
_______________________________________ — .-—.~~~~ — —.———— —..-

I

REP ~~T.

~~~~~~
— A Deicr ipt ios of Basic Author Aid s

is as Orgauiz.d System
for Computer ~ .s1sted lustr uct ios .

1E ELV~~~MASSACHUSETTS INSTITUTE OF TECHNOLOGY

~~~~~Contract.d by: C
~‘~ B A T T E L L [COLUMBU S LABORATORIES 41 ‘44ij
C..~~0 Iumbus , Ohio 21t~,~ /

~ j<
I2 ~~~~~

1)!78
~
_ _ _

Beatrice J. Farr, Project Scientist
Leon H. Nawrockj , Work Unit Leader
Educational Technology and Training Simulation Technical Area, ARI

Prepare d for ‘ —

L~1E~iI
~~~C~~t~2 ‘73~J/1~J~’ ~

U.S. A R M Y  R E S E A R C H  INSTITUTE
for the BEHAVIORAL aid SOCIAL SCIEN CES
5001 Else uhow e r Av e a u s
A loxuedr i. , VI,11u1s 22333

Approvsd for op.n reI.ais; dIstr~butIo~ unhlmlt.d.

L.~~~~~~ . ___ _



- - ~~~~~

—

U. S. AR MY RESEARCH INSTITUTE
FOR THE BEHAVIORA L AND SOCIAL SCIENCES

A Field Operating A gency under the Jurisdict ion of the
Deputy Chief of Staff for Personnel

WILLIAM 1. HAUsER
JOSEPH ZEIDNER Colonel, US Auny
Technical I~rector Commander

Researth accomplished
under contract to the Department of the Army

Battelle Columbus LaboratorIes

NOTICES

DISTRIBUTION: Primary distribution of this report hes been made by ARI. Pleas, address correipondsn~e
concerning distrib ution of reports to: U. S. Army Resssrch Institute for the Iettsviorsl and Social Science,.
ATTN PERI.P~ 5001 Eisenho~~ r Avenue, Alesandri., Virginia 22333.

FINAL DI~~ O&ITION- This report may be destroyed when it is no longer naedsd. Pleas, do not return it to
the U. S. Army R esearch Institute for the Behavioral and Social Sciences.

~Q.IL The findings in this report are not to be construed as Irs official Department of the Army position .
unless so designated by other authorized documents.

_ _ _ _ _ _  _ _ _ _ _ _ _ _  ~~~~~~~~



UN CI. A SS I F  [E l)
t I CUNITY C LA $S1F I CAT IO N OY THIS PA c er (lPh.n ON. InI.,.()

~~~~~~~ 
E T u ~

51 OA t ~E READ INSTRUCTIONS
Ft UUI% U I PtJ ’.V M I~ U ~ I I’Jt’~ T~ 5W BEFORE COMPLETING FORM

I ~(PonY NUM~~1~ 1. GOVT ACCISSION NO I N(CIPi~~NT ’ $ C A T A c O G NUMaE~
TR-’~’8-A8

4 T I lLS (, d SuSSill.) S TY PS OP HSPOMT I PC~~lOD COVt ~~SO

A DESCRIPTION OF BAS IC AUTHOR A1I)S IN AN
ORCAN IZ ED SYSTEM FOR COMPUTER ASS iSTED

INSTRUCT ION C Pt~~FO~~ulNU ORG.

t AuTir O~~(.)
-

~~ W~~~~~T O~ dRA M? NUMSCn(.I

DAJCO4- 72 -A-O0OI ’
~Roy K~ip iow (Task Order 7 4 - 4 2 4)

S PInFonu i~~o ONOAPI1ZATI0N MANS AND A DO~~.5$ tO . P~ OG~~AM ILIMINY . pnOJ SCT , T ASK
A~~IA I W OR K UNIT w uuel ni

I t a t t e ’ l l e (‘o iumhus Laboratories 2 Q7617 ’UATh2(~ i 1 umbus Ohio

Ii CONrROLL1NG OFFICI O Aoonsss
-

Ia. niPonT D A Y S

September 1978
O t t h e ot the f le ’p utv Chi ef ot S t a t I I or Personnel

II NUMC,nOF PA O II
W a s h in g t o n , DC .0 10

11 MON1YORINO AOINCY MAN S S ADDNES~~II dSH.,~~ i I~~~ CN,troll5n~ Offic.) IS. accuniry CLASS. (.5 ffiS . r.p.. rlI

Arm y Research I t ss t I t n t e t or the Be’hsv iora I and line lass it led
Sd ,,’ I , i I Sc t en et ’s , ‘tOo 1 1’. f qt ’~~~5(~~i(s 5 Avenue ’
A l t x . s i u i r t . t , VA 2.~ I

T1~. ó ~T~~ i$iFiCATlOsi ’OOWNOR A blNO

1$ OlITn iSUTION STAT ININT (.1 ‘Al. *sp.,5)

API’t ,‘V t ’ dl I ot • pub l i t ’ re’ Leas t ’; d 1st r t h u t ion un l t n t t ed

I? L) is T nle uYl ON IT AT laiN T (.1 Ui. . .tr.cI .,t.r.d Sn 55.55 ~O, IS ,lifV.r.nI ft R.p.. r)
—

I. IUPPL (MINYASY NOTI$

R t ’ ,, ’ ,i r h nes t s i t e’re ’d te ’e’ltn I en l i v isv D r . l.e’oit H. N awr oe ’k I anti Dr. Be’.tt I I ce .1
I i i t • hIt~ .t t tona l l e’e’hno I tsgv te S m u l a t I on Tei’hn I e . t i A r e a • AR I

IC S l y IO~~DI (C.nllnu . .5, .sN.. .54. II n.e...~~ wU id.n(IS~ by block n,m,b..)

. ‘U ’1’ i i t ci ~~~ I st eel i n s t m e t ion
I ’ I ‘ i i .1111111 I ng I ~IflgII~lge~s
l it ’ , I l eic I I . ‘ is . i I Sv~.t e’mM

Ii 1 1 1 1 t I c , % ‘ IiIIII’ilt ci

.. ve,w .1* N ..~~~ awy ~~~ S*art~~~b, SMck n,wb .,I
— - —

~ i’Is I s I s one ot a ~ser It ’s ot papers deal Ing w i t is the ’ ant hor I ng pre~ ’ess and
t e’ L et t e’d prob l em s In e~smput e ’ r based i n s t r u c t (on (t i l l) . I t dt ’s t ’r t he ’s t he’ t i e ’s lg t t
ii I .1 s y S t e m ot ant Isor I ng , Inc I net I ng some’ aspect s ot t he’ ic t 51.1 1 ~st’ es~~r auuu I ts~~
I iit~~e i.e ~~t’ . The’ paper presv (des de’ ta ii on a nuniht’t ot ,nit hot ti lets t hIl t e . t i t Is,,’
imp I e Ifli’fl t i’d In any organ I it ’d sv sI i’m (o r CA I . l’hi’ t op i i ’ e l i ~~i’ t isseel ~t t e ’

F r am ework t o t M t rtie t i l t I ng AU t t t t ’r Pr e ig ram s

DO ~‘ ‘,, 1473 ~~~~~~ ~~ ~oV ~~~~ UNCI.AS S t r I E D
(‘IF TNIS P*O.I (~~~.5’ ~~~~

_ _ _ _

UNCLASSIFIED
$I Cu ~~l T Y CI.A$$IPICATION OP THIS PAOE(llhse bela L’S.re4)

20 . (contInued)

- — 2. Language Characteristics

I. Display-of—Program Tools and Program Documentation

4. “Buil t— In” Operations and Subroutines

Controls for the Authoring Environment

6. System Maintenance of the Program Data Base

7. Creating Data Bases for Student Use

8. Au tomation of Student Run Time Facilities

9 . Preliminary — Trial Tool~~1

10 , E d i t i n g Fac ili ties ~

(it. Training of Authors ,

A ma lt s r premise of this paper is that the only system which can
maximize author assistance Is one which is organized along those lines
f rom it~c inception . Experinece has demonstrated that it is far less satis—
f acttsrv to tack on author aids to an existing programming language.\

~
\

UNCLASSIFIED
SICUNITY CLASI I PICAT ION OP THIS PAO((Wii .n 1)a,a Pnr.t.d’

L - ~~~~~~~~~~~~~~~~~~~

- --I

CONTENTS

PAGE

INTRODUCTION 1

FRAMEWORKS FOR STRUCTURING AUTHOR PROGRAMS 2

LANGUAGE CHARACTERISTICS

DISPLAY-OF-PROGRAM TOOLS AND PROGRAM DOCUMENTATION 10

BUILT-IN OPERATIONS AND USER SUBROUTINES 12

AUTHOR OPTIONS AND CONTROL OF THE OPERATING ENVIRONMENT 13

SYSTEM MAINTENANCE OF THE PROGRAM DATA BASE 14

CREATING DATA BASES FOR STUDENT USE 15

AUTOMATION OF STUDENT RUN-TIME FACILITIES AND PROVISION FOR STUDENT
INITIATIVE 17

PRELIMINARY TRAIL TOOLS 20

EDITING FACILITIES 21.

TRAINING OF AUTHORS 22

BIBLIOGRAPHY 24

APPENDIX A 25

APPENDIX B 27

.~~j~~~~siCfl~ ’0l’~

DX TAB

lu,’4 if
-~~~~~~~~~~~~

--
~~~~~~~~~~~

~~~TI ~~,~ /or

Dist ~pcc1al

I..... .. .,____~~ .___ ~~ , -‘- - -— —‘-- . — — - - -- ‘~~ -— -—-, —, -~~ - -——--.- ---‘----~- - -.—, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .-‘

FIGURES

PAG E

1. “NET” DIAGRAM OF PORTION OF A PROGRAM , SHOWING NODES AND INTERNAL
BRANCHES

2. SCHEMATIC DIAGRAM OF THE INTERNAL STRUCTURE OF A SIMPLE
“CLASSICAL” CAl—TYPE NOD E 6

3. SCHMATIC DIAGRAM OF THE INTERNAL STRUCURE OF A NOr.? , INCLUDING
STUDENT—INITIATIVE OPTIONS AND TRANSFER — AND - RETURN ACTIONS.. . . 8

_ _ _ _ _

FOREWORD

This work was conducted as part of the Army Research In s t i t u te ’s
(A R t) research e f f o r t on the a p p l ica t io n of computers in educat ion and
t r a i n i n g . The work was i ni t i a t e d and funded d u r in g FY ‘S w i t h i n the
Un it Training and F .dtscat ional Technology Technical Area under the
d i rec t ion and guidance of Dr. Frank .1 . H ar r i s , Chief and Dr. Joseph S.
Ward , Work Uni t Leader. Du r ing FY iti t h e’ E d uc at i on a l T~ chno1ogv and
r ra t t ~t i~g Stmulat ton Technical Area assumed t h e ’ task of comple t ing and
document ing t h i s work . Acknowledgement is ext t’~ d~ et to Dr. Beat rice .1~
Far r , t he conference e’~’ord inator • who a iso served as e d i t or I or a l t
t echn ical pap e’rs , and to Dr. Leosi H , Nawre sckl • who ch a ir e d the sessions .

