We believe that Theorem 5.3 remains true if in the definition of ho t R()0 is replaced by R.

The proof would require a detailed study of the function in the case of a general domain,

along the lines of the study by 'ring 119661 for the case of the torsion of a prismatic bar.

Remark 5.4.

Theorem 5.3 provides a bound for the size of the plastic region. This is particularly

interesting because in the numerical computations of Eddy and Shaw 11949) the plastic region

dips down near the corner h on rI  (see Figure 1.2), and it is far from clear that the

plastic region will not grow very rapidly as the torque increases. For the second problem

considered by Eddy and Shaw 11949), k 49, T 6349 x 2n, R(O) 8. In their numerical cal-

culations

-3o-
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X2 min{x 2  (XlX ) c R 6.95

From (5.1), (5.2) and Theorem 5.3, k 1 3720, and

S ho 5.13
02

Remark 5.5.

The fact that there is an elastic strip near r0 as long as k > k0  is analogous to

the situation for the elastic-plastic torsion of prismatic bars where an elastic core also

remains until the entire bar becomes plastic (Lanchon [1974)).

Remark 5.6.

Our analysis is not adequate to handle the limiting case k k0 . We conjecture that if

k k 0 then u- for 0 x1,<x 1 f where

i "max{x x R(x) R(O) for 0 < x < x

Theorem 5.3 asserts that Au= 0 in the weak sense in S We may thus expect that u

is regular in Sh. This does not appear to follow from known results about ellintic equations,

and we therefore prove this by modifying the corresponding proof for uniformly elliptic equa-

tions. We use Gilbarg and Trudinger (1977] as a basic reference, since this iq a comprehensive

and readily accessible test. j
The basic idea is to obtain bounds for the differences of the solution u and then pro-

ceed to the limit.

The difference quotient in the x1 direction is defined by:

v(x+he ) - v(x)
AIv(x) = A v(x) = Av(x) = h , h $0 , (5.10)

where e1  is the unit vector in the x direction. If v c V, then the difference quo-

tient A hv is defined on Rhj

= h = (x c : x + teI c 0 for t c (0,h (5.11)

As is customary, the weak derivatives of u are denoted by D u, Diju, etc.
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Lemma 5.4.

Let ve~V and h >O. ILet Q' c 1h n n~ Then Av 1 V L ( W) and

*h 2(1 1 1 pjj g

Proof: The proof is a modification of the proof of Lemma 7.23 of Gilbarg and Trudinger (1977).

h
We begin by assuming that v e C (r ). If x C then

0 0

1/2 l/ 2 Iv(x+h 1) - v(x)]
p (x)Av(x) p W2x) h

1 f 1/2 (x)Dlv(x+tel)dt

0

so that, using the Cauchy-Schwarz inequality,

p(x)IAv(x)) < f I p(x)(D v(x+tO) dt
0 1

Since Dlx+to i  -ONx) = x2 3
x2

f p(x)[Av(x)) dx

'~j.f dxlj p(x+te )(D v(x-fto )dtl
It g 0 1 1

1 2

(- ift f p(x4tel) [1lVlx+tel d

0 gV

h i I 1. r 2 (0 11 2dt
0

and the lemma follows for v c C(1O

But, by Theorem 2.3 there such that flv- ; t for any o.

Thus,

: - _ .
-32-
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,l )ril L ()h 11 2c/h

DI~oV L(~l + 24A, c

Letting < 0 the lemma follows.

Using the arguments used to prove Lemma 7.24 of Gilbarg and Trudinger 119771 W obta in

Lemma 5..

Let v cL 2 (0) and let 01' cc Al. It for It distance (RI~) we have

then v has a weak derivative D V which satisfies

loV I 2 nl C

Theorem S.6.

Let u t V satisfy Aw - 0 in S in the weak sense. Lot

S (x - (x I x 2  L/14 < x'i 31A/4 And 0 < x2< 11 /2)

Thent

(1) uls C (S)

Mi) u, 1 j and %1,12 1.1 belong to L2(S).

