
F
AD AO7O 050 STANFORD (MIV CALIF INFORMATION SYSTEMS LAB FIG 17/2

FAST ALGORITHMS FOR SPEECH MOOELING • (U)
DCC 78 N NORFi 0 1 LEE DCA IOO—77— C—0005

IRICLASSIFIED Pt

p O F]

~~ 7OO~ O

U

H



1~~

~~~ 
l~~Ni01,~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OEJ~RTMENT OF ELECTRICAL ENGINEERING

: STANFORD UNIVERSITY STANFORD. CA 94305 

1.EY El ~‘ 
—

FINAL REPORT TO THE

I DEFENSE COMMUNICATION AGENCY

FOR RESEARCH ON

I FAST ALGORITHMS FOR SPEECH MODELING

I
Contract Number: DCA1 OO-77-C-0005,

• , 1
T For e period of one Year
I,

C..) December 8, 1976 - December 8, 1977

Report Date:Decemberl6, 1978

4 ,~‘I _ _ _

[



STANFORD UNIVEMITV ~~

INFORMATION SYSTEMS LABOR*TO~~t

STAN~’OBD, CA 94305

7 ’ ~~L~Ti~7 ’
I DEFENSE COMMUNICATION AGENCY

I
I FOR RESEARCH ON

I

J Contract Numb~~ 1 77-C-Ø~~~~1

(‘~ / 4 d / t
~~/ 1~~~~~ / C~

For a p.rlod of one Year 1/)
9~~~ 3 f)

Dece.mb.r8, 2976 - December 8, 2977

Report Dates December 16, 1978



-

-~~~~~~ ~~~~ -

Abstract

This constitutes our final report on a research program aimed at the development

of a high quality low data rate speech transmission system based on new types of

speech modeling algorithms. Several such algorithms were developed and tested on

simulated and real speech data. These algorithms have many desirable features

including the capability of rapidly tracking time-varying model parameters.

The best algorithm was used as the basis of a speech transmission system in order

to test the quality of the speech models. The model parameters (reflection

• coefficients) together with pitch information and speech energy form a speech

parameter vector to be transmitted and used to reconstruct the original speech.

Several parameter quantization methods were considered to achieve the desired low

bit rates.

The various algorithms as well as the complete transmission system were coded

and tested. Simulation results are very promising and the usefulness of our new

approach for speech modeling has been successfully established.

M. Morf
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1. Introduction

S This investigation was concerned with the ‘development of digital voice

communication systems capable of low data transmission rates. Such systems

construct a time-varying linear model of the speaker’s vocal tract , and transmit the S

encoded model parameters over a digital network. The receiver reconstructs the 
S

model from the coded parameters and synthesizes an approximation of the original

speech signal. The model is traditionally constructed by the method of linear

predictive coding (LPC), which predicts future speech samples as linear

combinations of past speech samples , where the linear combination is chosen to

• minimize the prediction error. This results in a vector A of coefficients which

characterize the speech production mechanism in terms of an inverse filter a(z) (the

vocal tract is considered the filter 1/a(z) ). The A coefficients can be used to

reconstruct the speech signal. In practice they must be encoded to achieve low bit

rates, but this problem can be separated from the modeling problem proper.
S Our goal was to investigate the application of new linear estimation algorithms 1
• to speech modeling. This involves both modeling and encoding issues. There are a

large number of ways to approach the speech modeling problem, but here we S

restrict our attention to exact least-squares linear estimation procedures (there is

curren’ ~y no reason to examine sub-optimal or approximate methods). These

• estimation methods find linear models which fit the (speech) data optimally in

terms of minimizing the sum of the squared errors--hence the term “least-squares”.

The LPC methods currently used in speech modeling are least-squares estimation

procedures which find all-pole or autoregressive (AR) models. The assumption

that an all-pole model is sufficient is valid for vowel sounds (disregarding sound

radiation). However nasal sounds require zeros and a pole-zero or

autoregressive-moving average (ABMA) model should produce a more efficient

speech encoding. Another aspect of our modeling effort is the extensive use of

ladder-form realizations and their reflection coefficient K for speech

1.1L



S -~~ S

parametrizations. The K coefficients have many advantages over other model

parametrizations, such as better numerical properties and fast convergence, and can

be used directly in a ladder-form synthesis structure. Each representation can be

converted to the other in a one-to-one fashion, but the K coefficients have physical

significance in speech modeling because they correspond to acoustic reflection

coefficients in a segmented tube model of the vocal tract. Actually, it is possible to

modify the Levinson recursion to avoid the use of the prediction parameters A

when computing the reflection coefficients, as mentioned in [MLNV]. See also

[Vieira).

Various new speech modeling algorithms were developed using the techniques

associated with our fast algorithms:

- Pre-windowed ladder-form (AR)

- Covariance ladder-form (AR )

• - Pole-zero ladder-form (ABMA )

All of these techniques use exact recursive least-squares parameter estimation

algorithms, i.e. they are ideal on-line modeling methods, with fast “adaptive”

• properties. Their computational requirements (per sample) are proportional only to

• n, the number of model parameters - again a feature that is well suited for

hardware, parallel processing or pipeline implementation of our algoritl~~ s.

The implementation of the pie-windowed (PW) ladder-form has been enka.nced

with the introduction of tracking of time-varying parameters. This can only be

done with an on-line method and meshes naturally with the PW ladder

• formulation. The effect is that the parameter estimates track the actual dynamics

by weighting recent data more heavily than older data. The dynamics in model

order can also be tracked. These tracking capabilites are necessary for estimates of

transients (or transemes) or plosives. The weighted forms of the covarlance ladder

and the rational ladder algorithms were developed. We discovered that the tracking

ability of our algorithm is actually even better for voiced speech, as the glottal

pulses help the parameters to converge within a few samples virtually to a constant

over a pitch period - a fact that leads to reduced data rates. For unvoiced speech (i.e.

1.2
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Gaussian type residuals) the tracking is still fast but very smooth - another 
S

desirable feature. S

This PW ladder-form algorithm provides the basis for our digital speech

transmission system. The system consists of a speech analyzer which produces a

(slowly) time varying parameter vector , an encoder that converts a single frame of

speech parameter vectors Into a binary data stream, and a decoder that converts the

binary stream into parameter vectors which are used by the speech synthesizer to

reconstruct a signal that sounds like the original speech. The speech parameter

vector consists of the reflection coefficients, the pitch period (or time Index of the

• beginning of the pitch period), and the energy contained in the speech frame (or

equivalently in the residuals). The pitch information Is obtained by a novel pitch

detection method, resulting from our recursive ladder-form algorithm, using a log

likelihood ratio parameter that is computed by the algorithm in order to separate

out the jump process type pitch pulses from the residuals.

S 
Several quantizing methods were considered, for moderate bit rates, (e.g. 4800 -

9600), single symbol quantization , I.e. independent quantization of each parameter

is considered sufficient. For lower (e.g. 1200 and below) rates, a new parameter

vector quantization scheme based on a minimum distortion measure was

considered. Such methods are being developed by B.. M. Gray at Stanford (under

AFOSR sponsorship). (See [Buzo].) These new quantization schemes are still in the

development stage; however they are sufficiently promising so that a short sample

S 
speech segment was quantized with approximately 3 db Itakura-Saito rate

distortion deviation ( from the unquantized reconstruction ) at a rate of roughly

700 bits per second. In this new method the parameter space of the reflection

coefficients is partitioned into a number of cells. Whenever the parameter vector

falls within a given cell, the binary number representing that cell is transmitted.

The partitioning of the parameter space is chosen so as to minimize a given, e.g.

Itakura-Saito , distortion measure. In the actual (on-line) quantization , a

mean-square error (Euclidean distance) criterion is used to pick the actual code

L transmitted. These methods have great potential to provide high quality low bit

1.3
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rate digital voice encoding for the future. In the simplest case, pitch period and

(log) energy or gain are envisioned to be coded via a standard delta modulation type

S 
scheme; however, this is only considered In order to be able to compute an

achievable lower bound on the transmission rate. A real implementation could use

more sophisticated coding schemes, a task beyond the scope of this research. Using

rate distortion encoding schemes, a given (low) rate can be achieved with a

minimal loss In speech quality, once a suitable distortion measure (such as the

Itakura-Salto) has been agreed apon. A number of simulations were performed on

the complete transmission systems and the results so fax are very promisin.g.(See

Section 5.)

This final project report presents the theoretical results of our research, the

actual algorithm implementations, and the simulation results of the first year of an

• originally estimated two years worth of research. Sections 2 and 3 present all the

F j analytIcal work that was performed. Section 4 and Appendix C discuss the

software generated as a result of our analysis, and Section 5 describes the actual

simulation results.

1.4 
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2. Algorithms for Speech Modeling

A number of new algorithms for speech modeling were developed in the course

of our investigation, using our fast algorithm approach to estimation and system 
S

identification. The main features of these algorithms are

- They are exact least-squares methods

- They are recursive in time and in the order of the model and

thus capable of processing data as it comes along (i.e. not

block-by-block, unless desired)

S 
• - Compute directly either the predictor coefficients (AR model)

or the ref lection coeff icients (ladder f orm); provide

true unbiased estimates

- Capability of tracking time-va.ryin,g model parameters

- Good stability and convergence properties

• 
- Computationally eff icient

In this section we describe in detail the development of several algorithms. For

several reasons, the emphasis Is on the development of ladder-form realizations. In

particular the reflection coefficients appearing In these forms turn out to be an

excelient way of parametrizing speech. Both autoregressive (AR) and pole-zero or

autoregressive moving-average (ABMA) type algorithms are derived.

S I  
Sections 2.1 - 2.4 present the detailed derivation of the algorithms for the

pre-windowed and non-windowed (covariance-form) ladder-forms. The

pre-windowed versions of these algorithms play a central role in our investigation,

2.0.1 
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and Section 2.3 discusses the necessary modifications to make them capable of

tracking time varying parameters. Pole-zero or autoregressive moving-average

(ABMA) algorithms are derived in Section 2.5 .

The computational requirements of various algorithms are summarized in

S Section 2.6 and compared to currently used metho4s. Finally, some difficulties

which arose during the algorithm implementation phase and the method by which

they were rectified are briefly described in Section 2.7 .

For an overview of the various algorithms derived in this section and the way

they are related to each other - see Appendix A. The Importance of ladder form

realizations In estimation and modeling is briefly summarized in Appendix B.

~
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2.1 Autoregressive Models

S In this section we introduce a framework which is later used for developing

several exact least-squares algorithms for AR - type models. The basic problem is

presented from an estimation theory approach which leads to the deterministic

least-squares framework.

2.1.1 Basic Problem

We model speech as the output of a time-varying linear system, which, over a

short time interval, can be approximated by a time-invariant filter of the form

y(z) — H(z)  u(z) , (1)

with y (z) being the z-transform of the dlscretized speech signal, H(z) the overall

t transfer function, and u(z) the Input driving function which consists of a periodic

pulse train (approximating the glottal pulses for voiced sounds), and zero-mean

white noise (for unvoiced sounds). Such a model is widely accepted by the speech

research community as a good description of the speech generation process.

Detailed discussions on this model can be found in [MKD] and [Fla). A particularly

popular model, see e.g. [MG), is one where H(z) is a finite order all—pole filter
P

H(z) • i i ( i + ~~ ~~~~ z~~ )
k—i

H — l I A p(z) . (2)

Such a model is equivalent to modeling y(•) } as an autoregressive (AR) process

yg + Ap(’) Yt-i + • + 4 (P) Yg_p Ug (3)

Rewriting (3) as

- — — 4~, (k) 
Yt-k + ~ t ~ (4)

the all-pole filter of (2) forms a one-step linear predictor for { y(’) )

£
~

t_ l,t_p) • — E ~~~~~~~ 
. (5)

• k— i

2.1.1
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A very common and practical criterion Is to choose the predictor that minimizes 
S

S 
the squares of the prediction errors, thus leading to a least-squares estimation - •

S 

problem.
S 

We assume for the moment that (y(~) ~ (for generality we let y~ be

I i rn-dimensional vectors) is a stationary process with known covariance m by m

matrix function

E Y Y T
LL — Rk

R _k — Rk
T 
, I — 0, 1, . , P (6)

The Innovations or the forward prediction errors are then given by

E p~ — Y, Yg~fs— i , t—P]

— Y2 + 4p~~ Yg-i + . + 4 1~
(P) 