The pr imarv impetus for this e f fo r t was a pt -eva i l l ng I eel tug anKsng
members of the DoD r esearch commu ni ty tha t t here was Insti l l i t ’ lent In l e t —

a~’ t ion between in d i v i d u a l s engaged in r e ’ s easc h , t hose (two 1 ve’,I in dt ’ —

Vt’ lop ing authoring languages and c r ea l ing s~~t t w ar e , and pur~’i’\’o rs est

hardware , As a r esu l t , system r equ i r emen t s I or user s t,a ut ho t s\ were
f requent lv neglec ted to the d e t r i men t est s v s t ems ~‘I I i’e’t t v t ’ness. I’o
par t t a l ly correct t h i s s (t wi t ie~n , AR t cetudite (i’d :5 t h r e e ~~~ ceint e’rene’e

ot selected represent at (vi ’s t rout each ot these’ de~t~~~ ins t o ti t~~e’tt s~ mut nat
i n ter e st s and problems . The e’Oflt er esie’i’ was d i t e c t i’d I ciward l a c i t i t a t tug
research direc t ions necessary for the e’f t t ’t’ t ly e app I t cat t e sit ot e’esflt p t t t e’ tS

to t r a i n in g needs , wi tit mitt I arv t its thing as a (oe’a I potht

rhrotig h the ’ Sc t en t it ic Si’rv ie’e’s Pr ogram ot the 11 5 Anuv Research
Ot (Ice , a cont tact was let w ttt~ Lit t’ I ~~ t ’o t umbus Lat ’orat or tes t o p r o—
cure’ t he se’rvi e’es of ten st’ii ’nt I s t s anet edue’:u e’t s cu r r en t iv t n v o t v e’d in
a w i ~le var le t v ot endeavors re ’ tat tug to ~.A I . l’hese 0x14 ’rt s , a long wit is
AR I st .s t i membe’ r s , and t ecI~n it’ at and ust ’ r s- e’pr 0 sen t :51 Vi ’ S I 5’ Out e.ie’h o
the’ se’rv ices research organ L:a t ions or opCt:%t t e sna 1 t’A I at’ t iv i t Ii ’s were
t h e ’ pr imai- v part it ’ (p a n t s o t the con t e’rI’flce’ (se’c’ Appt ’nd I \ A) . Add i t tona l lv •

n~s me t h a n t I t t v I net lv i dna is f rom t~’D anet ot her gt’v i’ risen t a gene’ I Os r I — ‘1
va te ’ research groups and academia we’Ve ’ in v l t e ’ el to t h e ’ I it’St day ot t h e’
meet Ing as observers. The con I eront ’e’ Was he Id ~— l t Sept ember I ‘~ s in
Alexa n d r i a , Vi r g t h(a . D ur i n g the t I rst morn tug session • represent at t ves
I torn the Army , Navy , and Air Force’ gave ’ I erma 1 present ,‘tt iOns et i’ t :5(1 lug
past and present act iv It it’s re tat eel to comput e’r—based (Ia in lu g. At t e’tt —

ton was a iso t ocused on cu r r en t as~ i ant (ci pat ~‘d pr e sts te ’m : s ie ’as . The’
at te’rneson cons i s ted e’t exchanges he’twet’n the ’ p a r t it ’ ip an t s and observers ,
and the’ r e ma i n t u g two days were spent In s ma l l group pt-oh I I’Th solv tu g
se’sstons among p a r t i c i pan t s to l towed b\’ suwfn:%t’v group tsre’sent at Ions .

As m i t t a t lv envis ioned , t h ’ wo r k i n g sess ions were’ e ’xpi’t’t i ’d to
emphasize t iso ant hot tug process. Al t hougis lie’ ma O% I ocus re’maineei

as planned , during the course est t hi’ cont i’s e’n~ e ’ it ise’e’am.’ clear t hat
th .’ $e’e’pi’ eSt I l ie ’ pro!’ tern ne’e’ess It a t eel e’xamlnat ion ~‘t at I It Ic’ tat

tnt c it tgent’t’ , t at ’twtwk tug and moth’ is ,,iesc s it ’ I ug st ss~tent s , lust ssc I os
.tnet the te ’.t t’n lug process.

