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0. ABSTRACT

• Models are given for sequences of correlated exponential

interarrival and service times for a single server queue. These

multivariate exponential models are formed as probabilistic linear

combinations of sequences of independent exponential random vari-

ables and are easy to generate on a computer. Limiting results

for ct~stomer waiting time under heavy traffic conditions are

obtained for these queues. Heavy t raff ic  results are useful for

analyzing the effect of correlated interarrival and service times

in queues on such quantities as queue length and customer waiting

time. They can also be used to check simulation results.
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1. INTRODUCTION

Much of the work in queueing theory deals with models in - -

which assumptions of independent service and interarrival times

are made. One way to examine the effect of correlated interarrival

and service times on measures of performance in queues is to

consider models in which the interarrival and service times are

correlated stationary sequences of random variables having given

marginal distributions and compare results for these models with

those for which the interarrival and service times are independent

and identically distributed with the same marginal distributions.

In [3] Jacobs and Lewis introduced a scheme for generating

sequences of dependent exponential random variables. The

EARMA (1,1) (exponential mixed autoregressive moving average with

both autoregression and moving average of order 1) model is defined

as follows. Let {E~ } be a sequence of independent exponential

random variables with positive finite mean v~~ . Let {J~~} and

{K~} be independent sequences of independent {0,l}-random variables

with P{J =l} = 1 - 8 and P{K~=l} = l-p where 0 < S < 1

and 0 < p < 1 are given constants. We define

(1.1) X~ = + ~~~~~~~ , n = 1,2,...

where

• (1.2) A 
~~n—1 

+ K~E~ , n = 1,2 

We assume that A0 is an independent exponential random variable

-

• - with mean v~~ . Under this assumption fX~} is a stationary

= 
sequence of dependent exponential random variables with mean v~

1.

1
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The dependence is not Markovian in general and as was shown in [3]

(1.3) Corr(X1~X1~~) = p~~~
1(1-8 ) [ 5 ( l — p )  + - (l—3-)p-]

Note that if 8 = 1 or 8 = 0 and p = 0, then tx~
} is a

sequence of independent exponential random variables.

The EARMA (l,l) process is formed as a probabilistic linear

combination of independent random variables. This technique -can

be extended to form sequences of multivariate exponential random

variables. This idea was briefly explored in Lewis and Shedler [7].

These models have the advantage that the marqinal distribution and

correlation structure of the sequence are specified separately.

In section 2 we will give several -ways in which -to generate

sequences of dependent multivariate exponential random variables

from probabilistic linear combinations of independent •exponen~ia~i~..

These stationary multivariate EARMA sequences of dependent -expormentia~is

can be used as interarrival and service times in queues. ~~-stT1tts

for measures of performance -for -these queues can then be compared

to queues with stationary independent sequences -of interarrivaa

and service times having the same marginal (exponential) distri-

butions . Since the correlation structure in the multi-variate

EARMA sequences is specified by parameters independent -of the

marginal distribution, any difference between ‘res ults ‘for queues

with these multivariate interarriva]. and service sequences and

the corresponding queues with independent interarrival and service

sequences having the same marginal distributions will -be due to

the correlation structure.

Suppose ‘that the interarrival and service time-s of a single

server queue form stationary muitivariate EARMA sequences

2
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of dependent exponential random variables. Results of Loynes [9]

give conditions for the existence of limiting distributions for

the waiting time of a customer and the queue length. However, it

seems tobe difficult to obtain exact results even in the simplest

queues with EARMA interarrival and service times (cf. Jacobs [4]).

As a result we turn our attention to the possibilities

of obtaining limiting results of the heavy traffic type for

queues with stationary multivariate EARMA sequences of dependent

interarrival and service times. Results of this kind will m di-

cate how dependence in queues introduced by the EARMA scheme

affects quantities such as customer waiting time and queue length,

at least under heavy traffic conditions. These limiting results

can also be used to check simulations.

In this paper we will show that Kingman ’s [5] result

for the equilibrium waiting time W in heavy traffic holds for

queues having multivariate EARMA interarrival and service times;

that is, we will show under conditions detailed in Section 3, that - -

if the traffic intensity Ap~~ of the queue is close to 1, then

the distribution of (1 - A~j~~)W is approximately exponential.

The mean of this exponential distribution will in general be

different from the case of independent interarrival and service

times. Positive cross—correlation between the interarrival and
- •  

service times will tend to decrease the mean; while positive

correlation within the interarrival and service time sequences

will tend to increase it.

