
_ ____ P U
I _ __ _

SM S

_ _ _

L
~~~ ~ 2.2
~3ô W~~~~

~ ~ 
IOO~ii 
~IL8

I .25 IIM~ 
~J~ b

4

MICROCOPY RESOLUTION TEST CK~~T
$~ T~ONAL OUR(*U OF ST*~ OA&O6-l%3-

~*



• 
L L

~ ~~ii 1.1 ~~:: ~~~~

liii,’ .25 IMI~ Hit ,
I

MICROCOPY RESOLUTION TEST CK~~T
• 

- 
NATIOt ~At. BUREAU O~ $TA~ DAR~~-I963

-~ I



r 
_~~~

-::
~ .*-~.•—~~•- - - -i

NAVAL POSTGRADUAT E SCHOOL
Montere y, California

LEVEL
D D~C~

• - 1979

THESIS A

SYSTE$S ANALYSIS FOR THE INTERACTIVE SIMULATION
WITH GRAPHICAL DISPLAYS TO SUPPORT

SIMULATION OF TACTICAL ALTERNATIVE RESPONSES (STAR)
• C)

4 by
LU

• George Sansing Coker

and

David Ralph Forinash
March 1979

rhesis Advisor: S. H. Parry

Approved for public release; distribution unlimited.

_ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~i._-_-~~•---- ~~~~~~~~~~~~~~~~ •- •  .•• -


TIT LE ~~~~~ ~~~~~~~~~~ ~~~t ØF ~~R~~bR1’ & ~cmoo COV(AED

(
~

~~
stems ~~a1ysis For The~~~~~~

t1

j

~~~~mU 11 I vaster ’s /hesi~9~~~aeh 1~7~

~~ Of~~~ ical Alt ative Res~~nses ( AR) — S ~ m~o~ swe e~e. ~
g
~ornr NUM SER

• -~~ ‘ L  S CoN T~~ACY O~ GNANT NL.M•E~~.)(jj~ ~ George Sansing~~oker 
~~7

~~~~ J David Ralph JForinash (~
J u w~~,q.pI~~IINI Oas~ANIZA ttON NAM & AND AOóR *U IS. • NAN £L.*M($t. .Noj tei . TASK

A~~~2. WONK UNIT NUMSENI
Naval Postgraduate School
Monterey, California 93940

I I . CONTNOI.LINS OFPTCI NAME AND ADONEU

Naval Postgraduate School (j) Mar 79 (
Monterey, California 93940 ‘t •n t

14. MOIIITOMNI ASENCY NAME S AODNSU(S1 ~~~~~~~ I. C~~e~s4ffiRg Offi..) II. SECUNIT’c C%.A$$. (sE SK• s~~s,E)

~~~~~~~~~~~~~~~~~ 1 
U fled

IS. DISiNISU flOW STATEMENt (.1 ~Ui Rup~~I)

Approved for public release; distribution unlimited.

I?. DISYNISUTtON STATEMENT (.1 IN. .S ese N hi JI..h 20, Sf ~ If., , 2_  R.p~~)

IS. IUP~~~EMENTANY NOtES

I,. K S? MONO, (C~..iM—i a. ru,~~ia .~~ St aa a.~~ — 5 .dty by b4. 1 . $au)

STAR Tactical
interactive Operating System
Graphics P~? i~ (~ ~) r~.
~~• ~ -

~ iauJ.aLlon . ~~. . - ~~~, ,j

SQ. ASS? MAC? (C_~~~ _ a. ~~~~~~ St a.u.~~ y I~~~N& by Wa.k

-
~~~~~ A systems- analysis of a computer system to support the STAR war gaming

model is presented. The war game is described and the user’s obj ectives
are defined . Pour conceptual methods for implementing the user’s objectives
are presented and a preferred solution is chosen. The characteristics of the
preferred solution that are necessary to meet the user’s objectives are
described. Further software needed to implement the objectives is briefly
dj scussed. The code for the current model is analyzed and a sua.n~ry r e ~I~J~ ,~~~,

I JAN 7) 1473 t0T 1~0N O~ NOV 5$ IS 05501.1?!
S/N O *02•014• SIS * I 1 ______$ECUNI?Y ca.~as.,ic*yiow e~ IMIS PASt (ma. Del. 01*auØ

— .--~~ ~ —~
- - . .-_________

~~~~~~~~~~~~~~~~~~~ ____________



_____________ — — - —  —————- .—— -—..—— — . —.- ‘~~~~~~~~ ‘~~~‘~~~~~~ - - —-  -.-.--—-~~‘--—--.•—

IWi &C~~TSTPfl 

-

~~~v*PM CIA S~~C*fl~~ 5 TNs$ ~~SSSt~~~~ Des. i-i1.s.

presented. Conclusions from this systems analysis are deriv ed and future
research areas are identified.

£ccessio~ For -

NTIS GThA&I
• DDC TAB

Unaz~noizr~ced
Juzt i f icat ion____________

By____________________

DiSt ’-P-ut i ’n/

Avail and/or
V Dlst special

~~~ 
_ _ _ _  _ _ _ __

DD i~ W~3 1473 
2 UNCLASSIFIED

SI N O[O~ ’A144I01 slelia ’, $~AImm(AflSN ~~ i~..s ~&a$~~ —. ~~PPIJJ S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~


- -
~~~~~~~~~~~~~~~~~~~~ __________________

Approved for public re leasel d is t r ibut ion unlimited.

SYSTEMS ANALYSIS FOR THE INTERACT IVE SIMULAT ION
WITH GRAPHICAL D ISPLAYS TO SUPPORT

SIMULAT ION OF TACTICAL ALTERNATIVE RESPONSES (STAR)

V
by

• George Sensing Coker
• M aj or ,  United States Marine Corps

8.8., MIss issi pp i College , 1968

and
0

David Ralph Forinash
Capta in, United Sta tes  Army

f 8.3., UnIted Sta tes  M i l it a ry  Academy, 1970

Subm i tted in p a r t i al f u l f i l lmen t  of t he
requirements f o r  the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

f r o m  the

NAVAL POSTGR ADUATE SCHOOL

Au th ors

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ a —

A pp r oved by : ee See a .
_
~~ ,.,y..oe 5555SSSO see

~Chairman , Depar f Comouter Sc ience

~~~~~~~~~~~~~ 4:: ~~~~~~~~~cI!~._ _
~~~~

_ ../OZt~~~I,c~
Dean of Scie nce and Engineerina

3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __:j

~~~~~~~

J

~

. .

~

. ~.

7

ABSTRACT

4
A systems analysis of a computer system to suoport the STAR

war aem i ng model is presented. The war game is described

and the user s objectives are defined. Four conceptual

meth ods for imp lementing the user ’s objectives are oresented

and a preferred solution is chose-n . The characteristics of

the preferred solution that are necessary to meet the user ’s

objectives are described . Further software needed to

imolement the ob jectives is brief ly discussed. The code for

the current mode l is analyzed and a summary presented.

Conclusions from this systems anal ysis are derived and

future research areas are i dentified.

4

-

- .~~~. - - ~--~--———.~~. ~~~~~~ ~a. “ —i

Ii- -

~~~~~

A TABLE OF CONTENTS

— I • I N T RD DUC I I ON eeeeeaaeeeaeaaeos a c a esces S eesee~~~eee~~ 7

I I • BA C K GROUND sacs Sesae e e a a e e  as esesees e 1 5

A • HI S T O R Y  OP W A R  G A M E S  esCeesSsSe e e S e e s c e e e a e S ee 15

B. EVOLUTION OF SIMULATION OF TACTICAL ALTERNATIVE
RESPONSES (STAR ) eaeeeeeaeseeeeoeaeseaeees ac e __s e  

~ 7

C. CURRENT DESCRIPTION OF STAR ~~ sese~~~~~ a~~~~~ e aeaeseaa 19

D. PROPOSED ENHANCEMENTS — ———— ~~~— — ~~~e ——————— ~~~—~~~~~ 23

E. TYPES OF GRAPHICAL DISPLAYS c e a s e—s e e  es a a a~~~~~~~~ea 34

III.CONCEPTUAL SOLUTIONS 55555 e 5 e a 5 5 a 5 a 5 e 5 5 5 a 5 5 0 a~~~~~ 38

A. DATABASE MANAGEMENT SYSTEM e eea a~~~~~~~~c~~~~~ aeaeaese  39

• B • OP ER A T I N G S Y S T EM seeeseeeseeseas  eee555eeeeaaeseas  44

C. DISTRIBUTED SYSTEM CeCe5e5 eaeeee5eae eaa aa ae0 48

D • EMBEDDED GRAPH I CS e0050eesse eeee s Ces e C e 0 5 0  ceefle 5 ~
E. EVA LUATION OF ALTERNATIV ES aea aeeescs ae seescee 53

1. Common Considerations ————— — — ~~~— — — — — ° — — — — — — —  53

2. Database Management System — — —— — — —~~~~~~~~~~~~ ° 54

3 • Opera t I rig Sy a tern aoaeseecaeeee e ec_ c  oeeeeeseese 57

$~ Distributed System e O s s e a e a e c e c a a e e e a e c e eee e a e  60

5 • Embedded Graph i Cs aessee 63

F • PR E F ERRED SO LU I ION ee050eeeeeee ae aeaesee accesses 68

IV • SOLUTION ANALYSIS eeeeeeeeeeeee eeeesaeeeeeeeeasseee  73

A. OPERATING SYSTEM REQUIREMENTS eeee ee eeeeeeeeaee 73

1 . Segmented Memory eeee ee eee e a o ecee e e ee eae  cocos  7~4

2. Process States eaee e a eee eee e e ee  ae ec eee s eeae ec  75

3. Synchronization of Processes ~~~~~aa e e e e e e e e e e e~~~~~ 76

4. Lsola tion Techniques e a s a e cea a e e e e e e c e e e e eee e s  79

5

-~~~~~~~~~~ ----- ~~~~~~~~~~~~~ --



________
-

B, ANALYSIS OF ENHANCEMENTS esse ac ae~~~eaaaseceacess 80

1. In teractIve Programming ssseeaaaaeeacccaaeacse  81

— 2 • Re a 1 —t I me see c cess eees eaesaeseseeaeeee eese 
~~ 3

3 . Mon I to r P r og ram e eac e sea aea acss~~~aeeeec a 84
e

4. Dynamic Event Recording ea ecase eecsae eeeeeec 84

5. Report W i f t er ee ceeaaeeeceaaesa seesecee  eeee~~~e 85

6 • In gu I r y Mode eceeascecs 5 es a eaos ees  — a see ees

7. Map and Overlay Generation cce eeeesecesseeas a  87

8. Securi ty of Classifi ed Data aoeesaaseeeasseesc 90

9. Li brary Routines/Tutorials Needed eee~~~~~e ssssa 91

a. Terrain Generation Package aaaesaseaesses. 91

b. Posi tion Selection eaea aeese ceesaseeesos 03

c. Military Symbol Library —~~~— — — —— — —“ — —— -~~~~ 97

C • USE OF THE S V S TE ~4 ees ceese aesaeeea aces ceese00 sa 98

• V. ANALYSIS OF CURRENT S T A Rs es _ ~~ seea_assase_eeeaees_aaee100

A • GENE R AL escesess aeceos ceeas e aeee ss 1 0 0

B. STRUCTURE eeeeac sesa aeesaea a 
~ 0 0

C • CONTROL S T RU C I U RE S cease seaec eases— seas e_esssej 0 3

0. STORAGE OPTIMIZATION sscs asccsaecs eeee ecascceaclO5

E. SIMSCR!PT ROUTINE ANALYS IS ssaacseee ec sssessss lO5

VI. CONCLUSIONS AND RECOMMENDATIONS aeseaeca e seseeaesslOl

APPENDIX A . TERRAIN TUTORIAL eee sscs aeaaeaeseecsecescsl09

APPENDIX B. SIMSCRLPT SUBROUTINE ANALYSIS a ea e e e aec e c cl l 9

APPENDIX C. SIMSCRIPT SUBROUTINE SUMMARY cee_e a_ee a eec2O5

APPENDIX 0. STATIC STORAGE ARRAY ANALYSIS cses ca esa e c2t Q  -
B 18L IO G R A P MY  aeeea c e ea_ aeeae e ee ce e_ a ee_ eee s c e a as s cc c e _a2  13

INITIAL DISTRIBUTION LIST s e _ e aec e s c e c e e _c a _a_ a _ e a e e a _ e _2 1b

-__
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ A



- . - - —---- — - - — - --- _---- y-  -
~~~~L~~~~~~

-

• I. INTRODUCTION

A computer simulation Is the representation of a

mathematical model In a manner that allows the user to

examine the system be i ng modeled and gain further insight

into the Inner workings of , the system. Typi call y,

simula tions fall into five classes: the presentation of

unobservable phenomena, operator trainin g models, gaming

models, design tools and models of systems with factors that

prec l ude experi mentation on the system itse l f tRahe 1972].

Modern computers and graphics terminals have removed the

last barriers that prev iously , dictated a ll—di gital

simulations. These terminals can be used as exceptionall y

fast arid versatile outPut devices. The computer may be

eouipoed with a graphical input device such as a graphic

tablet enab l ipq the system to be used as a drafting device

with unique properties (Newman and Sproull 1973].

The comouter system intended for use should provide one

l ine, hands—on high—speed comoutation with excellent

disolays and interfaces to external hardware. The

application of graphical support to war gaming adds a

aimension previousl y not available to the modeler. The

capsbllity to visuall y monitor the simulat ion durin g

•x•cutlon prov i des Insight into the system being modeled

that tabular results obtained after the fact can never hope

to attain. Interactive programming allows the development

~~~- _ _~~~
___ _.t_~~ ,•~ _ ~~~~~~~~~ ~~~~ ~~~~~~~~_ ________________



_  -~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
;

of applications which can interact with a user arid enable

- h im to control the functions oerformed and the data operated

- on by th. program. The modeler may now interact ivel y

participate in the simulation and at critical times make

decisions that w il l  create changes in the outcome of the

simulation.

- - 
One i mportant facet of interactive programming is the

j aspect of rnan~ com puter symbiosis. 8y achievin g a very close

I coupling between the human and the comouter,tbe computer may

I 
facilitate formulative th inking arid allow the human member

- 
of the partnership to parti~~ioate in mak ina  d e c i s i o n s  and

‘ controllin g comolex situations without ~nf lexi b le dependence

on predetermined orograms (Lickli der 19601 .

-
~~~~ Any sys tem dev i sed to attain such an interacti ve

simulation system w i th graphical support should not be

hastil y thrown together. “Ad d—on ” suPport tends to overl y

complicate and reduce the efficienc y of the existin g system.

For any system, the p rinci pl es of sim p licit y and

effectiveness are essential to the usefulness of the system .

These two principl es often compete- w i t h each other (Smith

1970]. In this light, it is critical that to support any

existing or planned system , a careful systems analysis arid

design must be the first step toward imo lem en t ing that

suppor t. This added effort should result in an efficie n t ,

effective system while m aintaining maximum flexibilit y arid

simp lici ty. In the rush to imp lement a major System, the

~~ emphasis is generally placed on the app lication with l i t t l e

8

~~- —~-~ ~~~~
--

~~~~~~ i~:i -
~~~~~~~~~

-
~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~



~
Tonsidepstion gIven the h

~~
:factors when the Interface

~.a tween man and his. program is imolemented. Human interface

- is desirabl~ at setup time when there are many disp lays ,

: op tions and c.,rameter~ for a user to control. If he is an

experienced user he does not want to be forced to cycle

through a ll the options. The user desires onl y enough

promoting information to change those options necessary to

Setup and execute his run. No ma t t e r  how w e l l  a S y s t e m

performs, it w i l l  be l ittle used if it is aiff i cu l t to

setup. The user must be considered first and effective

man—machine i n t erf a c e  dialogue w i l l  become a ma jo r

— cons idera t ion,  as important as the appl i ca t i on  i t s e l f .

The process of extending an existing war game to include

• 
- int e r a c t i v e  func t ions  is so com p lex  tha t  prograr~m ina

p ro d u c t i v i ty  techniques must be planned and employed f ro m

the onset. These modern techniques have proven to be

success fu l  In, control of s o f t w a r e  p r o j e c t s .  Such techniques

as s t ruc tu red  design, topedown design, to p—down programming ,

n,oduIar lzat ion ,  s t ructured programming and wa l lkt h roughs,

chief programmer team Concepts arid a scheduling methodolog y

w i l l  be crucial to the development and maintenance of an

acceptable model.

T h i s  study considers all poss ible  s o f t w a r e  concepts and

explores their app li cability to the model. Some of these

that could prove to be useful tools are: database management

sys tems, SIMSCRIPT, graphic support l anguages and either

general puroose or tailored versions of operating systems.

9

- — —---- .—‘- ~~ 
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~ ~~~~~~~~ — —~~~~ —‘~~—-—~~ —- ~~~~~ ~~. ‘~-~—— -.—t~~~ - -
~

-; ~~~~~~~~~
•

~~~~~~~
‘ - ‘

Various programming l anguages l end themselves to war

gaming . The advantages of a high level l anguage are wel l

established and their usage is oart icu lar ly significant in

the area of programmer product ivity. Because each of these

l anguage instructions translates into 10~20 lines of

documented code, the dail y productivit y of the programmer is

increased at least three fold. Jhis Increase has been

demonstrated in numerous studies (Brooks 19751 . High level

l anguages also contribute to lower app lication maintenance

costs, improved documentation and design through their

abilit y to allow self—documenting variable names, new

construct . and easier imp l ementation of algorithms (stack

and queue mani pulation for example).

SINSCRIPT is an example of a high level l anguage

especiall y developed for sim ulations. The internal functions

L of SINSCRIPT such as the event scheduling, queue

man ipula t ion and system defined variables enhance the

desirability for using it. FORTRAN subroutines can be

• 
~
. readily called from th, language a l l o w i n g  program efficienc y

to Increase by employing critical code in the form of

FORTRAN subroutines. the current version of SIMSCRIPT 11.5

wa$ w r i t t e n  in SIMSCRIPI 11.5. This fact demonstrates the

ve rsatilit y of the l arguage. In the last several years

cer tain developments have Improved the efficiency of

SIMSCRIPT. Among these developments was the move from the

generation of FORTRAN Intermediate code to direct generation

of machine code. Addi tionall y, the number of steos required

10

— I ~~~~~~
• — -

~ 
— ‘.— ‘--,• ! 

~~~~~~~~~~~~ 
— -— —.-—- -~~ — — — —

to compile, link— edit and execute a SIMSCRIPT program was

reduced, shortening comp ilation time.

• This systems analysis p aralle ls most systems analysis

procedures but addresses the question , “What resources do I

need to provide the desired capabiHties given only the

constraint of using SINSCRIPT 11.5 as a base simulation

l anguage” versus “How can I design this system to run on a

particular computer ”. This is considered the appropriate

approach to design i ng a system which trul y meets the needs

of the combat modelin g communit y . Figure 1.1 depicts the

systems analysis procedures followed .

UNCONSTRAINED SYSTEMS ANALYSIS STEPS

I USER
I OBJECTIVES

IPERFORMANCE
I CRITERIA

1-ALTERNATIV ESI

EVALJAT ION
-

OF
ALTERNATIVE

P REF~ RR E D
SOLUTIO N

— _I_ -

-

ANALYSIS -
-

OF
PREFERRED
SOLUTION

FIGURE 1.1

11

- — - ——— - -= -- --—•-—--••-- --——-----— - — — — —
- - —- - --

~~~~~~~~~~~~~~~
— _~~~~~~~~ *~~~~~~~~~~~~~~~~~~~~ —• ~~~ -



- --~~~~~~~ 
- - - -- - - -—

-~~~~~~~~~~~~~~~~~ --~~~-~~~~ •- —~~____

I

The first and key element of this system s anal y sis study

was the i dentifi cation of the user ’s objectives. Without

this critical action the entire study would have been

meaningless. The ob jectives fell into the three general

areas of graphical disp lay support, simulation of the battle

area and the cap abilit y to determine the status of the

battle or any of the components ~f the battle at any desired

in stant of time during the simulation.

Once the user ’s objectives were determined , the next

steo was to select a set of general performance criteria.

Performance criteria are the key to measurin g the degree of

success In  attaini ng the objectives of the user. System

performance measures must be considered to oroduce an

ef ficient and effective system for the entire life—c ycle.

The system must possess the abilit y to reflect changes in

both friendl y and enemy force structures and tactics. The

data reflected by the disp lay devices must be current at the

time of display . This could mean that the simulation would

have to be halted until a signal is generated by the

completion of the display . The qualit y of the data base

w i l l  be reflected by the level of data integrit y needed. The

size of the data base must be such that only necessary data

items be stored. Any abuse of this w i l l  surface in the

— response ti n e for any dis p la y invoked and the overall amount

of secondary storage requ i red for the data base. The system
p

was d~’signed w ith growth in min d so that additional

cap abilit ies may be accommodated as new technology develops.

12 

— —:~~~~
-- - - -• --—-

~ -- —  - --~~~~~~-- 
,~,~__ __ _ _ _ ____ _~ __ _ _ 

.-.-- - - - ~~~~~~~~~~~~ 
- -—

-— ~~~~~~~~ —~~~~~~~~--~~~~~--- —~~~~~ -~~ - —-~~~~~~ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ :i.. ~~~~~~~ ~~~ :~ ~



- - - -~

A~ tactics and force structures change , the system must be

capable of easily absorbing these needed changes. Response

• time, another performance measure, I-s considered to be from

th. time a user depresses a carriage return after a display

request until that request is satisfied. From other studies

(Sutherland 19663 response times of greater than 10 seconds

are not desirabl. since the human mind will become impatient

after such a l ong waiting period. A good response time is

usual ly three to five seconds.

Alternative designs were conceived, each possessing the

capabilit y to provide all of the desired functions

i dentified as user objectives wit hin the oerformarice

cri teria established. A l ternative conceptual designs are

defined as concepts arrived at through “dreaming ” w i t h

objectives and restrictions in m ind. In order to attempt to

capture the latest hardware and software cap abi lities and

philosophys and incorporate them Into this system, a certain

amount of general research was conducted in the areas of

s imulat ion,  intera c t i v e  graphics, database design and

implementat ion, operating systems and systems anal ysis and

design .

Af ter the list of designs was consolidated into general

concep ts, each conceptual design was evaluated to insure

• that the design unde r consideration met the objectives. The

advantages and disadvantages of each alternative were
p

determined. This reduced the list to only feas ibi le

solutions to the problem .

13 

_ _ _ _  H —— - - - •— — - —- — --- -

- — -—i- - ~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~j~ _•~~~~~~•~• ~~~&I1 •~~~~~~~~~~



. - -~ ~~~~~~.-~~~~~~ ---•~--—
__________________ — - - - —a -4

Chapter II briefl y discusses the histor y of war gaming,

the evolution of • STAR , a current description of STAR and

• proposed enhancements with the support requ i red to achieve

them . This final version of STAR is the entire reason for

this thesis, that is, the design of a system to reach this

goa l.

Chapter III discusses the alternative approaches to the
/

design of a support system for STAR . The alternatives

inclu de a database management system, an operating System , a

distributed system and graphical routines i mbedøed in the

simulation program. These alternatives are described and

evaluated as to their individual cap abilit y to imp l ement the

system . A prefered solution was then chosen.

Chaoter IV continues with the anal ysis of th. operating

system needed to support the solut ion from chapter III. The

basic features needed to support STAR are described and

examples of their use are given . The modules of STAR riot

previously written are outlined to give guidance in future

development activit y .

Chapter V presents the results of the analysis of the

curren t version of STAR. This chapter summarIzes the

findings of the anal ysis and presents modifications and

recommendations that will lessen the storage requirements

for STAR while speeding uo the execution of the mode l .

Chapter VI contains conclus ions from this thesis and

recommends further courses of action to achieve the desired

end product.

_ _  

- 

La 

- - , 

~

- •

~ 
~- - - 

_ _



- - ~ - 

• II. BACKGROUND

A . HISTORY OF WAR GAME S

War games are nearly as old as organized warfare itself.

Evidence has been uncovered that indicates the use of games

to simulate war in ancient Egypt. P~’ogress in war gam i ng is

marked by a series of improvements in support techniques

available to the user.

During the latter half of the eighteenth century the

Prusgians developed an increased emphasis on warfare as a

branch of applied mathematics. In 1780, Heiw ig , Master of

the Pages for the Duke of Brunswick , invented a game quite

similar to the modern commercial war game. The game used a

modified chessboard. Terrain was represented by using 4
combinations of 1666 small squares tinted in various colors.

These small squares were grouped onto the board as ter r a i n

features. In 1795 Georq Vintu rinus modified the game b~

constructing a nap board of an actual piece of terrain.

In 1811 von Reisswitz, the Prussian War Counselor at

Breslsu, transferred the war game to a sand table with

terrain modeled in sand to a scale of 1:2373. In 1824 Army

Lieutenant von Reisgwit z, Jr. modified his father ’s game by

transferring the game to a realistic mao—like chart with a

scale of 1:8000. An umpire , detailed rules , and p robabilit y

tables were also introduced by von Reisswi tz, Jr. The size

of the game was limited to appr oximatel y four square miles

15

I :~L ~~~ ~~~ -. ~~~~~~ ~~~~~~~~~~

—-

~

-

~~ 
--



_____________________________________ —

of ground. The ump i re not only monitored the play of the

game for complianàe with the rules but also i mposed two

m inute time slices in the playing of the game. In this

manner the game could be stooped, as desired, and a

particular two minute round could be studied in detail.

Further Improvements occured during the ninteenth

century . In 1866 Lieutenant Wm ,- NcC. Little suggested a

game called “Naval War Game ” that employed blackboards ,

sheets of paper or charts, or maps placed on tables to

illustrate terrain. At about this same time cellul o id sheets

or overlays were introduced. Information drawn on these

overlays was saved as a hi storical record that could be

analyzed at a later date. This idea of overlays is

attributed to the Naval War College.

Early in the twentieth century, new maps prepared

especially for map maneuvers showed large tracts of actual

terrain. The oldest map of American terrain made expressly

for map maneuvers dates from 1906. This map of Fort

Leavenworth , Kansas inc l udes a tract approx imatel y four

miles in width by six miles in l ength with a scale of 1:5280

and a contour interval of ten feet (JCS 19693 .

In the oost WW II era, the mi litary use of war games

became increasin gly sophisticated and widespread.

Sophistication is achieved through Increasing computer

technology . The Computer allows large amounts of data to be

stored and man ipulated w i thou t  tedious bookkeep i ng on the

part of the user. There is some debate over the usefulness

lb

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


F- —
~~

- — --j-- -•
~~

- -•——-• -- - ~~~~~~ ,~~~,~~
__

~~~~~~~~~~~~w -.--- .~~
-- --—- • --~~~ r-~~ - ••—~~ -;~~ -~~ — ---—~~~ 

_
~ 

- —- 
~~~~~~~~~ I “~~~

of such computer simulations. The amount of date generated

Is so great that it can overwhelm the user, thereby

undermining the very reason for the simulation.

Modern computer war games have seen evolution similar to

manual games. One parallel development i s in the terrain

model associated with the game. Earl y games used flat

(imaginary) terrain. Terrain adva~ced to i dealized, easil y

constructed models that represented no I dentifiable terrain.

The next step was to represent real terrain through the use

of digitization at the exoense of storage. The latest

breakthrough is the use of parametric terrain capable of

modeling any real terrain in a size never before imagined

(Needles 19761 .

B. EVOLUTION OF SIMULATION OF TACTICAL ALTERNATIVE RESPONSES

(STAR)

A signifi cant effort is curre ntly underway at the Naval

Postgraduate School to develop a mid—resolution combined

arms model to determine both hardware and trainin g measures

of effectiveness. One of the primar y goals of the model is

to achf.v~ an acceptable level of resolut ion whi le assuring

that the mode) i nputs and interactions are understood by the

militar y decision—maker.

Five theses completed over the last two years form a
p

basis for continuing the model development. A parametric

terrain mode l was developed to provide a continuous macro—

terrain representation. This representation has several

17

- - - --- ------
- -

- —~~~--~~
-—-

~~~~~~—-‘ ~~~~~~~~~~~~ ~~~~~~ ~~~~~~



-~~~~~~~-•——-,----- ••—w~
_ - - ----—-- —---.-- -

~~~
--- - —

~~
-•

~~
—-

~
- - - -

- -- ~-

advantages over the classical approach of digitized terrain.

Line—of—s ight coaputathlons are made directly from

math ematical relationships as opposed to the time—consuming

iterative process requ i red with digita l terrain. M obilit y

is truly continuously as opposed to piecewise linear

techniques used for digit ized terrain. Terrain can be

consjder*d as a parameter of the comb i ned arms analysis as

opposed to a given . 8y appropriate selection of i nput

parameters, any real section of terrain can be closel y

approximated by the oarametric terrain model. Any size

terrain sector can be easily generated without the storage

constraints of di gita l terrain. A dynamic smoke module has

been developed and operated in the parametric terrain model.

After development of the terrain model, two theses were

devoted to a target servicing evaluat ion of blue artiller y

against a red ground threat. The result of this effort was a

working mode l programmed in SIMSCRIPT wh ich provides dynamic

representation of the artiller y missions down to the

ind ividual element l evel. This mode l forms the basis for

future enhancements of the comb i ned arms model. An

ammunition supply mode) was developed to represent the
—

•ff.~t. of such parameters as interd ictive enemy fire, RAN-

D, truck trips per day to th. ammunition supply point, truck

rep l eni~ h.,nt rate, etc., on the number of rounds available

to the combat vehicles over any sustained combat period.

Current efforts ar. underway to Incorporate two siefed

ground and artille ry, with other systems as close air

18

___________ -

~~~~-:: ~~~~~~~~~~~~~~~~~~~

r ~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - - _— — -

— .~~ ~~~~~~~~~ --- — ~~~~~— ——- ~~—~—- -—--- -~~-



~ ------ -

support, minefields, cannon l aunched gu•ided projectiles ,

advanced attack helicopters, air defense, etc. These

enhancements b ill be made to the blue battali on versus red

regi ment model. In addition, a dynamic ammunition resupply

mode l is being developed.

C. CURRENT DESCRIPTION OF STAR

The struc ture of STAR is t ru ly  h ie ra rch ia l  in that it is

not confined to any specif ic unit size or configuration. The

parent— child set structure of SIMSCRIPT, coupled with the

fle xible parametr ic terrain model, provides the requ i red

cap abilities to realize a hierarchi al representation. The

level of resolution is prescribed by the requirements.

