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In add ition to being of interest for its own sake, the study of random

graphs provides the combinatorial foundation for investigations of the
average-case behavior of various graph-theoretic algorithms . The present
paper deals with the family B(m,n,E) of all labeled bipartite graphs that
have m nodes in the first part and n nodes in the second part, with
exactly E edges. The main result is that if the positive inteqers
m(l), m (2),..., E(l), E(2),... are such that m(n) ~ n, E(n) s m (n)n, and
Urn inf n -~ w E (n)/(n log n) > 1 , then the probability that a random member
of B(m(n), n, E(n)) is connected converges to 1 as n -

~ ~~~. Results on
iso~1~ted nodes and on diameters are also obtained .
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1 1

RANDOM BIPARTITE GRAPHS: CONNECTEDNESS, ISOLATED NODES, DIAMETERS

VICTOR KLEE and DAVID LARMAN

Abs tract Let B(m ,n,E) denote the family of all label ed bipartite graphs that

have rn nodes in the first part and n nodes in the second, with exactly E

edges. If the positive Integers m(l), m(2) ,’•~ and E(l) , E(2) ,•~~ are suc h

that m(n)~~’n and E(n)~~~m(n) n for all n, and lim in~~~~E(n)/(n log n) > 1 ,
-- Ij ~ 

~ 4f( .~.(~~1Tthen the probability that a random member of B(m(n),n,E( n)) i s connec ted conver ges to 1

as n ~~~~~~~~~ Results on isolated nodes and on diameters are also obtained .
it
~~~ ~~/f(~~~s C ~~~e c  ‘~~ H

Introduction

For 1 ~ m n < o~, let ~(m,n) denote the family of all graphs with node-set

{1,~ .•,m+n}, each edge being of the form {i ,j} for some i c M = {l ,’..,m} and

j 
~ N = {m+l ,...,m+n}. In other words, B(m ,n) is the family of all labeled bi-

partite graphs that have m nodes in the small part and n nodes in the large part.

L 

For 0 ~ E ~ mn, let B(m,n,E) denote the family of all members of B(m,n) that

have exactly E edges. Note that l~ (m,n)j  = 2mn and IB(m ,n ,E)I =

All members of B(m,n) are given the same weight , so the probability that a

random member of B(m,nE) has property P is merely B~(m 1n~E) ,(T), where
~p (m in~E) Is the set of all members of B(m,n,E) that have P. In studying random

bipartite graphs , i t seems appropriate to focus on B(m,n E )  rather than B(m,n),

because graphs occurring In practical problems are apt to be sparse. For the many

bipartite graphs that arise naturally In problems from operations research or

computer science, a specific div ision of the nodes Into two parts is usually Imposed

by the problem Itself. Thus it Is appropriate to focus on B(m,n,E) rather than

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ ~

.• ._ _ _ _ _ _ _ _ _ _ _ _ _ _  • 
~~~~~~~~~~
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1.2

the set of all bipartite members of G(n,E), where this denotes the family of all

graphs with node-set {l,~ • ~,n} and exactly E edges.

Our main result deals with connectedness. It is a bipartite relative of the

theorem of ErdOs and Renyi [13 asserting that if X is constant and

E
~
(n) = L~ 

log n + ~nJ for all n, then the probability that a random member of

G(n,E
~
(n)) Is connected converges to exp(_e

_2A
) as n -~ ~~~.

Our methods are in part Inspired by theirs.

THEOREM 1 If the positive integers m(l), m(2),... and E(l), E(2),”’ are such

that m(n) ~ n and E(n) ~ m(n)n for all n, and l im inf~~ E(n)/(n log n) > 1 ,

then the probability that a random member of ~(m(n) ,n,E(n)) i s connected

converges to 1 as n -
~

For any finite family G of graphs, let K(G) denote the probability that a

random member of C is connected. For each positive integer r, let Cr(G) denote

the probability, for a random member G of C, that each component of G has at least

r nodes, and let Dr(G) denote the probability that G is of diameter ~ r. If all

members of G have precisely s nodes, and if we follow the usual convention that

disconnected graphs are of infinite diameter, then

C2 ~ C3 � • • •  ~ C~~5+1)/21 
= = C~ = K D5_1 ~ ‘ • •  � D~ ~ D2 . 

