i

. ’/ - > '
:\L/A Description of Basic Avthor Aids\

in an Organmized System |

HD'AO'?O 189

| _for Computer A sml lnslrnlion \

W/
Roy Kaplow

% MASSACHUSETTS INSTITUTE OF TECHNOLOGY
()
u_j(ontroc'od by:

V-BATTELLE COLUMBUS LABORATORIES
e Solumbus, Ohio
=

. P
— (14)Z7;
\wénm w78 L

Contro@_AJCﬂb!Z75-509_!,/
Beatrice J. Farr, Project Scientist

Leon H. Nawrocki, Work Unit Leader
Educational Technology and Training Simulation Technical Area, ARI

a) S -
W / - "

(15) 2a75 2724476 2

Prepared for

Gl |

U.S. ARMY RESEARCH INSTITUTE :
for the BEHAVIORAL and SOCIAL SCIENCES
5001 Eisemhower Avenve

Alexandrie, Virginia 22333 > X0 \ !

4

Approved for open release; distribution unlimited.

‘ o7 080 S

U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the
Deputy Chief of Staff for Personnel

WILLIAM L. HAUSER

JOSEPH ZEIDNER Colonel, US Atiny
Technical Director Commander

Research accomplished
under contract to the Department of the Army

Battelle Columbus Laboratories

NOTICES

DISTRIBUTION: Primary distribution of this report hes been made by ARI. Please sddress correspondence
concerning distribution of reports to: U. S. Army Reseerch Institute for the Behavioral and Social Sciences,
ATTN: PERI-P, 5001 Eisenhower Avenue, Alexandria, Virginia 22333,

EINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it 0
the U. S. Army Ressarch Institute for the Behaviors! and Social Sciences.

NQOTE The findings in this report are not to be construed as an official Department of the Army position,
uniess o designated by other suthorized documents.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE BEPORE COMBE ETING EORM
REPORY NUMBER 2. GOVY ACCESSION NOJ 3 RECIPIENT'S CATALOG NUMBER
TR-78-A8
& TITLE (and Subtitie) 8. TYPE OF REPORY & PERIOD COVERED

A DESCRIPTION OF BASIC AUTHOR AIDS IN AN
ORGANIZED SYSTEM FOR COMPUTER ASS1STED

INSTRUCTION 6. PERFORMING ORG. REPORT NUMBER
3 ~ AUTHOR(a) ® CONTRACT OR GRANT NUMBER(a)
Sew Baaiis DAJCO4-72-A-0001%
e (Task Order 74-424)
PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

l?ut telle Columbus Laboratories 207637314762
Columbus, Ohio

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

: . - Septe 1978
Office of the Deputy Chief of Staff for Personnel SpEasher
13, NUMBER OF PAGES

Washington, DC 20310 27

MONITORING AGENCY NAME & ADODRESS(/! diffarent from Cantrolling Otfice) | '8. SECURITY CLASS. (of thie report)

Army Research Institute for the Behavioral and Unolassifted
Social Sciences, 5001 Efsenhower Avenue, : . NI
Alexandria, VA 22333 [T8a. DECE ASSIFICATIONDOWNGRADING

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, I different from Report) =

18, SUPPLEMENTARY NOTES

Research monftored technically by Dr. Leon H. Nawrocki and Dr. Beatrice J.
Farr, FEducational Technology & Simulatfon Technical Area, ARI.

-

19 KEY WORDS (Continue on reverse side If necessary and Identity by block number)
Computer Assisted Instruction
programming languages
Instructional Systems
F'ratning computer

et ——

\-YRACY (Canthne an roverss ofde i nesoecary and (dentify by block number)

¥This is one of a series of papers dealing with the authoring process and
related problems in computer based instruction (CB1). It describes the design
ot a system of authoring, including some aspects of the actual programming
language. The paper provides details on a number of author aids that can be
fmplemented in any organfzed system for CAl. The topics discussed ave:

/

. Framework for structuring Author Programs

¥ ones
DD e EDITION OF ! NOV 68 1S OBSOLETE UNCLASSTFTED
AECUMTY CLASSIFICATION OF THIS PAGE (When Dara Kntered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20, (continued)

2. Language Characteristics
3. Display~of-Program Tools and Program Documentation
4.) "Built-In" Operatjons and Subroutines
5. Controls for the Authoring Environment
6. System Maintenance of the Program Data Base
7. Creating Data Bases for Student Use
8. Automation of Student Run Time Facilities
I 9. Preliminary - Trial Tools
10, Editing Facilities & ¢
f 11, Training of Authors.
A major premise of this paper is that the only system which can
maximize author assistance is one which is organized along those lines

from fts inception. Experinece has demonstrated that it is far less satis-
factory to tack on author aids to an existing programming language.\\

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

: _ R—

CONTENTS

PAGE

Tl SN AR e e e S e i N R T S

FRAMEWORKS FOR STRUCTURING AUTHOR PROGRAMS......cccceceveccassncccnnne 2

LANCURGE GHARACTERISTIOR . oo hh e s s v o i e vnansae 2

DISPLAY-OF-PROGRAM TOOLS AND PROGRAM DOCUMENTATION..::¢eccevecosccsoscs 10

BUILT-IN OPERATIONS AND USER SUBROUTINES.....cceusevcecncenscancennss 12

AUTHOR OPTIONS AND CONTROL OF THE OPERATING ENVIRONMENT......eeevecn.. 13

SYSTEM MAINTENANCE OF THE PROGRAM DATA BASE....:ccocceeecacoonncsnsnse 14

CREATING DATA BASES FOR STUDENT USE......eueveenoanscnencsoesaocasenes 19

AUTOMATION OF STUDENT RUN-TIME FACILITIES AND PROVISION FOR STUDENT

R0 T 0 DS N R e e N I W - |

PHELIMINARY TRAIL TOOLE ¢ e v v vics s is s vmbinmssssssnessssssionassssssse o0

BOITING PACEEETIES oo nsenin s viins oss vavisnsstevssdnavnsshvesisvinvys Sk

PRATHIRG OF AUTHORS v oo s s vv e 6 s s canmkssvdsnsssssssssissusinsosssoesss Oh

1, v ARSI R N S A e T Sy S RPN

57y 1 e R U L L L LR B S N S S

APPENDIX B...... i L RO O R i G ¢ R s e eele e e e Soefecastareiia 2o

Unannounced
Justificution_.——

mt—|

pistrinutions
—‘;"ail%PiliLY”CQSEE.____
Availand/or
speclal

Dist

5
; \ - —————

e
- b R g YR s st

FIGURES

PAGE
"NET" DIAGRAM OF PORTION OF A PROGRAM, SHOWING NODES AND INTERNAL 4
BMNCHESQ........ll.ll...‘.......'l.l....'I.ll....'...l'..il.l...l
SCHEMATIC DIAGRAM OF THE INTERNAL STRUCTURE OF A SIMPLE 6

YCLASSICAL" CAI~TIPE NODE, ... auuss vons eaenunis s v anouss sl snnes

SCHMATIC DIAGRAM OF THE INTERNAL STRUCURE OF A NOI'<, INCLUDING
STUDENT-INITIATIVE OPTIONS AND TRANSFER - AND - RETURN ACTIONS....

T ———

FOREWORD

This work was conducted as part of the Army Research Institute's
(ARI) research effort on the application of computers in education and
training. The work was inftfated and funded during FY 75 within the
Unit Training and Educational Technology Technical Area under the
direction and guidance of Dr. Frank J. Harris, Chief and Dr. Joseph S.
Ward, Work Unit Leader. During FY 76 the Educational Technology and
Training Simulatfon Technical Area assumed the task of completing and
documenting this work. Acknowledgement {s extended to Dr. Beatvice I
Farr, the conference coordinator, who also served as editor tor all
technical papers, and to Dr. Leon H. Nawrocki, who chaired the sessions.