The first stt3dy app lication of STAR was in suoport of

the 105/120mm ammunition stowed load requ i rements for the

XM— t tank. Initial production runs for the study were

conducted for a blue battalion versus a red regiment in

December 1978. This version of STAR reoresented all

appropriate ground direct fire units, two—sided artillery,

mi nef ields and smoke. Upon completion of the Phase I

battalion — leve l production runs (on a 10 x 10 km

battlefield ), Phase II was Initi ated. The result of Phase II

was a brigade—level model versus a red division on a

battlefield approximately 50 x 50 km. The Phase II model

will be capable of  simulating a multi—echelon red regimental

attack on multi o le avenues of approach in both the Covering

Force Area (CFA) and the Main Battle Area (MBA). Extented

19



- 
~~~~~~~~~ 

• - - . .. -
_
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

dynamic play of ammunition and POL resuopl.y, as well as a

significant enhancement of the tactical representation of

battalion engagements, will  result from the Phase II mood .

In addition, artiller y units will be directly represented on

the battlefield , allowing for soecific play of

counterbattery and counter air—defense fires. Finall y, a

dynamic air—to—air defense model js being developed for

Phase II model representing two— sided air—to—air engaqements

for both fixed and rotary wing aircraft. All appropriate red

and blue air defense systems wi l l be played in the model.

The SIMSCRIPT l anguage was selected for STAR because the

anguage was designed for discrete event simulations. The

many embedded features of the l anguage give the programmer

— wide latitude in the construction of event flow. The

• l anguage Is English—like with regard to the construction of

commands. The heart of the embedded s-imu latio n facilitie s

is the timer t which is used with certain structural

characteristics: entities , attributes , sets and events.

These facilities greatly sim p lif y the process of writing a

simulat ion program and debuggi ng the code. This is further

enhanced by a compiler which provides error messages and

trace—back routines similar to WATFOR and WA TFIV ir( FORTRAN.

The structure of STAR begins wit h the concept of an

entit y . An entity is simp ly a representation or model of an

i tem. In STAR the basic entity is a weapon system

representing tanks, TOWS, artiller y pieces, etc. Any of

these entities may be brought into existence by a sim p le

20 

~~~ ~~~~~~~~~- - ~~~~~~~~~~


- —
______ ______

phrase, which inc l udes the name of the entity . For example,

the phrase CREATE A TANK reserves a place in memory for the

entity and Its attributes whic h the programmer has chosen to

call TANK . Associated with the word TANK is a pointer

variable which points to the location in memory where TANK

Is stored. It is desirable to associate certain

charac teristics with entitles after they have been created.

These characteristics are referred to as attributes and are

affixed to an entity by t h e interna l bookkeep i ng procedures

of SIMSCRIPT (the system) or are olaced on the entit y by the

programmer. Attributes must be changed by the programmer as

necessary to reflect changes in character istics. Moreover,

the System wi l l change system—defined attributes as

necessarye The concept of sets in SIMSCRIPT is very useful

when it is necessary to grouo entities based on certain

characteristics or in the construction of QUeUeS. In STAR

sets have been used p rimaril y to portray membership in

or ganizations. The set structure mirrors organizational

st ruc ture an d en hances th e orogrammer ’s abilit y to model

unit tac t i cs from a micro to macro level’ . An entit y may

belong to any number of sets and the entit y acquires a

membership attribute which facilitates I dentification of an

entlt y t s unit.

An ex t remely f l e x i b le method of f i ling a l l o w s e n t i t i e s

to be ordered in a set by ranking of ce r ta i n a t t r i b u t e s or

by a simpl e first—in—first—out basis. STAR uses the latter

system for most apoli ca t ions . The set logic of SIMSCRIPT

21
-~1

_____ ___________ - ~•

— ~~~~—--—-~~~~~~~~~~~~~~~~~~~~~~~~~ - - - --_ --

allows this to be easil y expanded to higher level

organizations.

Each entity in STAR is modeled to reflect a flow of

activities over time. In particu lar , each entit y Initiates

or undergoes search, detection , target selection , firin g or

i mpact. These five events are scheduled dyn amicall y based on

the current tactical situation or ap appropriate p robabilit y

distribution. When an event is schedu l ed for an entit y, the

SIMSCRIPT timer makes a record of the time that the event is

to occur (in terms of overall simulation time) and the

ent i t y for wh ich the event has been scheduled . Other

characteristics of the event may be recorded In a manner

similar to the assignment of attributes. A t the appropriate

simulation time , the event is executed unless cancelled by

some logic provided by the programmer. This event, when

• created, would be filed in an event set whic h contained ,

among other things, the time that the event is to take

place, the entities involved in the event and the event

• location with respect to other scheduled events. When X

seconds had elaosed from the Current simulated time, the

event would take place and the consequences of the logic

written in the event routine would be executed. Event

routines may In turn generate other events. FIRE, for

example, causes the schedulin g of an IMPACT event. IMPACT

leads to the scheduling of other DETECT and TARGET.SELECT -
-•

events.

Event routines are supoorted by a number of

22

_ _ _ _ ~~~~~ . _ _ _ _ _ _ _ __ _ _

computational subroutines in STAR. Subroutines are w r i t t e n

in both SIMSCRIPT and FORTRAN which has given the simulation

a great deal of f l exibilit y . The difficult line—of—si ght

calculations , for example, are accomplished in FORTRAN

because the terrain mode l was ori gin all y writ ten in FORTRAN.

It was this cap abilit y to call ’ FORTRAN subroutines that made

SIMSCRIPT an even more appealing l anguage. Existing FORTRAN

routines could be used with only m inor modifications. Other
—

routines more closely tied to the entit y structure of

SIMSCRIPT were written in that l anguage. The routine that

uodates the list of detected targets for each TANK is

written in SIMSCRIPT to take advantage of the dynamic

dimensioning cap abilities of the l anguage and the pointer

variable link listin g techniques available. For large target

arrays, these language features are ext remely efficient in

reducing memory requ i rements.

0. PROPOSED ENHANCEMENTS

The STAR combat mode l current l y under development at the

Naval Postgraduate School operates in batch mode on the IBM

360 67 computer i n the W.R. Church Computer Center. It is

difficult to build a simulation model in a batch processing

environment. Batch processing consumes much of the time in

develop i ng the simu lation. Interactive simulation is more

economi cal as w e l l as more e f f e c t i v e in problem a n a ly s i s .

One of the pr imary goals of this project is to expand the

model to operate in an interactive mode with graph ical

23

— simu l at i on user Is constantly engaged in uograding his

simulation, interactive cap abilities are an i mportant

feature of any support system (M ills and Phil 1977).

I

- EXTENDED STAR

INTERACTIVE

~~~~~~~~~ ATION

I

~~~~~~~
Rv

~~~~~~~~~~~~~~~~ 1~~~~~~~~~~~~~
A PHzcs

[STAR]

FIGURE 2.1

____ -— - 

24 

________

i•
~

___
~__ •1_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The abilit y to activel y partlcioate in this war game in

an Interactive mode would contribute to both the

• productiv ity and the flexibilit y of the model. In an

interactive envIronment, the player or mode ler would be able

to fn~ut decisions that would aoproximate those made by the

commander on the battlefield. Through this man—computer

symbiosis, the abilit y of the model to more accuratel y
,

reflect the actual outcome of a b a t t l e  would be at ta ined.

The actual flow of the battle could be altered to ieflec t

realism rather than rigid programm i ng which could l ead to

unforseen, unrealistic circumstances.

A primar y concern in the design of an Interactive

simulation system should be ease of user p artici p ation in

the simulation during execution . To facil itate this ease of

use, an appropriate interrupt facilit y is necessary to allow

for suspension of the orogram at a given point in the

program logic and for the transfer of control to the user.

The interrup t handler should be flexible enough to orocess

any appropriate request at any time and return control to

the ooint of the Interruption uoon completion of the

handling of the interrupt. This interrupt facilit y would not

only allow I nout to the model and Output from the model but

also suspend the simulation to allow detailed examination ,

decision making and synchronization between simulatio n time

and wall c)ock time.

The mode l should operate in real—t i me if possible. The

term real—time , in the modeler ’s sense of the term, is not

25



_ _ _ _ _ _ _ _ _ _

entirely critIcal. In modeling term inolog y.r eal—t lme is in

the sense of wa ll clock time. One minute of cloc k time

• constitutes one minute of simulation. If simulation of a

thirty minute battle runs in thirt y minutes of wall cloc k

time, the simulation is said to run in real time. Real—time

in the Computer science vernacular is of utmost i mportance.

A Computer system I-s said to be -running In real—ti me if

there Is a comouter program and some other orocess running

“in—step in such a way that the associated process is not

caused to run slower by the comouter program. This could be

exemplified by the simulation program and the grachics

disolay process. If the simulation program sufficientl y

slows the interactive graphi cal i nput process that the

inputs are received after they were needed for use in the

simu latIon , then the computer system is not running in

real— time. The interactive caoabi lity of the mode l w i l l  be

useless if the I nputs are not entered in sufficient time to

effec t the outcome of the battle. It is this real—ti m e that

the system must achieve.

Facilities are needed to save the state of the model at

any time by executing a single command. Conversel y, a

command should be available to restore the simulation to a

previously saved state and execution resumed from there.

Such a cap abilit y provides the ability to save intermediate

states of the simulation run for the purpose of returnin g to

the previous oolnts in simulation time. This techni que is

valua ble In cases where an unexpected behavior enters the

26

________________________________________________

— ____
_
_________



____  - -- - - - — -— - - -~~~~~~~~~~~~~--~~~~~~~~~~~~ -•  --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _- - - - 
• 

~~~~~~~~~~ fl
sImulation or an important behavior was bypassed before Its

presence was discovered tSohnle 19731 .

Since the primary purpose of the game is to function as

an analytic tool , any support system must be capable of

recording all interactive decisions for use in duplication

of runs with alternate modeli ng parameters. The flow of the

battle should also be recorded in -order to allow in depth
7

anal ysis at the conclusion of the s imu la t i on run i f desired.

There has been little imaginative use of computer

graohics as an i nput/output tool for simulat ions. Some use

of simp le plottin g has been used but the power of

interactive graphics is relativel y untouched . Interfaces to

graphics l anguages w i ll permit the modeler to provide more

meaningful ’ displays for the simulation user. Input by way

• of graphics has been grossly underestimated. Special

purpose graphics i nput Is a natural means of getting i nput

with today ’s interactive graphics devices.

The most fundamental cap ab ility of the proposed

graphical ’ support package is disp laying maps of the

battlefie ld. The standard map is a 10 X 10km contour map .

This map would be plotted by referenc i ng one of 25 standard

map sections. These 25 standard map Sections would cover the

50 X 50km battle area. By selectin g one of the numbers from

1 25, the appropriate Contour map would be drawn using the

default contour Interval of 100 meters. An alternate mode

f or p lo t t ing maos would be orovided to allow the p lotting of

larger areas. Larger maps are required to monitor such

27

- ~~~~~~~~~~~~~~~

- - - — _ - ---_---- — -- - • - - -- - — - --~-_ . _— — _ - -- - - - -
~~~~~~~~~~~~~~ _ 

~~~~

--

~~~~~~~~~~~~ I

missions as counter—battery fire or long range surveillance.

These large r p lots would be called by referencing the lower

left corner and the upper right corner utilizing four di git

grid coord inates. Since the area to be plotted would be
S

large r (or smaller if so desired) a-contour interval must be 
- 

-

supplied. Scaling will be performed as a function of

ma ximum and minimum grid coordinates specified.

The contour maps provided are the background for several

types of overlays. These overlays may be selected sin gly or

in any combination . The plottin g of excessive numbers of

overlays may lead to cluttering of the disola y screen and

should be avoIded. One such overlay is in supoort of the

dynamic smoke module included in the simulation. The smoke

overlay w i ll show the location of smoke or other obscuring

elements such as fog or rain. Densit y of the smoke is

indicated by the intensit y of the disolayed smoke. A5 the 
-

smoke dissipates the intensit y decreases. The effect of wind

on the smoke is shown by movement of the smoke display

across the screen. Results of patrols and reconnaisance

flights wil l ’ be overlayed on the basic Contour map. Targets

detected by both ground and aerial ’ observers are displayed

while under observation. The results of active ground

detection will be updated as required by movement of

elements. The results of aerial reconnalsance are stati c in

nature after the completion of the flight. Other overlays

inc l ude the display of road networks, towns, obstacles, both

natural and man made, animation of firing events, receiPt of

28

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -— •~~ - -—-____

enemy fire, nuc l ear planning aids and Indirect fire.

Dynamic route and position selection wil l be supported

from the graphics terminal. By utilizi ng a light pen, data

tablet , cursor, track ball , joy stick, thumb wheels or some

other type Input device, the player should be able to

interactively i nput changes or supp limenta l Informat ion into

the model during execution , The 9raphical support package

also provides for the monitoring of unit movement through

the use of periodic updating of the Current unit position.

During execution the modeler can select the level of the

unit to be plotted. If the modeler selects a unit level

other than individual element , the plotting of the unit is

performed using the standard mil itar y symbol for the unit.

Dynamic movement on the b a t t l e f i e l d gives addit ional

realism to the simulation and often discloses Information

that words cannot convey. Unit movement is represented as it

occurs. The actual firin g øf weapons to inc l ude round

flight and impac t enhance the picture. An y combat introduced

visual effects such as smoke from exploding rounds is

depicted along with its dissipation and drift. One of the

largest benefits of displaying unit movement is having a

too l’ to debug the dynamic route selection module that wi l l

be developed for STAR. Unless the modeler has the cap abilit y

to monitor the route taken by an element , he can never be

cer tain of the performance of dynamic route selection or

where that element is located.

Another analytic tool to be furnished the modeler is the

_ _ _ _ _ _ _

29

_ _ _

_ _--

~~~~~~~~~~
— - — --------—-———-~~~

—-—- -,-----~~~~~ - —~~,--‘---—- 
- — -- ____

- ~~~~~~ ~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~ 

-
~~~

---
I~

-•---- — t- ~~~~~~~~~~~~~~~~~~~ ~~



: j  - - _ _

ability to draw lIne— of—s ight (LOS) fans. These LOS fans are

used to aid in selection of positions for weapons systems,

radars and other LOS deoendent systems. Anal y ticall y, these

LOS fans serve to verify LOS calculations for firing events.

The LOS fan wil l  be represented by shading on the contour

map, the heavier the shading the greater the visabi lity. A

second type of LOS fan will ’ b~ offered, this being a

comp liment display that shades the area that cannot be seen.

The support system will incorporate an inqu i ry

capabilit y . Whenever a simulation creates significant

output, th,e statistics collection cap ab ilities of the

simulation l anguage may not provide the modeler with the

informa tion needed. Statistics collection by a simulation

l anguage is often too general and if more aetail is

requ i red, a dump of the state changes of the mode l must be

analyzed. This inquiry cap abilit y suooorts post execution

analytic anely;ls by enabling specific information to be

retrieved and thus avoid searching volumes of data to obtain

a single data item . This feature of the war game allows the

various players from staff sections to I nqu i re and receive

information concern i ng any data the model maintains that is

normally available to that staff member. For example the

G—1/3— 1 needs information concerning command strength,

losses, individual and unit replacements, friendl y and enemy

prisoners of war (POW), civilian personnel’, safety,

personnel services, graves registration, casulty reporting,

awards and decorations, medical supply and maintenance ,

30

- I -

~~- ~~~~~~~~~~~~~~~ ~~ ~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~ -



straggler disposition and headquarters movement, security,

operation, rear command post location and visitors. The

G 2/S 2 is concerned with recommending essential elements of

information (EEl), requests for target acquisit ions ,

surveillance , reconnaisance , lnterroçation of enemy POWs,

debriefing, captured enemy documents, signal Intelli gence ,

intelli gence interpretation, we,ther. predicting NBC

fallout, situation maos, counterI ntelligen ce , recommendin g

proposed areas of operations to the G—3/S 3, intelligence

training, aggressor forces if employed, c i v i l i a n — m i l i t a ry

operations and camouflage. The G—3/S—3 is tasked with

insuring the number and types of units assigned to suPport

and accomplish the mission , attachment and detachment of

units , organizing and ecuiping units, t ra ining, preparing

the operational est imate,  Integration of fire and maneuver , -

basic and special loads for weapon systems, p riorities for

a l locat ing c r It ica l  resources, coord inat ion and use of

airspace, des ignation of bivouacing areas, recom me~ ding

general location of the command post, electronic wart-are

activities , communicati ons and maintainin g a current

estimate of the situation. The G—4/S—4 is concerned with

matte rs of supply, mon itoring the d is t r ibu t ion  of suppl ies,

supervising the distribution of critical combat weapons and

munitions , recommending prescribed l oads, manag i ng special

weapons, procurement and storage of special weapons,

collectIon and disposal of excess equipment , ma intenance ,

repair parts, evacuation or retrograde of unservicab le

31 

- - ~~~~~~~~~~~~~ ~~~~~~~
- ---- _____________ ________ - , 

‘
~~--~~ 

-~ - ~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~-- - — - - - -~~ ‘ ~~~~ .4 

—.
~;;-.---- ;. - — - ________________


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

equ i pment, transportation , refueling, construction , property

control, food services, use of POWs and civilians and

decontamination operatiOns. This data Is available in a

tabular form similar to figure 2.2.

I
TABULAR DISPLAYS

I

“INGRES FLAVOR

ceases sass C —— seC eaSe

see — easeesea seesseSe

e aefl fi On ens fleefleaeoeeea e055 0sflfl eee — no ~~050~~ see

uni t position ~~rds leftllrds fired: fuel : *tqts $
se000aeseSeeefl 05055—fl eseo ooooeneeee eeneeaneeese 50

$ S I I S I I
* I I I I S I
I I S I S I S
I I I I S I S
I I S I I I I
• I $ I S I S

— I I I I I S I
• S S I , I I
I S •I S I I I
S S S I S I S
05550 seoseseesS fl ees 55055 eOOeeeflSfleefla 0555500

FIGURE 2.2

The graphics package will include the cap abilit y to

represent te r ra in  in three—dimensional  form. Th is  facilit y

enables the modeler to verif y that the shape of the terrain

used in the model is In realit y a true representation of the

actual terrain. Three—dimensional terrain pl ottin g also

serves to verif y LOS calculations and aids in selection of

routes and positions. Through the use of three dimensional

- 

I 

terrain , aircra ft flight simulation is oossible. The viewing

screen is capable of disp laying terrain as seen from an

aircraft. The display Includes the terrain, vegetation and

32

______________________ 
* ~~~~~~

- ~~—~~~~~--- ‘~~ -~ z~~~~~_
~~~— .—---—-—— -~- — - -- -- .,_ ~~~~~~~~~~ - ~-- ~~~~~ ~ ‘-I-.~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~ ~~~~~~~~~~ 

—

all ’ elements located on the terrain being traversed.

Addition .lly this three~dimensioned terrain feature can be

expanded to provide 360 degree scans from any point selected

by the user.

The use of color In graphi cal displays was determine4 to

be of extreme i mportance. The representation of red and blue

forces is an obvious advantage. The,ab ili t y to use color to

represent vegetation lends realism to the display. The

number of items to be represented is so large thdt without

color It will be difficult, if not impossible , to

distin guish features displayed .

A report writer is of pra ctical importance to the

anal yst. This report w r i t e r w i l l ’ be highl y formatted to

provide statistics required by the analyst. The user will be

able to soecify the statistics to be displa yed and the table

will be generated automatica lly. Ad ditional ’ hard copy

Support w i ll be available in the form of a copy device

attached to the term inal that may be used to copy the

cu rrent image on the d isp lay device. -

Any graphical support system devised would not be

complete without providing assistance to the user durina

execution. Instructions for- use must be available , on call ,

at any time , w ith various levels of detail for various

levels of experience in pl aying the game. This type of

interactive counseling w i ll be provIded in the form of a

help function.- . Th is help function will be provided for two

levels of expertise, the novice and the experienced. The

33

______________________________ _ _ _ _ _ _ _ _ _ _ _ _ “a
- .—~~~~ -- ~—.-.-—~- —~

- ;1~~~.~~~
_ — —--~~~.- -~~~~~~~~~

__
~ .______

-

~~~~~~~~~~~~~~~~~~~ - %.&è~~ ~~~~~~~~~~~~~~ TT~ ~II I1ITT~I



nov ice  user needs Informat ion concerning functions

available, their formets and their commands. The expert, on

- 
- the other hand, requ i res only a reference to the commands

available since he Is familiar with their formats.

Certain tutorials and guides must be supplied to the-

user. Directions for position selection using the line of

sight fans must be readil y available for use during setup of

the simulation. A military symbo l library should be

inc l uded with the descriptions of the available symbols and

the method of placement of the symbol of the overlay . This

description includes details of how the computer dec i des

where the automaticall y generated symbol is placed. Any

graphical support provided for this system must provide for

an interactive means w ith which the user can generate the

parametric terrain and verif y it against the actual ’ terrain

or a map. This terrain oackage must provide not only

assistance in design of the terrain, but also the cap abilit y

to record the parameters selec ted for later use in the

simulat ion.  It is highly desirable that the user have the

means to obtain a hard copy of this terrain generation for

this verification process.

E. TYPES OF GRAPHICAL DISPLAYS

The graphical support aeckage wi l l  consist of three

separate types of applications packages. The first type of

support is provided in the form of monitors. These monitors

are the devices that provide the selective terrain plots.

34

-

~

-

~

,-

~

_ _ _



- ----~~~~— ~ - -- -

The terrain plots are selected by the user and displayed

until the user elects to either terminate the disp lay or

request another sector. The disp,lay monitor reflects

current unit movement located within the terrain sector.

The user has limited control over functions of these

monitors. These monitors have the basic function of

displaying the contour maps. The user w i ll be able to select

from a standard set of 10 X 10km contour maps, or he may

specify a sector using grid coordinates and the desired

Contour interval. The user may also specify the unit or

element to be displayed. These monitors have a selective

zoom feature to allow the user to focus on a given area in

greater detail.

A second type of display incorporates the inquir y mode

of the support package. These disp lays w i l l  be alpha-

numeric terminals. These terminals enable the various staff

players to i nquire about personnel , lo gi stical and other

routine affairs of a unit. Levels of inquir y are contro lled

by the user. The termi nal ’ initiates a hierarchical search

with the highest level unit available , givin g the oPtion of

making the i nquiry at th is level of resolution or disp layino

subordinate units at a level one unit lower. If the user

elects to make his inquir y, then action is initiated to

determine the type I nquiry from a menu of possible choices.

The information is then displayed and execution continues.

Should the user elect to traverse through the hierarch y in a
I c

downward directio n , the monitor wil l  displ ay the subordinate - -

35 
‘

Ll_~~~-
_
~~~~_ _; _:

~~~~. ~~~~ ~~~~~ - . - ~--i~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
-
~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~

—‘--- -~~~ -- -- —=-~~~~~~
--— -

~~~~q

units and ask the user to indicate the uni t in which he is

interested. This Is continued until the user reaches the

• level he desires and the Inqu i ry is initiated.

A third type of disp lay will orovide the function of the

master graphics console. This console i s  full y Interactive

and accomplishes all dynamic changes and selections in the

program. This terminal is antici pated to be larger wit h
/

greeter resolution . The cap abilit y for drawing in three 
—

dimensions is realized at thi s terminal. *1- 1 graphical

requests are originated at this terminal with the possible

exception of the I nqu i ry functions. Inquiries may also be

i nitiated at the alpha—numeric terminals. For ease in

selec tion of the function to be performed, a menu selection

• technique is used. The user selects, by means of a light— p en

or some curser positionin g device , the desired function to

be performed. This initia l  selection leads to the

ful lf ll lme nt of the user ’s request or the disp lay of another

menu. In addition to- p rovidin g the executive routine which

manages the execut ion of the s imu la t ion ,  the monitor

provides the abilit y for the user to Interac t wit h the

simulation program directl y from the terminal. This al lows

the user to riot only observe, verify and record data, but

also interrupt the simu la t i on  to change parameter va lues or

modify the model structure. Figure 2.3 depicts types of

displays.

-~~~~~~~~~~~~- - -- 
_ _  

_

_  

_  
A — -



~- - -- ---- ~~~~~~~~ - -

GRAPHICS DEVICES

• L I•~L 1 ______ [ 1~L 1
MON ITORS INTERACT IVE TABULAR

I

CONSOLE D ISPLAYS

N INGRESS FLAVOR ”

FIGURE 2.3

37

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


*----~,------
‘ - ,wr “ r w — — — —

I
_ _ _ _ _

II-!. CONCEPTUA L SOLUTIONS

The prob l em at hand is to imp lement graphical support

and Inquiry capabilit y to an existin g war game without

serious degradation of performance. This prob l em is

generated by the merging of several capabilities. These

cap abilities inc l ude maintain ing a reel’ time environment,

sharin g of common data items without data redundancy,

process synchronization , accurate and timely displays and

interactive partici pation by both the user and programs.

The puzzle is to fit these areas into a comp l ete p icture.

Th is nuzzle is the very essence of this thesis . The basic

prob lem has been s imp l i f i ed by one assumption. The type of

compu ter utilized is irrelevent providing it is capable of

performing to the specified standards. The question of

mini, max -i or micro implementation revolves around the state

of the art at imp lementation time and the puroose of the

computing system itself. If this simulation system is to

become highl y portable, then the preferred choice may be a

microcomputer due to its low cost and portabi lity . If this

simulation system is to run “stand—a l one” on a dedicated

system , then it may be appropriate to develop the system on

a minicom pu ter. If this simulation system is to share time

w i t h other programs in a multiprogramming environment , then

the approorlate choice may be a large mainframe caoable of

both mult ipr ogrammI ng and multi processing. This thesis

38

:~~~~~~~ ‘ ~~~~~~~~~

‘—a -~~

~ ‘ - -~~~T~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V - -
~

- -

leaves machine choice to the Ind ividual imp l’ ementer .

Solutions to the puzzle fall Into four general classes

• w i th various degrees of d i f f ic u l t y and perfo rmance

standards. These choices include a database management

system, a tailored operating system, a distributed system

and graphic subroutines embedded w i thin the simulation

i tself. Brief descriptions of the,chara cter ist-ics of these

four approaches are discussed in the next four sections.

Section E evaluates each approach’ s abilit y to imp lement the

simula tion systee. The oreferred solution is chosen in

Section F.

A . DATABAS E MANAGEMENT SYSTEM

One approach to ‘the orob lee of supolying graphical

support to the STAR model Is through the use of a database

management system. A database management system is a

collection of software procedures, designed to facilitate

access to a data base. This data base is shared by diverse

users. In this approach the main simulation program,

written in SINSCRIPT, wou ld act as a hi gh—level l anguage

applicat ions program.- The user would in te r face w i t h the

app lica t ions program through the use of any standard

• alphanumeric terminal. The graphics routines would act as

other high level language appl icat ions programs. Since a

database management system has the property of being able to

present the same data to various users In differin g formats,

the app lications programmers would have their own external

39 -

—~~~--—~~~~~~~~~ -~~~-~~~~~~

_________________ LTJ

-
-

models of the data availab le to them (Curt-ice 1976). This

di f fer ing v iew would a l l ow the graphics programs to be

• written In some l anguage other than SIMSCRIPT since at t h i s

time there is no provision for graphical support irs

SIMSCRIPT.

The actual data that is being manipulated by the

apolications program is stored fn ,a common area with in the

computer system . The functi on of the database management

system is to a l l o w the sharing of the data arid create data

independence to allow for different views of the data. It

is the responsibilit y of the database administrator to

develop and maintain the schemas allowin g this mapp i ng to

occur (Martin 19761 . -
-

• Database management systems must in ter face w i t h the

operating system in order to accompli sh the actual ’ mapping

of data into memory. The operating system and the database

management system must coexist , but this does not

necessari ly } Imi t the usage of a database management sys tem.

Operating systems are available under which any given

database management System may operate. There is an

i mportant rel ationship that must be discussed. Database

management systems and operating systems provide the user

wi th a variety of common functions. The database management

Sy stem design must take into account the se rv i ces provided

by the operating system in order to m i n i m i z e c o s t ly

duplicat ion. Some of the most common services provided by

operating systems include process management, file—s ystem

40

- - — ‘- -. “—
—

support, i nput and Output support and 4Jsaqe measurement

(Wieder hold 19771 . Some operating sy stems also p rovide

facilities for sharing of data segments (Organik 19721 .

The use of a database management sy stem has several

advantages. The database management system supports multi p le

users of the system at any given time. Data redundancy is

reduced i f not eliminated . Ao o ti çations programs are data

i ndependent. The database management sy stem pr ovides

internal safeguards for data integrit y (Date 1977). Post—

execution anal y sis is also facilitated . The abilit y of a

user to conduct in quiries is simplifi ed by the adoption of a

highly tailored data m anioulation l anguage.

A database management system offers a broad range of

facilities for organizing , viewin g and mani p ulatin g

information. The creation of data tables by the user

requ i res only a minimum knowledge of the system . Often new

tables can be constructed automaticall y from existing tables

on the basis of some format property of the ori g inal table

(Fram et.al. 1977).

Typically, data mani pulation l anguages are written i n

English — li ke commands. With minimal training, a nov ice user

can do useful work on the database management system using

the data mani pulation l anguage. Many of the more common

commands may be Invoked in a dialog form in which the system

prompts the user for additional date or Instructions.

One of the largest disadvantages Is the addition of more

overhead and hence additiona l execution time. Part of this

~~~~~~~~~~~~~ ~~
‘
-;:~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~



- -----—- -

probem may be overcome by the design of a-comp iled database

management system instead of an Interpreted one (Wiederho ld

* 1977]. In a typ ical database management system, a single

user command may result in the performance ;of several ’
— 

phy sical i nput or output operations. Each i nput or output

— operation must be initi ated by the central ’ processor unit.

In a multiprocessing environmênt , tjsis requires the seizing

and releasin g of the central processor unit several times to

carry out a user command , there fore -a s ig n i f i can t  overhead

due- to task switching may be accrued. The order of

increased com p lex i ty  Introduced to the sy s tem by the

database management system concept must be considered.

Database management systems are considered by many to be as

complex as some operating systems and hence introduce an

additional compl exit y factor over and beyond the operating

system and the basic app lication programs. Figures 3.1—3.2

-

‘ 
diagrams the rpll of a Database Management System.

42

k. —. - -  - - ~-
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~ -- ‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DATABASE MANAGEMENT SYSTEM

ISIMSCRIPT1 
- 

IGRAPHIC~ I GRAPHICSI
ISIMULATIO~4 IDISPLAY I . . . IINTERACTIVE I

EX T ERNAL EX T ER N A L
SCHEMA 

~ SCHEMA

IEXTERNALI ~!iTERNA
MODEL J LMODEL

A 

• EXTERNAL/CONCEPTUA\ /TERNAL/CONCEPTUAL
MAPPING A MAPPING B

DATA
CONCEPTUAL MODEL

SCHEMA 

- 

(CO NCEPTUAL

4
- I CONC EP T U A L / INT ER N A L

MAPPING

INTERNAL INTERNAL
SCHEMA SCHEMA

• DAT ABA SE

FIGURE 3.1

- 
- 

H
- “ ‘

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  ~T-~.-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— —- ——-—— — 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
-

~~~~~~~ 
—--—----- --

~ 
- —,-

~~~~~

DATABASE MANAGEMENT SYSTEM

-

I USER I

TERMINAL f~
I______

IAPPLICAT ION
I PRO MS

EXTERNAL SCHEMA
-

DATABASE
MANAGEM ENT

SY~ 1114

INTERNAL SCHEMA~~—-——~~P

I OPER A TING
I SYSTEM

I HARD WARE I -

FIGURE 3.2

B. OPERATING SYSTEM

Modern computer hardware Is very powerful and may be

used for a variet y of tasks. The hardware machi ne is

d i fficult and awkward to use. Irs order to simplify usage of
I ~~~

the bare computer , operating systems have been developed to

prov i de a more hospitable interface with users. Operating

sys tems have become so essential to e ffi cient computer

operation that many peoole view them as inseparable from the

I -~

-- - -~~~~~~~~~~~~~~ - -

_
_
_

_

hardware (Madnick and Donovan 1974].
-

An operating system is a collection of software modules

w i t h in the computer system that contro l the operation of the

computer. These modules simp lif y the use of the system,

attempt to optimize performanc, and resolve conflicts within

the system. The modules manage the processors, main

storage, secondary storage, i nput/output devices and files.

