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FUNCTION

ABSTRACT

™ The methods and approaches introduced so far for estimating
the operating characteristics of item response categories require
the 0ld Test, or a set of items, whose operating characteristics are
known. To generalize these methods to apply for the situation
where we start to develop a new item pool, i.e., there is no “Old Test,
an approach is made by assuming that the tentative item pool has a
substantial number of equivalent items, even though their common item
characteristic function is not known yet. It is observed that,
within the type of item characteristic function which is strictly
increasing in the latent traig 6 with zero and unity as 1its two
asymptotes, the area under the square root of the item information
function is a constant value, T . The item characteristic function
which provides a constant item information is searched and discovered,
and is named the constant information model. Using this model, it
is observed that the subset of equivalent binary items can be used
as a substitute for the 0ld Test, and those methods and approaches
are generalized in the present situation. It is discovered that, for
once, items with low discrimination power have a significant role.
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I Iatroduction

Estimation of the operating characteristics of the item
response categories of a test item has been investigated (Samejima,
1977b, 19774, 1978a, 1978b, 1978c, 1978d, 1978e) without assuming
any prior mathematical forms, and by using a relatively small number
of examinees in the process of estimation. One common restriction
3 in these methods and approaches presented so far is that we need the

01d Test (cf. Appendix I) consisting of the items whose operating

characteristics are known, and which providesus with a constant test
information function for the interval of latent trait, or ability,

0 of our interest. With this setting, each examinee's ability
level is estimated from his response pattern by the maximum likelihood
estimation, and the set of these maximum likelihood estimates 1is
the main information source of the estimation procedures. The
methods are useful, therefore, in such a situation that we already
have an item pool, and we wish to .4dd. more items to it.

A question arises as to whether it*™f8 possible to overcome
this restriction, and to make these methods and approaches useful
in a more general situation, in which there is no 0ld Test, and,
consequently, the maximum likelihood estimate of each examinee's
ability 1is not a priori given. The fact is that it is not difficult
to do so, if we are in such a situation that a large number of test
items are administered to the group of examinees, which include a
set, or sets, of equivalent items, {.e., the items whose operating
characteristics are identical. In practice, we need to identify

these equivalent items without knowing their operating characteristics,

and in so doing several conditions should be satisfied.




In the present paper, .theory and rationale behind the process
of generalizing the estimation methods in the above situation will
be presented and discussed, leaving the Monte Carlo study to observe
the actual process and results to a later paper. Since, in practice,
many researchers and testers use binary items in both tailored testing
and paper-and-pencil testing, here we solely use binary items, although
graded items are more informative and efficient to use (Samejima,
1969, 1977a, 1977c, 1977e). This restriction will give us a
practical advantage, however, since it is much less likely that
we find a subset of graded items, each of which has the same number of
item response categories with the same set of operating characteristics

as each other, among the test items in an actual test or a tentative

item pool.




II Some Properties of the Infygg@t}gp Functions

Throughout this paper, we only deal with the uni~dimensional
latent space. The range of the latent trait 6 1s not necessarily
the set of all real numbers, however, as will be exemplified later
in following sections.

Let ‘g be the graded item score, or graded response category,
of item g , which assumes integers, 0 through ms , and Px (0)
be its operating characteristic, or the conditional ptobability,ggiven
ability © , that the examinee's response to item g falls into

category x_ . The item response information function (Samejima,

8
1969), Ix (8) , 18 defined by
g
32
(2.1) ng(e) T =5 log ng(e) :

The item information function, 18(6) , 1s the conditional expectation

of the item response information function, given 6 , so that

m
(2.2) 1,(0) = E[1, (®)]0] = 1% 1 (8) P, (®)
g xg-O g g

m

) 2 -1
= 2 (5P (0)]° [P, (8)]

0 "x x

x =0 '3 g
g

(cf. Samejima, 1969, Chapter 6). Let Pv(e) be the operating
characteristic of the response pattern V . By virtue of the local
independence (Lord and Novick, 1968, Chapter 16, Samejima, 1969),
this operating characteristic is the product of the operating
characteristics of the particlipating item responsc categories, 1.e.,

(2.3) Pv(e)- I Px () .

x eV
8c 8

.




The response pattern information function, IV(O) , which is defined

for every possible response pattern of a test, or a set of n items,

can be written for a specified response pattern V such that

ai
2.4 1(0)--—5-5:1o P,(8) = I I (0) .
\ ) v . v x.cv ‘;

The test information function, I(8) , is defined as the conditional
expectation, given § , of the response pattern information functiom,

and after some manipulations we can write

n
(2.9) I(f) » £ 1,8) P,8)= £ 1 (0) .
g v Vv v god M

Suppose we are in the position to transform the ability acale

@ to another, by a strictly increasing function such that
2.6) T=T@) ,

We can easily see from the definitions of the operating characteristics

that they are unchanged, or

(2.7) P; (1) = Px (C))
8 8

and

(2.8) Pg(t) - Pv(a) .

The information functions change, however, and we obtain the following.

de .2 ) a2
(2.9) 1;.(r) - 1!'(0) [4¥1° - 55 los Px'(e)' ; = .




dé ,2

(2,10) I;(T) - 13(9) [j;; .

2
(2.11) I3(1) = 1,(8) [—3—2—12 . —5%- e pv<e)--:—T3- §
(2.12) I*(1) = 1(8) [%12 .

