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1. INTRODUCTION

Much of the work in queueing theory deals with models in
which assumptions of indepen@ent service and interarrival times
are made. One way to examine the effect of correlated interarrival
and service times on measures of performance in queues is to
consider models in which the interarrival and service times are
correlated stationary sequences of random variables having given
marginal distributions and compare results for these models with
those for which the interarrival and service times are independent
ahd identically distributed with the same marginal distributions.

In [3] Jacobs and Lewis introduced a scheme for generating
sequences of dependent exponential random variables. The
EARMA (1,1) (exponential mixed autoregressive moving average with
both autoregression and moving average of order 1) model is defined
as follows. Let {En} be a sequence of independent exponential
random variables with positive finite mean v-l. Let {Jn} and
{Kn} be independent sequences of independent {0,l}-random variables
with P{J =1} =1 -8 and P{K =1} = 1-p where 0 <B <1

and 0 { p < 1 are given constants. We define

(1.1) xn = BEn + JnAn—l v n=1,2,...
where
(1.2) A, =opoA _, +KE , n=1,2,... .

We assume that A0 is an independent exponential random variable
with mean v—l. Under this assumption {Xn} is a stationary
sequence of dependent exponential random variables with mean v-l.

1




The dependence is not Markovian in general and as was shown in [3]
(1.3) Corr (X, Xy, ) = 0" 1 (1) [B(1-p) + (1-8)p] .

Note that if B =1 or B =0 and p= 0, then {xn} is a
sequence of independent expénential random variables.

The EARMA(1l,l) process is formed as a probabilistic linear
combination of independent random variables. This technigue can
be extended to form sequences of multivariate exponential random
variables. This idea was briefly explored in Lewis and Shedler [7].
These models have the advantage that the marginal distribution and
correlation structure of the sequence are specified .separately.
In section 2 we will give several ways in which ‘to generate
sequences of dependent multivariate exponential random wariables
from probabilistic linear combinations of independent -exponentials.
These stationary multivariate EARMA sequences of dependent exponentials
can be used as interarrival and service times in queues. [Resulits
for measures of performance for ‘these gueues can then be compared
to queues with stationary independent sequences of interarrival
and service times having the same marginal (exponential) distni-
butions. Since the correlation structure in the multivariate
EARMA sequences is specified by parameters independent of ‘the
marginal distribution, any difference between results for queues
with these multivariate interarrival and service sequences and
the corresponding queues with independent interarrival and service
sequences having the same marginal distributions will :be due ‘to
the correlation structure.

Suppose ‘that the interarrival and service times of a single
server queue form stationary multivariate EARMA sequences

2
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of dependent exponential random variables. Results of Loynes [9]
give conditions for the existence of limiting distributions for
the waiting time of a customer and the gueue length. However, it
seems tobe difficult to obtain exact results even in the simplest
queues with EARMA interarrival and service times (cf. Jacobs [4]).
As a result we turn our attention to the possibilities
of obtaining limiting results of the heavy traffic type for
queues with stationary multivariate EARMA sequences of dependent
interarrival and service times. Results of this kind will indi-
éate how dependence in queues introduced by the EARMA scheme
affects quantities such as customer waiting time and queue length,
at least under heavy traffic conditions. These limiting results
can also be used to check simulations.
In this paper we will show that Kingman's [5] result
for the equilibrium waiting time W in heavy traffic holds for

queues having multivariate EARMA interarrival and service times;

that is, we will show under conditions detailed in Section 3, that

if the traffic intensity Au_l of the queue is close to 1, then
the distribution of (1 - xu'l)w is approximately exponential.
The mean of this exponential distribution will in general be
different from the case of independent interarrival and service
times. Positive cross-correlation between the interarrival and
service times will tend to decrease the mean; while positive
correlation within the interarrival and service time sequences

will tend to increase it.
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. In Section 3 we will state the heawy traffic result more
precisely and present several examples of its application. Its

i formulation for multivariate EARMA queues is very dependent on
the fact that the marginal distribution and correlation structure

are specified independently of one another in EARMA formulations.
{ ', In Section 4 we will give the proof of the heavy traffic result.
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2. QUEUES WITH EARMA INTERARRIVAL AND SERVICE TIMES

We will consider a single server queue at which customers
arrive and are served in the order of their arrival. The Oth
customer arrives at t = 0 and finds the server free. The
arrival time, service time, and waiting time (excluding service)
of the nth customer are denoted respectively by T = 22:1 X,
sn, and Wn. In this section we will present some examples of

the use of the EARMA scheme to model dependent interarrival and

service times in queues.