~~~~~~~~~

S 
• AT .,— P “(e:s.P) ‘

with

— ~ , Ap W, . . , 4p~~) ) , ( in  by (P+1)m )

Y
~
i:g_pf ‘ • ‘ yg_ p T ) , (1 by (P+i)m

L - the in by in idcnt~ty ma:r ~x. (8)

The innovations should satisfy the following orthogonality property

£ ‘p,~ Yi~
T — 0 . t— P~~k~~t — 1  (9)

E (p,~ 
( p E T — E ~~

— RE
~ . (10)

From (9) and (10), we see that Ap can be obtained as the solution of the linear

matrix equation called the Normal Equation

R~~ A~ - 0

0

0 , (11)

• where Rp Is the (Ps Din by (P+ 1)m block Toepl.ttz matrix

2.1.2
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— .E Ytt:t _p) ~
‘
~[ t: t-P) • 

(12)

S 

Writing it out in full

R0 R 1 R2 . . . . R p

R 1 R0 R 1 . .  .
R~~~ . R~~~~R.1 

S 

•  R 1

S 
• (13)

We note that by virtue of stationarity of { y(•) } that ~~~ Is Independent of t and.
• that the covariaxi.ce matrix R~ is Toeplltz. This special structure makes It possible

• to solve the normal equation (11) with fewer than the Q(p3) computations

generally necessary to solve P linear equations in P unknowns. In fact, Levlnson

[Lay] and then, for vector processes, Whittle and independently Wiggins and

Robinson (WR3, derived a scheme for solving (11) with Q(p2) computations. (Here

a computation is taken as one multiplication of two real numbers.) This algorithm,

which we call the LWR algorithm, Involves the simultaneous solution of (11) and

an auxiliary equation

R~~ B~ — t o , 0, . •  . ,  Rtp ) T ,

where

BT~ E Bp~~ , ~~~~~~ . • . . Bp~’~ ‘ ‘m ~ (14)

and is actually a backwards predictor, with backwards prediction errors defined by

Tp,~ — Yt-P — Yt-P ~(t-P .i, t]
— ~~(P) 

~ 1 + • • + ~~ (1) Yg-p.i +

— BT~~ 3’ft:t-P] ‘ 
• (15)

and

E rp,~ ylT 0 . t — P + 1 � k ~~ t

k



F ~~~~~~~~~~~~

.E rp, rp~ — E rp, y,_p~ — R’~ (16)

The basic idea of the LWR algori thm is to compute Am and Bm recursively Lu

‘order from n - 0 to P . Here we give the recursiona of the algorithm, and. a detailed

discussion can be found In [K-74) and [Vie].

C

S 
2.1.2 LWR Algorithm

Iterate on n-0 until n-P

R~,,,1 0 Re,, ~~ n,I
T

A,, 0 1 .
~~~~ 

B,, ,~ — 6,1,1

0 B,,
0 R’,,1 ~~n+i Rr,, (17)

where

—R’~,, ~~~~~ T

8,1+1 —

— R ’,, 
~~~~~ 

‘in 
(18)

5:
~~~~~~

A,, ,1 — E 4,,(n’~
) Rh . £ C ,,, YTg-,,-i~ 

— £ C ~~ r
T,,,_1 ]

S k— O
(19)

with initial conditions:

RE0 _ R r 0 _ R 0,

A0 . B0 • x ,, (20)

The A ,,,~ defined in (19) is known as the par tial correlation coeff icient

(PARCOR) between th. forward and backward prediction errors, and when

2.1.4
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appropriately normalized by Re,, and Re,,, they become the so-called reflection
• coeff icients.

A compact way to rewrite the algorithm is

DI A 
• 

D A T  
-

“p  V ‘~‘~0 ~~l
0

Ap Bp - 8i 8~ 83 . . .
0

0 ~~~ R 1 R0 (21)

The important point which (21) brings out is that both Ap and B~ can be

completely characterized by (8 , , ,  n - 1, . . • , P ) ,  and. therefore by

( R 0 ;  A,, , n — 1, . . • , P }. It turns out that this parametrization of the predictor

offers many ad.vantag~s such as “stability by inspection ’ property” (MLVN 3 and

they form the basis for implementing the predictor in ladder f orms. The

development of various ladder f orms will be presented in the subsequent sections.

In real time applications , no ensemble averages are available. The covariance

functions usually are not directly obtainable and must be approximated by time

averages from the given data. This leads to the following deterministic

least-squares problem.

2.1.5
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2.1.3 Deterministic Least-Squares Problem

Given a series of observations { y (O, S ~ t ~ T) ,  where { y(.)) can be

rn-dimensional vectors, we wish to find the linear one-step predictor of order P,
- S parametrized by the (matrix) predictor coefficients ( —

~p ,s,T~ ’ i— I . ..., P }
~~ 

that

minimizes the sum of the square of prediction errors (p5~ (t) , where

— — Yt~t-i , . .  . ,

- Yg + ~~~~~~ i’s-i + • + ~~~~~~~ y,.p . S ~ t ~ T. (22)

In matrix notations, we have

£ p ,S 7.(t) — AT P ,S T ~‘(t::-P] . (23)

with

AT r i  
~ 

(1) AP,S,T - in ‘ P,S,T P ,s,r
— [ ,T 

, ~ ,_ 1
T 

, • • , ,~~~,T )T (24)

We can express the squared-error, 
~PST ’  by

H I
E P ,S,T tr ( ~~ ( p ,~ j (t) £ Tp ,5 7.(t) I

- :r { 
ATp ,S T RP ,S,T AP ,S,T I (25)

with RP,S,T being the sample covariance matrix given by

- TP,S,T ~ T
P ,S,T (26)

and

:

TPS,T

yi-P Y.,-p • (27)

It Is well-known In least-squares theory that the Ap,s,r that minimizes ~P,S,T
is obtained by solving a linear matrix equation called the Normal Equation of the

following form

- - 5 
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R1
P,S,T 

S

0

RP,$,T Ap,s,T - 0

0

0 , (28)

where

tr R1p~~~ - f lS fl  A E p ,s,r . (29)

The solution for AP,S,T In (28), for the scalar case, would Involve the Inversion

Of Rp ,,g~~, an n by n matrix, and thus would require 0(n3) computations.

.

5 However, when RP,ST carries some shift-Invariance structure, for example a

Toeplitz matrix, a reduction of computations is achieved. In the case where Rp,s,T
is Toeplitz, equation (28) can be solved via the Levinson algorithm [MG], [MVLK],

requiring only 0(n2) computations. The basic approach is to build up the predictor
S recursively in order, i.e. by recursively obtaining (AP,.S,T, ~) - . . . P I.

In our present problem, the structure of RP IST depends on the choice of i andf.
S 

Here we consider the following three cases of importance:

(1) i s S , f — T .

This is called the “pre-w indowed” case, since one has to make the assumptiàn

that y(:) - 0, for t < S. Thus ~~~~~ becomes

Y 5 • ~~ ~ Y5.p ‘ Y T

~ P,S,T - .

0 . .

Ys Yr-p • (30)

(2) i - S + P ,f -T .

This is called the “non-windowed” case, i.e. no windowing is applied to the

observed data. This is also known as the “covariance” method. In this case

2.1.7_ _ S 
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becomes 
S

S 
i ’s.p Yr

~P,s,T

i’~ YTP (31)

- (3) i-S ,f-T+ P.

This is called the “pre- and post-windowed” case,- since one must now assume

that y (t) - 0, for t c S and t > T. This is also known as the “autocorrelation” S

method. In this case zeros are added both before the first sample and after the last 
S

sample, and 
~~~~~ 

takes the form 
S S

Ys,p . Y~
0

Yp ,s,T -  . . . .
0

S i’~ 
. . YT-p ~ 

. YT
(32)

The names “covariance” method and “autocorrelation” method are traditional

in the speech processing literature, but f rom a statistical point of view such

nomenclature is not completely Justified.

We may note that only in the “pre- and post-windowed” or “autocorrelation”

method, Rp~~ is a Toeplitz matrix, while in the other two case it is no longer

Toeplitz. However, even though RP,S,T is non-Toeplitz when defined in (30) or

(31), it is the product of two Toeplltz matrices and therefore still carries a certain

shift-invariance structure. A class of algorithms are presented in (FMDK] and

(MDKV] for inverting matrices which are sums of products of Toeplita matrices

and the algorithm as investigated here Is a special case of that class.

2.1.8
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2.2 The Pro-Windowed Ladder Form S

In this section we present a detailed derivation of the pre-windowed (PW)

S ladder form. At the end of the section we will show that this particular form is

actually a good approximation to a recursive maximum likelihood method for the

autoregressive model.

2.2.1 Algorithm Development

For notational convenience, we let the observations start at time zero, i.e. S • 0 ,

I and thus from here on we simply drop the S index altogether. Thus in the

pr e-windowed case the covariance matrix for order p has the form

~p,T Tp,T y
~~~

T , (1)

Y0~~~~~~Yp~~~~~~YT

Y0 • ~~~ . (2)

The matrix defined above satisfies the following shifting properties (or

recursive identities).

Order-update (down-sh1ft )~

X2 R~,r..i (~)

2.2.1
S 
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Order-update (up-shift):

R -
S p •l,T

x3
T 

. (4)

Time-update: S

RP,T,l - R~,r + YT.1 C ~~ YTT-p.l ]

YT-p.l
- S (5)

S where the X’s represent unspecified matrix elements along the appropriate edges.

Define A~,T , BP,T , and CP,T for p - 0 , 1 , . . . , P by 
S

0 I Y ~
0 j 0 I YT-1

R~,r (A
~,r. 

BP,T, CP,T ] - I I
0 I 0 I YT-p.l
0 ~~~ I YT-~ ‘ 

(6)

where A~,r and BP,T are respectively the forward and backward predictors of the

form S

AT
P,T — C ‘in ‘~p,T ‘ • ‘ ‘~p,r~”~ 

] 
‘ 

(7)

— C ~~~~~ . • . • B~,TW 
‘ 

1m (8)

and C~,T is an auxiliary vector which can also be expressed by

- ‘~p,T
’ T(T:T-p] (9a)

and

S 
C,,,T

T - r(T:T p] R~,r
4. (9b)

2.2.2
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We def ine 
~p,T’ the forward prediction errors or innovations, and the

backward prediction errors by -

~p,T 
AT

P,T YT

S 
p,T - Yr-i

YT-~~l

Yr-p • (10)

We define an auxiliary quantity 1p,T by 
-

“p,T - 
~~p,T ~ (T:T-p) 

- (1 la)

From the definition of Cp,T given in (6), ?p,T can be interpreted as the weighted

S 

energy of the observations { YT-p ’ • i’r }~ 
which can also be expressed as

- ?T. . i Y
T

T
] R ’~,r Yr

YT-p (lib)

It also has an interpretation as a likelihood variable which we will discuss furthur

in a later part of this section.

2.2.3
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2.2.2 Order Update Recursions

Suppose we already have the predictors A~,r and and want to increase the 
S

predictors order to ft+ 1. We therefore would like 11p+1,T and B~,i,r to satisfy the

normal equation

S •1

~~~~~~ 0

O j  0

T ~ A~.13r .  B~.i,r ~ — I •

0 I 0

0 I Rr~.1,T (12) —

and. we start by using relation ( 4 ) :

R
~.l,T [A

P~
T] [R

~7. : I { AP~T]
R5~,r

0

—

0

(13)

where

~ p.1,T - ~ last block-row of Rp.i,~ ) 

[A ~r]

E Yt-,,—i 5 T
~,r(t) . (14)

t—0
Here, we can relate 

~~p .1,T to the partial correlations discussed in the previous

section.