The goa l of the workshop was to document the consensus of t h i s
d ive r s i f i ed group of experts w i t h respec t to: d e f i n i n g user needs and
requirements for author languages , iden t if ying deficiencies within
existing languages and establishing prior i t ies for future research.
Although participants did identify a number of the most critical issues,
divergent views emerged regarding research approaches d irec ted toward
these issue.. Consideration was given to the relative merits of student
au tonomy , system control or mixed initiative systems. A variety of
specific applications were considered and the special problems of authoring
in student—controlled instructional environment were explored in depth.

~~~~~~~~~ c~~~~~~ :ct~~ 

-

1



A DESCR IPTION OF BASIC AUThOR AIDS IN ORGANIZED SYSTEM FOR COIIPUTER
ASSISTED LEARNING

BRIEF _______

Requi rement:

This paper is the first in a series of reports emerging f rom a
conference on research problems and directions for computer based
instruction systems. The conference was sponsored and conducted by
the Army Research Institute as part of the F? 75 Technology Base Work
Program and included in the “DoD Integrated Plan for  the Use of Com-
puters  in Education and Training.”

Approach:

A three day conference was conducted to determine research issues L
relevant to the improvement of the interface between computer based
Instructional systems and instructional developers (authors) .  Partici-
pants consisted of ten technical consultants charged with determining and
reporting on major topic areas. Additional invited technical and user
representatives (governmental, industrial and academic) participated
either actively or as obse rvers th roughout the conference (Appendix A
provides a list of participants). The first day was devoted to (I)
forma l presentations by military training system representatives
descr ibing current  and planned computer based ins t ruc t ion  ac t iv i t i es
w i t h i n  the m i l i t a ry ,  and (2) roundtable discussion to delineate and
d e f i ne major topic areas to be addressed. During the fo l lowing two
days participants were divided into 4 working groups. Each group pre-
sented a summary of key issues and approaches to authoring system
research. Active pa r t i c ipan t s  were assigned follow on report topic-s
f rom these summary items,

Determinat ions :

A programming system should provide a structural basis capable of
assisting authors in organizing their concepts. This s t ruc tura l  basis 9
should prossess a multid imensiona E addressing scheme which f a c i li t a t e s
“moving around” in the program as the author works on I t , and permit
easy reference to specific items which need to be examined or changed.
W h i l e  using only a minimum number of fundamental constructs , an ideal
system would allow virtually an infinite variety of effective program
structures to be created.

The structure of computer programs is determined principall y by
the task or interaction which the  program is designed to accomp lish .

but it shou ld also make allowances for  the au t h o r ’s personal styli’
(within the constraints imposed by the s t r u c t u re  of t h e  particular
prograumsing language that is being used).

--



An author language in the type of system that this report describes
must be designed from the point of view that the actions of the language
are reflected In operations upon the on—line data base. It should be
quite possible to make rather extensive dynamic modifications to the
system with minimal author interactions , since required changes in the
st ruc ture  and content of existing data bases can o f t en  be done auto—
matically.

Utilization of Findings:

Experience In the Army has shown that the length of time authors
(in the sense of courseware developers) will serve in that capacity
tends to be two years or less. Hence there is a need to rapidly achieve
an acceptable performance base to maximize their availability , and hence
cost effective deployment , within the training system.

In the case of computer based instruct ion , f u ll p rof ic ien cy (de f i ned
as the ability to enter and ediry text , develop lessons on or off line ,
in addition to developing simple macros and sub—routines) should ideally
be achieved within six months .

If the preceding need it to be met , specific procedures must be
incorporated within the instructional system itself. This report addresses
those procedures and , irs part , describes the functional requirements
necessary to provide the appropriate procedural capabilities .

- 
..—



A DESCRIPTION OF BASIC AUTHOR AIDS iN A~ ORGANIZED SYSTEM FOR COMPUTER
ASSISTED LEARNIN G

INTRODUCTION

Readers who are famt liar with the TICS system will recognize that
much of the framework for this paper is embodied in tha t  system. This
is partially because of the role the author has p lay ed  in the development
us  T I C S .  A l so , i t  i s  .t useful example for many of the concepts which we
w i l l  discuss , s ince I t  is one of t he  f e w  sys tems  fo r  c o m p u t e r — a s s i s t e d
instruction ’ designed to include many of the features now referred to as
“author aids. ” At the same time , it is not my purpose here to describe
the T I C S  system nor to necessarily limit ourselves to features which it
provided.

It is contended that  in order to maximize ass is tance  f o r  the
au t hor , a system for computer—assisted instruction mus t be organized
w it h tha t as a p r inc ipa l  goal. I t will generally not suffice to add -ì
few au thor aids to a programming language, and it will be difficult to
provide a full set of desired capabilities if the underlying system is
Ill—prepared.

Thus , the present paper , stresses certain fundamental design aspects
of a programming system, of which only a small port ion is the programming
language itself.

These bas ic fea tures include:

• providing a structured format for the  au thor ’s program;

• treating the program as a da ta  base , con ta in ing  not only  the
usual computer—commands--to—be—executed , but also information
about the content and structure of the program;

• separa t ing  the operat ional  aspects of the authoring and del ivery
componen ts of the  sys tem and inc luding  e x p l i c i t ly  the concept of
conver ting the f in ished program in to d if f e r e n t forms , sui table
for execution on different hardware systems ;

• exp l ic i t ly incl ud ing the notion that the program , viewed as a
structured data base , Is not simp ly a text file hut a collection
of information——much of which is self—descriptive——an d which is
organized to be amenable to study and examina tion ;

• discarding the notion that a program must be complete——in any
sense——in order for it to be t r ied meaning fully ;

t
It is in keeping with current notions to emphasize t h e  use of the computer

as .t freely available learning tool , ra the r  t han as an addit tonal forma l
mediu m of instruction . Nonetheless , I will use the historlcaflv entrenched
term , computer—assisted instruction (CAI~ throughout most of the paper .

- 
_

- -—-.-



• providing mechanisms for the computer I t s e l t  to a u t o m a t i c a l l y
perform many of  the functions normally associated with pro-
gramming , such as: checking structural completeness a t  a local
lev el , finding errors caused by edit ~~~ assoc ia ted wi t h progra m
cross—references , generating default behavior for commonly
encountered execution—time faults , allowing a large set of
student—initiative actions.

The discuss ion will be separated into a number of parts for con-
venience in focussing on the par ticular types of assistance that a
system can provide. At the same time , it will be recognized that
coherence and internal uniformit y within a system is itself an important
factor in determining ease of use; the connections and over—laps among
the topics will therefore be large in any implementation . The topics
will, be:

1. Frameworks for Structuring Author Programs

2 .  Language Characteristics

3. Display—of—Program Tools and Program Documentation

4. “Built—In ” Operations and Subrout ines

5. Con trols for the Authoring Env ironment

6. System Maintenance of the Program Data Base

7.  CreatIng Data Bases for Student Use

8. Automation of Student Run Time Facilities

9. Preliminary—Trial Tools

10. Editing Facilities

FRAMEWORK S FOR STRUCTURING AUTHOR PRO GRAM S

A system for programming should provide a structural basis which
helps an author  to organize his concepts. Ideally , it should provide
s t ruc t ural units  which can match the author ’s conceptual uni ts .  Secondly ,
the structural basis should manifest a multi—dimensional addressing
scheme which makes it easy for  the  autho r to move around in the  program
as he works on i t , and to re fe r  to spec i f i c  items which need to be
examined or changed. At the same time , the system must allow essen-
tially an infinite variety of effective program s t ruc tu res  to be
crea ted , preferably with all structures based on the use of a minima l
number of fundamental constructs.

All computer programs have a structure to them , determined mainl y
by the task or interaction which the program is to accomplish and also



by the author’s style as well as the structure of the programming
language being used . The structure of a completed program can rarely be
diagrammed as a one—dimensional list. However , that is the intrinsic
form provided by the majority of programming languages in which state—
ments follow statement in a linear address space. It is not surprising
therefore  that much of the recent discussion of “structured programming
has been concerned wi th the “problem” of branches; visualization of the
explicit or conditional flow paths represented by branches requires
jumping out of the one—dimensional program space to reach another spot.
This is analogous to keeping track of objects which pop into a fourth
dimension and reappear elsewhere, and explains why initial program
designs or flow diagrams are almost always diagrammed two—dimensionally .
Certain types of computer—assisted instruction programs are particularly
complicated in this regard , with large numbers of conditional flow paths
prescribed , which depend (during execution) on the exact circumstances
of the interaction .

It is entirely feasible to provide a two—dimensional program struc-
tural basis. We can design a programming system such that programs are
constructed out of separate units , called nodes or blocks with each unit
being connectable to the others by conditional branches. This is depic-
ted schematically in Figure 1. The issue is not simply to allow such a
st ructure conceptually , but to ut ilize it as an inherent part of the
au thor  environment.  Thus the system would include concepts such as:

at any ins tan t , the authors ’ statements refer to a “current—
working—node ;”

• nodes have names, numerical identifiers, and keyword phrases
attached to allow ready reference ;

• branches are explicitly double ended (e.g. from node A to node
B) and can be traced in both directions ;

• the address space is multi—dimensional. That is, each item in
the program can be referred to in terms of the 1,arger subunit
which contains it (if any), its item—type , and its name or
sequence location. For example, the author can refer to the
“second action (in the list of actions which are to be executed
if the) third condition (is true in the) node named sample—
name .”2

There is a second kind of structure to be considered , also, at the
level of the programming within each node. This is affected by the
programming statements provided , by the ex tent to which the forma t is
fixed (if at all), and by the actions which are system—implicit for
execution when the program is used , without requiring explicit author
instructions .

2The phrases In parentheses In this schematic reference would be implicit
and not actually included as part of any real reference to an item .

1

- - - -. - — - —i--- ~~
—. --- - . ,- - ---- .-



- i (H
~r

i i ----

10 I

17  -A

1
I ‘

I I  15

14 is

20 j~j

Figìtre  1 . “N et ” 1)t~igr am of a Port  to n of a Pro gram , Show lug Nodes and m l  erna 1

Br ancheS. (Two Different Pot cut tal Pnths are Shown , ______________ 
and



It is important to point out that there is no need for a node to
correspond to the concept of a presenta t ion—frame in an interaction
(a lthough i t  could be used in tha t way)  or for d i f f e r e n t  nodes to have
ident ical  or even s imi la r  e f f e c t i v e  internal s t ructure s.  There is a
tendency , when thinking of CAL systems , to imagine a part icular , f ixed
in teraction format; in the current context , this translates into pro-
viding a template or small set of templates for the internal node
structures , If the aim were only to achieve the greatest simp lifica—
t ions  of the authoring process, this would be an attractive direction .
With a fixed format , the system can provide a maximum of checking and
prompting ; I.e., the au thor can be guided through a form—comp letion
pro cess.  The apparent advantage , however , is overridden by the fact
that examination of what authors actually do when such constraints are
not imposed , indicates that the number of template s required is somewhat
larger  than the number of authors . A more important goal , therefore , is
to not constrain unnecessarily the structure of the interaction that
will ultimately be executed . (The system designer may nonetheless he
tempted t o u t i l i z e  the template concept for novice users , on the basis
that it is advantageous for  a beg inner when all inpu t Is exp licitly
requested . This mode — it provided — should he thought ct as a training
tool , however , rather than as a permanent aut her aid. )

To support the structural f r amewor k , It Is nt’cessarv to provide a
language , a format , and an Imp li ci t structural basis to~ node construction
which allows inf m i t  e structur al var t a t  Ions w ith in nodes to he created
out o I a smal l  number o I concep t ua liv simple statement s . I t is also
des i rab le  t or the sy stem to be able to provid e .it least a “pr oof—checking ”
of t he structural integrity o1 each node.

It is possible , In fact , to work with on lv one genera II zed basic
programming  statemen t , whi ch has the form :

I I ~ condition) (is true) t hen (do ) < a~’ t ion > and

<act ton) and . . . and < ~~~~~~ Ion >
A node contains a sequence of soch statements; each ( cond t t ion> Is
examined in turn and Its 8550t’ fat i’d st ring of .lct tons Is ca rried out if
it Is t rue . The sequence is general lv repeated unt 11 a hranch—t o—
another—node act Ion occurs , wI th Inputs he tug oht .i m e d  I rem the u ser as
demanded t’ t ther by imp I ft I t  or expl icit <act tons > . ( lvefl that the

4 ond i t  ions> can depend on a ll of the relevant par a meter s and that the
a I lowed (act  ions> are suf lii ’ t en t  lv encompassing, great  general  i t  v can
hi’ at ’ h ieved . The <cond I t !  ens • I o r e xnmp I e, muist hi’ able to depend on
how stu den t inpu ts map In to ant it’ tpat i’d responses, as Well as on aut her—
de f ined  and system ma in tained var i ab l e s  and p ar a met e r s .  F igure  2 shows
sehema t teal ly the tnt e’rna 1 at rue t ure el a nedi’ of CA I I orm wh I i’h may he
constructed on this has Is. Hero we see an .ue t iv It v o I the I orm: print
an out put (quest Ion) , get a response , t rv to map the response into one
el .1 set of ant le t pat ~t1 responses, eari’~’ oust varIous sr I t hme’t Ic or
out put act tons depending on t hi’ rt ’spt~nst’ gi ~‘en and on other parameters ,
give hints and get now respos ~~~~ , stu d sooner or later br anch to ano t her

—~.--••-—- • ~~~ ,—•---•~--•-- - •—••—•— ••—.-—‘ -• -. —- -—-• — —- —• -•—-- —



~~~~~~~~~~
—‘—-----

~
-------- ___

BRANCH—iN BRANcH— iN

QU T I ’ U T T) STVI)EN 1’ 1

f (F,T RESl’ONSl~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ IECK CONDITIONS:
IF TRUE ,DO ACTI ON
SEQUENCES

CON~~TlON : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CONDITIO N: 
~~~~~~~~~~~~~~~~~ IlIN 1’

I
CON~~ TION:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I

I’oRANCII—Ot’T

Figure  2.  Schenuat ii’ l)tagrnm ot the I sit erna I St uu~’ t nrc o I a Simp le

“Class t e a l ” CAl—T ype  Node.

_ _ _ _ _ _ _  - •  — S I



node. It is not necessary , of course , that all of these things be done
in any given node ; in fact , a node may be logically complete even if it
contains only a single item.

Beyond the elemen ts illustrated here , there are a number of more
sophisticated items which can be made available , either for the author ’s
explicit use, or as system— implicit actions. Figure 3 shows a schematic
node s t ruc ture  fundamental ly like that in Figure 2, bu t much richer In
its potential for student interaction . In addition to the previously
shown components , here is added the following :

execute - and - return .~actions)apply ing to both
clusters of nodes within the given program and to
external routines (which can be written in other
languages);

• automatic system handling , at execution—time , of
interruptive student requests for such things as:
looking—up in data bases, skipp ing to new points in
the program , backing—up to a point where an earlier
response was given , sending the instructor a message ,
calling upon an available subsystem (e.g. numerical
analysis or circuit design routInes), etc.

• report—writing actions to generate information for
the author , the instructor , or — for that, matter —

for a computerized file.

• automatic generation of a multiple—choice question
(based on the au thor ’s an t i c i p a t i o n s)  i f  t he  s tudent
input doesn ’t lead anywhere.

The f i r s t  item in this list deserves some additional explanation
and j u s t i f i c a t i on, An internal execu te—and—return  can he Imp lemented
through the a d d i t i o n  of a ~‘return ” <action> . Then , when execut ion of
a node is initiated by an “execute” action — as in the third conditional
In the node In Figure I — a “return”, occurring in the called or a sub—
sequent node , will give contro l back to the point inside the orig inal
node where the “execute” originated . These internal sub-processes are
useful for such purposes as (1) a s ingle  i n t e r a c t i o n  which  needs to be
called from different points In the program , (2 ’ ) interactive “hints ”,
i.e., a many—node interaction effectively contained In a single action
sequence , and (1) to d e f i n e  an execut i on—t ime duration for data allocation .
External subrout ines serve additional functIons : (1) facilitate system —
wide sharing of commonly used rout ines , (2) avoiding the need for dupli-
c a t i n g  ava i lab le  progra mming language tools , ( 1)  a l l o w i n g  convenient
separation of specialized programming tasks.

— —•~ - - - -— ,. — —-—— —~~ __.  —~-~~~~~- • - —  ___________



_ _  -- -~~~~~~~ -~~~~~~~
-

—

* *BRANCH—IN BRANCH-IN

- -~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4 SUB~~~~~INE J 4 /

CONDITIONS : LANOTHER NODE

IF TRUE ,
DO ACT ION ‘j  QUIT
SEQUENCES

[

CONDITION: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~—.
~~~~~~~~~~~~~~~~~~~~~~~~~~ —(~~TERNAL TRANSFER AND RETU RN ) 

