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A model system of equations which has been used to dcscribe the miscible
displacement of one incompressible fluid by another in a porous medium is

the coupled quasilinear system for c¢ = c(x,t) and p = p(x,t) for

x€ Q, te (0,T] given by

Vela(x,c){Vp - y(x,c)Vg}) -V.u = fl(x) ’
Velb(x,t)Vec] - u(x,c,¥{p) Ve = ¢ (x) g—:— - f (x.c) .,

\

with appropriate initial and Neumann bd\ndary conditions. Another case
considered is when b = b(x,c,Vp) above.l\Iterativo methods are presented

and analyzed which are based on using a preconditioned conjugate gradient
iteraticn for approximately solving the systems of linear equations produced
at each time step by Galerkin methods for time-stepping the above system.
Optimal order convergence rates are obtained for the iterative methods. The
iterative methods are computationally more efficient than Galerkin methods
previously proposed to solve the above system. The use of different time
increments in the time-stepping procedures for the different variables is also
presented and analyzed. The use of unequal time increments takes advantage of
different smoothnesses in time of the physical variables p and ¢ and

greatly reduces the work done in the computation of the approximate solution.

AMS (MOS) Subject Classifications: 65M15, 65N15, 65N30, 76.35

Key Words: Galerkin methods, Error estimates, Iterative methods,
Conjugate gradient methods, Fluid flow
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SIGNIFLICANCE AND EXPLANATION

The numerical approximation of a system of partial differential equa-
tions used to model the miscible displacement of one incompressible fluid
by another in porous media is considered. For example, the model system
has been used to describe the variables of pressure and the changing
concentration of a chemical solvent in 0oil used to flood o1l wells to push
the oil through the porous media toward production wells to get greater
recovery of oill from underground reservoirs,

Wheeler and the author have recently presented some numerical methods
for approximating the solution of the model system and have obtained
optimal order error estimates for these methods. This paper presents and
analyzes methods which are computationally more efficient than earlier
methods .

In time-stepping problems with time-dependent coetticients, numerical
methods produce ditferent systems of Linear equations which must be solved
at each time step.  Factoring a ditferent matrix at each time step in the
solution process can be very computationally expensive since the matrices
are trequently ot the order 1,000 ~ 1,000, The methods presented
in this parer require the factorization of only two matrices, Then
an 1terative procedure which compensates tor the tact that new matrices
are not tactored at each time step is used to obtain approximate solutions,
Significant amounts of computation are saved by these methods.  Optaimal

order estimates on rates of convergence tor these methods are obtained.

\
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EFFICIENT TIME-STEPPING PROCEDURES FOR MISCIBLE DISPLACEMENT

PROBLEMS TN POROUS MEDILIA

Richard E. BEwing

L. Introduction

In {10] numerical approximations by Galerkin methods to a problem arising in the
miscible displacement of one incompressible fluid by another in a porous medium are
presented and analysed. A briet discussion of the physical problem is given in [10])
and a mathematical model which is sufficiently general to incorporate most ot the
major teatures of the physical problem (see [10,15%,17]) is presented. In this paper,
we shall present and analyze some methods for time-stepping these model equations
which are mach more etficient computationally than the methods discussed in [10). We
shall use an itterative method based on a preconditioned conjugate gradient itteration
to approximate the solution of the systems of linear equations which arise trom a
calerkan approximation of the model equations. The iterative methods presented pre-
serve the accuracy inherent in the underlying Galerkin method and let us obtain very
nearly optimal possible orders for the work involved in solving the linear systems of

evquat rons.,

We tirst present the model equations tor our physical problem.  Find o PG R
and  p Pix,t) ., solutions ot
(1.1) V.ftalVp - yVgh -V.u = t’l '

e
(L.2) VebVel = usVe = ¢ ,“' - £,
X g 8
for X €\, t e (0,11, where 0 is a bounded domain tn KR, d S, with boundary
2

nwooand  uix,c,vp) -afVp = yVg! is a vector in R, Heve  a a(x,c), ¥ Y{XC) s
S g(x), 'l ll(x), ¢ din), £, = £_(x,c}, and b are specitied. For easie of expor

tion, we shall consitder two cases tor b: Case 1, with b bi{x,t), and Case 1I, with

b l‘("n"l‘xvl‘ Y. The cases of greatest physical interest (see 15, 17) are Case 11 and
y

v osubcase of Case | with b bx) (special results for this subcase ave obtatned 1o

Corollary 4.2). We assume that the following boundary and inttia! conditions hold

ponsored by the United States Army under Contract Numbers DAAGMO - PH-C-000 0 and
DAAGIO=TH-C=0161 . This material s based vpon work supported by the National sSetencs
Foundatton under Grant Number MOS7H=09520




? 2
(1.3) a{f;-—yg%}=o, xea, teJ,

ac
(1.4) bs‘\';:(), xe 30, teJ,
€1.5) c(x,0) = Co(x) ’ x€ Q ,

) R
where %; is the normal derivative of F on the boundary of {. Note that (1.1)-(1.5)
will define p(x,t) only to within an arbitrary constant. We shall normalize p by

the condition that

(1.6) 2 [ pix.tyax = 1, tedg,
lo] Q

where IQI is the measure of the domain Q.

We note that the analysis that follows would easily treat forcing functions fl
and f2 which are smoothly distributed over Q. If singular functions are used to
model the effect of small injection and production wells, the analysis will fail. Thus
we shall make the assumption that for our problem, the sources and sinks are smoothly
distributed and shall then, without loss of generality, assume that f_ = 0 and

1

fz Z 0 for the remainder of the paper.
Continuous time Galerkin approximations for (1.1)-(1.5) are presented and analyzed
in [10]. By lagging or extrapolating the coefficients in discrete-time versions of

these methods, we are able to linearize and uncouple the systems of equations required

in the approximations. However, the discrete-time versions of these methods require that
different systems of linear equations be solved at each time step; this is a computa-
tionally expensive process. In this paper, we shall present and analyze iterative

methods which require the factorization of only two matrices for the total solution !
process. The use of iterative methods to approximate the solution of the linear equations |
arising from the parabolic equation is an extension of the techniques developed in [6,9]

for quasilinear time-dependent problems. The use of iterative methods to approximate

the solution of an elliptic, basically time-independent equation, only to within the

accuracy of the time truncation error from an associated time-dependent problem secems

e it i — it — «‘»M
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tu pe new. We emphasize that unlike standard iterative procedures for elliptic equa-

tions, all the methods presented will only require a number of iterations which is
independent of At, h, and n to obtain a norm reduction sufficient to feed the
associated parabolic problem. Although a preconditioned conjugate gradient iterative
method will be presented, any method which achieves the specified norm reductions will
suffice in all of the analysis to follow.

In the physical problem which motivates our consideration of (1.1)-(1.5), the
pressure p is much smoother in time than the concentration c¢. In order to take
advantage of this difference in smoothness of p and c¢, we shall use different time
increments AtC and Atp in our analysis for the time-stepping of the systems of
equations arising from the equations for concentration and pressure. By using these
unequal time increments, we shall need to update the pressure variable much less fre-

quently than the concentration variable and thus avoid considerable unnecessary

computation.

In Section 2 we introduce two families of finite element spaces which we use to
approximate our unknown functions p and c¢. We present the hypotheses on (1.1)-(1.5)
and the solution (c,p), discuss elliptic projections for ¢ and for p, and present
our basic Galerkin approximation of (1.1)-(1.5) together with several modifications.

