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RANDOM BIPARTITE GRAPHS: CONNECTEDNESS, ISOLATED NODES, DIAMETERS
VICTOR KLEE and DAVID LARMAN

Abstract Let B(m,n,E) denote the family of all labeled bipartite graphs that
T

have m nodes in the first part and n nodes in the second, with exactly E
edges. If the positive integers m(1), m(2),--- and E(1), E(2),--+ are such

-

that m(n) <>n and E(n) sm(n)n for all n, and 1im inf_.— E(n)/(n log n) > 1,
%,_ & OV = _’_’//; 5 m’ as " J,’s otck £ * ; y
then the probability that a random member of [}(m(n),n,E(n)) is connected converges to 1

as “52 ») Results on isolated nodes and on diameters are also obtained.
° m
Castroaches iafinty \
' Introduction

For 1 smsn <, Tlet B(mn) denote the family of all graphs with node-set
{1,~++,mtn}, each edge being of the form {i,j} for some i ¢ M= {1,...,m} and
J e N={ml,...,mn}. In other words, B(m,n) is the family of all labeled bi-
partite graphs that have m nodes in the small part and n nodes in the large part.
For 0 s E <mn, let B(m,n,E) denote the family of all members of B(m,n) that
have exactly E edges. MNote that [B(m,n)| = 2™ and |B(m,n,E)| = (ﬂ?).

A1l members of g(m,n) are given the same weight, so the probability that a
random member of B(m,n,E) has property P is merely gp(m.n.E) /(ﬂ?), where
Bp(m.n.E) is the set of all members of B(m,n,E) that have P. In studying random
bipartite graphs, it seems appropriate to focus on g(m,n.E) rather than B(m,n),
because graphs occurring in practical problems are apt to be sparse. For the many
bipartite graphs that arise naturally in problems from operations research or
computer science, a specific division of the nodes into two parts is usually imposed

by the problem itself. Thus it is appropriate to focus on B(m,n,E) rather than

.-
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1.2

the set of all bipartite members of G(n,E), where this denotes the family of all
graphs with node-set {1,---,n} and exactly E edges.

Our main result deals with connectedness. It is a bipartite relative of the
theorem of Erdds and Renyi [1] asserting that if ) is constant and
Ex(n) = Lg-log n +an) for all n, then the probability that a random member of
G(n,E, (n)) is connected converges to exp(-e'zx) as n - o,

Qur methods are in part inspired by theirs.

THEOREM 1 If the positive integers m(1), m(2),--- and E(1), E(2),--- are such

1A

that m(n) s n and E(n) < m(n)n for all n, and Vim inf __ E(n)/(n log n) > 1,

then the probability that a random member of B(m(n),n,E(n)) is connected

converges to 1 as n » =,
For any finite family G of graphs, let K(G) denote the probability that a

random member of G is connected. For each positive integer r, let Cr(g) denote
the probability, for a random member G of G, that each component of G has at least
r nodes, and let Dr(gz denote the probability that G is of diameter < r. If all
members of G have precisely s nodes, and if we follow the usual convention that

disconnected graphs are of infinite diameter, then

C22C32 “.ECKS'F])/Z-, = ...=CS=K=DS-] > eee 203202.

Our second result concerns Cz(g(n,n,E)). It implies that Theorem 1's conclusion
fails if E increases much less rapidly than is required in the hypothesis of

Theorem 1.

THEOREM 2 If the positive integers E(1), E(2),--- are such that E(n) < n® for all

n, and Tim (E(n)/n) - Tog n = A < =, then the probability that a random member

of B(n,n,E(n)) has no isolated node converges gg_exp(-Ze'A) as n=>e




1.3

OQur third result deals with diameters.

THEOREM 3 If the positive integers m(1), m(2),--- are such that m(n) s n for all

n, and limn*a (1og n)/m(n) = 0, then the probability that a random member of

B(m(n),n) is of diameter 3 converges to 1 as n =+ «.

