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substantial number of equivalent items , even though their common item
characteristic function is not known yet. It is observed that ,

within the type of item characteristic function which is strictly

increasing in th. latent trait 0 with zero and unity as Its two

asymptotes, the area under the square root of the item information

function is a constaUt value , n . The item characteristic function

which provides a constant item information is searched and discovered ,

and is named the constant information model. Using this model , it

is observed that the subset of equivalent binary items can be used
a. a substitute for the Old Test, and these methods and approaches
are generalized in the present situation. It is discovered that , for
once , items with low discrimination power have a significant role.

D.C

b
~~~~ . ~~~~ ~~~

‘. 
•—

~ ~~~‘ 
.
~>

t\
c. ~~~

• ~~~~~~~~~~~~ - •-

S/N OIO2~ LP.Ot1. so OI • Unclassified

L — IU~~S eSStV  ~~U £llI ~~ S~~ I?I~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_--—~



CONSTANT INFORMATION MODEL, A NEW , PROMISING ITEM CHARACTERISTIC

• FUNCTION

ABSTRACT

~
‘ The methods and approaches introduced so far for estimating

the operating characteristics of item response categories require
the Old Test, or a set of items, whose operating characteristics are

known. To generalize these methods to apply for the situation

where we start to develop a new item pool, i.e., there is no MOld Test,

an approach is made by assuming that the tentative item pool has a
substantial number of equivalent items, even though their common item

characteristic function is not known yet. It is observed that ,

within the type of item characteristic function which is strictly 
~•

increasing in the latent trait 1 0 ‘with zero and unity as its two

asymptotes, the area under the square root of the item information

function is a constant value, it . The item characteristic function

which provides a constant item information is searched and discovered ,

and is named the constant information model. Using this model, it

is observed that the subset of equivalent binary items can be used

as a substitute for the Old Test, and those methods and approaches

are generalized in the present situation. It is discovered that, for

once, items with low discrimination power have a significant role.
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I Introduction

Estimation of the operating characteristics of the item

• response categories of a test item has been investigated (Ssmeji.e,

1977b, 1977d , l978a, 1978b, 1978c, 1978d, 1978e) without assuming

any prior mathematical forms, and by using a relatively small number

of examinees in the process of estimation. One common restriction

in these methods and approaches presented so far is that we need the

Old Test (cf. Appendix I) consisting of the items whose operating

characteristics are known, and which providosus with a constant test

information function for the interval of latent trait, or ability,

0 of our interest. With this setting, each examinee’s ability

level is estimated from his response pattern by the maximum likelihood

estimation, and the se t of these maximum likelihood estimates is

the main information source of the estimation procedures. The

methods are useful, therefore, in such a situation that we already

have an item pool, and we wish to._ 4d.more items to it.

A question arises as to whether it~U possible to overcome

this restriction, and to make these methods and approaches useful

in a more general situation , in which there is no Old Tes t , and ,

consequently , the maximum likelihood estimate ~‘f each examines’s

• ability i. not a priori given . The fact is that it is not difficult

to do so, if we are in such a situation that a large number of test

items are administered to the group of examinees, which include a

set , or sets, of equivalent items, i.e., the items whose operating

characteristics are identical. In practice, we need to identify

these equivalent items without knowing their operating characteristics ,

and in so doing several conditions should be satisfied.
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In the present paper , theory and rationale behind th. process

of generalizing the estimation methods in the above situation will

be presented and discussed, leaving the Monte Carlo study to observe

the actual process and results to a later paper . Since, in practice ,

many researchers and testers use binary items in both tailored testing

and paper—and—pencil testing, here we solely use binary items, although

graded items are more informative and efficient to use (Samejima,

1969, l977a, 1977c, 1977.). This restriction will give us a

practical advantage , however , since it is much less likely that

we find a subset of graded items, each of which has the same number of

item response categories with the same set of operating characteristics

as each other , among the test items in an actual test or a tentative

ite. pool.

i

~

•

~ 

• • ~~~~~~ . • •  ..-- • -~~~~~ - •. 
~~~~~~_~~~~~~~~~~~~~~~~~

_ .- _.
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II Some Properties of the Information Functj~ns

• Throughout this paper, we only deal with the uni’~dinensional

latent space. The range of the latent trait 0 is not necessarily

the set of all real numbers, however, as will be exemplified later

in following sections.

Let x~ be the graded item score, or graded response category,

of item g , which assumes integers, 0 through m , and 
~x 

(01
g

be its operating characteristic , or the conditional probability, given

ability 0 , that the examinee’s response to item g falls into

category X
g • The item response information function (Samejima,

1969) , I,~ (0) , is defined by
8

(2.1) I
~8

(e) — — log Pxg
(O)

The item information function, 1 (0) , is the conditional expectation

• of the item response information function, given 0 , so that

(2.2) I~ (O) - E[ I
~ 
(0)18) - ~~ (0) P~ (0)

g Xg~O g g

~~ 
~~~~~ ~x 

(0)1
2 

~• Xg~O g g

(cf. Samejima, 1969, Chapter 6). Let 
~~~~ 

be the operating

characteristic of the response pattern V . By virtue of the local

independence (Lord and Novick, 1968, Chapter 16, Samejima, 1969),

this operating characteristic is the product of the operating

characterIstIcs of the participating item respotIsv cstegorte~i , I.e.,

(2.3) P~(e) — fl P
~ 
(0)