S 2 2

2(iV) U C 11 (S). u can be extended as a continuous f unction to S.and j 0 oil

3s A 1'0.

4
(v) u -x 2 v, where v is analytic in ..

233



Proof Tho prOof in A AXAf ion ef the proofs of The~orem BAf and fl.9 of Gilarq a~nd

P~roof of j)~ St.ttonut MI follows from Corollary' 8.11 of Gibu awl Trudingeri 11977)l.

LV:ioof o I (I We dollote by' C /l'o) Ow not of fimictions Mchih are Coltilitoua1y difer~-

oniuain Ile vallinh outiid S, andi wvkial ini nim neigjhborhood ofk) 0

l.ot A C1 ()S It/r0 bo such that

(a) 11-1 for .N($,

(b) ID10, 1041 i a for nmew constat l. q I~ n readily constriuctedan the produat of

two ceo -d i moll cut-off fonct iornl.

Then, for 11 dia tt ipp li Mh It/

o(I A o(i ) (i 1 ) o) dx,

- (pO il (D v - 114~u) dx

wtou we av~ uid thuo idont ity, valil for aniy f (f )S It /1 . and lifficiuiitly

Itf~jd ' d&~\,

Since~ Au -0 vtikly it% S, It we ~o thatt for ally 0 0 (S~ h)

iit



Now u c V and thus, by Theorem 2.3, u is the limit in W of functions

S6 C(r0) Consequently, A v - n h(2A hu) is the limit in W of the functions

-h (n2 a0 CW(S By proceeding to the limit we find that

iao that the first term on the right of (*) is zero.
Thus, using the Cauchy-Shwarz inequality and Lena 5.4,

2

f2 -P hi) DiUI I~d x

and hence

(1) above, we see that ,,,Ils and u, 211l -u,12 Is boloi to ,P(S).

00

Proof of tiii), rom Theorem 8,8 of Gilbarg and Trudingr we know that u22 exists i

and satisfies

u22 "',u11 + 3u, 2/x2 ,
ao.nd 

belong t (S), and thus so does u,2,

A ut.0.ro sinl S. If , it foheon %I.m anThAelong o 2.2 ) ndtu oosu
Proof ot (iv): It follows from (ii) and (iii) that u belolnqs to the Sobolov space 112(S),

From the Sobolov embedding theorems u c C(S) (Adams 11975, Theorem 5.41)

Furthermore, since u c V, it follows from Theorem 2.2 that

u(x 1 ,x 2) 0 as x2 "+ 0

'-j5



for almost all xi , Since u is continuous on s we conclude that u - 0 on as n rO.

Proof of (v)- This is an immediate consequence of Theorem 2 of Huber (1954).

0Theorem 5.6 informs us that u is wall-behaved near 1 'Away from r0tile operator

A is well-behaved. There are many results on the regularity of solutions of variational in-

equalities for coercive operators (Lewy and Stampacchia 119691, Frehse 119721, Gerhardt (19731,

Breis and Kinderlehror [1974)). However, there is a e.ifficulty to be overcome before these

results can be applied: the function ' is not smooth. This is I-ecause when we integrate

along the characteristics of * as in Theorem 4.2 we find that certain points in S1 lie on

two characteristics. This is best seen by considering F2 2 . It follows from an analysis of

the characteristic equations (4.11) to (4.15) that if dR/dxl(x 1 ) 0 then the characteristic

starting at (xi, R(x1 )) intersects 122 (Cryer 11979a]) . On the other hand, the character-

istic starting at (L, R(L)) coincides with I' 22 At points which lie on two characteristics,

must be taken to be the larger of the two values obtained by integrating along the charac-

teristics.