The primary impetus for this effort was a prevailing feeling among
members of the DoD research community that therve was ifnsuftficient {nter-
action between individuals engaged in research, those involved in de-
veloping authoring languages and creating software, and purvevors ot
hardwavre. As a result, system requirements for users (authors) were
frequently neglected to the detriment of svstems eftectiveness. To
partially correct this situation, ARl conducted a three dav contference
of selected representatives from each of these domains to discuss mutual
interests and problems. The conference was divected toward facilitating
research directions necessary tor the effective application of computers
to training needs, with milf{tary trafning as a focal point.

Through the Scientific Services Program of the US Army Researvch
Offi{ce, a contract was let with Battelle Columbus Laboratories to pro-
cure the services of ten scientists and educators currently favolved in
a wide variety of endeavors relating to CAl. These experts, along with
ARl staft members, and technical and user representatives from each ot
the services research organizations or operational CAl activities were
the primary participants of the conference (see Appendix A). Additionally,
more than fifty {ndividuals from DoD and other goverment agencies, pri-
vate research groups and academia were invited to the tivst dav of the
meet ing as observers. The conference was held 9-11 September 1974 in
Alexandria, Virginia. Durfng the first morning session, representatives
from the Army, Navy, and Afr Force gave formal presentations detailing
past and present activities related to computer-based training. Atten-
tion was also focused on current and anticipated problem aveas. The
afternoon consisted of exchanges between the participants and observers,
and the remaining two davs were spent in small group problem solving
sessions among participants followed by summary proup presentations,

As initially envisfoned, the working sessions were expected to
emphasize the authoring process. Although the major tocus remained
as planned, during the course of the contference {t became clear that
the scope of the problem necessitated examination of avtiticial
funtelligence, networking and models describing students, fastruactors
and the learning process.

The goal of the workshop was to document the consensus of this
diversified group of experts with respect to: defining user needs and
requirements for author languages, identifying deficiencies within
existing languages and establishing priorities for future research.
Although participants did identify a number of the most critical issues,
divergent views emerged regarding research approaches directed toward
these issues. Consideration was given to the relative merits of student
autonomy, system control or mixed initiative systems. A variety of
specific applications were considered and the special problems of authoring
in student-controlled instructional environment were explored in depth.

L]

!l‘.\.k\
SEPH ER
chiica irector

o ———

Py

A DESCRIPTION OF BASIC AUTHOR AIDS IN ORGANIZED SYSTEM FOR COMPUTER
ASSISTED LEARNING

BRIEF

Requirement:

This paper is the first in a series of reports emerging from a
conference on research problems and directions for computer based
instruction systems. The conference was sponsored and conducted by
the Army Research Institute as part of the FY 75 Technology Base Work
Program and included in the "DoD Integrated Plan for the Use of Com-
puters in Education and Training."

Approach:

A three day conference was conducted to determine research issues
relevant to the improvement of the interface between computer based
instructional syvstems and instructional developers (authors). Partici-
pants consisted of ten technical consultants charged with determining and
reporting on major topic areas. Additional invited technical and user
representatives (governmental, industrial and academic) participated
either actively or as observers throughout the conference (Appendix A
provides a list of participants). The first day was devoted to (1)
formal presentations by military training system representatives
describing current and planned computer based instruction activities
within the military, and (2) roundtable discussion to delineate and
define major topic areas to be addressed. During the following two
days participants were divided into 4 working groups. Each group pre-
sented a summary of key issues and approaches to authoring system
research. Active participants were assigned follow on report topics
from these summary items.

Determinations:

A programming system should provide a structural basis capable of
assisting authors in organizing their concepts. This structural basis
should prossess a multidimensfonal addressing scheme which facilitates
"moving around" in the program as the author works on it, and permit
easy reference to specific items which need to be examined or changed.
While using only a minimum number of fundamental constructs, an ideal
system would allow virtually an infinite variety of effective program
structures to be created.

The structure of computer programs i{s determined principally by
the task or interaction which the program is designed to accomplish,
but it should also make allowances for the author's personal style
(within the constraints imposed by the structure of the particular
programming language that is being used).

An author language in the type of system that this report describes
must be designed from the point of view that the actions of the language
are reflected in operations upon the on-line data base. It should be
quite possible to make rather extensive dynamic modifications to the
system with minimal author interactions, since required changes in the
structure and content of existing data bases can often be done auto-
matically.

Utilization of Findings:

Experience in the Army has shown that the length of time authors
(in the sense of courseware developers) will serve in that capacity
tends to be two years or less. Hence there is a need to rapidly achieve
an acceptable performance base to maximize their availability, and hence
cost effective deployment, within the training system.

In the case of computer based instruction, full proficiency (defined
as the ability to enter and edity text, develop lessons on or off line,
in addition to developing simple macros and sub-routines) should ideally
be achieved within six months.

I1f the preceding need it to be met, specific procedures must be
incorporated within the instructional system itself. This report addresses
those procedures and, in part, describes the functional requirements
necessary to provide the appropriate procedural capabilities.

|
d
1

L

A DESCRIPTION OF BASIC AUTHOR AIDS IN Al ORGANIZED SYSTEM FOR COMPUTER
ASSISTED LEARNING

INTRODUCTION

Readers who are familiar with the TICS system will recognize that
much of the framework for this paper is embodied in that system. This
is partially because of the role the author has played in the development
of TICS. Also, it is a useful example for many of the concepts which we
will discuss, since it is one of the few systems for computer-assisted
instructionl designed to include many of the features now referred to as
"author aids." At the same time, it is not my purpose here to describe
the TICS system nor to necessarily limit ourselves to features which it
provided.

It is contended that in order to maximize assistance for the
author, a system for computer-assisted instruction must be organized
with that as a principal goal. It will generally not suffice to add a
few author aids to a programming language, and it will be difficult to
provide a full set of desired capabilities if the underlying system is
ill-prepared.

Thus, the present paper, stresses certain fundamental design aspects
of a programming system, of which only a small portion is the programming

language itself.

These basic features include:

* providing a structured format for the author's program;

treating the program as a data base, containing not only the
usual computer-commands-to-be-executed, but also information
about the content and structure of the program;

separating the operational aspects of the authoring and delivery
components of the system and including explicitly the concept of
converting the finished program into different forms, suitable
for execution on different hardware systems;

explicitly including the notion that the program, viewed as a
structured data base, is not simply a text file but a collection
of information--much of which is self-descriptive--and which is
organized to be amenable to study and examination;

discarding the notion that a program must be complete--in any
sense--in order for it to be tried meaningfully;

It is in keeping with current notions to emphasize the use of the computer

as a freely available learning tool, rather than as an additional formal

medium of instruction. Nonetheless, I will use the historically entrenched

term, computer-assisted instruction (CAI) throughout most of the paper.

®* providing mechanisms for the computer itself to automatically
perform many of the functions normally associated with pro-
gramming, such as: checking structural completeness at a local
level, finding errors caused by editing associated with program
cross-references, generating default behavior for commonly
encountered execution-time faults, allowing a large set of
student-initiative actions.