The operating System performs the task of schedulin g the use

of the computer. Sophisticated operating systems increase

the efficiency and subsequently decrease the cost of using a

computer.

Operating systems vary in comp lexity from simole moni tor

systems on microcom puters to sophisticated large scale

Systems caoable of multi- programmin g and mul tipr ocessin g

while providing protection and Interrupt hardware.

Regardless of the comp l exity of the system, all operating

systems orovide binding for orocessors and memories. The

operating system binds data to physical ’ memory locations and

output files to output devices. A process is bound to a

processor. The abilit y to perform bindin g is fundamenta l to

all operating systems.

Operating systems are somewhat distinct in their abilit y

to provide protection mechanisms (Graham and Denning 1972].

* The first level of orotection provided by operating systems

is common to all reliable systems. This is the protectio n

of the operating system Itsel ’f from destruction by tampering

due to the executing program. This tampering may be -
-

45

~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~ ~~~~~~~



accidental due to the misca lculat ion of a subscript or some

similar mistake, ~r it may be an intentional effort to

sabatoge the system. Whatever the source of the tampering,

the operating system must protec t itself. A signifi cant

— difference In operating systems Is the ability to protec t

classified data within the computer system. Some Computer

systems are secure only in the ded~.cated mode where only

classified material is allowed in the computer and the

security perimeter is external ’ to the machine. A more

complicated but more useful ’ type of security is the

multilevel mode. In the multilevel mode the system may have

various users with varying levels - of securit y

classification , all compet i ng for system resources

• simultaneousl y (Whltmore et.al. 1973). The security

perimeter is internal to the computer and provided by a

mechanism of the operating system . Access permission is

determined by ~he operating system. This security mechanism

may imp l ement a descret-l onary or nondescret l onary polic y .

Some operating systems are caôable of multi programmin g .

In a multi programmin g environment , several user programs are

allowed to compete for system resources simultaneousl y

(Dennis 19653 . It is the function of the operating system

to dec i de wh ch job will be run at any given time. It may

be possible for the user to define the p riorit y of the job

to the operating system . If this is the case the operating 
—

system does not have the prob l em of enforcing a

descret-f onary pri orit y polic y . Determination of the

— - - _____ ___________ _ _ _ _ _ _ _ _ _ _  - - -- - -— ~~~~~~~~~~~~~~—

— —
~~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~ 
—I~~-~~_ _~

_ __
~ -

-— —------ ~
-i----- __

~~
-

~~~~~~~~~~~~~~~~~~~~~~~~

priority may be left to the operating system . Operating

systems use various criteria for establishing priority.

Methods includ e- estimated length of execution , estimated

storage requi rements, estimated execution time and estimated

output lines. An operating system may also use a

combination of these two techniques. It is left up to the

operating system to lim i t the number of programs the system

will accept.

Some operating systems allow multi processin g (Smith

1977j. In a multiprocessing environment the computer system

has mu lti p l e processors, each capable of independent

operation. It is the responsibilIt y of the central

processor unit (CPU) to coordinate or synchronize the

• functioning of the processors. In a system such as th is  it

w i l l  be poss ible for one processor to be performing

calcu lat ions w h i l e  another processor i s  controlling outPut

to the line printer .

Th. operating system not only provides memorw ~ariagement

in the form of binding but also is capebl-~ ~f creat ing

virtual memory. V i r tua l  memory a l l o w s  the address space of

the program being executed to be either greater than or less

the the physical memory of the machine. Utilizing this

virtual ’ memory, the- user need not be limIted by the physical

size of the main memory (Denning 1970). 
-

Another feature of operating systems is their abi lity to

handle interrupts. Through the use of an Interrupt handler ,

the operating system may acceot an interrupt , process it

_________________________________

47 

•
~~~~~~~~~~~~

-• - -
~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~

-
~~~~~~~

-
~~

— - —

~~~~~~ ~~~~~~~~~~~~~~~~~~ — -~~~ -~ 
-

~~
---

~~~~~~~ ~~~~~~
—

~~--~~—~~~ -~~~~ ~~ ~~~~~~~

- - - -
•

- - - - - -

according to the instructions in the interrupt handler and

return execution to-the program in progress at the point of —

• the interrupt. Operating systems have system defined

interrupt handlers but many have provisions for the user to

define his own Interrupt handlers.

C. DISTRIBUTED SYSTEM

A distributed sy stem is a computer system composed of

multi p le central processors that cooperate in prob l em

solving. These CPU s may be spread over many m iles or

located in the same room . In order for the distributed

system to function, coordination between the processors is

accomplished by a distributed operating system.

The probl em of extending the execution time of the model :- -

might be alleviated by thV concept of a distributed

computing system composed of one computer to process the

simulation portion and maint ain a master data base and a

smaller computer providin g the graphics and i nauiry

capabilities. A distributed system has the chacte ristic

that the functions are distributed or spread over multi p le

CPU’s each designated to handle a particular function. This

approach becomes advantageous by using a second processor to

reduce the work l oad of the main CPU. Consider the case of

a front—end processor connected to a main processor as

indicated by figure 3.3.

I
£48

_

_______________________ __

I ~

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~

- -
- -

- ~~~
-
~~~:L

DISTRIBUTED SYSTEM 
-

• IGRAPNIcJ LSIMULATION ]

1
< >

1
CPU CPU

- 

I I 
-

— I I  _ _ _-
• DISPLAYS DATA FILES

FIGURE 3.3

The front—end processor controls the interface with the

user. Graphical displa ys and user command interpretation

including editing are performed on the front—end processor.

This allows the power of the ma in processor to be devoted to

the computation bound simulation functions. In this case

the main processor would have to oass the requ i red display

data to the graphics processor as needed. Assuming that

• th i s would take a small amount of time unoer CPU to CPU

communication w ith a communication line of high transfer

rate eoua l to the slower rate of the two processors, the

49

— :___ __ 
~



-— -- - - 
- - - -

~

-- --  

-—

main processor could continue to simulate while the graphics

processor generate .s the display list and causes the display

to occur. This would have the effect of halting the

simula tion for only a minimum time frame and thereby not

si gnificantly degrade the system. Should it be desirable to

stop the simulation for some uodate of information from the

graphics processor, an interrupt could be generated by the

graphics processor and sent to the main processor which

would then halt the simulation to receive the update. The

problem of maintain ing data integr i ty  emerges from the

aforementioned situation . There is no way to determine if

the data to be changed exists at the time of update or if

the data displayed is current. This prob l em w i l l  have to be

• resolved by generating an uodate request, displ aying the

current status of the battle area and then updating the

data. This must be- handled t l ’ough some automated means so

that the- user is not confronted with the prob l em, he has

enough to be concerned with without the system comp licatin g

the situation for him.

The distributed system functions as follows. First there

must be established priorities that each CPU follows. For

instance , on the simulation CPU, communication between CPU ’s

has a higher priorit y than the simulation and can be

represented by the following pseudo code,~ wh-i l’e (not

communicatin g) do simu lat ion N . This actio n wi l l  give

priorit y to CPU—CPU communication , allowin g the user ’s

i nquiries to be answered more rap idly . The graphics CPU

50

.~xi ~~~~~~~~~~~~~~~~~



continuousl y tests the terminals for the indicator that the

user desires to perform some function . Th i s can be also

accomplished through an interrupt mechanism. Upon

i dentification of the user ’s desired function , an argument

list Is constructed in conjunction with additional user

supplied data, if requ i red, and an interrupt is generated to

the simulation CPU Indicat ing that the graphics CPU desires

to communicate. Upon recelot of the argument list the

simulation CPU stops the simulation, stores the machine

state end executes a “case ” structure s i mi l iar to :

switch (furtction— id );
(
caseCt): terrain information;
caseCi ): i nquir y;
case (u): uPdate;
.

)

passing back to the graphics CPU any resultin g inf ormation.

The graphics CPU now processes the information received from

the host CPU and continues the function o r i q ina ll y

i dentified by the user, such as producing a disp lay .

0. EMBEDDED GRAPHICS

The simp lest and perhaps the most direct imp lementation

of the desired cap abilities is the execut ion o f  the araphic

cap ab ilit y from a direct subroutine call from the SIMSCRTPT

simulation program. Figure 3.4 depicts the embedded graohics

approach.

‘liii



SUBROUTINE CALL 
-

PREAMBLE

MAIN

H i ’ -
~
’
~

••

FIGURE 3.4 P

There are several advantages to this approach. The graphics

package can be developed separately from the simulat ion

model, keep i ng in mind that necessary parameters required by

the display must be passed from the simulation program to

the graohics subroutine, A simple driver coul d minic the

functions of the call to the graphics routine during the

development of the graphics package. In the same way,

should the graphics subroutine provide the interface with

the user for- the interactive portions of the model ’, certain

parameters would have to be returned to the simulation

program . These carameters must define the type of function

that the user desires to perform along w i th any function

parameters reau i red. The values of the parameters could be

established through interpretation of light pen i nput from

52 j
L ~~~ _ _ _  - ~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-- - - - -- - -- -- -

the user. This Interpretation could take the form of a CASE

or nested IF type structure where parameter values would be

established from an interpretation or series of

interpretatIons of the light pen Input. Once the parameter

• list is formed the graphics subroutine is called.

There are disadvantages to this concept. Due to the

nature of subroutine calls , the action of the simulation

program is at a standst ill until the execution of the call

is completed . This wil l Increase the execution time of the

sim ulation program and thereby Increase the wall—clock time

required to simulate any given battle. This prob l em ceases

to retain great i mportance if it is desirable that the

simulation be halted to allow any uodate information to be

passed to the simulation process and thus maintain data

integrity.
-

Because data integrity is a requ i rement of the system,

the graphi cal
—
displays must be capable of depictin g the

exact state of the simulation upon the disp lay device. To

change the route of march of a oart icu lar unit or element

that item must be located in the decicted position at the

time of the update or the exact position must be known to

the user.

E. EVALUATION OF ALTERNATIVES

1. Common Considerations

There are several items that are common to all ’

approaches. Included i n these items are the use of color

-~~~~~~

53

.

~~~~

- ,  

~~~~~~~


III.. ... ~~~~~~~~~~~~~~~~~~~~~ - --- — - — -,~~~~~~~.—--- .--- - — -- —

displays, hard copy devices and the treatment of static data

such as contour naps. Hard copy devices are required to

record selective displays upon command of the user. Contour

maps are thought of as any requ i red data to enable a rapid

draw of the desired area of terrain. Once the parametric

terrain data is constructed . prior to the simulation

execution and during some system In Itiali zation procedures,

there is no need for the simulation process to have access

- r to It since the simulation routines compute any required

terrain date dynamicall y during execution. There is only the

need to have this data available to the graphics displ ay

routines . The impac t of a hard copy device upon the

solution is seen as device dependent and therefore not of

concern in the selection process. In the same manner the

method of drawing contour maps is device decendent and the

use of color is indeoendent of imp l ementation. These two

factors are also omitted from the evaluation process. This

evaluation focuses on the abilit y or Inabilit y of the

alternative to support the simulation , evaluatin g failures

on the lowest possible level.

2. Database Management System

In th~ database management System approach, the

simulat ion program assumes the role of a high — level l anguage

applicati ons program. A l l graphical routines except the

i nqu i ry program are also hi gh— level aop lications programs.

The I nquiry program is an appli cations program written in a

tailored data mani pulation l anguage.

t 54

-- _
_ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _

1
-~~~~ —

—

~

—-— - - ---~~~~— - ~~~~~~~~~
-

U— -_--_ —
— - — — -

~~ ——--—

~ ~1
A database management system is designed to allow the -

-

sharing of data and eliminate data dup lication. Through the

design of appropriate schemes, the database designer is able

to presen t each applications programmer with an Independent

view of the data and allow the orogrammer to access any data

within the data base. This approach presents a prob l em with

mul tip le users attempting to write data simultaneously.

This problem can be minimized through careful design and

judiciousl y granting wri te access to shared data. Should

two users desire to write data to the same file , the last

copy written will prevail,

The recording of dynamic events presents a

significant prob l em to the database management system

•
approach. The ability of the system to accept and store

i nput data from the user is routine to a database system.

Any thing that can be I nput and stored may also be recorded

on secondary storage media. The significant prob l em arises

H when the machine state must be saved. Onl y the operatin g

system has the cap abilit y to monitor and modif y all ’ the

registers in the machine. For the database management

system to save the machine state, close cooperation with the

operating system Is required. When It is desired to return

to a decision point to resume execution with another

• decision, the database management system must rellnauish

con trol to the operating system while the Operating system

restores the values of the variables and the machine state.

Flexi bIlity of pla y w i l l require the database

55

~~~~~~~~~~~~-~~~ --~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



-.-- -
~~~~

------ --
~~

.------------
~~~~~ 

-C. -  - - — -~~ - --  - — - - -- ---—-- -—.. -

~~~~~~~~~ I
management system to maintain some mechanism to generate the

appropriate data structure for the level of play . The

flex ibilit y of play is not an insurmountable problem but the

mechanism to achieve this goal may be quite complicated.

The flexibility of display w i ll be quite easil y attained

since display is dependent only on the data stored once the

data structure for storing the data has been created . The

abili ty to store various force structures must also be

attained by some dynamic means since the actual size of the

data structure required will not be known until run time.

The degree of Interactive programming attained by the

database management system wil l ’ vary from routine to

routine, The i nqu i ry routines w i l l have the full

• in teractive characteristics of any database management

system. The programs written in high—level l anguages are

limited by the degree of Interaction provided by the

corresponding l anguages. The database management system has

no means of incorporating interrupt driven orocessing.

Interrup t driven processing requ i res action by the operating

system and therefore a close relationshi p between the

database management system and the operating system.

The database management System aporoach wi l l

adversely affect the real—t i me cap abi lit y of the program .

Overhead i n a database management system is extensive. The

desirable trait of data i ndependence reauires the additional

cost of address translation. Various references to the same

data element require the system to translate these

I —

56

I I


~~~ 11E ~~~~~
— 

- _ _ _ _

references into the same physical memory location.

Additional overhead in execution time is requ i red by the

necessity to translate or compile i nput requests during

execution.

• The report writer is facilitated by the database

management System approach. The database design allows for

the user to request information in a standard format and

have it displayed for him on the screen . Any information

stored may be displayed as well as any combination of data

items that may be created using relational calculus ~r

standard boolean operators.

3. Operating System

Under the operating system concept, the simulation

program becomes one of many in a multi p rogramming

environ ment. The graphics routines are organized into

programs with related functions. These graphics programs

become additional programs that w i l l  compete with all ’ other

programs for system resources.

The prob l em of sharing files is not significant to an

operating system that uses segmentation . Any progran

divIsion that IS I moortant enough to be named may be created

as a segment. In a system supporting this segmentation, any

Segment may be addressed by p otentiall y any processor. By

• careful designation of the abilit y to read and write to a

given segment, It is possible to allow a segment that is

respons ible for a file to create the fi le and to allow a

segment that must use that data for disp lay or other

57

L- 

~~~~~~~~~- _ - ~ --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ._
~~~~~~ . ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



——--------‘——--—•- - - --—---——----- --—-- — 
—

purposes to access the data and use it. These segments that

are sharing the dat-a need not be In the same program . The

• programs need only be- active at the time of sharing of the

data. One potential ’ problem may arise if more than one

segment i s  allowed to write to any one data segment. In

this case the last segment to writ e w i l l  be the segment that

dictates the data value written. - By carefull design of the

programs involved , this problem may be made insi gnificant.

The’ ability to record dynamic events such as

decisions by the user and simulation status present no

si gnificant problem for the ooerating system. At the time

the user i nputs his decision, the operating system needs to

wri te the input data- into the aoprooriate area in memory to

• affect the simulat ion. At this same time the operatino

System will make a copy of the decision information along

with the machine state and any pertinate variable values

before the decision is made. This additional ’ information

may be written to some secondary storage med ium for use at a

later time . At a later time when it is desired to return to

a given decision point and change or modif y the previous

decision , the operating system has all the information

needed to restore variable values and restore the machine

state. Execution may then resume from the point of decision

rather than requiring the entire simulation to be executed

again.

In the area of flexibilit y, the operating system

approach presents no prob l em. It Is the norma l function of

58

— ~-•— ~
___a__

~•__-____._ ~~~~ ~~~~~~~~~~ —‘--•-- — _&_~ — ~~~~~~~~~~~~



-~ —- ~~~~~~~~~~~~~~~ _ _ _  _ _

some operating systems to allocate storage for prob l em

elements. At execution time the operating system will

allocate storage as required by the simulation program.

The area of interactive orogramming is affected by

the Interactive capabilities of the programming l anguage.

These built in cap abilities are the base level ’ for the

simulation. Furt her interact ive cap abilities may be

provi ded by the operating system. For a system to be

genuinely Interactive, it is necessary for the system to be

in terruot driven. In an interrupt driven system , the user

generates an interrupt and the operating system then

transfers control to the appropriate interrupt handler. The

instructions in this interrupt handler dictate the response

to the interrupt. Operating systems allow the user to write

his own interrupt handlers to either supp l ement or rep l ace

the system provided handlers. In the event the user elects

no t to provide his own handler , the operating system

provides default handlers. By antici p atin g the requ i red

types of interrupts and the appropriate responses, the user

nay effectively Interrupt the execution , create a disp lay or

input data, and return t o  the point of interru ption and

con tinue execution .

The operating system approach may enhance the real

time cap abilit y of the simulation . A multipr ocessin g

environ ment allows the operating system to oerform

compu tation on one process while simultaneousl y performing

i npu t/output, paging or some other operation on another

‘59
.1

~

- -

~ 

:-~~~ .-~ -

— 

~ ~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



- ____  
------- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- _ _ - —

_ - ----- —-

process. This means the orograms of the simulat ion may

fully ut ili ze the processors of the computer system and the

processors need not be idle while a single program switches

from one processo r to another leaving the rest of the

processors idle until ’ the simulation needs its services. As

a worst case, the ooerating system wi l l add no more

execution time to the program. The operating system is

needed to provide user interface to the bare machine and

hence Is already present as overhead to any program run on

the machine.

Th, post analysis report writer is still another

program to exist In the multi p rogrammin g environment. The

operating system keeps the segments belonging to all

si mulation programs on call ’ until the report wri te r

comc-letes Its usage of the data. Once the report writer

conclu des execution, the system is allowed to free storage

for other usage.

4. Distributed System

The envisioned solution would have two central processors.

The simulation functions w i l l reside on the main processor

due to It ’s computation bound character istics , while the

graphics and inaufry functions w i l l reside under the control

of another possibly smaller orocessor.

• Since the main CPU is charged with the resp onsibilit y

of m aintainin g the master data base, there can be no sharing

of data Items between processors. The graphics processor

must receive all data items that are dyn amicall y changing.

60

~~~~--~~~-~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— — -

It must also Interpret all user commands and generate a CPU
-

to CPU request for the data Items necessary to fulfill the

user ’s request. Any attempt to store these ever changing

items Is frui~~less and wi l l result in either duplicated

fil es or excessive data transmission between the two CPUs.

The request for data must be be generated on an interrupt

basis to the main processor so that the excessive data
I

transmission and data redundancy Situations do not occur.

Dynamic event recording must be accomplished on both

processors to enable system to be restarted at any specified

state. The graphics processor will be requ i red to store

user commands and decisions , machine state and perhaps

dIsplay generation data. The main CPU wi l l be tasked w it h

• saving Its machine state and all variab le values for the

simulation restart.

Fl e xibilit y of the system now spreads over the two

processors. Not only must the imo l ementer be concerned with

the mechanism for level of play, level of disp lay and size

of forces represented but also the corresponding volume of

data transmission between the two processors. This is an

added concern in the distributed approach.

Since interactive play is desired, the graohics

processor must Interpret the user ’s commands i n an

interactive role and also generate an appropriate interrupt

to the main processor for each type of request. This w i l l

re quire a user writt en interrupt handler on the main

processor to decipher the interrupt and process it. The

*

61

— ------,-- - - -- -
. -

- - --•—•-- —.,~- - ~~_~_—
- - - -

-
—---—---- -- - ---—------ --—

in terrupt handler will probably not be -on the operating

sy stem level and thereby wi l l cause additional delay orior

to processin g it. -

The I dea of distributing the STAR system functions to

two processors was conceived to solve the real—time

requ i rement prob l em. Certainl y the distributed system would

run c loser to real—time than a 5u~ routine call ’ system . The

required CPU to CPU communication wi l l ’ generate some

overhead that other approaches do not. The user must see the

curren t situation status displa ys and his partici pation must

be received in time to accurately effect the outcome of the

battle.
-

The prob l em of where to locate the report writer for

• post—executIon evaluation arises. It should be capable of

providing the user with his requirements at the location

generating the displays. This means that the ma -i n processor
—

- must either continue to function only to pass data to the

graphics processor for this ouroose or create a file that is

readable by the graohics processor during this phase. Once

again additional overhead is required to accomplish both. In

the first case additional ’ execution time Is required by the I -

main to retrieve, process and transmit data to the graphics

processor, In the latter case additional time is required

to create the readable file should the two processors expect

different file characteristics. The- overhead of generating

the fil e remains in either case and under afl concepts

discussed, however such record and file attributes as

_ _

62

_ _

- - —~~~~ -~ - ~~
_

~~--
—

~TT~III

header, trailer, inter record gaps, block ing characteristics

and character set will ’ oresent a problem should two

different hardware vendors be chosen for the two processors.

Since unchanging data items, ~uch as terrain and road

networks, exist during the execution of any given

simulation , they are stored on the graphi cs side of the

system originall y and do not require the passin~ of large

data structures as that of terrain representation. This is

possible due to the use of parameterized -terrain generation

capabilit y of the simulation to produce terrain elevations - -

at any given point on the battle field.

5. Embedded GraphIcs

In this approach the simulation program is the center

- of control over a ll desired functions. The basic functions

of graphical disp lay , inqu i ry and update are fu ll fi l ed

through calls to appropriate subroutines.

SIt4SCRIPT uses a basic technique of executing sub-routine

calls from the timin g—routine. This technique selects the

next event to t ranspire from the event list. These events

were previousl y schedu l ed by other subroutines i n t h e

sImulation (internal) or received as i nput (external).

The sharing of Information between the three basic

functions (simulation , graphics and i nqu i ry) presents rio

prob l em because the requ i red common data can be stored in

global variables or passed as arguments between the callin g

and called subprograms. Data Integrit y also presents no

particular problem since only one subprogram may be in

-

63

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ x~~~
_ — ______________________



m,_ 
~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _  

—
~

- - - —
___-_.__~~~~--___ ___ _ _ __ - - ----

execu tion at any one time unless some tv~ e of parallel
-

-

processor is utilize d. The same argument applies when one

• subprogram updates a va riable value that another uses.

The recording of dynamic events can be easily

accomplished except for retention of the machine state.

Since machine state is important from the standpoint of

restartin g the process from a specified state, an assembler

level subprogram is reauired to periodically save the

necessary information on some secondary storage medium.

Rou t ines ~i l ’ l also have to be developed to retain the

decisions reached and periodic simulation state, however

these can be written in the basic sim u lat ,on l anguage since

all required informatio n is defined to the simulation

program.

Flexibility of the system for level of play, level of

display and size- of forces must be designed into the

subprograms but may be realized through dynamic

I nitia l izat i on of key execution parameters. The structure

to allow this must be incorporated into the subprograms so

that the maximum allowable force sizes can be allowed.

Interactive play can be achieved through careful design

and implementation. A suborogram to p eriodicall y test

display terminal ’s for user oarticlpation is requ i red. This

- subprogram wil l interpret the user ’s desired functions and

schedule the compatable event which i s stored in the

timin g—routine event list In time sequence. These events

may be scheduled NOW, IN 10 MINUTES, or AT 1430 HOURS,

64

:~zi ~i _ _ _ _ _ _ _ _ _ _ _ _ _ _

51

_______ - — - -—— - -
~

- - — - — -
~~~

hI.__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —~ — ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ —~~

-~~~•.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — - -~~~~~~-~~~~~~ 
-

however, N0~d does not imply Instantaneous execution of the

function since other orevious ly scheduled events for the

same time could exist with a higher statical ly defined

priority.

Maintaining a real—time environment is not hindered by

this approach when consider ing effect on the outcome of t~~e

simulation, however this approach wA ll extend the executio n

tim e required for the battle. Should the user desire to

update the simulation data during the execution , the

simul atio n process is halted by the resloent operat ing

system un til control is returned. The user need only

schedule a displa y and an update NOI~ or at the same t’me

with the display event having the next hi cihest p rior it y to

the update event. During execution the displ ay w i l l ’  be

produced, showing the current simu lation status and then the

update event w i l l  execute.

The report-~wr iter enhancement presents some difficulties

p articularl y during post—s i mulation evaluation. Since the

execution of the simulation has been terminated , a seoarate

application program is requ i red to process the saved data

for the user.

Although the subroutine call approach is the simplest to

imp l ement , it does have the drawbacks indicated. This

approach will have several beneficial side—effects. The

graphic disp lay is schedu l ed along with all other events and

is placed in the event list in the appropriate time

sequence. A display event can be qenerated with the SCh EDULE

65 -

~~~~~~~~~~~~~~~~~~~~~ 
_
~~~~~~ ~~~~~:. ~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _



A GRAPHICS.DISPLAY NOW, SCHEDULE A GRAPHICS.DISPLAY IN 10

MINUTES (DAYS or - 
UNITS) or SCHEDULE A GRAPIIICS.DISPLAY AT

1400 HOURS. This side—effec t gives built—in flexibilit y to

the scheduling of a display . The ~GRAPHICS.DISPLAY even t

inc l udes ini tiation of I nquiries and updates to the data

base as well. Fi gure 3.5 depicts sample SIMSCRIPT code for

— this type of subroutine call ’ . -

66

______________

~ - -~~ 
- — — - — --~~

-
~~~~~~~~

.- —i

7

;—---
.

-
_,, _ _ ,_• :j___ ~~~~ , _ -

-

~~~~~~~~~~~~~~~~~~~

PREAMBLE 

- 

-

EVENT NOTICES INCLUDE STOP.SIMULATION
EVERY LOC.UPDATE HAS A VEHICLE
EVERY LOS.UPOATE HAS A WHEEL
EVERY DETECT HAS A WHOLE .TANK AND A

• DETECT.FOE .ENTIRE.TANI(
EVERY TARGET.SELECT HAS A FIRING.TANK
EVERY FIRE HAS A SHOOTING .TANK AND A
CORE.POINTER.OR .TGT. ID
EVERY IMPACT HAS A TANK.THAT.SHOT AND A
BLOCK.POINTER.OR.TGT.ID 

-

EVERY GRAPHICS.DISPLAY HAS A COMMANU .ID AND
ADDRESS.OF.PARA METER .LIST

END

MAIN
.

.

- CREATE A PARAMETER.LIST
LET ATTRIBUTEI (PARAMETER .LIST) = value l
LET AT TR IBUT E2( PARA MET ER .LIST) = va lue2
.

SCHEDULE A GRAPI$ICS.DISPLAY NOW
LET ADDRESS.OF.PARA METER .LIST(GRAPHICS.DISPLAY) =
PARAMETER.LIST

END

EVENT GRAPHICS.DISPLAY

• 
IF C O MMA N D .ID(G R A P HIC S.D IS P L AY )  = ‘P

PERFORM INQUIRY GIVEN
ADDRESS .OF.PARAMETER .LIST (GPAPHICS.DI5PLAY )

IF COMMAND .ID(GRAPHICS.DISPLAY) = ‘DI ’
PERFORM TERRAIN.PLOr GIVEN
ADDRESS .OF .PARAMETER .1.1ST ( GRAPHICS .0 ISPLAY )

.

END

FIGURE 3.5

67

______ _________________ 
____ 

I



- 

r 

- - 
_ _ _ _ _ _ _ _

F. PREFERRED SOLUTION

In the se lection of the p referred altern ative , those

items designated as common considerations play an

insi gnificant role. The use of color to enhance the clarity

• of the displays is not envisioned to introduce an additiona l

burden on any solution. The method used to rapialy oroduce

a contour map is device dependent and not dependent on the

preferred solut ion. Hard copy dev Ices depend on machine

interfaces and are therefore Imp l ementation independent.

It is possible for all ’ alternative solutions to

accomolish the sharing of date files. Database management

systems are designed with this goal- . Database management

systems produce a data independence that allows each user to

view the data in his own way. Operating systems that
4;

support segmentation are al so capable of supporting the

sharing of data. The operating System however shares the

data in a format specific manner. The distributed acoroach

allows sharing of data files between the central processors

through the use of a distributed operating system that

allo ws CPU to CPU communication. The subroutine call

approach uses common data elements through parameter oassinq

techniques and global variables.

Dynamic event recording Is the first area In which

• the four approaches differ significantl y in their ability to

: perform. Al l approaches are caoable of recording decisions

and saving the values of variables at the time of the

decision. It is not a normal ’ database management function

68

-— ~~~~~~~~~~~~~~~~ —~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



_________________________________________ - ‘I

to record and later restore the state of the machine

registers. This interface with the machine must be made

wi th the cooperation of- the operating system . The operating

system apóroach, on the other hand, has the interface with

the machine registers as part of its normal ’ operations. The

distributed approach is further complicated by the need to

save the state of mu lti ol e CPU ’s and va riable values in

mul t iple machine memories. The subroutine call approach

suffers from the inabilit y to directl y access ma chine

registers in much the same manner as the database management

system.

Fle x i b i l i t y  In the level of disp lay and the level of

p lay must be discussed in two asoects. Level ’ of display is

• a function of the level of p lay in the fact that the only

possi ble -items to be dis~ layed are those items that are

stored. The routines written to cause the displ ay w i l l  be

similar for all approaches. This leaves the area of

fle x i b i l i t y  as a funct-on of level of play. The area of

flex ib i l i t y  of play hinges on the abilit y to generate and

store the aoproorlate data structure. This poses a problem

to the database management system approach in that the

system must dynamical ly generate the data structure at

execu tion time. The generation of the maximum size data

structure at every execution of the simulation would be

wasteful of storage. The operating system approach is not

hindered by the f l exib i lity constraint. The operating

system w i l l  automatically reserve storage for the data

69

I.. ~~~
-
~~
- -

~~
-- —-

~~~~ ~~~~~~~~~~~~~~~~~~~~~ 1~


- —----.- - - --~~—- --- - —----

- —

struc ture specified by the simu lation program. The

distributed approach is similar to the operating system

approach In that the op-crating system of the distributed

sy stem wil l ’ allocate storage as required by the

corresponding programs. The sub-routine call approach is

unaffected by the fl e x i b i l i t y of play . By changina inout

parameters, the user may dictate the size and structure of

the units p artici p ating in the simulation.

Interactive programmin g for the database management

a l te rna t i ve is broken into two areas. The i nquir y mode of

the database system is limited only by the database

designer. When the user asks and- what he is allowed to ask

are design considerations. All interactive capabilities

other than the inquiries are limited by the crogramming

language concerned. The subroutine call approach is also

lim ited by programming l anguages . The opera ting System

approac h is capable of fully interruot driven orocessing.

The ability to interact is enhanced by the users abili t y to

write interruot handlers to resoond to user generated

in terrupts. The distributed system ’s user programs are also

limi ted by the chosen programming l anguage.

Real—t i me processing is hindered by the database

management alternative. The system must translat e all data

references in to the appropriate addresses In order to

comp le te the data references. The operating system approach

does not affect the real—t i me abilit y of the simulation.

The distributed system w i l l ’ slow the simulation due to the

70

_ _


~~~~~~~~~ _ _

time required for CPU to CPU communi cation , The greatest

slow down wi l l  be -for the subroutine cal l alternative since

all processing must -stop in the simulation while the

subroutine creates the display data.