3

~

—

~

----

~

--

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
. - •~~~~—~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

------ 
~~~~~~~~~~~~~~ ~~~~~



.5- r~~— _ ’

In Section 3 we wilJ. state the heav~r traffic mesult more 
—

precisely and present several examples -of its a p ~.i~~~~+lan. .  1-te

- 
formulation for multiv&riate BARMA queues is vec~r -dependemt on

the fact that the merginal distr~buti.on and correlatton structure

are specified independently of one another in EARMA formulation...

In -Section 4 we will give the proof -of -the -heavy traffic result.

4
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2. QUEUES WITH EARMA INTERARRIVAL AND SERVICE TIMES

We will consider a single server queue at which customers

arrive and are served in the order of their arrival. The 0th

customer arrives at t = 0 and finds the server free. The

arrival time, service time, and waiting time (excluding service)

of the nth customer are denoted respectively by T~~= ~~~ ~~

S~ , and W~. In this section we will present some examples of

the use of the EARMA scheme to model dependent interarrival and

service times in queues.

(2.1) EXAMPLE. Let {x~} be an EARMA(1,l) process with

positive finite mean A~~ and parameters 0 
~ 

< 1 and

0 < p1 < 1; let {Sn} be an EARMA (l,l) process independent of

{X~} with positive finite mean and parameters 0 < < 1 -;

and 0 ( p2 < 1. Note that if 5] = ~~~ = 1, or 8
~ 

=

= 0, p2 = 0, or = 0 , ~~ = 0 , = 1, or = 0 , p 1 = 0

82 = 0, p2 = 0, then the queue reduces to an M/M/1 queue.

Other special cases include queues with Poisson arrivals and

EARMA (1,l) service times independent of the arrival process,

and queues with EARMA (l,l) interarrival times and independent

exponential service times.

The sequence {(Xn~
S
~
)} is stationary and {x~} and

{Sn} are independent. However the X~ ’s (respectively Sn ’s)

are positively correlated with

5
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(2.2) Cov(X
fl
,Xfl+k) = A 2p~~~ (l—B 1) [Bl(l—p l) + (l—81

)p1]

(respectively

(2.3) Cov(S~ ,S~÷~~ = M
2p~~

2(1—82) [82(l—p 2) + (l—8 2)p2I)

from (1.2).

Let (respectively F~) be the c~-a1gebra -generated

by Xi~ •••I Xm (respective ly S1,...,S ) and 
~~+k 

(respectively

the c—al gebra generated by Xm+k~ 
Xnl+k÷11~~~ 

(respectively

5m+k’ Sm+k+l~ 
. . . ).  Let L2(F~) (respectively

denote the collection of real-valued functions having finite

second moment that are measurable with respect to ~~~~~~ (respectivel”

i = 1,2. If f. E L2(F~) and g
~ 

E L2(Q
~+k

), i. = 1,2,

— 
then there is a k0 independent of f1, g1, i = 1, 2, such that

for k > k 0

(2.4) IE[(f1f2)(g1g2)] 
— E [f

1f2
] E [g

1g2
](

= ~E (f 1g1] E [f 2g2 ] — E(f
1] Elf2

] E[g1] E[g2]I

= I E ( f 1g1] (E[f 2g2 ] — E[f2 ] E[g2]}

+ E [f 2 ] E [g 2 ] {EEf 1g1] — E l f 1] E[g1]}J

6
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(2 .5 )  < E [ 1 f 1g11] 5P~
12 E [f ~ ]

1”2 E [g~ J 1”2

+ E[ 1f 2 1] E[ 1g 2 1] 5p~”2 E[f~~]~~
”2 E [g~~]

1”2

< 5 [p ~ ’2 + p~~’
12 ] E . [(f 1f 2

2 ] 1”2 E [ ( g 1g2 ) 2 ]~~
”2

where (2 . 4 )  follows from the independent of {x~} and Cs~}

and (2.5) follows from ( 6 . 5)  of Jacobs and Lewis [3] .  Hence ,

if f (respectively g) has fini te  second moment and is measur-

able with respect to the product c-algebra x (respective ly

~rn+k 
X 

~rn+k~ ’ 
then for k sufficiently large

( 2 . 6 )  ~E[fg] — E[f] E[g] I < 5E[f2]1”2 E[g2]1”2 [P 1
~
”2 +

Hence, the sequence {(X~~S~)} is asymptotically uncorrelated

in the sense of Rosenblatt [10] and is 4-mixing in the sense of

l3illingsley [1].

(2.7) EXAMPLE. In Lewis and Shedler [7] one of the schemes

that is proposed for cross—correlating the arrival process and

the service times is the following. Assume {x~} and {E~ }

are independent sequences of independent exponential random

variables with positive f ini te  means and respectively.
- 

. The nth interarrival time is assumed to be X~ and hence th~
arrival process is Poisson with rate A. Let the nth service time

(2.8) Sn = 8E~ + J~~(A u~~B~ )

7
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where

(2 . 9 )  B
~ 

= pB~ _ 1 + K~ X~

and 8, p, {~~~~ } and {K~ } are as in ( 1.1) and (1.2) so that

{S~} and {X~} are now cross-correlated sequences. We will

assume that B0 has an exponential distribution with mean A~~.

Since and B~ are independent , {S~ } is a stationary

sequence of exponential random variables with mean p~~~. If

8 = 1, then the queue reduces to an M/M/l queue. The Sn’s

can be shown to be positively correlated with

(2.10) Cov(S~~ Sfl+k ) = p~
2(l.~8)

2 ~k k = 1,2 

Further , the nth service time S~ is positively correlated with

the interarrival times X~ , X~~ 1, ... , X1 with

(2.11) Cov (S ~ k~ 
= (~u)

1(1~8) 
(1_ ~)~ kn n-

for k = 0,...,n— l.
Note that ~~~~~~~~~~~~~~~~~ Xn+k,Sn+k) is a function of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Xn+1,IEn+k,Jn+k.Kn+k).

Hence, since the sequence {a~} is stationary so is the

sequence {(Xn~
Sn)}~ 

Further, by arguments similar to those

- 
- used in obtaining (6 .5 )  of Jacobs and Lewis [3], if f and

g are as in (2.6), then for k sufficiently large

(2.12) IE [fg] — E[f] EEg] I < ~~k/2 Elf2]1”2 E[g2]1”2

so that the sequence {(x~~s~)} is 4-mixing.

8
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There are many ways to cross-correlate the interarrival

and service times using the EARMA scheme beyond those given

above and in Lewis and Shedler [7]. We will present one more,

somewhat more general than that of Example (2.7) in which the

service times were coupled back over the previous interarrival

times.

(2.13) EXAMPLE . Let {E~ ) ,  {En}i and {Cn } be independent

sequences of independent exponential random variables having

respective positive finite means A ’, 
~~~~ 