The discussion will be separated into a number of parts for con-
venience in focussing on the particular types of assistance that a
system can provide. At the same time, it will be recognized that
coherence and internal uniformity within a system is itself an important
factor in determining ease of use; the connections and over-laps among
the topics will therefore be large in any implementation. The topics
will be:

1. F¥rameworks for Structuring Author Programs

2. Language Characteristics

3. Display-of-Program Tools and Program Documentation
4., "Built-In" Operations and Subroutines

5. Controls for the Authoring Environment

6. System Maintenance of the Program Data Base

7. Creating Data Bases for Student Use

8. Automation of Student Run Time Facilities

9. Preliminary-Trial Tools

10. Editing Facilities

FRAMEWORKS FOR STRUCTURING AUTHOR PROGRAMS

A system for programming should provide a structural basis which
helps an author to organize his concepts. Ideally, it should provide
structural units which can match the author's conceptual units. Secondly,
the structural basis should manifest a multi-dimensional addressing
scheme which makes it easy for the author to move around in the program
as he works on it, and to refer to specific items which need to be
examined or changed. At the same time, the system must allow essen-
tially an infinite variety of effective program structures to be
created, preferably with all structures based on the use of a minimal %
number of fundamental constructs.

AL TP Gl O IV

All computer programs have a structure to them, determined mainly
by the task or interaction which the program is to accomplish and also

SRR < SR —

by the author's style as well as the structure of the programming
language being used. The structure of a completed program can rarely be
diagrammed as a one-dimensional list. However, that is the intrinsic
form provided by the majority of programming languages in which state-
ments follow statement in a linear address space. It is not surprising
therefore that much of the recent discussion of "'structured programming
has been concerned with the "problem'" of branches; visualization of the
explicit or conditional flow paths represented by branches requires
jumping out of the one-dimensional program space to reach another spot.
This is analogous to keeping track of objects which pop into a fourth
dimension and reappear elsewhere, and explains why initial program
designs or flow diagrams are almost always diagrammed two-dimensionally.
Certain types of computer-assisted instruction programs are particularly
complicated in this regard, with large numbers of conditional flow paths
prescribed, which depend (during execution) on the exact circumstances
of the interaction.

It is entirely feasible to provide a two-dimensional program struc-
tural basis. We can design a programming system such that programs are
constructed out of separate units, called nodes or blocks with each unit
being connectable to the others by conditional branches. This is depic-
ted schematically in Figure 1. The issue 1s not simply to allow such a
structure conceptually, but to utilize it as an inherent part of the
author environment. Thus the system would include concepts such as:

® at any instant, the authors' statements refer to a '"current-
working-node;"

®* nodes have names, numerical identifiers, and keyword phrases
attached to allow ready reference;

®* branches are explicitly double ended (e.g. from node A to node
B) and can be traced in both directions;

®* the address space is multi-dimensional. That is, each item in
the program can be referred to in terms of the larger subunit
which contains it (if any), its item-type, and its name or
sequence location. For example, the author can refer to the
"second action (in the list of actions which are to be executed
if the) third condition (is true in the) node named sample-
name. "2

There is a second kind of structure to be considered, also, at the
level of the programming within each node. This is affected by the
programming statements provided, by the extent to which the format is
fixed (if at all), and by the actions which are system-implicit for
execution when the program is used, without requiring explicit author
instructions.

2The phrases in parentheses in this schematic reference would be implicit
and not actually included as part of any real reference to an item.
k

Figure 1, "Net" Diagram of a Portion of a Program, Showing Nodes and Internal
Branches. (Two Different Potential Paths are Shown, and

4

It is important to point out that there is no need for a node to
correspond to the concept of a presentation-frame in an interaction
‘ (although it could be used in that way) or for different nodes to have

identical or even similar effective internal structures. There is a

tendency, when thinking of CAI systems, to imagine a particular, fixed
interaction format; in the current context, this translates into pro-
viding a template or small set of templates for the internal node
structures. If the aim were only to achieve the greatest simplifica-
tions of the authoring process, this would be an attractive direction.
With a fixed format, the system can provide a maximum of checking and
prompting; i.e., the author can be guided through a form-completion
process. The apparent advantage, however, 1is overridden by the fact
that examination of what authors actually do when such constraints are
not imposed, indicates that the number of templates required is somewhat
larger than the number of authors. A more important goal, therefore, is
to not constrain unnecessarily the structure of the interaction that
will ultimately be executed. (The system designer may nonetheless be
tempted to utilize the template concept for novice users, on the basis
that it is advantageous for a beginner when all input is explicitly
requested. This mode - if provided - should be thought of as a training
tool, however, rather than as a permanent author aid.)

To support the structural framework, {t is necessary to provide a
language, a format, and an implicit structural basis for node construction
which allows infinfte structural varfations within nodes to be created
out of a small number of conceptually simple statements. It is also
desirable for the system to be able to provide at least a "proof-checking"
of the structural integrity of each node.

It {s possible, in fact, to work with only one generalized basic
programming statement, which has the form:

if (conditlon) (is true) then (do) < action)> and
{actfond> and . . . and (action > .

A node contains a sequence of such statements; each condition) is
examined in turn and {ts assocfated string of actions is carried out if
it is true. The sequence is generally repeated until a branch-to-
another-node action occurs, with inputs being obtained from the user as
demanded efther by fmplicit or explicit {actions> . CGiven that the
Gonditions)> can depend on all of the relevant parameters and that the
allowed {actions) are sufficiently encompassing, great generality can
be achieved. The (vonditlons) , for example, must be able to depend on
how student inputs map into anticipated responses, as well as on author-
defined and system maintained variables and parameters. Figure 2 shows
schematically the internal structure of a node of CAIl form which may be
constructed on this basis. Here we see an activity of the form: print
an output (question), get a response, try to map the response into one
of a set of anticipated responses, carry out varifous arithmetic or
output actions depending on the response given and on other parameters,
give hints and get new responses, and sooner or later branch to another

T WYY e s ——

—p

e re——

1 <§§§>; ‘625;59

BRANCH-IN BRANCH-IN

QUTPUT TO STUDENT

w
GET RESPONSE

3

ANALYZE AND

M

[MAP RESPONSE
CHECK CONDITIONS:
IF TRUE,DO ACTION|
SEQUENCES
CONDITION: 3 PR =
TRUE? DO ARITHMETIC HINT
CONDITION: '
TRUE? HINT

BRANCH TO
THER NODE

CONDITION: "
TRUE &’ oo

BRANCH~OUT

N

Figure 2. Schematic Diagram of the Internal Structure of a Simple,
"Classical" CAl-Type Node,

- —a s

e e

node. It is not necessary, of course, that all of these things be done
in any given node; in fact, a node may be logically complete even if {t
contains only a single item.

Beyond the elements illustrated here, there are a number of more
sophisticated items which can be made available, either for the author's
explicit use, or as system-implicit actions. Figure 3 shows a schematic
node structure fundamentally like that in Figure 2, but much richer in
its potential for student interaction. In addition to the previously
shown components, here is added the following:

* execute - and - return {actionsdapplying to both

clusters of nodes within the given program and to
external routines (which can be written in other
languages) ;

automatic system handling, at execution-time, of
interruptive student requests for such things as:
looking-up in data bases, skipping to new points in
the program, backing-up to a point where an earlier
response was given, sending the instructor a message,
calling upon an available subsystem (e.g. numerical
analysis or circuit design routines), etc.

report-writing actions to generate information for
the author, the instructor, or - for that matter -
for a computerized file.

automatic generation of a multiple-choice question
(based on the author's anticipations) {if the student
input doesn't lead anywhere.

The first item in this list deserves some additional explanation
and justification., An internal execute-and-return can be implemented
through the addition of a "return" <action) . Then, when execution of
a node is initiated by an "execute'" action - as in the third conditional
in the node in Figure 3 - a "return'", occurring in the called or a sub-
sequent node, will give control back to the point inside the original
node where the "execute" originated. These internal sub-processes are
useful for such purposes as (1) a single interaction which needs to be
called from different points in the program, (2) interactive "hints",
f.e., a many-node interaction effectively contained in a single action
sequence, and (3) to define an execution-time duration for data allocation.
External subroutines serve additional functions: (1) facilitate system-
wide sharing of commonly used routines, (2) avoiding the need for dupli-
cating available programming language tools, (3) allowing convenient
separation of specialized programming tasks.