F rom the above discussion the operating system

aoproach Is the only alternative that satisfies all the

requirements for the system. -T here are several other

considera tions that favor the operating system approach. In

the ooerating system aporoach the key is the sharing of

data. The key data to be shared is generated by the

existing s imulat ion program. Further program development to

share this existing data may be done i ndependently without

adversely affecting the existin g program.

Another consideration Is the avail abilit y of a system

to support the simulation . Both the database management

system and the operating system approaches deoend upon a

complicated programming effort. A tailored database

management system would have to be written and at best be an

experimental system with unknown efficiency. On the other

hand, general purpose operating systems capable of

supporting this simulation system have been written and

tested. These proven systems are available today .

It is anticloated that the simulation w i l be run w i t h

classifie d i nput data. All solutions to the orob t em, except

the operating system approach, de l egate the problem of

security to an external ’ mechanism. Some operating systems

are capable of providing securit y for the classified data 

71 

- - 

-

I

_ _ _ _ _  _ _ _ _  ~~~~~~~~~~~~~
- -

~~~~~~

-

~~~~
-
-

-- - •



- —~~~~~~~~~~---- ---- —--- 

—

~~~

------- — —-
~~~~

-,-— -

with out depending on an external mechanism.

The last consideration is the comp lexity of the

solu tion. The operating system approach places the entire

burden on the operating system to perform tasks beyond the

capabilit y of the programming l anguage. The database

management system requ i res a complicated relationshi p

between the database system and-the operating system since

the database management system is unable to f u l f i l l  all the

requ i rements. The operating system is the only alternative

to perform all ’ requirements in a stand—alone basis.

*

72

_ _ _ _



r 

- - - - - -- -&P U- ------- - --------- - : IT:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

-IV . SOLUTION ANALYSIS

System analysis examines the existing and proposed

software and produces the logical design for the system. It

is i n  this phase that the inter— relationshi p s between

modules are examined , inc l uding determination of both

coordination and synchronization of modules. The proposed

simulation system is composed of four programs existing in a

mutually cooperating environment. The first and most

i mportant of these four programs is the monitor program

which is the master program that coordinates the use of the

system and Is capable of initiatin g any of the cap abilities

of the system. A second program is the simulation program

i tself. This orogram is the current version of STAR. The

th i rd program is a graphics program that produces all • maps

and overla ys to the maps. The last program contains all

admin istrative routines such as report writers , i nquiry

-: operations, all tutorial ’s and assistance functions. The

operating system coordinates these programs and converts

isolated programs into the simulation system described in

Chapter II.

A . OPERATING SYSTEM REQUIREMENTS

In order for an ooerating system to properly imp l ement

the simulation system , it must have a number of control

features. These requ i red features fall into the four

func tional areas of segmented memory , multiprocessing,

73

L d~~~~~ -~~~~~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~



— — — 
~~~~

_ _
~~~~~~~~~~~~~~:

___ ~~~~

synchronization of orocesses and segment isolation.

1. Segmented Memory

The sharing of data between user programs Is required

to implement the STAR model. The simulation generates a

da ta f i l e  that is displayed by the various graphics

routines. This data file is accessed by the routines that

display dynamic movement , animate ,-weapon firing, display

i mpact of rounds, and display unit positions as well as

detected enemy positions. This data must not only be

accessed but also be updated by the routines that enable

dynamic route and position selection and Support the i nqu i ry

• functions. An operating System capable of segmented memory

allows this sharing to take place (Daley and Dennis 19681 .

A segment is a collection of Information that is

Important enough to be given a name. A segment is the basic

unit of Sharing . Associated w i t h  a segment is a collectio n

of attributes. includin g a unique i dentifier and an Access

Contro l List. The Access Contro l’ List maintains information

specifying the processes that may access that segment and

whether the authorized access inc l udes any combination of

read, write or execute permission. Each segment may

consis ts of up to six major parts. The text section

contains the pure unmodified Darts of the object code which

would contain the program constants as specified in the

SINSCRIPT PREAMBLE. The defin ition section contains

nonexecutable informati on used by system programmers in

debugging and by the operating system in dynami c linking.

74

----~~~~~- —~~~~ —-~~~. — - ~~ ~~~~~~~~~~~~~~~~~~ _ _ _ _ _



The linkage section contains the i mpure, m odifiable parts of

the ob ject code and may be made uo of two types of data.

The links used to establish addresses at run t ime  are th e

first type of entry and since the memory is demand paged,

these addresses may change. The second t~~e of data is the

data items from the program that wi l l  be modified during

execu tion. All variables will  b e s~ ored here. The static

section may also be used for storage on a per orocess basis

alternatel y this storage may be included in the linkage

section. 4 break map section contains information used by

debuggers. - The last section, the symbol section, contains

anythin g generated that is not stored elsewhere (Honeywell

19751 .

411 segments that are competing for system resources

are listed in a system—wide Active Segment Table. This

table allows the oPerating System to know which segments are

current ly acttve and where they are located in memory.

Table length is finite which requ i res the operating system

to limit the number of segments capable of competing for

system resources. This limiting of processes reduces the

amount of time lost due to the switching of processors from

one process to another.

2. Process States

A orocess is a set of related procedures and data

undergo i ng execution and mani pulat ion. Processes will

generall y contain one or more procedure segments, one or

more data segments, a stack segment and a linkage seament

75



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - .
- - 

~~•

for each procedure segment inc l uded In the process.

Processes withi n a-computer fall Into one of three execution

states. A orocess Is said to be running if it is currentl y - -

executing on a processor. A process Is ready if it would be

running should a processor be available. A process is

wa iting if it cannot make i mmediate use of a orocessor since

it is waiting for some external (to . the process) event. The

operating system keeps track of these processes in the

system wide Active Process Table. These three types of

processes in the Active Process Table requ i re synchronized

use of shared segments.

3. Synchronization of Processes

In order to synchronize processes some method of

• communication between the processes must exist. This

interprocess communication is monitored by a mechanism known

as the traffic controller wh ich functions as a general

purpose supervisor for control of parallel operations (Daley

and Dennis 19681 . Two of the more interesting mechanisms

provided by the traffic controller are the block and wakeup

functions. The block function forces a orocess to wait for

an occurrance of an event generated by some other process

while the wakeup function al lows the process to be notified

that the event has occurred and processing may resume. This

blockin g of a orocess is recorded in the Active Process

Table.

Another mechanism used In synchron izat Ion is a

condition handler. Users and processes may communicate with

76 —

~~~~~~~~~~~ I~~~~
_
~•~

~ -- - -

j — • —

--
-

processes through the use of condition handlers. Condition

handl ing refers to an a c t i v i ty resulting from a hardware or

• sof tware condition named by the user ’s program . The user

may imp l ic it ly or e x p l i c i t l y iden t i f y the code to be

executed in response to the condit ion. To i n i t i a t e user

interaction with the simu lation , the programmer specifies

the pressing of the ATTN key on the,. terminal keyboard as a

hardware condition. In response to this condition ,

execution control ’ is t ransferred to a condition handler

wh ich contains code to request the type of action required

by the user. The user performs hi s desired interaction and

the simulation resumes execution. Conditio n handling need

not be a rigid response to the specified condition. The
- programmer has the option to specify condition handlers on a

segment by segment basis since condition handlers are pushed

onto a steck as they are defined and popped f r o m the stack

when the proc~ dure segment for wh ich they are defined is

exited . In this manner, the programmer may specif y a globa l

— condition handler as the general resoonse to a given

condition and redefine the response to the condition on a

procedure by procedure basis should the response change for

each particular environment. Shpuld the response to the

condItion be the activation of another procedure, the

condition handler then becomes another of the deli berately

cooperating procedures.

Deliberatel y coooerat-i ng programs or procedures may

in teract through the use of Interrupts which are synchronous

77
-

-

— - — - ------- ~-- - - -
- - t J~2t

- - —--——--- — —~~- —------ - - - _____

events internal to the machine. When one procedure desires

to call another peocedure, the calling procedure generates

an In terrupt. The key to flexibility in Interrupt handlin g

is to convert this interrupt to a wakeup . The interruPt is

sent to the interprocess communication controller which in

turn sends a wakeup to the called procedure. Th is called

procedure is then activated and esecution may resume. There

is no prob l em with simultaneous use of a procedure by

multi p l e calling procedures since all ’ references to the

called procedure are made vi a the cal ling procedure ’s

linkage segment. Once the called procedure has completed

execution , the called procedure places itself in a blocked

status to await further use (Graham and Denning 1972].

Coordinated sharing of writ able data segments may be

handleu through a lock mechanism provided b~ the operating

system. This lock mechanism is app lied to a data segment

whenever that segment is being utilized by a orocess capable

of modif ying Its contents. Further attempts to reference a

loc ked segment wi l l be den i ed until the segment is unlocked .

The lock mechanism blocks the process that is attemptin g to

use data- segment and maintains the i dentification of the

requesting process in a list structure. Once the segment

has been updated, the locking mechanism sends a wakeup to

the next process selected to use the data, unlocking the

data segment for that process. This procedure is repeated

until all requests are fulfilled and the data segment is

unlocked to await future use.
-

78

Il~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

4. IsolatIon Techniques -

Interprocess isolation is accomplished through the

Access Con trol List discussed in section A—I of th i s

Chapter. Intraorocess Isolation Is imp l emented •—i rough the

use of concentric protection rings where a ring bracket is

assoc iated with each segment. The ring bracket is an

ordered trip le CRI,P2,R3> wh ich sbeçifies the access bracket

(R1,R2> and the cal’) bracket cR2,R3,. These two subsets of

the ring bracket dictate the read, wr ite , execute and ca l l

access for that segment. A procedure may execute in any

r i n g f r o m Ri to R2 inclusive and may be called by any

procedure in rings (R2 4- 1) to R3 i nc lus ive, orovided the

-

-
~ call ing procedure has suf ficient security clearance. A data

segment commonly has R2 eaual to P3 since calling a data

segment has no meaning. A procedure segment may write to a

data segment in rings 0 to Ri inclusive and read from a data

segment residjng in the region 0 to R2 inclusive. Aga in,

read and write access are denied to any segment in any ring

that does not have sufficient access granted in the Access

Con trol List.

A segment may also have a security level associated

with it. This security level is composed of two pert~~,

securi ty classification and security category (Schi ller

1975]. The security classification is a type of

compar tmenta lizatlon similar to the Department of Defense

security classifications secret, conf identia l ’, etc. This

security classi fication is a totall y c~rdered set where

___________________ _______ ____ ______

~~~~_- ~___j
_

_ : ~



secret is s t r i c t ly  greater than con f ident ia l  and so fo r th .

The second part of the security level is the security

category which is a modifier to the security classification

and analogis to the Department of Defense categories of

cryp to, NATO , etc. In addition to access granted by the

Access Con trol ’ List , procedures must also have an

appropriate security level in order- to gain access.

B. ANALYSIS OF ENHANCEMENTS.

Certain design characteristics must be followed in the

design of all software for the proposed system. Al l

software developed should be easily portable , avoiding

locally oroduced library functions since they may not exist

at another installation. A l l  modules should be h~um an

engineered to perm it easy use. Operator inputs should be

min imal and concise with default values provided for a ll

modes, parameters and variables. These defaults lessen the

burden on the user and facilitate the requirement for

minimal input. Additionally, defaults reduce the number of

user errors. Maintenance responsibi lity for the software

must be charged to a specified Indiv idual or group of

knowledgeable individuals. All graphics routines developed

should com ply w i~~h the new graphics standards under

development by the American National Standards Institute

(Newman and van Dam 1978).

In addition to the existin g simulati on program, several

new modules and separate programs must be written to achieve

80



- 
- 

- -- - ~~~~~~~~~~~ -,

1 - ~

the type of interactive simulati on described in Chapter IL.

These additional modules and programs inc l ude all graphical ’

displays, i nquiry, synchronization and report generator

func tions.

The choice of utilizing the ooerating system aooroach to

implement the simulation system has facilitated the

programmin g effort - required. The- area of fle xi b i l i t y  of

play no lon ger concerns the programmer. Storage for

var iables 15 automaticall y allocated as a normal function of

the operating system. The programmer does not need to

concern himself wit h an elaborate data structure that is

capable of growth since this burden is assumed by the

operating system. Flexibilit y of disp lay becomes a problem

of searching for all the elements of the unit being

displayed and then using some appropriate weightin g factor

to properly position the unit symbol.

Programs nay be developed i ndependently of the

simulation by using simulated data files and therefore not

hinder the use of the simula tion or require dupli cate copies

of the simulation crogram for developmental purposes. When

the additional programs are tested and pronounced ready for

use, the only action reou i red is to inform the operating

system to allow access to the shared data files.

Synchronization of use of these shared files is required but

mec hanisms discussed In section 4—3 of this chapter allow

this synchronization to occur.

1. Interact Ive Programming

81

- 4  
- - _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _LTI~ ~~~

— -- 
_ _ _ _ _ _ _ _ _  ~~~~~~j  _ _ _



___ - 
---

~~ 
- 

~~
- - — - - - -

~~~~~~~

—

~

--
~~~~

The ares of interactive programming may be broken

in to two sections. The user may interac t with the simulat ion

program as well as the individual simulation programs

interacting with each other. The case of the user

interacting with the simulation may be satisfied by the use

of condition handlers while Individual programs cooperating

with one another may be accomp lisPi,ed through the use of

in terrupt handlers.

Ar, example of condition handling may be the

imp l ementation of dynamic route selection. When the light

pen is activated , a hardware condition occurs and execution

control is transferred to the condition handler . Inc

condition handler sends a wakeuo to an updating procedure.

This updating procedure accesses the data and places a lock

on the data segment. This lock prohibits the use of the

data while it is being updated. When updating is completed,

the lock Is r~moved, the update procedure places Itself in a

blocked status to await its next wakeup message, the

condition handler i-s exited and execution resumes.

Use of coordination by interrupt handlin g may be seen

in -the dynamic updating of oositions . When the movement

module changes the location of the unit , an interrupt is

generated as the movement module is exited . This interrupt

is converted Into a wakeup that is sent to the displ ay

routine, The display routine Creates the new displ ay and

then places itself in blocked status to await the next

position change. This conversion of interrupts to wakeups

82



— _ ___i — —---- —.w’--- -
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-. —-. ---—
~~

—.,----

not only facititates display but also allows the procedure

to be active only - as requ i red. Extraneous nonexecut ing

simu la tion routines need not be in primary storage until ’

required for use and disp lay routines need not continuousl y

draw the same picture in order to prevent missing an event.

Displays may now be made only as change occurs.

2. Real- tim e -

Reel—t ime must be approached from both the computer

sc i ence and modeling definitions. The computer sc i ence real

time is accomo lished by the synchronization mechanisms

discussed in section A—3. The various programs and

• procedures are forced to run in—step since they are called

b~ wakeups from the mai n simulation on an as requ i red basis. I -

T4iis system wil l  have least overall detrimen t to the

simula tion in the modelin g real—time sense. Memory

management may prove to slow the simulation from paging

activities but proper selection of the program ’s workin g set

size wi l l  reduce these oaging delays to a minimum (Denning

1968]. A clever operating system wi l l ’  have facitities for

main taining the Current working set size as a program

executes. Associative and cache memories w i l l  also soeed uo

execution of the simulation execution due to high speed

address translation and reference (Schroeder 19711. The

mec hanisms to synchronize segment usage may cause some

slo wing while procedures are in a bloc ked status. This

slow down wi l l  be overcome since separate programs w i l l  be

allowe d to execute simultaneously in a multi programmin g and

83 

~~~~~~~~~~~~~~~~~~ J~ JTI~~ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-~~~ ~~~r - -
_ _ _

I

mul tiprocessing environment. An example of synchronization

of segment usage is the calculating line of sight while the

disp la y of current positions is being oroduced by another

processor.

3. MonI tor Pro gra m

The monitor program provides a master control

facili ty for the modeler. This monjtor program provides the

main condi tion handler for the simulation. From the master

console, any capabil i t y of the simulation system may be

calle d at any time. Any privil eged instructions avai lable

to the modeler but not the war gamer wi l l be executable from

this terminal.

The monitor program wi l l be written as a separate

program executing on a dedicated disp lay device. Al ’)

modules of the monitor program wi l l be of sufficient

pr iorit y to preemot any of the executing routines of the

other programs of the system.

The monitor program is made oossible through the use

of condition handlers and shared data. The monitor program

wil l also be capable of plac i ng locks on data files since it

is capable of writi ng to data files. Coordination with the

remainin g procedures will be accomplished through the bloc k

and wakeup mechanisms. The access rights and security

level ’s of all procedures w i l l be set by the monitor program.

• 4, Dynamic Event Recording

Dynamic even t recording Is used to save the execution

state of the simulation at various decisio n making points.

_____ _____________

84

~ ~

- -

~~~~

- 

~~~~~~~~

-- _

This state o-f execution is composed of two distinct parts

wit h distinct characteristics. The state of the simulation

• is the set of values of- all simulation variables. Whenever

a decision is I nput, the operating system needs to copy the

data segments containin g the appropriate variable values

onto a secondary storage device. These values must be

copied prior to any changes due to the Input decision. The

state of the machine is characteri zed by the values in the

machine ’s tn ternal registers. At the decision point , the

operating system save-s the register values in secondary
—

storage. The ooerating system must then l abel’ these values

and inform the user of the assigned l abel and resume

execution. At some future time when the user desires to

• return to this ooint, he need only suppl y the l abel value of

the decision point and the operating system wi l l then

restore the simulation and execution states, returnin g

control ’ to the user- for his new decision.

5. Repor t Writer

The purpose of the report writer is to produce

-1statistical rePorts based on stored historical ’ data and

current battle status. It should have the cap abilit y to

produce graph summaries of the user ’s desired format. For

instance, bar graphs may be desired over simp le plots for

certain items. For ease of imp lementation , this should be

def ined as a user requ i rement however the report writer can

be developed with sufficient flexibilit y to allow

In teractive user format selection at the expense of larger

85

— — - — - - - - - - -~~ - - --

programs. If sufficient storage space (memory or secondary)

exis ts and system execution Is not sufficently degraded,

then this fle x i b i l i t y should be pursued for the benefit of

the ultimate user.

The report writer is a procedure included In the

f administrative routines program. Proper selection of ring

brac kets and delegation of access p~ rm ission will allow the

report writer to reference data and perform its required

func tion. The report writer may be invoked from either the

adm inistrative program or the monitor program. The invoking

program sends a wakeup to the report writer to initiate the

procedure. Upon compl etion , the report writer places itse lf

in a bloc ked status to await further use.

6. Inqu iry Mode

The function of the i nquiry mode is to allow

commanders and their staff sections to question the

simula tion. Legitimate inquiries are those that each agency

would norma ll y initiate during an actual battle. For

ins tance the S 1 would not be allowed to query directl y the

status of some area outside his cognizance but rather

require him to communicate via the appropriate agency which

has cognizance over the area in question. Chapter II,

sectIon 0 previousl y i dentified normal areas of cognizance

for the staff sections.

An swer-i to any agency ’s request must reflect the

accuracy and timeliness exoerienced In a true battle. This

requ i rement should be handled in the simulation of inter—

Bb

~~~~ - - - - --~~~~~~~~~ 

_ _ _  

_ _ _

_ 

_ _ _  

1-4



- s-- - r —‘~~~~~~~

organizational communication oaths. -Any accurate and

ins tantaneous reply could be misleading to to the commander.

• Human fac tors must be considered and accounted for in the

i nquir y mode ’s operatio n to reflect realism.

7. Map and Overla y Generation H
Ini tial terrain generation experiments were conducted 

11

on a PDP 11/50 usin g a TEKTRONICS ,4014—1 display device as

the display medium. The L$ OL LI has several disp lay modes

inclu ding point and vector. A resulting tutorial was

developed for use and is inc l uded as APPENDIX A.

Current methods used for generating contour maps from

stored matrices of data could not be used to displ ay the

terrain for this simulation [Dayhoff 19633 . One of the

advantages of oarametr-ic terrain is that terrain may be

-: calculated rather than stored allow ing large areas to ~e

modeled. Using calculated terrain , the only altitude known

-is that of the current location. The decision was made to

scan the area fran, South to North and f rom West to East to

determine the location of contour lines. The resulting

problem was that with a constant samoling step size, it

could not be guaranteed that the step taken would in fact

fall on a contour- lIne. Next a point was acceoted as being

on a given contour line if it were wi t h i n  a specified

tolerance from the contour line. This tolerance was

• measured in the vertical dire ct -i on. The first attempt at

disp laying parametric terrain utilized the point mode of the

4014. The deficienc y noted in this approach was the

87’ 

_ _ _ _ _ _ _ _  

-:



‘ 1 ~ 
- 

~~~
- - -

inab i lity to establish Contour lines since the display image

consisted of a series of dots. To accomplis h the il lusion of

lines a suf ficiently small ’ delta x and delta y had to be

used thus extending execution time for any given piece of

terrain. If the display wa&-to be magnified to any degree

the line illusion became visible dots or points once again. —

This effect demonstrated the ne~d to draw contour lines

using the vector- mode of the 4014.

In order to utilize the vector mode, a drawing

algorithm was developed. The algorithm used to determine

the direction of draw was quite simple. Once a decision to

r • draw was made, all ’ points adjacent to the Current point in a LNor th or East direction were calculated and the line was

dr-awn to the ~o4nt closest to the contour elevation. This

approac h produced Contour bands rather than Contour lines.

These bands were acceptable on ste-co slopes but in the S

f l att er areas .~hey were qui te wide. An attempt to reduce

the number of line segments to be drawn was made by drawin g

to a given point only if the ooint immediatel y North of it

was farther from the contour line than the current point.

This produced contour lines that were shaded on the North

sIde. The solution to this problem resulted In an

additional condition that a point would not be considered

for plotting unless it were closer to the contour line than

•

-

both the ad jacent points in the North and South directions.

The resulting map was adequate but s t i l l retained shading

alo ng a h i l l ’ s major access in the area of the Contour line

88

- - —-----~~~~~~~~—

-
~~~- 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L ~~~~~ ——— - ~
- --~~~~~-‘-~ .~~ a— .

~~~~~ —‘ -~- —‘—— -~~~
---

~~~
--- .


~~~~ - 

i-

-- 

- 

-- - - - -~~~ _ - - - _ --:~~~~~ i _ ~~

plus and mi nus the tolerance. The shading was negligible

near the oeak of the h i l l ,  but ~ulte distracting near the

base. The shape given by the distribution is increasingl y

fla tter as one proceeds outward from the center of the hi l l .

The solution to this prob l em was in the calculation of a

dynamic tolerance. This tolerance was calculated by

determining the distance from, h - i l l  center that the

— distribution reached three standard deviations or fell ’ below

some specified minimum altitude , whi chever comes first .

This method oroduces an acceotable mao. The resulting

al gorithm follows:

• 1. Locate- point closest to contour line.
2. Sample adjacent points to North and/or East.
3. Draw line to adjacent Point closest to Contour
line.
4. Locate next point closest to next contour line.

The major drawback to this approach lies in

consumption of time. This method is of comp lexity of order

N squared meanjng that doubl ing the s i ze  of the mao to be

displayed roughly quadruples the execution time. lhi s

routine is by no means real—time in nature. Exp eriments

were conducted to speed up the drawing of this contour map.

The map may- be drawn In real—t i me if the calculations are

not requ i red every time the terrain is displayed. The

solution requIres that the commands to move and draw that

are generated by the CPU and sent to the dis p lay device must

be intercepted and written to a data file. Uoon a request

to draw a given area, onl y the actual move and draw commands

need be executed. These commands may be created and stored

L I 
__________  

89 

• —‘-----•.- — — __- ~
—- - - - --1

— -i- ’ ,•--,--- ~~~~ ~- — ~-.-~- — — — — ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~



— 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

as the terrain is designed and referenced later during the

simulation as requ i red.

The abilit y to draw different sections of the

battlefield is easil y attained. By using a device such as

the TEKTRONIX 4014 a virtual window may be defined to the

display . This virtual ’ window is mepoed onto the phy sical

displ ay window and only the points within the virtual window

are displayed. This virtual window may be dynamicall y

crea ted from Inout parameters from the console. The Contour

lines may be stored In separate files per individual line

elevation thus allowin g combinations to be plotted and

giving f l e x i b i l i t y of selection of line inte rval.

Overlays wi l l be plotted on the basic Contour map .

These overlays may be selected individuall y or in any

combination of the available overlays. The use of color

displays will make the overla ys stand out from the map and

avoi d confusion when multi p le overlays are requested. In

order to avoid destruction of the Contour map by overwritin g

from the overlays, the displa y terminal must have a

selective erase capabilit y . This w i l l allow the removal of

a specific overlay without disturbing any others that may be

displayed at the t i m e of removal ’.

8. Securi ty of Classified Data

Physical security of the classified data durin g input

or output remains the problem of the user. The terminals

used must be In a secure environment to avoid compromise

before data Is entered into the computer and after the

-

_____ ___________

90
-

-

r i ____ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _

~~~- ~~~~~~ ~ _~___i Tir ~~~~~~~~~~~~~~~ 
~~—w - —



L. -

classified output is generated. Remote use of the

simula tion w i l l  be -possible if scrambling devices are placed

on the communication lines. Computational securit y is

provided by the operating system since properly specifying

the security level ’ of the simulation w i l l  cause the internal

protection mechanisms to safeguard the data from tamp ering

within the computer. Thus the si-mul atian running classified

data may be described with a security level of

(clearance,STAR> and thereby refuse usage of the data to

anyone regardless of classification without STAR access.

9. Library Routines /Tutorials Needed

In any interactive System certain library routines

and tutorial ’s make the system more conven i ent to use. These

routines lie resident within the system and are capable of

being called by the user. Several readil y i dentif iable

example s are discussed In the following sections.

a. Terrain Generation Package

The purpose of the terrain generation package is

to allow the user to define any given terrain area in terms

* of the requ i red parameters prior to the execution of the

battle simulation . The terrain generation package uses the

identical data Items required by the elevation routine of

the simulation. Once the user has defined the terrain to

his satisfaction he can elect to creat a file containing the

display device commands generated during the display phase.

The terrain generation package inc l udes two major

items, a highly interactive program and a tutorial

____  

91

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~



-~~~~~ 
- ~~~L~~UIU1L ~~~~~~~~~~~~~~~~~~~~~~~ 

- -

describing the program ’s use. The inter active program

-i allows the user -to define and disp lay the terrain of the

battle area. The defi n ition phase includes capabilities to

bu ild , modify , add—to or delete—from a data file containing

the parameters. Appendex A defines these all owab le

functions.

The terrai ii display phase allows the user to draw

Con tour lines of his chosen level from the data . The user

speci fies bounds for the cisp lay in terms of maximum and —

mInimum grid coordinates , the contour level arid the step—

size desired. The user soecified bounds give the il lusion

of zooming—in or away from the terrain. Bounds smaller than

the defined battle area wi l l  cause a smaller area to be

— 
• dlspl~~yed in the static disp lay window creating a blown—u p

or zoom—in effect. Conversely, should bounds larger than

the battle area be prescribed, ~ reduction or zoom—out

illusion is created. All  disp lays are generated w ithout the

need to store in memor y an elevation for each <x,y>

location.

The terrain generation orogram contains the

following functions. The user is allowed to build the

parametric data file under a filename of h i s choosing . He

is allowed to add, delete and modify the file to reflect the

current state of terrain generation. There should be a

narra tive portion which describes the function of the

program end demonstrates effects pf different i nput

parameters. The user should also be allowed to familiarize



— ~~~~~~~~~ --- - - --— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

himself w ith the system by man i pulating parameters and

seeing the results displayed. The capability to plot

Con tour lines of the user ’s desired Contour leve l ’ from the

defined terrain is also provided.

b. Posi tion Selection

The purpose of the positio n selection package is

- 
- 

- to allow the user of STAR to sel’ec,t defensive positions and

rou tes—o f —march for his forces , This oackage, like the

terrain generation package, is pr imarily a pre—execut ion or

set—up operation designed to facilitate p lanning of a

battle. Execution during the battle w i l l  give the user

insight as to possible new posit ions or tactics as the

battle progresses. Since interaction between user and

simu lation is provided for, the user may desire to util i z e

information gleened from the position selection package to

per form uodates during the simu lation.

The position selection program should use the

IContour map generated by the terrain generation oaCkage and

determine line—of—si ght (LOS) fans for any selected position

w i thi ri the battle area. There are two approaches to the

representation of LOS fans, each with it ’s own advantages

and disadvantages. The first approach is to shade—in the

visable area in the far,. This method gives the user a -

distinct impression of how much area the fan covers.

However, specific terrain characteristics within the fan may

be hidden from the user ’s view. To counter this

degredation, the oackaqe should allow the user to displa y



A D—AO7O 096 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 9/2
SYSTEMS ANALYSIS FOR T uE INTERACTIVE SIMULATION WITH GRAPHICAL —ETC(U)
MAR 79 6 S COKER. 0 R FORINASH

UNC LA SSIFIED pt
2cc]

_  
U



_ _ _  ~~ ~2.2

ii ~~ L 2.0t i l l  ~~II 11 1.8

11)25 1.4 tt.o~
.

U ______ 

= IIIJI~~~I

d 
•~~

c .

MICROCOPY RESOLUTION TEST CH~~T
NATIONAL BUREAU OF STA~DARD6-J96~-~



the fan in an inverted mod•. Th is inverted mode should

shade the areas outside the LOS fan thus a l low ing the user

to see only geographic features defined w i th i n  the fan.

These two approaches when comb ined should a l l ow  the user al l

LOS related informat ion concern$ng that position. Figures

‘1.1 and 4.2 depict the results of the two methods.

.

94

L. ~~~~~L. ~~~~~ - ~.. . .

~~~~~~~~~~ - ‘ ~~~~~~~~~ ~~~~~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________


•L. a

n • I f ~ I & ~1 ~~‘\ ‘nra.
f •

~ r~~~~Tho
— ~~~~~~~~~~~~~~~~~~~ a ~~~~~~~ l~’i. ~ 1 f ~~~ t (a

• ~~~~~~~~~~~~~ i ~~~~~~~~~~~~~

• ~y—~ ~~~_ c~~~~’~~~r~ i ii~H ~~ ~~~~~~~~ __~~ . ~, ~. I ~~~~~~~~~~~~~~~ •~ ~~~~~~~~~~ 1 1 —U ~~ ~~~~~W i . f f •1~ ~~~~~ ~~~~~~~~~~ £. —I d~ ~~~~~~~~~~~~ ~~f i ~ / ~ ____U U ~~~~
~~~

• i z s—~ —~J .~~~~ ~~~~~~~ ~~~~~~~~~~
/.