(2.1) EXAMPLE. Let {Xn} be an EARMA(1,l) process with
positive finite mean A”% and parameters 0 < B <1 and

0 < Py < 1; let {Sn} be an EARMA(l,1) process independent of
{x } with positive finite mean u-l and parameters 0 < B, < 1

and 0 < Py < 1. Note that if Bl =1, =1, OF By = 1,

ey

=0, =0, or Bl =0, Py = o, B2 =1, or Bl =0, Py = 0

B2 P2
82 =0, Py = 0, then the queue reduces to an M/M/1l queue.
Other special cases include queues with Poisson arrivals and
EARMA(1,1) service times independent of the arrival process,
and queues with EARMA(1,1) interarrival times and independent
exponential service times.

The sequence {(Xn,sn)} is stationary and {Xn} and

{Sn} are independent. However the xn's (respectively Sn's)

are positively correlated with

T TETO  eay T P e SR TR Py oo




2

-3 k=i
(2.2)  Cov(X_,X ) = A" “p1 " (1-8,) [B; (1=p;) + (1-8,)p,]

(respectively

. _ =2 k-2 i 2
(2.3) Cov(sn,Sn+Kf =N Py (1-82)[82(1 p2)4-(1 Bz)pzl)

from (1.2).

let g; (respectively gi) be the o-algebra generated

: 1 :
| by Xj,....Xp (respectively Sl,....sm) and G .. (respectively
i - S z g
| §m+k) be the c-algebra generated by xm+k‘ X k41’ " (respectively

S

). Let Lz(g;) (respectively Lz(gi ))

mtk’ Smek+l’ +k
denote the collection of real-valued functions having finite

second moment that are measurable with respect to g;

i SOE 2,.i 2, i S
¢ Ik)' i=3.2. I¢ fi €E L (gm) and 94 3 * (gm+k)' i=1,2,

(respectivel:x

then there is a Xk, independent of fi' g i=1, 2, such that
for k > k0

(2.4) |E[(£,£,)(9;9,)] - EIf;£,] Elg;9,]|

= |E[£,9,] Elf,9,] - E[f;] Elf,] Elg;] Elg,]|

+ E[£,] Elg,) {Elf;g;] - Elf;] Elg;1}|

£ T N £ R SRR




1] 5o§/2 E[f

2.1/2

2,1/2
(2.5) < E[If 2] Elg,]

19

k/2

+ Ell£,11 Ellg,l1 5052 B1£2)1/2

E[gfll/2

k/2 k/2 2

1/2

2]1/2

< 5lp 17/€ El(g,9,)

where (2.4) follows from the independent of {xn} and {Sn}
and (2.5) follows from (6.5) of Jacobs and Lewis [3]. Hence,

if f (respectively g) has finite second moment and is measur-

able with respect to the product O-algebra g; X g: (respectively
1 2 o
Cniic §m+k)' then for k sufficiently large
2.1/2 k/2 k/2
(2.6) |E[£9] - Ef] Elg]] < 5E(£21%/2 B1g211/2 (o%/2 + 05/2).

Hence, the sequence {(Xn,Sn)} is asymptotically uncorrelated
in the sense of Rosenblatt [10] and is ¢-mixing in the sense of

Billingsley [1].

(2.7) EXAMPLE. 1In Lewis and Shedler [7] one of the schemes

that is proposed for cross-correlating the arrival process and
the service times is the following. Assume {Xn} and {En}

are independent sequences of independent exponential random
variables with positive finite means »~! ana u-l respectively.
The nth interarrival time is assumed to be xn and hence the

arrival process is Poisson with rate ). Let the nth service time

o -1
(2.8) Sn = BEn + Jn(Au Bn)

7
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where

(2.9) B. = pB

and B, ¢, {Jn} and {Kn} are as in (1.1) and (1.2) so that .

{Sn} and {xn} are now cross-correlated sequences. We will
assume that B, has an exponential distribution with mean g

gl

Since En and B are independent, {Sn} is a stationary
sequence of exponential random variables with mean u-l. If
B = 1, then the queue reduces to an M/M/1 queue. The Sn's

can be shown to be positively correlated with

(2.10) cov(s_, 5.,.) = u21-80% 0, Kk =1,2,... .

n+k

Further, the nth service time S, is positively correlated with

the interarrival times X , X ;. .- « X with
(2.11) Cov(S_, X _.) = (A )-1(1-8)(l-p)pk
§ n’ “n-k U

for k = 0,...,n=1.