There is a large gap between this result and Theorem 1, which concerns the
probability that the diameter is finite. Most of the gap is filled by the following

conjecture, which we have not proved.

CONJECTURE If the positive integers r, m(1), m(2),---, E(1), E(2),--+ are such that

m(n) s n and E(n) s m(n)n for all n, and
Vim E(n)2'°2/m(n)r']nr =0 and lim (E(n)zr/m(n)rnr+]) -logn =«,

then the probability that a random member of B(m(n),n,E(n)) is of diameter

2r or 2r+l converges to 1 as n - .

AT Sy TN P A A R P A g




2.1

Elementarx Estimates

f This section collects some elementary estimates that are used throughout the

paper and are henceforth referred to by number. We use the combinatorial inequalities

n n*
(k)s + for Yskan (1)
Mmew, , /M wiN L
( N )/(N) s 1 < ﬁ) for 1 <« Nsmw and 0 s w<m, (2)
the analytic inequality
1+ x s e forall x, (3)

and the fact that for 0 < [x| <y,

k K

® © 1 X
(y=x) (-5, _ £E) = wx # T = —~v T ()
k=1 kyE k=2 k(k-1) yk !

¥ o ZjFX
Tog( y)

When the functions o and & are defined for positive integers,
a - 8 means lim  a(n)/a(n) =1
and o — 8§ means afn) < 3{n) for all sufficiently large n.
We use the Stirling-de Moivre estimate,
nt - V2 A"yt (5)
and the following consequences of (4) and (5):

if 0 s s < o(N) then

K
. R ® 1 s MRDS
eapr - W oty myReTy vl 08 e 5

if 0swso(m) then

m=wj. .

K
-W = 1 W ) as mo+ ., (@]
w0 &Pl (KT KT
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2.2
Since

VT TR L L)

it follows from (6) and (7) that if 0 s wso(m), 0 s<sso(N) and 0 s w-s s o(m-N),
then

S ) ) (8)

< N Nyw- - 1 :
(Vs ()~ (0 = @) explrip ey (y = e - o

as Mo, N>y m-N- o,

e Ve




Proof og Theorem 1

LEMMA 1 Suppose the positive integers m(1), m(2),--- and E(1), E(2),--- are

such that m(n) s n and E(n) s m(n) for all n, and 1lim

Then for all sufficiently large n the quantity

alst) o (2)(2)(mn-(n-z)s-(m-s)t)/(ﬂ?)

is less than the reciprocal of

(a) Ls/2] |/} when 1 s s s<m/2 and 1 ¢
(b)  (m+n)l(m-s)/4):|t/4j: when ™2 <s ¢m and 1 g
(¢) (men)ls/a):L(n-t)/4]: when 1 ss s ™2 and "/2
(d)  Um-s)z2)!l(n-t)/2]: when M™/2 < s <m and 1/2

N>

E(n)/(n log n) > 1.

s n/2
< n/2

% 2N

A

Proof. Since the reasoning for (c) and (d) is essentially the same as that

for (b) and (a) respectively, only (a) and (b) are discussed.

¢ and : be such that

~

1 <g<g<~and ¢nlogn = E(n) = znlogn

and let p = (g-1)/2z.

Let b= (n-t)s + (m-s)t

and v= ("B s (5 3y exp(-Eb/mn),
so that a(syt) = (D).

To establish (a), note that by (1) and (11)-(13),

a(S.t) < EIIT!' eﬁ(s;t)

with g(s,t) = s logm+ t log n - Eb/mn.

