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ABSTRACT

This report documents some specific features and characteristics of
Hartmann flows in the Faraday generator configuration concerning effects
of longitudinal baffling along the insulating duct walls and, effects of
slip between gas-phase and liquid-phase in the flow. It also contains an
analysis of a compensating system of a Faraday generator as well as a one-
dimensional zero-slip model of a two~phase MHD flow through fhe generator.
Of the results we notice that there appears not to be any efficiency gain
by the insertion of longitudinal baffles. The slip model again seems to
over predict the performance of experimental generators by typically
fifteen to twenty percent within the raage of validity for approxima-
tions made. With respect to the compensated Faraday generator we are
able to show that one-dimensional models cannot adequately represent
irteractions between flow and magnetic field in a finite generator, but
that three-diﬁensional effects must be taken into account. Finally, én

expression is derived for channel cross-section area as a function of

v

downstream distance to give optimum generator performance in the case

of zero slip between gas and liquid phases.
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Chapter 1
INTRODUCTION

Analytical and numerical studics on two-phase MHD-flows in the
Faraday generator configuration have been in progress at University
of Florida since December, 1975. The studies have been aimed as a
complement to the experimental efforts that have been under way at
Argonne National Laboratory on liquid metal-gas MHD power generation
since 1969.

The efforts during the first couple of years were directed to-
wards a better understanding of the basic principles involved in these
types of flows and to try to model some of these flow processes.

This is reflected by an annual report on TWO PHASE HARTMANN FLOWS IN
THE MHD GENERATOR CONFIGURATION, Department of Engineering Sciences,
University of Florida, TECHNICAL REPORT NR 01-001, January 1978.

The continued efforts thereafter have been directed towards more
specific problems which have presented themselves as urgent and being
of vital interest in view of experimental resﬁits obtained at Argonne
National Laboratory and lack cf analytical data in the literature.

Thus, onec section of the present report concerns the effects of
longitudinal baffling of the generator duct as to prevent Hartmann
layer current short circuits. This was deemed an important issue in
view of contradictory statements in the literature. It appears our
contribution on this subject (submitted for publication in the Physics
of Fluids) should settle the dispute.

One of the main sections of the report is devoted to the effects
of slip upon the generatof performance and how well the numerical
analysis can represent and predict experimental data obtained. While

there still exist enormous gaps in the modeling of the behaviour
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of voids in the liquid metal MHD flows, the presented computer modeling

does give much valuable information both quantitatively and qualitatively

with regard to experimental findings and their interpretation.

The report also contains an analysis of an "one-dimensional" model
of a generator and its compensating system utilized for experimentation
at Argonne National Laboratory. While the computer model shows that
the assumption of a uniform applied flux density is satisfied to quite
a degree of accuracy it also shows that truly one-dimensional models
cannot adequately estimate interactions between fluid flow and magnetic
field in a finite Faraday generator. However, we have manaced to
develope an averaged Ampere's Law over the Hartmann generator
duct cross-section which can be used for sorts of one-dimensional
modeling of interactions between magnetic field and the conducting
liquid flow.

Finally, we have investigated the properties of a zero-slip
Faraday generator by an one-dimensional model, which then has been
used for the design of a generator of optimum performance all along
its duct length for several relationships between average conductivity
and void fraction.

This report concludes our research program on two-phase MHD as
directed by the Office of Naval Research, Material Sciences Division,
Power Program.

Here we would like to add a few comments on the potenfiality of
Faraday machines for future development.

It is true that the two-phase MHD Faraday generators of the kind
that presently have been ﬁndet study by us and at Argonne National

Laboratory may not seem to harbor vast possibilities of improvement.




However, the performance of such machines may possibly permit considerable
improvement by subpartitioning the channel duct as proposed in the report
mentioned previously (Elkins, Kurzweg, Trovillion, Lindgren, 1978).

It is our feeling that a limited study of the feasibility of such

MHD generators may produce interesting results and conclusions.
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Chapter 2

EFFECTS OF LONGITUDINAL BAFFLING IN FARADAY GENERATORS

When a Faraday generator, sketched in Figure 2.1, is operated with
a nonzero load, part of the electric current generated by the core flow

ﬁ will return through the load and part will return through the Hartmann

layers adjacent to the insulating walls. The current returning through

the Hartmann layers represents a loss to the system, since it cannot be

used externally.

Figure 2.1- Faraday generator of length 2, half-width b and
half-height a as oriented in the reference frame
X1s Xpy Xge B indicates the direction of the

magnetic field and Re symbolizes the external load.
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It has recently been suggested (Yakhot and Levin, 1978) that this
electric current can be attenuated and the system efficiency improved
by inserting insulating baffles parallel to the flow along the in-
sulating walls. On the other hand, Shercliff (1977) found that such

baffles will not interrupt the Hartmann current and that no efficiency

gain can be obtained in this fashion.

C
dir Baffles

Figure 2,2- The Faraday generafor equipped with longitudinal
baffles along the insulating walls.

We have examined the problem for a range of moderate Hartmann

numbers, using a numerical integration scheme described by Trovillion,
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Kurzweg, Elkins and Lindgren (1979). In these computer model ex-
periments, we placed vertical baffles of zero thickness and various
heights along the center lines of the insulating walls as showa in Figure
2.2. The program generated plots of current and velocity streamlines
and listings of power and efficiency which could be compared to similar
systems without baffles.

The results of these computer experiments support Shercliff's
work. Inserting a baffle into the flow in all cases was found to
decrease the efficiency by a small amount. This effect is summarized
in Figure 2.3 where the efficiency is plotted versus baffie height
for two sets of operating parameters. It can be seen that, as the
baffle height protrudes across the Hartmann layer, the efficiency de-

creases to a fairly constant level slightly below that for the channel

062

0.99 : - .
0o O.l 02 03 04 05

BAFFLE HEIGHT

Figure 2.3- Efficiency versus baffle height for a 2:1 Faraday

generator at a Hartmann number of 20 and a load factor
of 0.82. The baffle height is specified in terms of
half channel height.(The load factor is the ratio of

the external, Re’ to the total elec’rical resistance.)




without baffles. Then, as the baffle protrudes further, into the core
flow, the efficiency again begins to decrease more markedly.

Figures 2.4a and 2.4b are first quadrant plots of constant velocity
contours aud of electric current streamlines for an unbaffled, 2:1
channel at a Hartmann number of 20. There is an equal velocity increment
between each velocity contour and an equal amount of electric current
flowing between each current streamline. Figures 2.9a and 2.9b are
plots for the same channel at a Hartmann number of 40. The Hartmann
layer in these plots is delineated by the regions of closely packed
contours along the insulating walls in Figures 2.4a and 2.9a and by
the near wall portions of the closed current streamlines in Figures
2.4b and 2.9b. Figures 2.5 through 2.8 and 2.10a and 2.10b show how
the velocity and electric current fields are affected as baffles
extend into the flow.