In Section 3 we present our preconditioned conjugate gradient modifications of the
methods described in Section 2 and analyze the effect of the iterative approximation on
a single time step. In Section 4 we obtain global error estimates for the various
methods described in Sections 2 and 3. Section 5 contains a brief discussion of the

estimates of the work of computation for the methods presented in this paper.




2. FPreliminaries and Description of Basic Galerkin Approximations

Let (u,v) = f uvdx, (u,v) = f uvdo, ”u“2 = (u,u), and |u|2 = (u,u). Let
K Y N
W*(m be the Sobolev space on 1 with norm

1
1 X ?:_‘k s s
(2.1) lell = - :
NS Iu':k Ix
L (R)
with the usual modification for s = o, When s = 2, denote ”w” g 2 ”w” K ]Iq:f!k.
L H
{2
s

If VP = (F ,F), write nwllwk in place of ‘”%”:k ' ||E‘2“:k) . Also H°(30)
s s s

will denote the Sobolev space on 3.

Let (.\!h} be a family of finite-dimensional subspaces of Hl(x}) with the follow-

ing property:
For p =2 or =, there exist an integer r > 2 and a constant K
-' C

such that, for 1 < g <r and y € H:(ﬂ)

(2.2) int {{ly = xfl o+ nfle -xll ) < KO\H'quhq .

€V w W
\ h p P P

We also define a family of finite-dimensional subspaces of nl(:?) called M'hl which

satisties the same property as “’h} with r replaced by s. We also assume that

the families (.\.‘h‘ and (Nh} satisfy the following so-called “inverse hypotheses":

if ve N and y € N

h K
_d
- “‘ - » -l
o el o sk Clell = kel
b vl < xpTHIwll
L (Q)
9 lell. < xn el
. v 1 0 L2 §
Restrict o as tollows (with (8) denoting the collection of restrictions): |
(5) I« N As N“—rmml.nr. 1s€®«, 3if
-d=




=Av & Oy =

and

| i I
then ||v|| . K {]le]l + [Inf] X
. B~ (3Q)
|
| : 2 3 18 Lipschitz.
For the following assumptions, we shall rest
two physically determined constants, i.e.
*
(2.4) M, 2q M, M,
* i -
| (e.g., M, ¢ and M l ¥ €; for sone € > 0
vegularity for a, y, b, u, and ¢:
(W) x5 Mhere exast uniform constants such that
*
&l O < 8 \\\x,ql) < a < Kl '
\ Y < - < A (v P ¢
b 8 ¥ ¢(x) ‘\1 '
\ ’ \! -
w\()\.\l‘ { K .
1 1
0
d) |\\|) <« K '
1
&) O b b, t) (case 1
£) u \\.~ll,x1\" < Nl“ ¢ "1“"
2 Let the derivatives of a a(x,c): b
u u. (x,c,q) satisfy
1 1
1, € IR,
y
| a I a ! I 8
| ”-‘ \'\ 1 “ + | & (N 9 ‘: + | :
ax Rl | d¢ R X, X
i \ l : ‘
LI
i i ' B
dy \’ }.‘l‘ \' ) @Y,
+ 2 X, + Xt} g | —"
: 3¢ “tH P T Ing Y

.
& &
n o

the following assumptions:

w1l

rict the variable q.
L]
S ol S I
(see [10])). Assunme
’ ’
1 1,2, q, ¢ R

Bilx,t) ; ¥

y
1 ]\‘\‘ \'
at®,q.}| + | o 2
: qc
(x,49,,9,) | M

(h('

e betweo

tollowing

and




T T

(2.7)

Det ine

(2.8)

Let (p,c), the solution of (1.1)-(1.5), satisfy the following regularity assumptions:

(R) :

(2.9)

In our analysis, we shall use a couple of auxiliary elliptic problems. This

technique was used by Wheeler in [18]). Let p e ¥ be the elliptic projection of p

into N
h

(2.10)

for each

R

In Case 1I, when b = b(x,c,Vp) = b(x,c,px.py). for 9,9, ¢ R,

a) QO ~ b. s b(X.\ll:qj.\h) '

b) b(x,ql.px.py) L

Jb ab db
c) :‘; (x'\]11\121\13)‘ + l:);;x (x:qllq‘?,\l})‘ s ‘a—p’; (x'qqu2'q3)l
-
v 12 (xiq a0 | s M
) . l - 3 s
Vo
ol vl : 1 2P TE™ s
W ((a,b) :X) ¥ wlap)

ac
Cl) ”&‘” : —i- < K‘ 3
AR Ll , o
TR Y LY (J:H)
b) ”P” a + 3 < K. &
L™ (a;6%) et I B
; LT (J;H)
RIS RIS ! ) A
of Hell w5 * 5 Ul3e ] <k, for some € >0,
L (J:;HY) ' Jte i 2 2 -
Lo (38 ) L7 (03WY)
a‘] '
a el T T‘*':’ 2%
L (\ . [‘ (J,‘w:)
2 3
J e
e) & % Jf a2 < K,
:‘t‘ .\fh &
w 1 o~
L (J:R ) | 8 (J;Hl\

h

defined by
(J('.«‘(-.t“\'}“.\'v) (a(-,c(*,t))Vp,Wv)
tat-;cl« )iyl clt))Vg,Vv) ; ve N ,

t € J, where

-y -




[ (2.11) - _" (plx,t) = pix,t))dx = 0, for wach t € J ,

' ind where (p,c) 1s the solution of (1.1)-(1.5). The restrictions (S) imply the

tollowing result [7,18].

Lemma 2.1: There exists a constant Ky = K§(>I..|..K\,K1.K‘) such that for each
. — - L .-
L
. 12) I T SR le 2 =B || b o« nSel o+ )22y
(2.12 e = pll + nlivte - p)] ’t . boUiell, + H sl

For Case II, let \ > 0 be taken sufficiently large that the bilinear form

B(;l.v,‘v (h(x‘.\'l‘\\'ul.\'&,‘) + (u(c,\'}‘,"\'vl.;\‘ ¢ \(L“l.;,\

1 . < ; ay
oercive over H (R). Then let c € .‘.’} be the elliptic projection of ¢ 1into
2 \
j
defined by
- dc X
2.13) B(c,w) = B(c,w) - (v ol w) + X(c,w), we M ,
< 18}
r each t € J. For Case I, where b B, ), the coefficients Dbi(c,Vp) in By, ,¥.,)
L i -
are replaced by b(t). Then, as in [|7,18] we can obtain the followina lemma.
Lemma 2.2: There exists a const: . = K. (W Cn e K, 2 Ko oD such ti to
F Lemma 2.2 lhere exist X < tant }\-l }\4(\ 'b"\'\\'l\l'l\.‘,' 1) ich that fm
P
¥ L;
g ) \ s
| (¢ < At/ | | SC ik
1) C=Ell 5 + I K h {llel tis) Il s
! 2 D it “ 4 | 2 N .A.‘t |
L (J;H ) 2 L e S 2
L (J:H ) L (J:H )
i e = <l < k.0F el :
’ o« p. 4 ! x
L (J;L ) L (J;H)
veo also make the assumptions on ‘u‘,'h}, 1.\'h‘, ¢, and p that there exists a
‘onstant K_ such that
\ - ' ‘n\. ) e
lvpll v S ' ”\_}; B8
i ” o at ! | a 1 ot i
3 L {J:L ) p 1 L (J;W ) -\ 1
L O rH ) « A 3
\
y 3¢
i - N
Tt i S
L™ CJeW )




Sufficient conditions for (2.15) can be found, as in [6] and [18]). Finally, as 1in

[2,6,7), we can obtain the following lemma.