Let the constarnts

(9)
(10)
(M)

(12)

(13)

(14)

(15)




Since gls,t) = s(logm - E/m) + t(log n - E/n + 2Es/mn),

it follows from (9) that for all sufficiently large n,
g(s,t) < s(logm - 55—%99—9) +t (logn-¢logn+2; %~log n)
ss(1 - g)logn +t(1 - ¢ +2: ) logn

for al1 s and t and hence 3a(s,t) <0 if s < m. Similarly,

£, 2t
m

=) + t(log n - %).

g(s,t) - s(logm -

so (9) implies that for all sufficiently large n,
2(s,t) < s(logm - lgguﬂ(gn = 2:t)) +t(1 - ¢)log n
for all s and t and hence 2(s,t) <0 if t < ¢cn. That settles (a) if
S<pm or t < om.
To complete the proof of (a) there remains the case in which
pm s s sm/2 and pen < t s n/2.

Recalling that the left side of (5) always exceeds the right, we see that

1

ThT ¢ exp(s + t - (s+%)log m - (t+y)log n + A])

where A] = -log(2r) + (s*%)log (m/s) + (t+s)log (n/t)

8

and hence A] s B = -log(2n) - (s+t+1)log »o.

By (14),(15) and (17),
a(s,t) s exp(s + t - %(logm + log n) + e Eb/mn),

where by (9),(11) and (16) it is true with 1 < ¢' < ¢ that

3.2




3.3

Eb/mn = %—;(log n)((n-t)s + (m-s)t)

2 %%%\og n+ 3§llog n 2 %}(S+t)109 n. (20)

Hence by (18)-(20) and the fact that &' > Y(:'+1),
a(s,t) =< exp(-4(:'+1)(s+t)log n).

Since %(:'+1) > %, it then follows with the aid of (5) that

1 1
\I(S,t) - tsm-r m‘r .
That completes the discussion of (a), and we turn to (b).
Since, by (1),

m-s _t

() 2 o s
TR o lm-s}f b
we conclude from (12)-(13) that

alsit) s grmyrgre oY (21)

where
A(s,t) = (m-s)logm+ t logn - %%{(n-t)s + (m-s)t) .

Note that for each fixed s, \(s,t) is an increasing function of t, and for each

fixed t < n/2,\(s,t) 1is a decreasing function of s. It follows that
\(s,t) s A(s,n/2) < (m-s)log m - g(% - log n)
~ (m-s)log m - g(e-l)log n (22)
and
a(s,t) s a(m/2,t) < g logm+ t log n - 4E

- ? logm+ t log n - %n log n. (23)




3.4

Now suppose that s and t are in the ranges associated with (b). If,
moreover,
m-s < (¢-1)m/4 or t < (£-1)n/4 (24)
then it follows with the aid of (22) and (23) that

1=
A(s,t) s = loa n,
whence it is true for all sufficiently large n that

eA(S,t) 29

m+n

and the desired conclusion follows from (21). If, on the other hand, (24) fails,

then it follows from (5) that

m-s].t. < exp((m-s) + t - (m-s#)log m - (t+})log n + B,)

where
B, = -log(2r) - (m-s+t+1)log(:-1).
Using this in (15), and noting that Eb/mn : E/2, we have

a(s,t) -~ exp((m-s) + t - %logm - %logn - B, - E/2)

] ]
= (5)mn L(m-s)7AITLE/A]T .

That completes the discussion of (b) and of Lemma 1.

LEMMA 2 Let B'(m,n,E) denote the set of all members of B(m,n,E) that have a

component with more than

K(m,n,E) s m + n - 2(2E/(m*n))"™

nodes. If the positive integers m(1), m(2),--- and E(1), E(2),--- are such

that m(n) s n and E(n) s m(n)n for all n, and lim  _ E(n)/(n log n) > 1,




e

then the probability that a random member of B(m(n),n,E(n)) belongs to

B'(m(n),n,E(n)) converges to 1as n-~» = .