With baffles of small height, the Hartmann layer is simply dis-
placed around the baffle (Figures 2.5a, 2.6a and 2.10a) with a small
change in the velocity at the core. A portion of the current re-
turning through the Hartmann layer is likewise deflected around the
baffle (Figures 2.5b, 2.6b and 2.10b), with the remainder looping

around to form a closed current loop between the baffle and the elec-

trodes. Such a structure does not exist in the absence of a baffle.

On the other hand, the net percentage of current flowing past the
baffle is changed little by the presence of a small baffle. This is
reflected in the fact that the distribution of current streamlines along
the electrode is changed little and in the fact that the same number of
streamlines pass the channel center with and without the baffle. Similarly,

the structure of the current streamlines in the channel core is virtually

unperturbed.
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Figures 2.9-2.10 a. Velocity contours and

b. Electric current streamlines in the first quadrant
of the generator duct cross section at a Hartmann number of 40 and a load
factor of 0.86. Figure 2.9: Unbaffled channel. Figure 2.10: Baffle
height 0.1 of half channel height.
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Figures 2.4-2.8- a. Velocity contours and
b. Electric curreat stream lines in the first quadrant of

the generator duct cross section for various baffle heights in the channel

at a Hartmann number of 20 and a load factor of 0.82. Figure 2.4: Unbaffled
channel. Figure 2.5: Baffle height 0.1 of half channel height. Figure 2.6:
0.2; Figure 2.7: 0.3; Figure 2.8: 0.5.




Extension of the baffles further into the channel leads to marked
changes in the flow structure. A low velocity region extends from the
baffle into the core flow, becoming more pronounced as the baffle ap-
proaches a quarter of the channel height (Figures 2.5a, 2.6a, 2.7a).
It may be thought of as an extension in the direction of the magnetic
field of the perturbed velocity field in the vicinity of the baffle.

A similar effect occurring in large interaction parameter flows is
described by Hughes and Young (1966).

While core streamlines undergo deflections as they approach the
baffles, they are not much affected away from the baffles. The net
percentage of current crossing the channel is for the case of baffles
a quarter of the channel height not much different from the unbaffled
case. Similarly, the structure of the electric current field in the
Hartmann layer away from the baffles changes little as the bzffle
height increases, but the thickness of the region of reversed current
flow (away from the baffle) is nearly the same for a baffle of a
quarter the channel height as for no baffle.

Those current streamlines which pass the baffle are crowded to-
gether as they do so. This effect can be seen clearly in Figure 2.7b,
but it is present in lesser degree for smaller baffle heights. As a
result, the electric current density is greater above the baffle than
in other regions of the core. The region with higher current density
experiences an excess retarding force and, as a result, the velocity
there is reduced. Also, ohmic dissipation is increased in this region.

In short, a baffling system will neither block the return current
in the Hartmann layer nor improve the generaior efficiency. A no slip
viscous condition for solid boundaries implies a region of low velocity

and, consequently, of low EMF, next to the insulating boundaries

11
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through which a return current can flow. Note that one may also look
at the return current as driving the fluid in the Hartmann layer, so
bringing the high velocity of the core region in nearer to the
boundaries. This is seen as a Hartmann layer velocity gradient which
steepens with increasing Harimann number.

Yakhot and Levin (1978) err in supposing that a baffle can change
the current distribution of the Hartmann layer without affecting the
velocity. The current and velocity are strongly coupled, and the
velocity field changes just sufficiently so as to maintain the Hartmann
layer electric current. But, while moderately sized baffles do not
improve efficiency, neither do they much degrade it. If it is for
some reason desirable to insert baffles into the generator, they can

be inserted without much lowering the system performance.

12




Chapter 3
EFFECTS OF SLIP IN A TWO-PHASE FARADAY CGENERATOR
Slip between the gas and liquid phases is an important f{eature of
the two phase Faraday generator. 1t arises as a result of the Lorentz
force acting solely on the liquid phase, so creating a prescure
gradient in the liquid phase, and a "bouyancy force" on any
entrained voids. The voids must then move relative to the liquid

phase in such a fashion as to balance this bouyancv force.

Except at extremes of void fraction, there are presently no

purely analytic descriptions of two phase flow (see Wallis, 1969).

| On the o;her hand, a number of well documented semiempirical descrip-
tions exist which, as noted by Elkins, Kurzweg, Trovillion and
Lindgren (1978), may be applied to two phase magnetohydrodynamic flow
in a straightforward manner.

If a two phase Faraday generator is run at large Hartmann number,

l and if the liquid velocity does not change appreciably in the length
of the generator, then viscosity and inertia contribute negligibly to
the downstream pressure gradient. In the generators studied at
Argonne National Laboratory (Petrick, Fabris, Pierson, Curl, Fischer
and Johnson, 1977), for example, viscosity dissipates generally less

than five percent of the mechauical work done by the fluids. By far,

the largest force acting on the liquid is the ponderomotive force.
With these considerations, it is possibly to construct a sim=-

plified force and mass balance suitable for describing such flows as

those encountered in experimental two-phase generators. For now, we

make the further assumption that the system is perfectly compensated

13
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(Jackson, 1963) and that there are no end currents. The resulting
model, while preserving the most important force and energy mechanisms,
is simple enough to provide descriptions of flow in the two-phase
generator via numerical integration quickly and efficiently.

While flow in the experimental generators cannot be observed
directly, it probably moves within the "churn" turbulent regime
(Petrick, Fabris, Cole, Hartmann, Pierson and Cutting, 1976; see
also Wallis, 1969 for a discussion of flow regime transitions).

Zuber and Findlay (1965) note that voids in churn turbulent flow move
at rates characteristic of bubbly flow voids, but relative to the
average volumetric velocity of the mixture. It remains to choose

an appropriate bubbly flow model. Wallis (1969) suggest that if

> Y '
Ry - 2(%,—) (3.1)
I

where RB is a size characteristic of the bubble radius, Y is surface

tension, and~%§-is the pressure gradient, ther

9P i

=— R

u, ___( ox B) (3.2)
P

where u_ is the relative velocity between the bubble and its sur-
rounding medium, and p is the density of the surrounding medium.