Lemma 2.3: There exists a constant K , depending upon KU' KI' and K such

L] -
that
.\2;“ }_":é'
(2.16) : ,!’ bR < K
fae~ ! " 1 ae”! y B
L R L (J:H )

The continuous time approximation of (1.1)-(1.5) canr be defined as follows: let

Py [0.T] =+ .‘u‘h, the approximation for p, and C : [0,T] - .\.‘h, the approximation

tor ¢, be defined by (supressing the dependence of the coefficients on x)

(217 (a(Cyvp,%W) = (a(C)y(C)Vg,Vv), v € .\’h ’
and

(2.18) (b(t)VC,Vw) + (u(C,VP)VC,w) = =(¢ %%,w), w € .\_'h ‘
with

(2.19) W ()C(+,0),W) = (¢(*)c(+,0),w), we M ,

where ¢ 1s the elliptic projection of ¢ defined in (2.13). In [10] it was shown
that the appropriate assumptions from (R) and (Q) yield:

Case 1: (b = b(x,t))

t = ' : 4 EtS=3
(2.200 mflvee-pfl . L, + lle=-cll . , +n]vic-all , . SR AR
L (J:5) L (L) L (J:L°)
: . , .
Case I1: (b = b(x,c,Vp))
s \ - -1
(2.21)  nllvee-p || , * Jlc=el . + hllvic- ol | . S K (R 4+ hT )
L (J;:L) L {J:L ) L (Jeli ) F
1 n
Let 4t > 0, N = T/At € Z, and t = oAt, O € R. Also let v ;“(x‘ ;\x,t”\,
+1
and dt;n wn - !‘n‘ i3 A

In [10], the following discrete time approximation with discretization error of
the order At was analyzed and an extrapolated coefficient Crank-Nicolson-calerkin
. 3

scheme was stated to have (At)T  time discretization error. Dencte the approximation

of p by W : (0 Corbonsaupt, = B} = N and the approximation of « by
1




e

{0 S iy r} » M Assuming that 2 and W' are known, we determine

y : ! " i I e o ) »
(2.2: Iy X1 # (b(t Y VZ + IX) -(ul(2 ,VW ) Vi R Y € M

(3518 |
2
: n+l _n+) Bl o X S i
a.24 (a (s VW Vy) (a(: )y (2 ) Vg, V¥, VS R
: ‘ :
3 wWe not that the coefficient matrix arising from the algebraic (2. ) with
symmetric.  However, in many problems, the transport term is large compared #
g
to the diffustion term and i1t may be numerically advantageous to use (2.22) with g
ven thouah the coefficilent matrix 1S no longer symmetric. 'he remainder ot tl
\per w onsider the case ) s
wfitl Sk sy e
ince W does not appear in (2.22), we can separate (2.22) and (2.24) by
n+l
first solving (2.22) at tim t and using that solution in the coefticirents fox
, i : n+l G e
he solution of (2.24) at the time . In this way we have uncoupled (2.22) and
1) and now must only solve two separate linear systems. this greatly reduces the
>t ur problem and, correspondinaly, the work needed to obtain a solution. ¥
&
¢

In the physical problem which motivates our consideration of 1. 2)=11.5); the

ntl
pressure is much smoother in time than the concentration c¢. Thus W fron ¢
&
. : : n . : ¥
1) does not differ radically from the W determined at the previous time level .  {
¢
rhis motivates various modifications of (2.22)-(2.24) where eguatlion (2.24) is solved 5
)
t‘w
nly at every K time step with X determined from the relative smoothnesses 5
b
time of p and ¢. We shall consider several of these modaitications.
5
Let \t kAt with X to be chosen later in different ways. dJonsidel A, —tame &
\ 1

levels, which coincide with At=time levels but have separation A, instead ot At
- - .

et 1 D (¢,p) be a particular ratio of the norms which enter i1nto tae truncation
ws for various derivatives of ¢ and p. (We shall desceribe this ratio in more I
i x 3 vyl 1 \ i
eta )Y o xamples later !
{

BRSPS

‘_._
i
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One modification of (2.22)-(2.24) is to choose k such that

* £
g
* ...l !
(2.25) k ¥ (D) £
¢
Then i
A ! . %
(2.26) AtlD = kAtD = At i
.
£
In this case, letting [n/k]] be the greatest integer less than or equal to n/k, we g
replace (2.22) (e.g. in Case II where b = b(x,c,Vp)) by
R n . [n/kD, . ntl n . In/kl :
(2.27) (v e )+ i® e yvz™ vy = — e, w ™ v, xe Mo . i
1
kK . ! e % .
Then W is determined by (2.24) only at the At1 time levels. The errors made in
*
the coefficients by lagging the pressure in this fashion is O(AtlD ) = O(At).
Another modification which has the same order truncation error, suggested by
; k 5 1 /k1-1 ;
Todd Dupont, is to replace Vwﬂn/ L by VHwnn/k" ) len/k] =5 vw[“ 1 in the
coefficients of (2.27). This linear extrapolation to the midpoint of the current
Atl-time interval would be as easy as (2.27) to implement (once two values at Atl-time
levels have been determined) and probably more accurate (especially for At-time
levels near the upper end of the Atl-time interval) .
A more accurate modification of (2.22) can be defined by evaluating the coefficients
: ! k 3 k 3
b and u 1in (2.27) at appropriate linear extrapolations of the VW  from the two ¥
; ; : +1 ;
previous Atl-tlme levels to the At-time level t' ~. For example, we can write !
: A
n = [n/k] + v/k for some v =20,1,...,k - 1. Then for n > k and v defined above, i
: vV _n . ] . n+1 %
we define EkF to be the linear extrapolation for the time level t from the B
&
L3
values of F at the two previous /\t.1 time levels. Thus for v =0,1,...,k = 1, 1)
H
and 9 = (v + 1)/k, we define t
E
i % !
S (1 4 O)Fﬂ"/kﬂ : OFH“‘k“ 1, >k
(2.28) [','kF 0
e 0 X K
2o i
; [a7F || ; 2 ; .
Then if I——jll < K, we are making an error of 0((/\(‘1) ) by approximating
dt”




Pt ) by & F . This clearly defines k different extrapolations
repeated in sequence between two of the At l—(imv levels.

Using this extrapolation, if we choose X such that

1
* 9
(Ls29) k ® (Ath ) g
then we sce that
.‘ L) 2 )y W
(2.30) (\ll) D X KAEYTD Wl

: K
Clearly (2.29) allows Kk to be chosen quite large and theretore W must be computed
much less trequently than betorve.
With the notation of (2.28), our new modification of (2.22) (in Case 1 when
b b{x,t)) can be described as
ntl
)

ntl N

Vy
K

. 4 1
(2.31) (»‘dt;i",\) ¢ (bt VX ~tu(z B W) 92", %) . Xe M., n>k

ntl o R L) ] IS :
In Case 11, replace b(t Y by bi(# "“k\w ). Again W 15 then determined only

at the At -time levels by (2.24).
1
We also consider another modification of both (2.27) and (2.31). We noted 1in

() that if the arqument corresponding to ¢ in our coefficients satisfies (2.4), then

the coefficients satisfy the bounds in (). Since ¢ satisfies 0 < ¢ < 1 (and
4 n N n :
thus (2.4)) and since 7 is an approximation to ¢ , when evaluating the coefficrents,
.1 LN nh
Lt & 0, we replace the argument for 2 by 0 and 1if Z > 1, we replace the
n o 3 < . : e
argument tor a 5" S s type of truncation of arguments has been discussed

ecartier in [4). The analysis of the error that this truncation causes will be contained