Proof. We show first that
each member G of B(m,n,E) has a component with at least K(m,n,E) nodes, (25)

Indeed, if r 1is the number of components of G that have more than one node,

and the ith of these components has ki nodes in the set M and 21 nodes

in the set N, then ki =1 < Zi,

Iiop Ky smy 2 &5 <0, and I kigy 2 E

Since r < m,

N
maxX) igr Ki¢§ 2 m 2 in © (7)
and hence
max]sisr (ki+£i) 2 K.

It follows from (25) that

L (26)

B(m,n,E) ~ B'(mansE)| < 2y cit amin-k 2

where it is understood that s, t > 1. To establish (26), consider a graph G ¢
B(m,n,E) -~ l}‘(m,n,E) that has a largest component intersecting M and N in

sets S and T respectively, with |S| = s and |T| = t. Then K s s+t < m+n-K

and the pair (S,T) can be chosen in (E)(Q) ways. For each such choice there

are at most
mn-(n-t)s-(m-s)t
( ) )

ways of choosing the edges of G, because no edge can join S to N-T or T to

M-S .




e

=
P e

3.6
From (26) and Lemma 1 it follows that

|B(m,n,E)-B' (munE)|
I-B(m'n’E)l : “Kgs+tsmtn-K “(srt)

1 3 \
< 2G5t Kastt G272 ¥ nim/2<ssma st [(m-s)781 TLE/4] T
‘L A
n"n/2<tsn,1ss |s/4) 1 ((n-t)74]"

1 ® ]
2 A e wa e

2 o ] e ]
* e Is?QIT)("t'l fﬂ“ﬂ)
< 2(2@)(23‘."an/41 }1!_) + %‘(49)2 -0

1
because K > (E/n)® - « as n » «_ That settles Lemma 2.

THEOREM 1 If the positive integers m(1),m(2),--- and E(1),E(2), -+ are such

that m(n) s n and E(n) s m(n)n for all n, and

lim infn*m E(n)/(n log n) > 1,

then the probability P,(m(n),n,E(n)) that a random member of B(m(n),n,E(n))

is connected converges to 1 as n + «,

Proof. Consideration of the natural subgraph correspondence shows that if

F < E then P](m.n.F) $ P1(m.n.E). Hence we may assume without loss of generality
that the sequence (E(n)/(n log "))n-I.Z ... converges to a real number > 1.

In view of Lemma 2, it suffices to show that Q(m,n,E) + 0, where Q(m,n,E) is

the probability that a random member of B(m,n,E) is disconnected and belongs to

B' (M,N,E).




3.7
Note first that

QIMME) § B gnex (DHNIEE, (Sh((mglin-t)), (o)) (27)

For consider a disconnected member G of B'(m,n,E) that has a largest component
intersecting M and N in sets U and V respectively, where

[U| = m-s, |V| = n-t, and 1 5 s+t s K. The pair (U,V) can be chosen in
(f)(:) ways. For each such choice, and for each possible number r of edges G

connecting M-U to N-V, there are (i}) ways of choosing those edges and
((m-s)(n t)) ways of choosing the remaining edges.

Observe next that

(m- )( t) £y
( m 5 n= )/(mn) 2 (8) (u&_) (‘

3 )sn*tm-st r
mn

v
* (3) (mgn) exp(- ‘ﬁ"-\ (sn+tm-st-r)

< () (.~) exp( u(s+t)logn) (28)
with w148

Here the first step requires not only (8) but also the sort of arqument used in
proving Lemma 7 of [2] to show that the asymptotic convergence depends only on n.
Using (28) in (27) yields

QM) 5 5y gpper (O (D (expl-uls+t)log MRt H (")

5(1) "rgsetsk ST F’*P( ~(u=1)(s+t)10g n)(1 + -)5‘

Est) :

5 (3) Mrasetsk st Fexp( =(u=1)(s+t)log n + = (29)




Now
Est _ 2AsKlogn
mn
where
4mx (zne)‘=

Thus it follows from (23) that

Q(m.n.E) == ];S"’tSK

<

3.8

%%{%%)5(s+t)log n

)

p exp(=%(u=-1)(s+t)logn)

<0102

The proof of Theorem 1 is complete.