~~~~I •~~ t •
~~~~~~~i

* a ‘ ~~~~~%

A • .~‘~~~~~~ i~• •
aa • a

4

U .

a ’. a
s

S

.

~~~~: 
•~~

~~ ;r ~~~ a.
a

. a
* 

% a

• 
•

t 
~~~~ a’a 

• • % ~~~~~~~~~~~~~~ •
.~~

a
~~~~~~~~

• Is
. 14~~~

’ \ —
• ‘. S

• 
~

- 

a . j
• : ~~~~~

.4:

a
• •

a..

• a

Sp 
• :  . 

‘
a

.. ‘%

• U -

* 
‘l~ 

•
•% ‘.‘ •~~~ I ‘.. •. •1. *’ ~~~~ a

a •• •
~~ •~~~ S‘% a

a

••

95

.1 ~~~ ~~~~~~~~~ •~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _

I~

10
10

!1~/~‘
. 1

4 
~~~~~~~~~~~~~

.:. InIn
;!

~ : ~~,
~..

4. ~— • .
, 2

p
•
. (-4

4 ~~~~~~~~~~~~
b~~~~Q -i

“-4

• _
U’

• S -.
S

~~•
•

• .4

. w •
. -

10

10
10

S S S10 ,..
En

96

• ~•-~~~

I

c. M ilitar y Symbol Librar y

The purpose of the mil i tar y symbo l librar y is to

allow the user either through his interact ion or program

action to select a series of predefined display device

commands to draw a standard military symbol. This functions

somewhat like a table lookup procedure where the resulting

table entries are a series of ,entries that define a

particular symbol. The map overla y disp lay programs must be

able to access this librar y and retrieve these instructions

for dynamic display during the battle.

M ilitar y l eaders are I nnovative when a standard

symbol hag not been defined for some unique app lication and

consequently establish some symbol to represent their new

weapon or unit. The program should allow the user to define

any additional symbols needed. A standard checker—board

pattern , such as figure 4.3, should be provided on the

oisolay screen.
aces ann e eeeeeeeeeee

• a a a • a a a a • a
• a a a a a a ~ a a a
eeflfl ccc naeaeeeee S

a a a a a a a I I I I
• I a a a a a a I a a
000fl aeaaeeaeae ee 000

S (S I 4 I S $ I 4 $
• I a a a a a a a a a
Cacao OaeOe0000Sefl

• a a a a a • a a a aa a a a • * a a a • a
a__a cease flafleaeeeea

a a a a a • a a a a I
a a a a a a a a a a

000_a 00500CC a_ _c_ f l_ C

figure 4.3

The user can selec t any square m d the proaram w i l l shade

that area. By continued selection , the user can define a

symbol of his choosing. Aft er the user has defined the

97

~~~~~~~~~~~ ~~~~~~~ ~ 
j~•j = ~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



- ~~—~~~~~~~ -—-~~~~ ~~-~~~~ -—- ,. ~‘-~~

—

symbol to h i s satisfaction, the program ~should display the

symbol for final approval of size and features. The symbo l

• . may now be stored in the libr ary for future reference.

C. USE OF THE SYSTEM

The simulation system will be useful in all phases of

model ing. A typical senario may ~foll ow this outline. The

lif, of a sim ulation begins w ith the writin g and debugg i ng

of the code. The simulat ion imp l ementer may sit in his

office and enter the cod. through a console as opposed to

punchfnq data cards and feeding them into a card reader. As

• the imp l ementer finishes entering the code, he may now

compile the program and correct any syntax errors from the

console. Execution may reveal problems with his code that

may also be corrected from his console.

Th. user of the simulation takes over after the

implementer hbs finished and the model is ready for use.

The user must first set up the model for use. This set uo

is facilitated by the tutorials provided by the system. The

terrain generation package exp lains the method of generating

terrain. The user uses this terrain package to generate and

store the parameter values necessary to create ano display

• the terrain. Using the line~of— sight cap abi lity of the

system, the user then selects the initial positions for the

elements on the battlefi eld using the LOS fans provided by

the syste m.

The modeler is now resdy to use the simu lation. As the

qe



.- - r , ~~~~~~ ~~~~~~~~~~~~~~~~~

simulation progresses, the user is able to monitor the

simulation and dec i de when to interact w Ith the simulat ion.

Should he dec i de to interact, he may do so from hi s console

by pressing the ATTN key and selecting the type of

Interaction desired from the menu of possible alternatives.

Once the interaction is accomplished, the simulation

continues. The user notes the effec t of his interaction and

wonders If the outcome would change had the interactive

i nput been different. He elects to return to the point of

i nput and experiment w ith a different course of action.

Again, he presses the ATTN key and this time he chooses the

option to repeat the simulation from a specified point.

Having changed his i nout, the user elects to continue wit h

the simulation . The simulation continues until termination.

Post execution analysis is accomolished through the

creation of written reoorts by the report writer end the

answering of questions by the inquir y routine. At this

point the user may still elect to Investigate behavior by

returning to a given point and resuming execution. Uoon

completion of analysis , the user may elec t to destroy the

simulation files.

~~~~~~~~~~~~~


F - - -‘-~---‘— _,_._•vn, ~ - -~ -~~~~• - -- - --—--r~~’—,-— ,- - - -
- —--———---n— -—•-••—••-—. — •- .—

V. ANALYSIS OF CURRENT STAR

A . GENERAL

The analysis conducted on the current version of STAR

was oerformed in the general areas of program structure,

contro l structure, storage optim ratfon and subroutine

analysis. Certain guidelines were used in the analysis of

the current version of STAR . The programming l anguage used

is SIP4SCRIPT. The methodology used in the simu lation wi l l

be left to the programmer and comments wil l be limite d to

programming techniques.

B. STRUCTURE

The SIMSCRIPT programm i ng l anguage has the cap abilit y to

be both readable and structur,d. Readabilit y and structure

allow the program to be maintained by persons other than the

original writers. This cap abi lity of the l anguage is not

being full y exploited . Good readabilit y facilitates ease of

maintenance and debugg i ng. To attain the desired level of

readabilit y several pr inciples must be followed.

Indentation should be present to offset the control

structure from the code that is contained within that

structure. For example, should the 1f in an 5i f else ”

structure be i ndented five spaces, the “else ” should also be

i ndented the same number of spaces. Onl y one source

100

-

I I•I-~
-
~

_
~

..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~—



-

~~~~~~~~ 
-

~~
- . -.~~~~~~ ‘~~~~~~~

statement should be allowed to a line. Al l local variables

should be defined rather than allowing the default values of

• SIMSCRIPT to take precedence. Variable names should be

obvious as to their representation, since SIMSCRIPT allows

l ong variable names. Many cases of short variable names

occur in the STAR orogram either through ease of use or bad

programm i ng practices. These short-sr names contribute to

ambi guity and confusion . One example of lack of structure

is seen in the following code extracted from the Current

model:

until ii i = 1, do
let target (name (tank),2) he.draq (tank)
let he.drag (tank) 0 let mv.state (tank) = 1
let defnum (tank) 1
let jji = ii i + I b o o

• This code will be more readable if it were structured

simi la r to the followin g:

until j j i 1,
do

let target (name (tank),2) he.drag(tank)
let he.drag (tank) = 0
let mv.state (tank) 1
let defnum (tank) 1
let i i i i i i 4 1

1 oop

This type of structure has two major benefits. Programmers

easily recognise the scooc of the UNTIL statement and the

assignment statements are readil y found since they are one

• per line and begin wi th the reserved word LET.

Anoth er example of how structure may lead to

understanding is found in the followin g segment of cod• from

-
~~~~ the routine CHG.SEC.SEARCH.



“d1
i f  css(a) 1

go to dli
else

• go -to d12
d11’

• let pri.dir (a) pi.c/2
• let css(a) = 0

go to set
5d125

let zyx uniform.f (0.,1.,1)
if zyx ge .5

go to dl3
e l se

go to d14
“d13”

let pri .dir (a) pi.c/4
let css(a) = 1
go to set

“d 14
let pri.dir (a) 3*pi.~ /4
let css(a) = 1
go to set

•set•

Upon examining this unstructured version of STAR source

code, it is eviden t that it may be rep l aced by the followin g

sequence:

I

if csa(a) = I
let pri.dlr (a) = oi.c#’2
let css(.) 0
go to set

else
let css(a) : 1
if uniform.f (0., 1., 1) ge .5

let pri .di r(a) = p1 .c/4
go to set

else
let pri .dir(a) 3*pi.c/4

• “set

This code sequence is easil y understood ano has two

additional benefits. First, this structured code will

execute faster due to fewer transfers of control. Second,

102

_ _ _ _ _ _ _ _ _ _ _ _ _  
-- - - - . •



_________________________________________________________________________________ 
-

storage requirements are reduced since this version has

fewer lines of source code , th i r teen instead of t w e n t y —

• four, thereby reduc i ng object code storage requirements and —

does not require the variable “zyx ”.

C. CONTROL STRUCTURES

The STAR model needs extensive op timization in the area

of control structures. The followin g examp le is from the

routine COMMO .PASS.TGT.

if pct.vis gt critical .value
let lose = 1
jump ahead

else
let lose = 0

here
if lose eq O

• let aim 0
return

else

Th is  code sequence is equivalent to the f o l l o w i ng :

i f  pct .vi s  be c r it i c a l . v alu e
let aim = 0
return

else

The sequence may be reduced even further if the variable

“aim ’ Is initialized to zero since this is the ma jorit y of

usage (“aim ” is set to zero four times as ooposed to one

only once). This saving in storage of objec t code, ease of

understanding and execution speed~uo Is attained by testing

“less than or equal to ” as opposed to “greater than ”. Th is

particular type of control structure is used In other places

103 

-.- — 
- 

-•- 
-----

___________________________________________ ~ — ---~~~~ ~ - ~~~.&L—



in the program as well.

Another common control s t ructure abuse is observed in

• the routine RES4. This routine hag seven “do loops ”, all

i ndexed from 1 to 2. These l oops may be combined into one

control structure which w i l l  result in a reduction in

execution time (counter maintenance ) and a saving in object

code storage. The combination o~ ~‘do l oops” is possible in

the ma jority of the STAR routines.

Another optimization technique applies to the routine

PRIORITY .AND.ROUND .SELECI with the fo llw ing code seauence:

let I i — 1
go to 10, i3, 16, i9, $1 2  per i

•10’
let I = 0

• go to bands
wi3”

l e t i 3
go to bands

“16”
l e t i é
go to bands

“‘9’
let i~~~~go to bands

“112”
let i 12
go to bands

“bands ”

A l it t l e  “cleverness ” reduces th~ s sequence to

i Ci - 2) * 3

In fact, in this routine alone , fiftyafour lines of source

code may be reduced to four lines without loss of meaning.

Benefits of the reduction inc lude ease of understanding ,

more effi cient execution and less storage requ i rements.

104



0. STORAGE OPTIMIZATION

Storage optimization can occur in several ways in the

STAR model. Appendices C and 0 present the storage

requirements of the current unstructured model. The

“complexi ty ” Item under each routine analysis in App endix B

indica tes storage dependencies.

Another area that deserves close monitoring Is the
/

assignment of subscripts in arrays. An examp le of this

detrimental effect is seen in the array called TARGET.D The

actual variable is TARGET(321,2). SIMSCRIPT creates a data

st ructure with 321 pointers to vectors of l ength 2. By

I

, 
reversing the subscripts giving TARGET (2,321) the SIMSCRIPT

compiler stores this w Ith 2 pointers of l ength 321. This

reversal of subscripts saves 319 words of storage or 1278

• bytes of memory . If at a ll possible ,  subscr ipts  should be

arranged with the smallest first and in increasing order.

App~ nd$~ D gives a summary of a l l  s t a t i c  s torage a r rays

and the storage requ i red if an optimal assignment of

subscr lots is used. By t h i s  use of opt imal  subscr ip ts

approximately 12K bytes of storage may be saved.

E. SIMSCRIPT ROUTINE ANALYSIS

• The SIMSCRIPT routine analysis was performed after a

structured version of STAR was produced. A l l  names are

a alph abetical wit h In their category. For each subroutine the

f o l l o w ing i tems were ident i fied :

L _~~~~~~~~~~~~~~~ ~~~~~~~



2. Local variables defined to that subroutine.

3. Global variables accessed.

4. Var iab les  read into the subroutine.

5. Var iab les  w r i t t e n  to print.

6. Data Structures created.

7. Data structures filed into a predefined set.

8. Data structures removed from a set.

9. Data structures destroyed.

10. Vectors or matrix for which storage is

reserved.

II. Vec tor or m a t r i x  for which storage is re leased.

• 12. Other subroutines called. 
-

13. Subroutines that ca l l  the subroutine.

• 14. Events schedu l ed.

15. Subroutine that schedules the event.

lb. Complexity of subroutine in regard to

execution time and storage requirements.

17. Recommended improvements (excluding general

improvemen ts i dentif ied earlier ).

18. Any remarks concerning the subroutine and

values returned to the cal ling program.

-~~~- 

106 
.

-

~~~~~~~~

-—
[1

•
— - -

— - _i~~~~~.~~~ ~~~~~~~
•_

-

VI. COPLCLUSIONS AND RECOMMENDATIONS

The STAR war gaming mode l is written using sound

modeling techniques. The imol ementat -lon does have a serious

drawback in mai ntainabilit y . Without structure, t h i s

program is difficult , at best, to understand and w i l l be

extremel y difficult for anyone other then the actual code

writers to maintain. The current version of STAR is at this

t ime undergo i ng extensive modi fication to give the program

structure and to attemot to gain efficiency to both storage

and execution.

This thesiS is a orelim inar y design and therefore only a

preferred solution was given . As the preferred solution is

developed at a later time, more detail may be given as to

the f inal i mplementation of the STAR model. The

i mp l ementation-of STAR using the operating system approach

may be attempted here at the Naval Postgraduate School. The

features described that are necessary to impl ement the

proposed enhancements are found in the MULTICS operating

system from Honeywell Information Systems, Inc. whic h is

ava i l ab l e on the ARPAN ET. Th is availabi l ity gives the

school the opportunity for further study.

One of the most beneficial short term improvements that

can be made Is to obtain an interactive SLMSCRIPT compi ler.

The interactive com oile r may be obtained free of charge from

Consoli dated Analysis Centers, Inc . under the universit y

107

--~~

F

grant program.

Further experimentation wit h graphi cal displays may be

made at the Naval Postgraduate School utilizing the research

computer in the school graphics l aboratory. This computer

may be used as a remote terminal to the w.R. Church Computer

F Center and graphics disp lays oroduced on the terminals in

the l aboratory. •

-

The STAR war game prov ides excellent opportunity for

further Computer science thes is work . Add i t i ona l thes is

mater ia l may inc lude opt imi za t ion Of te r ra in d iso lay using

the oarametric method of terrain representation . Thesis

work in the area of operating systems may inc l ude actual

implementat i on of the STAR mode l on the ARPANET. Work in

the dataoase area w i l l be required to deve boo the in~ uiry

capab i l i ty and the reoort generator.

4

108

-- —•-—- -— — — — —
~ - — - —---• •- -- . _ --•-,-.c~

-•_--- - • - - - - —•.
~~

.-- -
~~~

------
~
--

~~~~~~ —~
---.-•--

~~ ‘•-~-~~~ -.~~ - — -T__•__: —•- —

TT~~

• APP ENDEX A

AN INTRODUCTION TO INTERACTIV E TERRAIN REPRESENTATION

UTILIZING PARAM ETRIC TERRAIN GENERATION

I. INTRODUCTION •

This tutorial has been devebooed to allow interactive

use of parametric terrain generation. Currentl y mechanisms

exist for buildin g and modif ying the i nout file required for

the generation of terrain features and disp laying contour

lines of the user ’s desired level. Due to ,nodular design,

further terrain enhancements such as three—d i mensi onal views

f r o m any point may be developed and incorporated into the

existing program. - - -

Parametric terrain generation uses as i nout parameters

the x and y locations of the center of the h i l l (xc end ye),

the elevation at that <xc,yc~ loca tion (peak), the

eccent r i city of the hi ll (c cc) , the height of the

parameterized hi l l (ht), the angle of rotation of the hi l l

f rom an East—West axis (angle) and the spread of the hi ll

(sord). For each set of h ill values there is a base

altitude /elevation (basealt) associated. This base altitude

is the elevation of the lowest oofnt in the terrain area

that is being modeled. The eccentricit y of the h il l (ccc)
4

is the ratio of major axis to min or ax-i s (major—axis /minor —

axis) for the hi l l under consideration . The spread of the

109

~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ h-.. ~~~~~~1~~i I



-• 

— - - — - - - - - —i:.~.._ 
- —--- rI~~~~~~ __ ____ _ _ _ _ TI _______

h- I ll is considered to be the distance along the ma jor—axis

for the elevation •to drop- fift y (50) meters. Fiqur~g A 1.1

• through A 1.5 graphicall y expl ain these parameters.

S aea~~~ eeaaeSeeae  aaea a ae~~~~~

S $
• S
S SS I

i________ _:~:::~ 
____ _ 

FIGURE A—1. j

e aaa ~~~~~~aeaaeaaaflaaa a_ _a_ a _ a _ a

• I

— 

a a a a a a a a a a i aaaaaaa a~~~~~~~~

FIGURE A 1.2

e afleaaaa aeaaeaa S en flsa an

I S
I I

• 
- ~~~~~~~~~~~~~~~~~~~~ a~or

axis

a_ _na !

FIGURE A 1.3

110

~~~~- -—~~~~~ —.~~~~~~~ -—~ ~~~~~~~~~ 
— — -

~~~~
‘- -

~~~~
-• -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - — —-- •-— •=---

aea a aaea a_ _s_ _a_ _a_ a  aa n sans

1~nan a a a a aaeaana eeanasoaa a

/

FIGURE Aa l .4  H
a a~~~~~~~~~~~~~~ flaflS OSa a_a aa Sean

FIGURE A—1 .5

111

________________________________ ________________________________ ________ 
________



____________________________________________________________________ 
• • - - -  -•. - •• 

II. HARDY ~ARE REQUIREMENTS

A. INTRODUCTION

The display hardware u t i l i z e d  in the development is

cen tered around the TEKTRQNICS £$014—1 storage tube graoh-,cs

display system. It has a 19 inch storage tube as a display

medium. Associated w ith the 4044 is a standard ASC II

~eyboerd. •

A VERSATEC MATRIX prin ter is accessable through the

POP 11—SO and allows hard copy generation from the 4014

disolay . A hard copy of the 4014 display screen can be

obtained by depressing the copy key located on the upper

right portion of the keyboard.

The POP itaSO with the UNIX timesharin g system is

utilized and assumes the 4014 is a conventional alph anumeric

CR1 allow i ng the user to “login ” normally. Section IV

discusses these ‘login ” procedures.

8. SYSTEM OPERATION

The 11014 is powered on by turning the off~ on switch ,

located under the keyboard about one foot from the floor, to

the on position. After turnin g the device on, wait

approximate ly 30 seconds before proceeding to allow the

device to warm up. The screen will  appear a bright green and

now must be erased by depressing the page reset key on the

uoper left portion of the keyboard. Should a residua l image

112

~~~~ ~~~~~ - - - --
~~~-~~
:.

~~~
--

•; -—~~
‘ • _ _ _ _ _ -

~~~
--,.

~-- .“~~~
w - -•n -----

~~
- • -

- - - - ~~~~~~~~ - — - ________ -—----•—

~~~ I

appear on the screen , wait aoproximately 15 seconds and

deoress the page reset key once again. Insure that the mooe

• toggle , located above - the page reset key, is in the online

position rather than local. Depress the carriage return and

wa it for the UNIX timesharin g system to request “login ”.

Follow normal POP 11—50 login procedures.

113

—•-1,

~

~~~~~~~~ — - - -. -- —--- - - - —



- - 

-.

III. DESCRIPTION OF PROGRAM FUNCTIONS

A. MAIN

• The main program requests the name of the Oats file

that the user desires to operate on during this term ina l

session. The user enters the filename , upon request in

either upper or lower case letter~ , that he either desires

to use or create. The filename is l imite a to eight

characters but the user may specify any l ength filenam e and

the program will only use the first eight, terminating all

others. For this reason the first eight characters of any

filename should be unique. If the filename is not an

existin g fil e , the program wi l l  create it for the user. If

the file does exist , the program w i l l  open that file for

read and write access to the user. A command list is

displayed next to allow the user to selec t that function he

desires ana enter the appropriate Command coae when prompted

by the program. The main program is develoced around a CASE

statement to allow the user to perform his desired

functions. Control remains in this CASE statement until the

user elects a code of “7” to terminate the session . When

the user se lec t s  code 7 the orogram d isp lays  the current

• state of the data file that the user selected during the 
•

beginning of the session on the 4011$ and uodates the file

for future use. Should the user not desire to retain the

current copy of the file, he may ex it the program by

depressing the rub—out key located on the lower right

114 

- - - -  _iI-,_ -~~
-
~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - --i 
_ — - - -v-•- -~~-_~~,•_-•••___ _•_•w~

___•_•___
~~~

_ ___ — -

_ _

[portion of the keyboard. (This method of progr am termination

is not recommended as a short—cut however.)

• T
• 8.AOO H

Th. add function allows the user to add another set
-

-

of h i l l values to the data file specified in the beginnin g

of this terminal sess ion . Addition of hill values is

accom p lished by addin g them to the end of the data and

incrementing the number of h i l l s on the file. The program

will prompt the user for each data item required for the

h il l and give the user the option of adding multi pl e h i l l s

or onl y a single hi l l . All h i l l values are floating point

numbers, however, the user neeo not specify a dec i mal ooint

if that value is a whole number since the program is capable

of interpretation in this case.

C. BUILD

The build function gives the user the cap abil ity to

initia l l y build the file spec-If-led during the beginning of

the terminel session. Care must be taken to prevent

-building a fi le that already exist since the bui lding

process wi l l over—write a ll date previously resident on that
-

-

-

file. bui lding Is accomoli shed by requesting fro m the user

the number of h i l l s he desires to load to the file. Next

the program will prompt the user as in the add function for

all neccessary h il l values. The orogram wi l l allow the user

115

ITi -
~~~~~~ ~~~~~~~ 

__________



• 
--~~—--- -__ — -~ —

to only build one file per termin al session . However,

should the user desi re to build multiol e files he may do so

by building the first one and then enter a command code of

“7” to ex i t  the proora.. Subseauent file building is

accomplished by repeating this same procedure.

D. CHANGE

The change process is actuall y a modif y orocess since

it allows the user to change or modi fy any single lviii data

i tem or all data items for a h i l l . The program prompts the

user for the h i l l  number he desires to change , allows the

user to select the data item to be changed and then requests

the new value that is to be substituted. The change function

will  allow the user to change one h - i l l  or many h i l l s  by

asking the user if he has any more changes.

E. DELETE

The delete function allows the user to delete a

complet, set of hil l  values for the h i l l  number specified

f rom the data file. Deletion is accomplished by requesting

the number of the h i l l  that the user desires to delete,

locating that set of hi l l  values and shift ing all higher

h i l l  number values down, overwritting the deleted h i l l  and

decremen ting the number of hills. It is recommended that if

multiple h i l l s  are to be deleted , the highest b i l l  number be

used first to prevent the user from losing track of the

116



current hi l l  numbers since the deletion process also

lo gi call y decrements the b i l l  number. Multiple deletes may

& be accomplished since- the program w i l l  ask the user if he

r 
desires to delete another hill.

F. PLOT

The ~Jot function uses the ‘parametric i nput data,

which is located on the file specified by the user, and

generates contour lines of the user soecified contour

interval. The program prompts the user for the minimum and -

maximum x locations, the minimum and maximum y locations,

the contour interval desired and the minimum elevation in

the area to be displayed.

G. MISCELLANEOUS

The first miscellaneous routine to be discussed is

the “writefi le ” routine. This routine restores /writes the

b i l l  data from memory to a secondary storage (disk) f-fle for

subseauent use by the user. The number of hil l s  is written

f i r st f o l l owed  by a l l  x locat ions (x c ) .  The f i l e  s t ructure

is comp l eted by writin g the entire y locations (ye), b ill

spread values irs the x direction (sx), spread values in the

y direction (ye), the rotation values respectivel y and

closing the file.

• The “reedfi l e ” routine functions like the “writefile ”

function but l oads the h i l l  values from the secondary

117



~‘ ‘ - - ~~~ 
-

storage (disk) file Into memory . The filename used is that

spec i f i e d  by the user at the beginning of the terminal

— 
- session.

The “p rint fil e ” routine disolays to the 14011$ the h i l l

data located in memory starting with b il l  number one and

- 
- continuing to the number of h i l l s  that are being used in •

t h i s  sess ion. -

The “invalidcmd” routine produces appropriate error

messages to be d isp layed on the 11014 for the user . The user

must heed the error message and take appropriate action

according ly .

The “cmd li g t ” routine displays all function codes to

the user. It is from this list that the user must select

the command code corresoonding to the function , desired and

enter it when promoted Dy the orogram . Al l  commands mu St be

followed by a carriage return .

IV . SYSTEM USE

To initiate the program execution after powering on the

4014 the followin g orocedures must be followed . The first

steo is to login to the UNIX system with a name of “parry ”

and a oassword of “parry”. (No te all e~i tries are l ower case

• letters.) The second steo is to enter “terrain ” fo llowed by

a carriage return and the orogram w i l l  begin execut ion

prompting the user as needed to step the user through the

requ i red procedures.

118

~~~~~~~~~ 


__
-~ -~~~ —

—‘U’

1-
”

• APPENDIX B

-
A MMO .CH ECK

NUMB ER BYTES OBJECT CODE : 496

PARAM ETERS :
a m d

LOCAL VARIABLES :
- a answer

m d

— GLOBAL VARIABLES :
ap.tow awl .or.msl3

— aw2.or.adm c.1
c. 2 he.draq

— wpn .type

CALLED BY :
- priori ty.arvd.round.select

t72.tacties we.miss

• COMPLEXITY : Constant storage requirement and execution
t ime.

—
-

REMARIc S : This routine returns the value of answer to the
ca l l ing routine.

119

—
~~ T LJ.

- ____- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~ ~~~~~~~~~~~~~~~~~~~~~~~~~

— ç -

~~~~~~

— -- —
-—- -- 

~~~~~~~

—- _

—- -
—

~

- --

~

•

~~~~~~

-— -- , - - - 
- -

-
-

ARTY.IMPACT

NUMBER BYTES OBJECT CODE : 1312

PARAMETERS :
id.btry id.fdc
id.fo id.miss ion

I LOCAL VARIABLES :
ans estimate. of .time
I id.btry
id.fdc id.fo
d.mi ssion - 3

I k ‘1
m rg
time time .1
time .2 t-, me.3
time.4 tin,e.5
time.6 time.7
within.tolerance i x  - -

-

~~~~~ 
yy

GLOBAL VARIABLES :
caliber debug - -

del.! del.2
error.code gsrs.code
gt .final .rg last.fo.mg
m iss.tolerance msn .name
msn.time

-
my .rad-i-o-

no.m iss ions. fi red now. f i r i ng
num.adj .rounds num .dpicm.left
rate.of.-fire rd.l.error
rd.2.error st.fi-ring
theta time .v

• v o l l ey v o l leys . t o . f i r e
which.v oIle y x .curl
x.cur4 x.future .loc
y.curt y.cur4
y1future.loc

WRITES :
id.fo i d .btry
$d.fdc msn.name
vol le ys.to.fire rsum .adj.rounds
wlthin.tolera nce time.v

_ _ - -

120

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~ ~~~ -~~~~~~~~~~~~
-
~~~
--

~~-- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~ -: ‘

ARTY .IMPACT (cont)

CALLS :
arctan.f arty .time
assessment dist
error new.location
posltion.update print

• pr-intl tracer

SCHEDULES :
busy.radio.net end.of .miss ion
guns.firing

-
open.radio .net

SCHEDULED BY :
guns.fi ring

COMPLEXITY : Execution is linear on volleys.to.fire but
constant storage .

ARTY .TIME

NUMBER Of BYTES OBJECT CODE : ‘416

PARA METERS :
a

LOCAL VARIABLES : -

a del .time

GLOBAL VARIABLES :
fa .time.deltas rrs .st ream

CALLS : -

normal .f tracer
uni f orm.f

CALLED BY :
arty. imoact
checking .gurss.avai labi l i t y
commo .attemot end.of .mfss-ion
fdc.processirsg update.cluster

COMPLEXITY : Constant execution tim e and storage.

REMARKS : Returns the value of del.time to the callin g
routine.