We take 0.01 m as a probably size for the bubbles, 0.1 N/m for Y,

and IOSN/m3 as a lower limit on %g}. This gives

's
2(—311;—) = .002m< .0l m=Ry (3.3)
x :
14




Now, if u is the average liquid velocity, u. is the average gas

G

velocity, and @ is the void fraction, then we have from Zuber and

Findlay's (1965) suggestion and equation (3.2) that

B\ s
u, = (v (Q-0) + ug®) = —9x B (3.4)
Py, (1-0)
or
@ " 2 3
- —-E; (uG—‘i) (1-9) (3.5)

where L is the liquid density. This semiempirical slip model is
essentially the same as that described by Petrick, Amend, Pierson
and Hsu, (1970). Note that it loses validity for sufficiently small
RB or %%, and also for non~churn turbulent flow.

We also have the force balance equation (see Elkins et al 1978)

%; = -0 B(E + u B) A (3.6)

where o is the conductivity of the dispersed liquid, E is the electric
field, and B is the applied magnetic flux density, and the two mass

balance equations

qG = ﬁuG AkP (3.7)

q, = Q-0 y Ap, (3.8)
where 9 and q, are gas and liquid nrss flow rates. A is channel
area, and k is a proportionality constant relating pressure,P, and gas
mass density. Finally we have to specify some relation for the

dispersed liquid conductivity

c = o f(l -a) (3.9)

R SRR p—— bl . i




where oL is the conductivity of the pure liquid and f is a function 1
of the liquid fraction,

Several semiempirical relationships for the dispersed liquid
conductivity have been used in the experimental effort at Argonne
National Laboratory (Petrick et al. 1970; Amend, Cole, Cutting and
Pittenger, 1973). In our analysis we use

o = o ()’ (3.10)
since it is close to the cited relationships and simpler in form.

The system of equations (3.5), (3.6), (3.7), (3.8), and (3.10)
comprise a complete set,once a functional form for A has been chosen
and E has been specified. We chose, for our initial numerical
modeling,'a channel with the same dimensions as the, so called, LT-3
channel used at Argonne National Laboratory.

A large number of runs are documented for this device (Petrick,
Fabris, Pierson, Fischer and Johnson, 1978). Its length is 0.385 m,
its width (between electrodes) is 0.1016 m, aﬁd its height in meters
is given by 3

2h = 0.0141 + 0.0129x (3.11)

where x is the downstream distance in meters along the channel axis.

Figure 3.1 is a sketch of this generator and its compensating bars.

We programmed the system of governing equations to be solved
interactively in APL (see Appendix 1 for documentation) for given
values of inlet pressure, gas (N2) and liquid (NaK) mass flow rates,
terminal voltage, and flux density. The APL coding is designed so
that channel operating conditions as well as channel gecmetry and slip

model can be quickly and conveniently manipulated. Provisions for

nonconstant electric and magnetic fields are also included.

16
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Figure 3.1- The LT-3, NZ-NaK, Faraday generator and compen-
sating system, at Argonne Nitional Laboratory.

Measurements in m.

Figures 3.2 through 3.20 reprcsent several "runs' by the computer
model generator under different operating parameters. Before dis-
cussing these diagrams, a note is in order concerning the interpreta-
tion of efficiency for these systems. Compare the two phase generator
to an isothermal expansion of a fixed mass of gas in a c(yliuder closed
at one end against a frictionless piston coupled to an ideal (conven-
tional) electric generator.

Finite conductivity of the liquid in the two phase system

corresponds to a less than ideal generator in the piston system.

Losses occur as electric current passes through the liquid phase




(through the windings of the conventional generator). These losses
could be minimized with large Hartmann number, high voltage, and optimal
loading and could, in principle, be held to a few percent (Hughes

and Young, 1966).

Nonuniform velocity in the two phase system will always lead to
a less than optimal loading condition. This is analogous to two or
more piston/generator systems connected in parallel, but operating at
different speeds. The faster generators will to some extent drive
the slower ones, with the result that both fast and slow generators
operate under less than idenl loading. Thus, in the two phase system,
the faster moving liquid generates power partly to drive the slower
moving liquid with additional Joule losses in both processes. This
point is discussed further in Chapter 5.

Slip losses in the two phase system are analogous to a leaky
piston. As gas leaking by the piston no longer works against the
piston, gas slipping by a liquid particle nollnnger works against
that portion of the liquid. Both processes fépresent irrecoverably
losses. Two phase slip losses increase with increasing pressure gra&ient
and increasing void fraction (Wallis, 1969).

Several matters bear on the definition of efficiency of the two
phase generator. First, the cycle efficiency cannot be determined
without specifying the manner in which heat is rejected from the gas.
One can only calculate a component efficiency for the generation of
electric power from a reservoir of high pressure fluid. Next, the work
of pumping the liquid phase from outlet pressure to inlet pressure
represents an appreciable portion of the system's energy budget.

Two schemes have been suggested (Petrick et al, 1970) that might

18
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supply this pumping cnergy. One would use part of the power from the
generator to run an electromechanical or MHD pump. In such a system,

the useful power available from the generator is the total power P

T
less the pump power PP. We define a net efficiency n,
P P
T P
S (3.12)
n
PG o+ PP

where PG is the power available in expanding the gas isothermally
between the inlet and outlet pressures. It is clear from equation
(3.12) that a high net efficiency demands that PP be minimized,
either by decreasing the relative amount of liquid (increasing the
void fraction) or by narrowing the relative differcnce between the
inlet and outlet pressures. Another scheme would acceierate the gas/
liquid mixture in a nozzle after it has left the generator and subse-
quently convert to pressure energy the kinetic energy thus imparted to
the liquid phase. More work must be done in recompressing the gas
phase than in the previous system, and the liquid must be pumped
through a larger head, but if the nozzle extr;cts power from the gas
more efficiently than does the generator, then a nozzle/diffuser

system may be more efficient overall. We note that, since void

fractions arc larger in the nozzle than in the generator, slip losses

are likely to be larger in the nozzle than in the generator (Wallis,
1969). 1In any case, we define a gross efficiency ng

" 'S (3.13)
g PG + PP

n

which corresponds to the generator efficiencies reported at Argonne
National Laboratory (Amend et al, 1973). It must be remembered that
relatively more electrical power is required to pump the fluids in the

nozzle system than in the electromechanical system, and ng is therefore

19
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NET POWER (WATTS X 10%)

an imcomplete characterization of energy usage in the generator.