4.

Proof of Theorem 2

LEMMA 3 The number of members of B(m,n,E) that have no isolated node is

o T + 'k)( ¢
B e B (30)

Proof. Consider an arbitrary member G of B(m,n,E) that has p isolated
nodes in {1,---,m} and q isolated nodes in {m+l,.--,m*n}. For each choice of
k nodes in {1,.--,m} and £ nodes in {(m+l,..-,m+n}, the number of members of

B(m,n,E) that have these k+¢ points among their isolated nodes is ((m-kksn-f)).

If this count is repeated over all possible choices of k nodes in {1,---.m

and ¢ nodes in {m+l,:-.m*n}, the number (g)(g)(m-k)én-f)) is obtained and G

is counted (E)(?) times. Thus G is counted
= P Q@ 1kt Py (q
T(G) T k=0 “£=0 ( 1) (k)(c)
times in (30). Since P (-1)“(5) =0 if p>0and ), (-1)‘(2) =0 if g> 0,

t(G) s 0 or 1 according as p+*q >0 or p=gq = 0.

2
LEMMA 4 Let O (k.0) = (2)(?)(‘"‘22#?“))/(E?n)). If the positive integers E(1),E(2),

2

*++ are such that E(n) s n° for all n and lim (E(n)/n) - Tog n =1 < «, then

for all sufficiently large n it is true t 6, (k,0) < 1/0k/4):12/4)! whenever

k,£ and n are nonnegative integers with k s n, € 2 n, k+¢ 2 2n]/3. and

E(n) s (n-k)(n-2) .

e L s s *—?—nmm_“




4.2

Proof. Note first that
k €
o_(k, (k+£)-
n(k Z) s (]'2) n.n (‘ 3 n k+£ kC)E
kT n

5 (3) R-!l[.rexp((kw)log n- (k+£)§ + _kit_ -E—)

-< k—r]z-rexp(Z(1-x)(k+£) + !‘r-:;-]og n),

where the third inequality is a consequence of the facts that k¢/n — k+{ and
x=1 =< (E/n) - Tog n =< 2+1.

By symmetry we may assume k s £, whence £ 2 n]/3. 1t kx n]/6 then

(k€ Yog n)/n s n”slog n, and with the aid of Stirling's formula (5) it follows
that for all sufficiently large n,

/6

0, (ki) < rexp(-1ogvZi - (£¥)log € + ¢+ 2(1-1)(k#2) + n'/®l0g )
- ] -
b A 7 L
If k> n]/6 we may apply Stirling's formula to both k! and {! to obtain, for

suitable constants A,B and C and for all sufficiently large n,

0 (ks?) exp((!‘ﬁ"l -k - £)log n + Ak + BC + C)

A

[ 7

exp(-¢ log n + Ak + BL + C)

1 1 1
17217 = X787 /8T

| 23

2

THEOREM 2 If the positive integers E(1),E(2),--- are such that E(n) < n” for all

n and 1im _ (E(n)/n) - Tog n = A < =, then the probability P,(n) that a random

member of B(n,n,E(n)) has no isolated node converges to exp(-2¢™') as n -+ w.

—




4.3
Proof. Note that
exp(-2e‘x) = z:_o(-l)zsze'xs/s!
while it follows from Lemma 3 that

Pyln) = 220 (1)%¢ () with f,(s) = T, pnq Op(kel) . (31)

Hence for each pair of positive integers n and s',
le(n) - exp(-Ze'X)l

' V3
s 5.0 [F,(s) - 2%72%/s!| 4 iE§§2.+f (-1)°F (s)]

+|z"’“r2 Y (FVSF ()] + [T5agiy (\1%2% 7S5t (32)
s=idn

To prove Theorem 2 we show that for each ¢ > 0 there exists s' and n' such

that each of the summands on the right of (32) is less than ¢ for all n :n

The first step is to produce positive integers N3 and $ such that
fn(s) > fn(s+l) whenever n > ng and S;p 88 s f2n]/31 ; (33)

To do this, first apply (8) to fixed k and ¢ with k+ s [2n'/3] to obtain
(n=k)(n-2)y,(n?y _ E (k+£)(k-L) k+e)n-kC ,
(R expt{EIERL ..