2’
I ST PR
BRANCH-IN BRANCH-IN

.

 ——————————————— —————————

OUTPUT TO USER ——] i

'~ - LOOK UP IN
THESAURUS AND
ANALYZE AND
MAP RESPONSE PRINT OUT

" . = llwnmz MESSAGE |
: ; FOR INSTRUCTOR
STICIENES INTERRUPTIVE
RESPONSE REQUEST? _q{ g "
} NES i v |___SUBROUTINE Pz
; ¥ BACKUP OR L

Z
SKIP TO
CHECK
e IR |ANOTHER NODE
IF TRUE, L,{ Tt]
DO ACTION Q
SEQUENCES
CONDITION: YE3 DO ARITHMETIC INT »
TRUE ~ Lt
3 i—(EXThRNAL TRANSFER AND RMURN)——I-}:
[}
CONDITION: YE CALL SUBROUTINE e
TRUE ~ PRINT s

i(lNTERNAL TRANSFER AND RETURN)—f |
: 4§

CONDITION: EXECUTE A
TRUE "RETURN"-TYPE

1 NODE
| -
| g!
‘! s
BRANCHES-OUT MULTIPLE- . A

(+) These are examples of action types, action sequences
can contain any number of actions.

(**) Subroutine calls may be inserted before an output
as well as in action sequences.

Figure 3, Schematic Diagram of the Internal Structure of a Node, Including
Student-Initiative Options and Transfer-and-Return Actions.

———-—-—"—:
la o

Y. T

o

I —— 2 ,._.M

Within this structural framework, including the implicit components,
it is also possible for the system to generate, automatically, a useful
classification of the structural integrity of each node. Execution of a
program must flow from node to node by branches, each of which is
specified as an action at the end of an {action) list associated with
a { conditiond . It is, therefore, possible and useful for the system
to tell the author, ahead of time, which of the nodes will necessarily
branch, which cannot branch under any circumstances, and which will
branch only if certain (execution-dependent) conditions are satisfied.

LANGUAGE CHARACTERISTICS

The previous section describes a structural framework which can
serve as a base for the grogramming task. In conjunction with that
framework, all the information relative to a program being written is
maintained most conveniently as a structured data base, not as a simple
text-file listing of program statements. The information which should
be maintained includes not just the program itself, i.e., the description
of what the computer should do when the program is run, but also auxilliary
information that is useful during the authoring process. This includes
a lot of rather detailed information, such as back pointers for all
branches, cross-references for items developed in one node and used in
another, all the locations in which each variable, literal, and subroutine
is used, flags which reflect the structural completeness of program
subunits, etc.

Thus, the author language in the type of system we are describing
must, first of all, be designed from this point-of-view, that is, that
its actions are reflected in operations upon the on-line data base.

This implies that in using the language the author will be very aware of
the structural framework referred to earlier, but the language itself
can be quite transparent to the actual structure of the data base and
the author need never be concerned at that level. Indeed, it should be
possible to make quite extensive dynamic modifications to the system,
without troubling authors much, since required changes in the structure
and content of existing data bases can often be done automatically.

Secondly, the language must be designed to be the language for a
unified authoring system, involving not only writing the program but
also examining its logic, creating various displays in its structure,
changing it, and trying it out. This point is worth stressing, since
the apparently simpler tactic of having separate languages--with dif-
ferent syntax forms and overlapping keywords--for each aspect of the
authoring task, is very disadvantageous from the author's point-of-view.

Third, the language itself should be readable. In particular,
authors should be able to understand the intent of one another's input
so that as a community of workers they can be mutually supportive. This
requirement, by the way, is in addition to the need for clear and struc-
tured displays or printouts of existing programs or program parts.

Ry

Fourth, in regard to author errors, the language needs to be
designed to facilitate the system goal of being geared to non-professional
programmers, and therefore it should be particularly tolerant of user
errors. With respect to the language, this should be reflected first as
an effort to minimize the frequency of errors, by choosing svntax and
content words that are easy to remember. In addition, the language
syntax should allow pinpointing of {nput errors when they are made, and
the svstem should allow convenient recovery from such errors when theyv
are detected.

Fifth, the language should be couvenient to use (which implies all
of the foregoing) and also achieve an optimal balance between features
that are sometimes antithetical to each other--such as clarity and
brevity.

DISPLAY-OF-PROGRAM TOOLS AND PROGRAM DOCUMENTATION

A common belief holds that it is often easier to write a new program
than to modify an exisiting one. This att{itude arises, of course, tfrom
the difficulty normally encountered in following the structure and the
logic of a program written by someone else. For two reasons, this is
particularly unfortunate in the computer-assisted instructional area:

(1) The relevant programs are often very complex structurally, with more
path options than are usuallv found in other tvpes of programs, and (2)
The opportunity for continuously modifving, fmproving, and updating edu-
cational material that a computer environment provides is thereby mini-
mized. This latter point deserves some amplification. Teaching, unlike
many professional activities, tends not to build on the efforts of
predecessors. That i{s, a teacher usually brings to class (whether
lecture, seminar or other format) primarily his own understanding of the
subject and his own view of how to present that material. Aside from
actual changes which may have occurred {n the subject matter {tself, tor
the most part, he i{s no different from others who have previously taught
the subject, nor is there any particular reason why he should do it
better. As a result, the art of passing on the most effective teaching
“micro-interactions" for a given subject has not been well developed:

nor is it clear that it can ever be accomplished, since human interactions ?
are difficult to reproduce, and often awkward and unnatural in reproduction.
Similarly, in the writing of textbooks, an author usually takes respounsibility

for an entire subject area while it may be only a portion of his treatment,

that is an improvement over existing work. Indeed, in avoiding the

potential charge of plagiarisms, he may select a different, and possibly

less cogent, treatment for some parts than was used earlier. 1

:
|

In the new area of computerized instruction, therefore, (or, tor
that matter, in regard to any medium which is both modular and capable
of ready modification) it is desirable to increase the ease with which a
person can build upon existing material. Then, after a period of time of
ready modification) it is desirable to increase the ease with which a
person can build upon existing material. Then, after a period of time

10

one tends towards refinement of the computer/student interaction,
rather than a continuous cycling to new beginnings. (The questions of
ownership, copyright, etc., also obviously need to be worked out.) For
computer programs, this requires a powerful set of tools through which
later authors can first of all understand and subsequently modify and
augment existing programs. Since even the initial author will find it
difficult to remember the critical details of a complex, interactive
program after even a short period of time, such tools will be an impor-
tant primary authoring aid as well.

In this area as much as others, maintaining the description of the
program as a structured data base proves useful. In viewing the structure
of a program, the author should be able to request '"net'" diagrams, such
as the one shown in Figure 1. That is, he should be able to ask for the
node-branch structure from a given node, forward (or back) a given
number of branches. Implicit in such a request ic a host of structure-
based questions such as: Where do we go from here? How can we get
here? Can we get from here to there? With such information in hand,
the author will find it useful if he can request a 'trace'" of a given
path. For example, the author should be able to ask to see the outputs
and other actions that would occur and the conditions that need to be
satisfied for execution of the path through (say) nodes, 4, 5, 3, 11,
and 10 (to use identifiers from Figure 1).

For the next level of study, the language should include requests
to display in text or (where appropriate) in graphics, the detailed
contents of the units of the program, in pieces large or small, utilizing
the multi-dimension addressing scheme of the data base. As examples,
each of the following might be the object of a display request:

nodes 17, 19, 21-26, 30
node 14
the entire program
the definition of the word "anyword";
or, within the current working node;
the outputs
the third {condition) and its {action) sequence
all anticipated responses
the third anticipated response
the fourth<{ action) in the second conditional.