Figures 3.2 through 3.12 jillustrate channel operation at a
liquid mass flow rate of 15 kg/s, an applied constant flux density
of 1.2 Tesla, and an inlet pressure of 6.105N/m2. The nitrogen

mass flow rate varies from 0.2 to 0.3 kg/s.
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Figure 3.2~ Net power versus load resistance for liquid
flow rate 15 kg/s; flux density 1.2 T; and inlet

S
pressure 6-10" N/m” ; and various gas flow rates.
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Figure 3.3~ Liquid pump power versus load resistance for
liquid flow rate 15 kg/s; flux density 1.2 T,
inlet pressure 6.105 N/mz.

Figure 3.2 is a plot of net power (electrical power delivered
! minus liquid metal pump power) versus load resistance. At higher
power levels, the net power decreases rapidly with increasing load

i resistance. Increasing the gas flow rate has the effect of increasing

b the power level for a given load. This reflects the increase in liquid
velocity with increasing gas flow rate. It is interesting to compare
’
‘ - y the liquid metal pump power, Figure 3.3, with Figure 3.2. The pump
%
§
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power can be seen to increase with increasing net power and decreasing
load resistance. This occurs since the heavier loading leads to a
steeper pressure gradient in the channel and a larger pressure
differential which the liquid must be pumped through.

Figure 3.4 is a plot of gross effis _ncy vs. load resistance.
Note that the peak efficiency is between 857 and 907 for the entire
range of gas flows. This compares to peaks of around 507 to 607%
reported for experimental generators operating at Argonne National
Laboratory under similar conditions (Petrick et al, 1978). Hartmann
layer dissipation accounts for the discrepancy. Peak gross efficiencies
in the mathematical model occur for very lightly loaded generators and
low power outputs (see Figures 3.4 and 3.5). With similar loading, a
real generator would experience viscous and Joule dissipation in the
Hartmann layer comparable to the power delivered to the load. In
order to overcome the Hartmann layer losses, a real generator must
be run at a relatively high power level. Thus, we find the experimental
generators at Argonne National Laboratory peaking in gross efficiency
at heavier loads than are indicated by the inviscid model presented here.

For heavier loading, the inviscid model is a much better predicter
of the performance of the experimental generators. When loading
and input paramecters are simulated for such cases (Petrick et al, 1978),
overall power levels are much larger than Hartmann layer dissipation.
Under these conditions, the model overpredicts the gross power output
typically by fifteen to twenty percent.

Figure 3.5 shows the net efficiency as a function of load resistance.

These curves can be generated, roughly, by multiplying the gross effici-

encies of Figure 3.4 by constants.
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Figure 3.4- Generator gross efficiency versus load resistance for
liquid flow rate 15 kg/s; flux density 1.2 T; inlet

pressure 6.105 N/mz. MC is the gas flow rate in kg/s.
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Figure 3.5~ Generator net efficicency under identical conditions as |

illustrated in Figure 3.4,
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Note that the gross efficiency curve for gas flow rate 0.2 kg/s

would be multiplied by a smaller constant than the curve for gas flow
rate 0.3 kg/s, reflecting the smaller void fraction and relatively
larger pump work of the 0.2 kg/s case. Note, too, that for heavier
loads, the net efficiency drops to less than forty five percent.
This neglects those loss mechanisms accounting for the discrepencies
between real and inviscid model gross efficiencies, and it assumes
that the liquid metal can be pumped with no losses. Net efficiency
of a real generator will be accordingly lower.

Figures 3.6 through 3.8 portray channelwise variations in some
flow parameters for a gas flow rate of 0.3 kg/s. These results are
typical of flows under most condition. In Figure 3.6, note an increase in

pressure gradient with decreasing load resistance. Decreasing the

load,decreases the electric field and so increases the magnitude of
the Lorentz force. For a load resistance of 0.00041 ohm the drop in
pressure is sufficient to expand the mixrure to a very large void
fraction, Figure 3.7. The result is a large liquid velocity and a
large pressure drop near the channel exit. Slip for this case,
Figure 3.8, also rises sharply near the exit, as should be expected for
a large void fraction, large pressure gradient flow. For a load of
0.0044 ohm, the liquid velocity drops enough that the pressure
gradient reverses near the exit (Figure 3.6). The slip over this
region of the channel drops below unity.

Figures 3.9 through 3.14 represent channel operation at a
liquid flow rate of 8.0 kg/s, an inlet pressure of 106N/m2. and a
uniform magnetic flux density of 0.3 Tesla. Nitrogen flow ranges

from 0.2 kg/s to 0.45 kg/s.
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Figure 3.6-

Pressure versus down-

stream position in
generator channel.
Gas flow rate 0.3
kg/s; liquid flow
rate 15 kg/s; flux
density 1.2 T; and
inlet pressure 6.10°
N/mz, under various

load resistances.

Figure 3.7-
Void fraction versus

downstream position i
generator channel.
Same data as shown

in Figure 3.6.
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Figure 3.8- Slip ratio versus downstream position in
generator channel. Gas flow rate 0.3 kg/s;
liquid flow rate 15 kg/s; flux density 1.2 T;
and inlet pressure 6.105 N/mz. under various

load resistances,
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Figure 3.9 shows the variation of load voltage as a function of

load resistance. Generally, as the load resistance increases, the

voltage approaches some constant value. This behavior is typical

of Faraday generators (Hughes and Young, 1966).

1.0

LOAD VOLTAGE

| 1 _4 L ) 1 -3 ] 1
3 6 B 3 6 10 3 6
LOAD RESISTANCE (§2)

Figure 3.9- Load voltage versus load resistance for liquid
flow rate 8 kg/s; flux density 0.3 T; and inlet
pressure 106 N/m2. M. is Nitrogen mass rate

G
flow in kg/s.
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In Figure 3.10 the net power has been plotted versus load volt-
age. As might be expected, more net power is available with high gas

flow rates. But for small load voltages, no advantage can be

84
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Figure 3.10- Net power versus load voltage for the flow

conditions documented in Figure 3.9.
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gained by increasing the gas flow. This occurs as a result of the

large pressure gradients of small load voltages leading to large

slippage losses for large gas flows. Figure 3.11 shows the loss

in efficiency caused by this effect.
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Figure 3.11-

T ; Y T 1

q S 6 4 8
LOAD VOLTAGE

Net efficiency versus load voltage for the same
generator, under the same flow conditions as
previously, i.e. liquid flow rate 8.0 kg/s;

flux density 0.3 T; and inlet pressure 106 Nlmz.
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Figure 3.12 shows how the power required to pump the NaK in-
creases with decrecasing load voltage. The pump power increases with
the flow rate of Nitrogen. This is so because the net power of the
generator exhibits increasing optima for increased load voltage and
gas flow rate by certain ratios. This tendency breaks down at
load voltages below Vv 0,3V as indicated in the diagrams of Figure

