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RESUME

L'étude du changement du coefficient d'extinction des aérosols
infrarouges en fonction de 1'humidité relative est 1'objet de ce rapport.
On se base sur un modéle & deux types de distribution des particules:
maritime et continental. Le facteur du coefficient d'extinction des
aérorols s'accroit de plus de 10 dans les bandes spectrales de 3-5 et
8-15 um lorsque 1'humidité relative passe de 0.5 3 0.99. Aux humidités
relatives trés €levées, une région d'extinction plus faible est observée
autour de 10-11 um. (NC)

: ‘ ABSTRACT

: The variation of the infrared aerosol extinction coefficient
as a function of relative humidity is studied. This is based on a two-

component particle distribution model. The aerosol extinction coefficient
increases by a factor of more than 10 throughout the 3-5 and 8-15 ¥ j. i rrnicf=re
spectral regions as the relative humidity increases from 0.5 to 0.99.
For high relative humidities, a region of lower extinction around

10-11 -¢m is noticed. (U)
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1.0 INTRODUCTION

The attenuation of an electromagnetic wave propagating in
the atmosphere arises from molecular and aerosol extinctions. In the
3-5 um and 8-15 um 'window' regions where no major molecular resonance

absorption is present, aerosol extinction is of primary importance.

With a change of relative humidity in the atmosphere, conden-
sation or evaporation of water takes place on the aerosol particles
and these, at the same time, change the particle optical parameters
which determine the aerosol extinction. When the relative humidity
increases, the size of an aerosol particle increases through the
accretion of water. A particle can triple or quadruple its dry-state
size at relative humidities above 95%. Together with the growth in
size, the complex refractive index of the particle varies. Using a
two-component distribution model, Barnhardt and Streete [1] have
calculated the aerosol scattering coefficient in the infrared as a
function of relative humidity. This work has been extended by
Hodges [2] to include the absorption of the aerosols. However, a
basic assumption made in both works is that aerosol particles grow at
a rate dependent only on the relative humidity and not on the chemical
composition of the particles in the original dry state. A recent
comprehensive study has been carried out by Hinel [3] providing
empirical data on the change of aerosol optical parameters as functions
of relative humidity through the concept of the mass increase coef-
ficient. By means of these empirical results, a more realistic assess-
ment of the effects of relative humidity on aerosol extinction can

now be made.

In practice, the aerosol extinction coefficients over the
3-5 ym and 8-15 um spectral regions are of particular importance to
the operation of broad-band infrared systems. In this report, we

present the aerosol extinction coefficients as functions of relative
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! : humidity in the above two window regions obtained, using the two-component
4 particle number distribution model of [1] and the empirical data of the
’ mass increase coefficients of [3]. This enables us to take into account
l the different behavior of the maritime and continental aerosols with

the change of the relative humidity.

i The work was performed at DREV between January and November
1977 under PCN 33Al1l "Studies of Aerosols'.

2.0 AEROSOL EXTINCTION AND RELATIVE HUMIDITY

‘ Let n(f, r) be the number of aerosol particles per unit volume
with radius between r and r + dr at a given relative humidity £. The

corresponding aerosol extinction coefficient B(f, A) for electromagnetic

radiation of wavelength A is given by

BLE, A) = & / n(f, 1) Q, [a, n(E, A)] rldr (1)
0

where a = 2nr/X is the size parameter; n(f, A), the complex refractive

index and Qext’ the efficiency factor of extinction.

We wish to consider the problem by starting from the situation
with f = 0*. The dry-state condensation nuclei distribution is
n(f = 0, r). To find the extinction coefficient at any other relative
humidity £ > 0, it is necessary to relate n(f, r) to n(0, r) and
n(f, A) to n(0, A). To concentrate our attention on the effects of
the change of relative humidity, we assume that as f increases
n(f, r) changes only by virtue of the condensation of water vapor.
This is to say that all the particles retain their individuality
without coagulation and furthermore, no new particles are produced

in the meantime.

* We have formulated our problem in such a manner as to exclude the
consideration of the hysteresis effect. B8(f, )\) is, in general, not a '
single-valued function of f. A detailed discussion can be found in [3]

———
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We assume, following Barnhart and Street [1], that the particle
number density n(f, r) consists of the continental and maritime compo-

nents with a variable mix ratio so that
n(f, r) = vn.(f, r) + (1 - V) ny(f, r) (2)

In eq. (2), nc(f. r) and nM(f, r) are the particle-number densities of
the continental and maritime components respectively. The quantity
v(0<v<l) is the mix ratio.