and 1. Let

(2.14) X~ = BE + J~~(A ~~ A~ )

(2.15) Sn = YE n + I(p ~~A )

with

(2.16) A~ = ~A~~ 1 + KnCn

where 8, p , {J~ } and {K~ } are as in (1.1) and (1.2) and {i~}

is a sequence of independent binary random variables independent

of everything with P{i~=l} = 1 - P{I~=O} = (l-y) for some

fixed constant 0 < y < 1. Again we assume that A0 is an .

independent random variable having an exponential distribution
- A with mean 1. Then {(E~ , ~~ ~~~ I~ , J~)} is a stationary

sequence of random variables and, hence, the same is true of

{(X n~ Sn)}~
9
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If y = 1, 8 = 1 or y = 1, B = 0, p = 0 or y = 0 ,

B = 1, p = 0, then the queue reduces to an M/M/l q~*ue. If

8 = 1, p = 0 thea the queue reduces to a special case of Example
(2 .7 ) . Straightforward man.ipulation shows that in general the
interarriva]. times X~ are positively correlated with

(2.17) COV (Xn~ 
Xfl+k) = A 2(l_B)2pk , k = 1,2 , . . . .

The service times Sn are also positively correlated with

(2.18) Cov(S~~ Sfl+k) ~~~~~~~~~~~ k = 1,2 , . . .  .

The interarrival times and service times are positively cross-

correlated with

(2.19) Cov(Xn, Sfl+k) 
(l_B) (l_y) (A ~)~~ pk, k = 0 ,1,... ;

and

(2.20 ) Cov(Xfl+k, Sn) (1~8 1 ~y)
_
~~~, k = 0,1,...

Finally, by the arguments used in obtaining (6.5) in

Jacobs and Lewis (3], if f and g are as in (2.6), then

for k sufficiently large

(2.21) IE [fg] — E [fJ E[g] I < 5~k/2 E[f2)1”2 E[g2J 1”2

so that the sequence { (X~,S~) } is •—mi xing.

10
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3. A HEAVY TRAFFIC RESULT FOR EARMA QUEUES

r Let {x~
} (respectively 

~~~~~ 
be the sequence of

interarrival times (respectively service times) for a single

server queue with first-in—first-out service discipline.