2.2.4
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Similarly, using the relation ( 3 ) :

0 X X X 0

— X • 0

B~,r..1 x R~,r..i L BP,T_j

S ~,r—i ‘ 
(15)

where

r~+1,~ — C f irs: block—row of R~,1,r ] 0

Bp,T-l
T

• E ‘~ 
rT

p,T_l(:_1) • (16)
.5 t— l

We can show that 
~ p .l,T = 

~~~~~~~~~ 
by noting that is symmetric, and

0 ‘~“p ,T 0

RP.l,T
A B I  BV p,T-l V p,T-l

- 

AT~,r 0 1 R’~,r ~~~

0 BT
P,TJ 0 0

0 0

0 0

A p+l,T R’
~,ri

- R~ ,r ~~~
A~ +l ,T R’~,r..i . (17)

By symmetry, we establish the identity

~~p .1,T — ~~~~ . (18)

2.2.5
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Thus postmultiplying ( 1 5 )  by R ’
~,TI 

A
~4,T~ 

where R ’  is the inverse of Rt , and 
S 

-

then subtracting the result from the right hand side of ( 13 ), we have the

following order update recursions for and 
~~p,T

- 

~ 

‘4p,T — 0 R~~ ,~1_ 1 A~.,ir

0 BP,T..I (IS)

R’~,i,r 
- R6

~,r — AT
T 

R_r
~,T l  ~A.~+l ,T . (20)

S A similar set of order update recursions for B~,r and Rt
~,r are obtained as

B~,i,r - 0 — A
~,r 

R••’p,T A
1
p.l,r 

-

B
~,T_l 0 (21)

R’~.i,r - R’p,Tl — 

~~p.l,T ~~~~ ~~p.1,T 
(22)

To obtain the order update recursions for C~,T we first observe that the last

block row of I? 1p T is equal ~~~~~~ 
BTP,T. (This can be obtained from the normal

equation for 3p T~ 
Thus from the definition of C~,T we can obtain the last

block-row of C,,,~. as
S last block row of C,~. - Rp,T~’ ~

‘(T:T-p] - B-’
,,,7. r,,,~ . (23)

Using the re~ation ( 4)  , we have S

S R~4117. C~,T - ~~~~~~ x C,,,7.

0 x x x  0

Yr

Yr-i

S 

i’T-p u i
(24)

wh.r ’~

2.2.6

S 

-~~ ~~~~ 55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ S ~~~~~~~~~~~~~~~~~ 
-- —- 5-



,j r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5 S 5 5

S 6Cp,~ - ( Las: block row of R~.i,r ) C C,~ T 0 ] ~ (25)

Here we want to show that

S )3~7’ - YT_p_ 1~(T-p:T)
S Partitioning R,,~17. as given in (4), we write the Normal Equation for B~,l ,T as -

follows

~ x B~“PI T p+l,r
- — 0

• Z ‘p.l,T (26)

where 
S

B~P,l T — 
S 

[ 

~~~ • • . , ~~~~ ]T

i.e., ~~~~~ is the block vector formed by the first ~ elements of B~+i,T.
S Thus we can rewrite (26) into

B~,7. B*~ 11T + K - 0

XT B*,,41,7. + Z -

From the first equation above we have

- — B ~ 
TBp .1,T p ,T

and recalling from (9b) that 
-

S 
C,,,T - R- ’,,,~ ~

‘(T:T-p+l ] S

S equation (25) becomes

- xT C
• S p,T p,T

S 
- — B~,,#I TT T(T:T-p4]

S 

- YT_p_1I(T_p:T)

S From the observation from C 23 ) that the last block-row of CP,I,T is equal to

R ’~.,i ,r r,,.117. and also that the last block-row of B,,.l,T is I~ we can obtain the

order update recursion for C,,,T
C,,+i,r - C

~r 1 + B,,+i,r R~,,+117. r~.117.
0 J (27)

2.2.7
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Also along the same lines an alternate update for C,,r is obtained as

S 
C~~41,7. 

- 0 + A
~+i,r R~~,,,i,r 5p .1,T

(28)

S 
Thus equations (19 ) — ( 22) , (26 ), (28 ) give a set of order update recursions

for Ap r, B,,,r and C,,,T .  These recursions for ‘4p+1,T and B,,,~~. are similar to the

multichannel version of the Levinson algorithm (WR), [MVLK], and (Rob].

However, the recursions for C,,~~ . are new results.

2.2.3 Time Update Recursions

Using the relation C 5), we obtain

RP,T,l ‘4p,T - R5P,T + YT.1
o YT

0 YT-p

0 Yr-,,.i
(29)

We then apply relation ( 4 ) to ( 0 . CvT.~l,T ]T so that after post-multiplying the

result by £T
~ ~(T+ 1) , we can force the right hand side of ( 29) to satisfy the normal

equation (12 ). After some algebra, the time update recursion for A,,,T is obtained

as follows

• A~,7. - 0 ST
p,~~~T+1)

S C~~1~ . (30)

Furthermore, we premultiply C 29) by C ,T
~~+ i .  • . .  , y~7.~1~~ ] and obtain

~
T
p,T.1 - ST

~ 7~(T+ 1) — 7p -1,T ST~~~~T+l)

and recalling that 7p-l,T is a scalar process, we rearrange terms to get

5p,T.1 ~.~1~(T+ 1) ( 1 — ~~~~~~~~~~~~~ ) . (31)

2.2.8
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S Thus the time update recursion for R’,,,r is obtained as follows

R’P T+I - R’,,r + 
S P

;
T:l~ 1T

P1T+l 
. (32)

- A similar set of time update recursions for B,,,7. and R’P,T are obtained as

S 

B B Cp,T.I — p ,7’ — p.-1,T+1

(33)

R’,,,r,i • R’~~ + r
T

~~~
P
~
T+l (34)

and for C,,..j ,T and 
~~,r 

via

- 0 1 + AP,T.l R ’,,,7.41 ‘p ,r+1
C~~1~ J

~
‘p+l,T — 7p-l,T + 

~
T
p ,T.1 R ’,,,r,i ~p ,T.1

— 
~p,T + ST

PT,l R ’,,,r,1 t p,T 1  — r P,T R’,,,r r,,,T . (36)

tquations ( 1 9 ) — ( 2 2 ), ( 2 6 ) — ( 2 8 ), (30 ), a M ( 3 2 ) — ( 3 4 ) form a complete
S 

set of order and time update recursions for 
~
1p,T’ 2,,, ~. and

By using the same techniques, a time update recursion for A~,,,17. , which will
-

~ be useful in the ladder form implementation , is obtained as follows
S I

S 
A,,+l ,T,l - ~*p .1,T + 

p ,T ~ p ,T;1 (37)

ft is clear now that the time update of A~,l,7. is in fact a time-average of the

S 
cross-correlations between and 5p,T.1’ except for the special gain factor

The significance of this gain factor is explained next.
5

, 

1 —
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2.2.4 Likelihood Variable

In this section we establish the significance of the variable ‘t p ,7 as a likelihood

variable. Consider the Gaussian case where the joint distribution for

{ YT’ YT-p • • • YT-p } is given by

• • YT-,,~ 
- ~~~~~~~~ ~~p { — ~ YTCT:T.~p] R~~ Y(T:T_p) } . (38)

It can be shown that IR,,I is related to { 1R511 ,  I - 0, . . • ~ which in turn are

related to ( K~ , £ • 1, . . . , p (see (MG], for example) by

i.R,,i — . . • • .

(39)
p -

IR~+1I — IR’11 (1 — 1K112 )
(40)

Therefore the logarithm of (38), becomes a log-likelihood function S

ii = in IB,,I + Il Y II 2R-1~
= ± 1n IR~j I + 7 ,

1-0
$ in IB0I + in ( 1  - IKj I2 ) + ‘i’,, . (41)

We can indent.tfy the variable obtained from our exact least-squares
S recursions as the ?~ appearing in the log-likelihood function. Thus the ‘1p T factor

acts as a good detector for non-Gaussian components in the observations. Our

simulation results indeed demonstrated that ‘Y~,.j. would take high values (close to

I) at non-Gaussian components. It therefore also acts as an optimal gain factor in

that the gain can adjust the gains immediately when non-Gaussian
1 -

components are present in the observations. Simulation results are shown in a later

S section of this report. S

L _________



2.2.5 Exact Least-Squares Ladder Recurrsions

Premultiplying ( 30 ). ( 3 3 ) .  and ( 26 ) b y (y T
~~. . • • , ~~~~~~~~ 3 we obtain the

following order update recursions for p T ’  r~,7. and ‘tp ,T ’ 
S

~p.1,T 
— 

~p ,T — K’,,,i,r r,,,T.4 (42)

?•
p1

714 ~~~~~ ~p ,T

- ‘1p,T + r p.1,T R p +1,T rP.P i,T (~“)

where K’,,,i,r and K’p~1,~ are the ref lection or PS4RCOR coeff icients given by

K~p.1T ~‘p ,i,r R E
P,T (4~ )

• ‘~
‘p.l,T ~~p .i,T R ’,,,T.4 (46)

~~p +l,T.1 - 

~‘p +1,T + P~ ~ p,T;i

S 
The initial conditions are given by

~0,T — r~7. Y~ ~_ 1,T — 0

R’OT — — ~~

S 
- R’017._1 + Y~

for pET :

~p,T - ‘T,T;  r,,,T - rT,T ~ •“p,T
R’AT • R~T,T;  R’P,T - RrT,T;

— 0 ;
1 48

S 
p.l,p.l — YO p. 1,p.1

The recursions ( 45 ) — ( 47 ) compute the sample cross-covariance of the
S 

f orward and backward innovations, using the optimal weighting 11 ( 1  - ‘ V . , . ) ,
S 

in contrast to other suboptimal schemes (SV].

As the dual to the stochastic forms in (IS], (Wak], (Mo], (SKM], equations ( 42) —

( 4 7 ) are a complete set of order and time update recursions to obtain the exact

least-squares ladder form predictor, which Is shown in FIgure 1.

2.2.11
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- I Figu re 2. Ladder realization of exact one-step least-squares predictor.
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2.2.6 Invertibility of R~,T S

Here we establish a criterion to guarantee that R~,T is invertible. From relation

( 5 ) we  have

R T - R T 1 + 
~ T ~~~

• YT~ - 
~Yr1 ’ • • YT-p T

~ 
( 49)

So, using the well-known matrix inversion lemma, we have

S 

~‘
4p,T - R4

~,r-i — 
~~

1p ,T-l ~ T ( I  + 
~~~~ ~~‘p T..l ~ T 3_i 

~~~ 
R~’P,T..l ~~~

pre- and post-multiplying the above by 
~ TT and YT , we have

‘V T • 
~~ T — ~

2p,T 
- 

aP,T 
, (51)1 + a~3,7. I + ~~~~~

where

- YT
T R’

~,r..i Y~ 
> 0 (52)

or
a T 

S

0 < ‘V r — ~~‘ < I . (53)

Thus when - 1 • recursion will stop indicating that R~,r is not invertible, or

- 
equivalently that the columns of T~,r are linearly dependent. However,in the

scalar case R~,r > 0 if • 0 and .R~,T is always invertible. If m > 1,

(i n  - duri( y~ ) ) we require T 
~ 

p + in. These singularities can be avoided by

including a priori estimates of the covariance R~, or equivalently including a

weighted norm of the predictor Jl~ in the error criterion 
~p,T• Several such

modifications have been proven useful in actual Implementations. See also the use

of the special quantity I in our pitch detection algorithm on Section 2.7 and 5.4.