X
8C
V 5

-- • - - •-~~ -- - _ •-- ---
~~~~

• •- -S --
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The response pattern information function, Lv (O) , which is defined

for every possible response pattern of a test, or a set of it items,

can be written for a specified response pattern V such that

a
(2.4) i Ce) — — log P

~
(e) — E I

~ 
(0)

i C Y  $$

The t.s; information function, 1(e ) , is defined as the conditional

expectation , given 0 , of the response pattern information function,

and after some manipulations we can write

it
(2~%) 1(P) — E 1,,(0) P,,(~

) — E I (0)
V ‘

Suppose we are in the posit ion to transform the ability scale

8 to another , by a strictly increasing function such that

(2,6) t — t(8)

We can easily see from th. definitions of the operating characteristics

that they are unchanged, or

(2,7) p* (it) — (0)
$ I

and

C2 8) P( r ) •

The information functions change , however , and we obtain the following .

(2.9) I~~(t) — I
~~
(O) ~~~~~ — log P

~~
(e).

~~4

____________  - —
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(2,10) 1 (r) — 15(e) ~4~j
2

(2.11) q(r) — ‘V~
0
~ 
[..4~_)2 — -~~~~

- log Pv(0)’~~t~

(2.12) I*(t) — 1(0) ( dO ] 2

The above results come from the relationship, which is directly

derived from (2.7), such that

(2,13) .-
~~~~

- P* (t) — -
~~~~

- P~8
(e) -

~~~~~
-

and the definition: of the item response inforuiation fiunction. and those

of the other three types of information functions. It should be noted

that the area under the curve of the item information function, and

that of the test information function, do change with the transformation

of the ability scale, since we have the relationships

• ~~~~~ d(2,14) I t*(i~) dr — 
~ 

I (0) —
~j~

- dOS
•.. &

and

(2.15) 
~ 

l*(t) d1 — 1: 1(e) - -  d~

where ~ and ~ are the lower and upper endpoints of the range of 8

and

~ I 
— t~0)

(2.16)

—

are those of the range of the transformed variable it . If we integrate

the square root of each of the two information functions, however,

_ _



~ppr 
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~~
-
~~~‘ 
- - - •

~~~~~ 

- - - —

~~~~ 
.— - - - -

~~~ 

- —- 

~

— —

—6—

we obtain

(2.17) 1 [I*(T)J U2 dT — ( (I (0)J l/2 
dO

)i  
$ I

and

(2.18) f (I*(t)J 1”
~ dit - 0)1U2 dO

Thus the area under the curve of the sq~are root of the item

information function, and that of the test information function, ~~~

unchanged throughout the transformation of the latent trait ~~

~~~ strictly increasing function, t(8) . This fact has many

important implications, as will be described in the next section.

On the dichotomous response level (Samej ima, 1972) , which

is considered as a special case of the graded response level with

m — 1 for each item g , the item information function is simplified

to the form

(2.19) I~(0) — C-i- Pg(O))2 (Pg(O) Q1
(8)]~~

where P~(0) is the item characteristic function, defined by

(2.20) P
5
(O) — prob,1u

5
—1I0]

with u~ (—0,1) denoting the binary item score s and

(2.21) Q~(0) — prob , (u
1
”.OIO) • 1 .- P

8
(0)

(2.19) is derived directly from (2,2), and also is equal to the i em

information function used by lirnbaum (Iirnbaum , 1968),
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It should be noted that, by definition , the item information

function is non—negative, regardless of the values of the item

response information functions, as is clear from (2.2) and (2.19),

When we consider this function as a measure of the local accuracy of the

estimation of ability 8 , however , the function will be meaningless

and misleading, if for some range of 8 one, or more, of the item

response information functions assumes negative values. This

happens to the three parameter models, i.e.,

(2.22) Pg(O) — c~ + (1 — c
5
) ‘Y

g
(O)

where cg is the guessing parameter and ‘Yg(O) is some strictly

increasing function of 0 with 0 and 1 as its two asymptotes.

The three—parameter normal ogive model and the three—parameter logistic

model (Birnbauin , 1968) are two typical examples of (2.22). As was

pointed out before (Samejima, 1972, 1973), any item characteristic

function formulated by (2.22) has some range of 8 in which the

item response information function for the item score 1 assumes

negative values, and, therefore, the unique local maximum is not

assured for every possible response pattern , provided that ~11~(8)

~~tisfies the unique maximum condition (Samej ima, 1969, 1972).

I.

—— • - • - - -~~~~ 5- •-- ------- — - -5
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III Some Implications of the Constançy~ of the Totality ~~ ~~~~~~~~ 
Sq~uare

Root of Item Information Function under the Transformation
of the Latent Trait

It can be observed easily that any specified item characteristic

function can be transformed to another, which belongs to the same

model, through the transformation of the latent trait. To give

an example, suppose that item g has an item characteristic function

in the normal ogive model, such that

fa (O—b ) 2(3.1) P (0) — (2it]~~
”2 j 

g g exp[—t /2] dtg

To change this to another item characteristic function which also

follows the normal ogive model but with different item discrimination

and difficulty parameters, a* and b* , all we need is such a
I g g

linear transformation of 0 to it that

(3.2) it — a~(0 
- b

8
) ~~~ +

Thus we can write for the resultant item characteristic function

—1/2 (a*(t_b*) 2(3 3) P* (t ) — (2n) g g ex p[—t /2] dt

An important implication of this fact, combined with (2.17), is that

the area under the curve of the square root of the item information

• function is constant for every item characteristic function which

belongs to the same model. For the purpose of illustration, Figures

3—1 and 3—2 present the item information functions and their square

roots for three items, all of which belong to the normal ogive model

with a1 — 1.0, a2 — 2.0 and a
3 

— 3.0 , and b1 — b2 
— b3 

— 0.0

-5- - - -— 5 - - - 5 —5 -— -- —5---—— —S—-—- S,-,—
~—~--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- --— -— -- -— --,------—- — ,-~--S~~-. -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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respectively. We can see that in Figure 3 — 1. the three areas are

substantially different from one another , just like the case of

the logistic model with the same parameter values (cf , Birnbaum,

page 461, Figure 20.4.1) . On the other hand, in Figure 3 .2 , these

areas under the three curves are the same, just as was expected .

This fact can be generalized further , to include item

characteristic functions of different models, Suppose that item g

has some strictly increasing ite~ characteristic function , with

f i l m
~~~ 0