~~

‘

L CONDITION: j YE CALL SUBROUTINE 
~~~ PRINT I

~~~ NTERN AL TRANSFER AND RETURN)~~~~~

CONDITION: 

~~~
RETU

~~~
_TYPE1 ~~~~)ThER~~~~~~~~_ J

____________ 

BRANr)I O~~~~~~

DEFAULT; NO “1- IJ~~ T RESPONSE IN
BRANCHES-OUT 1 ‘

~ ~
JLTIPLE_ç~Q~c~ M0DE.~.. I

(+) These are examples el action types , action sequences
can contain any ns.unber of actions.

(5*) Subroutine calls may be inser ted before  an outpu t
as wel l  as in a c t i on  sequences.

FIgure 3. Schematic Diagram of the I n t e r na l S t r u c t u r e  ot a Node , lnc l udt n g
Student—Initiative Options and Transfer—and—Return Act Ions.

8

-- -- ~~~~~S.~~~~~~~~~

L ~- ~—-~~~~~~~~~~~ -~ ‘—~—-



- —~~~~—— -~~~~~--‘- -. - ‘ ~~~~~~~~~~~~ .~~~~~~~ .-- - -~~~~~~~~~~~~ 
-

~~~

Within this s t ructural f ramework , inc luding the implicit components ,
it is also possible for the system to generate , automatically , a useful
classification of the s tructural in tegr i ty of each node . Execution of a
program must flow f rom node to node by branches , each of which is
specified as an action at the end of an <action> list associated wi th
a (condition). It is, therefore , possible and useful for the system
to tell the author , ahead of time , which of the nodes will necessarily
branch , which cannot branch under any circumstances, and which will
branch only if cer ta in (execution—dependent) conditions are sat isf ied .

LANGUAGE CHARACTERISTICS

The previous section describes a structural framework which can
serve as a base for the programming task. In conjunction with that
framework, all the information relative to a program being written is
maintained most conveniently as a structured data base, not as a simple
t e x t — f i l e l ist ing of program statements. The information which should
be maintained includes not just the program itself , i.e., the description
of what the computer should do when the program is run but also auxill iarv
information that is useful during the authoring process. This includes
a lot of rather detailed information , such as back pointers for all
branches , cross—references for items developed in one node and used in
another , all the locations in which each variable, literal , and subroutine
is used , flags which reflect the structural completeness of program
subunits , etc.

Thus, the author language in the type of system we are describing
must , first of all , be designed from this point—of—view , that is, that
its actions are reflected in operations upon the on—line data base.
This implies that in using the language the author will be very aware of
the structural framework referred to earlier , but the language itself
can be quite transparent to the actual structure of the data base and
the author need never be concerned at that level. Indeed , it should be
possible to make quite extensive dynamic modifications to the system ,
without troubling authors much , since required changes in the structure
and content of exis t ing data bases can often be done automatically .

Secondly , the language must be designed to be the language for a
unified authoring system, involving not only writing the program hut
also examining its logic , creating various displays in its structure ,
changing it , and trying it out. This point is worth stressing, since
the apparently simpler tactic of having separate languages——with d i f — r
fe ren t syntax forms and overlapping keywords——for each aspect of the
authoring task, is very disadvantageous from the author ’s point—of—view .

Third, the language itself should be readable. In particular ,
authors should be able to understand the intent of one another ’s input
so that as a community of workers they can be mutually supportive . This
requirement , by the way , is in addition to the need for clear and struc-
tured displays or printouts of existing programs or program parts.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fourth , In regard to author errors , the language needs to b~
designed to tac ii itate the system goa l of being geared to non—profess t t ’ I ~~% 1
programmers , and therefore it should he part icular lv toleran t ol user
errors . Wttt~ respect to the language , this should be r e t lect e’d I I rst is

an e f f o r t to min imiz e the f requency of errors , 1w choosing svnt ax and
content words that are easy to remember. In add it Ion , the lang uage
sy ntax should allow p inpoi n t ing of input errors when they art’ made. an~I
the system should allow convenient recovery from such errors when the~’
a re detected .

Fifth , the language shou Ed be conven tent to use (wl~ (cii imp Itt’s a ll
ci the foregoing) and also achieve an opt ima l ha lance between I cat ures
that are sometimes antithetic al t o each other——such as c l:ir liv and
brevit y .

DlSPLAY-OF-PRt~~ RAM TOOLS ANt) PROC RAM DOCUMENTAT iON

A common belief holds that it Is oft en easier to writ e a new program
than to mod liv an exist t ing one , This at t I tude arises , of course , t ron
the difficult v normally encount ert’d In tot lowing the st rue t tire and t h e
logic of a program w r i t t e n by someone else. For two reasons , thi s is
part Lcularlv unfortunate in the computer—assisted inst ruct tona l area :
(1) The relevant programs are oft en very comp 1 cx structural lv , w it ii non ’ flpath opt io ns than are’ usually found in other types otT pro gr am.s , and ~2 ’)
The opportunity for cont inuously modifying , Impr oving, and updating edo—
cat tonal material that a computer euv I i’onment p nov ides is her ebv mlii i —

mized . This latter point deserves some amp lifica tion . Teaching, unlik e’
many professional activities , tends not to build on the efforts of
p redecessors. That is , a teache r usually brings to class (wheth er
lecture, seminar or other format) primarily his own understanding ot the
subject and his own view of how to present that material. Aside from
actual changes which may have occurred in the subject mat t er i t s e l f , I c r
the most part , he is no different from others who have previously taught
the subject , nor is the r e any part icular reason why he should do i t
be t t e r . As a result , the art of p ass ing on the most ct feet lye teach ing
“m i c r o — i n t e r a c t i o n s” fo r a given suh~ ect has not been w e l l developed :
nor is i t clear t h a t i t can ever he accomp l ished , s ince human tnt enact ions
are difficult to reproduce , and often awkward and unnatural in reproduc t ion .
Similarly , in the writing of textbooks , an author usua l lv takes respons tb t li t v
for an entire subject area wh i le It may he only a portion of his t reatment .
that is an improvement over existing work . Indeed , in avoiding the
potential charge of plagiarisms , he may select :i different , and possibly
less cogent , treatment for some parts than was used earlier.

In the new area of computerized instruct ion , therefore, (or , t or
that matter , in regard to ~~~~~ medium which is both modular and cap abl e
of ready modification) it is desirable to Increase the ease’ with which i

person can build upon existing material. Then, after a period of time ot
ready modi f ica t ion) it is desirable to increase the ease w i th which a
person can build upon existing material. Then, alter a period of time

it)

one tend. towards refinement of the computer/student interaction ,
rather than a continuous cycling to new beginnings. (The questions of
ownership , copyright , etc., also obviously need to be worked out.) For
computer programs , this requires a powerful set of tools through which
later authors can first of all understand and subsequentl y modify and
augment existing programs . Since even the initial author will find it
difficult to remember the critical details of a complex , interactive
program after even a short period of t ime , such tools will be an impor-
tant primary authoring aid as well.

In this area as much as others , maintaining the description of the
program as a structured data base proves useful. In viewing the structure
of a program , the author should be able to request “net ” diagrams , such
as the one shown in Figure 1. That is , he should be able to ask for the
node-branch structure from a given node , forward (or back) a given
number of branches . Implicit in such a request ic a host of structure—
based questions such as: Where do we go from here? How can we get
here? Can we get from here to there ? With such information in hand ,
the author will find it useful if he can request a “trace ” of a given
path. For example , the author should be able to ask to see the outputs
and other actions that would occur and the conditions that need to be
sat isfied for execution of the path through (say) nodes, 4, 5, 3, 11,
and 10 (to use identifiers from Figure 1).

For the next level of study , the language should include requests
to display in text or (where appropriate) in graphics , the detailed
contents of the units of the program, in pieces large or small, utilizing
the multi—dimension addressing scheme of the data base. As examples ,
each of the following might be the object of a display request : r

nodes 17, 19, 21—26, 30
node 14
the entire program
the definition of the word “anyword” ;

or , within the current working node;
the outputs
the third <condition) and its <action > sequence
all anticipated responses
the thi rd anticipated response
the fourth(action) in the second conditional.

In each instance, of course, the printout or pictorial block—diagram
should be formatted to reflect the structure of the piece being displayed.
In addition , the author should be able to divert the output to a high
speed printer or to a high speed , hard—copy , graphical-output device.

A related set of tools is associated with the use of node names and
keyword phrases. When properly assigned and with appropriate search
requests these allow a detailed and contentful map of the program to be
created by the author and used by him and subsequent examiners .

11

In addition, the system-maintained maps of the use of variables ,
·onstants and sub outines, provide another useful mechanism for sensing
the program design and constitute an essential aid for making modifi a­
tions.

Beyond these, the system can also easily include "documentat ion"
features of the ordinary sort, whereby explanatory comments or r ema rks
can be attached to nodes. Indeed, the system can go well beyond the
ordinary use of program remarks. It can allow, for example, a listing
to be created of only the node identifiers and remarks themse lves (and
perhaps the keywords); if the remarks are suitably preparE-d this can
provide yet another brief but in-depth view of the program. Also. the
s ystem can allow both "active" and "passive" remarks t o be attached.
The former are !ntended to act as reminders f or the current author, 3nd
are printed out each time the node is entered, either as the working
node or during a tria l-run.

All of these features fit under the general concept documenta ti on,
of course. Some apply in the historically limited sense of a printed
copy of the program, with explanation. Others enlarge the concept of
documentation to include a variety of new modes by which the program can
be examined.