In each instance, of course, the printout or pictorial block-diagram
should be formatted to reflect the structure of the piece being displayed.
In addition, the author should be able to divert the output to a high
speed printer or to a high speed, hard-copy, graphical-output device.

A related set of tools is associated with the use of node names and
keyword phrases. When properly assigned and with appropriate search
requests these allow a detailed and contentful map of the program to be
created by the author and used by him and subsequent examiners.

11

o
1

§

|

|

b

g

In addition, the system-maintained maps of the use of variables,
constants and subioutines, provide another useful mechanism for sensing
the program design and constitute an essential aid for making modifica-
tions.

Beyond these, the system can also easily include "documentation"
features of the ordinary sort, whereby explanatory comments or remarks
can be attached to nodes. Indeed, the system can go well bevond the
ordinary use of program remarks. It can allow, for example, a listing
to be created of only the node identifiers and remarks themselves (and
perhaps the keywords); if the remarks are suitably prepared this can
provide yet another brief but in-depth view of the program. Also, the
s'stem can allow both "active" and "passive' remarks to be attached.
The former are intended to act as reminders for the current author, and
are printed out each time the node is entered, either as the working
node or during a trial-run.

All of these features fit under the general concept documentation,
of course. Some apply in the historically limited sense of a printed
copy of the program, with explanation. Others enlarge the concept of
documentation to include a variety of new modes by which the program can
be examined.

BUILT-IN OPERATIONS AND USER SUBROUTINES

Earlier, we referred to a programming statement in which the author
specifies which {actions) are to occur if a given {condition) is true.
One can think of such ¢actions) as comprising two categories: those
that are explicitly built into the system, and those which are not.
Qctions) which are not built-in can be implemented through a single
generic action >, perhaps of the form

«.. call subroutine name (argl, arg2,) ...

if the subroutines are available or can be provided by (or for) the
author.

A system can be designed to be sufficiently extersible so that the
distinctions between built-in nd external operations are not very
pronounced. It may be useful, however, to point out the usual dis-
tinguishing attributes of built-in operations: (a) the full specification
of the action is an inherent part of the language (whereas, for example,
the interpretation of the arguments in a subroutine call if done by the
external routine itself), (b) the< action) is a guaranteed part of the
(student) delivery system - which, in principle, can exist in a variety
of hardware manifestations, (c) the {action) is fully documented in the
primary user documentation, included in training aids, etc. and (d) the
individual built-in { actions)» each have their specific place and refer-
encibility in the structured data base description of the program

whereas all subroutine calls are treated alike.

The open-endedness provided by the subroutine call {action) is
extremely useful. It makes it unnecessary to duplicate existing program—
ming facilities for writing specialized, efficient, large-scale numerical
or other analysis routines. It facilitates splitting-off the associated
programming tasks so that they can be functionally described by the
author, but actually programmed by another person. It simplifies the
sharing of specialized routines and, in general computer utility environment,
allows the straightforward incorporation of routines written for other
purposes. It also provides a ready mechanism for the system—-programmers
to effectively expand the '"supported'"<action) set, without actually
having to make ad hoc changes in the language analysis routines, the
structure of the data base, or the routines which manipulate the data
base.

In the TICS system, there are seven built-in< action)types, which
can be described as follows: output text to the terminal and get a
response; output text to the terminal; write text entries to a report
file; do mathematical or character operations on variables; execute (a
cluster of) nodes and return; call an external subroutine, branch to
another node. Certain of these also include a number of built-in sub-
operations. For example, the output { actions> include facilities for
formating and page composition, the mathematical operations include the
standard set of numerical functions, and the character operations in-
clude the functions normally available in PL/1, e.g. length, concatenate,
substring, etc.

On the other hand, the graphical output constructions are provided
through two different modes: (a) the use of a number of subroutines,
each accomplishing relatively standard tasks such as x-y plots or his-
tograms; and (b) the use of an effectively separate interactive subsystem
for constructing drawings, which allows the author to create and store
sub-pictures and pictures, which subsequently can be operated on and
displayed through subroutine calls during execution of the program. The
use of the picture-drawing subsystem, itself a major and independent
development project, is illustrative of the flexibility and advantage
associated with a general utility operating environment. At the same

time, one cannot overlook the fact that to the extent that authors ¥
depend on such "external" facilities, the appropriate routines must be :
provided in new hardware implementations of the entire system or of the £

(student) delivery system alone.

AUTHOR OPTIONS AND CONTROL OF THE OPERATING ENVIRONMENT E

Different authors have different working stvles, and different i
aspects of the authoring job may require different modes of operation. {
A programming system should be accommodating in these respects. h

|

While on-line use of a programming system is taken for granted, the 1
value of an off-line input mode (e.y. punched card or tape cassette)
should not be overlooked. Some authors, for example, will prefer to
write parts of the program out on paper, with another person - not '
necessarily familiar with the system - simply transcribing the input.
This operation is often done just as well via off-line input which is
usually a less expensive mode. Off-line input can also serve authors
whose on-line access to the system {s limited by remoteness, terminal
availability, or usage and communication costs. It should be recognized
that off-line input, in the present context, has the same effect as on-
line work, namely to augment, modify, or examine the on-line data base
description of the program, and the two modes can be used in juxta-
position.

A related control, to be used on-line, is a block input mode. In
this mode, a sequence of instructions can be typed in and subsequently
edited if desired, before being released for processing., Some authors
appear to prefer this chunk-by-chunk approach during certain parts of
the fob. For similar reasons, authors want to control the degree of
sveiem verbosity associated with the processing of their inputs. Thus,
we have found it useful to provide a choice among three levels: verbose,
which is fully explicative of the system actions; short, which vields
the same information, but i{n a highlv coded, abbreviated form; and,
none, in which the system's commentary is essentially limited to error
messages.

When working on-line, authors may have different programming strate-
gies which need to be accommodated. For example, one may choose to (trv
to) fully specify each node in turn, considering all the possibilities
that might occur at execution-time in a full sequence of {conditions)
and associated actions > . Another may prefer to develop a single path
through manv nodes, going back to each at a later time to consider other
possibilities and their resultant paths. This {s a particularly advan-
tageous mode for an author who wants to develop the main line, or
"skeleton" of a tutorial first, before putting in remedial material or
dealing with specific student errors, etc. [t goes without saving that
this requires allowing the author to move around freely in his data
base, and tools which help him to find his way around to see what needs
to be completed; it also means that the author needs to be able to trv a
program - and to let students use it - while it is structurally incomplete.
These tools are discussed in other parts of the paper, especially sections
on Automation of Student Run-Time Facilities and Provision for Student
Initiatives and Preliminary Trial Tools.

SYSTEM MAINTENANCE OF THE PROGRAM DATA BASE

Reference has alreadv been made to the utility of maintaining the
program description as a structured data base during the authoring
process. May of the entries made in the data base and operations on it

are implicitly required to allow the system to provide the desired
authoring environment. At the same time, we want the system to handle
all of the necessary chores with little or no instruction from the
author., Examination of some of these will help to clarify what the
system must do and the underlying importance of the data base in aiding
the author. As each item is created it is assigned a numerial ident-
iffer in the multi-level addressing scheme. Interconnections between
items are noted; forward and backward pointers are entered for branches;
cross-references are entered for items developed in one node and used in
another. Tables are kept regarding the locations in which variables,
literals, and subroutines are used. Flags are set when modifications to
the program lead to possible or certain errors. Subunits are monitored
continuously for structural completeness.

Those types of operations are fully automatic. Certain "maintenance'
operations require user requests. These include: 'garbage collection"
and the ordering of items within the data base; checking the stored data
for integrity against computer errors; allowing restoration of earlier
program states; translation of the program description into a form (or
forms) required for one (or more) delivery systems.