*n In H]\

in the proots of our major results. We shall use the notation u(s VW in

y n : -
{2.27) to note that the 2 araument ot u  has been truncated to lie between 0
and 5% In the same manner, the modification of (2.31) with truncated coofficients

1§ written as

n ntl
)

- . ) il e L R (I o' o
(2 Jd) \\.'\"v XY % (bt i Y

Vi PN -tuls ,E

We note that Crank=Nicolson=Galevrkin methods can be defined as another modificat ton

of (Z4:.32) which will have OLeatY ) time truncation errors. See [6,9,10,106] ton
H' A\l t fn‘!".
Al‘ .
M




1. Approximate Solution ot the Linear Equations by Iteration
In this section we shall present the linear equations arising from (2.32) and
the corresponding (2.24). (We note that by replacing .";‘\‘W“ by \'wu“ ) in the
coetticients of b and u in what follows will yield the linear equations arising
trom (2.27).)  We also present an iterative method for approximating thetir solation.
The conjugate gradient vrocedure presented here provides only one example of
the possible modifications of (2.32) and (2.24) that fall under the analysis given in

the next section.  Any method which provides the norm reduction defined in (hio . tion

will preserve the results of Section 4.
M M

1 : 2 ¢
Let {u.} be a basis tor M and  {y, ) be a basis for N . We then
1 h Vgl h
1=1 1=1
. m m
denote the solution of (2.32) and (2.24) by (3, W), where
M
m ; m
a) 2 = Y :‘_iul. ’
1=]
(3.1)
M,
m J m y
b) ) w Yy , ftor m such that wk € %
=) * 4

We next detine several matricoes and vectors. For Case II let

a) ¢ (‘:‘) ((V““.‘I“i)) ’

13
M M
m m ! 0 m L AR § 3 M. . . .
b) B (8,0) = (b,.(0,0)) = ((h((\ e R ) oS VTR T SRR v £ T 1) S
1) Clu A e T \ § 1 1
Ra=] L=1
M\ M
m m . m ) ) 3 1
o) v (0,0) (u (8 ,0)) L iae ( \ T ,‘-\ \ .‘"\'; YN )Y
L ' 'S0 K \ \ 1 1
=1 (=1
M
1
m . m *
(3.2) a) A(8) (a () (Call ) O,u,) YV ,% )) ,
ap L ® \
t=]
M M
m m : wm " l 1 2
9 i 1 y n x
©) (0) (y (Q)) (ag( ) My YY(( ) @ o) Vg,V )Y,
\ Iy X X 2 XX o
\ l \y l
£} B (b, Vi, V. )Y ,
(8] O 1 1
a) A a Vy Vo )
1 ~ (La, ; .
|
e ——
i e .




for 1,3 w 1. 'Ml and a,B = 1,... M. The matrices for Case 1 are cor respondingly
simpler. Here b) and a() can be chosen in a very arbitrary way. A aovod choice
(

0 . !
might be b b(x,cu(x),\'w ) and ao = .1(x,co(x)) or, 1f average values ¢ and
(9

0

VP are more or less known, use these values in the coefficients to replace €4 and VW
We can write (2.32) and (2.24) in the form

+ }
EMees e o 5w+ e R - e

-atB" (£, g™ + atu" (€, ", n>1,
and for m such that wm/k € 2,
(3.4) A"y = TNE) .
We shall not solve (3.3) and (3.4) exactly; instead we shall use a pre-determined
number ot preconditioned conjugate gradient. [1,5,6,8,9) iterations to advance the
solution one time step. The preconditioning matrices will be chosen to be independent

of n. Specifically, we shall use
3. 5 i ¢ + AtB
(3.9) o 0

and '\U for the preconditioners for (3.3) and (3.4) respectively.

Denote by

M
. m
a) C = >‘ a.y, and
e it
i=1
(3.0)
M

b) l‘m = y BTUJi, where m/k € =2 ,
i=1

" i m m i ;
the approximations to 2 and W , respectively, produced by only approximately solving

3 o 0 Q0 \ ;
(3.3) and (3.4). A starting procedure for obtaining C and P will be discussed

. v g g n+l
later. Assuming that these quantities are known, we shall find « (and thus
n+l . St - i : y : _n+l ¢
( ) using a preconditioned conjugate gradient iteration to approximate ¢ -
i R ol i
from (3.3). We shall use different initial guesses for { = for n 0 and
for n > 1. We shall use linear extrapolation for n > 1. Specifically, we initializc

our iteration for (3.3) as follows:

-] 3=




n O: X Q
O O
a)
ntl 0n n-1
n Y e 1 - O '
Q0 Q
(3.7)
ntl n+l
b n ) ¢ « 8 s , 8
) ? l\\ ll\ 00 00
i
! n n n n n
| 1. (\x,b‘\xu + AtB (a,B8)a = AtU (a,B)a
|
Then, using the initialization Xy Gy and from (3.7), for 3 Loy es L
where the number of 1terations 1 will be chosen later, independently of n, ot
3 =]
—(l.) o (P75 [
&) K, x, + 0 .8, where 0 — . d Je .
1+1 1 1) 1 n &
(s ., L (a,R)s8.)
| ] e
j (3.8) b)) q q, +0_.L"a,8)s, .
)+1 ) j j
¢ A TR
=] Q0 K Kl \
c) 8, L a. t 6,.8., where @, L W .2 Wl ¢ W "
J*l Q' Mkl p 23 “-l )
’ . L .
0 \l‘l l) &
where (-, ) 1s the Euclidean inner product. Finally, set
e
ntl n
(3.9) a a o+ X .
S
1
In a similar fashion, we define the iterative approximation ot (3.4) as tollows:
> =J¢ Q0
m=1: X X B %
1) QO O
g 2k 0
m > a 280 - g
! 0 0 ¥ .
(3.10)
> (m+1)k (m+ 1)K
m O: q « S A s
(4] Q O 0 00
= mk mk
N (x. =T ()
O
Using (3.10) as an initialization ftor Xy {;U, and :il), for 3 Ledy vunaR, = Ly
where the number of iterations « will be chosen later, independently ot m o and
q ) n
determine xj’l' \"\Ol' and ::‘” from (3.8) with l.\\ and L (@) everywhoere
mk :
replaced by A and A7 (a)  respectively. Finally set

(3.11)

LAmb Yk
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Clearly since the two 1terations are inte: related,

1- .3 % kK k k¢l 2k 2k 2k+1
3 »8 8 ; @ ,0 ,Q b g . B O £ &
z -n+l o . . n
We define a to be the solution of (3.3) with replaced by o , Loe.,
-nt+l
let & satisty
t ~-ntl n 1 1 n 1
(3.12) LY@ @™ - a™ = -atB" (0, B)a™ + AtU™ (0, 8)a”, n o~ 0
- mk 4 "
siumilarly, we define R to be the solution of
mk -mk mk
§13:13) A () 2 P (a), m > ]
[t 1s well known [1,¢ »8] that there exist constants b o‘l S0 and 0 - P, < 1
such that
1 1 i
0 F L. i 0 2 ol 0 i
&) L™ (o) “ a3 |l .\llh. W@ -anl ,
e o
1 1
1 2 .n+l nt+l n 2 ,=n+l n n~1
b G = 1 ,\,Hx. () © (& - 2a a 3l ; e
€ o
3.14)
( i 1 |
K e Kk k 2=k 0
e} A" (@) “ (B - 80y || o |AT ()< (BT - g Vo asd
- & N -
1 1
 _mk ) -mk mk mk 2  =mk tm=1) & m-2)k
a) AT () B ) H . ) ‘”,\ ()" (B 28 ;\( i )H b m 2
where the subscript e indicates the Buclidean norm of the vector. Given a, and b
{ {
there exist constants S '.’,. Wy and u"l such that
{ i {
T n M
XL X)
&) © ¥ o SRS V., 0OF xe€e R ] +
Q0 T 1
X L X
(8
(3.15)
T mk M
v ‘ ‘\
By O Vo : ‘A‘,l."‘(‘k“)'y . li‘l ’ 0#ye€e R '
1\
¥ '\OS

where the constants are

coefficients

In

(2.