2.2.13
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2.2.7 Maximum Likelihood Estimate

In this section we show the close connection between the pre -windowecl

method and recursive maximum likelihood method for autoregressive models.

Suppose we have a ft—M order stationary Gaussian autoregressive process (f or

simplicity we consider the scalar case here)

+ 4 (1) 
~~~~~~~ 

+ . . . + ~~~(P) 
~~~~~~~ 

-

(54)

where { 
~~ } Is an independent identically distributed zero-mean Gaussian random

process with variances O~ . Given the observations 7T - (YO U . • ‘YT 3T , from
S this process, the likelihood function is given as [BJ]

A — (~~.)_(T+1)/2 
i R~ r112 

~~ p { — 
) ‘ T T YT 

~
(55)

-

~~~~ S 

with

H - £ YT YT
T .

(56)

Conditioning on { y0, . . . ,  y,~1) , we expressAas

A — (2t a Z)) —(T~ ) / 2 I M,, 11/2 
~~ p{ — ~~ 

~ E 2 
+ ~~ p—i)1 M~ YtO, n— i ]) ) , (57)

t—p
where

— E(~~ 1y, ) I a 2 
, O � i . j ,  �p .  (58)

• Collecting all the terms In observations into a matrix ~~~~~~, we have 
S

A • (~~~ 2)_(T.l)/2 I M~, 1112 ~xp { — !~_ ( a ~l Z~~ 
a~ ) j

(59)

— ( • 4 (1) 4 (2) 
• . . , 4 (P) 31

Then it can be shown that is related to the pre -windowed covariance matrix S

as defined in (4) as follows

2.2.14
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S

- 
~
‘p ,T rP,T - L~ L~T (60)

I where

L 0 0 0 0 -
S

S 

L~ _ 0 Yo 0 0

0 0

0 
~~~~~ 

. Yo
5
’ 

(61)

Moreover the maximum likelihood estimates for a~ is obtained by setting the S

derivative of A with respect to to zero, and neglecting the data record length

independent terms (justifications of such approximation can be found in (BJ]), we

have the following normal equation for such estimates

Z~, 4,~ • ( ~~2, 0 • . . 0 ]T (62)

.4,, — ~ ~~, ~~~~~~~ ~~(2) 
• • , ~~~(p) j T (63)

S

. : 

- T,, ii
~ 

(64)

We can see now that the Pre-wlndowed method is a good approximation to
S recursive maximum likelihood (RML) estimates, both and I M~ are

independent of data record length, and asymptotic properties of the maximum

likelihood estimates are preserved, when T> > p.



~_ _ ~~~5_ 5~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -v~~, ’ 5  ‘~~~~‘‘ •—‘~~‘~----“r~” — -— ’ ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ‘  — ‘~~•*“ ‘ ‘~~~~~~~~ • ““ ‘~~5 - ’  - S

2.2.8 Summary of Algorithm

initialization

~- 0;

~- R~0,0 i- YO Yo~
for i ~- 1 upto pinax do ~- 0;

main loop

for T 1 upto Nsa m pies do

begin 10,T 4- rO,T 4- YT ‘V-1,T-1 ~- 0

4- ~~~~ ~~ 
R’o,r.i + YT YT

Orderupda e~ S

end ;

procedure Orderupdate ~,

for p ~- 0 upto ( pmax mm T )  do
S begin 4- 

~~~~~~~~ 
+ ~~~~ p ,T 1 ( 1  — ‘V p-1,T-l~~

‘V p,T 4- ~~~~~~~~ + rP,T rP,T ! R , ,T I

Ktp ,1,T 4- A p+1,T I R€
P,T;

4- I Rr,,,~r.1 ;

~p +1,T 4- € p ,T — K’P+I ,T rp,T_ 1 ;

S TP+l,T 4- rP,T_ 1 — KE,,.i,T ‘p,T~
S if T ~ /nnax then begin

4- R’,,,T — Kr P+l ,T~~ P+l ,T ;

• R’
~,i,r 

4~ R~ ,~1._1 — K’p, 1,T ~~p+ 1,T
end

else begin

R’p.1,T ~~~~~~~~ + 1p ,T ~p ,T I ( 1  — ‘V 13—~ ,~~
_
~ 

)

R’~.1,T ,~RrP.l,T_l + ~~~ r,,,~ I ( 1  —

end;

end

2.2.16
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2.3 Tracking Time-Varying Parameters

S So far we have assumed that our observations ( y(t), 0 ~ t �T }, are generated from

a constant parameter model. When the parameters are changing with time, the

S 
general algorithms must be modified to track these changes. Using time update

recursions of the algorithms, we apply a simple approach to the tracking problem

by including an exponential weighting factor , w, or the so-called fading memory

S 
factor, Into the error criteria.

2.3.1 Exponentially Weighted Algorithms

We define the squared error criterion for the pre-wlndowed case ( s—0 , f —T ) as
-
~~~~ T S

~p,T — E ~T—t E T
,,,T(t) ~,7.(t) . (1)

S 1—0

where vi is a constant ~1, ( e.g. vi - 0.99 ) so that the past prediction errors, being

weighted with w, will have smaller influence on the estimates. Other weighting
S 

schemes such as using time-varying weights, w(t), are more complicated (see

Lj ung(Lju], for example). For simplicity, we only consider the case of constant vi.

We introduce a simple procedure to obtain the ladder form for this exponentially

weighted case by first considering the simple time-weighted case. The Normal

S 

Equation Is weighted with respect to the length of observations, i.e. the time

index,

• R*P,T AP,T — ( R ”P T .  0 , 0 , . . . 0)1 , (2)

where

p ,T - 7’T p,T
R~~P,T - ~~~~~~

This time-weighted Normal Equation ( 2 ) retains the same form as the

non-weighted one, and the least-squares predictor for the two cases must be

2.3.1
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Identical.

Thus both the forward and backward predictors would remain the same while

only the auxiliary quantity C,,,T needs to be modified to

~~ p ,T - ( 7~ + 1 )  C’p ,T (5)

and the defining relation for them also retains the same form

0 
~YT

0 I 0 ‘YT-I S

R~ (A  B 
~~~ 

) .  i . Ip,T p,T ’  p,T ’  p ,T
0 I 0 YT-p 4 l
1
~ 

IDr*
i’~ p ,T I YT JJ

with Rr*P,T defined by ~~~ Rr,,,T. S

Similarly, the forward innovations, 
~p ,T’ and backward residuals, r,,,~ , remain

unchanged, while ~‘p T’ the auxiliary quantity, Is modified to

Y*P T — (T+D I~ r .  (7~
The defining relations for them again retain the same form

S AT
S 5 ~p ,T p ,T Yr

- BTP,T Yr-i

p, p,T

Yr-P. ’

- 
• (8)

We next consider the time-update recursion Identities for the matrix R*P,T

which is given by

~~ p ,T - 

~~~~ 
~~~~~~ + Yr ~Y1

T ’  . YT
T-p~

YT-p (9)

Thus if T of the weighting factor is set to any constant we can interpret the
T

ratio 0 
, which is ~1, to be th. exponential weighting factor, vi, and this T0To + I

2.3.2
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can also be interpreted as the a priori time constant for the underlying
time-vary ing model.

Recursion ( 9) can be rewritten into 
S

- 
S 

~~ p ,T - ~~ p ,T-l + ( YT ~YT
T ’  . 

‘ Y
1
T.p~ 

— R~,,,T_l } I ( T +  1 ) ,

YT-~ (10)

and we can identify rLr as some time-varying parameter, A(T) , that Is related to a

time-varying weighting factor, w(T). Indeed , It can be easily shown that w(t) and
S 

~(t) are related by

X(:+ I) — u(t+ 1) +  ~~~ ~(0) — I . (1 1) 
5

The order-update recursion for W ,,,T retains the same form as the non-weighted

case and is given by

S 
- xp,T p -1,T

x x x , (12)

S 
while the time-shifted order update Is modified to

R*p,T X X X

T ~~X 7 T ’  p -1,T-l

2.3.3



2.3.2 Ladder Recursions

Having set up the time, order, and time-shifted order update recursions for

in ( 10 ), 12 ) and ( 13- ), various recursions for other quantities can be

S 
obtained in the same fashion as described in Task Report I, therefore we will only S

- 

I 
give the important results and also drop the superscript ”” from here on so that all

quantities are defined in the time-weighted context.

Again we obtain A~ +l ,T, r,,,1,~ by- the following

RP4,T ~~~ 1 - Rp ,T X ] “p ,T 1 - R~,,,r
o J  x r J  o J  0

:

(14)

where

• A~,,,i,r - 
( last block—row of RP,l,T 3

0
T

— Y~-~~—i £ T
T(t) • (15)

H
and similarly for 

~p.1,T

S ~~~~ (firs: bZxk—r ow of Rp,l,T ~ 0

BP,T-l
S T

— Yt r~ ,~._1(t— 1) . (16)
$4

with

~~p.I,T ~~~~ (17)

as given by the so-called Burg-ty pe lemma.

The forward and backward ref lection or PARCOB coeff icients are given by

S 
x’p,l,r — A ,,.i,r ~~~~~ . (18)

— 
~

i Tp,i T ~~~~~ (~~~~~~ } (19)

2.3.4
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Notice the ( } factor in the K’~,i,r due to the shifted time index of R’p,T_l.
The ladder recursions are given by

~p.l,T — tp,7’ — K ’~,l,T ~~~~ (20)

rP+1,T — r~,T4 — K’~+i ,r ~p ,T (21)

— ‘
~‘p,T + ~~~~~ 

R t p.l,T ~~~~ (22)

R’~,r — 
~~p+1,T R~

r
~,T l  { 7~~ 

I ~~p.1,T (23)

Rr
~+l,T • R’

~p,r_i 
{ — Ap +1,T ~~~~ ~AI T

p+i ,T . (24)

The time update for 
~~~~~~~~~~ 

requ ires some similar algebraic manipulations and is

given by
Ir ( - S

S ~ p.l,T,l - 
~~p .i,T + t 

~~~ ~P 4,T~’(T ~~ 
— 

~ p.i,T ]{ 
~~~~ 

• (25)

Initial Conditions

The initial conditions remain the same as the unweighted case, and a time

5 
constant is needed to set up the desired weighting factor .

(0,T — r~,7. — y~~ ~
‘-1,T — 0

T
r ~~ IA 

~~~~~~ 
- R 

~~~~~~ 
— 

~~~ Y, Yg

— R’o,T..l + 
~YT YTT — R’O,T_l ] I;

for p~T:
S 

~p,T - 
~T,T ‘p ,T - rT,T ~ ‘

~‘p,T -

- R’T,T ; R’,,,~ - RrT,T ;
A

~.l,T - 0;

— ~P,l,p .i ,0 p+l,p.i•
- S (26)

Other aspec ts of the ladder form like Invertibility Of remain unchanged from

the unwelghted case.