3.12 where the curves intersect each other.
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Figure 3.12- Liquid metal pump power versus load voltage

o

at a NaK flow rate of 8.0 kg/s; flux density
0.3 T; and inlet pressure 106 N/mz.
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Figures 3.13 and 3.14 illustrate streamwise dependence of gas
and liquid velocities and of electric current density for different
load voltages.
25* GAS s S o
LIQUID
k\
i LOAD VOLTAGE
S\ ‘\
Pe v NG
.~ S ~
LR -
o s~\ “‘s
S -~ -
j "‘;20" ¥ ‘s\ TS
| 3
s
> 1
t
O ,
@
-
W
>
| |
1
AT T S W
i DOWNSTREAM POSITION (m)
:
Figure 3.13- Fluid velocity versus downstream distance in
s : the generator duct for gas flow rate 0.35 kg/s;
i | liquid flow rate 8.0 kg/s; flux density 0.3 T;
| ; and inlet pressure ]06 N/mz.
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Since efficient operation of Faraday generators (at large Hartmann

number) requires that the applied electric field E be nearly equal in
magnitude to the induced electric field uLB (see equation (3.6)), small
variations in u can lead to relatively large variations in current
density. This effect is evident in Figures 3.13 and 3.14. The

curves for a load voltage of 0.52 is interesting from a physical stand-
point: note that there is a sign change of the pressure gradient where
the current density changes sign and that, at the same place, the

gas and liquid velocities are ecqual. (Compare Figure 3.13.)

\ 'LOAD VOLTAGE
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Figure 3.14~- Electric current density versus downstream
distance in the generator duct. The same flow

conditions as documented in Figure 3.13.
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NET POWER (WATTS X 10%)

Figures 3.15 through 3.17 illustrate the effects of variation
of applied flux density for fixed inlet pressure and fluid flow rates.
It can be seen from Figure 3.15 that an increase in flux density at a

fixed load resistance results in a higher net power level.

e8]
1

\

24 FLUX DENSITY (TESLA)

(o))
1

s

5- 6.
(@) a T T T3 T T T ) g 20
10” 3 6 10 9 6 [0 S 6 10

LOAD RESISTANCE (L)

Figure 3.15- Net power versus load resistance for gas flow

rate 0.1 kg/s; liquid flow rate 8.0 kg/s; inlet
5

pressure 3.10 N/mz; and various [lux densities
0.6 - 2.4 T.
Changes in flux density affect the efficiency, Figures 3.16 and
3.17, much as did changes in gas flow rate in the previcus examples.

For a given flux density, there is an optimum load, and for a given

load there is an optimum flux density.
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Figure 3.16- Gross efficiency versus load resistance for gas flow

rate 0.1 kg/s; liquid flow rate 8.0 kg/s; inlet

pressure 3.10S N/mz; under various flux densities,

B (in Tesla).
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Figure 3.17- Net efficiency versus Load resistance under the same

generator counditions as in Figure 3.16.
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In summary, the model generator, considered here, has a maximum
gross efficiency for all cases examined of around ninety percent and a
maximum net efficiency of around sixty percent. These maxima occur at
very low power levels corresponding to small pressure gradients.

The physical interpretation for this is that slip losses are least
at small pressure gradients. Efficiency tends to be higher, too,
when the liquid velocity is nearly constant throughout the channel.
In that case, the channel operates under uniform loading conditions.

However, the losses of a real generator can exceed the low power
output of the most efficient inviscid generator described in the last
paragraph. Consequently, a real generator is most efficient under
heavier ‘loads, loads which correspond in the inviscid model to a gross
efficiency of around seventy percent and a net efficiency of around
forty percent. This neglects viscous losses and losses due to three
dimensional effects and end effects. The experimental generators aﬁ
Argonne National Laboratory have a maximum gross efficiency of around
sixty percent. The maximum net efficiency ié; therefore, around
thirty percent. Additional friction losses will be incurred in
pumping the liquid and gas. Note that these efficiencies describe
losses inherent in the turbine/generator mechanics and do not include
the thermodynamic efficiency of the gas cycle.

Pressure distributions and power outputs predicted by the pre-

sented model reflect many features of the experiments carried out at

Argonne National Laboratory. The model fails at large load resistances,

but that was anticipated and, in any case, is outside the region of
interest for practical power generation. More importantly, the model
does appear to represent a valid upper limit on the efficiency and

power output of the real generator.
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On the other hand, the predictions by the model of void fraction,
velocity and slip do not generally agree with the experimental data.
This is cause for concern, since these parameters are important in
component design (see the discussion of constant velocity generators
in Chapter 5, for example). There is evidence of a source of error
in the gamma ray attenuation technique used at Argonne National Labora-
tory to measure void fraction and to infer velocity and slip. Analysis
of such a system by Hooker and Popper (1958) indicates that void
distribution must be taken into account when the gamma ray attenuation
technique is used. The reported measurements are based on an assump-~
tion of uniformly distributed voids, while in fact there is probably
a large .degree of slugging present (sce Wallis, 1969 for a description
of churn turbulent flow). As a result, the published void fractions
could be as much as twenty or thirty percent too large.

Equations (3.7) and (3.8) can be used to estimate the error in

slip arising from an error in measured void fraction. We have for the

slip S
bt v ot PL-w) (3.14)
L Pka LN

Differentiate with respect tc a to get

g . . q..G‘fL__u“Z (3.15)
qLIk

From equations (3.7) and (3.8) we have

%PL _ as (3.16)
qLPk 1-a

3o




so that equation (3.15) becomes

| AR S (3.17)
o a(l—as

Equation (3.17) gives a formula for estimating the relative error

in the slip %?
_l_\§ z _ _Ada (3.18)
S a(l-a)

This formula indicates that the slip reported for the experiments at
Argonne National Laboratory may be as much as fifty percent in error.
Such an error may explain some of the anomolous slip behavior documented
in ANL reports, where slips less than unity have frequently been
noted for large upstream pressuvre gradients (see, for example, Petrick
et al, 1978),
In the same fashion, the experimental reports probably overesti-
mate the average velocity of the liquid phnée. Although the relative error
of the reported velocity would not be so large as that of the slip,
the effect of that error could be large. This is true since, at large

load factors, the Lorentz force is very scnsitive to velocity changes.
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Chapter 4
ONE DIMENSIONAL MODEL OF A COMPENSATING SYSTEM

OF A FARADAY GENERATOR

Up to this point, the magnetic flux has been assumed to be uniform
as applied. This is equivalent to assuming that every point in the
channel is perfectly compensated, and is a necessary condition for
optimum efficiency of generators being reported here (Jackson, 1963).