P
8
(0)—0

• h i m
— 1

-• We can see that , regardless of the model tc which P
5
(0) belongs ,

it can be transformed to any other item characteristic function ,

which Is strictly increasing and has the two asymptotes, 0 and 1

through the transformation of the latent trait 0 to it • To be

more precise , it should be noted that , for any pair of models which

belong to the type described above, and provide us with the item

characteristic functions P
5
(0) and P*(8) respectively, there is one

and only one pair of values of 0 which corresponds to any specific

value of probability between zero and unity exclusive. Let us call

the second value of 0 i , and consider it as a function of the

first value of 0 . Thus we have

(3.5) it — t(0)

Since both Pg(O) and P~ (0) are strictly increasing in 0 , the

functional relationship in (3.5) must be strictly increasing, and ,

-

‘ 

_ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _
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therefore , we can also write

(3.6) 8 — 0(t)

which is also a strictly increasing function of it . Thus we have

(p (0) •
(3 7) $ g

~ 
P (t) • P

8
[O (it)1

The general form of the transformation of 0 to it is , therefore ,

(3.8) it —

and that of it to 0 is

(3.9) 0 —

For the purpose of illustration, let us consider two binary

items, one of which has a linear item characteristic function such

that

(3.10) Pg(O) — (0_ ~~g
)(~g

_ Q
g
)~
1 ct

g 
< 0 <

and th. other has an item characteristic function in th. logistic

model, such that

(3.11) — (1 + exP{—D%(O — bh)}]
4 ,.

~~~ 
< o <

where a.~ is the discrimination parameter, bh is the difficulty

parameter, and D is the scaling factor . It is well known that

(3.11) is very close to the it.. characteristic function in the

aormal ogive model of the same parameter values , if we set D — 17

L_. 
~~~~~~~~~~~~ _ r_ 5-~ ~~~~

-
~~~~~

- __ .•~ ~~
, -- 

_________ -
~~~~~~~~
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(Birnbaua, 1968). These two item characteristic functions are

illustrated in Figure 3—3 , with czg
__ 2 .S and B~~~~

.’ 2 . 5  for item $ ~

and with D — 1.7, ab • 1.0 and bh 
— 0,0 for item h

Suppose that our original item characteristic function is linear,

as is defined by (3.10) . We shall try to transform 0 to it so

that the resultant item characteristic function is written as

(3.12) P~(it) (1 + exp{—Da
8
(t — b

g
)}1

1

the identical form as (3.11). Since we have from (3.7), (3.10) and

(3.12)

(3.13) (O~~ag)(Bg~~
a
g
)~~

’ — (1 + exp{—Da
5
(t—b

5
)}1~~

a direct expansion of the above provides us with

(3.14) T • (Da~)~~ log ((0 
— ch)(8~ 

— 0)
_l

i + b
8

Figure 3—4 presents the relationship between the original

latent trait 0 and the transformed latent trait it with 
~~~ 

—2.5 ,

8~~~~
• 2.5., D — 1,7 , 8g — 1.0 and b

g 
— 0.0

If the situation is reversed, and the transformation is from

it to 0 , then we obtain in the same way

(3.15) 8 • + ct
g
ex~{~Da

g
(t ~b8

)}][l + ex~{~Da
g
(it~bg

)} ] 1

— 

~
g + (

~g — 

~g
) P~(T)

It is obvious that the range of 0 resulting from the above trans—

formation is

(3.16) ag < O < ~~g
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The above fact implies that the area under the curve of the

s~uare root of the ttea information function derived from 
~~

y i~~
charac teristic function , which is strictly ~~~~~~ in in 0 and

satisfies (3,4), is cone tant, ~~~~~ less of the model to which

it belongs. As we have seen in the above example , it does not matter

if the range of the latent trait is a finite interval, the se t of

all real n* bers, or something else.

For the purpose of illustration , we shall go back to the

example we used earlier , i.e., that of the linear model and the

logistic model, whose item characteristic functions are given by

(3.10) and (3.12), respectively. We can write from (2.21), (3.10)

and (3.12)

(3.17) Q
1
(e) — (8~ 

— 0)(B ~~ 
—

and

(3.18) Q (it) — [1 + ex~(Da~(t— b
8
))I ’

We can also write for the derivatives of the two item characteristic

functions such that

(3.19) ..
~~~~

. P~(e) — (Bg 
— )

_l

and

(3.20) -
~~~~

- P (r) — Da
8 

exP{—Da
8
( r—b~)}[l + exP{—Da~(t—b 8))i

2

— Dc P~(it) Q (r)

Thus the item information function , I~(0) in the linear model
is given by

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _  

.-~
_.1;

--
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(3.21) I~ (0) — ((8 —
~~~~~ )(8~~~

— 9)1 1

We can also write for the item information function I~(t) after the

transformation of the latent trait 0 to it

• 
(3.22) I~ (t) — D

2 
a
g
2 P~ (t) Q:(r)

~2 a
g
2 
exp(—Da

8
(it—b

8
))[l + exp{~ Da

8
(r—b

8
}] 2

— D2 a
8
2 Pg(8) Qg (O)

— D
2 
a
8
2 
(0 - ct8)(B

8 
- 6)(~~~~~ 

- c*
gY

2 
•

The two item information functions given by (3.21) and (3.22) with

the same set of item parameters and a scaling factor are shown in

Figure 3—5 , and their square roots are presented as Figure 3—6.

It is interesting to note that, within each figure, the two curves

are substantially different.

• It can be observed easily that the constancy of the area under the

curve of the square root of the item information function holds for

the set of item characteristic functions which take the form given

by (2.22), if the value of c
8 

is co on, The meaningfulness of

the item information function is, however, doubtful for this type

of item characteristic function, as was pointed out earlier , so we

will not pursue this type in the present paper ,
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IV Area under the Curve of the Square Root of the 1~te* lnfortsation- —‘.-— - — — ,.-__‘_- 5.-il. _—. .-~ -‘ - 1~~~- - -‘ -‘ --5.--.