‘A .

Our second result concerns C2(B(n,n,E)). It impl ies that Theorem l’ s conclus ion

fails If E increases much less rapidly than is required in the hypothesis of

Theorem 1.

THEOREM 2 If the positive integers E(l), E(2) ,••’ are such that E(n) ~ n
2 

~~~~~~

n, and llm~~ (E(n ) f n) - log n = A < ~~ , then the probability that a random member

of B(n,n,E(n)) has no isolated node converges to exp(-2e~~) as n -‘~ .
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1 .3

Our third result deals with diameters.

THEOREM 3 If the positive integers m (1), rn(2) ,.’’ are such that m (n) ~ n for all

n, and lIm,~,,,, (log n)/m(n) 0, then the probability that a random member of

B(m(n),n) Is of diameter 3 converges to 1 as n -.

There is a large gap between this result and Theorem 1 , whi ch concerns the

probability that the diameter Is finite . Most of the gap Is filled by the following

conjecture, which we have not proved.

CONJECTURE If the positive integers r, m(l) , m(2) ,..’, E(l) , E(2) ,... are such that

m(n) ~ n and E(n) ~ m(n)n for all n , and

lim ,.~~ ~~~~~~~~~~~~~~ 0 and lim n.,.~,, 
(E(n) 2”/m(n) ”n”~

1 ) - log n

then the probability that a random member of 8(m(n),n,E(n)) Is of diameter

2r or 2r+l converges to 1 as n -
~~

• 
.—~~~., .— —- 

~~~~
•— ,— 

~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



2.1

Elementary Estimates

This section collects some elementary estimates that are used throughout the

paper and are henceforth referred to by number. We use the combinatorial inequalities

(
~

)
~ -ii—- for 1 k n (1)

j (m.w )/(rn ) (1 - 
W )’~ for 1 N ~ m-w and 0 ~ w < m, (2 )

the analytic inequality

i # x ~ e
X for all x , (3)

and the fact that for 0 ~ fx~ ‘. y

log(l - ~)YX = (y-x)(-~~~1 —~~
) -x + 

~k=2 k(k-1~ T’ (4)

When the functions .~ and ~ are defined for positive integers,

- ~ means ~~~~ ~(n)/~(n) = 1

and ~~ — ~ means c~(n) .~(n) for all suffIc iently large n.

We use the Stir) Ing-de Moivre estimate,

n~ 
- ~~ 

~~~~~~~~~~~~~ (5~

and the follow ing consequences of (4 )  and (5) :

if O~~~s~~ o(N) then

k
_____ - NS exp(-ç,,2 k~~ 1) —

~
--i-

~ 
as N -

~ ~ ; (6)

If 0~~ w~~ o(m) then

(m-~~ - m~~ exp(i~ _2 k(k-l) -+r~ 
as in -‘ (7)



— - , - - - ~~~-~- .—— ,- -4
— I—.. —. ~~~ l.~—. -.~ —- •-‘~~ .-

_ - • . • •  -- — -..---- . --- -- .----- - • - .

2.2

Since

,m-w ,m~ (m-w)~ N~ _ _ _ _ _

m (N-sJ~ (fl~-N-w~ JT

it follows from (6) and (7) that if 0 ~ w ~ o(m), 0 ~ s ~
, 0(N) and 0 ~ w-s £ o(m-N),

then

- ~~~ 
~~~~~~~~~~~~~~ 

~~~~ ~~~~ 
- 

~k-T~ 
(8)

as m -~~ , N - ~~ , m _  N -e at .

I
I
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Proof of Theorem 1

LE*IA 1 Suppose the positive Integers m(l), m(2) ,..~ and E(l), E(2),... are
• such that m(n) ~ n and E(n) ~ m(n) for all n, and ~~~~~ E(n) /(n log n) 1.