The above results come from the relationship, which is directly

derived from (2,7), such that
) ) dé
i i ol A Wl S

and the definition: of the item response information function. and those
of the other three types of information functions. It should be noted
that the area under the curve of the item information function, and

that of the test information function, do change with the transformation

of the ability scale, since we have the relationships

T 8
(2.14) I*(1) dr -[ (o) L ap ,
g g dt
I Q > an
and _
T i 0 _QQ,
(2,15) I*(q) dt = 1(8) a d¢
I [

where § and ® are the lower and upper endpoints of the range of ¢

and

(2.16)
T = 1(8)

are those of the range of the transformed variable T . If we integrate

the square root of each of the two information functions, however,




we obtain
I (5

(2.17) (Ii'(r)]l/2 dtr = [1 (9)]1,2 40 ,
- e e o

and
T 1/2 (& 1/2

(2.18) [I%(1)]) dt = " [1(6)] de .
T
T ] 8

Thus the area under the curve of the square root of the item

information function, and that of the test information function, are

unchanged throughout the transformation of the latent trait by

any strictly increasing function, T(6) . This fact has many

important implications, as will be described in the next section.
On the dichotomous response level (Samejima, 1972); wvhich
is considered as a special case of the graded response level with
-g = 1 for each item g , the item information function is simplified

to the form

9 2 -1
(2.19) 18(9) - [-53- Ps(e)] [Pg(e) Qs(e)] ’

vhere rs(e) is the item characteristic function, defined by
(2.20) rs(e) - prob.[us-lle]
with ug (=0,1) denoting the binary item score, and
). - .ﬂeﬂepe.
(2.21) Qg(8) = prob, [u 0/8) =1 g(®

(2.19) 1s derived directly from (2,2), and also is equal to the i‘em

information function used by Birnbaum (Birnbaum, 1968),




-

It should be noted that, by definition, the item information
function is non-negative, regardless of the values of the item
response information functions, as is clear from (2,2) and (2.19),
When we consider this function as a measure of the local accuracy of the
estimation of ability 6 , however, the function will be meaningless
and misleading, if for some range of € one, or more, of the item
response information functions assumes negative values. This

happens to the three parameter models, i.e.,

(2.22) Pg(e) S (1 - Cg) Wg(e) ’

where cg is the guessing parameter and wg(e) is some strictly
increasing function of 6 with 0 and 1 as its two asymptotes.

The three-parameter normal ogive model and the three-parameter logistic
model (Birnbaum, 1968) are two typical examples of (2.22), As was
pointed out before (Samejima, 1972, 1973), any item characteristic
function formulated by (2.22) has some range of 6 in which the

item response information function for the item score 1 assumes
negative values, and, therefore, the unique local maximum is not
assured for every possible response pattern, provided that wg(e)

satisfies the unique maximum condition (Samejima, 1969, 1972),




IIT Some Implications of the Constancy of the Totality of the Square
Root of Item Information Function under the Transformation
of the Latent Trait

It can be observed easily that any specified item characteristic
function can be transformed to another, which belongs to the same
model, through the transformation of the latent trait. To give
an example, suppose that item g has an item characteristic function

in the normal ogive model, such that

a (6-b)
(3.1) P(6) = [2n)"1/2 I 8 8 expl-t?/2] dt .

-0
To change this to another item characteristic function which also
follows the normal ogive model but with different item discrimination
and difficulty parameters, a; and b; ,» all we need is such a

linear transformation of 6 to Tt that

1

(3.2) T= as(e - bs) a; + b; .

Thus we can write for the resultant item characteristic function
P*(T
8( )

a;(T-b*)

(3.3) PAG) = [2m])"1/2 f exp[-t2/2) dt .

-00

An important implication of this fact, combined with (2,17), is that

the area under the curve of the square root of the item information

function is constant for every item characteristic function which

belongs to the same model. For the purpose of illustration, Figures
3-1 and 3-2 present the item information functions and their square
roots for three items, all of which belong to the normal ogive model

with a, = 1,0, a, = 2,0 and a, = 3,0 , and b1 = b

1 2 3 = b, = 0.0

2 3 "
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respectively, We can see that in Figure 3 -1 the three areas are
substantially different from one another, just like the case of

the logistic model with the same parameter values (cf, Birnbaum,
page 461, Figure 20.4.1). On the other hand, in Figure 3 ~2, these
areas under the three curves are the same, just as was expected.

This fact can be generalized further, to include item

characteristic functions of different models, Suppose that item g

has some strictly increasing item characteristic function, with

1lim 1
0"(_)‘)8(6)-0 \

o PO = 1 .

(3.4)

We can see that, regardless of the model tc which Pg(e) belongs,

it can be transformed to any other item characteristic function,

which is strictly increasing and has the two asymptotes, 0 and 1 ,
through the transformation of the latent trait 6 to T . To be
more precise, it should be noted that, for any pair of models which
belong to the type described above, and provide us with the item
characteristic functions PS(O) and P;(e) respectively, there is one
and only one pair of values of 0 which corresponds to any specific
value of probability between zero and unity exclusive, Let us call
the second value of 6 T , and consider it as a function of the

first value of 0 . Thus we have
(3.5) T = T(0) .