CREATING DATA BASES FOR STUDENT USE

Data bases for student use can have a variety of forms and appli-
cations. For certain program designs, data bases and the specialized
routines which understand and manipulate them are the central aspect of
the interaction; for others, these components serve only as an auxilliary.

Structured data bases designed to contain the "knowledge" in a
given subject have a particular role in computerized instruction, for
the so-called generative mode of operation. Here, ideally, driver
programs designed to work with the specific data bases generate ques-
tions, check statements, answer questions, etc., in a "conversation"
with the student. In the same vein, specialized routines used in con-
junction with appropriate data bases can carry out 'deep-analvsis" of
student or author-provided input, to implement a variety of forms of
interaction not easily handled in the "anticipated response' framework.
Thus, in teaching a foreign language, for example, one can utilize
routines which check the structure of student-constructed sentences and
answer questions about the structure of sentences presented by the
author, and in teaching circuit theory, the computer can calculate
numerically quantitative responses and questions about circuits on the
basis of similarly programmed models for that subject. This "artificial
intelligence" approach is clearly a powerful one, although limited to
those topics where the knowledge is sufficiently well organized to allow
precise summarization in a computer program and associated data base.
So, far, not too much has been accomplished in regard to providing
author aids specifically for this purpose, and it {s fair to say that
professionally competent programmers are needed. Perhaps this is because
sufficiently useful generalities about the structure of knowledge have

— |

T T —

o—
il

ccnsibo e

yet to be developed.

The full subject of data bases in instructional use is much broader,
of course. An additional dimension aris s in connection with the use of
structured data bases of numerical and/or character string information,
some of which may be of prior existence. It is clear that for such pur-
poses one wants to allow access to fully general data base structures.
Within the TICS system, for example, this is accomplished fairly readily
‘through subroutines which use the data base in question directly and/or
which act as interfaces, transferring data between the program and the
external data base.

The simples: type of data, normally intended to be used as an
auxiliary aid with an interactive program, is just a glossary or dictionary,
consisting of an (alphabetical) listing of words or phrases, with each
word of phrase attached to a definition. For this, the system can
easily provide the author the requisite operations for creating entries
and their definitions, and provide both the author and student the
requisite look-up and display operations. A useful extension of this
concept is to allow each entry to be specified as a thesaurus-type list,

a single definition still being associated with the entry. This more
realistically recognizes the multiple meanings of words and phrases,

which are effectively synonomous. The provided look-up operations must
then be sensitive to the additional complication, of course: finding

words wherever they appear in thesaurus lists, and dealing appropriately
with situations in which words and even partial lists appear more than
once. Another extension of the concept is for the system to provide

more than one such data base, each with a different name (author selected).
to be used in different contexts. In a foreign language program for
example, one can be used for the meanings of words, a second for pronunciation
guides, and a third for etymological descriptions. As another example,
separate data bases can be used in relationship to theoretical concepts,
ore for definitions, a second to present examples, and a third to explain
the relationships among different concepts (and using the thesaurus-list
aspect to connect concepts which are related in specific ways). It has
also proven to be useful to allow the author to insert a special coded
symbol at any point in the definitions, which causes the execution-time
system to stop and ask the student if he wants to see more. This gives

the data base an inherent '"multi-level' aspect.

Such data bases can be useful learning tools for students, even
without additional structure being imposed or more complicated data base
interrogation routines being provided. An apparently valuable con-
vention is for the author to explain each concept (i.e., define each
word or phrase) in terms of whatever words and concepts he believes to
be most appropriate, but taking care to similarly explain each concept
(or word) he uses which is not to be found in a conllegiate-level dic-
tionary. With such a scheme, the structure is implicit in the author's
explanations and the student provides his own "tracking' process.

16

P —

It is often only a matter of cost and convenience whether such data
bases are used on- or off-line once they are created. Therefore, a
mechanism should be provided for obtaining a formatted and page-composed
print-out, suitable for reproduction.

AUTOMATION OF STUDENT RUN-TIME FACILITIES AND PROVISIONS FOR
STUDENT INITIATIVES

A system can aid the author through providing automatic run-time
facilities which enhance the student interaction without detailed author
programming. These can be thought of in terms of two types of activity:
first, the implementation of actions which are implicit in the author's
instructions and the structural aspects of the system, and second, the
provision of options for student initiative and control of the interaction.

Among the first type are the execution-time component of activities
which have already been mentioned in respect to the direct authoring
facilities. These would include, for example, the response-analysis
package; on the one side allowing the author to readily specify response
analyses to be done, and on the execution side carrying out detailed
response mapping without required detailed author programming. Another
example of this type can be seen in the graphical display area where it
is again necessary that simple author instructions call into action
general purpose and complex routines.

The run-time system should also "back-up' the author by providing
sensible default actions, that is, automatic recovery from situations
which are logically imperfect during a given interaction. For example,
many nodes will be structured such that various branches-out exist,
depending on which one of a number of anticipated responses is given.
Generally speaking, the interacion defined by a node will be more inter-
esting the larger the number of possibilities covered by the anticipated
responses, and the more subtle the differences between them. On the
other hand, it is clearly impossible to deal with every conceivable
student reponse and request (nor would that necessarily be desirable).
The issue, it should be noted, is not simply whether the system/program
is prepared to map the arbitrary response into something which is wean-
ingful to it, but also whether it is prepared to carry the interaction
into the implied new area. Thus, there need to be mechanisms, author-
expiicit as well as automatic ones, for dealing with unanticipated
student input. At the first level, of course, the author needs to be
able to specify the equivalent of:

"if the response is none of those which I have anticipated thenm,..";
often, the final action specified here will be a "hint' rather than a
branch. While the advantage of having locally relevant comments at this

17

point is great, the ultimate reckoning is only postponed, not eliminated.
At the second level, therefore, there needs to be an absolute mechanism
for ensuring that the student at least accepts one of the anticipated
responses, assuming that he wants the interaction to continue. The
obvious mechanism is to create a multiple choice for the student by
presenting those responses which the author did anticipate (but excluding
those which the student has already given and those which the author
prefers to remain hidden). This system-activated default {s an important
author-aid, especially during the trial-and-development period for a
program, In effect, it allows the author to concern himself initially
only with the student responses which he believes to be most likely
and/or most deserving of recognition. Subsequent analysis of actual
trials may then lead to the inclusion of additional anticipated responses
and associated sub-interactions.

The concept of student control and initiative during the computerized
interaction is important from two perspectives. First, {if the system
itself is appropriately designed, it fs likely that the author's program-
ming task will be easier the more the learning process is left to the
student's own judgment. Second, there are a number of podagogic reasons
to believe that the student's learning will be enhanced as he sees
himself more in the position of "digging out' ideas which he needs to
know, and less as the recipient of a pre-structured flow of information.