The motivation for the following arguments is as follows. We cannot prove directly that

u 'E 112'P(O) because 12' , fPl). However, the discontinuities of ' octjr in the upper

right corner of Q where in general the material is elastic and u . We therefore seek

to replace * by a smooth function c which agrees with , when u
c

Let U denote the solution of the elastic problem corresponding to the elastic-plastic

problem. That is, Au - 0 in f and u satisfies the boundary conditions (1.7) to (I.9).

u satisfies u t K and
a 0

a ( -u 0 for v ec KC,fill~where ('vu" O r ' e' ']

! Ke . {ve t V : ve . T/2n onl I "I  in tile sense of Il 1(S")}(.)

As in Theorem 5.6 we conclude that u is smooth in some Sh' From the standard Lheoiy of

elliptic equations we conclude that u is at least twice continuously differentiable In

"l, so that u C (2).°'i o



Lemma 5.7.

u) uS- e

Proof: See Stampacchia [19651 and Cryer and Dempster (19781. Let C 4 max(u,u ). The

e

theorem will be true if we can prove that u - C.

Now (as in the proof of Theorem .2) C c K and since u satisfies (4.7),

a(u-c, u-)

-a(u, u-) + a(, C-u)

< + a(c, C-u)

Sa(u e , C-u) + alue-c, u-)

But,

a(ue , C-u) - a(ue, v -U -0
e#e e a

where

V e u + C-UC KI e e

Furthermore, either C - u or C u0  and so

a(u.-C, u-C) 0

Thus, a(u-C, u-r) < 0 and we conclude that u C.

Definition 5. I.

satisfies Condition C if there exists t H2, W) such that o . whenever

u < and U < Ue whenever u >

Remark 5.7.

Condition C can be checked knowing only j and u , both of which can be evaluated

fairly easily and do not depend upon u. Conditibn C is satisfied in some practical cases

(Cryer (1979a]).

If satisfies Condition C we introduce the variational inequality with unique soluton

uc: Find uc K such that

a(uc, v -U > 0, for vc E K ,

c 7c c
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where

K = {v E K v > 4c}  . (5.15)

c c e Cc

Lemma 5.8.

If 4 satisfies Condition C then u = uc.

Proof: u and uc  are the unique solutions of the variational inequalities (4.7) and (5.14),

respectively.

Let v c K c . Then vc C K since vc > > Thus,

a(u, vc-u) > 0 if vc c Kc .

Furthermore, u > _ because either ue <i in which case u >- C = o e > * in

which case u > u>

We conclude that u also solves the variational inequality (5.14), so that u Uc .
0

Theorem 5.9.

If 4 satisfies Condition C then u - uc e M 2 P(m n C,(Sh /2') for any T- c (I,-).
0

Outline of Proof: It was shown in Theorem 5.6 that uls C C W(S) where

xS = x (xl,x2) L/4 < x1 < 3L/4, 0 < x2 < h0/2)

The restrictions on the length of S can be easily removed by enlarging Q to f by re-

flection as in Lemma 5.1. We conclude that u e C (Sh /2) By Lemma 5.8, u u
0

Now let

K I v 1C H 2) Q h / u = u in the sense of H (Q) on
0

ah/2 M h/2; v1 = T/2T on r in the sense of H1 (2);vI > 4')
0 0

and let a1 be defined on H 1 (Qh ) x H101ho/2 ) by
0 0

a Iv(VlW I  f P DivlDiwldx

h0/2
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The variational inequality: Find u1  K satisfying

a1(Ul, v -U1) > 0, for all vI  K1  (*)

has a unique solution u1.

Now let u = uilh0/2. Then, u 1 K Furthermore, for v c K1  let V C K be obtained
i0

by setting v(x) = u(x) for x E S h/2. Then

a1(u, v-u) - a(u, v-v.) > 0

so that u also solves the variational inequality (*). Thus u - Ulh0/2 u.

Since ulSh0/2 is smooth, it only remains to show that the solution uI of (*) belongs

to H2'P(6). om Condition C we know that 1 E H (Q) n H2 M. Furthermore, a1 is well-

behaved on 0h /2. The regularity results in the literature CLewy and Stampacchia [1969,

Theorem 3.11, Brezis and Stampacchia (1968, Corollary 11.31, Stampacchia [1973, Theorem 6.41)

1
are not immediately applicable because they consider the case K ' H (P It is, however,

1 0 h 0/2~ tihwvr

clear that the arguments can be modified so a: to show that uE H 2P 0
0

0
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6. Bounds for grad u.