Then for all sufficiently large n the q~~ntity

~(s ,t) = r)cxmn~
cn.t)s

~
(rn.5)t),~~n)

is less than the reciprocal of

(a) ~s/2j~~,t/2,~ ~~~~~~~~~~ 1 ~ s £ m/2 ~~ 1 t ff2

(b) (m+n)1(m-s)/4j ’.tt/4I~ when rn,’2 s ~ m and 1 ~ t ~
. n/2

• (c) (m+n )~,s/4j L(n-t)/41 : when 1 ~ ~ 
rn,’2 and ~/2 — t ~ n

(d) ).(m-s)/2j.~ ~(n- t)/2,j~ when m,2 s m and ff2 .- t ~. n

Proof. Since the reasoning for (c) and (d) is essentially the same as that

for (b) and (a) respectively, only (a) and (b) are discussed . Let the constarh t~

~ and be such that
1~

1 < and ~n log n —
~ E(n) ~~- :n log n (9)

AS.

and let = (~-l )/2~. (10)

Let b = (n-t)s + (m—s)t (11)

and (m~
_b
),cnr) (2,3) exp (-Eb/mn), (12)

so that ci(S,t) = (
~~

)(
~~h. (13)

To establish (a), note that by (1) and (ll)— (13),

ca(s,t) 
~ s~t~ 

e8(s t) ()4)

wi th ~(s ,t) s log m + t log n - Eb/mn . (15)



_ _  ~~~~~~~~~~~~~~~~

3.2

Since 8(s,t) = s(log m — E/m) + t(log n — Em + 2Esfmn),

it follows from (9) that for all sufficiently large n.

~(s ,t) s(log m - ~ri log fl) + t (log n - log n + 2~ ~~)og n)

~ s(l - ~)log n + t(l - + 2~ ~Hog n

for all s and t and hence ~(s ,t) ~- 0 if s .~ ~in. Similarl y,

~(s ,t) - s(log m - + + t (loq n -

so (9) ilnpl i es that for all sufficiently large n ,

• .~(s ,t) < s(log m - ~~~~~~ - 2;t)) + t(l — ~) log n

for all s and t and hence ~(s ,t) 0 if t ~- cn. That settles (a) if

S ~‘m or t 1in.

To complete the proof of (a) there remains the case in which

~‘m~~~s~~ m/2 and ~n~~~t~~~n/2 . (16)

Recall ing that the left side of (5) always exceeds the right, we see that

exp(s + t - (s+~ )log in - (t+~)log n + A1 ) (17)

where A1 
= -log(2-) + (s+½)log (mis) + (t+~ ))og (nit)

• and hence A1 ~ B1 -log(2ii ) - (s+t+l)log c . (18)

By (14),(l5) and (17),

Q (s,t) ~ exp(s + t - ‘~(log m + log n) + B1 
- Ebfmn), (19)

where by (9),(ll) and (16) it is true with 1 ~~
‘ that

I 

~~~~~~~ •• _ 
__- -• , — ~~~~~~ 

•ii ~~~~~~ ~~~~~~~~~~~~~ - . ~~~~~~~~~~~~~~~~



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.3

Eb/mn — ~-(1og n)((n-t)s + (m-s)t)

~ log n + 1~—)og n ~ -~-(s+t)1og n. (20)

Hence by (18)-(20) and the fact t~~t 
~~‘ -.

~(s,t) ~~ exp(—~ (.~.
’+l ) ( s +t) 1og n).

Sinc e ~~~‘+l) 
-‘ ‘,, it then fol l ows with the aid of (5) tha t

1 
_ _

~(s ,t) 
~~~~~~~~~~~~~~ ~.t~/2J~’

That completes the discussion of (a), and we turn to (b).