" In references [1] and [2], it was assumed that at a given rela-
tive humidity, the rates of growth of all the aerosol particles were
equal. However, because of their different chemical compositions, the
growth rate of a deliquescent sea salt is significantly different from
that of the condensation nuclei of continental origin. In fact, it
has been found experimentally [3] that u(f), the linear mass-increase
coefficient of an aerosol sample, given by

oy =2 Lot (3)
o

where m, is the mass of the dry-state aerosol particles and My the
mass of water uptake of the sample, can be very different for different
types of aerosols. For an aerosol particle of radius T, in the dry
state, H¥nel {3] has obtained the following relationship giving its
radius r at relative humidity f:

P 1/3 -7
0 f 1.056 X 10 £
r=r l] + — lJ(f) ar—— ) -
o [ ( Py - f E, 10=E
p =173
0 f
(1+—pw “(f)1-f) ] (4)

The symbols o and P in eq. (4) denote the density of the dry-state

aerosol and water respectively. The second term on the right-hand side
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accounts for the correction due to the finite radius of the particle.
In many cases, the correction term can be neglected. As for the refrac-

tive index n(f, A), it is related to the dry-state refractive index of
the aerosol n(f = 0, A) and () of water by

-1
P
n(E, A) = n, () + [n(f =0, 4) - nwm] (1 + ﬁ u(f) r—f—f') (%)

3.0 CALCULATION OF THE AEROSOL EXTINCTION COEFFICIENTS

As mentioned in the previous section, the aerosol number den-
sity n(f, r) consists of two components. The continental and maritime
components are chosen such that at f = 0.7 they are the same as those
used by Barnhardt and Streete in [1]. By means of numerical fitting
we obtain

3.98

n.(f 0.258 r

C

0.7, r)

(6)

0.7, ¥) = 0.369 ¢~} ¢70-748 T

and n, (f (7)
Once the linear mass-increase coefficients u(f) are given for
the continental and maritime components, e€3s. (4), (6) and (7) enable

us to calculate n(f, r) for other values of the relative humidity f.

For the linear mass-increase coefficients u(f), we have chosen
the experimental data of the sea-spray aerosol [4] i.e. (Model 2 of [3])
for the maritime component and that of alpine aerosol, (Model 6 of [3])
for the continental components. The values of m(f) we used are in
Table I.
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TABLE I

Linear Mass-Increase Coefficients

f u(f)
Maritime Continental
0.5 0.108 0.032
0.6 0.136 0.04
0.7 0.216 0.0505
0.8 0.782 0.14
0.9 0.617 0.15
0.95 0.548 0.105
0.99 0.468 0.117

At £ = 0.99, the uptake of water is 46.33 times the mass of
the dry-state aerosol for the maritime component, while it is 11.58 times
for the continental component. Hence, the maritime aerosol particles

grow much more rapidly than the continental ones.

Barnhardt and Streete [1] have shown that to calculate B in
the infrared region it is sufficient to consider aerosol particles
with radii in the range from 0.1 pm to 20 um. In this size range, the
correction term due to the finite radius of the particles in eq. (4) is
always less than 1% for both the maritime and continental components.
Thus, this term will be neglected. To make our results more readily
comparable with those of [1] and [2], we take the lower limit of the
integral of (1) to be 0.1 um for all values of f, and the upper limit
equal to 20 um when measured at f = 0.7.

Before evaluating the efficiency factor for extinction
Qext [4:, n(f, A)] , it is necessary to have the complex refractive
index n(f, A). The quantities W? n(f = 0, A) entering eq. (5) are

summarized in Table II. In this table, the real part né of the index

— "ﬂ-iiiEEIElIﬂlllllI-lll-'-'-""""""""""J-'i
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of refraction of the maritime aerosol component in the dry state is
taken to be that of NACL as given in [5]. The imaginary part ng is
obtained from the absorption measurement of sea-salt carried out by
Volz [6]. The complex refractive index for the continental aerosol
component in the dry state is that used in [7]. The index of refrac-
tion of water is taken from the results compiled by Hale and Querry
[8]. Figures la to 1d show the refractive indices of the continental
and maritime aerosols for various values of f as obtained from eq. (5),

and the corresponding dry-state values.

The dry-state densities are taken to be po(maritime) =

2.25 gm/c.c. and po(continental) = 1.8 gm/c.c.