2.3.5
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5 2.3.3 Sa~mmary of Algorithm

initialization

~ r0,0 ~ 0;

R~0,0 4_ A”0,0 4- Yo Yo S 

S

S for 14- 1 upto p max do
-

~~~~~ A1,1 
0; 1main loop

for T i- 1 upto Nsam pies do

begin ‘o,r 4- “O,T 4- Y~ 
5 

- 

I S

If tracking true then

begin ttau ~- T mm tau; 
S

— Ti ~- 1/ u c u
- 

I 
Tim 4- 1/ (ttau + 1 ) ;

TOT 1 ~- ttau / (ttau + 1)

TI TO ~- 1/TOT !

end

eLse

S begin Tm ~ l I T ;

T1i ~— 1/ ( T + 1 )

TOT I TI (T + 1) ;

TI TO ~ 1/ T O T !

end,

- 
~~~~~~~~~~~~~ ~ ; ¶
R~ ,r R’~~ 

5
5 -

~ ~~~~~~ + Tii tYr Yr — R’o,r..l 3

Ord~,~Jp dau.,

endj

2.3.6
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procedure OrdaUpda f r~
for p 0 upto ( pm ax mm T )  do

begin

~~p .i,T ~ AIP.I,T L  + T1Z (r ~,T_1 
~~~~~~~~ 

1( 1  — (Tm) 
~p —i,T—1 ) —

~‘p ,T 4- “p.1,7’ + ~~~ rP,T / ~~~~
A 5p.1,7’ ~ ‘~p .l,T 1~~~ p ,T

TITO 
~‘p.1,T ’ R’~,7’_1 ;

~p+l,T 
4- 5p,T — K”~•1,~ ~~~~

rP.l,T 4- r~,7’_1 — K’p+l,T 5p,T
if T ~ pmax then begin 

S

4- — ~~~~~ A p .1,T
R’

~,1,7’ TOT! R’•P,T..l — 
~~~~~~~~~ ~~p +i,T

end

else begin

R’~.i,r 4-R’P,1,T_l + Tim tp ,T ~p ,T / ( 1  — (TmYrp_l ,T_i ) ;

s , t # r ’~*,I “ p+l,T 4-” pi1,T—l + ‘ “ 7’p ,T 1p ,T ‘ ‘ £ — ~ ~ p —i,T—l / ‘

end;

- ‘  end,

end of algorithm

S5- -5-— -~~~~~~
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2.4 The Covaria nce Ladder Form

As mentioned earlier , the covariance ladder form Is even better suited for speech

modeling than the pre-windowing form, since it does not require any windowing

of the data. This is of importance when the analysis involves short data segments as

is the case in. speech modeling. Strictly speaking, the covanance or non-windowed

form uses a rectangular window on the data, i.e. it uses only “the available data

set”. The weighted pre-windowing form uses an exponential window (on the error S

sequence ) that acts like a sliding window of a covariance type. Therefore the

behavior of the weighted pre-w indowed form is expected to be similar to a fixed

sliding window covariance form (a slightly more complex covariance type form).

To derive the covariance form algorithms we use the notation introd uced In Section

2.1.

2.4.1 Basic Definitions

The covaria nce matrix , ~~~~~ satisfies the following recursive identities:

R,
~~

,T - Rp,,c,r.,i + Yr (Y T
T ’  . . • . YTT_p~

Yr-a (1)

Rp,s,r RP,S+l ,T + Ys,~ t Y Ts.p~ ‘

(2)

R~,s,r .  x x

- 
x

(3)

RP,s,T - 

[ 

Rp _~,•~+~~ : 
I 

. (4)

where the x’s represent unspecified elements along the appropriate edges.

L S~~ - - 

2.~~1 
-



Define ~~~~~ , B,,,~~. , C,~,5,7 and D,,,~,7 by

0 (Y T L YS.p
0 0 YT-1 ( Ys.~-i

RP,s,T (AP,s,T. BP,$,TI ~~~~~ Dp ,5,~~) - I I .  I .
o i 0 I YT..p.II YS.l
A I I I
V I “p,S,T I YT- p ‘Ys

where “~P,S,T and B~,s,T are respectively the forward and backward predictors,

S with ‘t~p~S,T and ~~~~~ by

4lrp ,ST - I~~. ~~~~~~~ . . . , B,,,~~.(P) 
3

BI P,s,T • (B P,s,T(P) 
, . . . ~~~~~~~ ‘ns ~ (6)

and ~~~~~ and D,~~,7’ are auxiliary quantities. 
S

We define 
~~~~~ 

the forward prediction errors or innovations, and rP$,T, the

backward prediction residuals, and auxiliary scalar quantities ~~~~ 
and h1,,8,7. by

1p ,S,T ‘~
1Tp ,S,T Yr

~~~~ 
- BT1,,s,T Yr-i

S
. 

~~~~ ~~p ,S,T
DT

“p ,S,T p ,S,T

YT-~. S

Yr-1, ‘ 
(7)

and one more auxiliary scalar quantity-f1, 7’ by

- D11,,,~,7’ Y( S.p : (8)



- 
--S

____ 
S — —

~ I t
The quantitiasf1,,8~~, g1,,8,7’ and II

~~ ,T are related by

~1,,5,T ~p,5,T YT
T YT

T-1 . ?T..p YT YS.1,

- 
- R ’P,S,T

hP S,S,T f p ,S,T YTs+~ ?S.p-1 YT
S .

YT-1,.1 Ys,i

YT_p ‘S S

I , 1 I
- Y~~ ) T-1 • Y r_p

C ~~~~~ D~~ ,T
S 

Y
T
$.~ ,S.P_i 

.

(9)

We now let the basic observation record span 0 s S ~ t � T, and drop subscript 0

~~~
when no confusion is created.

2.4.3 
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2.4.2 Order Update Recursions

We would like A1,4,T and B~,1,7’ to satisfy the normal equation

R~~+ ir I 0

C A1,+1,~., B1,,l,T 3 - 0 I 0

0 ~~~~~~ (10)

— and we start by using relation(4):

R1,+1 T ‘4p,l,T - RP,i,r x 4p,i,r - R~1,,i,r
0

0 x x x 0 (11)

where

- ( last block —row of R1,.i,r 3
0 . (12)

Similarly, using the relation ( 3 ) :

0 - x x x 0 — 
S

BAT..l x R1,,~~1 B,,,T..l R’
~,r..i

(13)

where r~+1,7’ - (first -block—row of R~.i,r ] 0

Bp,T-i

- 
(14)

Applying the so-called Burg-type lemma,

AT 
~~~~~ ,r 0 R~,1,7’ ~~

1,11,
~~ 0

0 BT,,r1 0 B
~r..i

S 

Ar~,1,7’ 0 1 R’~ i,T r,.i ,r
a 0 0

0 BTAT..J Ap.1,T R’~,7’..1

2.4.4
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- R’,,,T rP,l,T
AP,l,T R”P,T_I

note that these expressions are all symmetric matrices. Therefore we get the

impor tant identity

~~p.i,T — ~ p+l,T (15)

Thus postmultlply ( 1 3 ) by R~”p,T.i Ap .1,T , where R ’  is the inverse of R” , and
- 

then subtract the result from ( 1 1 ) ,  to obtain the following order update recursions

for AP,T and ~~~~
— A~,1,7’ [ 0 R ”1,,7._1 

~~~~~~~~~

0 LBp ,T.i - (16)

S D—r A
p.i ,T “ p,1,T — ‘

~~ p.1,7’ “ p,7’-i ‘~ p +1,T

A similar set of order update recursions for B1,,r and R”P,T Is obtained as

B1,.i,r a 0 — g
1,,1,7’ 1 ~~~~~~ AT

~+l ,T
H B~,r.i 0 j (18)

H R”1,~1,7’ 
a ~~~~~ — 

~~~~~~~~~~~~~~ ~~~~~~ ~‘
1’p.1,T (19)

To obtain the order uPdate recursions for C~,T we first observe that the last

block row of R ’P,T is equal to R ”~,7’ 
BT,,,r. Thus from the definition of C,,,T ,  we

can obta in the last block-row of C~~. j .~.

CAT a

T.p (20)

inplies 
S

( last block-row of CAT ] - R~~,7’ “Ar . (21)

2.4.6
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Using the relation(4), we have

— R~.l,T C1,,l,T - R
1,,117’ 

x C1,,l,T
x YT-1~

0 x x x  0 • S

YT-p
x (22)

and from the observation. ( 21 ) that the last block-row of Cp,l,T is equal to

R ’1,417’ r1,41,7’ and also that the last block-row of B1,41,7’ is ‘m’ we can obtain the

order update recursIon for C,,,7’ as

C1,41,7’ - C1,,l,T + Bp.t,T R ’~,1,7’ r1,41,7.(T) *

0 (23)

Siwf’arly. ~he order update recursion for D1,7’ is obtained

S D1,+i,r • 0 + A1,,1,7’ ~~~~~~ ‘~.i,i’(P’ 1) .

(24)

Thus equations ( 16 ) — ( 19 ) , (2 3 ) and ( 24 ) give a set of order update

r cursions for AAT, BAT, CAT DAT. These recursions are very similar to the

multichannel version of the Levinson algorithm ((WR), (MVLX], and (Rob]).

- 

2.4.6 ~~~~~~~~~~~~ 
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2.4.3 Time Update Recursions

5 
TJsln.g the relation ( R i) ,  we obtain S

RP,T,l A1,1T . R~~7’ + YT4 ( T
1,,7(T+ 1)

0

(25)

S We then apply relation ( 3 )  to ( 0 CTP .j ,T ]~ so that after post-multiplying the

result by ~
T
~,T(T+ 1) , we can force the right hand side of ( 23) to satisfy the normal

equation (10 ). After some algebra, the time update recursion for A1,,T Is obtained

as follows S

‘4p ,T+l a Ap,~i — 0 ~
T
~~,

7S~T+ o
C *p-1,T

(26)

Furthermore , we premultiply (25 ) by ~~~~~~ . . , Y T
TI  3 and obtain

~
Tp ,T’l — LT~,7.(T+l) — g~—1,r (1

~,T(T+ 1) (27)

S and recalling that g1,17. is a scalar, we rearrange terms to get

1p,T’l ~1,,7.(T+1) ( I — g,,. 17. ) . (28)

Thus the time update recursion for R’~ 7. is obtained as follows

R’Ar+1 a R~1,,T + ~P
1
T+1~~~P~T41 

• (29)

5 A similar set of time update recursions for B~,7. and R’p,T is obtained as

B B Cp,Til — p,T — p—l ,1,T.1 11p— 1,l,T.l 
S

0

(30)
I

S R’AT,1 - + 

rP,T.1 7 fi,T.1 
• (31)

Equations( 16)—( 19 ), (23), (24) and(26)— (S1)form a complete set of order

and time update recursions for A1,17’, BAT, C1,T and *D P,T.

2.4.7
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2.4.4 Time-Shifted Recursions and Scaler Updates

By using the same techniques for obtaining the order and time updates, we can S

also obtain the time-shifted updates of various quantities and updates for the scalar

quantities. The time-shifted updates for R5
P,T, R’~r, ‘4p ,T’ B1,,T, C~,7l and D~,7. are

given by~

Rt R~ , R ’~,7’ E pT(p) ~T~~~ (p) -1p ,1,r 1,,r ( + 1 
~

f p ,T
R ’AT r1,,7.( T) rT

1,,~~T) -1R 
~,,T 1  - R 

~~~~ 
C / + 

I — I T

- (A
1,,7’ 

+ 
D1,17’cT~,74) 