Since , by (1).

rn-s t(m~ fl in n
I - S I t (~~

-
~~Y~

’ fT

we concl ude from (12)-(13) that

1 \(s,t)
~i~S,tj ~ ~15p-~-re

where

\(s,t) = (m—s)log in + t log n - 

1~~-((n-t)s + (m-s)t)

Note that for each fixed s, \(s,t) is an inc reasing function of t, and for each

fixed t ~ n/2,\(s,t) is a decreasing function of s. It fol lows that

• \(s,t) ~ \(s,n/2) ~ (m—s)lo g in - 

~
-(
~ 

- log n)

—
~~ (m—s)log rn - ~- (- l)log n (22)

and

~(s,t) ~(m/2,t) ~~ log m + t log n -

—~~~log m + t l o g n - ½ ~n 1og n . (23)

• 
_ _ _ _ _ _ _ _
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34

Now suppose that s and t are in the ranges associated with (b). If,

moreover ,

m-s ~ (~-l )m/4 or t ~ (~—l )nf4 (24)

then It follows with the aid of (22) and (23) that

~ 
—~~~‘(s,t) —~~.n log n ,

whence it is true for all sufficiently large n that

1
m+n

and the desired conclusion follows from (21). If, on the other hand , (24) fails ,

then it follows from (5) that

(m-s) t — exp((m-s) + t - (m-s+~)1og m - (t+½)log n + B2)

where

B2 
= —log(2~) - (m-s+t+l)log(~-l).

• Using this in (15), and noting that Eb/rnn ~ E/2, we have

a(s,t) — exp((m-s) + t - ‘~�1og m - ½log n - B2 - E/2)

1 1
(5)iii~ii [~m-s) /4itt/4j~

That completes the discussion of (b) and of Lema 1.

• LEIiIA 2 Let B’(rn,n ,E) denote the set of all members of B(rn n ,E) that have a

component with more than

K(m ,n,E) g m + n - 2(2Ef (m+n))~

nodes. If the positive integers m(l), m(2),... and E(l), E(2) ,.•• are such

that m(n) ~ n and E(n) ~ m(n)n for afl n, and l im~~ E(n)/(n log n) 1 ,

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . — .‘—•• -.. . ~ • • • • . ~~•—-•~~~~~•~~~ -~—
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3.5

then the probability that a random member of B(m(n),n,E(n)) belongs to

B’(m(n),n E(n)) converges to 1 as n -
~ ~

Proof. We show first that

each member G of B(m ,n ,E) has a component with at least K(m,n,E) nodes~ (2 5)

• Indeed , if r is the number of components of G that have more than one node,

and the i~~ of these components has k 1 nodes in the set M and nodes
in the set N, then k, ~ 1 ~

~~~ 
k~ ~ m, ~ n , and 

~ l k14~ ~ E

Since r ~
E 2E - K 2

max l.~j�r 
k1~~ � ~ - 

7
)

and hence

max l j r  (k~+~e~) ~ K .

It follows from (25) that

• ,m~,n~(
mn (n t)s (m s)t

~ 26)IB(m ,n,E) - B ’ (m,n,E)I 
~ 
ZK�s+t�m+n K 

I- s J ’.t/ I - E ‘‘

where it is understood that s, t ~ 1. To establish (26), consider a graph G ~
B(m,n,E) - ~(m,n,E) that has a largest component intersecting M and N in

• sets S and T respectively, with IS I  = s and ITI = t. Then K ~ s+t ~ m+n-K

• and the pair (S,T) can be chosen in (~~ ) ( ~~) ways. For each such choice there

are at most
,mn— (n—t)s—(m-s)t

E

ways of choosing the edges of G, because no edge can join S to N-T or T to

ii
— — — — .

~- — — -



3.6

From (26) and Lenina 1 it follows that
I

lB(m ,n,E)-B’(m,n,EH
[B(m,n,Ej J ~ ~K~s+t~m+n—K ~(s ,t)

1 1, 1
I~s/2j~ Lt/2iT + m/2~s~rn,l~ t Um-sl/4J1]t[41

1 . 1+ iiLn/2.,t~n,hs ts/4~.~IJii-T)74JT

1 1
- ~~~~ ~~~~~~~~~~~~~~~~~~