TABLE 11
Byce S "o " " K W
Maritime Continental Water

3 1.5242 .0035 1.3420 .0190 1.3710 .2720
3.5 1.5230 .0014 1.3990 .0068 1.4000 .0094
4 1.5217 .0029 1.3965 .0071 1.3510 .0046
4.5 1.5204 .0033 1.4000 .0133 1.3320 .0134
S 1.5188 .0028 1.3870 .0161 1.3250 .0124
8 1.5064 .0179 1.1387 .0691 1.2910 .0343
8.5 1.5038 .0307 1.3000 <1778 1.2780 .0367
9 1.5009 .0299 2.3020 .3010 1.2620 .0399
9.5 1.4979 .0202 1.8840 .1606 1.2430 -0444
10 | 1.4947 .0179 1.7990 .0696 1.2180 .0508
10.5 1.4914 .0167 1.7305 .0826 1.1850 .0662
11 1.4878 .0166 1.6900 .0665 1.1530 .0968
11.5  1.4840 L0172 1.6612 .0670 1.1260 .1420
12 1.4800 .0180 1.6325 .0675 1.1110 .1990
12.5 1.4758 .0190 1.6037 .0680 1.1230 .2590
13 1.4696 .0206 1.5750 .0685 1.1460 .3050
13.5 1.4668 .0228 1.5406 .0772 1.1770 .3430
14 1.4619 .0273 1.5061 .0860 1.2100 .3700
14.5  1.4568 .0311 1.4717 .0947 1.2410 .3880
15 1.4514 .0387 1.4650 .1700 1.2700 .4020 -
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FIGURE 1(a) - Refractive index (real part) as a function of wavelength
for maritime aerosols. The number accompanying each curve
is the relative humidity.
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FIGURE 1(b) - Refractive index (imaginary part) as a function of wavelength
' for maritime aerosols. The number accompanying each curve
is the relative humidity.
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FIGURE 1(c) - Refractive index (real part) as a function of wavelength
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for continental aerosols.
curve is the relative humidity.
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FIGURE 1(d) - Refractive index (imaginary part) as a function of wavelength
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Let uc(f) and uM(f) be the linear mass-increase coefficient
of the continental and maritime components respectively and Fc(f),

FM(f) be the corresponding growth factors defined by

L2 ]
n

r Fo(f) (8)

e}
|}

= r Fy () (9)

Equation (8) describes the growth of an aerosol particle of the continen-
tal component with a dry-state radius T, and eq. (9) is the correspond-

ing relation for an aerosol particle of the maritime component. Thus,

° £ 1/3
Fc(f) = ( 1+ -5; uc(f) = ) (10)
and
p 1/3
Fy(£) = ( 1+ 5% uy (£ ——f—f ) (11)

The functions FC(f), FM(f) are shown in Fig. 2 together with the growth
factor used in [1]. From the assumption that no aerosol particles are
created or removed, the number density n(f, r) given in eq. (2) can be

related to nC(f = 0.7, r) and nM(f = 0.7, r) as follows:

n(f, r) = v nc(f = 0.7, ﬂiﬁf_;);llr) + (1 -v) nM(f =0.7, L—)—F fF?fg).’] )

(12)

The calculations of the efficiency factors of extinction can
be carried out using the Mie theory [9]. For this purpose, we have used
the program of Dave [10]. For small values of the size parameter a,
Rayleigh's approximation suffices. We have used this approximation for
r < 0.5 um. The integration in eq. (1) is then performed by means of

Simpson's rule.
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zi 4.0 RESULTS AND DISCUSSIONS

] In Figs.3 and 4, the results for the aerosol extinction coef-
| ficient B for the maritime and continental components are shown for
various values of relative humidity f. For the maritime component, B
is a monotonic decreasing function of A in the wavelength regions
considered for £ = 0.5 and 0.6. When f increases beyond 0.7, a broad

minimum occurs around 11 um.

For the continental component, because of the large refractive

index of the dry-state aerosol around 9 um, the extinction coefficient

I | N AT

shows a marked peak in this spectral region at low relative humidity.
At higher relative humidity, this feature is washed out with the accre-

tion of water and a broad minimum again appears around 10 um.

In Figs.5-11, the aerosol extinction coefficient for the two-

component distribution model is shown for various mix ratios and rela-

e ——— s —— .

' tive humidities. At relative humidities equal to 0.8 and above, B

E decreases with the mix ratio. However, for relative humidities less

than 0.8 this trend is reversed around 9 uym. This is due to the

lower index of refraction of the continental aerosols.