Since both pg(e) and P;(G) are strictly increasing in 0 , the

functional relationship in (3.5) must be strictly increasing, and,




ENGSRS—

‘(3.11) P,(0) = [1 + exp{-Da, (8 - BN} = <<

=10
therefore, we can also write
which is also a strictly increasing function of T . Thus we have

P‘(G) > P;(T(e)l

P;(T) - Psle(T)]

(3.7)

The general form of the transformation of & to T 1is, therefore,
(3.8) =Pl (@)
8 8
and that of T to 6 {is
(3.9) 0 =P lipr(r)] .
8 8

For the purpose of illustration, let us consider two binary
items, one of which has a linear item characteristic function such

that

y * _ -1
(3.10) Ps(e) ((:] as)(sg 02 as <0 < Bs >

and the other has an item characteristic function in the logistic

model, such that

where LY is the discrimination parameter, b is the difficulty

h
parameter, and D 1is the scaling factor. It is well known that

s

(3.11) 1is very close to the item characteristic function in the

normal ogive model of the same parameter values, if we set D = 1.7
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(Birnbaum, 1968). These two item characteristic functions are
illustrated in Figure 3-3, with ag--2.5 and Bg- 2.5 for item g ,
and with D = 1.7, a = 1.0 and bh = 0.0 for item h .

Suppose that our original item characteristic function is linear,

as 1s defined by (3.10). We shail try to transform 6 to T so

that the resultant item characteristic function is written as
-1
(3.12) P;(T) - (1 + exp{—Dag(‘t - bs)}] ’

the identical form as (3.11). Since we have from (3.7), (3.10) and

(3.12)

(3.13) (BB <a )Y = [1 % sxpl-pa_(v-b)317Y
g 8 &g 8 g

a direct expansion of the above provides us with

3.14 & -1 » - a1
( ) T (D's) log [(8 ozg)(is8 8) ]+l>8 .

Figure 3-4 presents the relationship between the original
latent trait 6 and the transformed latent trait T with o, = -2.5,
Bg- 2.5, D=1,7, a8 = 1,0 and bg = 0,0 ,

If the situation is reversed, and the transformation is from

T to 6 , then we obtain in the same way
-1
. = + - - + - -
(3.15) 9 [Bg agexp{ Dag(T bg)}]ll exp{ Dag(T bg)}]
= + - *
@ (i3g ug) Pg(r)

It is obvious that the range of © resulting from the above trans-

formation is

3.16 <0 <
( ) o 68
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The above fact implies that the area under the curve g£ the

square root of the item information function derived from any item

characteristic function, which is strictly increasing in 6 and

satisfies (3,4), is constant, regardless of the model to which

it belongs. As we have seen in the above example, it does not matter
if the range of the latent trait is a finite interval, the set of
all real numbers, or something else.

For the purpose of illustration, we shall go back to the
example we used earlier, i.e., that of the linear model and the
logistic model, whose item characteristic functions are given by

(3.10) and (3.12), respectively. We can write from (2.21), (3.10)

and (3.12)
1

(3.17) Qg(®) = (8, - )8, - a)

and

(3.18) QA = (1 + exp{Dag(T-bg)}]-l

We can also write for the derivatives of the two item characteristic

functions such that

(3.19) 9 “ - )™

90 P.(O) (88 as) 3
and

9 - - - b i -2
(3.20) T P;(T) Da8 exp{ Dlg(T bs)}ll + exp{ Dag(t bg)}]

- D's P;(r) Q;(t)

Thus the item information function, 18(6) sy 1in the linear model

is given by




"I'.lIIII.llIlIllllll-Illlllllllllll!lllll-l!!IIlllllIIlllll!-Illl!llIllll!-!!I!-l!lllI—--ul-! ——— :

=LA

-1
(3.21) 1'(9) - ((8 ‘“g”Bg' 8)]

r We can also write for the item information function I;(T) after the

i transformation of the latent trait 6 to T

(3.22) 1*(r) - p2 agz PA(T) QX (1)

2 2 -
=D ag exp[—Dag(Tvbg)][l + exp{—Dag(Tﬂbg)}] 2

. 2 . 2
D " Pg(e) Qg(e)

2 2 -2
= D o = = 3
% ag (8 Gg) (Bg 9) (Bg C‘g)

3 The two item information functions given by (3.21) and (3.22) with

the same set of item parameters and a scaling factor are shown in
Figure 3-5, and their square roots are presented as Figure 3-6.
It is interesting to note that, within each figure, the two curves
are substantially different.
It can be observed easily that the constancy of the area under the
curve of the square root of the item information function holds for
the set of item characteristic functions which take the form given
by (2.22), if the value of cg is common, The meaningfulness of
the item information function is, however, doubtful for this type
of item characteristic function, as was pointed out earlier, so we

will not pursue this type in the present paper,
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IV Area under the Curve of the Square Root of the Item Information
Function ' ik vt

We have seen that the area under the curve of the aquare root
of the item information function derived from any item characteristic
function, which is strictly increasing in § and whose two asymptotes
are Q0 and 1 , respectively, is constant. Note that not only the square
roots of the item information functions in the linear and logistic models in
Figure 3-6 but‘those in the normal ogive model in Figure 3-2 exemplify
this constant area. Now the question is: What is the value of this
area? We notice that this can be obtained by integrating any one
of these curves, or any other curve which is derived from an item
characteristic function of the same type, regardless of the model to
which it belongs. To make the mathematical process simpler, we

shall take up the simplest model, i.e., the linear model,
§

We can write from (3.21) that

-1/

B8 B
4.1) I 118(0)11/2 de -f (6 -aw@-0112a .

a a

Let us define a new variable 6% such that

(6.2) 0% = [26 - (a + B)1[B - o] ¥

Then we obtain

(4.3) 8= [(B~-a)e*+ (a+RB)]/2,
do

(4.4) a0% = (B -a)/2

and

(4.5) -1 <o6r<]1

§ Since we deal only with one item in this section and In Section 5,
for simplicity, we use a and B in place of as and B8 .
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Using this new variable O* , (4,1) can be rewritten as

8
(4,6) f [18(9)]1/2 40

1
I (B -/t A« ou2y~1/2

o 1

[(B = a)/2] do*

1
f a - e*rz)'l/2 do*

Thus we have found out that the area under the curve of the square

root of the item information function, which is derived from any

strictly increasing item characteristic function with O and 1 as

its two asymptotoes, is m .