Function

We have seen that the area under the curve of the a~uare root

of the item information function derived from any item characteristic

function, which is strictly increasing in 0 and whose two asymptotes

are 0 and 1 , respectively, is constant. Note that not only the square

roots of the item information functions in the linear and logistic models in

Figure 3—6, but those in the normal ogive model in Figure 3—2 exemplify

this constant area . Now the question is : What is the value of thiø

area? We notice that this can be obtained by integrating any one

of these curves , or any other curve which is derived from an item

characteristic function of the same type, regardless of the model to

which it belongs. To make the mathematical process simpler , we

shall take up the simplest model, i.e., the linear model.

We can write from (3.21) that~

1/2 1/2(4.1) ) [I~(9)) dO — ) [(0 — a)($ — 0)] dO
a a

Let us define a new variable 0* such that

(4.2) 9* — [20 — (a + 8) 1( 8 — a]’1

Then we obtain

(4.3) 0 — [ (8  — a)0* + (a + 8) 1/2

___  - (8 - cz) / 2

and

(4.5) ~l< 8 * <J.

§ Sinci we deal only with one item in this section and in Section 5,
for simplicity, we use a and B in place of and
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Using this s~~ variable 0* , (4
~
l) can be rewritten as

(4 ,6) f~ 
[I~(e)]~~~ dO - 1(8  - a)/2J ’~ (1

[ (8  ‘.~ a)/2] dO*

- 

f_1

1

(1 

1 

dO*

sin 8*
—l

— TT~~~

Thus we have found out that the area under the curve of the square

root of the item information function, which is derived from any

strictj~ increasing item characteristic function with 0 and 1 as

t its two asymptotoes, is W

The same result can be obtained just as easily, if we use the

logistic model instead of the linear model. We can write from (3.22)

( 4 . 7 )  [ [I*(it)J~~
’2 dl - Da [[e tha (it-b )}]l/2

-

~~~ [1 + :xp{Da
8
(Tb

8
)}]~

1 dl -

Defining ‘r~ such that

(4.8) — [exp {Da
8
(’r—b)}]

1
~
’2

we obtain

(4.9) — 2 (Da
g)

1 
T* ’

and , substituting this result into (4.7), we can write

(4.10) (
~ [I*(t)]~~~ dit - Da ( T*(l+T*2)~~ 2(Da )~~ t*~~ dr*8 g

10

— 2 1 (1 + T*2Y~ dT* 2 tan h
T*~J o 0

7 T .

--- --- 5 --
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V Search for the Item Characteristic Function Which P~O~~4e8: A
~~~~~~~~~~~~~~~~~~~~~~~ ~iinct~~n 

-
‘

We are to find out the model for the item characteristic

functions which provide us with constant item information functions,

within the type of item characteristic function which is strictly

increasing in 9 with 0 and 1 as its lover and upper asymptotes ,

It is observed from (2,19) that such a model is unique, since the

derivative of the item characteristic function is non’.negative for

any model which belongs to this type, and it is up to the numerator

of the right hand side of (2.19) to make the item information function

constant. It is also observed that the range of 0 for such an

item characteristic function is a finite ~nterval, since the area

under the square root of the item information function is a finite

value, 71 as was found out in the preceding section.

Let C be this constant amoun t of item information for

0 < 8 < 8 . Then we have

(5.1) — 8 —

Thus the of the Interval of 0 depends upon the constant

Item information C -

We f ind that the model described by

(5.2) P
g

(O) — sin2(a
8

(O — b
8
) + (ir/4)]

is the one we have looked for, if we set the parameter a
8 

such that

(5.3) a —
8

with the range of 0 such that 

—.-— -- .
.
-~.. 
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(5.4) (—na ’”1/4] + b < 0 < [na~~~/4 ) + b

To confirm this, we can write from (5.2) and (5,3)

(5.5) Q8(O) — cos2(ag
(O — b

8
) + (71/4) ]

and

(5.6) -
~~~~~

- P
8
(O) a 2 sin [a

9
(0 — b

g
) + (71/4)]

cos [a
g
(O .- b

8
) + (r/4)] ‘ a

8

— 2 a~

— c~
’2

and substituting (5.2), (5,5) and (5.6) into (2.19) we obtain

(5 . 1)  I~ (6) — C

We can see from (5.2) that this model provides us with point

sy~~etric item characteristic functions with (b8
, 0.5) as the point

of sy aetry , just like the normal ogive model, the logistic model

and the linear model. The parameter b can be called, therefore ,

difficulty parameter, just as in the normal ogive and logistic models.

It is obvious from (5.6) that the parameter a
8 

is (proportional to)

the slope of the line tangent to P g ( O)  at 0 — b
8 
, just as in

these two models , so it can be called discrimination parameter .

The meaning of this parameter is more obvious in (5.3), i.e., the

fact that the amount of item information solely depends upon the

parameter a
8

- _ _ _ _ _ _  _ _ _  -
~~~~~