BUILT-IN OPERATIONS AND USER SUBROUTI NES

Earlier, we referred to a programming statement in which the author
specifies which (actions) are to occur if a givet. (condition) is true.
One can think of such< actions) as comprising two categories: those
that are explicitly built into the syst.em, and those which a re not.
~ctions)which are not built-in can be implemented through a single
generic< action) , perhaps of the form

call subroutine name (argl, arg2,) ...

if the subroutines are available or can be provided by (or fo~) the
author.

A system can be designed t o be s ufficient ly exte ~ i ble so that tlH'

distinctions between built-in d external operations are not ve r y
pronounced. It may be useful, however, to point out the us ua l dis­
tinguishing attri butes of buil -in operations: (a) the full speci f ication
of the action is an inherent part of the language (whe r as, for example ,
the interpretation of the arguments in a subroutine call if done by the
external routine itself), (b) the< action) is a guara \ teed part of the
(student) delivery system - which, in principle, can exist in a varlet~·

of hardware manifestations, (c) the (action) is fully documented in the
primary user documentation, included in training aids, etc. and (d) the
individual built-in< actions) each have their specific place and refer­
encibility in the strurtured data base description of the program

12

whereas all subroutine calls are treated alike.

The open—endedness provided by the subroutine call <‘action) is
extremely useful. It makes it unnecessary to duplicate existing program-
ming facilities for writing specialized , efficient , large—scale numerical
or other analysis routines. It facilitates splitting—off the associated
programming tasks so that they can be functionally described by the
author , but actually programmed by another person . It simplifies the
sharing of specialized routines and , in general computer utility environment ,
allows the straightforward incorporation of routines written for other
purposes. It also provides a ready mechanism for the system—programmers
to effectively expand the “supported ”<action .> set , without actually
having to make ad hoc changes in the language analysis routines , the
structure of the data base, or the rout ines wh ich manipulate the data
base.

In the TICS system, there are seven built—in< actior~~types , which
can be described as follows: output text to the terminal and get a
response; output text to the terminal; write text entries to a report
file; do mathematical or character operations on variables; execute (a
cluster of) nodes and return; call an external subroutine , branch to
another node. Certain of these also include a number of built—in sub—
operations . For example , the output < actions,> include facilities for
formating and page composition , the mathematical operations include the
standard set of numerical functions , and the character operations in-
c lude the functions normally available in PL/l , e.g. length , concatenate .
substring, etc.

On the other hand , the graphical output constructions are provided
through two different modes: (a) the use of a number of subroutines ,
each accomp lishing relatively standard tasks such as x—y plots or his-
tograms ; and (b) the use of an effectively separate interactive subsystem
for constructing drawings , which allows the author to create and store
sub—p ictures and pictures , which subsequently can be operated on and
displayed through subroutine calls during execution of the program. The
use of the picture—drawing subsystem , itself a major and independent
development project , is illustrative of the flexibility and advantage
associated with a general utility operating environment . At the same
t ime , one cannot overlook the fact that to the extent that authors
depend on such “external” facilities , the appropriate routines must be
provided in new hardware implementations of the entire system or of the
(student) delivery system alone.

AUTHOR T O AND CONTROL OF THE OPERA TIN C ENVIRONMENT

1)lfferent authors have different working styles , and different
aspects of the aut hor ing lob may require dit tere n t modes of operation .
:\ programming sy stem should be accommodating in these’ respects. h

I t

-— -~
—

Wii i to on— I i~~e’ us~’ ~‘t a l o c i , l m m i u Sv , . t e ’m i t .ikt’ii I or granted , t he
value’ ot an ot f—I tnt’ input m ode’ (e’ . g. pun ch ed card or t IN’ e a s s et I . ‘t
should not he ove’ r l ooked . Some’ ant hor s , t or ‘ xamp 1 e , w ill p ie ’ to r o
w r i t e pa r t s of the program out on paper , with aiiot her person — not
necessari ly t a m t lt a r w i t h the system — simp ly t ranscribing the input
This operation is often done just as well vi a off—lin e’ input which is
usual ly a less expensive mode. Of f—line Input can also serve’ authors
whose on—l ine ai ’e’e’ss t o the system is lim ited by remoteness , t e r m i n a l
ava i lab i l i ty , or us.ige’ and comnuin I cat ion costs . I t sho u ld he recogn I .~ ed
t h a t o f f — I inc i n p u t , in t t i t ’ p r e s e n t cen t ex t , has t h e ’ same ef [oct as on— P

line work, name lv to augment , mod liv , or examine the on—lin e dat a base
description of the program , and the two modes can be used in uxt a—
posi t ion.

\ re l , i ted coii t ro I • to b ’ used on—i t no • i s a block i nptlt mo de. I n
t h Es mode , a sequence of Instruct ions can be t vped In and sub sc~ t i c n t iv

~‘d [ted t d e s i r e d , before being ro I eased for processing , Some Jut hors
appear to prefer this chunk—by—chunk app roac h during ce’r t a in parts o t~
t h e ’ l o b . For s i m i la r reasons • authors want to cont rol the degree ot
sv”~~em verhos i tv associated with the processing of their Inputs. Thus,
We’ have found it useful to provid e’ a ch o i c e among three’ levels : verbose ,
which is m l Iv exp licativ e of the’ svst em :lc ions ; short , which v I c ids
the same information , hut In a high lv coded , abbrev iated form; anel
none , in which the system ’s commentary is ossent tall y limit ed t o er r o r
messages. t.

When working on—line • authors may h.i~’e’ i i I t erent programming st rat e’—

g i es which need to be ace’ommoda t eel. F~ r examp le’ • one may choose’ tel (t r’.
to~ fully spec ify each node in turn • considering all the’ possibilitie s
that might occur at execution—t ime in a full sequence of <conditions)
and associated <actions > . Another may prefer tel develop a s i n g le ’ path
through manY nodes • going back to each at a l i t or t tine to cons I tier other
possib ilities and their resultant paths . This is a part icularly advan-
tageous mode f or an author who wa nt s to deve’ lop the ma In l ine • or
“skeleton” of a t u t o r i a l f i r s t , b e f or e put t 1mg in remedial mat erial or
dealing with specific student errors , etc. it goes without saving that
t h is requIres a 1 lowing the au tho r t o mov e a round free’ iv in his dat .i
base , and tools which help him to f i n d his w ay ,‘iround t o see what needs
to he completed ; i t also means that the n it hor needs to he ,ih to to rv a
prog ram — and to let students l i s t’ it — while it is st ructural iv incon~p lt ’t e’ .
Th ese too Is are discussed in other parts of the paper . ospe ’ I all y sect ions
on Automat ion of St ude’nt Run—lime ’ Fac i l l t l os and Pros’ 1 st on for St u~k ’t t t
Initiatives and Prt’llmlnarv Trial lools.

- - -

SYSTEM_MA INTENANCE OF THE PRot:RAM UA l’A KAS E

Reference’ has already been made’ t o t h e’ utilit y of main~ .i lntng t h e
program descr ipt ion as a structured dat a base’ during the authoring
process. ~1av of the en t r los made i n t h e’ dat a base and elpera t ions on It

1..

- - - -

art ’ implicitl y required to allow the system to p r o v i d e the desired
autho r ing environment . At t he same t ime , we want the system to handle
all ot the necessary chores with litt le or no Instruction from the
au t h o r . E x a m i n at i o n of some of these w i l l he lp t o e’larifv what the
svstCm must do and the underlying importance of the data base in aiding
the aut hor . As each item is created it Is assigned a numerial ident-
ifier in the multi—level addressing scheme. Interconnections between
items are noted ; forward and backward pointers are entered for branches;
cross—references are entered for Items developed in one node and used in
a n o t he r . Tables are kep t rega rdi ng the loca t ions in which variables ,
l iterals , and subroutines are used. Flags are Set when modifications to
th~’ program lead to possible or certain errors. Subunits are monitored
cent iimouslv for structural completeness.

Those types of operations are fully automatic. Certain “main tenance ”
operations require user requests. These include: “garbage collection ”
and the ordering of items within the data base; checking the stored data
for integrity against computer errors; allowing restoration of earlier
program states; translation of the program description into a form (or
forms) required for one (or more) delivery systems.

(‘REATINC; DATA BASES FOR STUDENT US E

Data bases for student use can have a variety of forms and appli-
cat ions . For certain program designs , elata bases and the special ized
routines which understand and manipulate them arc the central aspect of
th e interaction; for others , these components serve only as an auxilliary .

S t r u c t u r e d data bases designed to contain the “knowledge ” in a
given subject have a particular role in computerized instruction , for
the so-called generative mode of operation. Here , i de a l ly , driver
programs designed to work with the specific data bases generate ques-
t ions , check statements , answer questions . etc., in a “conversation ”
w i t h the s t u d e n t . In the same vein , spe”cialized routines used in con—
junction with appropriate data bases can carry out “deep—analysis ” of
student or author—provided input , to Implement a varle’tv of forms of
Interaction not easily handled in the “anticipated response” framework.
Thus, in teaching a foreign language, for example , one cam utilize
rou t i ne s which check the s t ruc tu re of student—ce”nstructed sentences and
answer ~;uestions about the structure of sentences presented by the
aut hor , and in teaching circuit theory , the computer can calcula te
n u m e r i c a l ly q u a n t i t a t i v e responses and ques t ions about c i r c u i t s on the
b a s i s of st n i l l a r l v programmed models for t ha t s u b je c t . This “artificial
i n t e l l i g e nc e ” approach is clear ly a power fu l one , a l t h o u g h l i m i t e d to
those’ topics where the knowledge is s u f f i c i e n t l y w e l l orgatuized to allow
precise summarization in a computer program and assoc fated data base.
So, far , not too much has been accomplished in regard to pro\’ I ding
i n t h o r a i d s s pe c i f i ca l ly fo r t h i s purpose , and i t Is t a i r to say that
pre tt ’ss tona l lv e’ompeten t progranm~ers arc needed . Perhaps t h i s is because
su f f t c len t iv u se fu l genera lit it’s abou t the’ ~ t rue ture ’ of knelwleel ge’ have

—— -~~~ —~~~~~~ - - - .-- -.—..—~
--.- - - - —- - - — -S—

~~~~~~~~~~



yet to be developed. 