The same result can be obtained just as easily, if we use the
logistic model instead of the linear model. We can write from (3.22)

& 1/2 = iR
4.7) [ [1;(1)1 dt Dag{ [exp{Dag(T bg)}]

s -00

(1+ exp{Dag(T-bg)}]-1 dt .

Defining T1* such that

(4.8) ™™ = [exp{Da_(1-b )}]l/2 »
8 4
we obtain
dt__ -1 -1
(4.9) 3 =2 (a1 ;
and, substituting this result into (4.7), we can write
e 1/2 - -1 e |
(4.10) [I*(T)] dt = Da T*(1+7T*2) 2(Da_) “t* © dt*
L 8 g) o n
=2 (1 + t*2) " dt* = 2 tan T*
0 0
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V Search for the Item Characteristic Function Which ProvﬁQes;g
Constant itgp Ihfbrmgtion Functlon

We are to find out the model for the item characteristic
functions which provide us with constant item information functions,
within the type of item characteristic function which 1is strictly
increasing in 6 with 0 and 1 as its lower and upper asymptotes,
It is observed from (2,19) that such a model is unique, since the
derivative of the item characteristic function is nonenegative for
any model which belongs to this type, and it is up to the numerator
of the right hand side of (2,19) to make the item information function
constant. It is also observed that the range of © for such an
item characteristic function is a finite interval, since the area
under the square root of the item information function is a finite
value, 7T , as was found out in the preceding section.

Let C Dbe this constant amount of item information for

8 <86 < 8. Then we have

(5.1) 5-0= mcl/2,

Thus the length of the interval of 6 depends upon the constant

item information C .

We find that the model described by
2
5.2 P (6) =sin[a (6 - b ) + (n/4
(5.2) g() sn[g( 8) (n/4)]
is the one we have looked for, if we set the parameter ag such that
{5.3) a = c1/2/2 ’

with the range of 0 such that
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(5.4) [-nag'lla] + b8 ¢ By [ﬂas’I/A] + bs

To confirm this, we can write from (5,2) and (5,3)

2
(5.5) QB(G) = cos lag(ﬁ - bg) + (n/®)] ,
and
a — L ]
(5.6) 7;"-98(6) 2 sin [ag(e bg) + (m/4)]

cos [ag(O - bg) + (m/4)] -a8

1/2
2 a [PS(G)QB(O)]

_ 31 1/2
¢ [po(0)Q (8)1 "

and substituting (5.2), (5.5) and (5.6) into (2.19) we obtain

(5.7) 18(9) = C .

We can see from (5.2) that this model provides us with point
symmetric item characteristic functions with (bg, 0.5) as the point
of symmetry, just like the normal ogive model, the logistic model
and the linear model. The parameter b8 can be called, therefore,
difficulty parameter, just as in the normal ogive and logistic models.
It is obvious from (5.6) that the parameter a8 is (proportional to)
the slope of the line tangent to PB(B) at 0 = b8 » just as in
these two models, so it can be called discrimination parameter.

The meaning of this parameter is more obvious in (5.3), i.e., the
fact that the amount of item information solely depends upon the

parameter as
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We shall call this model, which is presented by (5.2), the

consatant information model. This model has an important role in

the estimation of the operating characteristics of item response
categories, which will be described in the following(oection.

It should be noted that this model can be derived from
any other model of the present type, such as the normal ogive,
logistic and linear models, by an appropriate transformation of
the latent trait, For the purpose of illustration, we shall
follow the process starting from the linear model, which is given

by (3.10) . Let us define a new variable O** such that
(5.8) o*% = (8 -~ a)(B - o)}

From (5.8) we obtain for the item characteristic function

(5.9) P;*(B**) =- Gwx

and then

(5.10) Q;*(G**) a1 - %k |
(5.11) 3;1* P;*(e**) -1
and

(5.12) 0 <fwt <1

Then the item information function is derived from (5.9), (5.10),

(5.11) and (2.19) such that

(5.13) Ia%(0%%) = [O%*(1 - L)
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Using the relationship

(5.14) 1) = Ieern) 195707

and setting

(5.15) I;(T) «C,

we obtain

(5.16) T - LU I g

From (5.16), we can write

(5.17) T - (1?2 f[e**u - o) dom v a,
where d1 is an arbitrary constant. Let us define a variable
that

(5.18) A= 9**1/2 .

Then we have

(5.19) oxx = 22,

(5.20) e el

and

(5.21) 0O<ax<l.

A

such

Using (5.19), (5.20) and (5.21), the integral in the right hand side

of (5.17) can be rewritten as




mw e ——
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(5.22) f[en(l - ewv)]'l/2 dO** = 2 [(1 - x’]'”z A + 4,
- 2 ain—lk + dj

1

=2 stnloen) 2 4 gy {

where d; 1s an arbitrary constant, Substituting (5.22) into (5.17),

we obtain

-1/2 sin-l(e**)llz +d, ,

(5.23) T = 2(C)
where d, 1s an arbitrary constant, and then

(5.24) onx = s1a?((©) M2 (x - 412 .