We introduce the elliptic operator

Mv = div(x2 grad v) (6.1)

Lemma 6. 1.

1- 1jrad vi
Let v c C3()n C(1 - 1) satisfy Av 0 in Il. Let w - 2 Thn

x2

sup w -supw

Proof: Since Av - 0 in 5l we have, using summation notation,

1 3
3 i1 - 2 (6.2)

2 2x2  x

so that, by differentiation,

v - (-- v, 2  (6.3)Viij X 2  2 J

Lot

d v12 .v, v, I
0Ilra. (6.4)4 4

x 2  x 2

Then w c C 2 (Sh) n C 0 (h ). Also,

Mw - N (xv, jvj/x4)u,),i

3
(2VJviJ4/X2)' - 4(vv'/22'

j Lj 2 i i 5 ~J/ 25 5 2
2 3 32(v,ij) /x 2V, V,iij /x -

4 4
6v, V /x -8v,vo,/x

S'2j 2 j 2j

16v, Vx

i X2

Using (6.3) to replace v iij and collecting terms,

-40-

•t



23 4
Mw - 2(v,.iY'/x 2 + 6v, jV, 2 j/X2

215 4 4
- 6(v, 2 ) /x2 - 6v, v,2 j/x2 - 8v v,2j /x2 +

2 5+ 16(v, j) / 2 .

2(v, ) x2 x3 - Bv, v,2  /x 2 -

2 5 2.5
6(v,2) /X + 16(v,) /2

Thus,

2 3 25 25
Mw 2(vlj) /x2 + 2(v, 2 ) /x2 + 8(v,1) /x2 +

+ 2x2 Ev,2 j/x2 - 2v j/x 2

> 0 . (6.5)

Since M is an elliptic opcrator in 0 h we conclude from the maximum principle (Glbarg

and Trudinger 11977, p. 311) that w attains its maximum on the boundaty of S)
h

Theorem 6.2.

If k , ko, if , natiLfios Condition C, and if u is the solution of the variational

inequality t4.7) then

W Igrad ul < k, in $1 (6.6)
2 -
x2

2, p1Proof: We know from Theorem 5.9 that u t II '(fl), In particular u C (71) . I~eL

- (x 0 : u >,1

SI - x $1 u

In 0 wo have that grad u - grad so that, from the definition of P

w k, in S0 0(6.)
4

From Theorem 5.6 we know that u - x2 v W S 0. Thus, for some hI  h(, we have
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w < k/2, in S h (6.8)

Now consider the set = +/Sh. Applying Lenma 6.1 we conclude that
+h

max w =max w

Now, 3 consists of several components which we consider in turn.

(i) rO . a3 as h. Using (6.8) we conclude that w < k on r0 "

(ii) r 2 a-  n F 2. Since we can use Theorem 5.1 to enlarge Q, we know that

maxw < max w
r2 -

(iii) a+ =i n 0 Since w is continuous, it follows from (6.7) that

mTax w =k

r+

(iv) F1 = an rl. On rI we have u - = T/2w. Since Au 0 in fi, and u < T/2v

on af, it follows from the maximum principle applied to Au = 0 that u < T/2n on

n. Now consider a point on r1

Let t and n denote the normal and tangential directions, so that

Igrad u1
2 = u

2 + u
2

n t

Since u T/2w' on ro, we have ut = 0. On the other hand, along the inward normal n we

have
<_.~ u < _ T / 2 %

Remembering that ' = T/2n on r., we conclude that

Igrad u12 = 12 < 1 12  kx 2

so that w < k on r"

Remark 6.1.

Theorem 6.1 is analogous to the result of Brezis and Sibony (19711 for the elastic

-42-
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plastic torsion of prismatic bars. They showed that the solution * of the corresponding

obstacle problem satisfies the condition 1grad fl kc.
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