121

______ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ •—~- ~~
~~~~~~~~~~~~~



I

ASS ESSMENT

•NUMBER BYTES OBJECT CODE : 4528

PARAMETERS :
id.btry id.fdc
~d.fo id .miss,on

LOCAL VARIABLES :
count debug.count
difference i

id.btry id.fdc
id.fo • id.miss ion

‘Ic
f’s

plc sig.x
s-ig .y x.charsqe
x .error x .normal .error
xd i f  xne w
y.change y.errom
y.normal .error yd i f

• ynew

• GLOBAL VARIABLES :
alive.dead amm unition.t ype
amt.of.hits caliber

• debug defnum
disp l acement d.radius
f.d fired.at
fk i l l  foe
gt.f-inal .rg hit.state
kkil l largest.rsum.wpns
le thal .radius .array level- .of.oamage
m.d - m f k i l l
m k i l l  msn.name
num,dpicm. left num.guns
num,he.left num .hit
p.pur,ch rd.offset
mn.stream theta
time.v wpn.type
x.current x .future.loc
x .mpi y.current
y.future.loc y.mp l
Z .current

122

~~~~~ - ~~~


-
-
~~~~~~~~~~~~~~~~~~ - 

•

ASSESSMENT (co nt)

WRITES :
ammunition.type caliber
defnum difference

fired.at
fki l l guntube

• h it.sta t e I
Icki ll ‘s.d
mfk ill mk i ll
name ncase
num .h it s~d -

•

t i ine.v - 

.x .current
y.current z.currerit

RESERVES :
rd.offset

RELEASES :
rd.of feet

CALLS :
abs.f atrit
dis t b c
new .coordinate.system rsorma).f
parameters print
print !

CALLED BY :
arty.impact

COMPLEXITY : Execution dependent on num .guns and tank in
red.alive. Storage dependent on largest .num .wpns.

IMPROVEMENTS : Reverse subscripts on rd.offset.

123

— —•--•—-•--———.•——.•____.____.____ ~~~~~~ ______. - —-— - -~~- _ - - ~~ - - — _ - _••_
~~

_•_••__•_--__•--p-— 
~ — - - - • 

— _—-— -

~

•- - — -—-- 
_—~~~~~~~~~~ 

-‘ 
-

_ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _  -I- !~~ -~ ~



-- -
-
---•-~~~~~-~~~~~~~ - - • 

- - ~~—-~~~~~~~~~ -- ---
- “ - - - - “~~________

-I
J

NUMBER BYTES OBJECT CODE : 2256

PARAMETERS :
.fkill em k lll
kay k i l l  sh.t
tgt.t whocalled

LOCAL VAR IABLES :
e fk i l l  e mk i l l
fnow - k a y ki ll
mnow plc
sb .t tgt.t
whocal led

GLOBAL VARIABLES :
alive .dead damaqe.num
f.d m.d
efk i l l  mine.det
m k ill ph

WRITES :
efki’ll ec kill
f -.d f kill
ka yki l l m .d
m f k f l J  mk I l l

- 
plc

CALLS :
uniform. f

CALLED BY : -

assessment geom
mrl .impact pop .a.mine
red.arty.fires

SCHEDULES :
final .death

COMPLEXITY : Constant execution time and storage
requi rements.

124
I

, - -  ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- . -



‘I

ATTRITION.CHECPc

• NUMBER BYTES OBJECT CODE : £196

GLOBAL VARIABLES :
b.pct.att delta.t
n.blue.alive n .red.alive

• rc.count r.pct .att
r.num .al 1 ye

CALLS :
in t.f

SCHEDULES :
attn t-i on.check stop .simulat ion

SCHEDULED BY :
attrition.chec k main

COMPLEXITY : Constant execution time and storage
requl rements.

BASIC.LO AD •

NUMBER BYTES OBJECT CODE : 2088

• PARAMETERS : -

a 
-

LOCAL VARIABLES :
a

GLOBAL VARIABLES :
ap.tow awl.or.msl3

c.2
capds caseap
casehe cheat
he.drag hto
m l ns2

nam e
op.rng wpn .type

CALLED BY :
bi .create red.create

• COMPLEXITY : Constant storage and execution t ime.

I ,  -
~

125  

_ _ _  

__________________H



- - - • - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BL.CREATE

NUMBER BYTES OBJECT CODE : 2624

LOCAL VARIABLES : -

i

GLOBAL VARIABLES : j -

ao .tow bn
b.rvum .alive Co
cocdr color
d,fnum

-
dir.of.mvm t

guntube)ist
mv.state name
oo.rng
pi.hat pit
p ltld r pointer
pri .dIr rc.count
r.con rrrpoint 3
sec target
veh.type wpn.type
x .current y.Current
z.current zh

READS :
bn Co
cocdr dir .of.mvmt
name - p lt
p ltldr pri.dir
sec veh .type

• wpn .type x .Current

—
y.current

CRE A TES :
-

• tank

FILE S :
tank irs blue.a live tank irs comp .ursit
tank in plt.u rsi t tank in tanks

RESERVES :
l ist

RELEASES :
bl.create

CALLS :
basic.load elev
hide r

CALLED BY :
main -

-

• 1
COMPLEXITY : Storage and execut ion depend on rvum .alive.

126

-- - -
r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- -
- -

-‘---- ~~~~~~~~
- -

BMP .TACTICS

NUMBER BYTES OBJECT CODE : 2611

P A RAMETERS :
a - b

LOCAL VARIABLES :
a answer
b

GLOBAL VARIABLES :
Co -

- comp .un-i t
foe ‘ tank

CALLED BY :
target.select

COMPLEXITY : Constant storage but execution time is linearl y
dependent on the number of tanks irs comp .unit

REMARKS : This routine returns the value of answer to the
calli ng routine .

BUG. C HEC

• NUMBER BYTES OBJECT CODE : 1024

PARAMETERS : -

• a b

LOCAL VARIABLES :
a b
be

GLOB AL VARIABLES :
Co como .unit
defrsum m2
mv.state plt.unit
range tank
t .spd w pn.type

CALLS :
~‘ dr.mount

CALLED BY :
impac t

SCHEDULES :
df.change

COMPLEXITY : Constant storage but execution in linearl y
dependent on tanks irs comp .unit

127
I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
L~~ J~ 1~TT~~~

____________ -

~~~~~~~~~~~~~~~ - ~~~~~~~~~

BUSY.RADIO.NET

- NUMBER BYTES OBJECT CODE : 240 1 
-

• PARAMETERS :
id .radio j -

• LOCAL VARIABLES :
t id .radio

GLOBAL VARIABLES : -

state3

CALLS : 
- ,

tracer -

SCHEDULED BY : 
—

arty.impac t guns .firing

COMPLEXITY : Constant execution time and storage
requ i rements.

- 

128



- - - 
- — - - T 1 -  -

CA RD I O

• NUMBER BYTES OBJECT CODE : 1280 f -

• PARAMETERS : - 

-

a b
pct.vis r
x

LOCAL VARIABLES :
a angle
area at
b • b t - -

dd denom
det,time l ambda
nit p.sub.k
pct.v-l s per.full .expo
r mm
t.c . fac to r  tgt .e lement

GLOBAL VARIABLES :
b.area blue
cbar color
d ir .of .mvmt ~ i.c
pi .hat pri .dir
r.area red

• sod x.current
y.current il

CALLS :
abs.f a rc tan .f
log.e.f s,rs .f

CALLED BY : -

steo.time - - _

COMPLEXITY : Constant execution time and storage
requ i rements.

IMPROVEMENTS : All local variables need to be defined. —

REMARKS : Returns the value of det .time to the calling
routine.

~

129

_________

-- -—- —‘ - •
~~~~~ -~——.-- 

__ _J _ _ •~-~
_t~

-• ___
~~~ -T~~~~ - - - - ~~~~~~~ - - - - - --~~~~~~~~~~~~~~ ~~~~-



F -
~- ~~- -~~~~~~ - -

~~~~~~~~~~~~~~~~ ~~~~~~~ ,~~I ” 
JL~~~~~~~~~---~~______

I

CHARGE
-

. NUMBER BYTES OBJECT CODE : 2152

PARAMET ERS :
C

• LOCAL VARIABLES : -J
avgxc ay gxS
avgxb avgxl
avgyc avgy5
•vgyb avgy7
C •CC
k I’
ii xc
*5 *6
*7 ye
y5 y6
y7

GLOBAL VARIABLES :
b’s red .aiive
tank xc
x.Current ye
y .current

• CALL S :
get.uo

SCHED ULES :
charge

SCHEDULED BY :
charge leave .check

COMPLEXITY : Execu tion time is linear on number tanks in
red.alsve . Storage requirements are constant.

130

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~ I- -~~~~-~~
-
~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~



‘I  
- -  -- 

• ~~~~~ —

CHECKING.GUNS.AVA ILABILITY

• NUMBER BYTES OBJECT CODE : 1824

• PARAMETERS :
-

- id.btry id.fdc
it  i d.fo id.n,Ission

I LOCAL VARIABLES :
id .btmy id.fdc

¶ id.fo id .mission
t ime 

- 
-

GLOBAL VARIABLES : -
-

b t ry debug
fire .dir .center l abel
msn.name msn.tim e
num.adj.rounds rsum .missions

I queue.size queue.time
state statel

:-
~~ 

st.firing time.v

WRIT ES :
- - id.btry id.fdc

- id .fo msn.name
state tlme.v

FILES :
id.mis sion in howitzer.queue

- CALLS :
arty .time tracer

SCHEDULES : -

guns.firing

• SCHEDULED BY :
fdc .processing

COMPLEXITY : Constant execution time and storage
requ i rements.

131 

- ~~~~~ :~~~:~ :-:~
L—--
~-- -~ ~ - - - - - 

- ~- •



L~~~~~~_:~~ 
• - 

—
. •-•------

~~~~~
.

--F

; I -

CHG.SEC .SEARCII

•NUMBER BYTES OBJECT CODE : 1304 4

• PARAMETERS :
a

• LOCAL VARIABLES :
a xyz

F
GLOBAL VARIABLES :

blue -color
Css dir.of.mvmt
mv.state pri.dir
pi.c

CALLS :
set.sector uniform. -f

CALLED BY :
step . time

• COMPLEXITY : Constant execution time and storage
requ i rements.

IMPROVEMENTS : Needs to be rewritten to save 44 lines of
source code.

132

~~~~~~ ~~~~~~~~~~~~~



___________________________________________________________ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

COMMO .ATTEMPT 
-

NUMBER BYTES OBJECT CODE : 1096

• PARAMETERS : =
Id.-fo id .mission
id.radio I

LOCAL VARIABLES :
id.fo id .m ission --

id.radio time - -

GLOBAL VA~ IAB LES : -

error.code $‘dle -:

state3 t-ime.v
wait.time -

-

FILES : -

id.mission irs msn.queue

CALLS :
arty.t-ime tracer

SCHEDULES : —

commo.at te mpt fdc.o rocessirs g -

open.radio.net

SCHEDULED BY : 
-

commo.attempt -

COMPLEXITY : Constant execution time and storage 
-

requi rements.

P 
-

• L i
133

L___________ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

Ji



-
—-‘- • 

- ~~~~~~~~~~~

COMMO .PASS .TGT

• NUMBER BYTES OBJECT CODE : 488

- PARAMETERS :
a

• LOC AL VAR IABLES :
a aim

t bairn lose

GLOBAL VARIAB LES : -
K bwd.look &itical .value

foe fwd. look
op .mnq pct .vis
p lt

• CALLS :
dist b c
sight

CALLED BY :
t72.tactics

•1 COMPLEXITY : Constant execution time and storage
• - requirements.

REM ARKS : This routine returns the value of aim to the
callin g routine.

- 

131$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - --— - ~~~~~~~~~~~~~~~~



- - 
-

~~~~~~~~~~~~ 

- - -
~~~~J~~~ 

• 
~~

— -

~~~~

- -
~~~~

-

COMPUTE -

- NUMBER BYTES OBJECT CODE : 3528

— - PARAMETERS : -

f .pcvis pc .vls - ;
sh.t . tgt.t

LOCAL VARIABLES :
addef l adde l
def lblas def is ig  : —

e lbies - el s-I g
f.pcvis - I.

Ilo j
Ii
pc.vis r
sh.t tgt . t
vel

GLOBAL VARIABLES :
accPst accke
accmb accmsl
addon bm.mov
ht.mov proj o
sod wpn .type
x .current y .current

- WRITES :
i Ic
1

CALLS :
dis t geom
m in .f subcal
trunc.f

CALLED BY :
i mpac t

COMPLEXITY : Constant execution time and storage
requirements.

135

____________________________ ___________________ ______________________

_ _ _ _ _ _  

-

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~



CONVERT.BACK

NUMBER BYTES OBJECT CODE : 712

PARAMETERS :
a

LOCAL VARIABLES :
a p i .in t

GLOBAL VARIABLES :
c.bar cbar
defnum d.Ir.of.mvmt
d.num m .det
m icro mine.det
p.hat pl.c
plow.corsd
spd tim e.v
t.spd v .ms
x.ct x.current
y.ct y.current
Z.Ct z.current

• zh

CALLS :
pop.a.m ine

CALLED BY :
icc

COMPLEXITY : Constant execution time and storage
requ i rements.

-
~ 

___  _____  

136 

_____
_______ — — - - - —---——— 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -- --------— -—- — -‘- - - - -

- 
-
~ 

- - -  —

__________• - —-—~ ~ ~~~~~~~~~~~~~ ‘~ — ~~~~- —~~ ~~~



-~~~~ 
__
~~~~ ~~~~~~~~~~~~~~~ 

• T T T ~

DECREMENT.AMMO
- NUMBER BYTES OBJECT CODE : 768

PARAMETERS :
-

a - m d
• LOCA L VARIABLES :

a m d

GLOBAL VARIABLES :
ap.tow ewl.or.msl3
aw2.or.edm
c.2 cr-f
he.drag trf
WOn. t

CALLED BY :
fire

COMPLEXITY : Constant storage and execution time.

137

~~~~ ~~~~~~~~~~~~~~~ — —-
~

—
~~--~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ________



________________________________________________  
- •  - - - . -- -- -—-~~~~~~— -- - - -

I

II

DEFEND
- NUMBER BYTES OBJECT CODE : 688

PARAMETER S :
a

LOCAL VARIABLES :
a

GLOBAL VARIABLES :
— alive.dead ap . tow

defnum - 

,fa
mv .state name
pl.c ori.dir
spd target
time .v t.spd
wprs.type

CALLS :
dismount.dragors hider
set.sector

CALLED BY :
b c

CO M P L E X IIY : Constant storage and execution time.

I I

138

~~~~~~~~~~~~~~~~~


-
•

_
~

___ • _ i

DETECT

NUMBER BYTES OBJECT CODE : 792 I 4
• PARAMETERS :

a b

• LOCAL VARIABLES :
a b
whocalled

GLOBAL VARIABLES :
al-Ive .dead - bwd .look
crIti cal .value ‘defnum
fa - f ip
fk ill fwd. look
lIn ..of.s lght .exi sts p ct.vi s

CALLS :
list .update b c
pmoxi nslty .detect sight
t racer

• SCHEDULED BY :
- •

impac t step .time

COMPLEXITY : Constant storage and execution time.

IMPROVEMENTS : Delete the variable whoca lled — declared but
unused.

139

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



. - 
- - - - 

- - 

- 
DF.CHG

NUMBER BYTES OBJECT CODE : 496

• PARAMETERS :
a

LOCAL VARIABLES :
a c

GLOBAL VARIABLES :
alive.dead color
defnum -

CALLS :
hi der

SCHEDULED BY :
bug.check dr .mount
leave.chec k b c

COMPL EXITY : Constant storage and execution t ime.

DISMOUNT .DRAGON

NUMBER BYTES OBJECT CODE : 744

PARAMETERS : -

a

LOCAL VARIABLES :
a

GLOBAL VARIABLES :
defrwm - he.dmagon
m2 nv .state
name oi.c
p lt plt .uni t
pri .dir tank
target wpn.type
X .Currers t y.current

CALLS :
hider b c
set , sector

C A LLED BY :
defend

COMPLEXITY : Storage reauirements are constant but execution
t ime is linearl y dependent on the number of tanks
in pit .unit .

140



- - *I~~_•~~~ 
- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~I~ ~~

r

DI ST •

• NUMBER BYTES OBJECT CODE : 144

PARAMETERS :
xl x2
v i y2

LOCAL VARIABLES :
distance xl
*2 yl
y2

-

CALLS :
sqrt .f

CALLED BY :
arty .impact assessment
commo.attempt compute
error fdc.orocessing
fire guns.f iring
Im pact new.location

COMPLEXITY : Constant storage and execution time.

REMARKS : Returns the value of distance to the callin g
rou tine.

141

-
~~

-
~
- ---—--------------- -—

~~~~~~~~~~~~~~~~~~~~~~
—---——---- ----------- ----- - ---. - 

- - - -r i——- ~~~--- 
-~~~

— ~~~~~~~~~~~~~~~~~~~~



- ~~~-~ - - 
- -~~ 

-

DOING.CLUSTERS

NUMB E R BY I ES OBJECT CODE : 5048

PARAM ETERS :
- - i d.fo nam. ,priority

pri.value

LOCAL V AR I ABLES :
a angle
b dir
I Id.fo
j - 

,k
I in
n nanse.priority
prt.va lue S
tank to ta l  .c lus ters
x y

GLOBAL VARIABLES :
alive.dead b.orq.alive
box .toierance clusters
c.number .array debug
dir.of.mvmt fo.max .range
fo.min.range list
name old.c luster.number

-
- - - sod state 4
- 

- - target x .current
y.current

WRITES :
clusters
i d. fp

CALLS :
abs.f arctan .f
cos.f dim .f
1cc sin.f

CALLED BY :
- update.c luster

COMP LEXITY : Storag, is constant but execution is dependent
on the product of the size of the target list and
the total number of clusters.

REMARKS : Returns the values of name.oriority and pri .value
to the ca ll in g routine .

142

______ ______ _____________________________ 

Ii1LT1
- 
~~~--- - - - 

~~~~~~~~~~~~~~~~~~~~~~~~~ -w ~~~~~~~~~~~~~~~ ~~~~i;i•~1~ — ~~~~~~~~~ 
—

~~~~~~~~~

~ ~~~~~~~~~~~~ t~- ~~~~~

-- ___________ ~~~~~~~~~
-
~~ -

DR.MOUNT •

NUMBER BYTES OBJECT CODE : 1192

• PARAMET ERS :
a

• LOCAL VARIABLES ~a j .J i
GLOBAL VARIA BLES :

•o.tow defnuns
tip he.d rag

— .2 ~v.state
L

name pl t
plt.unlt tank
tar get time.v

• t.sod won.type
x ,CUrrSnt y.current

CALLED BY :
bug.check leave.check

SCHEDULES :
df.chq

COMPLEXITY : Execution time increases linear with number
tanks in plt.unit with won.tyoe ~ 6 and
he.drag(tank) gt 0 and f i r C t a n k) ne 1. Storage is
constant.

143

_ _ _ _ _ _ _ _ _ _ _ _ _

_ _~~~ ~~~--~~~~~~ ~J

1— --

~~

£ND.OF.M IS SI ON

NUMBER BYTES OBJECT CODE : 2704

PARAMETERS : -

id.btry i d.fdc
i d.fo id.missson

LOCAL VARIABLES :
estimate .of.tlme id.btry
Id.fdc id.fo

— id.isiss$on tfns e
time -

GLOBAL VARIABLES :
amt ,active .msns emt.msns.fired
btry debug
f i s t
holding .msns howitzer.queue
b abe) mission
ms n name -

nsn .time rny.radio
new.loca tior s num .adj.rounds
queue.size queue.time
statel s t .f i ring
time.v whicPs .volle y

— WRITES :
- - fist id.btry

id.fdc id.fo

4
msn.name time .v

I FILES :
id.ml ssion irs msn.queue

REMOVES :
i d .mission from howitzer.queue and holding .msns

CALLS :
arty.t ime tracer

SCHED ULES :
fo.not.busy guns ,firirsq
open.radio.net

SCHEDULED BY :
arty .imoact error

COMPLEXITY : Constant execution and storage requ i rements.

. 144

-

_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-
~~

---—
~~~

--- -—,
~
- - -. - - .-

~
-
~~~
--

~~~~
- -- ---

~~~~~~
-

-------

ERROR

- 
NUMBER BYTES OBJECT CODE : 941$

PARAMETERS :
ans id.b try
id.fdc id .fo
id.mission

LOCAL VARIABLES :
ans id.btry
i d.fdc id.fo
id .mission - si-g .x
sig.y - ,-tank
xd i f x .impact,00snt
x-.norrnal.error ydif
y .frnpact.point •y .normal .error

GLOBAL VARIABLES :
ammun itIon .type cal ib er
error.code gt.final .boc

F mn.stream theta
x .future.loc y .future .loc

CALLS :
d is t  new. coo rd i rsa te .syste m
normal.f parameters
positlon.updet* tracer

C ALLED BY : -

arty . Inspect

SCHEDULES :
end.of.in iss ion

COMPLEXITY : Constant execution and storage requ i rements.

145

~~~~~~~~~ 

~~~~• __•_  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

-

W ~hL - _______________ - — -
--

--—-- -- - - --- - -

FA .1 .MA IN

NUMBER BYTES OBJECT CODE : 4936

LOCAL VARIABLES :
-

-I j
k 1
in

GLOBAL VARIABLES :
amt.ammo.tyoes amt .blue.batter yS
amt.calibers amt.fa.time .deltas
amt .ffe .volleys amt.mri
amt .red.batterys ~arty .pk .tableb.num.a l ive b.org .al ive
box .toberance colon
cu toff .time debug
displacement d.redius
fo.max.range fo.rnin.mange
fo.velsicle fwd.obs.msn.tolerance
largest .num.wons
max.number.of.missions.per.fo
max.range miss .tolerance

• n.battery rs.fdc
n.fo no.range.bands
n.radio num ,doicm .left
num .Pse.left nuvn .guns
p .punch ranqe.bands
rate.of.- f i re

-
red,1.constant

r .num, allve mn .stream
r.org.alive salvos
si gma.dpicm tgt.acq.error
travel .tlme.ar ray tr .time
x,~ u~~1 x .cur2
y.curl y.cur2

146

~~~~~~~~~~~ t~~~
- - - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~-



- --- -~~~~~~~ - - - —-- ~~~-~~- --— — - - 
•

FA .1.MA IN (cont)

READ S : -

amt.ammo.types amt.b lue.batterys
• amt.caiibers amt.fa.t -sme.deltas

amt.ffe.volleys amt .nsrl
• amt,red.batterys arty .pk.table

box.toler.rsce colon
cutoff .time debug
displacement d.radius
fo.max .range fo.mirs .range
to .vehic le twd ,obs,msn.to lerance
largest.num.wons -

nax .number .of.intssions.oer. fp
max .range nsiss.tolerance
n .battery n.fdc
n.fo no.range.bands
n.redio num.dp icm .left
num .he.Ief t num .gurss
p.punch range.bands
rate.of.f-l re rrs.stream
sigma.dp -icrn tgt .acq.error
travel’ .time.array tr.time

• x .cunl y.curl

CREATES :
• battery fdc

fo  ra d io

RESE RVES :
array .detect ar ty .pk .table
clusters c.number.array

— diso lacement
fa.ttne.deltas fo.vebcle
letha l .radius ranqe~bandsred .planned.ffres sigm..dpicm
t-l me.)ast .c)uster.uodate tgt.acg.error
travel .tiine.array

RELEASES :
prep 1 armed

CALLS :
preplanned

• CALLED BY :
main

COMPLEXITY : Linear on n.fdc , n.bettery, amt.arnmo.t ypes *

amt .calibers , amt.blue.ba tterys * num.quns,
amt.calibers * no.range.barsds

IMPROVEMENTS : Reads rsum .dpicm .left then sets to 0.

147



- —

• FA .2.MA!N

• NUMBER BYTES OBJECT CODE : 3472

LOCAL VARIABLES :
I I
Ic 1

GLOBAL VARIABLES :
amt.ansmo.types amt.blue.batter ys
anst~ ca1i bers emt .fa .t-sme.deltas
amt.ffe .volleys a.nt.mrI
amt.red.batterys - . arty.pk .table
b.org.alive box.tolerar sce
cutoff.tinse debug
d.radlus fa
fo.max.range fo.min .range
fo.veh-,cle fwd.obs.msn.tolerance
largest.num.wons bet h ab .radius
max .rsumber.of.mlssions.per.fo
miss.tolerance n.bettery
n.fdc rs.fo
no.range.bands n .radio
n .tanks oi.c
pointing .to p .punch

— rn.stream r.org .alive
rrrpo int type

WRITES : -

amt.ammo.tyoes anst.blue.batterys
amt-,caiiber s amt .fa.tmme.deltas
am t.ffe.vo Ileys amt .rnrl
amt.red.batterys b.org.abive
box .tolerance cutoff .time
debug d .radius
fo.mex.range fo.nsin.range
fwd.obs,msn.toberance largest .num ..wpns
max.number .of.missions.per.fo
miss .tolerance ru .battery
n,fdc rs.fo
no.range.bands n.rad-,o
n.tanks o.punch
r.org .alive rrs.streem

t u B

hIL I&l1I1..~ ~~~~~~ --•.‘-—•-
~~ —~~~ -- —~~~--~~ 

•— •- - -‘- :~~. ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~. ~~~~~~~~~~~



____ 
-- -----~ -~~ 

- - --
~~~~~~~~________ ~~~~~~~ .—.-,—--—-- -~ .~~~-~~..

1- FA .2,MA IN (cont

C A L LS :
-

I

sgrt.f

CALLED BY :
main

SCHEDULES :
red.arty.fires update.cluster

COMPLEXITY : Linear on n.fo, amt .ca l ibems * amt.ammo.tyoes *
1 9, amt .red.batterys — a~mt.m r1

IMPROVEMENTS : Combine major l oops,

FA .TGT.ERROR

NUMBER BYTES OBJECT CODE : 416

PARAMET ERS :
a boc.e mror

LOCAL VARIABLES :
I a loc .error

t GLOBAL VARIABLES :
- rn.st r ’eam t g t ,ac q .error

- CALL S :
tracer un i form.f

CALLED BY :
-

new,locatjon

COMPLEXITY : Cønstant execution and storage requirements.
- REMARKS : This routine returns the value of loc.error to the •

calling routine.

149

L

‘
—--
_ _

--

~~

-- .-- —. - - - - - - - - - - - - - - - 1
~~~~



— ------- 
— 

---•~~
-
—- - - ~~~~~~~~~~~~~~~ _ _ _- _ _ _ _

FDC.PROC ESSING.

NUMBER BYTES OBJECT CODE : 3424

• PARAMETERS :
id.fo i d .rnissiors

• LOCAL VAR IABLES :
d i f f  i
Id.btry id.fo
id.mlssion J
¼
in 

- rq
t ime type.ammo
vo l leys  \ X X
y y

GLOBAL VARIABLES :
ammun ition.type amt ..active,msns
amt .ffe.volleys busy
debug dpicm
error .code fwd.obs.msn.tolerance
gt.final.rg gt .initial .rg
mission ny .radio
msn .name
msn.tim e n.fdc

• n.holding .msns num.mis sions
process queue .size
start  s ta te l
status t heta

- •  tiine.v
volleys .to.fire x,curl
x .cur L$ x . fu ture . loc
y.cu~ 1 y.cur4
y.future .boc - 

—

WRITES :
I id.fo
nsn.name num.missions
queue.size statel
time .v

FILES :
i d .mission irs holding .msns and nsn.queue

CALLS :
arc tan.f arty.t -l nse
dist tracer

L iso
- - - - • - - - ~~~~_ _ _ _ _ _ _  

_ _ _  _ _ _ _ _



— 
— 

~~~~ - :—

FDC.PROCESSING (cont)

SCHEDULES :
-

chec king .guns. availib illty
fo.rsot.busy

SCHEDULED BY :
- - Commo .attemot

COMPLEXITY : Execution time is linear with n.fdc and storage
is constant.

IMPROVEMENTS : Combine all fon ” loops into one.
/

151

__ _________________________
I

_____________ : IIrlaIL ~~,~~ ~~~~~~~~~

- _ _ _ _ _ _ _ _ _ _ _ _ _ _

—- - - ---~ • - - ~~—
- ---

-
- ----- -•--------—S-- --

~~~~~~~~~~~~~~~~~~~ 
— --—- 

•••-~~~- 
- • -

FINAL.DEATH

NUMBER BYTES OBJECT CODE : 1424

• PARAMETERS :
a

LOCAL VARIABLES :
a

GLOBAL VARIABLES :
alive.dead defrium
f.d - 

- fired .at
f k i l l  ‘guntube
h it.state k.hit
k k i l l  m.d
(usfk ill m k i l l
name ncase

— - num .hit sod
t ime.v w pn.type
x.current y.cumrent
z.cunrent

WRIT ES :
defnum f.d
f i red.at fk il b

• gurs t ube h i t . s t a t e
k.h lt k k i l b

- m.d m f k i l l
— - m I c i l l  name

ncase num.hit
sod tlvne.v
wpn.type x .cu mrent
y.Current z.cumrent

CALLS :
t a l l y . h i t . s t a t e

SCHEDULED BY :
atr i t

COMPLEXITY : Constant execution time and storage
requ i rements.

152

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~ ~


— - -- — - - -

FIRE

NUMBER BYTES OBJECT CODE : 2232

• P A R A M E T E R S :
a id

• LOCAL VARIABLES :
a id
lose r
stop.count

GLOBAL VARIABLES : -

al lve.dead ‘-blue
bwd .book check.time
color c r it i c al . va lue
defnum foe
tip fk i l l
twd .look mv.state
nsz l .ve l oo.rng
pct .v is pointer
projo range

• sched second.shot
tgt.scl time.v
wpn.type x.currers t
y.current

CALLS :
decrement.a mmo dist
hider 1cc
set .nsuzz le.ve l sight

- stop .to.flre tracer

F SCHEDULES : -

impact ta rget .select

SCHEDULED BY :
t72.tactscs tarqet.selec t
we..ni ss

COM P LEXITY : Constant execution time and storage
requirements.

153

- ~~~T i ~—-~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



-- -- ---- - -- --

FIRST

NUMBER BYTES OBJECT CODE : 288

PARAMETERS :
a

LOCAL V AR I ABLES :
a

GLOBAL VARIABLES :
mu - range
wpn .type

— CALLS :
t runc.f

CALLED B Y :
lay.load

COMPLEXITY : Constant execut i on time and storage
1 requ i rements.

FO , NOT • BUSY

NUMBER BYTES OBJECT CODE : 408

PARAMETERS : -

id.fo

LOCAL VARIABLES :
id.fo

GLOBAL VARIABLES :
amt .act ive. msns idle
status

SCHEDULES :
update.cl uster

SCHEDULED BY :
end.of.miss$on fdc.processing

COMPLEXITY : Constant execution time and storage
• requ i rements.

154

~~~~~ -
~~~~~~~~

--

~~~~
-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~


—

- - -— - ~~~~~~~~~~~~~ _
~~~~~~~ 

- ----

GEOM

- NUMBER BYTES OBJECT CODE : 8080

PARAMETERS :
addef 1 addeb
def Ibias def ls ig
elbias elsi g
f.pcvis pc.vis
r sh.t
tgt.t

LOCAL VARIABLES : -

addefi - adde)
aimdis defdis
defbbias deflm lss
deflsi-g dlswk
e fki ll efpb
e blas eldi s
elmis elm iss
et s ig  emkil l
empl f . pcv- l s

• t Ic gamma
lo

‘I I Jo
¼ Ic a y k l ll

• kayp i kk
length

m mIc -
m o  ma
n pc.v is
r ma
sh.t s i z e

• tqt.~t turret
vel whoca lled
wid th  x ,t
y.t

GLOBAL VARIABLES :
al ive.dead damage.num
dir .of.mvmt hnorm
Jnorm Icicill
1.11 lel2
1e31 1.61
bell 1.72
1.81 le83
norseed ph
pro o spd
tardi ns veh .type
wpn.type x .current
y .current

155

‘ -
~~~~~~~ 

_
‘

_
~ - . ~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .

.
~~ - .~~ •

-- - ~~~- - - - -
~~~~~~~~~~~~~~~~~~~~~ £~~~~~~~~~~~~~~~~~~~~~ -

~T : T :  ~



— ___

GEOM (Con t)

CALLS :
• abs.f arctan.f

atrit cos.f
loadn sin.f
t runc.f

CALLED BY : -
.

Compute

COMPLEXITY : Constant execution time and storage
requirements. -

GET.UP

NUMBER BYT ES OBJECT CODE : 576

PARAMETERS :
a b

LOCAL VARIABLES :
• a b

GLOBAL VA R IA8LES :
• ao.tow bri

defnum mv .state
name red .alive
tank target
wpn.type-

CALLS :
b c .

CALLED BY :
charge

COMPLEXITY : Constant execution t ime and storage
requ r•men ts.

156

- 

~~~~~~
;- -

-

- T .~~ ~~~~~~~~~~~~~~~~ ~~ M
__________ - _~~~~~\-~~~__ — —~ —‘-—-- -- — -•- ----~~ ‘-

-

GUNS.FIRING -

NUMBER BYTES OBJECT CODE : 1768

PARAMET E RS : -.
-

id.btry id.fdc
id.fo id . missson

LOCAL VARIABLES :
id.bt ry id.fdc
id.fo id.ns iss ion
rg tot
type.ammo ,won.tvoe

GLOBAL VARIABLES :
adj .round ammun it ion . tyoe
calibe r debug
gt.final .rg msn.name
my .radio rsow.ff ring
t-i me.v travel .time.array
w it s cli • vol 1 ey
x,curl x.future.boc

• y.curl y.future.loc

WRITES : -

• id.btry id. fdc
~d.fo msn.name
t i iae.v w Pm ic h.v o l ley

CALLS :
dist tracer

SCHEDULES :
—

arty .impac t busy .radio.rmet
open.radio .net -

SCHEDULED BY :
arty .impact
cPseck Ir,g.gurss.avai lab il lty
end.of .nrissiors

COMPLEXITY : Constant execution ’ time and storage
requirements. -

157

r~~ ~~~~~~~
- -• - - ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

-

-~~

- - ~~~~L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

HIDE -

NUMBER BYTES OBJECT CODE : 1536

PARAMETERS : -

• - whocalled

LOCAL VARIABLES :
a hold
whocalled

GLOBAL VARIAB LES :r alive.dead - qefnum
mv.state

CALLS :
hi der r e loa d

SCHEDULES :
hide-

SCHEDULED BY :
h i de re loa d
we.hi -t we .miss

COMPLEXITY : Constant storage and execution time.