The full subject of data bases in instructional use is much bro<hle r , 
of course. An additional dimension aris s in connection ~ith the us~ of 
structured data bases of numerical and/or character string information, 
some of which may be of prior existence. It is clear that for such pur­
poses one wants to allow access to fully general data base struct ur es . 
Within the TICS system, for example, this is accomplished fairly r eadil y 
·through subroutines which use the data base in question directly and/or 
which act as interfaces, transferring data between the proRram and the 
external data base. 

The simplest type of data, normally intended to be used as an 
auxiliary aid with an interactive program, is j ust A glossary or dictionary , 
consisting of an (alphabetical) listing of ~ords or phrases, with each 
word of phrase ttached to a definition. For this, the system can 
easily provide the author the requisite operations for creatin& entries 
and their definitions, and provide both the author and student the 
requisite look-up and display operations. A useful extension of this 
concept is to allow each entry to be specified as a thesaurus-type list, 
a single definition still being associated with the entry. This more 
realistically recognizes the multiple meanings of words and phrases, 
which are effectiv l y synonomous. The provided look-up operations must 
then be sensitive to the additional complication, of course; finding 
~ords wherever they appear in thesaurus lists, and dealing appropriately 
with situations in which words and even partial lists a~pear more thAn 
once. Another extension of the concept is fo r the system to provide 
more than one such data base, each with a different name (author selected). 
to be used in different contexts . In a foreign language program for 
example, one can be used for the meanings of words, a second for pronunciati on 
guides, and a third for etymological descriptions. As another example, 
separate data bases can be used in relationship to theoretical concepts, 
one for definitions, a second to present examples, and a third to e~~lain 
the relationships among different concepts (and using the thesaurus-lis t 
aspect to connect concepts which are related in specific ways). It has 
also proven to be useful to allow the author to insert a special coded 
symbol at any point in the definitions, which causes the execution-time 
system to stop and ask the student if he wants to see more. This gives 
the data base an inherent "multi-level" aspect. 

Such data bases can be useful learning tools for students, even 
without additional structure being imposed or mor e complicated data base 
interrogation routines being provided. An apparently valuable con­
vention is for the author to explai n each concept (i.e., defi~e each 
word or phrase) in terms of whatever words and concepts he believes to 
be most appropriate, but taking care to similarly explain each concept 
(or word) he uses which is not to be found in a collegiate-level dic­
tionary. With such a scheme, the structure is implicit in the author's 
explanations and the student provides his own "tracking" process . 

16 



It is often only a matter of cost and convenience whether such data
bases are used on— or off—line once they are created. Therefore, a
mechanism should be provided for obtaining a formatted and page—composed
print—out , suitable for reproduction.

AUTOMATION OF STUDENT RUN—TINE FACILITIES AND PROVISIONS FOR
STUDENT INITIATIVES

A system can aid the author through providing automatic run— time
facilities which enhance the student interaction without detailed author
programming. These can be thought of in terms of two types of activity:
first, the implementation of actiozs which are implicit in the author ’s
instructions and the structural aspects of the system, and second, the
provision of options for student initiative and control of the interaction.

Among the first type are the execution—time component of activities
which have already been mentioned in respect to the direct authoring
facilities. These would include, for example , the response—analysis
package; on the one side allowing the author to readily specify response
analyses to be done, and on the execution side carrying out detailed
response mapping without required detailed author programming. Another
example of this type can be seen in the graphical display area where it
is again necessary that simple author instructions call into action
general purpose and complex routines.

The run—time system should also “back—up” the author by providing
sensible default actions, that is, automatic recovery from situations
which are logically imperfect during a given interaction. For example,
many nodes will be structured such that various branches—out exist,
depending on which one of a number of anticipated responses is given.
Generally speaking, the interacion defined by a node will be more inter-
esting the larger the number of possibilities covered by the anticipated
responses, and the more subtle the differences between them. On the
other hand, it is clearly impossible to deal with every conceivable
student reponse and request (nor would that necessarily be desirable).
The issue, it should be noted, is not simply whether the system/program
is prepared to map the arbitrary response into something which is ~ean—
ingful to it, but also whether it is prepared to carry the interaction
into the implied new area. Thus, there need to be mechanisms, author—
explicit as well as automatic ones, for dealing with unanticipated
student input. At the first level, of course , the author needs to be
able to specify the equivalent of: L

“if the response is none of those which I have anticipated then,..”;
often , the final action specified here will be a “hint’ rather than a
branch. k~hile the advantage of having locally relevant continents at this

17

— ——  
‘~- —~~~~~~~~~~~~~~~~

-— .-
~~~~~ -~~—~~~~-~~~~~~~~~~~~~~ --- —- - _______


point is great, the ultimats reckoning is only postponed , not eliminated.
At he’ second level , therefort , t here needs to be’ an ab so I ute’ meeh an I sr

or ensur ing that the stud en t at least acc ep t s one of t he an t i c I pated
r espons~’~ , assuming tha t he wan ts the i n ter ac t Ion to c on t i n u e . The
obvious mechanism is to create a m u l t i p le choice fo r t h e student by
p resenting those responses which the author did a n t i c i pat e (but cxc luel I i t ’~
those which the s tudent has alread y gi ven and those which t i le ’ au thor
prefers to rema in hidden) , This sy s t em—n et ivated d e f a u l t is an i n i p o r t an t
autho r—aid , espec 1811 ~ du r ing t he t r I al—and—development per led for a
program . In effect , It allows the author t o concern lilutsel f lull 1:1 liv
on ly wi th the student responses which lie believes to be most . l i k e l y
and/or most deserving of recognition . Subsequent analysis of actua l
trials may then lead to the inc lusion of additional ant Icipated i-espouse ’s
and associated sub—interactions .

The concept of student control and initiative during the cumput e’r i :e’e 1

in terac t ion is important from two perspectives. First , if the system
i tself Is approp r ia te ly designed , it ~s like ly that the au tho r ’s pro gr am-
ming task wil l be easier t.he more t h ’ learning process Is left to the
student ’s own ludgment . Second , there are a number of p dagoglc reasons
to believe that the student ’s learning will be enhanced as he sees
himself more in the position of ‘ digg ing out” ideas which he needs to
know, and less as the recip ient of :i pre—structured flow of Information .

Some run—time facilitIes are close lv associated with the not Ion of
student control and Initiative hut also require author c o n t r i b u t i o ns . In
t h i s catego ry we Include , for example , the’ student—system p o r t i o n of
data base handling routines tha t were discussed in an earlier section .
Another aspect of student control is exemplified 1w student-initi ated
jumps to external routines or to other portions of the given program.
Regarding the first , the author probably needs to be able to restrict
the extent to which the student can access ether routines , e’xpi’clallv in
a general purpose utility environment. This can be accomp l i sh ed , of
course, by the author simply including a list of routines which the
student should be able to access from his program (and tellin g t h e
student what those are). Student— Initiated jumps to external routines
are readily accomplished as “In terruptive requests”, given at any oprort t in
for student input . These can be designated by a special code symbol (to
distinguish it from an ordinary response), the name of t he ’ des i red
routine , and any parameters (arguments) required . Execution control
flows to the routine and back aga in to the basic program. N o r m a l ly , t he

in the Tl(’S system , for examp le • each e’ond i t I ouu~ l—nc t I eln—sequlene’ e’ wit iclu it ,)
with a “hint—and—get —ant’t her—response” causes t hi’ list of coluell I I otis lit t he’
node to be recons Ielere’d from the top once aga lit • after he’ new response’ i a
ot’t :‘ m ed . To avoid “looping ’’ , howover • m d idua l ac t lens seqt ’ent ’i’s wh I cli
cause hints are not executed a second t ime . Thus • even if the’ nut lieu spec It it
a number of conditionals like t hi’ one above • each end ing w i t h a ci If t ereni
hi nt , a at ueient may u it (mate lv exitaus t those .‘xp 1 it ’ it t n t er ae ’ t I e111 cotflpolut’nt a.

I S

- - - _ ~~~~~ ~~~~ -~ ~~~~~~~~~~~~~ .MSá ~~ - • - ~~ --~~~~~
• -

request for input woul d then he repeated . However , in sp i t e of the
concep t t ha t such “ tnt errupt lye” jumps to external routines are student
(n i t i n t i v e s and , the r e fore , the s tude nt ’s own business , I t seems adv an—
t ageou s to “ t r ap ” a l l such r e t u r n s . ‘i’ii is ~ 1 lows t he nut her t o mon I t or
the ’ stude nt ’ s external activities , using, at the very least , the va lues
of pa rt ie’u lar v a r i a b l e ’s in the argument lists . Of cour se , I t I s a L a o
fea s ib l e ta create and t ransfer much more d e t a i l e d d i a gno st ic Inf orma t Ion
chit - tug the s tudent ’s use of ex te rna l rout tue’s. i’hls type’ of dat a weluld
be avai lable for both immediate purposes within the’ basic program and
or subsequent ann lvii Is by the Inst ructor.

S i m i l a r l y , for in te rna l l umps , It w i l l be necessa ry fo r I i i i’ au t hor
t o r e s t r i c t the access ib i l i t y to a l imi t ed number of l og ica l su b — I n t e r -
act ion s t a r t tug points , and also to provide some ind l e ’nt Ion t o the
s tudent of what those po in t s are and why he might want to l ump t he re.
T h u requirement is assisted , w i t h i n TICS , by the ’ i nherent node—bn~ eeI
s t r u c t u re. Thus , the author can a t t ach specia l keywords icr phrases~ t e l

tiode’s tor wh icli he wants to a l l ow “
~~ ump—te l ” access. At r u n — t i m e , the

exist e’iI ce ’ of such a descript ion determines the ’ access (h i i t tv of a node
and , wi th appropriate ’ look—up Inc h i t ie’~~, the l i s t of keyword ph rases
a l so gives the studen t the needed map of the pro gr am.

Another type of internal transfer , a “back—up ” , requi res no spec ia l
author preparation . Tb is student initiative , also imp lemented as an
i n t e r r u p t i v e request , allows the studen t to move back to an e a r l i e r
p1 ace in the execut ion of a program ; sp e c i f ic a l ly , te l 8 ~~ t nt whe r e he’
pr ev io us 1 ~‘ gave one’ response •inel nOW wants (Cl give anot l ieu . TIt is Is t he’
essential student cont i-e l, for I t a I lows him to cxp I ore the opt i et ii~ I

~~
its prov ided , to experiment w i t h answers which he may know to ht ’

w r o n g , and to recover t rem mis In terp re t ed response’s , etc. This capabi l i t ~
when t rc’ated as a true roll —b a ck ra ther t han a j cimp , requl re’s stack lug
he’ h is tory o t change’s In th e ’ va hit’s of variable ’s, so (lie ’ on gin.-t 1

a i t nat ion can he’ restored . i t a backup over an I mdcl lii i t e’ lengt hi et t

t nt e’rac’t ion is allowed • this feat nrc ’ m i gh t be’ vet -v demand I ng ot secondary
storage , especially when array var tab it’s are I requent Iv changed . Thus •
wh e’n lie’ s t u de n t —ti c l i v e i v har dwa i-c s vat em Is l int i t t’eI , i t wou ld p r o b a b ly
be’ necessary to use a “backup— stack ” of fixed le’ngt ii • wit h the maximum
b a c k u p ci 1at~ nce be ing a dynamic lone t I Ofl of vat -I ~ib I e change’s.

An addi t iona l at uelen(m l t tat (ye relates to e’e tmmun icat t u g with
I nat uti c tots anti l iii’ authors of programs . A at ude nt shoul ci be a b le t O

Seflel messages to t h ose’ p (’rselus , while he I a us I h g a program. ‘flu’
I nine’d l a cy ot t ha t feedback pa th , f rom the s tu d en t ‘ s p o i n t elf view ,
enhances it s V8 ltit’ e’et mI)ared to et t her me an s . 1 t is foas lIt It’, alt hough by
no mea ns nece’ssarv , f o r the me’ssngv ree’ I ~‘

~ t e’nt t o lie’ o n — l i n e ’, n i Se’ .

As a last component of fac i l l t ies wit I cli -i sv at i’m shioti 1 ci i~t Oi’ I eli’ I o

I i ’st e’r s t u d e n t m i t tat lye and co n t r o l • We’ ifl e’fl t 1 110 th e’ im p or t an t area ot

I ‘1

I

____________ _______________________________ ___________________ ~~~ -— —~~~ --—~ — —-~~~~~- — -- -~~-— -~~—— -
-- --