Some run-time facilities are closely associated with the notion of
student control and initiative but also require author contributions. In
this category we include, for example, the student-system portion of l
data base handling routines that were discussed in an earlier section.
Another aspect of student control is exemplified by student-initiated ‘
jumps to external routines or to other portions of the given program.
Regarding the first, the author probably needs to be able to restrict
the extent to which the student can access other routines, expecially in
a general purpose utility environment. This can be accomplished, of [
course, by the author simply including a list of routines which the 1
student should be able to access from his program (and telling the
student what those are). Student-initiated jumps to external routines
are readily accomplished as "interruptive requests', given at any opportunity
for student {nput. These can be desipnated by a special code symbol (to
distinguish it from an ordinary response), the name of the desired
routine, and any parameters (arguments) required. Execution control
flows to the routine and back again to the basic program. Normally, the

Jn the TICS system, for example, each conditional-action-sequence which cnds
with a "hint-and-get-another-response’” causes the list of conditions in the

node to be reconsidered from the top once again, after the new response is
obtained. To avoid "looping', however, Individual actions seqrences which
cause hints are not executed a second time. Thus, even {f the author speciticd

a number of conditionals like the one above, each ending with a different

hint, a student may ultimately exhaust those explicit interaction components.

request for input would then be repeated. However, in spite of the

concept that such "interruptive" jumps to external routines are student

inftfatives and, therefore, the student's own business, it seems advan-
tageous to "trap" all such returns. This allows the author to monftor
the student's external activities, using, at the very least, the values
of particular variables {n the argument lists. Of course, {t {s also
feasible to create and transfer much more detailed diagnostic information
during the student's use of external routines. This tvpe of data would
be available for both immediate purposes within the basic program and

tor subsequent analysis by the instructor. ’

34

Similarly, for internal jumps, it will be necessary for the author
to restrict the accessibility to a limited number of logical sub-inter-
action starting points, and also to provide some indication to the b
student of what those points are and why he might want to jump there.
This requirement {s assisted, within TICS, by the inherent node-based
structure. Thus, the author can attach specfal keywords (or phrases) to
nodes for which he wants to allow "jump-to" access. At run-time, the
existence of such a description determines the accessibility of a node
and, with appropriate look-up facilities, the 1list of keyword phrases
also gives the student the needed map of the program.

Another type of internal transfer, a "back-up'", requires no special
author preparation., This student initiative, also implemented as an
interruptive request, allows the student to move back to an earlier
place in the execution of a program; specifically, to a point where he
previously gave one response and now wants to give another. This {s the
essential student control, for it allows him to explore the optional
paths provided, to experiment with answers which he may know to be
wrong, and to recover from misinterpreted responses, etc. This capability,
when treated as a true roll-back rather than a jump, requires stacking
the history of changes in the values of varfables, so the original
sftuation can be restored. It a backup over an indefinite length of
interaction i{s allowed, this feature might be very demanding of secondary
storage, especially when array variables are frequently changed. Thus,
when the student-delivery hardware system {s limfted, {t would probably
be necessary to use a "backup-stack'" of fixed length, with the maximum
backup distance being a dynamic function of variable changes. ¥

-

I CIRpe—— g T

-

An additional student initiative relates to communicating with i
instructors and the authors of programs. A student should be able to
send messages to those persous, while he is using a program. The
immediacy of that feedback path, from the stwient's point of view,
enhances its value compared to other means. It {s feasible, although by
no means necessary, for the message recipfent to be on-line, also. !

As a last component of facilitfes which a svstem should provide to L
foster student inftiative and control, we mentfon the fmportant avea of

19

— — - ——

cataloging all of the available instructional modules within a system
and of allowing students to select freely among them and, indeed, to
jump from one to another,

PRELIMINARY TRIAL TOOLS

By preliminary trial tools we mean afds for trying out a program
before it is completed, and for obtaining useful information regarding
the efficacy of a program when it is in use but still being refined.

A mode of operation can be included in which the author can play
the role of a student, inputting appropriately, while the system simu-
lates the execution of the program, starting at any point. This can be
done while the program is structurally incomplete and even erroneous. In
this mode the system can print out {ts flow-path, e.g., the node-to-node
branching, and the conditionals satisfied and executed. It can detect
and report all unsatisfactory conditions encountered during such a trial
and when dead-ends are reached, request instructions about whether it
should proceed and, if so, from what point. In such a mode, the author
can be given a variety of commands for controlling the simulations, and
for examining and setting the values of variables. He can also be
allowed to set "stop points' at arbitrary points in the program, which
cavse automatic halting of the simulation, to allow examination of the
instantaneous state of affairs. An author can also interrupt such a
simulation to examine or to modify any part of the program, and continue
the simulation after changes or new entries are made. |

It is also useful to try the program with real students, even at
very early stages of program development. For this purpose, a mode of
simulator operation can also be provided in which the auxiliary (path ‘
information) output, the special user-control options, and the mechanisms
for directly affecting the program data base are inhibited. Apart from
program incompleteness and errors, in this mode the simulation should
have exactly the same appearance as the ultimate execution, including
for example, the full availability of the student's interruptive requests.

When a structurally complete version of a program is ready, it can
be used in the standard delivery system. Usually, however, the author
will still be anxious for rapid feedback on the use of the program to
further improve the interaction on the basis of broader experience. For
ti:xis purpose there are at least three usefully automated mechanisms
which can supplement direct communication with the student-users. The
system can record the history of each student's interaction, that {s, of
the flow-path, including all of the student's fnputs. This allows both ,
a further review of the logical consistency of a program and also a |
monitoring of the actual student responses (or inputs) given at ecach ,
point. We have earlier mentioned providing a student facility for ‘
sending messages to the author of the program. This {s particularly
useful when the student encounters errors in a new program. A third
mechanism gives the author the ability to "write a report' to himself

[P — 1

during the execution of a program. Specific entries can be written {1
the report whenever specific conditions obtain at any point in the ,
program. In this fashion, the author can generate a file of whatever ‘
data he believes will be useful. This may include, for example, unan-

ticipated responses, notice of particular branches taken, values of

variables (or the point at which a given counter reaches a certain]
value), the time it takes for a student to respond in particular nodes,
etc.]

When it is desired, it is feasible for a group of such reports to |
be processed by provided routines, to obtain summary data. In the same
vein, it is possible to provide program-specific but student-global
variables in which execution-statistics relevant to the entire student
user group are continuously maintained. Needless to say, all of these
mechanisms are also valuable to non-author instructors, who later happen
to have responsibility for the student's use of the program.

EDITING FACILITIES

Many of the features described in previous sections, particularly
the ones on Display-of-Program Tools and Program Documentation and
Preliminary Trial Tools, relate to examining a program in order to
modify it. The process of modifying a program on-line is generally
referred to as "editing" since programs are usually line-organized text
files, and changes are accomplished with the aid of a text-editor program.
In our present context, in which the program description is considered
to be a structured data base, the process of modifying the program can
benefit from system-provided author aids mor2 closely related to the
strucutre of the program and to the types of items contained.

To begin with, of course, the editing operations can all make use
of the detailed address referencing scheme inherent in the data base.
Thus, the author always works on explicitly designated items (e.g., '"the
fourth anticipated response') and is not concerned, as a primary matter,
with moving a line pointer around in a linear file. A general text
editor is still useful, but mainly for those items which are explictly [
text and which are sufficiently long that it is preferable to modify an
existing version rather than replace it. Such items may include, for
example, output texts, long anticipated responses, remark entries,
dictionary definitions, etc. In addition, a variety of more specific
operations for modifying a program can be supplied; a few examples will
be given here for illustration. A '"delete" operation, for example, can t
apply to any items in the program data base at different levels of the
structure; e.g., delete a specific action in a specific conditional
action sequence, delete a complete conditional actions sequence, or
delete an entire node. (A deleted item should not really be erased, of
course, especially if it is large, since deletions can often introduce
major logical errors. Fortunately, the system can immediately detect

e —— e —— ——

21

such occurrences - as elaborated laterv - so {t {8 convenient for the
author, and worth the overhead, {f the option to "vestore" the {tem {s
retained.) A "move'" operation is avaflable to vearvange existing {tems
where order is {mportant, e.g., the ovder among conditionals in a node,
or the order among actions in a conditional sequence. This operation,
of course, not only moves a designated {tem to a speci{fic spot in a
list, but automatically "renumbers'" the ones that need to be adjusted. A
related operation is "tnsert", applving to the the creation of a new
item; again, space is made for the new ftem and the others are reavvanped.
A "change" operation allows a specific ftem to be replaced by a new one
of the same sort; e.g., '"change the thivd condition to..." . St{ll more
specialized editing requests are appropriate for cervtain portions of the
program, such as the keyword-phrase list and student data bases (c.yn.,
dictionary/thesaurus).