) is a function of

E

Note that (xn,sn,..., n+k'sn+k

X

(B n+k’

n-l'xn’En’ n'Kn’ n+1'Ene1Ine1 Knere-ooe n+k In+k* Knax
Hence, since the sequence {Bn} is stationary so is the

).

sequence {(xn,sn)}. Further, by arguments similar to those
used in obtaining (6.5) of Jacobs and Lewis [3], if f and

g are as in (2.6), then for k sufficiently large

(2.12) |E[fg] - E[£f] Elg]] < 50%/2 E1£21Y/2 E1g%)1/?

so that the sequence {(X ,S )} is ¢-mixing.

8
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There are many ways to cross-correlate the interarrival
and service times using the EARMA scheme beyond those given
above and in Lewis and Shedler [7]. We will present one more,
somewhat more general than that of Example (2.7) in which the
service times were coupled back over the previous interarrival

times.

(2.13) EXAMPLE. Let {En}, {E }, and {c,} be independent

sequences of independent exponential random variables having

respective positive finite means A-l, u-l, and 1. Let

5 -1
(2.14) xn = BEn + Jn(x An)
(2.15) & = e oty A
: n n n'H n
-
with
(2.16) An = pAn-l + Kncn

where B, o, {Jn} and {Kn} are as in (1.1) and (1.2) and {In}
is a sequence of independent binary random variables independent
of everything with P{I =1} =1 - P{I =0} = (1-y) for some
fixed constant 0 < y < 1. Again we assume that A, is an.
independent random variable having an exponential distribution

with mean 1. Then {(En, B An, In' Jn)} is a stationary

n
sequence of random variables and, hence, the same is true of

((x,,8,)}.

,_ﬁ,__..T
,
ol
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If y=1, B =1 or Yy=1, B =0, p=0 or ys= 0,

B =1, p =0, then the queue reduces to an M/M/l gueue. If

B =1, p =0 then the queue reduces to a special case of Example

(2.7). Straightforward manipulation shows that in general the

interarrival times X, are positively correlated with

-2 2 k
(2.17) Cov(xn, xn+k) = A “(1-8)"p" , R RoBsive,
The service times Sn are also positively correlated with
- -2 2 k
(2.18) Cov(sn, Sn+k) = u “(l-y)%p, | R T e A e

The interarrival times and service times are positively cross-

correlated with

(l-B)(l-Y)(Au)-lpk, k

(2.19)  Cov(X , 8 .) % e
and
(2.20) cov (X ) = (Bef) Geyk Ond ™. & = 8.1

. n+k’ n Y H (S rtpeee o

Finally, by the arguments used in obtaining (6.5) in
Jacobs and Lewis (3], if f and g are as in (2.6), then
for k sufficiently large

(2.21) IE[£fg] - E[f] Elgll < Sok/2 E[lel/z E[g211/2 .

so that the sequence {(xn,Sn)} is ¢-mixing.

10
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3. A HEAVY TRAFFIC RESULT FOR EARMA QUEUES

Let {xn} (respectively {Sn}) be the sequence of
interarrival times (respectively service times) for a single
server queue with first-in-first-out service discipline.

Put U =S - X and assume that {Un} is a stationary
sequence with E[Un] < 0. Let W, be the waiting time of the
nth customer and W = sup 2:=1 U, (with the convention
that 23=1 = 0). Loynes [53 has shown that if the sequence
{u,} is metrically transitive, then the distribution of W
tends in the limit to the distribution function of W. Since
it is usually difficult to obtain the distribution of W
analytically, particularly when the service and interarrival
times are dependent, we will obtain a heavy traffic limiting
result for it. 1In this section we will give the statement

of the result as well as some examples of its use leaving the

proof to the next section.

For each a >0 let Q, be a single server queue
with FIFO queueing discipline having stationary sequences of
interarrival times {Xn(a)} with positive finite mean A(a)-l
and service times {Sn(a)} with positive finite mean u(m)-l

such that, if U (a) =S (a) - xn(a), then {Un(a)} is a

stationary sequence of random variables. Let

(3.1) E[Un(a)] = v(a) < 0; Var[Un(a)l = sz(a) :

11
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(3.2) 02(0.) = var Ul(u) + 2 nzl Cov(Ul(a),Ulm(a)):

(3.3) d(a) = [v(a)|/a(a)  and n(a) = d(a)~2 .
We will assume the following:

(3.4) ASSUMPTION. There exists a distribution function G so

P{[Un(a) - v(a)]z < x} = G(x) for all continuity

v(a) = 0; and 0< lima_msz(a) =82 < .

that lz.ma

+ oo

points x of G; lima_”o

(3.5) ASSUMPTION. 0 < lim o02(a) = 02 < « .

o >
(3.6) ASSUMPTION. If f (respectively g) is a function with
finite second moment measurable with respect to the o-algebra
generated by U, Ca¥Fie.. .Um(u) (respectively Um+k(a) e B by 7 e,

m
then

211/2 2]1/2

(3.7) |Ef[fg] - Eif) Elgll < ¢(x) EIf Elg

for some decreasing function ¢ bounded above by 1 not depending

on o satisfying

(3.8) Y ¢(n) < e,
n=1
Assumption (3.4) concerns the convergence of the distribution of U'z(a)
n
= [sn(a)-xn(a)]z and its first two moments as o + =, Assumption
(3.6) is roughly a condition that the sequences {Un(a), w200}

12
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|
| be ¢-mixing uniformly over all a. This assumption guarantees 1
% that the series in (3.2) converges and >Q
| -
F n'
| lim LENCT (U () - v@N?] = oP(a). ,
4 n k
n-+> o k=1

é Assumption (3.5) concerns the convergence of this normalized

variance term as a * <. ‘
i Put i
; _7 [n(a)t]
" ‘ z,(t) = dla) ola) Z U, (@), t>0

where [x] is the largest integer less than or equal to x.
Let ID([0,~)) be the collection of real-valued, right continuous
functions on [0,«) which have left limits everywhere endowed

with the metric given in Lindvall [8].

(3.9) THEOREM. If (3.4)-(3.6) are satisfied, then the process 3

Z, = {2 (t);t > 0} converges weakly in D([0,=)) to a

E Brownian motion with negative unit drift.

| The proof of this result will be given in the next section.

Let

n
W(a) = sup U, (a) .
n>o0 kzl "

Then it follows from Theorem (3.9) that




| :

lim p{i}!%. W(a) _<__x}= lim P{sup 2 (t) < x} Z

0'rw ik a+w t20

=1 - exp{-2x}

where the last equality follows from the continuous mapping

theorem (cf. Billingsley [1]). Thus we have the following

result.

(3.10) THEOREM. If (3.4)-(3.6) hold, then

lim P{|v(a)| W(a) < x} =1 - exp{-20'2x} ;

(T,

Hence, if the traffic intensity au-t

of a queue is less
than but close to 1 and {U,} is a stationary sequence satisfy-
ing (3.7) and (3.8), then the distribution of W is approximately

exponential with mean - % o2 ]5:[(111-1 where 1

0? = var[u;] + 2 } cov(u ) .

U
el 1’“1l4n

Thus positive cross correlation between the interarrival and service
times will tend to decrease the average mean waiting time; while

positive correlation within the interarrival time or service

time sequence will tend to increase the mean waiting time. .

ORI R R TG AT SRR O e




(2.11) EXAMPLE. For each a > 0, let Q  be a queue as in

Example (2.1) with {xn(a)} (respectively {sn(c)}) forming

b biaas ol o Sl L e

0 an EARMA(1,1) process with parameters A(a), Bl and Py
(respectively u(a), Bz and pz). Assume A(a) < u(a) for

each a, but lima_ﬂ” Ala) = limm_,m p(a) = m; then hypotheses

(3.4)-(3.6) are satisfied and Theorem (3.10) holds with

2 -1

o? = m2(1 + (1-p) 7" (1-8))[(1-p))B; + (1-8))p;)

-1

+ (L=py) ™" (1-8,) [(1-p,) 8, + (1-B,)p,1} .

Hence, if the traffic intensity Au-l of a queue with independent
EARMA(1,1) services and interarrival times is less than but

close to 1, then the distribution of the equilibrium waiting

time W is approximately exponential with mean - % 02 E[Ul]

-1 _ =L

where E[Ull =y and 02 is given by

2 -2 od

-1

+ 171+ 2(1-p) h (1-8,) [(1-p,)8, + (1-8,)p,1} .

Thus the dependence in this queue tends to increase the mean
1 customer waiting time at least in close to heavy traffic

3 conditions.




T oy e -
- .