Electric current in the LT~3 generator at Argonne National Labora-

tory is returned in the external circuit through uniform compensating

bars above and below the channel (sce Tigure 3.1). Since the current

is not produced uniformly along the channel length and since the

compensating bars are some distance removed from the channel. The

system is not perfectly compensated. In order to evaluate the effects 1

of imperfect compensation, we have developed an averaged Ampere's law 1
|
\

suitable for use with our one dimensional model. Ampere's law can

be written (Holt and Haskell, 1965):

) ]
H G ‘
Bv(x,y,z) =0 = 4; ff/(LBl) Jz' dx' dy' dz2' (4.1)
? ) r

where X=X,, Y=X,, z=X, as shown in Figure 2.1. By is the component

of the flux density in the direction of the applied flux density, Mo
is the permeability of free space, and J is the current density.
The integration takes place over the entire electrical circuit.

To reduce equation (4.1) to a one dimensional form, we average

over y and z

= Ve [ x"-x P TR
By(x) = - m/ / ]ff \T) J,vdx'dy'dz"'dydz (1.0.2)
x"Wy'Jz'UxJy

where w=b is the half width between electrodes and h (x)=a, is the

half channel height (see equation 3.11).
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It is convenient to write equation (4.2) as

= Ho
B (x) = ~ = f K(x',x) J_, (x") dx' (4.3)
y 4 x' a
where
K(x',x) = (xlmx) [ f/ f '-1-3 dy 'dz'dydz (4.4)
4wh (x) yv'JyJz'Jz r
with
2 2 '
r = ((x—x )2 + (y=y ) + (z+z ) ) (4.5)

The integration in eqnation (4.4) over y, y', and z', although

cumbersome, is straightforward.

w
1 -1 (w=z) (h'+h)
K(x',X) = — / tan +
L [ ((x'-x) (x—z)2 + (x'--x)2 + lohz)li )

-w

x'-x ((w-:»')2 + (x'—x)2 + lohz\!j + (w-2z)
( ‘ ) £" - 5 2 Tf_',, (W-') 4 dz
' ((w-2)° + (x'-x)")" X

Final integration over z we have done numerically. Note that K(x',x)
need be determined only once for a given channel and compensating
system. Thercafter, it can be used to evaluate I for any current
distribution in that channel. The numerical values of K(x',x)
are listed in Appendix 2.

In our analysis, we considered only the current flowing through
the channel and through the compensating bars as contributing to the

induced magnetic field. Under those conditions, we find
R €
b1 M | -1 / |] [« I v] '
, — LS ~R{E E + uB d (4.6)
B () =B, (1+ ,m)f [d F(Eh(E")-K(E,E") uB(e")] dg
o

where Bo is the (wcragc) applied magnetic field,
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and d is the compensating bar thickness. RM is the magnetic Reynolds

number
RM = u fo_p 4.7)

o 'Le

with u, the average velocity in the x-direction while,

£ = —f;— (4.8)
and
1
F(§) =f K(g',£) dg' (4.9)
0

For a given set of generator operating parameters, equation
(4.6) can be solved iteratively to determine flow conditions. We
start by ‘the input of a constant flu. density and calculating the
resultant current distribution. A corrected flux density is then
calculated via equation (4.6), and the process repeated until
satisfactorily converged. In most cases, we found three or four
iterations were sufficient. Table 4.1 decuments the computer results
for the compensated channel. The results arc‘;ypical in that the
compensation of the LT-3 generator at Argonne National Laboratory
is quite good. Note that, in spite of the fact that current density
varies by a factor of twenty, over the length of the channel, the
magnetic flux density varies by less than one tenth of one percent.
In none of the cases we examined did the magnetic flux density vary
by as much as one percent over the length of the channel. Except
at very low power levels, efficiencies for the most extreme cases
were never less than ninety eight percent of those for perfectly
compensated cases., It is clear from these computer tests that one

need not include a magnet model in the description of the LT-3
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Position Pressure Void fraction Current dinsity Actual flux

(m) (N/m2) (Amp/m®) (B/B,)
|
0 10-10° .656 6.14 -10° .9965
077 9.52:10° .672 4.09 +10° 1.0006 |
]
.154 9.15-10° .689 2.32 +10° 1.0007 |
231 9.00-10° .700 1.44 +10° 1.0006 |
.308 8.89+10° .713 0.678:10° 1.0002
.385 8.85+10° 727 0.390-10° 1.0000

Table 4.1 Effects of imperfect compensation in the two-phase
LT-3 generator at Argonne National Laboratory. NaK
flow rate 8.0 kg/s; N,
voltage 2.1V; applied flux density (Bo) 1.2 T; load

flow rate 0.3 kg/s; terminal

resistance 1.42 mQ.

generator at Argonne. Assumption of & uniform applied flux density

is a minor source of error.
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Chapter 5

ONE DIMENSIONAL MODEL OF A ZERO SLIP
TWO PHASE FARADAY GENERATOR

An ideal two phase Faraday generator would operate with no slip
between the gas and liquid pllases. How such a flow might be attained is
not clear, but elimination of slip constitutes elimination of an im-
portant loss mechanism, It is useful to study a zero slip model, since
by comparing it to a model with slip, one can get a handle on the
energy cost of the slip.

As before, we neglect the contributions of viscosity and inertia
to the downstream pressure gradient and assume perfect compensation
and no end losses. The governing equations for a one dimensional,

zero slip model are then

q = A(l-a) u P (3.8)

qG = AauGPk ‘ (3.7)

.. SRR

= " oB(E + u B) (3.6)

o =0 f(l-a) (3.9)
Note that the velocity,

u=u =u (5.1)

is the same for both phases. As in Chapter 3, f(l-c¢) is a
semiempirical function relating liquid fraction and liquid conductivity
to dispersed liquid conductivity.

These assumptions lead again to a model that is easy and efficient
to examine interactively with a computer, and which preserves the major

force and energy mechanisms of a zero slip system.

h2




Figures 5.1 through 5.4 illustrate the operation of a zero slip
generator with an applied flux density of 1.2 T, a gas flow rate of
0.1 kg/s, a liquid flow rate of 8.0 kg/s, and an inlet pressure of
3.105 N/mz. These are the same cperating conditions as for one

of the examples in Chapter 3.