Put U~ = S~ - X~ and assume that {u~} is a stationary

sequence with EIUn] < 0. Let Wn be the waiting time of the

nth customer and W = sup~ > ~ ~~~ 
U~ (with the convention

that = 0). Loynes [9] has shown that if the sequence

{u~} is metrically transitive, then the distribution of W~

tends in the limit to the distribution function of W. Since

it is usually difficult to obtain the distribution of W

analytically, particularly when the service and interarrival

times are dependent, we will obtain a heavy traffic limiting

result for it. In this section we will give the statement

of the result as well as some examples of its use leaving the

proof to the next section.

For each a > 0 let 
~a 

be a single server queue

with FIFO queueing discipline having stationary sequences of

interarrival times {Xn (ct)) with positive finite mean

and service times {S~~(ct ) } with positive f ini te  mean

such that, if U~ (a) = S~~(a) - X~ (ci), then {U~ (ct)} is a

stationary sequence of random variables. Let

(3.1) E[U (a)] = ~~~a) < 0; Var[U~ (a)] = s2 (ci) ;

11
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(3.2) a
2 (a) = Var U1(c*) + 2 ~ Cov(U1(ct),U1÷~ (cz));

(3.3) d(ct) = ( v ( c z )  I / a ( c z) and n (a)  = d (ct) 2 
-

We will assume the following:

( 3.4) ASSUMPTION . There exists a distribution function G so

that lim a + c ~ P {[U ~~( a) - v ( a ) ] 2 < x} = G(x) for all continuity

points x of G; lima + 
v (a) = 0; and 0 < lim

~÷~
s2 (a) = ~2 <

(3.5)  ASSUMPTION . 0 < u r n  c 2 (a)  = a
2 < -

(3 .6)  ASSUMPTION . If f (respectively g) is a function with

finite second moment measurable with respect to the a-algebra

generated by U1 (ci) ,. . - U~ (ci) (respe ctively Um+k ~~~ U +k+l (a),...),

then

( 3.7) ~Effg)  — E [f )  Etg f l  ! 4) (k) E I f 2 ]~~”2 E [g 2 ] 1”2

for some decreasing function • bounded above by 1 not depending

on a satisfying

(3.8) ~ •( n) ( o o •
n=l

Assumption (3 .4 )  concerns the convergence of the distribution of U2 (a)
2= 

~~~~~~~~~~ 
and its first two moments as a + 

~~. Assumption

(3.6) is roughly a condition that the sequences (U~ (cz), n l ,2,...}

12
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be •-mixing uniformly over all a. This assumption guarantees

that the series in (3 .2 )  converges and

lim j~
. E [ (  )

~ 
(Uk(a) 

— v(a)))
2] = a

2 (a)
k l

AssumptiOn (3.5) concerns the convergence of this normalized

variance term as a + 
~~~~~

Put
[n ( a ) t J

Z~~
(t) = d ( a )  c ( a )~~ k~ l 

Uk ( a ) ,  t > 0

where lx] is the largest integer less than or equal to x.

Let ]D ( ( 0 ,oo)) be the collection of real-valued, right continuous

functions on [0 ,o°) which have left limits everywhere endowed

with the metric given in Li-ndvall [8].

(3.9) THEOREM. If (3.4)— (3.6) are satisfied , then the process

— Z = {Z (t);t > 0} converges weakly in D ( [ 0 ,oo)) to a

Brownian motion with negative unit drift.

The proof of this result will be given in the next section.