3 
~~~~~~~~~ 

R5,,,1,7.

B1,,711 (B P T 
~ 

C~T rT
P~ (T) 

3 R ’1,,~ RVP,T l

C,,,17. - C1,17. + DP,T 1 Ip,T

D . D  + Cp,T-1 p,T p,7’ —

The scalar updates forfAT, (1,~ 
and hAT are given by

fp’l,T a f1,1r-i + £ T
1,41,~~ p+ 1) R ’~,i,r ~~~~~~~ 

1)

- j~,7’ + + (T
p+1,T(P+1) R~~1,•1,7’ tp,l,T(p+1)

g1,+1,T - g
~,1,T + rT

~,1,~~T) !r ’1,41 T r1,41,7.( T)
h2

S 
- Ip,T + 

~~~~~~ 
+ r~~+i,r(T) R- ’~,1,7. rp .,l ,T(T)

5 

5 

h1,+i,r - ft
,,, 1,7. + rT

1,411~~T) R ’1,4117. r1,41,7~p+ I)

‘~p,T-1 
+ ~ p,1,7.(p+ 1) ~~~~~~ p.l ,T(T)

A time update recursion for 
~ p’1,T which will be useful In the ladder form

implementation, can be verified to be given by
r (I 

iT
~ ‘p .l,T.1 - A1,.l,r + ~~‘ 

i —V _~ 
(32)

5- -

~
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2.4.6 Ladder Type Realization S

Premultiplying ( 26 ), ( 3 0 ) ,  a n d . ( 2 3 ) by (y TT,  • . ?r- ~.i 3 we obtain the

following order update recursions for E 7’and r
- A 1,,

a E p,1,T(D) ~~~~~ r1,,7.4( T—I)  (33)

S r~,1,~~T) a r1,,T_ l (T— 1) — ~~~~~~ £ 1,17 .( T) (34)

— ~p,T-l~�’~ 
— ~~~~ 1 

~p_ 1,T_ 1
(time update) (35)

S 

( p ,~,~(T) - ~,74T) + ~~~~ (36)

where K E p .l,T and KrP,l,T are the ref lection or PARCOR coeff icients given by

X E
1,4117. — A~

T
p+1,T ~~~~~~

Kr P,l,T - AP,1 T R~~ ,7._1 (38)

The recursions ( 33 ) — ( 38) compute the sample cross-covariance of the

f orward and backward innovations.

In contrast to the approximate schemes ( [SV], [MG] ) that have been

to solve the stochastic ladder forms given in [IS], [Wak], [Mo], equations

( $ 3 ) — ( 38) form a complete set of order and time update recursions to obta in the

exact least-squares ladder form predictor , which is shown in Figure 1.

-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2.4.8 Initial Conditions

In the covar lance ladder realization, we may not start the recursion at T a 0 and
5 just keep doing order and time updates. This is because for small values of T, R1,,~~.

is always singular. More specifically if T c p (m + 1) + m — 1 , where m - dim y,, then

RP OT will certainly be singular, for then 
~
‘p,0,T will be of low rank. To pro perly

initialize the covariance ladd er , we can wait until enough data Is obtained , say { y~ ,

y~~ } , so that R1,0~~ is nonsin.gular for all orders 
~ to be considered . Thus if

pm ax Is the maximum order of the ladder , we have only to check the

nonsingularity of Rpmax,o,~ since in this case B
,, ,0,7’ will be nonsin.gular for p ~

p max , T � Ti as can be easily verified.
S 

In practical situations (e.g. the scalar case). It Is to be expected that TI is close to

2pmax . Now suppose we have determined TI such that R,,,~~X oTl is nonsingular.

From f , • y~~ } we recursively compute the last row of of for

p - 0. . . . , pmax and keep the first p max values { y~, * . . , ~~~~~ }. Using the

recursions given above , we can then compute ~~~Ip,~~~j I  ~~~~~~ R~~,017.1 and

E p,o,T1(P) for ~‘ - 0~ . . . . p max, which constitute the initIal conditions for the

- 
~S 

time update of these quantities .

The initial conditions for order updating the laddEr recursion are given by

~O,0,T — ~~~~ rO,0,T a YT (3~)

f-l ,0,T — g-i,o,r — ft ..1,0,7. 
— 0 . (40)

There exist simpler alternatives for initializing the ladder form but they would

require a more extensive explanation and justifications we therefore leave them

for later publications. For example, we may initialize the various sections of the

ladder in a recursive way, that Is we initialize the first section at time TI (in the

scalar case TI a 0),  the second at time T2, and so on.

S • -- ~~~~~~~--. -~~~~~~~ -- - Al
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2.4.7 Invertibilit~r of 
~ p ,T

Here we establish a criterion to guarantee that RAT is invertible. From relation

( R i )  we have

* B r - RP,T_I + ~
r

yT 
— [ YT T 

, * . • , (41)

So, using a well known matrix inversion lemma, we have

S 
B-1

1,17’ 
R-’~,7 ’1 — R-’~,r_ 1 ~‘ ~I + y~ R 11,7’~1 7 ]~ Y~ 

R 1p,~._1 . (42)

Pre - and post-multIplying this by 7~ 
and 7, we get 5

- a1,,7. — 

‘~~~ pT ‘

where

a T - yT R41,r i  7 > 0 (44)

or S

0 < S T 
Up ,T 

•~ • (45)
1,’ 1 +- a 1,7.

A similar argument shows that

0 < 

~~ < 1 • (46)

Thus we see that the Invertibility is equivalent to the condition ( 15 ), (46 ) so that

divisions by 1 — 
~~~~~ 

and I f ,,,T can be carried out.

2.4.12
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2.4.8 Summary of the Algorithm

initialization: ( See Text )

~~~~ loop

for T ~- Ti upto Nsam pies do

begin E 0,T 4- ‘~o,7. ‘ YT ;

1-1,7._i 4- g-11r~i 4- 
~~i,7.-i ‘ 0

R’O,T 4- ~~~~ 4- ~~~~~ + Yr YT
RE

O,T 4- R’O,T 4- R’O,T...1 + Y71 y7. ;

* 
Ord.r Updau ;

S end;

Procedure Order Update

for p i- 0 upto p max do

begin ~~~~ ~ E p,r_i (p ) — p,T ~~~~~~~~~~~~~~~ 
I ( 1  — g,,..i,r-i);

4- E ,,~. + ‘1,r~
P) 
~1,-1,r-1 

1 C ’  —

~~p ’1,T 4-
~~p +l ,T-1 + rp,T_l E p,1,T ~ ( I — S, , i,i,~~i );

2.2 Iii ~Sp,1,T-14- SAT~i + p ,T-l 1 £ J p,T-1 I~

g,,,T 4- S~-i,r-i + ‘1,,T ‘~,r ’ P~T~
f t p ,7’ 4- h,,... 1,7._1 + ~,,7’(P) E p ,T I

f p ,T 4- f p- 1,T-1 + ‘~,T(P ~ 
E~ 7-. (p) ~ R~1,~~

RE
P,I,T ~ ~~~~ — 

~~~~~~~~~~ 
I ( 1  fp_i ,r-i ) ;

A I D E
“ p.1,T 4- 

~~p .1,T’ 1% p ,1,T ’
A , D r  *p ,1,T 4- 
~~p .1,T ’ “ p ,T-l ’

tp .1,T 4- E p,1,T — gr
1,•1,7. TAT_I

S 

rp,1,T 4- — K~,,,1,T E p ,l,T
Rt
~,i,r ~

- ~~~~~ — K ’p ,1,7. Ap,i,T
Rr1,41T 4- ~~~~~ — K~1,,17. ~~~~

end

end of algorithm

2.4.13
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26 Pole-Zero or Autoregressive Moving
* 

-Average(ARMA) Ladder Forms

In this section we present ladder forms for pole-zero or autoregressive

moving-average (ARMA) models. Our approach here is to embed the underlying

ABMA model into a two-channel AR model resulting in a j oint innovations

representation of the process. The two-channel predictor of this jo int process may

S be implementated as a two-channel AR ladder.

2.6.1 Joint Innovations Representation of the ABMA Process

Given a pole-zero (ABMA) model of the following form

F Yj + ‘~i Yt_ i + • + 4N Yg-N - ~ O ~‘t 
+ B1 U~~j  +. . • + 3N Ug..N. (1)

where { 
~,. 0 s t ~ T } are rn—vector observations, { u~ } the input process which is

assumed to be an uncorrelated sequence of rn—vector random variables , and A, and B5,
the rn by m matrix coefficients of the model. S

The model equation can be rewritten as

S 
- Ys + 

~i Ye-i •‘
~~
. . • + 41\c’,-N — B1 Ug~~ — . • — B~,j Ut..N a B0 u~ • (2)

and in matrix notation, we have

aN
T 

~~ — 

~
‘N

T 
~c - B0u~ , (3)

with

a T F l  1N L ‘in ‘ ~~ ~
42, AN

b~N
T 

— ~ , B~, B2, * , B~ ]~ (4)

— ( ,
T 
, • * , ,

1• 
~

Ut T 
— ~ u T 

, . . . , u~_~ 3 • (5)

leading to the following augmented equation

CN
T _

~~ N
T 1 ~~ 

- B0u,
o 1 T j U~ U~ , (6)

where &~ is the fIrst iz by in block unit Vector.
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This embedded model can be interpreted as a 2-channel AR model of the joint
process { y~, u~j . Here, the right hand side of the augmented equation is equal to

the joint innovations of { y~, u~ }, since

~“t Y~ 
— 

~~ 
B0u1

• —

Ex, U, — 

~~~~~~~~~ 
• (~~)

Indeed if we apply a simple Interleaving permutation of (1, 3, 5, . . *

2N+ 1, 2, 4 , 6, . . . 2N+2 ) to the augmented equation, we have the familiar joint 
S

2-channel one-step predictor of the form 
S

AN
T z, — 

~, . (8)

where

~in °m ~i 
_B11 ‘1N —BN 

S

AN _  
‘

0m ’,n Om OrJ 0m 0m

S
I (9)

-

~ Z,
T 
— (yE

T
, u~

1 
Ye—N

T
’ Us_ N

T I . (10)

In the stochastic case, the problem of finding the linear least-squares predictor

is then reduced to solving the normal equation of the following form

RYIAN ‘4N a [ RE N ,  0, 0, . . . 0) 1 
, (11)

where

R3”0 RY”i . . . RY”~

S 
R7~1

T R~’~0 •

R3~
1N _ E z , z$T . . . * .

R3”N
T . . . . R~a0 , (12)

R7’~5 — £ ~~~~ U,..5T )  
, R~~ • £ 1, ~~

ssJ

(13)
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R,,(0) R~ (0) R~(n) R~.,~(n)

R~”0 — , R)”,~.

Ry~(0)T 1y~ °rn °m . (14) 
S

Since RYUN is a block Toeplitz matrix with blocks of size 2rn by 2rn , the solutIon

to this normal equation can be obtained via the Levinson algorithm (WR]. The

parameters estimates which are embedded in the solution are recursively computed

in order. (Note the sparseness of BY” and AN .)

• 2.5.2 Least-Squares Recursions for ARMA Models

In the determin istic least squares case, the joint forward and backward

prediction errors of order n at time 7. is defined as
A

~
3’n,T YT - ‘71T-l ,...,T-n S

a - — #l8,T
T Z(7’:T— n]

~
“n,T ~T — ‘T]T-I~_,T-n (15)

~
4’R,T YT-S - Y

A
T~8~T~n+1P..,T- - B5,7.

T Z(T:T-n] . S

-

. ~
4’n,T U7 . 5  — UTSI T n.i T (16)

The covariance matrix for the joint process is thus similar to that given in

S 
Section II, and with Its shifting properties, one can obtain recursions for the

2-channel ladder form from the recursions of an AR case, i.e.

mn.1,T — — D15,17. R-’~,7’_1 r,,,7.4 (17)

~s,T-i — Dn,l,T ~~
4
n.1,T E n,T . (18)

In the two-channel case, D5.i,r, the partial correlation matrices exhibit addition
structures, due to the embedding of the white input process of the ABMA model
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Into an AR model. Since all future inputs are assumed to be uncorrelated with the

pr esent and past outputs , half the elements D5,17. matrix are approximated by

zeros. Indeed the partial correlation matrix is given by

1~’~n,1,T °m E ~~~~~~~~ O~
I t—n.1

—

I 7.
LAUS.i,T O~ ~~ u,_~,1(3’,.,7.(t)T 0m (19)

t n’l

The time-updates for these partial correlations obtained in a similar manner as in .5

Section II.
7.7 1 7 1