(3.12) EXAMPLE. For each o > 0, let Qa be a queue as in

Example (2.7) with parameters E[xn(a)] = A(a)-l, B, and »p

and E[Sn(a)] u(a)'l. Again we will assume A(a) < ul(a)

B R R T VRN

for each o but lima_,m)\(a) = ) = lima*m pu(a) = u = m., Hence

(3.4)-(3.6) are satisfied and Theorem (3.10) holds with

2 -2

| o =22+ oa-ma-e

1

+ 20(1-p) 7" (-2 - (1-8) (1 - p) ()Y

«aP 4?0 d2a-02 s Y1 i20mT a-s
=272 + -2 pa-mt - (1-p)7 .

The guantity 02 = oind can be either positive or negative where

Ofnd = X'z + u'z = 2m—2. It is negative if p < (2-8)"1
and nonnegative otherwise. Hence, if p is sufficiently less

than. (2-8) T

. then the average customer waiting time in the
queue will tend to be less than the waiting time in the inde-
pendent case at least in close to heavy traffic conditions.

It will tend to be greater if p is sufficiently greater than

(2-8)"%;

(3.13) EXAMPLE. For each a > 0, let Qu be a queue as in

| Example (2.13) with parameters A(a), u(a), p, B,and vy.

Assume lima* Ala) = 1 = limm.”° u(a) = yu = m as before. ¢

Then (3.4)-(3.6) are satisfied and Theorem (3.10) holds with

> ot s 4 o T
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+ 2p(1-p).—1{u-1 Gyl 1 (1p )"
| = 2m 2 [1- (1-8) (1-y) + p (L-p) "2 {(B-y) }?]

The difference 02 - cind can be either positive or negative;

2 2 2)

(oind =2"“4+13"°=2m%. The difference will be negative if

- p < (1-8) (1-y)/[(1-B) (1-y) + (B-Y)zl and nonnegative otherwise.
{ Hence under close to heavy traffic conditions, the average
customer waiting time will tend to be less than the independent
case if (1-B8) (1-y)/[(1-8) (1-y) + (B-Y)zl is sufficiently greater

than p. It will be greater than the independent case if the

| same quantity is sufficiently less than op.
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4. PROOF OF THE MAIN RESULT

In this section we will give a proof of Theorem (3.9).

We will assume that (3.4)-(3.6) are satisfied. Let

[n(a)t]
y (Uk(a) - via)] .

d(a

'

Y, () =

]

By Theorem 3' of Lindvall [8] and the continuous mapping theorem,

Theorem (3.9) will be proved if for each a > 0 we can show

the following result.

(4.1) THEOREM. The process {y,(£); 0 < t < al converges |

weakly on ID([0,a]) to Brownian motion.

@([0,a]) is the space of real-valued right continuous functions i

on [0,a] with left-hand limits endowed with the Skorohod J1

topology.)

We will prove Theorem (4.1) for a = 1 by a series of

lemmas. The proof for arbitrary a > 0 is similar.

(4.2) LEMMA. The process {Ya(t); 0 < t <1} has asymptotically

independent increments.

BENOf- et 0 (s <) <my Sy €O £ C R B

Ci be the event (Y (t;) - ¥ (s;) < x;} for real x;. Then

¢ is an event in the o-algebra generated by

18
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U[n(a) si]+l' cens U[n(u)ti]' If 6 is the smallest difference

S; = tj_y, then [n(a)s;] +1 - [n(a)t, ;] 2> [n(a)é]. By (3.7)

r r
[P(n c;) - T P(C)| < re(In(a)é]) .
i=1 i=1

Since 6 > 0, r¢([n(a)d]) tends to zero as o *+ «» and the
result follows.
In the following results, let Di(a) = Ui(a) - v(a)

m

and V _(a) = ) D, (a). By (3.4)-(3.6) the following result

i=1
~ holds.
(4.3) LEMMA.
a) % E[Vk(a)zl <2 jzo lE[Dl(a) D1+j(a)]|;
b) Ollim°° n(a)~t E[Vh(a)(a)zl T

4

4 4 2
¢} If Dl is bounded by C, then E[Vh(a)(a) }s K¢C n(a)

where K¢ depends on ¢ alone,.
(4.4) LEMMA. The sequence of random variables

{n(a)—l(Vh(a)(a))z; @ > 0} is uniformly integrable.

Proof. By (3.4), {Di(a);a_z 0} is uniformly integrable. The
remainder of the proof is very similar to that of (20.48) on
page 176 of Billingsley [1] and will be omitted.