Recalling that the svstem is keeping track of many structural
details about the program, such as where individual variables ave used,
it should be noted that it must automatically maintain the integritv ot
such data through all such author-requested modifications, without
requiring any further explicit instrvuctions.

Even given the aids so far described, the editing of a program can
be an uncertain task. As implied earlier, the most difficult part of
the job for the original author and for subsequent modifiers of the
program, {s to keep track of the interrelationships among diftferent
parts of the program. Often, a change made in one place will have
ramifications elsewhere. Fortunately, the svstem can {tself keep track
of all of the explicit cross-references among ftems, both intra- and
inter-node. These tables can be examined by the author, of course,
prior to his making any changes. More {mportantly, the system itselt
can monitor the cross-references when changes are requested, inform the
author of potential or certain errors which are thereby introduced, and
leave warnings or error message flags attached to the affected {tems in
the program,

TRAINING OF AUTHORS

The training of authors might be construed, in the present context,
as a concern solely with teaching prospective authors the mechanisms tor
using the systems in question. This would include, ot course, the
language, the auxiliary capabilities, the purpose and use of each command,
etc. I believe that if the system is well designed and the language
constructs chosen with care, it will not be difficult for an author to
learn the rules and to construct and manipulate an arbitrary program
using the full facilities of the svstem as described above. Bevond the

usual sorts of printed documentation and explanations, one should obviously

consider providing a computerized instructional program to teach the use
of the system itself. A particularly interesting possibility exists
with the simulation mode described earlier; it {s possible to write a
program intended to be used in that mode, and which the prospective

author would begin to use in the real-student option. However, he would
have the ability to switch, when instructed, to the author mode, where
he would be shown how to examine and modify the very program which he
was then using. In fact, the transition from student to author could be
virtually imperceptible.

Training authors to make optimal use of a system is a broader
question, however. It is dependent, in part, on a deeper conceptuali-
zation of programming, of structural and interaction units, and of such
issues as the balance of student and program initiative. It also depends
on pedagogical attitudes and theories, and - certainly not least - on
the clarity with which one sees the structure of the subject material
and how it should best be presented (or made available) in the computer
medium. These questions are themselves deserving of more extensive
treatment, but the topics go beyond the boundaries of the present paper.

BIBLIOGRAPHY

Brown, J. S., Burton, R. R., and Bell, A. G., "SOPHIE: A Sophisticated
Instructional Environment for Teaching Electronic Trouble-shooting
(An Example of AI in CAI)" BBN Report No. 2790, Bolt, Beranek and
Newman, Inc., Cambridge, MA. March 1974.

Feurzeig, W. and G. Lukas. '"The Use of Dribble Files as Instructional
Aids." Bolr, Beranek and Newman, Inc., 1975.

Goheen, S. and D. Jordan, "Evaluation of TICS: A Multics Subsystem for
the Development and Use of CAI Courseware.' MITRE Technical Report
2749. June 1974,

Hewitt, C. E. and Smith, B. "Towards a Programming Apprentice,'" IEEE
Transactions on Software Engineering. March 1975.

Kaplow, R., et al. "Teacher-Interactive Computer System: I. The
Author-Language and Instruction Manual; II. Language Specifica-
tions,'" Massachusetts Institute of Technology. 1971; (updated
1973, 1974, 1975)

Kaplow, R., Schneider, D., Smith, F. C., Jr.,Stensrud, W. R.,
"Computer Assistance for Writing Interactive Programs:
TICS," Proceedings, Association for Computing Machinery, August,
1973.

Kaplow, R., Desch, S. H,, Jr., Pettijohn, D. 0., Rodman, M. H.
and Smith, F. C.,Jr., "Illustrations of Conversational,
Inquiry, Problem-Solving, and Questionnaire Type Interactions
within the TICS System,'" Proceedings, Seventh Annual Princeton
Conference on Information Sciences and Systems. March 1973.

Levine, D. R. "Computer-Based Analytic Grading for German Grammar
Instruction," PhD Thesis, Stanford University, 1973; Institute for
Mathematical Studis in the Social Sciences. Technical Report No.
199. March 1973.

1

Nelson, G. E., Ward, J. R., Desch, S. H., and Kaplow, R. '"Two New
Strategies for Computer-Assisted Language Instruction, Foreign
Language Annals," Foreign Language Annals, 9, 1, 1976.

————

Shortliffe, E. H., “"MYCIN: A Rule-Based Computer Program for Advising ‘
Physicians Regarding Antimicrobiol Therapy Selection' Doctoral
Dissertation, Stanford University, October 1974, Stanford A.T.
Memo 251. Stanford.

Soloway, E. and Riseman, E., ''Common-Sense Theory Formation Toward
Understanding Baseball,”" University of Massachusetts. COINS Tech-
nical Report 75C-5, 1975, Amherst.

Sussman, G. J. and Stallman, R. M., "Heuristic Techniques in Computer
Aided Circuit Analysis,”" M.I.T. A.I. Lab Memo 328, March 1975. Cambridge

i A i

APPENDIX A

PARTICIPANTS

Mr. Avron Barr

Institute for Mathematical Studies in the Social Sciences
Stanford University, Ventura Hall

Palo Alto, CA 94305

Dr. Alfred Bork
Department of Physics
University of California
Irvine, CA 92664

Dr. John Brackett
SofTech

460 Totten Pond Road
Waltham, MA 02154

Dr. Victor C. Bunderson

Institute for Computer Uses in Education
Brigham Young University

Provo, UT 84601

Mr. Frank Dare

CAI Project

USA Ordnance School and Center
Aberdeen, MD 21005

Mr. Wallace Feurzeig
Bolt, Beranek and Newman
50 Mouton Street
Cambridge, MA 02138

Dr. Dexter Fletcher
Navy Personnel Research & Development Center
San Diego, CA 92152

Mr. Ed Gardner
Air Force Human Resources Laboratory
Lowry AFB, CO 80230

Dr. Roy Kaplow

Massachusetts Institute of Technology
Room 13-5106

Cambridge, MA 02139

25

Mr. Don Kimberlin

Office of Project Manager
Computerized Training System
Ft Monmouth, NJ

Mr. George Lahey
Navy Personnel Research & Development Center
San Diego, CA 92152

Mr. Hal Peters
Hewlett-Packard
11000 Wolf Road
Cupertino, CA 95014

Dr. Mortenza A. Rahini
Department of Computer Sciences
Michigan State University

East Lansing, MI 48823

Dr. Martin Rockway
Alr Force Human Resources Laboratory
Lowry AFB, CO 80230

Dr. Robert Seidel

HumRRO

300 North Washington Street
Alexandria, VA 22314

Mr. Robert H. Simonsen
System Development Technology
Boeing Computer Services
Seattle, WA 98108

Dr. Lawrence Stolurow

Division of Educational Research
State University of New York
Stony Brook, NY 11790

Dr. Paul Tenczar

Computer-Based Educationa Research Laboratory
University of Illinois

Urbana, IL 61801

Dr. Karl Zinn

Center for Research in Learning and Teaching
University of Michigan

109 East Madison Street

Ann Arbor, MI 48104

Mr.
Dr.
Dr.
Dr.
Dr.
Ms.
Dr.
Dr.
Dr.

James D. Baker
Beatrice J. Farr
Frank J. Harris
Cecil D. Johnson
Bruce W. Knerr
Martha Moore
Leon H. Nawrocki
Michael H. Strub
Joseph S. Ward

APPENDIX B

PARTICIPATING ARI STAFF