s )

independent «

Letting

't h

and depend only on the bounds tor

the order of computation must be
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e




1
2
, 1= (/)
3 a) Ql - “““‘”""‘—I '
2
! 1 (WO/WI)
] (3.16)
| 1
f’ W, N
L b) Q. = _.A...(..W.Q./j‘.l._
! 2 l ’
Sy
I8 (WO/U'I)
i
we know from [1,5,6,8] that “i < ZQi o= L2, T & >0  and
(3:17) K. > 8§ log l“-/1oq’l— 2 [ LI
s At 0. ’ ’ '’
i
then
§ .
(3.18) Oi~2(z\t) . Y = .2 .
Note that
Ml
-n+l 3 -nt+l
a) «( = a, A,
5 i i
1=1
(3.19) and
M2
-mk -mk
By Foow ) W,
: R
i=1
satisfy, respectively, for Case I,
=fEel n * )
a) 0 S—=S 0 + we™hHve™ oo = c@ie™ v P e, x€ M .,
At K h
: (3.20) and, for (n+l)/k € %2,
|
| *n+ -n+ L% ot ’
i b) (a(c " 1)VPn I,V\/) = (a(c " 1)\(&‘ . ]\\'u,\'\.'?. y € Ny
We note that for n = 0,1,...,N we have
[U " it C(x) 0 %
*n
( (x) x‘n(x), 3 © \‘n(\) L s
] 1, it e} > 1,
=1G=- :;
A




80 that, since 0O < ¢ < 1,

f n Hed o |
L 5 g™ B o - | - l

At this point we shall define some special norms and semi-norms for om analysis.

'\‘(
a) Ix IS (®xeX)
-
¢ 0 . k
. ‘(l‘(t ) Vx.VX) ., for case 1 ,
(3.23) bh) Ix
n (o VS R, Ve
b {(l‘(\' ,."k\'l‘ Y%, Vx) ., for case 11 ,
j< P (I
&) [ X 5 (atC ). V) .
a
R \ \ I« |} 1. H | LT ]
By (d.2), bt 4168 18 equivalent to |} .|| and H H and || |l are uniformly
~ n n
a b
mivalent to v.|| for all n.
We note that in terms of this norm-notation, (2.14) and the triangle 1nequalia ty
\ .(“ld
1
=] 1 21 =1 1
1) €& e ) s ) !:\ - H
~ QO
b
1
% \_u“ ' (\(\“’\*'; 1
) \ QL { RS o '
b
1
- 1 ) 1
o b \_nol \‘n 1’ v (At) 2 -n+1 \‘n 1?:
\ bn
1
P 21 «2 N
o) ;n'.\ ¢ + {AL) ";\\ C “ » 1 I 5
1 ¥ eon
1)
-X X =k )
e) |lp" = p7| o |Ip r | : .
K . N
a a
; =mk mk - mk m-1)Kk (m=2)K
a) ||F = p | < ol |lP apt P :
mk g RN
: a
where we define
a3 8¢ n \‘n'l ¢ n :
\ -
(3.2%) by §°c" \'"” ac? ikl
o) ot ! < X
l 1 = «‘! \
l
.
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The convergence results ot Section 4 depend only upon the norm reductions (3.249)
and not upon the particular 1terative method used to achieve these norm reductions.
: 0 0 :
We shall now define a starting procedure to obtain ¢ and P . First we must
)

L
compute a O which satisties

0 -0

r Al
(3.20) € =o | £ B AR + taR)*} .

]l

One way to obtain such an estaimate 1s to factor one additional matrix and solve (2.13)
-\ 2

directly. Once ( 1s obtained, we can use the factored AO from (3.2.9), a start-

NG guess of x| ¢ (Or anything closer) in (3.10.a) and iterate the conjugate

gradient procedure  x tames where « satisfies (3.17) with § = 1  to obtain

4 ) -0
3.27) [p” - P < K. (At) .
' I 0 1o

ua
Remark: Although (3.27) will retain the proper convergence rates through all

the analysis to follow, for better practical results, one should iterate «k times

where «  satisfies (3.17) with & 2  to obtain
S | ‘\\ _Y‘\ >
(3.28 (e~ - P || 5 L K@AH©
a
18-

P e -




4. A Priorl bBrror Bstimates

In this section we obtain a priori bounds for the errors ¢ = « and P = p
tor the procedures defined in Section 3. The first result, Theorem 4.1, states that

| s ! Q 0 1 K ;
given a starting procedure for obtaining C , P, ¢, and P, we obtain optimal

order HVl and 1" error estimates if the iterative process reduces the error in
the solution of the algebraic problems by a fixed factor (independent of n, h, and
At). Thus we need only a fixed number ot i1terations of both the concentration and
pressure egquations at the appropriate time steps. We emphasize that the ellaptic
problem must be approximately solved only at every kth time step where Kk is
determined by (2.29) and the relative smoothnesses of ¢ and p. Corollary 4.2
extends the optimal order error results of Theorem 4.1 to the physical case where

! b(x) depends solely on x Dby replacing the iteration in the eguations for the

meentration by a simple backsolve at each time step. Theorem 4.3, the third result,

itates that, in Case II where b b(x,c,VP), by iterating
E -y §
‘ X log (At) ~ /log (\.‘1\
: times on the equations for concentration at each time step and a fixed number of times

tor the equations for pressure, we can still obtain quasi-optimal L7 error estimates.
1f a space of plecewise polynomials of one higher degree is used for the pressure

Y
than for the concentration, optimal order L estimates are obtained. Corollary 4.4

states that by updating the preconditioning matrix L,  from (3.5) every (At)
L

time steps, two iterations of the equations for concentration will suffice to obtain

our results. Finally extensions to methods with time truncation errors ot order

3

AO((AL)YT) are discussed briefly.

G T
Theorem 4.1: Let (c:p) satisfy (A4)=(1.5) amy (€ P ) satisty (3.20),

(3.26), and (3.27) and let k be fixed as in (2.29). 1f we obtain norm reductions

in (3.24) of the form
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|
?.
i
£
f