We can write from (5.9) and (5.24)

(5.25) PA(T) = P (o%) = s1a’ ()2 (x - gp)/21 .
Defining the parameter ag by (5.3) and setting

(5.26) & = b - nc M2y, |

we obtain (5.2) and (5.4).
Figure 5-1 presents a few examples of the item characteristic
function of the constant information model, together with the

corresponding item information functions.
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00 i' .00 -2.00 -' .' 0. "o“ ..' .i' 8.00
LATEIN TRRITY ©
-3.1416 -2.2854 -1.0708 0.1073 0.8927 2.0708  3.0472
-0.7146 0.9528 3.1416
FIGURE 5-1 T T A R et

Item Characteristic Functions (Upper Graph) and the Item Information Functions
(Lower Graph) of Five Binary Items Following the Constant Information Model.
The Item Parameters Are: a, = 0.25 and bl = 0,00 (Smaller Dots),

1/
a, = 0.50 and b2 = (0.50 (Shorter Dashes), a, = 0.75 and
b1 = 2,00 (Larger Dots), a, " 1.0 and hh = -1.5 (Longer
Naaled), and By ™ A 00 awd l\,‘ = 0.5 (Soltd Line).

N —— - O »M
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VI Characteristics of the Constant Information Model

Here, we shall stop and consider some important characteristics

of the constant information model, which is given by (5.2), in addition

to the fact that its item information function is constant, {,e,, 6:82 .

The basic function (Samejima, 1969), Ax (6) , which has an important
role in the computerization of the process of maximum likelihood
estimation and so on when the minimal sufficient statistic does not

exist, is defined for the graded response category x8 such that

3
(6.1) Axs(e) - ETR log an(e) .

Thus the two basic functions for the binary item g of the constant
information model on the dichotomous response level are obtained from

(5.2), (5.5), (5.6) and (6.1)

- ‘2";"3(”1/2 [Qg(e)]‘l’z- -2a_ tanla (8 - b)) + n/4]
(6.2) Au (8) for ug" 0
R Ba ot 3
2a [Qs(e)ll Py (0 2a cotla (8 - b)) + n/4]
for us- 1 s

It is clear from the above that the basic function for ug =1 1is a
strictly decreasing function of 6 with positive infinity and zero
as its two asymptotes, and that for u8 = 0 is a strictly decreasing
function of 6 with zero and negative infinity as its two asymptotes,
respectively. Figure 6-1 illustrates a few examples of these basic
functions with different sets of item parameters.

The item response information function, which can be written as

9
(6.3) T )= =35 4 @
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=3 1416 - 2.285%4 -1.0708 0. 1073 0.99%28

-3.00

eRSIc MECTIeR (us-o)
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2,00
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1,00
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T J.o Lo I .0 - )
F \ ve ' 3.0472
-0.7146 0.8927 2.0708 3.1416

FIGURE 6-1

Basic Functions of Five Items Following the Constant Information Model,
wvith the Parameters, a, = 0.25 and bl = 0.00 (Smaller Dots), a, = 0.50

and b2 = 0.50 (Shorter Dashes), a, = 0.75 and b3 = 2,00 (Larger Dots),
a, - 1.00 and bh = -1.50 (Longer Dashes) and ag = 2,00 and b, = 0.50

: 5
(Solid Curve), for us = 0 (Upper Graph) and for “R = 1 (Lower Graph).
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on the graded response level, is fcund to be for each of the two
binary response categories of the constant information model on

the dichotomous response level

. 3 PSR e
2‘8 sec [ag(e - bs) + m/4) 2a8 [Qs(e)r >0

(6.4) I, (® for u = 0
8 - 2‘32 csczlas(e - bs) + 1/4) = 2‘32[Ps(°)r1 >0
for us- S

Figure 6-2 illustrates these two item response information functions
for an {tem with the parameters, as = 0.25 and b8 = 0.00 , together
with the constant item information function (= 0.25). From (2.4) and

(6.4) we can write for the response pattern information function

2 -u8 us-l
(6.5) Iv(e) - 2us§v " (Ps(en [Qs(e)] ’

and, finally, the test information function is given by
- R
(6.6) I(6) = 4% a ‘
g=1 8
Figure 6-3 presents both the set of four response pattern information
functions and the test information function for a hypothetical test

of two binary items, whose item parameters are a, = 0.25, bl = (.00,

1
a, = 0.5 and b, = 1.00 .

2 2
The present model can be expanded to the one in the homogeneous
case (Samejima, 1972) of the graded response level easily, although
in such a case it cannot be called constant information model.
It will be discussed on some other occasion, however, when the
necessity has come.