~~~~~~~~~~ 
—



catalog ing all.  ot  t lie ,-iva i lab It’ l u s t  m e t  Lena I modul e’s wi Lit In ;i sv at  cm
and of a 1 lowing s t udt ’nt a to  so Ice  t I ree l  v among (i tem and , indeed , t o

l ump from one to a n o t h e r,

PREL IMINARY TR iAL TOOLS

By p r e l im ina ry  t r i a l  tools we mean a ids  fo r  t r y i n g  out a p r o g r a m
before  it is completed , and fo r  o b t a i n i n g  u s e f u l  information rt’garditi~
the e f f i c a c y  of a program when it is In use hu t sti ll  be ing  r e ’ f fn e ’d.

A mode of operat ion can be included in which t hit’ author can p lay
the role of a student , Inputting appropriately , while the  system sluit —
lates the execut ion of the program , s t a r t i n g  at any point. This can he ’
done while the program is structu iali v incomplete and even erroneous . in
th is mode the system can print out its f low—path , e.g. , t h e  n o d e— t o— n o d e
branching, and the conditionals satisfied and executed . It can detect
and repor t a l l  unsa t i s f ac to ry  condi tions encoun tered du r ing  such a t r ial
and when dead—ends are reached , request  i n s t ruc t ions  about whether it
should pr oceed and , i f  so , f rom what  p o i n t .  In such a mode , the author
can be glyen a v a r i e t y  of commands for controlling the s i m u l a t i o n s , and
for  examin ing  and s e t t i ng  the values  ot va r i ab les .  He can also be
al lowed to set “s top po in t s ” at a r b i t r a r y  po in t s  in the program , which
ca”~-c automat ic  h a l t i n g  of the simu lat ion , to allow examina t i on  of the’
in stantaneous  s ta te  of a f f a i r s . An a u th o r  can also interrup t such a
simulation to examine or to modify any part  o -  the program , and cent in u e
the simulation after changes or new entries are made.

It is also use fu l  to t r y  the program w i t h  real s tuden t s , even at
very early stages of program development. For this purpose , a mode of
simulator operation can also be provided in which the auxlli,-i rv (path
inforniat ion) output , the special user—control opt ions , and the’ mechanisms
for directl y affecting the program data base are Inhibited. Apart from
program incompleteness and errors , in this mode the simulation s h o ul d
have exac t ly  the same appearance as the  u l t i m a t e’  execut ion , in c l u d i n g
for examp le , the full availability ct the student ’s interrup t ive requests .

When a structurally complete version of a program is ready,  I t  can
he used in the s tandard del ivery  sy stem.  U su a l1~’ , however , the a u t ho r
w i l l  s t i l l  he anxious for  rapid feedback on the use of t h e  progr am t e l
f u r t h e r  improve the i n t e r a c t i o n  on the  basis of broader  expe r i ence .  l o u
tb -is purpose there are at least three u s e f u l l y  automated mechanisms
which can supplement direct communication with the student—users . Tin’
system can record the history of each student ’s interaction , that is , ol
the flow—path , including all of the St udent ‘s inputs. Th is al lows be~ t h
a further review of the logical consistency of a pr ogram and also a
moni toring of the actual student responses (or Inputs) given at each
point. We have earlier mentioned provtding a student facility fot
sending messages to the author of the program. This  is part icularlv
useful when the student encounter s error s in -i new program.  A t h i r d
mechanism gives the author the abilit y to “wr i te a report ” to h i m s e l f

: o



during the execution of a program. Specific entries can be written I
the report whenever specific conditions obtain at any point in the
program. In this fashion , the author can generate a file of whatever
data he believes will be useful. This may include , for examp le , unan-
ticipated responses, notice of particular branches taken , values of
variables (or the point at which a given counter reaches a certain
value), the time it takes for a student to respond in particular nodes,
etc.

When it is desired , it is feasible for a group of such reports to
be processed by provided routines, to obtain summary data. In the same
vein , it is possible to provide program—specific but student—global
variables in which execution—statistics relevant to the entire student
user group are continuously maintained. Needless to say , all of these
mechanisms are also valuable to non—author instructors , who later happe n
to have responsibility for  the student ’s use of th e program .

EDITING FACILITIE S

Many of the features described in previous sections, particularly
the  ones on Display—of—Program Tools and Program Documentation and
Preliminary Trial Tools, relate to examining a program in order to
modify it. The process of modifying a program on—line is generally
referred to as “editing” since programs are usually line—organized text
files , and changes are accomplished with the aid of a text—editor program.
In our present context , in wh ich th e p rogr am description is consider ed
to be a structured data base, the process of modifying the program can
benefit from system—provided author aids more closely related to the
strucutre of the program and to the types of items contained.

To begin with , of course, the editing operations can all make use
of the detailed address referencing scheme inherent in the data base.
Thus, the author always works on explicitly designated items (e.g., “the
fourth anticipated response”) and is not concerned , as a primary matter ,
with moving a line pointer around in a linear file. A general text
editor is still useful , but mainly for those items which are explictly
text and which are sufficiently long that it is preferable to modify an
existing version rather than replace it. Such items may include , for
example , output texts , long anticipated responses, remark entries ,
dictionary definitions , etc. En addition , a variety of more specific
operations for  modi fy ing  a program can be supplied; a few examples will
he given here for illustration. A “delete ” operation , for example , can
apply to any items in the program data base at different levels of the
structure ; e.g., delete a specific action in a specific conditional
action sequence , delete a complete conditio nal actions sequence , or
delete an ent i re  node . (A deleted item should not real ly be erased , of
course , especially if it Ia large, since deletions can often introduce
major logical errors. Fortunately, the system can immediatel y detect

_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -- — -~~~ — —  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a



tic hi oct- tlrr etu - i’a — as e’I abe ta t oil late t — S t ’ i t  I c’OflVe’U t ent  fo r  t ile’

ant  her , and wort Ii t h e  eve rht ’ad , i t  thii ’ opt tern I o ‘‘t c’Mt out ’’’ the it i’m I
retained . ‘I A “move’” o p e r a t i o n  Is avat  t ab l e  to  rea rrau~ge e xi s t  tug  it  ‘ma
where order is Impor t  ant  , , g. t lie e rile’ r among cond it  lena Is In a node
or the order among act  ton s in  a cotid i t  t ona l  aee~en ’nce . Tb- is oper at  I en ,
ef i’Oti r~ e , not only moves a des I gnat e’el Item t o  a spec i f  Ic  spot in  .e-
L i st , hut automa t Ica l iv  “ renumbers ’’ t u e  ones t h a t  need o he a dj u s t  eLI .
re l*tett elh le’r ti t ton Is ‘‘I nse ’r t  ‘‘ app lv tng  t o the t I l e ’ c re’a( I en ot a new
item ; again , space is made’ t or the now i t  ciii and t h e  oth er s  are’ i ’ar ranged .
A “change ” eWe r at  ton a t  lows a spec’ I I I c i t e m  to he’ rep 1 act’et 1w a new one’
~l t  t he  same Sor t  ; e . g .  , “ch ange’ th e’ ( l i i  t e l e’OfleI it ion te l . . - . St I l l  mei~~’
special 17.cd edit tug re’que’st a are .lpprelpr i t i t e ’  I or ce’rt a in pel t’ ( lOuis ot (h e ’
program , such as t h e  keyword—phra se ’  l i s t  tinet at udent dat a l ’ai t e ’a ( e ’ .
d iet tonarv/thesaurus) .