1
2 1
a) pl’ < (At) bof o g
’ ‘b
. ! 1 " - n
b) pi < mxn{é—, ﬁ -.—]} for @ . AL o
(b
(4.0) lT K
e} P, < tae)" fer B ,
1
a, 2
1 * mk
d) p: = ‘i-—s -T] for P ’ m t 2
t"
then there exist positive constants Kll = K“(\,a..b.,v.,l’(i,i <~ 10) h\\ and 0
such that, if At < ¢ and h < h_,
- Q = 0
) “ N-l n hl
sup{|[c - c¢||® + n|lc- c“I} x 3 Hd( (c - o) || At
n n=Q
4.1)
2r 2s 2r+s-o 2 *2
< K. ih + h*% + pt (O(M) + D (At 14
= Sy 1
where D 1S given 1in (4.30).
n n - 1§ ~N " ;
Proof: Let T =C - &t and n" - p" = P . We shall first obtain an estimate
on Vn at the ‘\tl‘fime levels in terms of & and the error induced at cach time
} level from the iterative approximation to (3.4). Subtract (2.10) from (3.20.b) to
F obtain at each .\tl-time level,
|-
[ *mk, ., mk mk *mk cmk
l (a(C YVn o, Vy) = (la(c ) - a(C )IVp T, Vy)
|
| *mk *mk mk mk, o
| (4.2) v (la(c VY (C } = &afe Jyte )Y19g,Vy)
L *mk mk -mk ;
t (a(C YV (p =By N y € .\h
mk . h *mk gri
Let y =n € .\h. Since C satisfies (3.21) and thus (2.4), we can use (2.%5),
(2.14), (2.15), (3.22), and (3.23) to obtain
i.mkj 2 .mk mk “mk | .mk 1K
™02 < ml ™ I O™ o Ry [y e |
a L
mk ‘mk mk | . mk 11 =mk mk m}
+ .‘MKl H\'\’H \_i ”\‘ = ¢ “ * ”:- IB \]!\‘ “ « || P - P mi\ no mi
(d4.3) L a a
3 mkg 2 mk | 21 1 =mKk mk (2 i
=~ qg " mk Klt“;l:‘ Wo*B 0w 3 ’ e mk
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We then see that

| mk i mk r ,||:mk mk
r + + 2{|F - P s
(4.4) Ul S k14{||~ [| +n) | e
a a
" B¢ Lot I
We next consider the concentration equations. Recall that dtc = l»«wa-ﬁk'. Next

subtract (2.13) from (3.20.a) to obtain for n=0,1,...,8 - 1,

s N1 1
1 n+l_ n+l RIS ~n . n+!
(»'d‘:',,\) + (b Vg L UX) - [»‘ [--‘ == d. e J\? # 1lile = @)

)
at t 'X
+ 4 “n+ *
(4.5) + ([u(cn l,vpn l).vcn 1 - u(C n,E:VPn)-an],\)
n+l =n+l
c & n+l +1 =nhl
+ ‘Lc FM*'G}—“' ' \‘ + (b(t )\‘(Cn = € Y00 . \ € ,\.’h

As 1n [0,9], 1n order to most efficiently make use of the starting procedures (3.7.a)

ot the conjugate gradient i1teration, we need to use the test function

.

‘ n+l n 7 ¢
| \ - = Atdtg in (4.5). Then we see that with a slight rearrangenment,

the lett side of (4.5) becomes

S ———————

At(cdt;n.dtcn) " Q; (bn‘lv(;n*l_ ;n)'th;n - % (bn+lv\nn¢l Oln\,Y(;n‘l- ;n“
(4.0) =
- S 2 1 +1 )2 -
S R e S (P T Y [ R T [
: b - b b

where we have used the norms and semi-norms defined in (3.23). Using techniques like
those used in obtaining (4.4), we sum the first two terms on the right of (4.5)
from n =0 to n=1{-1 and use (2.14) to see that

=1 . o N
‘ d¢c “n - 'll n ‘
| ’c[.‘ = d.cl # Ae = ) oAt
| Lo (P15 - 2 + 26 - @™ bl
(4.7)
1 e ny 2 [ or Il ‘:clis ‘l
< T a2 ae o xl,‘{h-- LS w3} .
n-Q : at” 2 2
L (J;L )

Next, the third term on the right of (4.5 can be summed and split as follows:

L=1
n+l . n+l sndl ! LV !
| Y ([u(c Vp ) +Ve - u(c ".fVYF"\~\c“I.J1:”‘\z‘
n=0 K
o ] +1 *
. . n o T g5 Vs o T8 iRt
Ll <Y e e ) - (e n.f;\v‘>l-\c Ted 2™ A
n=u t
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‘ v 1T e e ve™ ee™ - Mg Mo I & T,
n-1 i
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We note that from (2.5.f) and (2.16), we can bound the second term on the right of

(4.8) by "

s Lo I 0% el o2 bt |

Ta 2 4 l\l( B - Kl6 g + (At) S-EH } é

P b L= n’) ;

(4.9) ; i
g=])

1 np2 a

e T llag”2 ae E
n=1

We shall now state an induction hypothesis. Assume that for m = 0,1,...,[2 - 1/k], ;

(11) oo™ |, < 45 ;
¥
L ’
where K5 is given by (2.15). Clearly from (2.15) and (3.27) we know that (Il) is %
satisfied for m = 0. Then from (2.28), we see that under (Il), ;
v__mk i
(4.10) ”E’kVP R 4K, m=1,2,...,12-1/k3 !
L %
for use in (4.9). We next bound the first term on the right of (4.8) as follows: :
vy n+l _ n+l n+l _-n+l n+l n
T o< | ¥ (luteh ,upT ) - ute LU )1-ve a5 At
} 1 it
I n=0
L-1 i
+ ~n+ + ~ + ~ :
(4.11) e 1T ™™ - uEe™hEEY + ue” tEvE")
n=0 &
nEl v . n n+l V. N At oVoon ~n+1 n 5 s
- ~ = . = + s i
w(c™ L E VPN + ulc™ T E VR - u(c T,EVP)]Ve AL ) |at 2,40, :
’ We then use (2.14) and (2.16) to bound the second term on the right of (4.11). Note é
that 3
2~12 2 -1 2
- ) 219 2 np2 -
Ty < x”{mcl)‘ll —% + 0 152 +H % 3 el At} 4
\ W 5 2 ® 2 =0 ; L3
(4.12) Lo (Jz87) L (3L ) é
| &
| L-1 [2-1/k] k
| n; 2 mk 2 ‘
o L L U A S (L1l R U ¢
| 16 = t ¢ 18
i n=0 m=0 g

? We next use summation by parts to treat the first term on the right of (4.11). Note

that
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0 it w=L i : { iy i
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Lot 1 1 1 |
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| L . { >l‘ ™ Al
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du.
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We note that since 53" = alle), for i = 1,2, we have
3q,
-1 1 5
ta n n ~11 n |
R e SRR 8 Bl ,
IR 17 1\q { 1 (a(c YV (1 p) \dtx Pl e
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+

We next use (2.3), (2.12), and (2.14) to bound the first term on the right of (4.14),

=1

N~ |

n=1

(4.15)
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VAR = ) sVte = el 8 )

(@alcHV(p - p) *V(c - ¢,z | + |@eHve - p) <%,z ] .

+ > 4 -

(d(cn 1)\‘(}‘ 2 Nn l.\7dt Io \‘)n'in”“
reA I = TPkl ~ B mah

Kig L Ive-p" | lva - 7| 12" _at
n=1 I
' + 3 n
X Sty

s Y h "] at

Y n=1

= t 4 dr+2s=¢
b I 1 -

Kyy 178t + K, |
n=1

nt+l | n+l, | pntl

ntl. _ SERE o y 5 S
YV (p - p) Va, (c = ¢) ,z )at]

+

(a (¢

Q ol
! . |+ [tate*19tp = piive,z )|

i

-




The third and fifth terms on the right of (4.14) can be bounded in a similar fashion

OSSR T ST S e, e

] to yield
1 ~. 1 ~ 0 2 =& - A 1
latcHv - pytvie - 1,0 + [acchve - prve - o4eh| ;
(4.16)
1,42 012 , ,,2r+2s-6 k
b ¥
¥
We integrate by parts and use (2.12) and (2.15) to bound the second term on the right i
of (4.14). Denote a(cn) by an in what follows.
2-1 £
1] @ v - 5™ va, e At :
£ !
n=1
2-1
~ n+ +1 b
= - I (-5 e " hat
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Note that by (2.9), z 1 n X Kg. In order to bound the second term on the right of I
n=0 &
(4.17) we shall need to introduce an auxiliary problem to perform a Nitsche 1lift [14,10]. E
Let Y € HZ(Q) be the solution of the elliptic problem é
: i
n n b
a) -Vela(x,c)W] + vy =0, x€ R, t € [0,T] ; &
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b) al(c) 2 ¥ , x € 3Q , 2
av £
where E
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S 2 1/2 . .
For a definition of H " (92) and its norm |-| see [13]. Note that since

A2
de «© Q24 €
\f € L (J;H (2)), we have
(4.21) e || : i S
@ 2+ o
Lo @t/ o)y A

Then under the smoothness assumptions on a and ¢, we use (S) and Lemma 2.2 of [3)

to obtain
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(4.22) s kolle lely .
R e M gy W3

< K g .
<k llell,
From (4.19) we see that for any V € ul(n),

(4.23) (ac™mw,w + oy = W, n=1,2,...,N .