Let
n

W ( a )  = sup 
~ 

Uk (cz) -— 

- 
n > 0  k=l

Then it follows from Theorem (3 .9 )  that

13
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u n p {c~~~ W ( a)  < = u r n  P{ sup Z (t) < x}
a( a)  — 

~~~~~~~~~~~~~~~ 
t .?. 0

1 - exp{-2x} 
-

where the last equality follows from the continuous mapping

theorem (cf.  Billingsley [1]) . Thus we have the following

result.

(3.10) THEOREM. If ( 3. 4 ) — ( 3 . 6) hold, then

tim P( Iv ( c t ) I W ( a )  < x} = 1 — exp (—2 a 2x}

Hence, if the t raff ic  intensity of a queue is less

than but close to 1 and {U~} is a stationary sequence satisfy-

ing (3.7)  and (3. 8) ,  then the distribution of W is approximately

exponential with mean - a2 ECU1]
1 where

= var [U 1] + 2 
n~1 

Cov(U 1, Ui+~
) -

Thus positive cross correlation between the in terarrival and service

times will tend to decrease the average mean waiting time ; while

positive correlation within the interarrival time or service

time sequence will tend to increase the mean waiting time.
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(2.11) EXAMPLE . For each a > 0 , let be a queue as in

Example (2. 1) with {X~~( c t ) }  (respectively {S~~( a ) ) )  forming

an EARMA(1,1) process with parameters A Ca) , B
~ 

and p1
(respectively ~i ( a ) ,  82 and p2 ) .  Assume A ( a )  < I i ( c i) for

each a, but lim ÷~ A ( c z ) = lim a+~,c~ 
j.i (a) = m; then hypotheses

(3.4)—(3.6) are satisfied and Theorem (3.10) holds with

a2 = 2m 2
{1 + (l—p 1)~~ (l—81)[(l—p1)81 + (l—8 1)p1]

+ (1—p 2) 
—l (l_8

2) [(l—p 2) 82 + (1~~2
) P2~ I .

Hence , if the traffic intensity A~~
1 of a queue with independent

EARMA (1,1) services and interarrival times is less than but

close to 1, then the distribution of the equilibrium waiting

time w is approximately exponential with mean - ~ a~ E[U1] —

where E[U1] = - A 1 and a2 is given by

a2 = {l + 2 (l—p 1)~~ (1—8 1) [(l—p 1)81 + (18 1)p 2]}

+ + 2 ( l — p 2 )~~~ ( l_ 8
2 ) ( ( 1 p2 ) 8 2 + (l8 2 )p

2
]}

Thus the dependence in this queue tends to increase the mean

customer waiting time at least in close to heavy traffic

conditions.
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(3.12) EXAMPLE . For each a > 0 , let be a queue as in
Example (2.7) with parameters E[X~ (cz)J = A ( a ) ~~~, 8 , and p
and EESn (C*)] = ~i

(cxY’1 . Again we will assume A (ct) < u(a)

for each cv. but u r n  ct~ 
A(c~) = A = lim 

+ 
p (a) = p = m . Hence

( 3 . 4 ) — ( 3 . 6 )  are satisfied and Theorem (3.10) holds with

a
2 A 2 

+ p~
2 - 2 ( 1 —8)  (1 - p ) (Ai i )~~~

+ 2 p ( l — p ) ~~ [( 1—B) 2 p 2 — ( 1— 8) (1 — p) ( A p ) 1j

= A 2 + p~
2 [1 + 2 ( l_ 8) 2 p ( l -p )~~~] - 2 ( A p ) 1 ( 1— 8)

= 2jr12 [1 + ( l _ 8) 2 
p (].—p ) —1 (1 8) I

The quantity a2 - can be either positive or negative where
a 2 

= + = 2n12. It is negative if p < (2_ 8) 1
m d
and nonnegative otherwise. Hence, if p is sufficiently less

than (2 - B) ~~~, then the average customer waiting time in the

queue will tend to be less than the waiting time in the inde-

pendent case at least in close to heavy traffic conditions.

It will tend to be greater if p is sufficiently greater than

(2_B)
_1
.

(3.13) E XAMPLE . For each a > 0, let be a queue as in

Example (2.13) with parameters A (cv.), ~(cz), p, 8,and y.

Assume lim ÷ A ( c z )  = A = lim a+c p (cz) = = m as before.

Then ( 3 .4 ) - ( 3 . 6 )  are satisfied and Theorem (3.10) holds with

16
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= ~-2 
+ — 2 (Ap )~~ (1-B) (l-y )

+ 2p (l -p)~~~ (p~~ ( l—y) -A~~ (1~B)

= ~~
_2 [1_ ( 1_ 8) (1-y) + p( 1-p)~~~U 8-y)  }2 ] • —

The difference a2 
- a~ f l d can be either positive or negative ;

~°ind = + ~ -2 
= 2m 2) .  The difference will be negative if

p < ( 1 —B)  ( 1 -y ) / ( ( l— 8)  ( l—y ) + (B_y) 2] and northegative otherwise.

Hence under close to heavy traffic conditions , the average

customer waiting time will tend to be less than the independent

case if ( 1— 8) ( l— y ) / [ ( 1— B )  ( l—y ) + ( 8—y ) 2 ] is sufficiently greater

than p. It will be greater than the independent case if the

same quantity is sufficiently less than p .

.1
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4. PROOF OF THE MAIN RESULT

In this section we will give a proof of Theorem (3.9).

We will assume that (3.4)— (3 6) are satisfied. Let 
—

[n ( a )t ]
Y~~

(t) = a~c&) I (Uk
(a) — v ( c s ) ) .

By Theorem 3’ of Lindvall. [8) and the Continuous mapping thsorem,

Theorem (3. 9) will be proved if for each a > 0 we can show
the following result.

— 

(4.1) THEOREM. The process {Y
~
(t); 0 < t < a} converges

weakly on ]D(E0,a]) to Brownian motion .

ØD ([ 0 ,a])  is the space of real-valued right contjnuous fun~ tj ons
on [0 ,a] with left-hand limits endowed with the Skorobod
topology.)

We will prove Theorem (4.1) for a = 1 by a series of

lexmnas. The proof for arbitrary a > 0 is similar .

(4 . 2 )  LEMMA. The process {Y (t) ; 0 < t < 11 has asymptotically
independent increments .

Proof. Let 0 < s
~ 

< t1 < s2 < t2 < ~~~ < Sr < tr < 1• Let
C~ be the event {Y (t1) - < x1} for real x1. Then

C~ is an event in the a-algebra generated by

18
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U Cn ( a) s I+l~ ... , U [fl( a ) t ] .  If ~ is the smallest difference

8
1 

— tl_1, t:en + 1 — [n(cv.)t. > [n(a)6]. By (3 .7)

IP ( fl Cj) — 11 P(C.)I < r4((n(ci)tS l ) . 
—

• i=l i=l 1. —

Since 6 > 0, rvP([n(a)tS]) tends to zero as a + and the

result follows .

In the following results , let D1(a) = U~~( a) - v (a)

and V
~~

( cz) = 
~T 1  

D~ (a). By (3.4)-(3.6) the following result

- holds .

(4.3) LEMMA.

a) 
~j 

E[Vk (a) 2 ] < 2 ~ I E [D 1-(a) D14 .( a ) ] I ;
J=0

b) u r n  n(a)~~ E[Vn() ( a) 2 ] = a
2

C) If is bounded by C , then E[Vn ( a) (a) 4 ] < K C ’
~ n ( a) 2

where K~ depends on ~ alone.

(4.4) LEMMA. The sequence of random variables

{n( a)
~~~ (Vf l ( U )  (a ) ) 2 ; a > 0) is uniformly integrable.