We have seen in an earlier section that the area under the

curve of the square root of the item information is the same, regardless
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: 7

7,00

8,

e

b el

3,00

2,00

..
.v”‘”
B | = .
'l'-'EcT_F.u $.00 -1.00 0688 1.08 1.00 a.kl .00
LATENY TMIT 8
-3.1416 3.1416
FIGURE 6-2

Item Response Information Functions of an Item Following the Constant
Information Model, with the Parameters, ag = 0.25 and b_= 0.00 ,

for “8 = 0 (Dotted Curve) and for u8 = 1 (Solid Curve), Together
with the Constant Item Information Function (Dashed Curve).
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L

“eeened

.08 1.08 .08 * .0 W

LAVENY TRMIT O
-0.5708 2.5708

FIGURE 6-3

Response Pattern Information Functions of the Four Possible Response
Patterns, (0, 0) (Shorter Dashes), (0, 1) (Smaller Dots), (1, 0)
(Solid Curve) and (1, 1) (Larger Dots), of Two Binary Items
Following the Constant Information Model with the
Parameters, a = 0.25, b1 = 0.00, a, = 0.50 and

b2 = 1.00 . The Test Information Function
Is Also Given by Longer Dashes.
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of the specific model, provided that it belongs to the present type
which has a strictly increasing item characteristic function with zero
and unity as its two asymptotes. We should note, however, that the
important index is the reciprocal of the square root of the test
information function, which is considered as the standard error of
estimation specified as a function of 6 . For this reasonm,

we shall make some observations upon the area under the curve of

the reciprocal of the square root of the item information function

of the constant information model, in comparison with those of other
models of the same type.

It can be seen that, if the range of 6 1is the set of all
real numbers, then the asymptote of the item information function
when © approaches either positive or negative infinity should be
zero regardless of the specific model which belongs to the present
type, since the area under the curve of the item information function
is finite. From this fact, it is obvious that the area under the
curve of the reciprocal of the square root of the item information
function is positive infinity, since the function tends to positive
infinity as 6 approaches either positive or negative infinity.

This subset of models includes both the normal ogive and logistic
models. We can say, therefore, that the accuracy of estimation is
low on the average, when we consider the whole range of 6 , even
though these models may provide a high accuracy of estimation

locally. When the range of 6 is a finite interval, the area under
the curve of the reciprocal of the square root of the item information
function can be finite, and, therefore, the accuracy of estimation

can be higher on the average, when we consider the whole range of




® . Following a similar mathematical process as we take in the
proof of the theorem that the harmonic mean can never be greater
than the arithmetic mean when all the observations are positive,

it can be shown that the area under the curve of the reciprocal of

the square root of the item information function is minimal for

the constant information model, among those models of the present

type which have the same interval of 6 as the range of g . It

can be said, therefore, the constant information model has the best
accuracy of estimation on the average, when we consider the whole
range of 6 .

For the purpose of illustration, Figure 6-4 presents two graphs,
one of which provides us with the square root of the item information
function of the constant information model, with as = 1/4
= 0.25 and bs = 0.00 , and that for another model, which increases
from 0.1 to 0.9 in the first half of the interval of O and then
decreases from 0.9 to 0.1 in the second half. It is obvious that
the areas under these two curves are both m . The other graph
in Figure 6-4 presents the reciprocals of these two functions in
the first graph. It is clear that the area under the curve for the
constant information model is much less than that for the other model.
It should be noted that, when we consider the corresponding reciprocals
of the square roots of the test information functions for the set of

n equivalent items following these models, the configuration in the
second graph is still the same, with all the ordinate values divided

by the square root of n .
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FIGURE 6-4

Square Roots of the Item Information Functions of the Constant
Information Model (Dotted Curve) and Another Model (Solid Curve),
Which Have the Same Area, Are Shown in the Upper Graph, While
in the Lower Graph the Reciprocals of the Corresponding
Functions in the Upper Graph Are Drawn. The Item
Parameters in the Constant Information Model Are:

a = 0.25 and b_= 0.00 .
8 8
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VII Maximimum Likelihood Estimation of Ability When the Set of
Binary Items Are Equivalent and Follow the Constant Information
Model

Suppose all the n binary items in a test are equivalent

(Lord and Novick, 1968), so that we can write
(7.1) Pl(e) = Pz(e) A — PS(G) = e Pn(e) k.

It has been shown that in this situation the simple test score t such
that

(7.2) t= I

u €V
8

u
g

is a minimal sufficient statistic, regardless of the model that the
item characteristic functions follow (cf. Birnbaum, 1968). In
connection with the maximum likelihood estimation of the examinee's
ability or latent trait, this can be explained as follows.
On the dichotomous response level, (2.4) can be rewritten
as
1-u

u
= 8 8
(7.3) P,(6) I [Pg(eﬂ [Qg(en :

'
uge

Since this operating characteristic of the response pattern V itself
is the likelihood function in.estimating the examinee's ability, we are

to use the symbol Lv(e) for this function in the present section.

When all the items are equivalent, we can rewrite (7.3) in the form
A g t -t
(7.4) Ly(0) = P, (0 (o)

Thus we have for the likelihood equation

7.5 2 108 Ly (6) =[5~ 2, (8) ][t - nP (O)][2_(0)Q (®)] 7 = 0 .




-

It should be noted that, although we used the operating characteristic
of the specific response pattern as the likeliihood function, on the
right hand side of (7.4) the response pattern V does not show itself,
and all the information given by that particular response pattern

is summarized in the form of the test score ¢t . Thus &ll we need

in the estimation process is this simplified, sufficient statistic t ,

instead of the original response pattern V . From (7.5) we obtain
(7.6) t =P () ,
8
and the maximum likelihood estimate 0 is given by
) -1
(7.7) - P8 (t/n)

When this common item charactreristic function follows the

constant information model, we obtain from (5.2) and (7.7)

(7.8) b - .8‘1 [ein~L(e/n)}/?