• H I D E R

NUMBER BYT ES OBJECT CODE : 320

PARAMETERS :
a -

LOCAL VARIABLES :
a adef
aname wtype

GLOBAL VARIABLES :
de-fnunt mi cro

— name wpn.type

CALLS :
mccv

CALLED BY :
bl.create defend
df.chg dismount.dragon
f ire hide
red.create- target.selec t
we .h$t we.mn is s

COMPLEXITY : Constant storage and execution time.

158

~~~~~~~~~~~~~~~~~~ :
- - 

~~~~~~~~~~~~~~~~~


-

..
- — - -

~~~

-
•
-

~~

--

~

--

~~~~

--- - _
- IIIIi ~ T

~

--

~

-1

IFV.TACTICS

-
N U M B E R B Y T E S O B J E C T C O D E : 352

PARAMETERS :
a b

LOC AL V A RIABLE S :
a answer
b z

GLOBAL VARIAB LES : -

foe pl t

p lt .uni t tank

CALLS :
uniform. f

CALLED BY :
target .select

COMPLEXITY : Execution is linear on tank irs olt .un it and
storage is constant.

159

~~~~

-

-~~~~~~~~~~~~~

--

-• - --
~~ 

~~~~~~~~~
_ - -

~~~~~~~~~~~~~~~~~ _ -
~~~~~~~~~~~ ---~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ J


—— — — -— — - -
— — —-

-
~~~~~~~~~

•- -- . -•-—- 
.— 

— -- --—-

IMPACT -

-NUMBER BYTES OBJECT CODE : 4488

PARAMETERS :
a id
y

LOCAL VARIABLES :
a - answer
dt id
r stoocount
whoca lled -

y

GLOBAL VARIABLES :
alive.dead bwd .book
check.time co
critica l .vabue riamage.rium
dam ,array defrsum
fa f.d
f i red,at t ip
f k i l l  foe
fwd.look g.a,nm 

- 
-

guntube hit .state
k,hit k i l l e r
Ic k ill m.d
m f k i l l  m k l u l
mmm - nv.state
name ricase
num .hit ocb.vis
pct.vis pointer
proj p range
sod time.v
tow.kount t t t
wpn .type x.current
y,current z.curnent

WRITES :
defnumw f.d
fired.at fkill
g.ansm guntube
hit.state k .hit
k k I u l  m.d

• ntfk ill m k i l b
name ncase
num ,hit pcb.vis
proj o range

• sp d t ime.v
ttt wpn.type
x .current y .current
z .Curren t

100

~~~~~~~~~


-

________ ~ i -i;;~~~~~
- — - — — — —-

~
- - - --—— -

~~~

IMPACT (cont) 
-

CALLS :

f bug.check compute
dist bist.update
b c  sector.check
sight stop .to.fire
t a l )y .h it .s t a re tracer
we.hlt we .miss

SCHEDULES : -
‘

detect mrl.impact
rsew.-fo -

‘

SCHEDULED BY :
fire

COMPLEXITY : Constant execution time and storage
requ i rements.

-

I

161 

~~~~-~~—~~~~~~~~~~ — ~~~~~~~~~~~~~~~~ -~ -,~~ -~~~~~ — 
-

.~~~~1 — ~~~~~~~ ~~~~~~~~~~~~~~~~~~ !~ia~i~ ~~-±-~ -~~~~~~ -~~~ ‘v’— —- _ _
~
_ -‘ ~~~~~~~~~~~~~~~~~~~~~ ~

— - - -------- - —~~~~~~~~~~~~~~~~
-- i~~

-
~~

- -
- -

ITV.TACTICS

•
N U M B E R B Y T E S O B J E C T C O D E : 352

P A R A M E T E R S :
a b

LOCAL VARIABL ES :
a answer
b z

GLOBAL VARIABLES :
foe - p lt
plt .un it tank

— CALLS :
uniform.f

COMPLEXITY : Execution time linear on tanks in olt.un it and
storage is constant.

CALLED BY :
ta rget.select

REMARKS : Returns the value of answer to the calling
routine.

L A Y .LOAD

NUMBER BYTES OBJECT CODE : 2136

PARAMETERS :
a x

LOCAL VAR IABLE~ :a t ime
x

GLOBAL VARIABLES :
projo wpn .type

CALLS :
first • max.f
normal .f

CALLED BY :
t72.t ac t-scs target.se lect
we.miss

• COMPLEXITY : Constant execution time and storage
requirements.

REMARKS : Returns the value of time to the callin g routine.

162

- ~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

--- --
;~~~~

- ;

-
- --— ~~~~~~~~~~~~~~~~~~~ -~~-

F - ---— - - — - - -
~~~

-
~ ----——.--——*-------~• -

- 
- 

- --— 4

- LEAVE .CHECK -
NUMBER BYTE S OBJECT CODE : 9768

PARAMETERS : 
- -

a

LOCAL VARIABLE S :
a b
bb bc - 

-

cb cc
i i  1k

ins

GLOBAL V A R I A B L E S  :
ao.tow blue
bn Co
color Comp .uni t
defnum fa
hasty  m2
nv.state name
pl t p It ,unit
red red .aIive
tank target
t.dead time.v
t.spd upoer .bowem
won .type

CALLS : •

dr.mount b c
trursc.f

) CALLED BY :
t a ll  ~ .hIt .state

SCHEDULES :
charge df .chg

COMPLEXITY : Execution time depends on tanks in C o m Q . u n it  *

tanks in plt.uni-t and storage is constant,

163



~L - - - - -  _ _ _

LIST.UPDATE -

NUMBER BYTES OBJECT CODE : 1840

PARAMETERS :
a b
lose who calle d

LOCAL VARIABLES :
a b
count flag
I bose
size w,hocalled

GLOBAL VARIABLES : -

a l ive.dead fa
l ist temp .tgt

RESERVES :
list

RELE ASES :
l i s t

CALLS :
• dim.f min.f

urs a form.f

CALLED BY :
detec t impact
proximity,detec t target .sel ect

SCHEDULES :
target .seb ect

COMPLEXITY : Execution time and storage are l i near on
elements in list.

164



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - -~~~~ - --- -

~~~

--_

LOC •

NUMBER BYTES OBJECT CODE : 1096

PARAMETERS :
tank

LOCAL VA RIABLES :
tank

GLOBAL VAR IAB LES :
alive.dead blue
Co - color
defnum l i s t
m kl l l m .red.alive
mv.state name
pi t red
spd target
wpn.type

REMOVES :
tank from red.abive, Comp.unit and p lt .unit

RELEASES :
l ist

CALLS :
convert ,back defend
param.set

CALLED BY :
assessment commo.pass .tgt
detect dismount.draqon
doi ng.clusters fire
get.uo impact
leave.chec k loc.update
mrl.i mpact oosition.update
red.arty.fi rca stop .simulat ion
t72 . tactics ta rget .select

SCHEDULES :
df.chg

COMPLEXITY : Constant execution time and storage
requ i rements.

165

_______________ _______________ ________ __________________________________________ I



—-- -- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _

LOC.UPDATE -

- NUMBER BYTES OBJECT CODE : 384

LOCAL VARIABLES :
tank

GLOBAL VARIABLES :
alive.dead delta.t

CALLS : 
-

icc - 
-

SCHEDULES : 
-

loc.uodate

SCHEDULED BY :
loc.uodate red.create

COMPLEXITY : Constant execution time and storage
requirements.

166

~c~—-----—-- 
~~~~~~~~~~~ - - - -  - 

—
~~~~~

-— — --—-•-- -
~
— - -

~~~
:--

~~‘
-.-——- -‘- - - -— ------

~
-

~~
r~~~~~~~- —~~~~-- -

- -

— * ~~~~~~~~~~
—----- ~~~~~~~~~~~~~~~~~~~ ~ ,_ — -~.~~~~~ d -~~~ ~~~~~~~~~~~~ — -‘- —

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-NUMBER BYTES OBJECT CODE : 5928

LOCAL VARIABLES :
cnum i
j  pnum

GLOBAL VAR IABLES :
area b .area
bc.count b .num .alive
b.pct.att bttlm e
case —c,bar
cdt I me c~mpany .commanderconstant c r it ic a l .v a lu e

• d,num dam.array
def,time deIta.t
dsl ds2
guntube hasty
f .dead it.dead
jnorm bin
lines.v m .det

• - mmiii mu
ncase n.company.commander
nnn norseed
n .pl atoon • l eader oca .unc
pca.v-l s pcb,unc
pcb.v-i s p .hat
platoon.leader - 

p 1 .c

p.v
r.area rc.count
r.num .alive r.oct.att
seed.v s l .t ime
s2.dme steps
target t.dead
tema.tgt tgtscl
ttt uoper.lower
v.ms w.k.c
x.ct x.stoo
y.ct y.stop
z.ct zh

READS :
b .num .alive b .oct.att
cnum deita.t
dsl ds2
guntube mu
ncase onum
r .num.alive r.oct.att
seed.v upoer.bower

• x .stop y.stop

167 

-, _ _ _ _ _ _ _ _ _ _ _ _ _

- ••~~~~~~~~~~~~~~~•~~• - ~~~~~_.. ~~~~~~~~~ - ~~~~~~~ ___________________ . ~~~~~~~~ ~~ ,~~~~• 
- •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - ..~~~~~.



MAiN (cont) 
-

WRITES :
b .pct.att guntube
norseed r.pc t ,att
uoper.bowei’ x .stop
y.stoa

CREATES :
every platoon .leader every company.commander

RESERVES :
bbbpoin t - c.bar
dam .array • ‘d.num
dsl ds2
1.dead it.dead
m.det mu
pca.unc pca.v-i s
pcb.unc pcb.vss
p .hat ol.c
p.v qq

• rrrooiri t target
t.dead temp.tqt
tgtsc l v.ms
x.Ct y.ct
z.ct zh

RELEASES :
fa.l.nsain 

- 

fa.2.main
rest res2
res3 res4
mesS

CALLS : -

bb .create cos.f
fa .1.main fa.2.main
initrd b oadn
rest res2 — -

res3 res4
mesS set.sector
vals.for.case

SCHEDULES :
attrition ,check new .forces
steo .time stop .simulation
stop .simu l-ation

COMPLEXITY : Execution is dependent art the number of tanks.
Storage is dependent on the number of platoon
leaders, the number of company commanders and the
number of elements In r.num.alive and b.num .abive .

REMARKS : Main routine starts the simul ation.

168

— —‘- —---

— —- -- --•~~--‘—-~~ • ‘— _______ ,.~~~~~~~~ -~~~~ k——— -— _—~~ — — - - - ~ - ~~~~~~~



—- ——------- ------~ ---~-- ~~-~~~~~ •- - - - • ~~~~~~- - ~~~ ---~~ -

- —

MRL.IMPACT 
-

NUMBER BY TES OBJECT CODE : 2568

PARAM ETERS :
x.boc y.loc

• LOCAL VARIABLES :
Id.btry id.red.btry
no.mens.flred Ok
red,2.constant tyoe.ammo
x x . boc
y .b oc 

-

,

GLOBAL VARIABLES :
alive.dead arty .pk,table
caliber debug
defnum f .d

fired.at f I c i b i
foe guntube
hf t . s te te
k.hit k Ic i ll
m.d n s f k i l l

m ki l l  name
ncase no.msns.fired
rsum.he .left num.h it
red.l.constant sod
tank time.v
won.type x .current
y.current z.current

WRITES :
caliber defnum
f.d fired .at
f k i l l  guntube
hi t.sta te  k.hit
k k il l  m.d
e f I c i l l  m n k i ) 1

name ncase
num.hl t sod
tfme.v type.ammo
x.current y.current
z.current

CALLS :
abs.f at rit
b c  tracer
uni form.f

SCHEDULED BY :
impac t

H 169

T 

—s—-— 
~~~~~~~~~~~~~~~~~~~

—--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 

~~ i~-.z ~~~~~~



F --—. —- 
- - 

-----—-- 
— 

—
—-- - - - -

MRL.IMPACT (cant)

COMPLEXITY : Execution time is linear on tanks In bbue .alive
and storage is constant.

REMARKS : Local var iab le  no.mens.fired should be
no.msns. fired.

NEW .COORDINATE .SYSTEM

NUMBER BYTES OBJECT CODE : 88

P A R A M E T E R S  :
angle - xo)d

- • yo ld

LOCAL V A R IAB LES :
angle xnew
xold ynew
yo ld

CALLS :
cos.f s-in .f
t racer

CALLED BY
’
:

assessment error

COMPLEXITY : Constant execut ion t ime and storage
requirements.

REMARKS : YIe ld ing m e w  and ynew

NEØ.FO

NUMBER BYTES OBJECT CODE : 456

PARAMETERS :
a

LOCAL VA RI ABLES :
bIue .aiive co

pl t.ldr
tank type

SCHEDULED BY :
i mpact

C OM PL EX I T Y  : Execu tion t ime iS linear on tank in b~ ue.al ive
w i th coCtank )  = c o C a ) ,  until tank = pltidr(tank).
Storage requirements are constant.

170 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• - —
1

—
~~~~~~~~~~~~~~~~~~ ~~~‘- -~

NEW.PORCES

• NUMBER BYTES OBJECT CODE : 128

• PARAMETERS :
start  stoo

LOCAL VARIABLES :
sta rt stop

GLOBAL VARIABLES :
name 

-

RELEASES : -

bbbpoirit red.create
rrrpolnt

CALLS :
red,create

SCHEDULED BY :
ma in - 

-

CO MP LE X ITY : Constant execution time and storage
requ i rements.

171

—~~~ L~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~



- 

~~
_- _ 

_ _ _
_j_

~jj
__ 

- -- —

~~
- 

- - -

- --

I
NEW.LOCATION 

-

•NUMBER BYTES OBJECT CODE : 1384

P A R A M E T E RS  :
a del .time
id .nsi ssf on

LOCAL VARIABLES :
a dei .t-ime
distance err.1
err.2 e r r .3
err.4 - err.5
err.6 err.7
err.8 i d .btry
id.fdc ~-d.fo

•

- id.mission tank
x .1 x .2
x .3 xx

GLOBAL VARIABLES :
dir.aoparen t direction
error.code mission
sod.aoparent type
x ,cur4 x.future .l-oc
y.cur4 y . f u tu re .boc

.

CALLS :
arctan.f cos.f
dist fa.tgt .error
pos-ition.update sin.f
tracer

CALLED BY : -

ar ty . impa ct update.cluster

COMPLEX ITY : Constant execut ion t ime and storage
requ i remen ts.

172

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
-

~~~~~~~~~~~~~~~

.—- ---- - -  
—

- -------- 
— -

~ 

—

~~~~ 

- _ _ _ _ _ _ _ _ _ _

NEW.MISSION -

NUMBER BYTES OBJECT CODE : 1432

PARAMETERS :
id.fo m
n.me.priori ty pri orit y

LOCA L VARIABLES :
a id.fo

~.I m name.priority
pr io r i ty -

-

GLOBAL VARI ABLES :
amt.-in .clus ters clusters
direction fist
fo.tgt.range bcount
m ission msn.name
no.clusters pointing .to
pr i,of .cluster speed
t- l me.of.uodate t ime.v
x .cur4& y .cur4

W RITES :
a d i rec t ion

— id.fo msrs .name
speed m .cur4
y.cur~

CREATES :
m ission

CALLS : -

dist tracer

CALLED BY :
uodete.cl uster

COMPLEXITY : Constant execution time and storage
requ i rements.

_
— —

—--‘-- ~I_•_I_,••_ —~~~~ *:•~~.e~i ~~

OPEN.RADIO.NET

- NUMBER BYTES OBJECT CODE : 240

P A R A M E T E R S :
Id. rad Ia

LOCAL VARIAB LES :
id.radlo —

GLOBAL VARIABLES :
state3

- -

CALLS :
tracer

SCHEDULED BY :
arty .lmpac t commo .attempt -

ersd.of.missiori guns .fIr ing -

COMPLEXITY : Constant executio n time and storage
-

requi rements.

174 -

~~~~~~~~~~~~ -~~~~~~~~ - -~~~- •
- - -~~~~~~~~~~~~~~~~~~~~~~~~•~~~~~~~~~~-- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~ ~~~~~~~~~~ 
~~~~-~~— —-- - - -  —- -- - - - -- --

PARAM .SET -

•
N U M B E R B Y T E S OBJECT CODE : 920

PARAMETERS :
a

LOCAL VARIABLES :
a aname

• weaponry

GLOBAL V A R I A B L E S :
-

= c.bar - cbar
defnum di r .mv mt
d.r,um m.det
micro mine.det
mv.t ime name
p.hat pi.hat
pI.c pbow .cond
p.v sod
tlme.v t.spd
v.ms wpn .tyoe
x.ct x.current
y.ct y.current
z.ct z.currerst
zh

CALLS : -

move

CALLED BY :

COMPLEXITY : storage requ i rements and executic n time are
Constant.

-

I

•

•

175

•
~~~~~~• _ _~~~~

-

~~~~~~~~~~~~~~~~~
I__ ___ ~ ~~~~ ~~~~~~~~~ ~~~~-- J ,

-
~~~~~~~ — 

- 
~~~~~~

— - -- --
~~~

- - -a - - - ---- 
____

PARAMETERS

NUMBER BYTES OBJECT CODE : 1128

PARAMETERS : -  -

I Ic
rq type.ammo

LOCAL VARIABLES :
t 

count de~ ta .l
delta.2 f rac t ion
i
¼
sig.df sig.rg

GLOBAL VARIABLES :
no.range.bartds range.barids

CALLS :
tracer

CALLED BY :
assessment error

COMPLEXITY : execu tion time is linear depending on the
number of range bands. Storage is constant.

REMARKS : This routine returns the va lue  of si-g.rg and
s ig.df to the c a b l i n g  routine.

I’ -

S

1 lb



- -~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

POP.A.MINE -

- NUMBER BYT ES OBJECT COD E :1760

PARAMETERS :
tnk type

• LOCAL VARIABLES :
ef Ic i ll em ki ll
j o  k ay k i l l
tri k type
whocalbed 

-

GLOBAL VARIABLES :
damage.num dam.array
detnum f.d
fired.at f I c i l l
guntube hit .state
k.hit k k i l l
m.d m f k i l l
‘ninleth
un icil l name
ncase r,um.hit
p1 ow.~ ond
spd tim e.v
wpn.type x .current
‘y.current z.current

wRITES :
defnum f.d
fired.at fkill
guntube h-it.state
k.hI~ kk i l l
m .d un fki bl
unk ill nam e
ncase num.I~it
sod tiun e.v
wpn .type x .current
y.current z.current

CALLS : -
atrit

CALLED BY :
convert ,back

COMPLEXITY : Storage requ i rements and execution time are
constant .

L 177 k ~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _a - —~~~~~~~~~ 
-

~~~~~~~~ ~~~~~~~ ~~~~~~~~~


r __________________________

PO$ITION.UPDATE

- NUMBER BYTES OBJECT CODE : 1104

PARAMETERS :
a id .mjgsion

• LOCAL VARIABLES :
a id.fo
id.nuls sion spd.bar
tank x .bar
y.bar

GLOBAL VARIABLES :
b.org .alive c.number .array
direction fist
name no.clusters
red ,alive spd
speed stete4
t ime.v t .pog it - j on
x.curren t x.cur4
y.current y.cur4

CALLS :
cos.f b c
si n.f tracer

CALLED BY :
arty .impact error
new.bocat-ion

COMPLEXITY : Storage requirements are constant . Execution is
linear on tanks in red.aljve.

178

- ~~~~~~~~~~~~ . J~~~~~~~~ i • ~~ • ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

- - - -.- —-- ~~- ~- - - -
— --- -—. - •-,- - - -- - - -—~~~~~~~--~~~~~~ -- -- —‘------ - -~-----•- —-- - ----—--- --- ---- --

PREPLANNED
-

NUMBER BYTES OBJECT CODE : 1008

PARAMETERS :
a b
C 0
e f

LOCAL VARIABLES :
a b
c d
e - f
I ‘1
¼ 1

GLOBAL VARIABLES :
red planned .f I res

CALLED BY :
f a. 1 .ma i n

COMPLEXITY : Constant execution time and storage
requ i remen ts.

P R I N T

NUMBER BYTES OBJECT COOE : 336

PARAMETERS:
i d.mi ssion

LOCAL VARIABLES :
—

debug id .mission
rad.err x.cur4
x .future.boc y.cur4
y.future.loe

WRITES :
rad.err

CALLS :
diet

CALLED BY :
arty .Imoact assess ment

COMPLEXITY : Constan t execution time and storage
requ i remen ts.

179
•

i~~~ --
--
~~~~~~~~~~~~~~~~~~

-
~~~~~~~ --- -

~~~~~~~~~~~~

-

~~~~~~~~

-

~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~



• - -- --- -

P R I N T I

NUMBER BYTES OBJECT CODE : 1124

• P A R A M E T E RS  :
id .misslon

LOCAL VARIABLES :
I id .f~id.miss ion J
tank

GLOBAL VARIABLES : - 
-

b.org.a live  c.nwiiber.array 4
debug fist

• name no .ctuster
rd.offset 

-

red.alive state4
tank x.c~ r4

p x ,curren t x .future.loc
y.cur4 — y.current
y.future.loc

WRITES :
I I
name rd.offset
x .cur4 x .current
x.future .l-oc y.cur4
y.curren.t y.-future.loc

CALLED BY :
arty .imoact assessment

COMPLEXITY : Execu tion time is linear on tank in red.alive
and storage is constant.

180

-- -—--.~~--—~~~~~~~~~~~~~~~~~~~~~~ —-—- . - r- ~~~ r ‘ ~~~~~~~~~~~~~~~~ •

—.~~~~~-•. ~_..,5. w.. --~~ ~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~ 
.
~~~~~ •~ L_._•I,,~___ ••_____ ~~ I.. •


— --
- ---

~~~~~~~~~ 
-

-

~~ - -  
- -

PRIORITY.ANO .POUND.SELECT

NUMBER BYTES OBJECT CODE : 1336

PARAMETERS :
a b

— LOCAL VARIABLES :
a answer
b I
I p
m d  threshold

GLOBAL VARIABLES : 
- 

-

blua color
ds t range
won.type

C ALLS :
ammo.check t runc.f

C A LLED B Y :
target • sel cc t

COMPLEXITY : Constant execution time and storage
requl rements.

R E M A R K S  : Returns the value of a and reid to the ca l l in g
rout ine, •

18’

~~ 

-

~~



- - _
- - —  -‘ --—— -- • 

~~
:- - --- .r :::~~~ ~~

PROXIMITY.DETECT

NUMBER BYTES OBJECT CODE : 864

P A R A M E T E R S  :
a b

LOCAL VARIABLES :
a b
wPuocalled x .sample
y .samole

GLOBAL V A R I A B L E S  : -

alive .dead -blue
color alt
plt.unit tank
x.curreri t y .CUrrent

CALLS :
abs.f l ist .update

CALLED BY :
detect

COMPLEXITY : Execution time is linear on tank in p lt.un it
and storage is constant.

.

182 

;--- - —-  
-. • — • - - -  -. - — - ••• — ---— -- -—-• _ _ _  

•~~~~:•

_________ -. —I- àI~~~~~ — ~~~I-1 L.-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



- —— • - - •- - -  
— — — -- -——— ~~~~

_
~~ 

- -. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - T__...~
-‘

RED .CREATE -

-NUMBER BYTES OBJECT CODE : 2408

PARAMETERS :
a b

LOCAL VARIABLES :
a b
I

GLOBAL VARIABLES :
ap. t ow - array .detect
bbbpoint 1oC.count
bn b.num.alive
c.number.array co
cocdr defnum
dir.of .ntvmt l i s t
max . number.of.missions.per.fo
mv.state name
n.fo op.rng
pI.c pbow.condprt p lt ld r
pointer ori.dir
sod tank
target time .v
wpn.type x .cUrrent
y.Current

READS :
On co
cocdr name
pit - o l t l d r
won .type x.current
y.current

CREATES :
tank

FILES :
tank in tanks, red.eHve, comp.unit and plt.unit

RESERVES :
array.detect c .nuunber.array

-
l is t

183

_ _ _ _ _ _________________________

i

_ _ _ _ _ _ ______________________________ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ——

__ - . ~~~~~~—~~~~~~~~~
- -~~~

------- ---- - -
~~~~~~ 

--
~~~~~
---- -- - -

~~~~~ 
- • - L - _ - -_______

RED.CREATE (cont-)

RELEASES :
—I array.detect c.number.array

CALLS :
- 

basic.boad hider
- set.sector

CALLED BY :
new.forces

- SCHEDULES : - 

-loc .uodate

COMPLEXITY : Execution is dependent on i nput parameters a
and b, main loop w i l l  be executed b—a+1 times ocr
i nvocation. Storage is dependent on bc.count,
n.fo and nax .number .of.missions.per,fo.

184

I- 
— - . T 

- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~



r - - -  - -~~~

RED.ARTY.FIRES. 
- I

NUMBER BYTES OBJECT CODE : 3368

• PARAMETERS :
id.red.btry iteration

• LOCAL VARIABLES :
I id.red.btry
iteration ok
red.2.constant type.ammo
x

GLOBAL VARIABLES :
alive.dead ar ty .pk .tab le
blue .aiive caliber
defnwn f.d
f ired.at f k i l l
foe guntube
h it,state k.hit
k I c t i l  kount
m.d en f lcill
mk ill name
ricase -
na.msns.f I red rium .dpicun .Teft
num .guns num.he.left

• num,h it
red.planned .fires mn .stream
salvos spd
tank time .v
wpn .type- x.curren t
y.curren t z.current

WRITES :
cal i ber defnum —

f.d fired.at
f k i l l  quntube
hit .state k .hit
kk iiI m.d
un fk lll unklil
name ncase
num .hl t spd
t ime .v type.ammo
x.curren t y.current
z.current

185 
- 

-

~~~~~ ~~~~~~~~~~~

-

~~~~ 

— 
:~~~~~~ - -

~~~~~~~~~~~~~~~ 

- _ _ _ _ _ _ _ _ _ _ _ _ _

1~
— - - -

~~~~~~~~~

I
RED.ARTY.FIRES (cont)

CALLS :
atr it icc

- tracer uniform.f

SCHEDULES :
red.arty .fires

SCHEDULED BY :
fa.2.main red.arty .fires

COMPLEXITY : Storage requirement -is constant. Execution time
is dependent on the produict of salvos and tanks in
biue.al i-ye.

-a

a

186

-- 
- - ‘. •

~~~~ -~~~~~~TT~Z~~ - ‘  : ‘ -  ~~~~
-
~~~~: - - .~~~~~~~ JI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~~--~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~



I
RELOAD 

-

NUMBER BYTES OBJECT CODE : 2736

PARAMETERS :
a

LOCAL V AR I A B L E S  :
a

GLOBAL VARIABLES :
bt ime c .t
c.2 - 

- capds
case -eda
cdh cdt ime
cheat crf
de f n u m  . def.time
guntube m i t
r.con sl.time
s2 .time veh .tyoe

CALLED BY :
hide

SCHEDULES :
hide

COMPLEXITY : Constant execution time and storage
requiremen ts.

RESt

- 

NUMBER BYTES OBJECT CODE : 232

GLOBAL VARIABLES :
hnor’n norseed

READS :
norseed

RESERVES :
hnorm norseed

CALLED BY :
main

COMPLEXITY : Constant execution time and storage
requ l remen ts.

187

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ j• - . , ~~--T~



- • - - . — . ------•- ~
-
~~~~~~~ ~~~~~~~~ ~~~~~~~~ _ _T  ~~~~

- -
-

~~~T TIT TT~~~i~~~~~~~~~~~~’

RES2

NUMBER BYTES ORJECT CODE : 2000

GLOBAL VARIABLES :
accbm accht
ac cke acc ms l
addon bm mov
bushbmp dgnv
ht .mov ke.mov
l e l l  1 e 12
1e 31 1e61
le l l  - l e72
le8l ‘1e82
mirileth sovmg
tardim using

RESERVES :
accbm accht
accke accmsl
addon b.n.mov
bushbmp dgnv
ht.mov Ice, mov

• Jell lel2
1e31 lebt
b e 7 l  l el2
le8l 1 e83
mlnbe •t h sov’ng
tard-i m using 

-

CALLED BY :
ma i n

COMPLEXITY - Constant execution time and storage
requ i remen ts.

REMARKS : Rearrangement of subscripts wi l l  provide more
efficient storage utilizin g fewer pointers.

188

~~~~~~~~~~~~~~~~ _~~~~~~~~~~~~
—

~~~~~~~~~~~~~~~~~~ - — ~~~~~~~~~~~
— 

~~~~~~~~ ~~~~
- ~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~

RES3

NUMBER BYTES ORJECT CODE : 3336

LOCA L V A R IABL ES :
I I
k
in

GLOBAL V A R I A B L E S :
bell 1e12
le 3l lebI
lelI -

1e72
beS i ,leB3

CALLED BY :
main

COMPLEXITY : Constant execution time ar.d storage
reaui rements.

REMARKS : Rearran ging loops to avoid dup lication w i l l Cut
the number of “fa r ” b oos from 11 to 6.

RES4

NUMBER BYTES OBJECT CODE : 1°12

LOCAL VAR IABLES :
I I
k 1
in

GLOBAL VAR IABLES :
accht acc ke
accmsl addon
dgnv h t .mov
ke.mov tardim

CALL ED BY :
ma- i n

COMPL EXITY : Constant execu t ion t ime and storage
requi rements.

R EM A R K S : Comb i ne 7 “fo , ” b o os w i t h 1 1 to 2 into 1 loop.