2 v ” 1+ 
~~~

(.- ) 1s/4jT X t~) ‘Lt74JT~

2(2e)(2
~r.1K,,~ i~r~ 

+ ~-(4e)
2 0

because K -‘ (E/n)~ ~‘ as n . That settles Lenina 2.

THEOREM 1 If the p~~itive integers m(l),m(2),.~ and E(l),E(2),’. are such

that m ( n )  ~ n and E(n) ~ m(n)n for a l l  n , and

u r n  ~~~~ E(n)f (n log n) — 1 ,

then the probablll~y P1(m(n),n,E(n)) that a random member of B(m(n),n,1(n))

is connected converges to 1 as n -
~~ ~~~

Proof. Consideration 0f the natura l subgraph correspondence shows that If

F ~ E then P1 (m,n,F1 ~ P1 (m,n,E). Hence we may assume wi thout loss of generality

that the sequence (E(n)/(n log n))~,,12... converges to a real number ~ 
-‘ 1.

In view of Lenina 2, it suffices to show that Q(m,n,E) 0 where Q(m,n,E) is

the probability that a random member of 8(m,n,E) is disconnected and belongs to

B, (M ,N,E).

~~~~~~~~~_ 
-~~~~~~•- --- .—~~~~~~~~~~~-~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
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3.7

Note first that

Q(m ,n,E) 
~ ~l~ s+t~K ~~

‘p
~’~o 

(sr
t)((ml~!~•

n_ t) )f ( n;~
1 )J . (27)

For consider a disconnected member C of B’ (m ,n,E) that has a largest component

in tersecting M and N In sets U and V respectIvely, where

m-s, IV ~ 
• n-t , and 1 ~ s+t ~ K. The pair (U , V ) can be chosen in

(~~)(~~) ways. For each such choice, and for each possible number r of edges G

connec ti ng M- U to N V ~ there are (5~) ways of choosing those edges and

• ((m1)(n t)) ways of choosing the remaining edges .

Observe next that

( (m — s ) ( n—t ) )/ ( rnn ) - (1 )
1
(1 — 

t ~sn+tm—st —~’E-r E (8) mn inn

(3) (
~~)

r
( ,~~ (sn+ trn-st-r)

(a) (
E )

r
ep( (s+ t)l ) (2~)

wi th

Here the first step requ ires not only (8) but aIM’ the sort of argument used in

proving Lenine 7 of (2] to show that the asymptotic convergence depends only on n.

• Using (28) In (27) yields

• Q(m,n ,E) 
~1~s+t~K 

(~ )(~ )(exp(-I(s+t)log n)(:~~~ (
st )( E )

r
)

~ (1) ~l~s+t~K 
exp (-(~-l)(s+t)loq n)(l + 

~~)
st

~ (3) t 1~ +,~K i,~r ~rexp~.(iu .l) (s +t)log n + ¶~
) . (29) 

—~~~~~~~~ • -~~~~• -..••. • •. • • •• • • • _ _ _ _ _ _ _
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3.8

Now

Est 2A sKiog n 
~ ~ ~~)~~s+t)log n

where
4A 2E L2

+0..•

• Thus f t  follows from (23) that

Q(rn,n,E) 
~l~s+t~K ~r ~

rexp( ½ (~ -1)(s+t)logn)

—< n ~~
1) e2 

~ o .

The proof of Theorem 1 is complete.

I

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ •~1• ~~~~~~~ ~~
—-



4.1
Proof of Theorem 2

LEI44A 3 The number of members of B(m,n,E) that have no isolated node is

~~ ~~ 
~~~~~~~~~~~~~~~~~~ • (30)

Proof. Consider an arbitrary member C of B(m,n,E) that has p isolated

nodes in {l ,•~ •,m and q isolated nodes in {m+ 1 ,... ,m+nl . For each choice of

k nodes in ~~~~~~~ and ~ nodes in {m+l ,.. . ,m+n} , the number of members of
8(m,nE) that have these k+~ points among their isolated nodes is (

(m_k~~
n_
~~)

If this count is repeated over all possibl e choices of k nodes in {1 ,• •,mI

and t’ nodes iii {m+l ,•~ •rn+n~, the number (~)(~ )( m~~~~~ t ) ) is obtained and G

Is counted (~~)(~~ ) times. Thus C is counted

— ~ r~l ~- l) (p ) ( q )T~ ~ - ~k=0 ‘.~=0 ‘ ‘k C

time s in (30). Since 
~~~~~~ 