~~~~~~ 
- 

~~
7n’i,T + ~ ‘

1~
’
~ 

“~“~ (20)

~~~

~
“n’l,T’1 - ~ “n,1,T + 

it,T ‘ n ,T’l (21)

In order to obtain ladder recursions for the prediction errors, Inversions of the
joint 2rn by 2rn prediction error covariances, R1

517. and R’5,r are needed. These

inversions are simplified by first decomposing them into upper-diagonal-lower

form and then taking inverses. Examples of ladder forms obtained this way are

presented in (Lee]. Figure 2.5. 1 shows an example of one such structure.
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IS

Notice the feedback structure of the embedded ARMA ladder form. The output of

the forward innovations section is fedback as input to the backward residual for

{ u5 }. Assuming that { u~ ) has unit variance, we have

UT - R_t3
~/ZN,T ~

3’N,T • (22)

Instead of using one single feedback, as in ( 22 ), It is also possible to obtain UT by
S 

distributed feedbacks. Ladder forms of such kinds are still under investigation and

results of these studies win be available in later publications.

I
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2.6 Computational Complexity

One of the attractive features of the class of algorithms described in the previous S

sections is their computational efficiency. The computational requirements of the 
S

fast algorithms are in fact proportional to the number of model parameters. This

compares favorably with currently used methods as indicated in Table I .  There are

many ways of measuring computational complexity; the measure adopted here is

the number of multiplications per N samples of speech (N may be the number of

samples per frame) f or  a ft—tn order autoregressive model. All index calculations are

ignored. For methods that store the full covariance matrix, two-dimensional array

indexing has to be performed which may be costly on a machine having only

integer arithmetic. Our fast algorithms compute, in addition to the model

parameters and gains, numbers that allow us to efficiently compute the log

likelihood-ratio used for pitch extraction , i.e. decomposition of the drivi ng process

into a jump process and a Gaussian process. Many LPC systems use more

S computations in the pitch detection section than for the actual modeling, this is not

the case for our algorithms. For optimal vector quan tlzatlon schemes the number

of operations is also much larger than the number required for the model parameter

computations. 
S

L - -
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Table I Comparisons of Operation Cou.nls for Fast Algorithms S

Estimated number of operations per frame of size N and model order p ,

multiplications denoted by *, divisions by I, square-roots were ignored .

The number of additions is equal to the number of multIplications.

Pre&Post_Wind .* Pre-Windowing Non-Windowing MEM_type*

AR I(Np+p2)* + p/ I N(4p * + 4 / )  I N(6p * + 6 / )  I Np(2* + 2/)

AR Ladder j (Np+ p2 )* + ~1 I Np(6 * + 4 / )  I Np (ll* + 10/) I Np(5* + 2/)

ARMA Ladder I(Np+3p2)* + p/I 3Np(6* + 4 / )  I 3Np( ll * + 10/)1 not available I

References [Lev], [Mo] [MLNV ] [NVL] [Bur g ]

Actual program complexity depends heavily on the computer language used. For

example most of our algorithms require programs of a half a page to a page of

clearly structured code of the ALGOL type language MAINSAIL. (A FORTRAN

program would take about S times more!)

~ The Levinson and the MEM - Maximum Entropy Methods are not recursive in

time, I.e. they would have to be recomputed for every change in frame size or

place.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



S 

S

2.7 Implementation Issues

Generally speaking, the implementation of the exact recursive algorithms is

fairly straight-forward, if at least some care is taken that is advisable in

implementing any algorithm on a computer. Since we implicitly solve linear

(normal) equations, the usual precautions for solving linear equations apply al so to

our case, such as conditioning (ratio of largest to smallest eigenvalue), consistency,

etc. I.e. if fewer data samples than parameters are available, the set of equations is

over-determined and the covariance matrix or prediction errors are singular, a

situation that can arise during startup of a (recursive) algorithm. Some of these

properties can be observed in the spectrum of the (speech) signal used. For example,

a sum of a finite number of sine-waves without noise leads to a covariance matrix

of finite rank (twice this number), i.e. 11 the number of parameters Is more than

S twice -the number of frequencies, the cavarlance matrix is singular. Numerically it

S 
is very possible that the high order prediction errors can become negative and

- consequently the prediction filter leads to unstable models. It is on the other hand

possible for recursive algorithms to have a “self-healing property”, that Is they can

converge back to a stable solution. For a time-varying model this is permissible

since the output power can still be bounded; however if the model parameters are

sampled , for instance at the end of a transmission frame, the sample could lie in an

S unstable region that would lead to unstable reconstructions.

Another area of concern during the implementation process is the implicit

(statistical ) assumptions one makes by choosing particular initial states (say zero)

in recursive algorithms. These choices correspond to particular assumptions about

the a priori distributions of parameters, which in turn might not be consistent

with the actual information available. For instance assuming zeroes for data before

the start of the first data sample is equivalent to assuming the data is a white noise

(the predictor is initialized as a feed-through); however we are working here with

speech, i.e. we have at least an idea what an average spectrum looks like (say from

300 to 3kHz). In order to achieve top performance, many of these issues have to be

_ _  — ~~~5~~~ SS~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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considered , i.e. if the performance is judged unacceptable It is most of the time due

to some underlying assumptions that are Inconsistent.

To demonstrate this we discuss two practical problems which appeared during

the implementation of these algorithms. The first one Is concerned with the

accurate tracking of model parameters when strong transients, i.e. nongaussian

driving process (e.g. pitch pulses or plosives), are present In the initial data

samples. The second problem deals with the capability of fast resets of the

recursive algorthms when the underlying model parameters suddenly decrease to

zero, i.e. accurate tracking of zero-valued parameters (e.g. no speech).

2.7.1 Non-Gaussian Driving Process

S 
Non-Gaussian signals can have two effects~ either they can help to track

parameters extremely fast, i.e. within a few samples, or they can “kick the
S 

parameter estimates way off” , which leads to very slow convergence to the true

value of the parameter. Our algorithms produce a likelihood type quantity that can
S 

detect the presence of nongausslan components with extreme sensitivity. The

second condition can be remedied or prevented as follows. A non-zero (small)

initial prior convariance estimate of the input process should be used and a linearly
S time varying weighting factor (Tau) up to the maximum window length (constant

Tau) is applied to the errors in the least-squares criterion. In the program this just

implies that the variable Tau is initialized to some initial weighting (say Tau(O)

1 0~order) and linearly increased proportional to the running time st up to a fixed

window time constant (say Taumax ) and then held constant (i.e. Tau . (st — 1O*order)

mm (7’aumax) ). This is consistent with the knowledge that speech signals are

expected and not just nongaussian inputs or even out-lyers such as switching

noises. The problem really is that the condition number (extreme eigenvalue ratio)

of the covariance matrix can get very large if the first sample is unexpectedly

2.7.2
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large. For example, If the a priori estimate of the power is small, say 1 / 10,000, and

the first sample is a modest 10, its square is 100 and the condItion number is equal S

to the ratio 102/(1/ 10.000) or one million. For 6 signifIcant figures in integer

arithmetic this is already at the end of the range, i.e. the covariance would be

numerically singular. Another good numerical alternative is the square-root form S

of the normal equation or of our ladder-forms. The solution using a nonzero a

priori covarlance estimate is simpler , but ultimately we would prefer the

square-root versions since they can gain a factor of two in effective wordslze.

2.7.2 Tracking Zero-Valued Parameters S

Another problem is the tracking of zero-valued parameters. When the

underlying parameters suddenly decrease to zero they can reduce the data samples

to very small values, conversely, if the signals get very small, the parameter

estimates are not much excited. Special cases of this are when the correlation

between two signals goes to zero or the model order of a time-varying model

S decreases. In all these cases the tracking of the zero-valued parameters becomes

very slow, e.g. exponentially in the case where an exponential window is used on
S the error. This is a basic problem in parameter estimation. Briefly, the reason is

that the time-update is obtained by minimizing a squared-errors criterion. When

S inputs are zeros, the time-update for the pre-windowed unweighted case just take

the previous estimate as the optimal estimate, because the error criterion “doesn’t

care” what the non-excited parts of the system doest The existence of an

exponential weighting function in the error criterion, the estimates only converge

to zero at the rate of the associated time constant, which is undesirable if fast

tracking of zero-valued parameters is important for reconstruction of speech. The
S 

solution may be to make use of the likelihood ratio parameters to detect the
— condition for reseting the appropriate parameters. This is a fairly new problem in.

S system identification and not much theory is yet available.

S 
-
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3. The Speech Transmission System

The algorithms described in Section 2 are the basic buildIng blocks of a complete

speech compression system. The structure of the system which was developed and 
S

tested during our investigation is described in Section 3.1. The rest of the section

presents in greater detail the various components of this system.

3.1 General System Description

• The basic structure of the speech transmission system used to demonstrate the

performance of the new speech modeling algorithms is given. in figure 3.1. The

sampled speech is the input data to one of the ladder-form algorithms described in

Section 2. The ladder form is a recursive type algorithm and produces a new set of

outputs at each sample time. The model parameters (reflection coefficients) are

sampled at each transmission frame time and they constitute the main part of the

per frame speech parameter vector. The other components of that vector are pitch

information and residual energy (or gain). The pitch information is obtained from

one of the coefficients computed by the ladder form algorithm, as will be described

In more detail in 3.2. The energy parameter is a measure of the total energy in the

speech frame being transmitted and serves to control the synthesis algorithm

driving signal.

The speech parameter vector is used to reconstruct or synthesize the speech from

which ‘it was generated. First, however, it is necessary to transmit this

Information from the analyzer to the synthesizer. Furthermore, the objective of
S 

our work is to be able to do this transmission at a low data rate. Thus, the

parameter vector has to be quantized and encoded in an efficient manner (e.g. with

few bits, but minimum distortion). This (unction is performed by the

encoder/decoder which is discussed in Section 3.3. The coder/decoder is capable of
S 

reconstructing a good approximation to the speech parameter vector at the speech

synthesizer input.

The speech synthesizer uses the model parameters provided by the encoder to set

3.1 
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up a speech model which in some sense reflects the shape of the vocal tract. The

S pitch and enery information from the parameter vector is used to generate a

driving process which is then used to drive the speech model. The details of the

synthesis algorithm are presented In Section 3.4.

A basic quantity of the speech transmission system design Is the frame size. The

frame is a segment of the speech which is chosen as the basic unit of the

transmission system. During each frame time a single block of quantized speech

parameters is transmitted. To see the relationships between the various quantities 
S

let

fs~~Sampling rate [Hz ]

Ns = Number of raw speech samples in a single frame [ samples/frame ]

B Transmission rate [ bits/second ]

Nb = Number of bits per coded speech parameter vector £ bits/frame ]
F In order to get real time transmission we must have (fs /N s) ~ (B/Nb) or

(Block Transmission Time) ~ (Frame Time) (1)

S In words, the transmission of the parameters for a speech frame must be completed

in. less than the frame time. In most cases a strict equality will be chosen in

equation (1), thus

N b / B  - Ns/ fs  bps (2)

i.e. B • Nb fs / N: (3)

Some typical values used in our simulations are

5 f s  . 8000 , Ns . 60 • Nb • 18 (4)
-

- which means that a transmission rate of B s 2.4 kbps Is required and that the frame

duration is 7.5 msec, i.e. within a commonly accepted limit on the rate of change of

speech parameters.

3.2
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3.2 Speech Analysis and Parameter Transmission

The computation of the reflection coefficients can be carried out by any one of