Attempts have been made by Barnhardt and Streete [1] and
Hodges [2] to compare the results obtained from their models with exper-

imental values of the aerosol extinction coefficients measured by Yates

and Taylor [11] and Kurnick, Zitter and Williams [12]. Unfortunately
such comparisons cannot, at this moment, lead to definite conclusions
because the experimental measurements of B so far have not been
accompanied by information of the particle number distribution. By
changing the parameters in an assumed distribution, one can obtain a
range of different values for 8. In fact, Curcio [13] has shown that
different distributions can reproduce the same extinction coefficients.
. However, it is of interest to compare the present results with those in

[1] and [2] based on a simplified model.
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In general, the values of B obtained in [1] are higher. This is because
the growth factor assumed by Barnhardt and Streete is larger than the
empirical values we have adopted. Take, for example, the case where the
mix ratio is 0.5, i.e. the continental and maritime components are in

1:1 ratio. The results of [1] are higher than those obtained here for all
the relative humidities except the highest (f = 0.99). When f = 0.99,
the agreement is reasonable in the 3-5 um region. In the 8-15 um region
our results show a dip around 10 pm which is absent in [1]. In Fig. 2

we see that the growth factor used in [1] is between the empirical values
for the continental and maritime components when £ = 0.99. It can also
be noted that the presence of a dip in the values of B in the 10-12 um

spectral region is characteristic for many fogs and clouds [14].

In (2], Hodges has assumed the same single growth factor as
in [1] for both the continental and maritime components. He has also
assumed that both components had the same refractive index except which
now could be complex. The imaginary part of the refractive index has
been taken to be equal to that of water. From Table II, we can readily
see that the assumption ”8 = "ﬁ leads to an overestimation of the aerosol
absorption coefficient which becomes more serious in the longer wave-
length region (X > 10 um). This is particularly clear for the maritime
component. In fact, the values of B obtained in [2] for the 3-5 um
region are substantially the same as those in the 8-15 um region. From

our results, B is smaller in the latter region.
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FIGURE 3 - Extinction coefficient as a function of wavelength for maritime
aerosols. The number accompanying each curve is the relative
humidity.
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FIGURE 4 - Extinction coefficient as a function of wavelength for
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FIGURE 5 - Extinction coefficient as a function of wavelength for
different mix ratios. The number accompanying each curve
is the mix ratio.
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is the mix ratio.
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FIGURE 7 - Extinction coefficient as a function of wavelength for
different mix ratios. The number accompanying each curve
is the mix ratio.
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FIGURE 8 - Extinction coefficient as a function of wavelength for
different mix ratios. The number accompanying each curve
is the mix ratio.
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FIGURE 9 - Extinction coefficient as a function of wavelength for
The number accompanying each curve

77
fTe5K 4

———————

1

CONTINENTAL
CONTINENTAL ¢ MARITINE

e i Db il
8 L] 12 18
UAVELENGTH (MICRONETERS)

NIX RATIO

(=)

FIGURE 10 - Extinction coefficient as a function of wavelength for
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5.0 CONCLUSIONS

Based on empirical results of the linear mass-increase coef-
ficients and the dry-state aerosol refractive indices, we have studied
the influence of increase in relative humidity on aerosol extinction.
In doing so, we have used different sets of optical parameters for
the maritime and continental aerosols as required by the difference in
their chemical compositions. For both components, the values of B
increase by a factor of more than 10 throughout the 3-5 and 8-15 um
window regions when the relative humidity is increased from 0.5 to 0.99.
For a two-component distribution model, the aerosol extinction coeffi-
cient in the shorter wavelength window is generally higher than that in
the longer wavelength window. For a relative humidity higher than 0.8,

a dip in the value of B around 10-11 um is also noticed.

In contradistinction to the results previously obtained by
using simpler models, the influence of relative humidity on aerosol
extinction has shown to be more dramatic and a better aerosol trans-

mission condition in the 8-15 um region is also indicated.
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"The effects of relative humidity on atmospheric aerosol extinction in
the 3-5 um and 8-15 um spectral regions"
by W.G. Tam and Capt. C. Boily

The variation of the infrared aerosol extinction coefficient
as a function of relative humidity is studied. This is based on a two-
component particle distribution model. The aerosol extinction coefficient
increases by a factor of more than 10 throughout the 3-5 and 8-15 um
spectral regions as the relative humidity increases from 0.5 to 0.99.
For high relative humidities, a region of lower extinction around
10-11 pm is noticed. (U)
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