Proof. By (3. 4 ) ,  {D~~(a) ; a >  01 is uniformly integrable. The —

remainder of the proof is very similar to that of (20 .48 )  on

page 176 of Billingsley [1] and will be omitted.

19
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(4 .5)  LEMMA . For each positive c there exists a y ,  -y > a

and an integer n0 such that n ( cv . )  > no implies

max I V . (afl > yv’n ca) }  < -~~~~ .
i < n (a) 1

Proof. Put C~ (-a ) = 
~~~~ 

ID~ ( a ) f .  By (3 .4 ) , there exists

an increasing sequence of integers rn~ such that n(a) > in1
implies P t j D 1(a) ) > y p’n (aJ /i2 } ( (y n(a)i2)~~ for each

positive y .  Let p(cv .) = i if < n ( c v . )  < m1~ 1; then p ( a)

tends to infinity as a + °° but

* ______(4.6) 1mm n ( c v . )  P{C~ 1~~~(a) > y I n (af l
~~ 

+ 00 ~~~ I

< lim n ( a)  p(cz) P{1D1(a) I > y v’n (aI p ( a)~~~]
~~ 

00

< lim n(cv) p(a) P{1D1(cz) I > y Vn (c t) p ( aY 2 1

< lim n ( a )  p (cv.) [y n ( a)  p ( a ) 2 J~~ = 0
- -

We can further choose p(a) so that p(a) < n ( c i) . p j ~ ~ > 0.