( 1 ) k (P) = 0 if p 0 and 
~~~ 

( 1 ) C (q
) = 0 if g 0,

-r (G) is 0 or 1 according as p+q -‘ 0 or p = q = 0.

LEMMA 4 Let o~(k.~ ) 
~~~~~~~~~~~~ 

If the positive integers E(l),E(2),

• •~ are such that E(n) ~ n
2 for all n and lim~~ (E(n)/n) - log n \ — then

for all sufficiently large n it is true that ,~(k ,4~) l/Lk/4J~Ij/4j. ~~ never

k ,e and n are nonnegative integers with k ~ n, £ ~ n, k+( � 2n
”3, and

E(n) ~ (n—k)(n—e )

• • •  _____ ~~ .• .- ~~ -— -  
-• .—- —•.-
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• • • L • .~~~~~~~~~~~~~~~
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4.2

Proof. Note first that

o (k ,t) 
~ (1 2) - 

n(k+t)-kC E
‘ k’V ’ 2 )

n

~ (3) k ,exp ((k+~)log n - (k+e)-~ + I

—< k:~e~
exp(2(l_A)(k 1

~
) + -~~log n),

where the third inequality is a consequence of the facts that kI./n — k+( and

-< (Em ) - log n -< \+1 .

By syimietry we may assume k ~ £, whence £ ~ fl
1’3. If k ~ n

116 then

(ke log n)/n ~ n~~
6 log n , and with the aid of Stirling ’s formula (5) it fol lows

that for all sufficiently large n,

- (~+~)log C +~~+ 2(l-x)(k+1~) + fl1’6 log n)

1

If k - n~’6 we may apply Stirling ’s formula to both k and £ to obtain , for

suitabl e constants A ,B and C and for all sufficiently large n ,

~ exp((~~ - k - £)log n + Ak + BC + C)

~ exp(-t 1 o g n + A k + B ~~+C)

1 1 1
~ ~ Ik/41 u/4i

THEOREM 2 If the positive integers E(l),E(2),.. are such that E(n) ~ n
2 for all

n and lim~~ (E(n)/n) - log n X < ~~, then the probabilit y P2(n) that a random

member of B(n,n E (n)) has no Isola ted node converges to exp(-2e~~) as n -

_ _ _  
___--•- • • , • - • • ~~~~~ - .~~~ . -~~~~~~~•—•-~~



4.3

Proof. Note that

exp(—2e4)

while It follows from Lenina 3 that

P2(n) = ~~~ 
(_ l)5f~(s) with fe(s) k+~~s ~~~~~ 

(31 )

Hence for each pair of positive integers n and s’,

- exp(-2e~~)I 
lf3~

~ ~=o 1f~(s) - 25e~~
5/s~ + 

~ =~~+l 
(.1 )5f~(sfl

41~:~~~ 113 (—l )5f~(s)I 
+ 

~~~~~ 
( l ) S2Se

_ \S
/s i l . (32)

To prove Theorem 2 we show that for each i 0 there exists s’ and n ’ suc h

that each of the suimiands on the right of (32) is less than for all n n ’

The first step is to produce positive Integers n3 and s1 such that

fe(s ) -‘ f~(s+l ) whenever n ~ n3 and 
~l 

s ~ T2n
1131 . (33)

To do this , first apply (8) to fixed k and t with k+C ~ t2n
1”31 to obtain

(
(n_ k)

E
(n C) )/cn ) - (1 - ~~)(k+f)(k_ e) ex p (~(~1~~ -k_L ~~~.

- exp(-E(k+C)/n) . (34)

Then analyze the arguments l eading to (8) to verify that the convergence in (34)

is uniform over all (k,C) with k+C ~ r2n”31. (T he deta i ls are s imi lar to

those in the proof of Lenina 7 in 12].) Hence there exists n, such that

((n_k)(n_C) ) f ( n2) ~ 2e
_ 1 C

~~
)
~
1
~
I

whenever n ~ n1 and k+t ~ r2n
1m31. Also, there exists n2 such that

I— 
_ _ _

• -•-.--—~ 
. - -•-



4.4

• 
1 (fl )/~ t < 2

whenever n ~ n2 and t ~ 2n1’~. Thus for n ~ max{n11n 2) and k+t ~

o~(k~~) (¼,4)e~~~~~~”~ fl
k+1

~,k s ~~
,

1Wi th 
~k+C~s k~C 

= 
~~~~ (36)