~ n+
We then use V = (p - p)n ] in (4.23) and (2.10) to see that from (4.17),
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We then use the approximability assumption on Nh like (2.2), (2.12) and (4.22) to

obtain
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Similar estimates yield the bounds

0 1
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Next, for the vector-valued function

2 1
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! i=1 0
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u = u(x,c,q)

1

: 2 x [0,1] X R ->.R2,

du, 1
5o (x.8c” * 1 - O)e”
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l‘ui n n-1
Se (x,6c + (1 - 8)c v
Y = 2

Using (4.27), we treat the second term in (4.13) as follows:
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Then using the same techniques as above, if

3 k)
(4.29)  |lell e lell as vy . +lell a % Tk
we can obtain
2s 2r+2s-6 s Ry
(4.30) P2 K (B + 1 + 3 e H]At} ;

n=1
We next obtain bounds for the last two terms on the right side of (4.5) using (3.24).
; Since different starting procedures were used in the conjugate gradient iteration
b to obtain Cl and c” for n > 2, we shall estimate each case separately. From
(3.24.a) we see that for n = 0,
1l

Ch = C

Hie==

,Atdtco) ¥ (b(tl)V(cl-El),VAtdtco)l

| A

1 _ -1 0 1_ -1 0
lle” = el llaz"ll, = llem = |l Jac [} jae
b b
1 1
vt fa 2j) (.0 0 2(, .0
ojtilecT]l, + (ar)lsc l]bo}{lldtc I, + e flacll )

1
2
l

(4.31)
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0 0
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= 1
dc 0 2 0
1B el ¢ eo®le®l )
L (J;H)

+

We then note that in order to obtain a (At)2 term, we need, for n = 0,

(4.32) o

to obtain

le - ch.a g + aewiehve! - & ,va 0|
(4.33)
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Similarly, if for n > 1,
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’ 2~-112
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b ot © 1
L (J;H)
Combining the above estimates, we obtain
-1 -1
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where in this case
*2 8 .
(4.36) P bl 5 gl .
W (J:H) W_(J:iH)
is to be used in (2.29) to determine k given At. We next consider the precondi- H

tioned conjugate gradient iteration on the pressure equations to treat the last term

on the right of (4.35). From (3.23), (3.24), and (4.4), with m > 2, we see that
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(4.37)

We then see

(4.38)

then

(4.39)

A similar re

(4.40)

In order to
first shift
telescoping

telescoping

1 1
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1
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sult will hold for m = 1 if we iterate sufficiently many times that

1

Pe < (At)2

5 m=1 .

- ; : 1
apply a discrete version of the Gronwall Lemma in the H norm, we must

the coefficients in the third term on the right of (4.6) to obtain a

3

sum in the II-H semi-norm and then introduce an L~ term into the

sum to obtain H terms. Note that
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+ (b e™Y) - be™ e, vwe™

He™I2 = he™l
b b

n-1

(4.41)

n2 2
— ”C “bn_l + deAt ”('nnl 4

Also note that

e ™2 - 112 = 2aea, e+ a0l
(4.42)
<k flae™2 v aex NP
We now sum (4.41) and (4.42) from n =0 to n = &, add the results to (4.35), use
(3.26), (4.39) and (4.40), and apply a version of the discrete Gronwall Lemma in the

[ + ll-“b norm (equivalent to the u' norm), to obtain
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2 p 2
D tacllac”l? + an?llag™iZ) « et
(4.43) P 4 Lol
< K {hzr 5 hzs 5 hpr;gs-« ; (Ar)g 5 (Atl)dp*z} '

= a7

; " 2 ny2
Since (4.43) holds for any ¢ = 0,...,N, we can replace ”c ‘ll by sup IIC “1-
0<n<N

Then we see from (2.3), (2.15), (4.4), (4.37) and (4.43) that

o™ | < Q™ dlvsll < kg K ™)
W w © Lo - p Q
L L L o(O:L )
(4.44) < K Koh_lklhr v (ml)""n* e B sl R iy
< Kg *+ O L T VI (At.l)zn*l ‘
2. 1 te
Then if r,s > 2, At = (At‘)'n , and At < h for € > 0, we see that for At

and h sufficiently small our induction hypothesis wil)l be satisfied for all

m < {N/k). Finally (2.14), (4.43), and the trianale inequality yield (4.1), the desired

result.

o R G, R S ; v
We note that if we replaced \.‘-kl‘ in the coefficient u in (3.20.a) by
n/k /K X ; ) s .

Vi‘l 7kl or VI-‘.I‘"" v (as in (2.27) and the discussion following (2.27)) we would
Q;\ 'l ,.,‘ "\ n : b

replace the term D (At l\ in (4.1) by D (.\t‘) where D is slightly difterent

- )=




L]
than D . However, the use of the preconditioned conjugate gradient 1teration with
& : !
3°p [{a<cil
—};” and ”"”‘,h ’
At H
1

N 1
) (J;Hll L (J:H )

this modification would still involve bounds on

* R
Since these terms would probably dominate both D and D , the ability to choose

a much larger k and thus solve (3.20.b) much less frequently would motivate the
use of the ditferent extrapolations defined in (2.28). However, the repeated evalua-
tion of the coefficients u (and b 1in Case 11) is often computationally expensive.
By considering the u appearing in (1.1) and (1.2) as a separate variable to be
determined from the elliptic equation (1.2) by a mixed method, we could possibly
extrapolate the variable u instead of just Vp to achieve both the accuracy and
the computational efficiency of not having to evaluate a new coefficient at cach At~

time step. This idea is being considered elsewhere.

We note that it b = b(x) only, then the L defined in (3.3) will be independent
of t and n. In this case L ¢® + AtB will be factored and the preconditioned
conjugate Ggradient iteration for the parabolic equation will be replaced at cach step
by a simple back-solve of the factored 1. The iteration will still be used for the
elliptic equations. We obtain the following simplification of Theorem 4.1.