Rt’c;i L I tng t hat  the’ svs t em is kese1l I ug t r a ck  of many at u-nc t nra I
JoIn t Is about t lie program , such as where’ inch ivi duia I var lab Ii ’S a t e ’ use d .
it shoti Id hi’ noted t h i n t  i t  must  ant  ouuat I ca l i v  m a i n t a i n  t lie tnt c’gr it v • ot
such dat a t hrougli all such nut tier— t e ’qeui ’S I Oei moel I I I I 8  t ions , w i t  helut
req u i r i n g  any f ur ther CX 11 l i e ’ i t  in s t  t i l e’ t I on s .

Even given t he aids so far dose u I heel , the eel it tug of a preigram can
he an uncer t  sin task. As Imp l i ed  i’:i i l l  er , t hi,’ most ii it f t  en It p a r t  of
the j ob f u r  the  or ig I na I nu t  her and t or subsequent mod it let-a o t t lii ’
program , is t o  keep I rack ~l t the m t  erie I at lonsh i  ills among t i l t  I ore ’u i t
pa r t s  of the program.  O f t en , :i change matte In  one pla ce ’ w i l l  have ’
rami f lest tons e lsi’where . F o r tun at e’ l v ,  t h e  sy s tem e’an I t a c i t  keep t ra ck
of a l l  of t he  expi Ic ’ it cross—refert’ne’oa among I t ems , hot ii tnt ra- and
Inter—neck . These t :ih lea can 110 exani l ned by the tint lie r of  course ,
p r i or te l l i la  mak ing  auiv changes.  Men ’ impor tan t i v , he’ av at  em i t  Se’ i t

can mon I t or the’ c ro ss—refe rences  when changes are request  eel , In fo r m t iii’
author of potent in! or e’ertaln er r o rs  whi cli are t hereby Int rectuce’el , ; iui e i

leave warn ings  or error message’ I lags at t tid ied t e l  t he’ at feet eel it ems Iii
the program.

‘FRA 1N1N ~ OF AUTHORS

The training elf authors might hi’ e’OnSt t ned , in t h e ’ t l r es l ’n t  ce ’ui t i ’ \ t

as a concern s~~le’tv v i  thi  t eaching prospec t lvi ’ ant hor s I lie ’ mechnu t a n s  I ~‘i
using the avat ems in  q uli ’ s t ion . Tb is won tel  I n et  t it le , of Co u r S e ’ , t hi’
language, the auxiliary capabilities , tlit’ purpose and use of each command
etc. I believe that II the system is well designed and t h e ’  language’
construct  a chosen w i t h  care , It  w i l l  not be d i i  f t  c u l t  (or an ant hot t e

learn the rules and t o cons t rile’ t and maui ph l a t e  an arh I t iai -v pros ran
us lug the liii! facil ities of the sy stem as described above’. ~~~~~ hi’
usua l sort s of printed document s t ion zinet exp lan~ t I ens • e1fle’ sti~ u he1 oily tons  lv
consider providing a comput cr1 red Inst tui’t I otial program t e l each t hi’ usi’
et the  system i t s e l f .  A p ar t  t c u l a r l v  t n t  crest tu g  1’osslhl I lt v  cxist a
wi th the s imula t ion  mode de’scr Iheel c i i  1 tOt  it Is hl tlsa ih h e’ to write ’ :1

program intended tel be used Iii t hat md cli’ , and wh i ’hi ( hit ’ pr ospec ( l v i ’

-a-- . -a~~~-1-- ~~- ~~~~~~
_  -.~~~--



--

~ 

aut hor would begin to use in the real—student option. However , he would
have the ability to switch , when instru cted , to the author mode, where
he would be shown how to examine and modify the very program which he
was then using. In fact , the transition from student to author could be
vir tually imperceptible .

Training authors to make optimal use of a system is a broader
question , however. It is dependent , in par t , on a deeper conceptuali-
za tion of p rogransuing , of structural and interaction units , and of such
issues as the balance of student and program initiative. It also depends
on pedagogical attitudes and theories , and — certainly not least — on
the clarity with which one sees the structure of the subject material
and how it should best be presented (or made available) in the computer
medium . These questions are themselves deserving of more extensive
treatment , but the topics go beyond the boundaries of the present paper ,

P1

11

2 1

_ _ _ _ _ _ _ _  ~~
---—- - - -



-- ~~~~~~~~~~
---~ 

BIBL i OG RAPHY

Brown , J. S., Burton , R. R., and Bell , A. C., “SOPHIE: A Sophis ticated
Instructional Environment for Teaching Electronic Trouble—shooting
(An Example of A l in CAl)” BBN Report No. 2790, Bol t , Beranek and
Newman , I n c . ,  Cambridge , MA. March 1974.

Feurzeig, W. and C. Lukas . “The Use of Dribble Files as I n s t r u c t i o n a l
Aids .” Bolt , Beranek and Newman , Inc., 1975,

Goheen, S. and D. Jordan , “Evaluation of TICS : A Multics Subsystem for
the Development and Use of CA! Courseware.” MITRE Technical Report
2749. June 1974.

Hewitt, C. E. and Smith , B. “Towards a Prograxmning Apprent ice 11’ I EEE
Transactions on Software Engineering. March 1975.

Kaplow , R., et al. “Teacher—Interactive Computer System : I. The’
Author—Language and Instruction Manual; II. Language Specifica-
tions ,” Massachusetts Ins t i tu te  of Technology . 1971; (updated
1973, 1974, 1975)

Kaplow , R., Schneider , D., Smith , F. C., Jr. ,Stensrud , W. R . ,
“Computer Assistance for Writing Interactive Programs:
TICS,” Proceedings, Association for Computing Machinery , August ,
1973.

Kaplow, R., Desch , S. H,, Jr., Pettijohu , D. 0., Rodman , H. H.
and Smith , F. C.,Jr., “Illustrations of Conversational ,
Inquiry , Problem—Solving, and Questionnaire Type Interactions
within the TICS System ,” Proceedings, Seventh Annual Princeton
Conference on Information Sciences and Systems. March 1973.

Levine , D. R. “Computer—Based Analytic Grading for German Gramma r
Instruction ,” PhD Thesis, Stanford University, 1973; Institute for
Mathematical Studis in the Social Sciences . Technical Report No.
199. March 1973.

Nelson , C. E., Ward , J. R ., Desch , S. H., and Kaplow , R. “Two New
Strategies for Computer—Assisted Language Instruction , Foreign
Language Annals ,” Forei gn Language Annal s , 9, 1, 1976.

Shortliffe , E. H., “MYC IN: A Rule—Based Computer Program for Advi sing
Phys icians Regarding Ant imicrobiol Therapy Selec tion” Doctoral
Disser ta t ion , Stanford University, Oc tober 1974. Stanford A.!.
Memo 251. Stanford .

Solovay , E. and Riseman , E., “Common—Sense Theory Formation Toward
Understanding Baseball ,” Univer sity of Massachusetts. COINS Tech-
nical Report 75C—5 , 1975 , Amh erst.

Sussman , C. J. and Stallma n , R. H., “Heuristic Techniques in Computer
Aided Circui t Analysis ,” M.I.T. A. 1. Lab Memo 328 , March 1975. Cambridge’

24

—.-.~~-- ~~~~~~~~~~ - - - -

_ _ _ _ _ _  —U-—-



APPEND IX A

PARTICIPANT S

Mr. Avron Barr
Institute for Mathematical Studies in the Social Sciences

• Stanford University , Ventura Hall
Palo Alto , CA 94305

Dr. Alfred Bork
Department of Physics
University of California
Irvine , CA 92664

Dr. John Brackett
Sof Tech
460 Totten Pond Road
Waltham , MA 02 154

Dr. Victor C. Bunderson
Institute for Computer Uses in Education
Brigham Young University
Provo, LIT 84601

Mr. Frank Dare
CAl Project
USA Ordnance School and Center
Aberdeen , MD 21005

Mr. Wallace Feurzeig
Bolt , Beranek and Newman
50 Mouton Street
Cambridge , MA 02138

Dr. Dexter Fletcher
Navy Personnel Research & Development Center
San Diego , CA 92152

Mr. Ed Gardner
Air Force Human Resources Laboratory
Lowry APE, CO 80230

Dr. Roy Kaplow
Massachusetts Institute of Technology
Room 13—5106
Cambridge , MA 02139

?
I1 

_____ ____________________ ______ 

_____________________________________ _ _ _ _ _ _ _ _ _ _ _ _ _  

- -- - - - --~~~~~~~~~~~ 
-- - - - - ~~~~~---- ~~~~~~~~~~

--- -
~~~~

- - - -

Mr. Don Kimberlin
Office of Project Manager
Computerized Training System
Ft Monmouth , NJ

Mr. George Lahey
Navy Personnel Research & Development Center
San Di ego , CA 92152

Mr . Hal Peters
Hewlett—Packard
11000 Wolf Road
Cupertino , CA 95014 1
Dr. Mortenza A. Rahini
Department of Computer Sciences
Michigan State University
East Lansing , MI 48823

Dr. Martin Rockway
Air Force Human Resources Laboratory
Lowry AFB , CO 80230

Dr. Robert Seidel
HumRRO
300 North Washington Street
Alexandria , VA 22 314

Mr. Robert H. Simonsen
System Development Technology
Boeing Comput er Services
Seattle , WA 98108

Dr. Lawrence Stolurow
Divi sion of Educational Research
State Universit y of New York
Stony Brook , NY 11790

Dr. Paul Tenczar
Computer -Based Educationa Research Laboratory
University of Illinois
Urbana , IL 61801 P

Dr. Karl Zinn
Center for Research in Learning and Teaching
University of Michigan
109 East Madison Street
Ann Arbor , MI 48104

~

-

APPENDIX B

PARTICIP ATING AR! STAFF

Mr . James D. Baker
Dr. Beatrice J. Farr
Dr. Frank J. Harris
Dr. Cecil D. Johnson
Dr. Br uce W. Knerr
Ms. Martha Moore
Dr. Leon H. Nawrocki
Dr. Michael H. Strub
Dr. Joseph S. Ward

- - - - - - -- ~~~~~~~~~~~

-

. - -
~~~~~

-
~~~ _ _1. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