- /4] + b .
/4] s
It 1s obvious from (5.4) and (7.8) that the range of 6 is given by

(7.9) l-nas'llal +b s 0 s lnag'llal L W
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VIII Estimation of the Operating Characteristic without Using
the 0ld Test

It has been mentioned that the family of methods and approaches
developed for estimating the operating characteristics of item response
categories (Samejima, 1977b, 19774, 1978a, 1978b, 1978c, 1978d, 1978e)
preassumes the Old Test, or a set of items whose operating character-
istics are known and which provides us with a constant test information
function over the range of 0 of our interest. In this section,
we are to see how these methods can be generalized to the situation
in which we are to develop a new item pool, and, naturally, cannot
depend upon any "Old Test." Suppose, for developing the new item
pool, a substantial number of test items are administered to a
substantial number of examinees, and there exists a subset of equivalent
binary items among these items. In this situation, we can use this
subset of items as the substitute for the 0ld Test.

We assume that these equivalent items have a strictly increasing
item characteristic function with 0 and 1 as its two asymptotes.

As we have seen in previous sections, we can adjust the latent trait
scale in such a way that the resulting common item characteristic
function for these equivalent items follow the constant information
model, which is given by (5.2). Then the response pattern of each
examinee with respect to this subset of equivalent binary items
is specified, and is summarized in the form of test score. The origin
and unit of the latent trait are set more or less arbitrarily, say,
a8-0.25 and bs-o.oo . From the test score of the subset of
equivalent binary items, the maximum likelihood estimate of the

examinee's ability is obtained through (7.8). The resulting set

[ —




of the maximum likelihood estimates for all the examinees can be

used in the same way as we use the set of maximum likelihood estimates
obtained from the results of the 0ld Test. The operating character-
istics of each of the other items can be estimated in the same way as
we do when we use the 0ld Test. After this has been done, we can
transform the latent trait in whatever way we wish.

In using the generalized method, we should be aware of a few
problems. First of all, the constant test information provided by
the subset of equivalent binary items with the constant information
model should be substantially large, so that the normal approximation
for the conditional distribution of 8 , given 0 , should be
acceptable. On the other hand, we need a substantially wide range
of ability 8 for which the test information is constant, in order
to make the estimation of the operating characteristics of the other
items meaningful. These two are opposing factors, as is obvious
from (5.3) and (5.4). The solution for this problem is to use a

substantially large number of equivalent binary items, whose common

discrimination parameter is low.

Another problem is the effect of the range of 6 on the speed

N

of convergence of the conditional distribution of 6 , given 8 ,

/2 A

to the normal distribution, N(O, (nC)-l ). Since the range of 0 is
a finite interval which is given by (7.9), it should be expected that
the truncation of the conditional distribution makes the convergence
slow around the values of 0 close to (-na;1/4)+bg and (nagl/a)+b8 .
as is illustrated in Figure 8-1. We must turn to Monte Carlo studies
to investigate this problem further and in more detail, which will be

done in the near future. A solution for this problem is again to use a
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set of equivalent binary items whose common discrimination parameter
is low, so that the range of 0 1is wide enough to include all the

examinees far inside of the two endpoints of the interval of 6 .

An alternative for the above solution is to exclude examinees whose
8's are close to [-na;1/6]+bg or [na;1/6]+bs . In the second solution,

however, the number of examinees will be decreased and this may affect
the accuracy of the estimation of the operating characteristics.

It is worth noting that the solution for the first problem, which is

underscored in the preceding paragraph, is also the solution for the

second problem.

If there exist more than one subset of equivalent binary items
within the tentative item pool, we can make a full use of all the
subsets. We follow the process described earlier for each subset
of equivalent binary items, and the resultant estimated operating
characteristics can be equated by appropriate transformations of the
separately defined latent traits, using, say, the least squares

principle, to integrate all of them into one scale.




IX How to Detect a Subset of Equivalent Binary ltems

A natural question is how to detect a subset of equivalent
binary items out of the tentative item pool. In empirical sciences,
it is often difficult to obtain a sufficient evidence. The second
best way will be, therefore, to formulate a set of necessary evidences,
and to check our data with respect to each criterion. If we find
out that our data satisfy all the necessary conditions thus formulated,
then we can assume that we have obtained what we wanted, until another
necessary criterion becomes available and our data contradict it.

In our situation, first of all, it is necessary, though not
sufficient, that the proportions correct should be the same value
for all the equivalent binary items, within the range of sampling
fluctuations. This can be checked easily, and we can find out a group
of binary items which satisfy this condition, if there is any. Next,
it is necessary that the 2 x 2 contingency tables of the bivariate
frequency distributions should be symmetric and identical among all
the pairs of equivalent binary items, within the range of sampling
fluctuations. This can be checked for every pair of binary items
which have passed the first selection, and, possibly, some items have
to be dropped. We can go ahead to the 23 contingency tables after
this step, to the 24 contingency tables, etc., if we wish.

As was pointed out in the preceding section, it is desirable that
these equivalent items have a low common discrimination power, in addition
to being substantial in number. A necessary condition for this is that
the two frequencies for the response patterns (0,1) and (1,0), which
are, theoretically, the same value if the two items are equivalent,

should be large, or compatible to the other two. This can be checked

T




A
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therefore, in the same process for checking the equivalency of the
binary items. Figure 9-1 illustrates two typical 2 x 2 contingency
tables, one of which is for a pair of equivalent binary items which
have a common low discrimination parameter, and the other is for a
pair of those which have a common high discrimination parameter.

The above are just several examples of the necessary conditions.
It is desirable that researchers work on this problem and eventually pro-
duce an appropriate set of necessary conditions which contains more
varieties of conditions and yet is useful from the practical point

of view also.