8-
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Figure 5.1~ Net power versus load resistance for a zero slip
generator, cocrresponding to the LT-3 generator
at Argonne National Laboratory operating under the
same conditions as illustrated by Figure 3.15; gas
flow rate 0.1 kg/s; liquid flow rate 8.0 kg/s; inlet
pressure 3.105 N/mz. Various flux densities B

(in Tesla).
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Figure 5.2- Gross efficiency versus load resistance for the zero slip

generator at a gas flow rate 0.1 kg/s; liquid flow rate

8.0 kg/s; inlet pressure 3.105N/m2; untder various flux =

densities B (in Tesla).
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Figure 5.3~ Net efficiency versus load resistance for the same flow

3

cases illustrated in Fipure 5.2.
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The major difference between the case with slip and the case
without is that the efficiency and power level are both higher without
slip. Note in Figure 5.2 that the gross efficiency can approach unity.
This occurs when the liquid passes through the generator at near constant
velocity. The peak gross efiiciency for the no slip case occurs at a
smaller load resistance and is more sharply demarked than for the slip
* case (compare to Figure 3.16). The difference can be attributed to the

fact that slip losses, when tliey occur, are larger for smaller load

fs-

1.8

H
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W
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e

LOAD VOLTAGE

b

I- B=6—

r 3 6 Y Y 6 Bt 3 6 N
LOAD RESISTANCE (Q)

Figure 5.4- Load voltage versus load resistance for the no slip
generator at a N2 flow rate 0.1 kg/s; NaK flow rate

8.0 kg/s; and inlet pressure 3.]0S N/m2 under various

flux densities B (in Tesla). These are the same flow

cases as specitied in Figures 5.1 - 5.3.
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resistances. The net efficiencies with slip (Figure 3.17) and with
no slip (Figure 5.3) differ in much the same manner as do the gross
efficiencies. As a result of better coupling and better efficiency,
power levels are higher without slip (Figure 5.1) for a given load
or a given efficiency (compare to Figure 3.15). Figure 5.4 plots
load voltage versus load resistance. Note that the voltage is nearly
constant for this case over the entire range of interesting loads.

If viscosity is neglected, Joule losses are smallest when the

electrically conducting liquid moves at the same velocity everywhere.

|
This can be shown through variational principles (Medin, 1965) and ﬂ
is easily understood through physical arguments. Consider a generator

in which ‘the velocity is not constant. The pressure gradient and

current density are everywhere linear functions of the velocity,
but the dissipation is proportional to the square of the current
density. Consequently, in the neighborhood of a nonuniforin velocity
distribution, there is another distribution with the same integrated
total current and pressure drop, but with les; internal dissipation.
In the zero slip system of this section, Joule losses are the only
losses, and the most efficient generator is therefore a constant
velocity system.

By fixing the velocity u and treating A(x) as an unknown, the
system of equations (3.6), (3.7), (3.8) and(3.9), noticing (5.1),
can be reduced to a single nonlinear first order differential equation

for A(x) giving a constant velocity distribution. We find

- *
- } (A* = 1)~2 —%"— - 3 (5.2)
" W 3
A*
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R R

where
kuoLB(E+uB)
Em= X (5.3)

RS

is the dimensionless channel coordinate, and where

AupL
AY = ————— (5.4)
9

is the dimensionless area.

Equation (5.2) has closed solutions for a number of function
forms for f(l-a) of expression (3.9).

In case of f(l-a) = (l—a)z, i.e.
; 2
o =0 (1-a) (3.10)

which is the relationship used in the modeling of the LT-3 generator
in Chapter 3 and in the evaluation of experiments with this generator

at Argonne National Laboratory, one obtains:

(ar-1) +2 0 AL - L - (5.5)
where C is a constant of integration.
In case of a different choice:
f(l-a) = 1-a (5.6)
we find
tn (A*-1) - mh— =g+ (5.7
while for the case:
£(1-a) = (1-a)> (5.8)
we find _
12 a-D? +3ax-1) +3 0 QDL g (5.9
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These relationships are plotted in Figure 5.5 with the integration
constants having been adjusted so that A*Bﬂ= 2 for each of the con-

ductivity models. The void fraction a is related to A* by

5- -80

A-Jlé

-75

D
_1

W
1

——

DIMENSIONLESS AREA
VOID FRACTION «

] | ] |

O 2 4 6 8 10
DIMENSIONLESS LENGTH ¢

Figure 5.5- Dimensionless area and void fraction versus

dimensionless length in constant velocity generator
channel.
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A%-1

3 (5.10)

and is marked on the right ordinate of these figures. Note that,
since the distance.between electrodes is constant, the curves of Figures
5.5 correspond to the shapes of no slip, constant velocity generators
for given conductivity models. Further, a constant velocity generator
operating between two given void fractions and with one of the above
conductivity models, is similar in shape to the appropriate segment of
one of these curves. Note that the channel with the linear conduc-
tivity model flares more rapidly than that with the square law model,
which in turn flares more rapidly than the channel with the cube law
model. This reflects a decreasing Lorentz force in the respective
models f;r given velocity and veid fraction.

If the void fraction does not change much over the length of the
generator, then a constant velocity channel can be approximated by
a channel of linearly varying area. In Figure 5.2 at the peak
gross efficiency for a magnetic flux density of 1.8 Tesla, for example,
the velocity was found to vary by only two percent over the length

of the generator.
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APPENDIX 1

Documentation of APL program
The functions of this appendix comprise a one dimensional model
of a frictionless, massless two phase Faraday generator. The follow-

ing globals must be specified:

MDL liquid mass flow rate

MDG gas mass flow rate

VOLT terminal voltage

WIDTH distance between electrodes

B magnetic flux density

SIGMA liquid electrical conductivity
PRESO inlet pressure

RHOL liquid mass density

K ratio of gas mass density to pressure
GAM surface tension

NCD incremental step down channel

In addition, functions must be specified to give channel area
] as a function of downstream position (ARF), dispersed liquid conduc-

tivity as a function of void fraction (SIG), and void fraction as a

function of pressure (ALF). The channel length is specified im- |

plicitly in line [8] of CHANNEL in generating the vector

(4 x N) p' NXT b' (Al1.1)
where N is equal to the channel length divided by NCD. The form
listed here for ALF iterates to balance the Lorentz force with the

force due to phase slippage according to the slip model discussed

’ in Chapter 3.




The assignment
R+« +1+PRS xCL ¢+ CG (A1.2)
will result in a zero slip model if used for ALF.