189

~~~~~~~~~~~ _ _ _ _ _ _ _ _ _



• AD—A070 096 NAVAL POSTGRADUATE SCHOOL MONTEREY CA FIG 9/2
SYSTEMS ANALYSIS FOR THE INTERACT IVE SIMULATION WITH GRAPHICAL —flCW
MAR 79 G S COKER . D ft FORINASH

UNCLASSIFIED ML

_

END
0A1

r!LN E 0

-) - -79
~~~~ooc 

j
‘I

H H

‘ O ~ ~ ~~2.5
I. ~

_ _ _
~~~~~~ ~2.2

~~ 
.~~ 

‘~ OOI~

tIM’ 25 

~~
MSCROCOPY RESOLW iON TEST CHJ~ T

NATK$AI. BUREAU OF S1A~DAR~~-l963-~ .

—~~~~v~~ .~~

*



RES5

NUMBER BYTES OBJECT CODE : 48

CALLED BY :
me $ n

REMARKS : Th is ~outine does nothfng .

SEC TOR.CHECI(

NUMBER BYTES OBJECT CODE : 608

PARAMETERS : 
-

a b

LOCAL VARIABLE S :
a answer
b c.left
c.rIght r
X.t y.t

GLOBAL VARIABLES :
area constant
x.current y.current

CA~LS: abe t s~rt.f

CALLED BY :
step .t ins

COMPLEXITY : Constant storaae and execution time.

SET • MUZ ZLE • V EL

NUMBER BYTES OBJECT CODE : 400

PARAMETERS t
a

LOCAL VARIABLES :
a -

~ L
GLOBAL VARIABLES :

m~~1.ve1

CALLED BY :
f i re

COMPLEXITY : Constant storage and execution time .

190

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ T Ii~


_ _ _ _ _ _ _ _ _

SET .SECTOR

-
NUMBER BYTES OBJECT CODE : ~448

PARAMETERS :
tank

LOCAL VARIABLES :
F

-

a b
tank width
* y

GLOBAL VARIABLES :
p i . c

-

CALLS :
cos.f si n.f

CALLED BY :
chg.sec.search defend
d$smount.dragon main
red.creete

COMPLEXITY : Constan t storage and execution time.

SIGHT

NUMBER BYTES OBJECT CODE : 712

PARAMETERS :
a aname
b bname

GLOBAL VAR IABLES :
bwd.look fwd . look
ht o micro
name oca,unc
pca.vis pcb .unc
pcb .vis x.~~irrenty.current z.current

CALLS :
los miri.f

CALLED BY :
COmmO .PaSS.tgt detec t
f i re impact
step .time terget.select

COMPLEXITY : Constant storage and execution time.

191

~l~~~~~_~~~~i ~~~~~~~
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - - -:~~~~~~~~
- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~ ~‘.-~——s - -

V
—- . - - - - -- ____________

STEP.TINE

PJUMBER BYTES OBJECT CODE : 1664

PARAMETERS :
a

LOCAL VARIABLES :
a answer
bd.t.time lose
r rdet.t ime
rn.b rn.r

GLOBAL VARIABLES :
-

•live.dead answer
bwd .look defnum
delte.t ia
f,blue.alive fwd.)ook
name op.rng
pcb.unc pct .vis
steps target
tgtsc l time .v
w.k.c. x .current
y.current

RESERVES :
list

RELEASES :
list

CAL LS :
cardio chg.sec.search
dist m in. f
~ector.check sight
tracer uniform.f

SCHEDULES :
detect step .time

SCHEDULED BY :
main step .t$me

COMPLEXITY : Storage is constant. Execution time is linearl y
dependent on the number of tanks In red.alive .

192

-

- ~~~~~~~~~~~~ -~~~~L

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
~
.-- ----n

STOP.SIMULATION

.NUMBER BYTES OBJECT CODE : 4296

GLOBAL V ARIA BLES :
attributes of every fo
attributes of every battery
attributes of every fdc
attributes of every mission in msn.gu.ue
attributes of every mission in holding.msns
al$ve .dead ap .tow
awl .or.msl3 bn
bc.count -

c.1 ‘c.2
Co en
defnum dlr .of.mvmt
f.d f.hit
fired.at fk ili
he.drag hit .state
k.hi t k k Ill
Un
m.d m.hit
nf.Pvit infkill
m kill mv,state
name nd.hit
n,blue.al ive n.red.alive
r,um.hf t p)ow.cond
pit arl.dir

• r.con rC.count
sec
spd tank
time.v tn
t.spd wpn .type
x .cUrrent y.current
z .curren t

193

—-----~.-—--—: . .
~~~~ - .- —

— -~-~~~~ t-— — —  - ~~ ~~~~~~~~~~~ ~~~~~~~~~~~~ —._-—-- — ~~~~~~~~~~ ~~~~~~~~~~~~ F~- ~~T~~IT —a



- -  ~~~~~~~~~~~

STOP.SIMULATION (Cont)

WRITES :
attributes of every fo
attributes of every battery
•ttnibut •s of every fdc
attributes of every mi ssion in msn.~ueue
•ttnibut•s of every missi on in holding .msns
alive.dead ap .tow
awl.or .msl3 bn
be .count
e.1 c.2
Co - ,ci f
defnum dir.of .mvmt
f.d f.hit
fired.at f k i ll
he.drag hit.state
k.hit kk ill
Un
m.d m.h it
mf.hi t n tf k ill
m k ill mv .state
name nd.hit
n.blue .al-ive n.ned .allve
num .hit plow .cond
p it pni .dir
r.con nc.count
sec
sad tank
time.v tnt
t.spd wpn.type
x .curren t y.current
z • C ~f rent

CALLS :
b c

SCHEDULED BY :
attnition .chec k main

COMPLEXITY : Execution tim e Is linear on tanks and storage
is constant. 

194

--

~ 

~~~~~~~~ -~~~~~~~~~ -~~~~~~~~~ -- ~~~~~~~~~ ~~-— 
_ __ _

STOP. TO .F IRE

NUMBER BYTES OBJECT CODE : 368

-

-

- PARAMETERS :
a StopcOunt

LOCAL V ARIABLES :
a stopeount

GLOBAL VARIABLES :
blue color
projo second.shot
sod time .v
t .spd

CALLED BY :
fire impact

COMPLEXITY : Constant execution time and storage
requ i rements.

195

_ _ _ _ _ _ _ _ _ _ _ - t— ~~~~~~~~~~~ ~~~~~~~~~

- r - - -
~~ - — -—--~~ -“-

SUBC AL -

-NUMBER BYTES OBJECT CODE : 4040

• PARAMETERS : -

f.pevis p c .vls
i -~ sh.t
tgt.t

LOCAL VARIABLES :
.fkill efpl
•mk ill emp i
f .pcvis - I

• io
Jo kay kill
kayp l I
mo n
nhlt pc.vls
phit n
ro sh.t
tgt.t ve l
whocalbed

-

GLOBAL VARIABLES :
busPibmp damage.num
dgnv oh

• projo sovmg
sod tardim
usmg wpn .type

WRITES :
projo wpn.type

CALLS : -

binomial .f bushbmp
- sovmg trunc.f

usmg —

$ CALLED BY :
compute

COMPLEXITY : Execution time is linear on nh it and storage is
cons tant.

196

-4-~~~~~~ -- ~—-~~~~~~~ -~~~~~~~~~~~~~ - ~-~— - ~~

1
- --

~~ ‘~~~~~~~~‘
•

T12.TACTI CS -

NUMBER BYTES OBJECT CODE : 1216

• PARAMETERS : -
—

a
• LOCAL VARIABL ES :

a aim
answer lose
result time
K

GLOB AL V ARIA BLES :
alive .dead bwd.book
check.tlm. eocdr
eri tical.vaiue foe
fwd,book Oct.vis
pi tldr projo
sched - tank
time.. time.v

• CALLS: -

ammo .cheCk commo.pass.tgt
•xp.f lay .bosd
b c

CALLED BY :
target.select

SCHEDULES :
— fire

COMPLEXITY : Etecution t ime is linear on tank in p lt.unit
and storage requirements are constant.

REMARKS : Returns th, value of answer to the calling
routine. By initializing answer to 1 instead of
0, two ~if~ sequences may be eliminated resultin g
in 11. fewer lines of source code.

191

_
,---- --—- — ,--

~~~~~~~~
•.- - --—•,-

1 •

TALLY.HIT.STATE

NUMBER BYTES OBJECT CODE : 1856

• PARA METERS :
* damage.num tank

• LOCAL VARIABLES :
damage.num tank

GLOBAL VARIABLES :
blue blue .alive
Co - 

- colo r
comp .uni t
f.Ptit fired.at
k.hit list
m,blue .alfve m f.hit
n.hit name
rio.hit num .hit
pi t plt .unit
red .alive target

• REMOVES : -

tank from blue.alive ~r red.ai -fve, pl ’.un it and
comp .unit

• RELEASES :
li st

CALLS :
leave.check

CALLED BY :
final .death impact

COMPLEXITY : Constant execution tim e and storage
requi rements.

198

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~
-- -

~~~~
- - .

~~~~~~~~

-

~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~
:.-

~~
-
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
•

TARGET.SELECT

NUMBER BYTES OBJECT CODE : 2592

• PARAMETERS :
a

LOCAL VARIABLES :
a aim
answer engaged

old.range oldp

m d time
whocalled x

GLOBAL VARIABLES :
alive.dead blue
bwd .book check.time
color criti cai .value
d.fnum ia
tip fire

• i k i l l foe
fwd .look line .of.sight .exists
list mv .state
name pct.vis

- pointer projo
range sched
target t i nie.a
tfme .v wori.type
x .cumren t y .current

CALLS :
bmp .tactiCs dim.f
dist exp .f
hider ifv.tact lcs
itv.tactiCs lay .load
list .update b c
prionity.and.round.seiect sight
t72.tactics xm l .tactics

SCHEDULES :
fire

• SCHEDULED BY :
list.update we.hit
we.miss

COMPLEXITY : Constant storage and execution time.

199

- - - --
~~~~~~~~~~~~~~~ -~~~~ 

• •

TRACER

NUMBER BYTES OBJECT CODE : 304
PARAMETERS :

a

LOCAl. VARIABLES :
a

GLOBAL VARIAB LES :
time.v tr .time

WRITES : -

a time .v

CALLED BY :
arty.imoact arty .t-ime
busy .rsdio .net
checking .guns .availability
commo.attemot detect
end.of.m$ssion erro r
fa.tgt.*rror fdc.processing
fire guns.fining

• impact nri .imoact
new.coordinate .system new.location
new .mission open.radio.net

- parameters posftion .update
red..rty.fires step .tsme

• uodate.ciuster

COMPLEXITY : Constant storage and execution time.

200

- - ~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~

- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~

.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
- -



•- -- -  - - ---
~

- _ _

UPDATE .CLUSTER

NUMBER BYTES OBJECT CODE : 2256

• 
PARAMETERS : -

I d.fo

LOCAL VARIABLES :
est-lmate.of.t lme id.fo
i d.mission in

name .priori ty ori.value
time .1 tirne .2

GLOBAL VARIA BLES :
amt.active.m sns amt.msns.fired
busy debug
las t.elustered • msn.time
max .number.o f m i ssions .per. to
stateLe time .v

WRITES :
id.fo tirne .v

CALLS :
arty .time doing.ciusters

• new .boca tion new.mission
tracer

SCHEDULED BY :
fa.2.main fo.not.busy

COMPLEXITY : Constant storage and execution time

- VALS.FQR.CASE

NUMBER BYTES OBJECT CODE : 7 12

GLOBAL VARIABLES :
ba bh
capds case
caseao casehe
Cd. cdh
cheat guntube
m i t

CALLED BY :
main

COMPLEXITY : Constant storage and execution time.

201



• 
- --- —-— -- _________

WE.HIT -

I9UMBER BYTES OBJECT CODE : 1328

- PARAMETERS : -
a

• LOCAL VARIABLES :
a

GLOBAL VARiABLES :
ap.tow awl.or.msi3

• aw2.or.adm - -  ç.l
c.2 defnum
foe P,e.drag
hitshot mi -sashot
r.con r.courit
wpn .type

CALLS :
• hi der

• CALLED BY :
impact

SCHEDULES :
flide target .sebec t

COMPLEXITY : Constant storage and execution tim -c.

I
202

L~~~~-~ -~~ L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •~~~ 
I ::.:•~~~~~~



PT 

— -- _ _ _

WE.MISS

NUMBER BYTES OBJECT CODE : 1808

PAR AM ETERS :
a •

LOCAL VARIABLES :
• a answer

P time
*

GLOBAL VARIABLES :
ap .tow - ,-awl .or.m sl3
aw2.or.adm c.1
c.2 ch eck.t-l me
defnum foe
he.drag hit -shot
missshot projo
range r.con
sched time.a
time.v wpn .type
x.current y.current

CALLS :
ammo.check dist
exp,f hider
lay.Io.d

CALLED BY :
i mpact

SCHEDULES :
flr~ h-i de
target .select

COMPLEXITY : Constant storage and execution time.

1. ~ 203

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~


• ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —p - •• - - — ___ ___

- XMl .TACTICS

NUMBER BYTES OBJECT CODE : 352

PARAMETERS :
a b

LOCAL VARIABLES :
a answer
b z

GLOBAL VARIABLES :
foe - p it

-

plt.unit tank /

CALLS :
un i fomm.f

CALLED BY :
target.select

-

COMPLEXITY : Storage is constant. Execution is Unearly
dependent on the number of tanks in plt.unit .

20(4

I~ ~~~~~~~

-

~~~~~~~~~~~~ - -
.
~~•--~~ ‘—-- — ~~~~~~~~~~~~~~~~~~~~ 

,

~~~~~ 
~~7c~~ ••‘~~~~~~

• r~~~~~~~~-’

APPENDIX C

ROUTINE LINES START END BYTES
ee eoee - can a eon a en eeoc

• SIMSCRIPT ROUTINES

main 95 ba028 bb750 5928

hider 10 • bb750 bbB9O 3~ 0

resl 3 bb890 bb978 232

res2 24 bb978 bc148 2000

res3 37 bc1’~8 bce50 3336

res4 lB bce50 bd5c8 1912

-

resS 2 bd5c8 bd5f8 48

red.create 43 bd5f8 bdfô0 2408 —

- bi.create ~46 bdfbO be.68 2824

new.forces 5 beabB bebe8 128

sight 9 beb.8 beebO 712

convert.back 17 beebO bfllB 712

param.set 21 bf178 bfSlO 920

basic .load 27 bf5lO bfd38 2088

vals.for.case 10 bfd38 c0000 712 —

reload 40 c0000 cOabO 2736

buq.check 12 cOebO cOebO 1024

dr.mount 18 cOebO c1358 1192

d$smount.dragon 12 c1358 e1640 7(44

df.chg 14 c1640 c1830 496

defend 12 c1830 clae0 688
—

step .time 65 etaeO c2660 1664

205

~klrd~àt~ ~~~~~ ~~
--- — -—- -~~~~~~--- — - —~~ ~~~

•
~
—

~~
-• ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ TI

“ r
- --

-

~~
- - -

~~~~ - - - ~—•- -

ROUTINE LINES START END BYTES
oeenee coc oa eeeo ace cease

detec t - 21 c26b0 c2978 792

targ•t.sel ect 74 c2978 c3398 2592

• f-I re 51 c3398 c3cSO 2232

leave,check 112 c3c50 c6278 9768

charge ~$7 e6278 ebae0 2152

get.up 12 ‘cbaeO cbd2O 576

impac t 89 cbd2O clea8 4488

loC.update 6 clea8 c8028 38(4

stop .simulation 27 c8028 c9OfO (4296

cardio 55 c9OfO c9SfO 1280

- lis t .update 62 c95f0 c9d20 1840

proxlmity .detect 26 c9d20 caOBO 86(4

commo.pass.tgt 21 caO8O ca2b8 - 488

t12.tactics 27 ca2b8 ca778 1216

ifv .tactics — 9 ca778 ca8ø8 352

xml .tactics - 9 ca8d8 caa38 352

bmp .tactics 6 caa38 cab40 2o4

itv.t .cties 9 cab40 cacaO 96

set.muzzle.vel 8 cacaO caelO (400

priority.and.round .select ‘49 cae30 cb368 1336

ammo .check 11 eb3bS cb558 496

decrement.ammo 13 cb558 cbBSB 768

we.miss 39 cbBSB cbfb8 1 .08

• we .hlt 28 cbfb8 cc4e8 1328

stop.to.fire 13 cc4e8 cc658 368

ley .load 35 cc658 ccea8 2136

206 

~ • - -•~- - .--~~--- ~~~~~~~ 
A~~~ -~~~~~~~~~~e~~~~~~~~~~~ 

-=



- — - •-- - •  
~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~ 
_ _ _ _ _ _

ROUTINE LINES START • END BYTES
Os oases 00ee cocos sea cases

first - S ccea8 ccfc8 288

hide • 23 ccfc8 cd4c8 1536

• b c  23 cd4c8 cd9tO 1096

chg.sec.searcPi 25 ed9lO cde28 1304

- ta ll y.hlt.state 43 
- 

cde28 ceSbB 1856

- - dfst 4 ‘ceSóB ce5fB 144

set.sector 12 ceSfB celb8 4(48

sector.chec k 10 celb8 ceal8 608

attrition .check 7 ceai8 cecOB 1496

compute 91 cec08 cf9c8 3528

- geom 150 cf9c8 d1958 8080

subeal 79 d1958 d2720 ‘$040

atrit 43 d2720 d2ffO 2256

pop .a.inine 20 d2ffO d36d0 1760

final .death 14 d3edO d3cbO 111211

fa.1.main 83 d3cbO d41a8 4936

fa.2.inaln 44 d4fa8 d5d38 3472

fo.riot.busy 9 dSd3B d5fd0 408

update.cluster 146 d5fd0 db4aO 2256

commo.attemot 26 dó4aO dbBeB 1096

oaen.radlo.net 6 dbBeB d69d8 240

busy.radio.net 6 db9dB dbacS 2(40

fdc.processing 110 dbac8 d7828 3424

• checktnq .guns .avallabllfty 37 d7828 d7f48 18211

- 
~

- 

guns.fIring 34 dlf4B d8630 1768

•rty.imoact 132 d8630 dQb5O 1312

207

___________________________________



ROUTINE LINES - ST A RT - END BYTES
000ofl 

- 

efleO eeoc. Sec cane

end.of.mission 59 d9b50 da5eO 2704

doing.cbusters 114 daSeO db998 5048

assessment 95 db998 dcbl$8 4528

error 28 dcb48 dc.f8 944

red.arty.fires 15 
- 

dcef8 
- 

ddc2O 3368

new .coordinate.system 8 ~dc20 dddl8 88

new.mission 27 dddl8 de2bO 1432

parameters 33 de2bO d.718 1128

arty .time 211 dellB deRb8 416

fa.tgt.error 21 de8b8 dea58 416

— new.bocatlon 54 dea58 d.fcO 1384

mrl .impact 53 defc0 df9c8 2568

preplanned 31 df9c8 dfdb8 1008

posltion.update 29 dfdb8 .0208 1104

print 10 .0208 .0358 336

prir iti 
- 22 e0358 eOB4O 1124

tracer 8 e0840 •0970 304

new.fo B e0970 .0b38 456

FORTRAN ROUTINES

move 145 e4c88 .5860 ‘1048

ini trd 73 .0.18 .1688 2414

setup 53 e70b8 .7508 1300

los 251 .3260 e4$c88 7504

• cover iLl .e220 ee3fO 684

elev 33 .2eaO e3laO 988

Oytunx 31 e-falB ef.aO 1138

208

kj~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -• ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



7 
— —I— ~~~ 

• -
~~~~~

---- - -•
- ~~~~~

—•--•---•--
~~~~~~

ROUTINE LINES START END BYTES
cfl occo eeoc. cc000 cea cocoa

.bevg 38 ..be8 ..f78 1132

mcov 214 e2b88 e2ddB 866

PROGRAM TOTALS

3842 ba028 1177e0 382904

209



- --- 
— - -  — -  - - -

APPENDIX D

- 

~~~~~~~~~~~~~~~~~

dgnv 1 16 3 3 (*/2) 19 19

using i ~$8 16 16 (*/2) 64 64

soving 1 96 • 33 33 (*/2) 129 129

busbbmp i 128 47 47 (*12) 125 125

accmsl p 224 35 23 259 247

ke.mov r 420 83 39 503 459

accke r 168 51 19 219 187

ht.mov r 420 83 39 503 459

accht r 224 67 23 291 247

addon r 80 7 7 87 87

accbm r 84 25 9 - 109 93

bm .mov r 210 LII 19 251 229

tardim r 198 10 10 208 208

hnorin r 1000 I 1 1001 1001
-

•

nor-seed 2 1 0 3 2

mi n he t h 1 5 10 9 15 14

tgt.acq.error r 12 3 3 15 15

tgtsc! r 18 1 1 19 19

mu r 24 3 3 27 27

x.ct r 2 I 0 3 2

y.Ct r 2 1 0 3 2

z.Ct r 2 1 0 3 2

v .ms r 2 1 0 3 2

210

-

~~~~~~~~~ ~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-•



• _ _ _ _ _ _ _

ROUTINE TYPE WDS PTRS OPT REMARK TOTAL OPTIMAL
fl00000 occe coo 0 0 0  en cc o e  cocoa oscooso

• c.bar r 2 . 1 0 3 2

pl.c 1 1 1 0 2 1

m.d.t 1 1 1 0 2 1

d.num 1 1 1 0 2 1

r 2 1 • 0 3 2 -
•

pca.vls r 2 1 0 3 2

pcb.unc r 2 1 0 3 2

pcb.vis r 2 I 0 3 2

— pca.unc 2 1 0 3 2

p.v r 2 1 0 3 2

r 2 1 0 3 2

list i 1 1 0 2 1

target 1 642 322 3 964 645

temp .target 1 150 1 1 151 151

dsl i 360 16 16 376 376

— ds2 1 362 10 10 372 372

t.deed 1 1 1 0 (*/4) 2 1

i.dead 1 1 1 0 (*/(4) 2 1

It.de•d 1 1 1 0 (*/(4) 2 1

1.11 1 1470 1165 691 (*/4) 2635 2161

bell 1 3675 2911 1659 (*114 ) 6586 5334

1.12 1 210 167 814 (*1(4) 377 294

1.72 i 525 416 249 (*/4) 941 774

1.31 i 210 167 84 (*/14) 377 29(4

leb1 1 210 167 811 (*114) 377 294

211

I. ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~. -



—-• -i~~~
—•:--

~--•——--—-—• - .
— 

~~
- - - 

-•

ROUTINE TYPE WDS PTRS OPT REMARK TOTAL OPTIMAL
*000000 c000 ccc coca o 0000 c eeoc e ease eon

t - 1.81 1 525 416 249 (*/4) 944 774
)

1.83 1 525 416 249 (*/14) 944 774

•/l

.

.

212

~~~~~~~~~ — •—~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~ --- 1~~~~~~ ~~~~~~~~~~ • T.J


BIBLIOGRAPHY

Brooks,F,P. Jr., The M yth ical Man~mpnth, Addison
Wesbey,1975.

-

Curtic., R.M., “The Outlook for Data Base Management,”
- Q j ~jj~,, p. 46—49, Aor il 1976.

Daley, R.C. and Dennis, J,8., “V ir tual Mimory, Processes,
and Sharing In MULTICS,” C~ m.tinic~~t [ont ~ f the ACM. V. 11,
No. 5, p. 306°312, May 1968. -

Date, C J., An Intr~duction to Database Systems., 2nd Ed,
Addisonowesley, 1971.

Oayh~ ff, M.D., “A Con tourcMap Program for X—Ray
Cryst albograohy,” Communic~ tlor,s of the AC I4 . V. 6, No. 10,
p. 620°622, October 1~ b3 .

Donning, P.J., “The Work ing Set- Model for Program Behavior ,”
Communj eetlnn, of the AC M, V . 11, No. 5, o. 323—333, M~ y• 1968.

Denning, P.J., “Vir tual Memory,” Comoutino Surveys, v. 2,
No.3, p. 153°189, September 1970

• Dennis, J.8.. “Segmentation and the Design of
Mu)tiprogrammed Computer Syitems,” Journal of the ACM , V.
12, No. 4, p. 589°602, October 1965.

Frau,, 0., Castlemen, P., Webb, F., Bibo fs ky , W., Zcionik, S.,
Beranek, 8., and Newm.n Inc., “Mission : A Low—Cost Data
Management System for the Biomedical Community, ” Annual
Sym~~~ 4u. nn Comøuter Aoobications in Mediemi Care. let
Proee•dfnda. IEEE, N*w York, 1977.

Graham, G.S. and Denning, P.J., “Protection — Pr inc ip les and
Practice,” 5orir~ Joint Comeuter Conference, 1972.

Honeywell Information Systems. Inc.. Multi cs Programmer ’s
Manual - Suhivst~m Wr iter ’s Guide , September 1975.

213

JCS, Joint War Gam ing Manual, JWGAc167 69, The Joint Chiefs
of Staff, Joint War Games Agency, 1 Jul y 1969.

civiat , P.J,, Vihl anu ev i , R. and Markowjtz, H,M., SIMSCRIPT
11.5 Prooramm i na Lanauqo~~ 2nd Edition, Consolidated
An alysis Centers, Inc., 1973~

Lickhider, JC.R ., “Man—Computer Symbiosis ,” IRE,Trans. HFE ,
p 4—1 1, March 1960.

Madn -ick, S.E., and Donovan , J,J,, Operating Systems.
McGraw— Hill,Inc., 1974.

Martin , J., Prineloles of Dataa8ase Management, Prentice—
Hall , Inc., 1976.

Mill s , R E . and Phil, M., “The Interactive Extensible
Simulation Cap abilit y of CML ,” L~77 Winter Simulation
Conference, p. 331—334, 5—7 December 1977.

Needles, C.J., Paramet erization of Terrain in Arm y Combat
Models, M.S. Thesis, Naval Postgraduate School, Monterey,
March 1976.

Newman, W.M. end Sproull, R.F., Pr inc io leg of Intera ctive
Computer Graphics , McGrawoHi-h1 ,In c. , 1973.

Newman, W.M. and van Dam , a., “Recent Effort -s Toward
Graphics Standardization ,” ACM Computing Surveys, V. 10, No,
4, a. 365°387, December 1978.

Org~nfck, E.I., The Mu leics System: An Examin ation of ite
Str ucture, MIT Press, 1972.

Rahe, G.A., “Simulation and Computer Graphics,” Simul atio n
Today No. 4, p. 13°16, August 1972.

ll

~~
L he M1t(.e

Corporation, May 1975.

214

-• - ~~~~~~~~~~~

- - -
-

•

~

__a_
~~

__
~~~~~~~~~ .~- 

.
~~- - -•~~~~~- — _•_ __•__~ __.__~~ ---



-~~~~~~~~ - -~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sch roeder, M.D., Performance of the GEc64S A g soeia t iv.
Memory While MULTICS is in Op eratio n ., Harvard Universit y,
April 1971.

Smith , A .J, “Mu ltioroccessor Memory Organization and Memory
Interference,” Communications of the ACM ., V. 20, No. 10, p.
7514e761, October 1977.

Smith , L.8., “The Use of Interactive Graphics to Solve
Numerical Problems ,” Communications of the ACM . V .  13, n.
10, p. 625c634, October 1970. - 

- -

Sohnle , R.C., Tartar, 1,, and Sampson, J.R., “Requirements
for Interactive Simulation Systems,” Simulation , p. 1145—152,
May 1973.

Sutherland, I.E., “Computer Graohics,” Datamat~ on, a. 22 27,
May 1966.

Whitinore , J,, Bensoussan, A ., Green, P., Hun t, 0., Kob ziar,
A . and Stern, J., Oeeion for MULTICS Security Enhancements ,
ESDcTPa74e176, Honeywell Information Systems, Inc., December
t973.

Wiederhold, G., Database Design. M cGre wn Hihl , Inc., 1977.

215

~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~


•
-~~~~~~ • • - - -

-
-

~~--

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documen tation Center 2
ATTN: DDC°TC
Cameron Station
A le xandria , V irginia 223111

2. Li brary , Code 0142 2
Naval Postgraduate School
Monterey, Californ ia 939110 -

3. Deoartment Chairman, Code 52 1
Compu ter Science Department
Naval Postgraduate School
Monterey , Calif ornia 93940

11. Professor Sam H. Parry, Code 55 PY 5
Department of Operations Research
Naval Postgradua te School
Monterey, California 93940

5. Maj. George S. Coker 1
105 Kendallwood Dr. •

Fredericksburg, Virginia 22401

6. Cpt David R. Forinash - 1
Staff and Faculty Battalion
United States M ilitar y Academy
West Point, New York 10096 -

7. Office of the Commanding General I
U. S. Arm y TRADOC
A ttn: Genera l Donn A. Starry
Ft. Monroe, V irginia 23651

8. Headquarters I
U.S. Army Tra ining & Doctrine Command
A ttn: ATCG T (Col- . Ed Scr ibner)
Ft. Monroe, V irgin Ia 23651

216

F
—

_ _ _ _ _ _ _
—

9. Headquarters
U.S. Army Training & Doctrine Command
Attn : Director,. Analysis Directorage
Combat Developments (Col. Tony Pokorney)
Ft. Monroe, V ir ginia 23651

I 10. Headquarters 1
U.S. Army Training % Doctrine Command
Att n : Director , Maneuver Directorate a

Comba t Developments (Col. Fred Franks)
Ft . Monroe, Vir g ini a 23651

11. Lt. General J. R. Thurman
Commandin g General
U.S. Arm y Comb i ned Arms Center
Ft. Leavenworth, Kansas 66027

12. Direc tor -

Combi ned Arms Combat Development Activity
Att ,~: Cal . Reed
Ft. Leavenworth, Kansas 66027

13. Professor J. Hartman, Code 55MM
Department of Operations Research
Naval Postgraduate Schoo l
Monterey, California 93940

14. Dr. ~I1 bur Payne, Director
U.S. Army FRADO C Systems Analysis Ac tivit y
nh ite Sands Miss l-e Range, New Mexico 88002

15. Di rector
Ar mored Combat Vehicle Technology Program
A ttn : Cal. Fit zmorrjs
U.S. Ar my Armor Center
Ft. Knox, Kentucky 40121

16. DIrector
‘ Studies Divisio n ° Combat Developments

A ttn : Col. Burnett
U.S. Army Armor Center
Ft. Knox, Kentucky 40121

217

~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _
~~~~~~~~~~~~~~ JI~~~~* - - -•~~- - -- - ---- ~~~~

. - • •.

F - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~
_ -~~~~~~~

- -----— —-•-
~
• —

~~

—-

~~~~~~~~~~ I
‘1

17. Col . Fran k Day 1
— TRADOC Systems Manager XMl

U.S. Army Arm or Center
Ft. Knox, Kentucky 40121

• 
18. MG Dick Lawrence 1

r Tan k Forces Management Office
Room 1A 871, The Pentagon
Washington, D.C. 20310 •

19. Mr. David Hardison - 1
Deputy Undersecretary of the Ar’my
(Operations Research)
Department of the Arm y, The Pentagon
Washington, D.C. 20310

20. Direc tor 1
U.S. Arm y Material Systems Ana lysis A~ t - f y f t y
Attn: Mr. Will Brooks
Aberdeen Proving Grounds, Maryland 21005

21. Command and General Staff College 1
Attn: Education Adv i sor
Room 123, Bell Hall
Ft. Leavenworth, Kansas 66027

22. Headquarters, Department of the Army 1
Office of the Deputy Chief of Staff
for Operations and Plans
A ttrt: DAMO—2D
Washington, D.C. 20310

- 218

~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