Low Discrimination Parameter

Item h
=0 = 1 | Total
Item g " "h
u8 =0 110 243 353
us =1 248 399 647
Total 358 642 1000

High Discrimination Parameter

Item h
=0 = ] | Total
Item g "h "
uB =0 300 53 353
ug =1 58 589 647
Total 358 642 1000

FIGURE 9-1

Two Typical 2 x 2 Contingency Tables for a Pair of
Equivalent Items with a Common Low Discrimination
Parameter, and for Those with a Common High
Discrimination Parameter, Respectively




oAS-

X Discussion and Conclusions

It has been pointed out that the area under the square root
of the item information function is a constant value, 7m , for any
strictly increasing item characteristic function having zero and
unity as its two asymptotes. The item characteristic function of
this type, which provides a constant item information function, has been
searched and discovered, and the model is nawmed constant information
model. It has been observed that the amount of information, which
such a binary item provides for a specified value of ability 0 ,
and the range of © , for which the item has a constant information,
have a "trading off" relationship. The characteristics of the new
model, such as the basic function, the item response informacion
function, the response pattern information function, etc., have
been investigated. The process of obtaining the maximum likelihood
estimate of the examinee's ability or latent trait when the n items
are binary and equivalent has been shown, using the constant information
model and the sufficient statistic, t , i.e., the simple test score.
It has been shown that, in the methods and approaches of estimating
the operating characteristics of item response categories, which
have been introduced earlier, a set of equivalent binary items in the
tentative item pool can be used as a substitute for the 0ld Test, and,
therefore, those methods are usable even in the situation where we
start from the very beginning of developing an item pool without the
Old Test. In so doing, attention has been called upon some problems
and, for them, possible solutions have been suggested. Some practical

considerations as to how we can detect a subset of equivalent items out

I‘:.a..
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of all the binary items in the tentative item pool, if there is any,

have been given.

It is interesting to note that, for once, items with low

discrimination power have an important role, in preference to those

with high discrimination power, which are usually considered to be
better items. This fact leads to a more general conviction, which
is related with the attenuation paradox (Tucker, 1946, Loevinger,
1954). The important point is to distinguish two different situatioms, .
i.e., 1) the situation in which the local accuracy of estimation by an
item at a certain level of ability or latent trait is important, and
2) the one in which the overall accuracy of estimation by an item
for a certain interval of ability or latent trait is important. As
an example of the first situation, we can name tailored testing, or
the computerized adaptive testing, and in such an occasion binary items
with high discrimination power are more useful. The second situation
is exemplified by the estimation of the operating characteristics
of graded item response categories, which has been pursued and developed
without assuming any mathematical forms for the operating characteristics.
In this situation, items with high discrimination power are not necessarily
useful, and, as we have seen in the preceding sections, low discrimination
items are more useful if we use a subset of equivalent binary items
in the tentative item pool as asubstitute for the 0ld Test.

It has been pointed out earlier (Samejima, 1969, Chapter 2) that
there is a philosophical difficulty in determining which scale of latent
trait is the best one out of those which are strictly increasing

transformations of one another. Rescaling of the latent trait on the

- —
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final stage of the generalized methods and approaches of estimating
the operating characteristics of graded item response categories,

therefore, may have to depend solely upon convenience.
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A-1 Simulated Data

The simulated data used in the present study are characterized

as follows.

(1) There are 500 hypothetical examinees.

(2) Their ability, or latent trait, distributes uniformly for the
interval of 6 , (-2.5, 2.5). Actually, we use 100 discrete
points of O , such as -2.475, -2.425, -2.375, -2.325, ......,
2.375, 2.425 and 2.475, i.e., the midpoints of the 100 subintervals
with the width of 0.05, and at each point five examinees are
located. |

(3) There is' a hypothetical test of 35 graded items, each of which
has four item score categories, and which provides us with an
approximately constant test information function, 21.63, for
the interval of 6 , [-3.0, 3.0], following the normal ogive
model of the graded response level (Samejima, 1969, 1972). The
test is called the 0ld Test, to distinguish from the New Test,
which will be described later.

(4) Each of the 500 examinees is assumed to have taken the 0ld
Test, and his response pattern on the 35 graded items has been
calibrated by the Monte Carlo method. The score categories of
each item are 0, 1, 2 and 3, and a typical response pattern
looks like: (3,3,3,2,3,3,2,2,2,2,2,2,1,2,2,2,1,2,1,1,1,0,1,1,
1,0,1,0,1,1,0,0,0,0,0).

(5) From each response pattern, the maximum likelihood estimate of the
examinee's ability has been obtained, using a computer program
written for this purpose. In this process, out of 140 basic

functions (Samejima, 1969, 1972), an appropriate set of 35 basic
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functions are chosen depending upon the item scores in the
response pattern, and, using the Newton- Raphson procedure,
the point of 6 at which the sum total of these 35 basic
functions equals zero is searched.

(6) There is another hypothetical test of 10 binary items, each
of which follows the normal ogive model of the dichotomous
response level. This is called the New Test.

(7) Each of the 500 examinees is assumed to have taken the New
Test also, and his response pattern on the New Test has been
calibrated by the Monte Carlo method. A typical response
pattern looks like: (0,0,0,1,0,0,1,0,1,1).

(8) The item characteristic functions of the test items of the
New Test are assumed to be unknown, and they are the target
of estimation. Each method of estimation is evaluated by the
the "closeness" of the resultant estimated item characteristic

functions to the true item characteristic functions,

£
E Lo S
R, (0) = (2m1/2 jas i e
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