Running CHANNEL results in an output of those parameters listed
in lines [lﬂ through [Zﬂ and in a table consisting of those para-
meters listed in line [éﬂ for each incremental step down the channel.
CHANNEL can also be run for variable channel width and flux density

by specifying WIDTH and B as vectors of appropriate length.

i




"

Table of Fredholm kernel for averaging Ampere's law for the compensated

APPENDIX 2

LT-3 Faraday generator at Argonne National Laboratory. [K(C',C),C = %

£ owis
\L 0 1 2 3 4 5 6 7
0] -6.023 ~1.264 -.547 -.288 =-.161 -.088 -.042 -.011
1] 1.408 .077 -1.289 -.565 =-.303 -.174 -.,100 -.053
2 .678 1.408 .061 -1.320 -.590 -.324 -.194 -.119
3 .408 .673 1.410 .048 -1.349 -.612 =.343 -.211
4 274 .403 .671 1.416 .038 -1.374 -.630 -.359
5 .196 .270 .401 .672 1.423 .030 =-1.397 -.647
6 .146 .193 .267 .400 674 1.432 024 -1.418
7 .113 .143 .190 .266 .400 .678 1.442 .019
8 .088 .110 .141 .189 . 265 .401 .682  1.453
9 .070 .086 .108 .139 .187 «265 .402 .686
10 .056 .068 .084 .106 .138 .186 .265 404
11 .045 .054 .066 .082 <104 .136 .185 .265
12 .036 .043 .052 .064 .080 .102 .135 .185
13 .028 .033 .040 .050 .062 .078 .101 .134
14 .021 .025 .031 .038 <047 .059 .076 .099
15 .014 .018 .022 .028 .035 044 .057 .073
16 .008 .011 .014 .019 024 .032 041 .053
17 .002 .004 .007 .010 .015 .020 .028 .037
18f -.005 -.004 ~-.001 .002 .005 .010 .015 .022
19 -.013 -.011 -.010 -.007 -,005 -.001 .003 .009
200 -.022 -.,021 ~.020 -.018 -.016 -.013 =.010 -.005
2 -.034 -.033 ~.032 -.031 -,029 -.027 =-.024 -.021
22} -.048 -.048 ~.047 -.046 -,045 -.044 -,042 -,039
ZJ -.066 -.066 ~.066 -.065 =-.065 -.0646 -.,062 -,061
24 -.077 -.078 ~.078 -.078 -.078 -.077 =-.076 -.075

Table

A2.1- Numerical kernel K({',&) used for evaluation

equation 4.6. (Continued on next two pages.)
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Continued
U5+ >
8 9 10 11 12 13 14 15
.011 .028 .041 .051 .059 .065 .071 .076
-.022 .000 .017 .029 .039 .047 .054 .060
-.072 -.041 -.018 -.002 .011 .020 .028 .035
-.136 -.089 -.057 =-,034 -.018 -.005 .004 .012
-.226 =.149 -.102 -.069 -.047 -.030 -.018 -.008
-.372 =-.237 -.160 =-.112 -.079 -.057 -.040 -,027
-.661 =-.383 -.247 -.169 -.120 -.087 -.065 -.048
-1.438 =.674 -394 =-.256 -.177 -.128 -.095 -.071
014 =1.457 -.687 -,403 -.264 -.184 -.134 =,101
1.463 .010 =1.476 =~-.699 -.412 -.271 -.191 -,140
.691 1.475 007 <1.494 -.711 -.421 -.278 =.197
406 .695 1.486 .003 -1,512 -e722 -.425 -,285
«265 «407 «700  1.497 .000 -1.529 -.734 -.,438
.184 «265 409 .705 1.508 -.003 =-1.547 -,746
.132 .183 «265 .410 .709 1.518 -.007 =-1.565
.096 «130 .181 « 264 412 . 714 1.528 -.011
.070 .093 .127 .179 .263 412 717 1.538
.049 .066 .090 .124 0177 «261 412 .720
.032 044 .061 .085 «120 173 .259 .410
.016 .025 .038 .055 .079 114 .168 . 254
.000 .008 .017 .030 047 .071 .106 .160
-.017 ~.011 -.004 .005 .018 .035 .060 .095
-.036 ~-.032 -.027 -.020 -.010 .002 .019 044
-.059 =-.056 -.052 -,046 -.040 -.030 -.018 -.001
-.074 -.071 -.069 -.065 -.060 ~.053 -.044 -,031

Table A2.1- Continuation of numerical, K(£',£) kernel for

evaluation of equation 4.6. (Continued on next page).
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Continued
24 %‘ 26+ —>

\L 16 17 18 19 20 21 22 23 24
. 0 .080 .084 .087 .091 .093 .096 .099 .101 .103
1 .065 .069 .072 .076 .079 .081 .084  ,086 .088
2 .040 .045 .049 .052 .055 .058 .061 .063 <065
3 .018 .024 .028 .032 .035 .038 .041  .043 <045
4 .000 .006 .011 .016 .019 .022 .025 .028 .030
5| -.018 =-.010 -.004 .001 .006 .009 .012 .015 .018
6| -.035 =-.025 -.018 -.011 ~.006 -.002 .002 .005 .007
7] -.054 -.042 -.032 -.024 ~.018 -.013 -.009 =-.005 -.002
8| -.077 =-.060 -.047 -.038 ~.030 -.023 -.018 -.014 -.011
9| -.106 =-.083 -.066 -.053 ~.043 -.035 -,029 -.023 -.019
10 | -.146 -.112 -.088 -.070 ~.057 -.047 -.,039 -.033 -.028
11| -.203 =-.151 =-.117 -.093 ~.075 -.062 =-.052 -.044 -.038
12 | -.292 -.209 -.156 -.122 -,097 -.080 -.066 -.056 -.048
13 | -.446 -.299 -.215 -.162 ~.127 -.102 -.08 -.071 -.061
14 | =.757 =.455 -.306 -.221 ~.168 -.132 -,10/ -.089 ~-.076
15 |-1.583 =.769 -.464 -.314 ~.228 -.174 -.138 =-.,113 -.095
16 .016 =1.601 -.782 =474 ~.322 =.235 =181 =.144 =119
17 | 1.546 .021 -1.620 ~.795 ~.484 -.331 -.243 -.188 -.151
18 «721 1,553 -.028 -1.641 ~.810 -.496  -.341 -,252 -.197
‘ 19 408 721 = 1559 -.036 -1.662 -.826 =.509 =-.352 -.263
. 20 <248 <403 .719 1.562 -.046 -1.686 -.844 -.525 -.366
21 +150 .238 «394 <714 1.562 -.060 =-1.713 -.866 -, 6544
22 .080 .135 «223 .381 .703 1.557 =-.078 -1.745 -.893
23 .024 .060 .115 .205 .364 .689 1.548 -,101 -1.78!
24 | -.014 .011 047 .103 «193 . 354 .681 1.546  5.992

Table A2.1~ Continuation of numerical kernel,K({',%)for evaluation

of equation 4.6.
:
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