- exp(-E(k+)/n) . (34)

Then analyze the arguments leading to (8) to verify that the convergence in (34)

is uniform over all (k,£) with k+{ < r2n]/31. (The details are similar to

those in the proof of Lemma 7 in [2).) Hence there exists n, such that

5e-E(k+£)/n A ((n-k)én-t))/(ﬁf) ¢ 2e-E(k+L)/n

whenever n 3 " and k+¢{ < f2n]/3]. Also, there exists n, such that




2%7 < (2)/nt < pzr
whenever n 2 ny and t < 2n1/3. Thus for n 2 max{n].nz} and k+£ < f2n1/31.

-E(k+€)/n (kL 1oy

On(k.l) € [li'4]e (35)
With . W (36)
k+e=s kL'  S°
it follows from (31) and (35)-(36) that
fn(s) € [%.4]2s e'Es/" nS/s!.
and hence
f(s41) < 251 e E(S*¥1)/n S+ gy ¢ 2SemES/N 1S a0 f (s)
whenever s 32e2x. Thus (33) holds with
Sy = 32¢" and Ny = max{n],nz.s]3/8}.
For fixed k and ¢ it follows with the aid of (34) that as n » «~,
k:l:on(k,f) - nk+£exp(-E(k+£)/n) = exp((k+£)(log n - E/n)) - e'x(k+£)
and hence for each fixed s it follows with the aid of (36) that
A = ‘X(k+£) VY = S_=AS ]
11mn*mfn(s) = Ipap=s © JiLl = 2% "8, (37)
Now choose s' > 4 such that
|25agra (-1)%2%e7 4875 < e (38)
] |
and 28 =M™+ (i) < ¢ (39)
By Lemma 4, : y
je= (-1)5¢ (s)| < =" Sy epec 1/LK/8) 11E/74) !
s=f2n'/31 4 s=on!/31 Tkrtes
S(r-“ 1/3 ]/53)2-’0 as N =+ =,
s=|n""7/2}

Hence there exists ng 2 Ny such that




By (37) and (39) there exists n' 2 n, such that

"w
S

z:;olfn(s)-zse'xs/sfl < ¢ foralln

"w
3
.

and fn(s'+l) < ¢ foralln

Since, by (33), it is true for each n 2 n' that fn(s) decreases as S

increases in the range from s' to r2n1/3], it follows with the aid of (42)

Zn]/3

that lzs=st+]

(-1)%F(s)] < F(s'+1) < e

The desired conclusion then follows from (38),(40),(41) and (43).

(40)

(41)

(42)

(43)




5.1

B s T o—
E

Proof of Theorem 3

LEMMA 5 If A is the adjacency matrix of a graph G in p(m.n), and A2 = (bij)‘

n m
then the probability that bij =0 is (%) for 1 <i<jsm and (g) for

ml < i <jgmn, |

Proof. There is an m x n matrix Q = (qij) of 0's and 1's such that

0 Q , Ja' o
A= T and A" = T j
Q" 0 0 Q'

= s ®
Then Ds. 919 + q

ij q

in'jn’

and b,. =s 21 if and only if there is a choice of s indices kn such that

ij

WKy <« Koy << k. gy, Qo ®Gur ® % Q. Qi =1,
1 2 S 1k] Jk.l 1ks Jks

and at least one of 9%, and qj£ is 0 for each
£ ¢ {m¥l, .-+ ,mn} - {k],~--.ks}.

f? Now suppose that 1 < i < j < m, so that the indices k].---.kS may be chosen

3""S choices for the values of

in (2) ways. For each such choice there are
(m-2)n . : :
% and qjt' and 2 choices for the values of the . with u ¢ {i,j}.