.-
-
~~~~~ ~~~~
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We shall call this model, which is presented by (5,2), the

constant information model. This model has an important role in

the estimation of the operating characteristics of item response

categories, which will be described in the following section.

It should be noted that this model can be derived from

any other model of the present type, such as the normal ogive,

logistic and linear models, by an appropriate transformation of

the latent trait. For the purpose of illustration , we shall

follow the process starting from the linear model, which is given

by (3.10) . Let us define a new variable 0** Much that

—1(5.8) 9** a (0 — c*)(B — a) -

From (5.8) we obtain for the item characteristic function

(5.9) P~*(0**) a

and then

(5.10) Q**(9**) — 1 —

(5.11) ae~* p**(o**) — 1

and

(5.12) 0 < O** < 1

Then the item information function is derived from (5.9), (5 10),

(5.11) and (2.19) such that

(5.13) Ir(e**) (O**(l — O**) J~~~~ 

-i- - 5- - -- . - - - __ 
_ _
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Using the relationship

(5.14) I~(t) • L**(O**)

and setting

(5.15) I~(t) • C

we obtain

(5.16) 
dO** 

— ICO**(1 —

From (5.16), we can write

(5.17) it a (C)~~ ’
~
2 

,
f[e**(1 - 9**)]

h/2 
dO** +

where d1 is an arbitrary constant. Let us define a variable A such

that

(5.18) —

Then we have

(5.19) 0** — A
2 
,

(5.20) dg** — 2A

and

(5.21) 0 < x < 1

Using (5.19) , (5.20) and (5.21) , the integral in the right hand side

of (5.17) can be rewritten as

~
___________________
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(5.22) f[ o **( 1 - 9**)]’/2 dO** — 2 fri - A 2) ’41’2 
dA +

— 2 sin’~~A + d3

— 2 sin 1(O**)hI’2 + d3

where d3 is an arbitrary constant, Substituting (5.22) into (5.17),

we obtain

(5.23) it — 2(C)”1~~ sin ’(0**)~~
’2 

+ d4

where 4 is an arbitrary constant , and then

(5.24) 0** — sin
2[(C)~~

’2
(t — d4)/ 2]

We can write from (5.9) and (5.24)

(5.25) P*(i) - P**(0*) - sin2[ (C)U2(t - 4)/21

Defining the parameter a~ by (5.3) and setting

(5.26) 4 - b - 71C
”2/2 , -

we obtain (5.2) and (5.4) .

Figure 5—1 presents a few examples of the item characteristic

function of the constant information model, together with the

corresponding item information functions.

_~~~~~~~~ .5~_ _
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FIGURE 5-1

Item Characteristic Functions (Upper Graph) and the Item Information Functions
(Lower Graph) of Five Binary Items Following the Constant Information Model.

The Item Parameters Are : a1 
— 0.25 and b

1 
— 0.00 (Smaller Dots),

— 0.50 and b2 
- 0.50 (Shorter Dashes), a.1 — 0.75 and

— 2.00 (Larger Dots). - it , 1.0 and h4 — —~~~.S (Longer

I ts.kc~ M • ~nd a,, — 
- ft :mtl I~ 

— 0. ~0 (S~ lId 1,1 n~’ -
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VI Characteristics of the Constant Information Model

Here, we shall stop and consider some important characteristics

of the constant information model, which is given by (5.2), in addition

to the fact that its item information function is constant, i.e., 4a 2

The basi,~ function (Samejima, 1969), A
~ 
(9) , which has an important
8

role in the computerization of the process of maximum likelihood

estiaatiei~ and so on when the minimal sufficient statistic does not

exist , is defined for the graded response category x
5 

such that

(6.1) A (0) — -
~$~

- log 1’x (0)

Thus the two basic functions for the binary item g of the constant

information model on the dichotomous response level are obtained from

(5.2), (5.5), (5.6) and (6.1)

f — _2aJP
8
(e~~

”2 [Q
8
(0)]~

112 
— —2a

8 
tan(a

5
(0 — bg) + 1T/4]

(6.2) A (9) .
~ for u — 0

~~ 

~_
‘. 2a

5LQ5
(0)] 2 [P

8
(0i

l/2 
— 2a

5 
cot[a (0 — b

g
) + 11/4)

for u — i .
S

It is clear from the above that the basic function for u
8 

— 1 is a

strictly decreasing function of 0 with positive infinity and zero

as its two asymptotes, and that for U
8 

• 0 is a strictly decreasing

function of 0 with zero and negative infinity as its two asymptotes,

respectively . Figure 6—1 illustrates a few examples of these basic

functions with different sets of item parameters.

The item response information function , which can be written as

(6.3) I
~ 

(0) — — -
~~~~~

- A (0)
g 8

-~ —.5- —~~~~~~ - - .5.- 
— 

., — —— -~ — 
.~~~:
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~2 — 0.50

and b2 — 0.50 (Shorter Dashes), a3 
— 0.75 and b

3 
— 2.00 (Larger Dots) ,

a4 — 1.00 and b4 — —1.50 (Longer Dashes) and — 2.00 and b5 — 0.50
(Solid Curve), for u~ - 0 (Upper Graph) and for u~ • 1 (Lower Graph).
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on the graded response level , is found to be for each of the two

binary response categories of the constant information model on

the dichotomous response level

( — 2*
2 sec2 Ia (~~ — b )  + ~~4) — 2a 2(Q (~)f 1 

> ~~

(6.4) 1 (0) t’ for u — 0
U

8 — 2a 2 csc2Ia (0 — b) + n / 4 )  — 2a 2(P (O)f1 
> 0

for u
S

Figure 6—2 illustrates these two item response information functions

for an item with the parameters , a
5 

0.25 and b
8 

— 0,00 , together

with the constant item information function (— 0.25). From (2.4) and

(6.4) we can write for the response pattern information function

—u u — i
(6.5) ‘V~

0
~ 

— 2 ~ a 2[P (0)) 8
1Q (~~ )J

8

u cV 8 ~
S

and, finally, the test information function is given by

(6.6) 1(0) — 4 Z a 
2

Figure 6—3 presents both the set of four response pattern information

functions and the test information function for a hypothetical test

of two binary items, whose item parameters are a
~ 

— 0.25, b1 — 0.00,

a2 — 0.50 and b
2 

— 1.00

The present model can be expanded to the one in the hoaogen.ous

case (Samejima, 1972) of the graded response level easily , although

in such a case it cannot be called constant information model.

It will be discussed on some other occasion, however, when the

necessity has come .

We have seen in an earlier section that the area under the

curve of the square root of the item information is the same , regard less

H
- —-‘ -~~~~~ ~~~~~~~~~~
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Item Response Information Functions of an Item Following the Constant
Information Model , with the Parameters , a

5 
— 0.25 and b

8 
— 0.00 ~

for u
5 

— 0 (Dotted Curve) and for U — 1 (Solid Curve), Together
with the Constant Item Information Function (Dashed Curve).