~~~~ 
By the previous lemma we can choose y so that y > a and

20
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p { max IV ~ (a) I > 3y I n ( a) }
j<n (a)

< P{ IV n(a) (a ) I  > y ,‘n(a)}

+ ( n ( a)  + p ( cx ) ] P{C (a) (a) > y /i~TaT}

n(cv.)— ( a) —l _ _ _ _

+ 
.~~~~ 

P ( A i (ci) [P{ IVn ( a) ( ci) — V
~+P(~)

(cv.) I > Y  v’~~(a)}+4 (p(a)]
- i=l

< 2E’ (2+~~(p(a)) + ( f l ( c v .) + p ( a ) J P {C;( a) (cv.) > y

by (4.7) and the fact that the A~~(a) are disjo int. Hence by

(4 .6 )  and (3.8) for a large

p{ max I v .  ( a )  I > 3y l n (c v .)  } < 3cy 2 
.

i < n (cv.) ~~~ — —

PROOF OF THEOREM (4 .1). For a = 1: By Lemma (4.5 )  the

sequence 
~~~~ 

is tight on ]D(0 ,ll .  Further lim~~÷ E L Y ( t )I  = 0

and

_ _ _ _  

1, [ n ( c v . ) t l  - I
lint E(Y (t ) 2 ] = u r n  (‘~~(~v.) a (a) ) 2 E ~ D (a) )

2 ( = t
L k=1 k

by (3.5). Since Y
~
(t)2 = [a 2 ( cv. ) n ( a ) ] 1 V [fl( a) t J ( c *) 2

{Y~~( t) }  is uniformly integrable for each t by Lemma (4. 4 ) .

By Lemma (4 .2 )  {Y
~~

(t) ; 0 < t < 11 has asymptotically independent

increments. The result now follows from Theorem (19.2) of

Billingsley (1].

22
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(4 .7) P { I Vk ( a )  (a) I > y ~~~(a)} < ~~-2

for all a . Let

A~~(cv.) = {max I V . ( c v . ) { < 3y /n(cv.) < 1V 1( a ) I }  ;
—

then

max IV~ (cv. ) I > 3y /n(cv.)}
i < n ( c g )  —

<P{ lV fl(~ )
(a)I > y  ,rn ( a ) J  -

n ( a ) — l  
_ _ _ _

+ 
~

‘ P ( A . ( c i )  fl {IV 2.~~~ — V1(a) I > 2y ln ( cv .) J

The summation is bounded above by

n ( a ) — p ( a ) — l  
____

P {I V ~
(a) — V i~~~ ( )  (a)  I > y / n ( a ) }

n ( c v . ) — p ( c v . ) — l  
____

+ ii]. P ( A 1(a) fl 1~IV n~~~~
(a) — Vi+p(a) (afl > y  /i~ ( aJ })

n ( a ) —l 
_ _ _ _

+ P {I V ~~( )
( ct) — v. (a) I > y /n(a) }

i = n ( cz )— p(a)  ci 1 —

Each term in the first and third of these SUm S ~S bounded above

by P {C;(a) ( cv.) > y /n (a) }.  Since A~~(a) is measurable with

respect to the a -algebra generated by U1 (a)  ,... , U 1 (a)  by (3. 7)

- 21
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5. EXTENSIONS

This paper presen ted a heavy traffic result for the

limiting distribution of the customer waiting time in single

server queues with dependent interarrival and service times.

There are many different ways in which to model dependent

interarrival and service times in queues using the EARMA scheme.

Some other ways are given in Lewis and Shedler [7]. Properties

of these multivariate exponential models will be given

‘elsewhere.

Work is currently going on in the simulation of these 
- 

-

queues. Some simulation results have been reported for the

queue of Example (2.7) with B = 0.5 , p = 4 and various

values of p and A in Boonsong [2 ] .  They seem to indicate

that the heavy traffic result approximates the average

customer waiting time fair ly well for a traffic intensity of

.9 and quite well for a t ra f f ic  intensity of .95. However ,

the distribution of W in a simulation with p = 0.25 and

traffic intensity .995 shows a large amount of underdispersion

relative to an exponential distribution. Thus , it seems that

the convergence of the waiting time distribution is very slow .

it is expected that further simulations will give

more indication of the validity of using the heavy traffic

result to approximate the average customer waiting time, or

quantiles of the waiting time distribution under less than

heavy traffic conditions. These results will be reported

on elsewhere .
23
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