Thus the total number of adjacency matrices A of graphs G ¢ B(m,n) such that

the (i,j) entry of A% s 21 is

3n2(m-2)nz:-] (2)3-5 H 3n2(m-2)n((§)n_1) 3 2”"(1-(%)").




5.2

Since |B(m,n)| = 2™, this is the desired value. The same argument applies when

ml s 1< jsmen.,

THEOREM 3 If the positive integers m(1), m(2),--- are such that m(n) s n for

all n, and lim _ (log n)/m(n) = 0, then the probability P(m(n),n) that a

random member of B(m(n),n) is of diameter 3 converges to 1 as n » «,

Proof. For any two nodes x and y of a graph G, let SG(x.y) denote

the number of edges in the shortest path joining x to y, with 6G(x.y) =

if there is no such path. Then &(G), the maximum of aG(x.y) as (x,y) ranges
over all pairs of nodes of G, is the diameter of G.

Let B'(m,n) denote the set of all graphs G « B(m,n) such that for each pair
of nodes in the set M = {l.---un}<resp. N = {m+1.---.m+n}) there is at least one
common G-neighbor in the set N (resp. M). Then &(G) = 3 whenever G € B'(m,n)
and G 1is not a complete bipartite graph. Plainly GG(x.y) =2 when x and vy
are both in M or both in N. Now consider an arbitrary pair of nodes x « M and
y « N that are not joined by an edge of G. Then of course SG(x.y) : 3. Llet
Let x'e¢ M-{x}, let y'e¢ N be a common neighbor of x and x', and let x" ¢ M
be a common neighbor of y and y'. Then (x,y',x",y) describes a path of length
3 from x to y. Hence &§(G) = 3.

Plainly

P(m,n) 2 1 - Q(myn) - R(myn) - 2°™,

where Q(m,n) (resp. R(m,n)) is the probability, for a random G « B(m,n), that some
two nodes in M (resp. N) fail to have a common neighbor in N (resp. M).




5.3
By the preceding lemma,

amn) s (HR" < 2@ "+ 0
and Rimn) s (D" < 2" .

2¢

Now pick € > 0 such that e“® < 4/3. By hypothesis, log n = em, whence

2" = (219 M2 < 329"+ 0

and P(m,n) - 1. That completes the proof.

Theorem 3 is a bipartite analogue of Moon's and Moser's observation (3] that
if G(n) is the family of all graphs with node-set ({1,---,n}, then the probability
that a random member of g(n) is of diameter 2 converges to 1 as n » «. The
conjecture stated in the introduction is a bipartite analogue of the theorem,
established in (2], that if d = 2 and the positive integers E(1),E(2), -+ are such
nd

d+1)

that E(n)d']/ + 0 and E(n)d/n -logn-~« as n > «, then the probability

that a random member of G(n,E(n)) is of diameter d converges to 1 as n -+ «.
Probably the conjecture can be proved by adapting the computations in [2], but that
would be a task of considerable technical difficulty.

For each G ¢ B(m,n), let G' (resp. G") denote the graph whose node-set is

M (resp. N) and whose edges are those pairs {x,y} of nodes for which GG(x,y) = 2.

If 1 smg<n and limn*w (Yog n)/m = 0 then the expected number of edges of
G' (resp. G"Y , for a random member G of §(m.n.£). is of the order of

E2/n resp.(Ezlm)as n->~, If the appropriate independence (or asymptotic
independence) results could be established, then G' and G" could be treated as
random members of G(m) and G(n) respectively and the conjecture would follow
from the result of [2). Even lacking this independence, the methods of [2] might
be applicable.

.
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