- -_-- _~~~~ --- .~~~.__-5- - -. 5~~~~~~~~
_ 

~~~~~~~~~~~~
5- 

--



_______________________________________ 
—5- - - -

—32—

I

$

I

I
I S

1 
-

I
I
I

r I I
Ir

I I

—0.5708 2.5708

FIGURE 6—3

Response Pattern Information Functions of the Four Possible Response
Patterns , (0, 0) (Shorter Dashes), (0, 1) (Smaller Dots), (1, 0)

(Solid Curve ) and (1, 1) (Larger Dots), of Two Binary Items
Following the Constant Information Model with the

Parameters , a
~ 

— 0.25, b1 — 0.00, a2 • 0.50 and
— 1.00 . The Test Information Function

Is Also Given by Longer Dashes.

*
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of the specific model, provided that it belongs to the present type

vhich has a strictly increasing item characteristic function with zero

and unity as its two asymptotes. We should note , however, that the

important index is the reciprocal of the square root of the test

informa tion func tion , which is considered as the standard error of

estimation specified as a function of 0 - For this reason,

we shall make some observations upon the area under the curve of

the reciprocal of the square root of the item information function

of the constant information model, in comparison with those of other

models of the same type .

It can be seen that , if the range of 0 is the set of all

real numbers , then the asymptote of the item information function

when 0 approaches either positive or negative infinity should be

zero regardless of the specific model which belongs to the present

type, since the area under the curve of the item information function

is finite. From this fact , it is obvious that the area under the

curve of the reciprocal of the square root of the item information

function is positive infinity, since the function tends to positive

infinity as 0 approaches either positive or negative infinity.

This subset of models includes both the normal ogive and logistic

models. We can say, therefore, that the accuracy of estimation is

low on the average, when we consider the whole range of 0 , even

though these models may provide a high accuracy of estimation

locally. When the range of 6 is a f inite interval , the area under

the curve of the reciprocal of the square root of the item informa tion

fun ction can be f inite, and , therefore , the accuracy of estimation

can be higher on the average, when we consider the whole range of 
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0 . Following a similar mathematical process as we take in the

proof of the theorem that the harmonic mean can never be greater

than the arithmetic mean when all the observations are positive ,

it can be shown that the area under the curve of the reciprocal of

the square root of the item information function is minimal for

the constant information model, among those models of the present

type which have the same interval of 6 as the range of 0 - It

can be said, therefore, the constant information model has the best

accuracy of estimation on the average, when we consider the whole

range of 0

For the purpose of illustration, Figure 6—4 presents two graphs,

one of which provides us with the square root of the item inforastion

function of the constant information model, with a
8 

— 1/4

— 0.25 and b — 0.00 , and that for another model, which increases

from 0.1 to 0.9 in the first half of the interval of 0 and then

decreases from 0.9 to 0.1 in the second half. It is obvious that

the areas under these two curves are both i~ . The other graph

in Figure 6—4 presents the reciprocals of these two functions in

the first graph. It is clear that the area under the curve for the

constant information model is much less than that for the other model.

It should be noted that, when we consider the corresponding reciprocals

of the square roots of the test information f unctions for the set of

n equiyalent items following these models, the conft~uratioa in the

second graph 1.. still the same, with all the ordinate values divided

by the square root of n 
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L A T E N T  T R A I T  6

•

Tr
LA T E N T  T R A I T  6

FIGURE 6—4

Square Roots of the Item Information Functions of the Constant
Information Model (Dotted Curve) and Another Model (Solid Curve),
Which Have the Same Area, Are Shown in the Upper Graph, While

in the Lower Graph the Reciprocals of the Corresponding
Functions in the Upper Graph Are Drawn. The Item
Parameters in the Constant Information Model Are

— 0.25 and b
8 

— 0.00 -

- - - 5 - -  - - 5
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VII Maximimum Likelihood Estimation of Ability When the Set of
Binary Items Are Equivalent and Follow the Constant Information
Model

Suppose all the n binary items in a test are equivalent

(Lord and Novick, 1968) , so that we can write

(7.1) P
1

(0) — P
2

(0) — — P (0) .. — P (0)

It has been shown that in this situation the simple test score t such

that

(7.2) t —  E u
ucV

is a minimal sufficient statistic, regardless of the model that the

item characteristic functions follow (cf. Birnbaum, 1968). In

connection with the maximum likelihood estimation of the examinee’s

ability or latent trait, this can be explained as follows.

On the dichotpmoue response level, (2.4) can be rewritten

as

u 1-u
(7.3) = it [P (6)] g[Q (0)] g

u
8

cV

Since this operating characteristic of the response pattern V itself

is the likelihood function in. estimating the examinee’s ability, we are

to use the symbol Lv(e) for this function in the present section.

When all the items are equivalent , we can rewrite (7.3) in the form

(7.4) L~ (O) — ~, (0)]t [Q
g

(0)]U_t -

Thus we have for the likelihood equation

(7 .5 )  -
~~~~

— 1og L~(0) ~~~~~~~~~~~~ 
P
5

(0) ] [ t — flPg(8)][Pg(0)Qg(0)i
1 

— 0

L . - ‘ —~
- -~~ - -5- ——.5--— - 

-
~~ 
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It should be noted that, although we used the opurating characteristic

of th. specific response pattern as the likelihood func tion , on the

right hand side of (7.4) the response pattern V does not show itself ,

and all the information given by that particular response pattern

is sumsarized in the form of the test score t - Thus all we need

in the estimation process is this simplified , sufficient statistic t

instead of the original response pattern V - From (7.5) we obtain

( 7 . 6 )  t — nP (0)

and the maximum likelihood estimate ~ is given by

( 7 . 7 )  § — P~~ ( t/n)  -

When this common item charactreristic function follows the

constant informatEon model , we obtain from (5.2) and (7.7)

(7 .8) — a
8
4 (sin 1(t/n)112 — it/4J + bg -

It is obvious from (5.4) and (7.8) that the range of § is given by

( 7 . 9 )  (—lTa ’/41 + b
8 ~ 

.~~ 
[flag 

l/4] + b

LA _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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VIII Estimation of th. Qperatinj Characteristic without Using
the Old Teat

It has been mentioned that the family of methods and approaches

developed for estimating the opera t ing charact eris t ic s ~f item response

categories (Samejima, 1977b, 1977d , l978a, 1978b, l978c, 1978d. 1978e)

preassumes the Old Test, or a set of items whose operating character-

istics are known and which prov ides us with a constant test information

function over the range of $ of our interest. In this section,

we are to see how these methods can be generalized to the situation

in which we are to develop a new item pool , and , naturally , cannot

depend upon any “Old Test .” Suppose, for developing the new item

pool, a substantial number of test items are administered to a

substantial number of examinees, and there exists a subset of equivalent

binary items among these items. In this situation , we can use this

subset of items as the substitute for the Old Test.