it follows from (31) and (35)-(36) that

fe(s) 1¼ ,4]2~ e
E5u’~ n

5fs:

and hence

f~(s+l ) 25+1 4e _E +l)fn n~
’1/(s+l ) ~~~~~~ n5/4s~ f,~(s)

whenever s ~ 32e2’. Thus (33) holds wi th

= 32e~ and n3 max{n1.n2,s1
3/8}.

• For fixed k and C it fol lows with the aid of (34) that as n

k:e:o~(k ,~ ) - nk~~exp (_E(k+~)fn) = exp((k+e)(log n - Efn)) - e~~0~ t)

and hence for each fixed s it fol lows with the aid of (36) that

lim ,~~,f~(s) = 

~k+C=s 
e~ 

+C),,k~e: = 25e~~
5/s . (37)

Now choose ~~
‘ 

~ ~l 
such that

Il~
OO (l)S2Se_A S/ss I (38)

and 2~~~e~~~~~~ /(s’+1) < C (39)

By Leimia 4,

sRr2n1/31 ~~~~~~ ~ 
E
~,f2~1/3l 

Ek+1.s l/1k/41 1~U4j~

~

~ (~ u/s.) -
~ 0 as n -

~

s”~n /2j

Hence there exists n4 ~ n3 such that

- . . • - .  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~ , • ~~ •— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•~~~-—



4.5

E
~~$I~nh/3.! (-l)5f~(sH < c for all n ~ n4, (40)

By (37) and (39) there exists n ’ ~ n4 such that

for all ~ > (41 )

and f~(s ’+l)  < c for all n ~ n ’ . (42)

Since, by (33), it i s true for eac h n ~ n ’ that fe(s) decreases as ~

increases in the range from 5’ to r2n”31, it follows with the aid of (42)

2 l
~
’3

that jz 5~51~1 
(_ l)5f~(s)l ~ f~(s ’+l) < c . (43)

The desired conclusion then follows from (38),(40),(4l) and (43).

• - --•--~~~~~~~~~~~ • . . . • • .~~~~~~~~~~~~~ . -•- ~~~~~~~~~~~~~~~~~~~
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5.1

Proof of Theorem 3

LEMMA 5 If A is the adjacency matrix of a graph C in B(m,n), 
~~ A: 

= (b1~ ).