Corollary 4.2: Assume b = b(x) and k is fixed as in (2.29). 1f we obtain

norm reductions in (3.24) (¢) and (d) of the form

1
2 kK
a) p, < (At) for P , and
2 1
a -
* . m-K
B 5 e 13 {*] for P ' w2,

L

then there exist positive constants 1\"m = K“‘(\,n'.b*,«‘,l(‘.,\ S o s h(\' and T .

such that, if At - ‘n and h < h_,

Y

sup { [[¢ = \'H" ¢ nile - c”"l\‘ ) “d' (c - ¢)
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where

- & ~
w;(a;u ) W (JiH7)

We next consider the version of (4.5) for Case 11, where b = b(x,t) 18 replaced

by b = b(x,c,Vp). 1In this case (4.5) 1s replaced by

( o AFL
* ) RIS ~ ~ +1
@a ") + e N E ™Y vy = lv [Li""'d “"]o\] s G- 0
t k at t )
. n+ "N o ~n+l
e (™™ - ope™, B vt v
f (4.46)
| + o *
, s (tale™ 2, w05 ™ L wic “,H:vr"v~vc",x)
| n+l -n+l &
5 - Nt n+1l -n+l ! ¥
' 0= 5;5-—-\, x) + (b(C ",a:\r‘)V(c - C ), Xxe M
+
A test function of the form L" k5 L" 1s required to make most efficient use of the

iterative procedure defined in Section 2. However, this choice of test function

causes serious problems in the treatment of the third term on the right of (4.40).
Standard techniques for treating a term of this type like summation by parts in time
(see [6,9]) will not work due to the inability to treat the resulting terms of the form

t-1
+ - -
(™, op™ ) - pic™ 9% - i, N - B, IR R Y 1 ve, e, oMy A
n:O k k t

For this reason, in the proof of the following result, we shall use a test tunction

of the form x = cn+1.

% '
| Theorem 4.3: Let b = b(x,c,Vp) and ", p™ satisfy (3.20) (with b .

M Vo . ; | 5
replaced by b(C ",F VP)), (3.26) (with l,-lll replaced by ||+||), and (3.27) and

let k be fixed as in (2.29). If we obtain norm reductions in (3.24) of the form

1
a) p! < 1 4t for n > 1,

1
I 1
2 K
b) o, < (At) for b,
= 1
2
l li*
<) ) P l‘,‘ > for P ’ m> 2.,
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then there exist positive constants Ky = K49(X,a., b.,v.,Ki,i < 10) such that, if

At « 1, and h < ho.
- ]

4.4 sup {|lc- c||® + nllc- cllf} < x“{h‘?r R T (At1)40 %)

n

t

’

where D is given by (4.36).
Proof: We shall use the same notation as in the proof of Theorem 4.1. We obtain

+ .
(4.4) just as before and then consider (4.46). With X = Cn 1, the left hand side

ot (4.46) becomes

2 2 2
1 n+l n n+l
sae (€™l = el e

(4.48)
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We bound the first and second terms on the right of (4.46) as follows
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2
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(4.49)
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2
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We then bound the third and fourth terms on the right of (4.46) by

* & L 1 2
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Note we have used our induction hypothesis (I1) in (4.50) as betore. We next use (3,40

to bound the last two terms on the right of (4.40). For n >~ 0, wo multiply by At

and obtain
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Then 1f we 1terate sufficiently many times that
(4.52) g < % (At)
’ 1 s g
we see that (4.51) 1s bounded by
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114t . 2 2 2 . 2
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We then sum the above 1nequalities on n, combine the results, and let D be as
|
i in (4.36) to obtain
i
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The rest of the proot follows as in the proof of Theorem 4.1.
! -1/
We note that (see [6]) 1f we update the preconditionina matrix, each (At) -t ime

steps, we obtain a norm reduction of O(vAt)  with one iteration and O(At) with two.

I
| Using this 1dea we obtain the followina corollary to Theorem 4. 3.
~ tl‘ '0" . Ny \ . AR N
Corollary 4.4: lLet (C +P ) satisfy (3.20);, (3.26) and (3.27) as in Theorem 4.3.
= Be N =373 \
By updatina 1 a4 R at each (At) ~time steps, we obtain hypothesis a) of

| Theorem 4.3 with only two 1terations of (3.7)= (3.9 per time step
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Using techniques like those above we can obtain corresponding results for the

Crank-Nicolson-Galerkin approximations to (1.1)-(1.5). These methods do not have the

same stability properties as the methods
(4.55) At

Under the assumption (4.55) and slightly

analyzed above unless we make a restriction like

stronger smocthness assumptions on p and ¢

’

A
we would obtain the same types of results as above with (At)” replaced by (At)4.

Without (4.55), we would need to iterate more to obtain the necessary norm reductions

from (3.24). See [6] for particulars.
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5. Computational Considerations

In this section we shall consider some rough operation counts to estimate the
computational complexity of the methods presented here. We shall see that the precondi-
tioned conjugate gradient iterative methods presented allow us to obtain near optimal
order work estimates. Thus these methods are very efficient computationally.

Recall that we have two space variables (d = 2). George [11] has shown in socme

special cases that with Ml = Ml(h) = dim Mh, the procedure of setting up and factoring

)

- - 3/ 2 : » -
P 2 YH“ requires O(Ml’ ) operations and that the solution of (3.3), given the

factorization, requires O(M1 log M. ) operations. Similarly, the work involved in

1
: : D s : % . 02
setting up and factoring An and solving (3.4) using this factorizationare O(M" ")

and O(M, log M) respectively. Hoffman, Martin and Rose [12] have shown that such
bounds are minimal. Thus, if we conjecture the validity of the above estimates for
our problem and refactor ¢ + Athn and An and solve (3.3) and (3.4) at each time

step, the total amount of work done using the method presented in [10] is

/2 . 3/2 3/2 .
log M2H> = O(NT{M1 + M "h

" . 3/2
(5.1) O (N (M * My dog ) & 00T B

- W

wnere NT 1s the total number of time steps (NT ~ f;). We note that the work of
refactorization dominates the estimates.

Using the preconditioned conjugate gradient iterative method presented here, one
does not need to refactor at every time step. Instead only one factorization of

L. =% + JtBU and AO need be done. Also, using the different time increments for

. th .
pressure and concentration, we need only solve (3.4) at every Kk time step; thus

)
<

the total number of times (3.4) need be solved is NT/k° Thus letting Ky and K
be the number of pre-conditioned conjugate gradient iterations needed to achieve the

norm reductions given in (4.0) (KI and K2 are constants, independent of h, n

and At), we see that the total work required for Case I is
/9 -;/2 Nr\

! 9 »‘ -
(5.2) 0" + N M o My + M7 4 M, Toa M)




P

£ 2

1 X " .
Then since N_ ¥ f; N e O(M1 ), we see that even for r = 2 (piecewise linear

s 5 E

h
elements), the second and fourth terms in (5.2) dominate and the work is

N,

M. log M, + o K .M, log M2) .

€5.3) O(NTKI 1 1 X Mo

We note that the number of unknowns in the problem is

. iy
(5.4) O(NTM1 + M),

so (5.3) represents nearly best possible order work estimates,

It is computationally wasteful to iterate exactly Ky times at each time step
(respectively K, times at every kth time step) in order to achieve the pessimistic
bounds given in (4.0). Instead, one can monitor the norm reduction actually produced
at each step of the iteration and stop iterating when sufficient norm reduction is

achieved. Additional stopping criteria can be imposed in this monitoring process.

See [6] for a discussion stopping criteria for related problems.
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20. ABSTRACT - cont'd.
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with appropriate initial and Neumann boundary conditions. Another case considered
is when b = b(x,c,Vp) above. Iterative methods are presented and analyzed which
are based on using a preconditioned conjugate gradient iteration for approximately
solving the systems ot lincar equations produced at each time step by Galerkin
methods for time-stepping the above system. Optimal order convergence rates are
obtained for the iterative methods. The iterative methods are computationally
more efficient than Galerkin methods previously proposed to solve the above system.
The use of different time increments in the time-stepping procedures for the
different variables is also presented and analyzed. The use of unequal time
increments takes advantage of different smoothnesses in time of the physical variables
p and c¢ and greatly reduces the work done in the computation of the approximate

solution.