We assume that these equivalent items have a strictly increasing

item characteristic function with 0 and 1 as its two asymptotes.

As we have seen in previous sections , we can adjust the latent trait

scale in such a way that the resulting common item characteristic

function for these equivalent items follow the constant information

model, which is given by (5.2). Then the response pattern of each
- 

- examinee with respect to this subset of equivalent binary items

is specified, and is summarized in the form of test score. The origin

and unit of the latent trait are set more or less arbitrarily, say ,

*g~~O•2S and b
8 — O . 0 0  . From the test score of the subset of

•quivalent binary items , the maximum likelihood estimate of the

examin.o ’s ability is obtained through (7.8). The resulting set
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of the maximum likel ihood estimates for all the examineea can be

used in the same way as we use the set of maximum likelihood estimates

obtained from the results of the Old Test. The operating character—

istics of each of the other items can be estimated in the same way as

we do when we use the Old Test. After this has been done, we can

transform the latent trait in whatever way we wish.

In using the generalized method, we should be aware of a few

problems. First of all, the constant test information provided by

the subset of equivalent binary items with the constant information

model should be substantially large, so that the normal approximation

for the conditional distribution of 0 , given 0 , should be

acceptable. On the other hand, we need a substantially wide range

of ability 6 for which the teSt information is constant , in order

to make the estimation of the operating characteristics of the other

- ~- items meaningful. These two are opposing factors, as is obvious

from (5.3) and (5.4). The solution for this problem is to use a

substantiall~y larg~ number of equivalent ~~~~~~ items, whose common

discrimination p~rameter is low.

Another problem is the effect of the range of 0 on the speed

of convergence of the conditional distribution of 0 , given 0

to the normal distribution, N (0 , (nC) 1
~
’2). Since the range of 0 is

a finite interval which is given by (7.9) , it should be expected tha t

the truncation of the conditional distribution makes the convergence

slow around the values of 0 close to (—fla~~I4)+b8 
and (na~~/4)+b8

as is illustrated in Figure 8—1. We must turn to Monte Carlo studies

to investigat. this problem further and in more detail, which will be

don. in the near future. A solution for this problem is again to use a

- . 5  - - - - - -~~~~~~- - -- — - --- -- -- --=-~---- - ----—-- -—- .-
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(fla
8~~

/4) + b
8 

_ .

(—wa 8 ’
14) + b

8

i
_i

(—Ita /4) + b g (Ira /4) + b
8 g $ 8

LATENT TRAIT 0

FIGURE 8—1

Graphical Illustration of the Conditional Density Functions

of the Maximum Likelihood Estimate 8 , Giv*n the Latent
Trait 8

5-——---- 
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set of equivalent binary items whose common discrimination parameter

is low, so that the range of 0 is wide enough to include all the

examinees far inside of the two endpoints of the interval of 6 -

An alternative for the above solution is to exclude examinees whose
• §‘s are close to E —1ra~~/4]+b8 

or [ira~~/4J+bg . In the second solution ,

however , the number of examthees will be decreased and this may affect

the accuracy of the estimation of the operating characteristics.

It is worth noting that the solution for the first problem , which is

underscored in the preceding paragraph, is also the solution for the

second problem.

If there exist more than one subset of equivalent binary items

within the tentative item pool, we can make a full use of all the

subsets. We follow the process described earlier for each subset

of equivalent binary items, and the resultant estimated operating

characteristics can be equated by appropriate transformations of the

separately defined latent traits, using, say, the least squares

principle, to integrate all of them into one scale.

.5 - - .5 - --—
~~
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IX How to Detect a Subset of Equivalent Binary ltems

A natural question is how to detect a subset of equivalent

binary items out of the tentative item pool. In empirical sciences,

it is often difficult to obtain a sufficient evidence. The second

best way will be, therefore, to formulate a set of necessary evidences , *

and to check our data with respect to each criterion. If we find

out that our data satisfy all the necessary conditions thus formulated ,

then we can assume that we have obtained what we wanted, until another

necessary criterion becomes available and our data contradict it.

In our situation, first of all, it is necessary , though not

sufficient, that the proportions correct should be the same value

for all the equivalent binary items , within the range of sampling

fluctuations. This can be checked easily, and we can find out a group

of binary items which satisfy this condition, if there is any. Next ,

it is necessary that the 2 x 2 contingency tables of the bivariate

frequency distributions should be symmetric and identical among all

the pairs of equivalent binary items, within the range of sampling

fluctuations. This can be checked for every pair of binary items

which have passed the first selection, and, possibly, some items have

to be dropped . We can go ahead to the 2~ contingency tables after

this step, to the 2~ contingency tables, etc., if we wish.

As was pointed out in the preceding section, it is desirable that

these equivalent items have a low common discrimination power, in addition

to being substantial in number. A necessary condition for this is that

the two frequencies for the response patterns (0,1) and (1,0), which

are, theoretically, the same value if the two items are equivalent ,

should be large, or compatible to the other two. This can be checked

~ 
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-~ therefore, in the same process for checking the equivalency of the

binary items. Figure 9—1 illustrates two typical 2 x 2 contingency

- tables, one of which is for a pair of equivalent binary items which

have a common low discrimination parameter, and the other is for a

pair of those which have a common high discrimination parameter.

. The above are just several examples of the necessary conditions.