19
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(4.5) LEMMA. For each positive ¢ there exists a y, vy > o

and an integer n, such that n(a) > n, implies

P{ max |v,(a)| > y/nTal} ¢

€
i<n(a) 2

Proof. Put CI(u) = Z§=l le(a)l. By (3.4), there exists

an increasing sequence of integers m; such that n(a) > m,
implies P(lDl(a)I >y /nla)/iz} < (y n(a)i®) "L for each
positive . Let p(a) =i if m, < n(a) < m, g7 then p(a)

tends to infinity as a + « but

(4.6)  lim n(a) P{C, (o) > y/ATaT}

Py P

< lim n(a) p(a) P{ID;(a)] > vy vnTa) p(a)1}

Q > oo

< lim n(a) p(a) P{ID;(a)]| > y /ATa) p(a)‘z}

QA ¥+ oo

< lim n(a) p(a) [y n(a) p(a)217) = 0

o > oo

We can further choose p(a) so that p(a) <n(a). pix € > 0.

By the previous lemma we can choose y so that y > ¢ and




P{ max |Vi(a)| > 3y v/n(a)}
i<n(a)

SPUV (@ 2 v /n(a)}

*

+ [n(a) + p(a)] P{cp(a

y (@) 2y vn(a)}

n(a)-p(a)-1
e

A PUIV, () (@) = Viip (o @12y AT I+o(p ()]

< ZEY-2+¢(p(a)) + [n(a) + p(a)l] P{C;(a)(a) > vy vn(a)}

by (4.7) and the fact that the Ai(a) are disjoint. Hence by
(4.6) and (3.8) for a large

P{ max |v;(a)]| > 3y /A(a) } < 3ey? .

i<n(a)
PROOF OF THEOREM (4.1). For a = 1l: By Lemma (4.5) the
sequence {Ya} is tight on D([0,1]}. Further lim(r’w E[Ya(t)] = 0
and
[n(a)t]

lim E[Ya(t)zl = lim (/A(a) o(a)) 2 E [( ) Dk(a))z } = g

o > oo o + o k=1

: 2 432 -1 2

by (3.5). Since Ya(t) = [0 (a) n(a)] V[n(a)t}(a) "

{¥2(t)} is uniformly integrable for each t by Lemma (4.4).

By Lemma (4.2) {Ya(t); 0 < t < 1} has asymptotically independent
increments. The result now follows from Theorem (19.2) of

Billingsley [1].
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(4.7) P{IVk(a)(a)l >y vk(a)} < ey'z

for all a. Let

A4 (@) = {max IVj(a)l < 3y vnla) < lVi(a)l} ;
j<i
then

P{ max lVi(a)I > 3y /n(a)}
i<n(a)

< P{lvh(a)(a)l >y v/a(a)}

n(a)-1
& e P(A; (a) n {'Vn(a) - V.(a)| > 2y v/aal} )

i=1

The summation is bounded above by

n(a)-f(a)—l
: P{IVi(a) - Vi+p(a)(a)l > y /n(a)}

i=1

n(a)-p(a)-1
R
=1

P(Ai(a) n {|Vn(a)(0) - ()| >y /n{a)})

i+p(a)
BN e (a) | /iTaT)
+ P{lVv () = v, ()] > v n(a
i=n(a)-p(a) i . o

Each term in the first and third of these sums is bounded above
*

p(a)
respect to the o-algebra generated by Ul(a)...., Ui(a) by (3.7)

by P{C (¢) > v /n{a)}. Since Ai(a) is measurable with

e b maad n iiidans - ekl
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5. EXTENSIONS

This paper presented a heavy traffic result for the
limiting distribution of the customer waiting time in single
server queues with dependent interarrival and service times.
There are many different ways in which to model dependent
interarrival and service times in queues using the EARMA scheme.
Some other ways are given in Lewis and Shedler [7]. Properties
of these multivariate exponential models will be given
‘elsewhere.

Work is currently going on in the simulation of these
queues. Some simulation results have been reported for the
gueue of Example (2.7) with B = 0.5, u =4 and various
values of p and A in Boonsong [2]. They seem to indicate
that the heavy traffic result approximates the average
customer waiting time fairly well for a traffic intensity of
.9 and quite well for a traffic intensity of .95. However,
the distribution of W in a simulation with p = 0.25 and
traffic intensity .995 shows a large amount of underdispersion
relative to an exponential distribution. Thus, it seems that
the convergence of the waiting time distribution is very slow.

It is expacted that further simulations will give
more indication of the validity of using the heavy traffic
result to approximate the average customer waiting time, or
quantiles of the waiting time distribution under less than
heavy traffic conditions. These results will be reported

on elsewhere.
23
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