then the probability that ~~ = 0 is (4-) for 1 ~ I < j ~ m and (i-) for

m+l £ I j ~ fli+fl

• Proof. There i s an m x n matr i x Q (q~~) of 0’s and l’s such that

tO Qi 2 rQQ T 0
A = J  T and A = 1

j Q  Oj 10 Q Q

Then b 1~ 
= q11q~1 

+ - -  •
~~

and b1~ 
= s ~ 1 if and only if there is a choice of s indices k~ such that

in ~ k1 < k 2 ~~~~~~~~~~~ k
5 ~~ n, = 

~~~~~~~~~~~ 

~ik~~jk~ 
1

and at least one of q1~ and is 0 for each

£ {m+ l ,~~~,m+n} - {k11~~~,k5}

Now suppose that 1 ~ I ~
- j ~ m , so that the indices k14 ” ,k5 may be chosen

in (
~

) ways. For each such choice there are ~~~ choices for the values of

and ~~~ and 2(m-2)n cho ices for the values of the q~~ wi th u ~ {i ,j }.

Thus the total number of adjacency matrices A of graphs C ( B(m,n) such that

the (i ,j) entry of A2 is ~ 1 is

3n2(m-2)n 1n ( fl )3 .S 3n2(m_2)n (4)
h1 1) 2mti(1_ (~)n)

_ __ __ _  _ _  _ _ _ _ _ _ _
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5.2

Since IB(m ,n)I ~mn this is the desired value. The same argument appl ies when

m+1 ~~ I •. j sm+n

THEOREM 3 If the positive Integers m(l). m(2),... are such that m(n) ~ n for

all n, and l im (log n)/m(n) 0, then the probability P(m(n),n) that a

random member of B(m(n),n) is of dIameter 3 converges to 1 as n -.

Proof. For any two nodes x and y of a graph C, let SG (x ,y) denote

the number of edges in the shortest path joining x to y, with 
~G

(x ,y)

if there is no such path. Then ~(G). the maximum of ~6(x ,y) as (x,y) ranges

over all pairs of nodes of C, is the diameter of C.

Let B’(m ,n) denote the set of all graphs C B(ni,n) such that for each pair

of nodes in the set M {1 ,.’rn (res p. N = {m+1 ,.~~,m+n~> there is at least one

coninon C-neighbor in the set N <resp. M> . Then ~c(G) = 3 whenever C € B’(m,n)

and C is not a compl ete bipartite graph. Plainly ~c~(x,y) 2 when x and y

are both in M or both in N. Now consider an arbitrary pair of nodes x N and

y ~ N that are not joined by an edge of C. Then of course 
~G

(x ,y) ~ 3. Let

Let x ’-~ M-{x }, let y ’ N be a coninon neighbor of x and x ’, and let x” H

be a connon neighbor of y and y’ . Then (x ,y ’,x”,y) describes a path of length

• 3 from x to y. Hence s(G) 3

Pla inly

P(m,n) ~ 1 — Q(m,n) - R(rn,n) - 2~~~,

where Q(m,n) <resp. R(m,n)> is the probability , for a random C t B(,n n), that some

two nodes in M <resp. N> fail to have a conuion neighbor In N (resp. Pt).

Ii— _ _
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5.3
• By the preceding lenina,

, , ~~~~~ 2,3~fl
Q~m,n; ~ ~2 ’~4~’ 

fl ~4) 0

and R(m,n) ~ (~ )(~)m .. fl
2(~)

Now pick ~ 0 such that e2t 4/3. By hypothesis , log n — utn , whence

~2(3)
m 

= (e lO9 fl)
2
(3)

m 
(3?f )

m 
-
~

and P(m,n) • 1. That completes the proof.

Theorem 3 i s a bipar tit e analogue of Moon ’s and Moser ’s observation [3] that

if 6(n) is the family of all graphs with node-set {l ,~ 
- •  ,n), then the probability

• that a random member of 6(n) is of diameter 2 converges to 1 as n -~~ . The

conjecture stated in the introduction is a bipartite analogue of the theorem ,

• establis hed in [2], that if d ~ 2 and the positive integers E(l),E(2), ~ are suc h

that E(n) dI
~~/n

d 
-‘ 0 and E(fl)d/n~~

l ) - log n -
~ as n — -~ , then the probability

that a random member of G(n,E(n)) i s of di ameter d converges to 1 as n *

Probably the conjecture can be proved by adapting the computations in [2], but that

would be a task of considerable technical difficulty.

For each C ~ B(in n), let C’ (resp. C”> denote the graph whose node-set is

Pt <resp. N) and whose edges are those pairs {x ,y) of nodes for which 
~C

(x ,y) = 2.

If 1 s in ~ n and lim,1~~ (log n)/m 0 then the expected number of edges of

C’ (resp. C”> , for a random member G of B(m,n,E), is of the order of

E2/n resp.<E2/m)as n ~~~~ . If the appropriate independence (or asymptotic

independence) results could be establ i shed, then C’ and C” could be treated as

random members of G(m) and G(n) respectively and the conjecture would follow

from the result of f 2]. Even lacking this Independence, the methods of 12] mi ght

be appl icable.
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