- It is desirable that researchers work on this problem and eventually pro—

- duce an appropr iate set of necessary cond itions which con tains more

varieties of conditions and yet is useful from the practical point

of view also.

I

t

- I  
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Low Discrimination Parameter

Item h
% 0 u

h
l Total

Item g _______________ ________

u — O  110 243 353

u 1  248 399 647
S

Total 358 642 1000

High Discrimination Parameter

Item h
u.~~~ O 

%
l Total

Item g 
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _

u — 0  300 53 353
S
u 1  58 589 647
g

Total 358 642 1000

FIGURE 9—1

Two Typical 2 x 2 Contingency Tables for a Pair of
Equivalent Items with a Common Low Discrimination

Parameter, and for Those with a Common High
Discrimination Parameter, Respectively

— ~~~~~~~~~~~~ --~~~--~~~-- --.5 .5-- — 
5-
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X Discussion and Conclusions

It has been pointed out that the area under the square root

of the item information function is a constant value, i~ , for  any

strictly increasing item characteristic function having zero and

unity as its two asymptotes. The item characteristic function of

this type, which provides a constant item information function , has been

searched and discovered , and the model is ~au~ed cønstant inform*tion

model. It has been observed that the amount of information , which

such a binary item provides for a specified value of ability 0

and the range of 0 , for which the item has a constant information ,

have a “trading off” relationship. The characteristics ot ttie new

model, such as the basic func tion , the item response information

function, the response pattern information function , etc., have

been investigated. The process of obtaining the maximum likelihood

estimate of the examinee ’s ability or latent trait when the n items

are binary and equivalen t has been shown , using the constant information

model and the sufficient statistic , t , i.e., the simple test score.

It has been shown that, in the methods and approaches of estimating

the operating characteristics of item response categories , which

have been introduced earlier, a set of equivalent binary items in the

tentative item pool can be used as a substitute for the Old Test, and ,

therefore, those methods are usable even in the situation where we

start from the very beginning of developing an item pool without the

Old Test. In so doing, attention has been called upon some problems

and, for them, possible solutions have been suggested. Some practical

considerations as to how we can detect a subset of equivalent items out

_________________________________
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of all the binary items in the tentative item pool, if there is any ,

have been given.

It is interesting to note that, for once, items with low

discrimination p~~~r have an important role, in preference to those

with high discrimination power, which are usually considered to be

better items. This fact leads to a more general conviction , which

is related with the attenuation paradox (Tucker, 1946, Loevinger ,

1954). Th. important point is to distinguish two different situations,.

i.e., 1) the situation in which the local accuracy of estimation by an

item at a certain level of ability or latent trait is important, and

2) the’ one in which the overall accuracy of estimation by an item

for a certain interval of ability or latent trait is important. As

an example of the first situation, we can name tailored testing, or

the computerised adaptive testing, and in such an occasion binary items

with high discrimination power are more useful. The second situation

is exemplified by the estimation of the operating characteristics

of graded item response categories, which has been pursued and developed

without assuming any mathematical forms for the operati ng characteristics .

In this situation, items with high discrimination power are not necessarily

useful, and, as we have seen in the preceding sections, low discrimination

items are more useful if we use a subset of equivalent binary items — -

in the tentative item pool as a substitute for the Old Test.

It has been pointed out earlier (Samejima, 1969, Chapter 2) that

there i~ a philosophical difficulty in determining which scale of latent

trait is the best one out of those which are strictly increasing

transformations of one another. Rescaling of the latent trait on the

- j _ ____ _~~ -- 
- - - -~~-_
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final stage of the generalized methods and approaches of estimating

th. operating characteristics of graded item response categories,

therefore , may have to depend solely upon convenience.

I

_______ _______ _____
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A—I Simulated Data

The simulated data used in the present study are characterized

as follows .

(1) There are 500 hypothetical examinees.

(2) Their ability , or latent trait, distributes uniformly for the

interval of 0 , (—2.5, 2.5). Actually, we use 100 discrete

points of 0 , such as —2.475, —2.425, —2 .375, —2.325 , -

2.375, 2.425 and 2.475, i.e., the midpoints of the 100 subintervals

with the width of 0.05, and at each point five examinees are

located.

(3) There is a hypothetical teat of 35 graded items, each of which

has four item score categories, and which provides us with an

approximately constant test information function, 21.63, for

the interval of 0 , [—3.0, 3.0], following the normal ogive

model of the graded response level (Samejima, 1969 , 1972). The

test is called the Old Test, to distinguish from the New Test,

which will be described later.

(4) Each of the 500 examinees is assumed to have taken the Old

Test, and his response pattern on the 35 graded items has been

calibrated by the Monte Carlo method. The score categories of

each item are 0, 1, 2 and 3, and a typical response pattern

looks like: (3,3,3,2,3,3,2,2,2,2,2,2,1,2,2,2,1,2,l,l ,l,0,1,l,

1,0,1,0,1,1,0,0,0,0,0).

(5) From each response pattern , the maximum likelihood estimate of the

examinee’s ability has been obtained, using a computer program

written for this purpose. In this process, out of 140 basic

functions (Samejima, 1969, 1972), an appropriate set of 35 basic

4 
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functions are chosen depending upon the item scores in the

response pattern, and, using the Newton— Raphson procedure,

the point of 0 at which the sum total of these 35 basic

functions equals zero is searched.

(6) There is another hypothetical test of 10 binary items, each

of which follows the normal ogive model of the dichotomous

response level. This is called the New Test.

(7) Each of the 500 examinees is assumed to have taken the New

Test also, and his response pattern on the New Test has been

calibrated by the Monte Carlo method. A typical response

pattern looks like: (O ,O,O,1,o,O,l,o,1,l).

(8) The item characteristic functions of the test items of the

New Test are assumed to be unknown, and they are the target

of estimation. Each method of estimation is evaluated by the

the “closeness” of the resultant estimated item characteristic

functions to the true item characteristic functions,

P
g(O) - (2irY

1”2 Jag
(0_b

g) 
e dt

- .5 . 5 -
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