the algorithms described earlier. For the actual simulations the pre-wind.owed

ladder form was chosen as being the most cost-effective candidate for this purpose

(see Section 5). Outputs of the algorithm feed a transmission module which selects

the contents of the per-frame parameter vector.

Because of the recursive nature of our algorithms, they can be run continuously

and do not have to be synchronized to the frame period. Once In every frame period.

the best estimates of the reflection coefficients are chosen for transmission.
S 

Similarly pitch and energy information is passed on to the transmission encoder.

The analysis algorithm decomposes the original speech signal into a model, to be

represented by the reflection coefficients, and a driving process, to be represented.

by pitch and energy. Since the analyzer operates “continuously”, its outputs track

the original speech. This permits us to logically separate the speech modelling

from the data transmission. Provided we transmit the model parameters “often

enough”, we are at liberty to choose the frame size to optimize transmission
S efficiency. There is a tradeoff to be made. We can choose a short frame and send

S parameter updates more often , but at the expense of having fewer bits available to
S do It with. Alternatively, we can choose a long frame, providing many bIts to

quantize the parameters, but at the expense of sending fewer parameter updates.

The tracking property of the analysis algorithm allows this tradeoff to be made

independently of the algorithm design.

3.2.1 Model Parameters

I- At each frame time, we choose a best estimate of the model parameters for the

frame. Sampling the model parameters current at the frame boundary is appealing,

F but we have adopted a slightly modified strategy. Simply stated , at each frame

boundary, we transmit the most recent “reasonable” model parameters. Since the

L 3.4
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algorithm tracks so fast, if a pitch pulse or algorithm reset occurs very near the end

of a frame, a pure sampling strategy would select parameters not representative of
S the entire frame. The transmission module maintains a short history of the model

parameters; If a pitch pulse or reset occurs in approximately the last third of the

frame , then we transmit parameters current slightly before the d isturbance.

This rules were motivated by our finding that in the voiced case the reflection

coefficients are piece-wise constant. From a rate distortion point-of-view we

would have to test the time-varying model against a set of prototype models (that

could be constant within a frame) and send the index of the “nearest” model in a

distortion measure.

First we used a uniform quantization schema to test out our programs and the

limits of a simple quantization scheme, acceptable for 9600baud transmission rates.

In order to compare our models against other modeling schemes we selected for one

set of experiments up to 10 reflection coefficients using the optimal quantizer

published in [MG), and bit rates of 3050 and 6100 just for the reflection

coefficients were observed. As a next test our own pitch detection algorithm was

used to test out a complete transmission system. This is unfortunately a difficult

step since a separate evaluation of the modeling part of the system can only be done

with a perfect pitch detector which was unavailable to us at the time of

evaluation. (This is somewhat similar to trying to test race-tires on a passenger 
S

car!) S

3.2.2 Pitch Information

Pitch detection is a crucial and difficult part of most speech compression

techniques. Many kinds of pitch detection techniques have been used (see e.g. the

survey by Babiner [Bab]).

-
, 

The ladder-form algorithms developed in this Investigation provide a novel

Integral pitch detection method which seems to be very promising. The speech

-
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driving process consists of a gaussian part (unvoiced), and a ,jump part (voiced). 
S

The separation of such a mixed process may be described as a Doob-Meyer

decomposition Into predictable and Martingale difference components. Such

decompositions have recently been receiving increased attention in the non-linear

estimation literature but almost no practical results are available.

A parallel algorithm might be designed to obtain the pulse positions from the

original time series, but the non-whiteness of the gaussian component will act to

cloud the position of the impulses. In our ladder-form algorithm, the time update

‘Y (gamma parameter) is a liklihood ratio directly useful in separating the mixed

driving process. The normalized log-likelihood function for a process parametrized

by its innovations representation using ladderforms can. be obtained relatively

easily using the formulas appearing in the ladder form equations given in previous

section. Given a (zero mean) scalar gaussian process with covariance matrix R , the

determinant IRJ — R6
0~ ... .~~ , where the ( R~ ) are the prediction error

covariances related to the reflection coefficients in the stationary case via R E~~1
- ~~ ( 1  — K~

2 ) . Now the log-likelihood function II can. be obtained using (29’) of
S Section 2 and the standard formula

11 - lnI RI + ~b~II
2R_ 1 • In ~~ + (5)

i—O

We applied several versions of this formula to the pitch detection problem. The

• 
. increase in ii per sample, i.e. the time differenced form 6 II is a very sensitive

measure of the “unexpectedness” of a time sample, i.e. a measure of deviation from

non-Gaussianness. We have Used a simple local maximum algorithm either on 6

or & II combined with an exponential threshold detector to locate the position

of driving impulses. As the figures in Section 5 show, the result is quite

remarkable. The large Jumps in II or ‘Y itself can clearly be related to the start of a

new word or even phoneme. Eventhough this research was not directed towards

pitch detection , we discovered that a high quality pitch detection scheme was

required In order to test our modeling methods. The likelihood approach is

extremely well matched to our modeling approach, so some effort was directed

L • 
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towards the development of this method: However we consider this as only a first

attempt in the direction of finding methods to decompose (discrete) mixed

- processes. Such results would hopefully avoid the use of any more or less ad-hoc

schemes containing internal “tweeking” factors of heuristic nature, a characteristic

of most present day pitch detectors.

The end result of all this Is that the speech analysis algorithm includes an

integral pitch detector which provides a pitch-pulse-present signal at every sample

time. In our transmission module, we have adopted the strategy of transmitting

the time indices of these pulses. In a loose sense, we are using a run-length coding
- j scheme to transmit the sparse one-bit-per-sample sequence which represents the
S pulse locations. An important result of this technique Is that there is no need to

- 
• S make the usual voiced/unvoiced decisions.

3.2.3 Energy

S The ladder-form residuals, or innovations, contain the energy of the driving

process. Our transmission module computes the frame average driving source

power by summing the energy of the innovations of the original signal over each

frame.

I
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3.3 Quantization Issues

• For comparison reasons we used the uniform single symbol quantizatlon scheme

given in [MG). At 80 samples per frame and 10th order models the Bibi ts per frame

lead to a transñiission rate of 61 O0bits per second for the K’s only. The speech

degradation using this quantizatlon was not perceptible in our experiment. A few S

trials were made with rate-distortion quantizers at 8 bits per frame for the K’s, i.e.

about a reduction of a factor of 8 in transmission rate for the K’s alone. The

prototype models needed in the rate-distortion have to be trained to the particular

method and a collection of representative speakers. Nevertheless, in one of our

experiments we encoded our model parameters obtained without pre-emphasis

with respect to a set of prototypes trained on. a different speaker set using a

standard LPC system with pre-emphasis, see [MG]. Using also a subgrade pitch

detector, the result was surprisingly good considering the fact that only 8 bits (i.e.

256 prototypes) were used. We do not consider this a conclusive experiment, but

rather a strong indication that these methods are very promising and have the

• potential to achieve the desired low transmission rates. Pitch information and

energy parametrization can be handled similarly, if our modeling techniques can be

extended to produce somewhat more accurate pitch period estimates than this first

attempt. The raw pitch period estimates obtained now would have to be smoothed

over several pitch periods and rate-distortion encoded. Energy or gain can be

handled relatively simply via rate-distortion encoding, i.e. similarly to the K’s.

F

L - ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  -

3.4 Speech Synthesis

The speech synthesis uses the frame synchronous parameter vector to set the
S 

model parameters of a ladder form filter and. to set up the appropriate driving

process. The model creation is straightforward. There is no need to modify the

reflection coefficients to create the appropriate inverse filter as a ladder form may

be Inverted by reversing its signal flow graph and running It backwards. S

The synthesis module creates a driving process based on the per-frame pulse
S position and energy information in tile parameter vector. If no pulses are present in

a frame, the source energy is put into a gaussian noise component - i.e. an unvoiced

S decision is made. If pulses are found the source energy is distributed equally

among them. Ultimately the driving process could be a mixture of a gaussian and

Jump component, each with its own gain (and even its own linear filter.)

Many future practical problems remain, such as inter- and intra-frame

smoothing and dividing up the energy between gaussian and jump components.

Again, ideally a time-varying rate distortion encoder could take care of this.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



S~~~~~

4. Software Tools

The similarity between the various speech processing algorithms suggested that

they be written as simple modules which “plug” into a framework that supplies 
S

facilities, graphics, and debugging tools. The resulting algorithm module expresses

the essence of the algorithm, and removes the extraneous code required to interface

the algorithm to some particular machine environment. We have also attempted to

write the framework as well as t h e  modules in a machine-Independent fashion.

This necessitates a machine-independent language, and we have chosen MAINSAIL

[Wil], a dialect of Algol patterned after SAIL [Reis).

4.1 A Machine -Indepen dent Language

Unlike Fortran , which is not actually portable, MAINSAIL (MS for short) was

expressly designed to allow program portability to any reasonable machine with a

word length of 16 bits or larger. The compiler itself is written in MS, and

currently generates code for PDP-lOs and PDP-1 is. Support for Data General

machines, IBM 370s, Interdatas , and other machines is planned. We expect that the

module sources will be very portable as a result. The frame and existing modules

are written in MS, but are now compiled with SAIL because the MS compiler is not

well supported at SUAI yet. The PDP-1 1 UNIX version of MS is expected soon. A

library of SAIL macros and procedures Is currently used to simulate MS syntax and

F its runtime environment. Preliminary experience indicates that about 5 minutes of

editing is required to convert one of these modules to the real MS syntax . Programs

which use more extensive syntax require more effort.

The MS language supports integers and long integers with guaranteed minimum

sizes of 18 and 32 bits, respectively. The long integer construct is essential here

for sample numbers, etc. MS supports reals and long reals with minimum sizes of 6

S 
and 11 decimal digits, respectively, with base 10 exponent ranges of plus or minus

38. There are garbage-collected strings ala SAIL and PL/ 1, and garbage-collected. S

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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records and pointer variables. An important point is that I/O is carefully defined so
S that both text and data files can be randomly accessed in a way which is relatively

independent of the machine and operating system. The data tiles themselves are

not directly portable, but programs which read and write data files are

functionally equivalent on different machines.

4.2 Frame and Module Structure

Each algorithm module Is separately compiled and dynamically linked. with the

framework at run-time by the MS run-time system. This costs very little, since

each MS module is position-independent, and accesses data and procedure fields in

other modules via a pointer/field addressing scheme. It also means that very large

programs can be supported in a small memory space by breaking them Into modules

which are demand swapped. into memory by the run-time system. This requires

that the machine architecture support position-independent code so that modules

may be loaded anywhere without relocation. MS code modules are

garbage-collected Just like records when space is needed.

Each algorithm module consists of 5 procedures and some internal data fields.

The procedures are named deflneExp, initialize, analyze, quantize, and synthesize.

The frame calls these when appropriate; Its main processing loop has the following

S 
skeleton structure:

initlaiize~, a set u~ initial .ctete

for block ~- 0 UptO Nblocks— I do

b.gin

read input data block; • input speech signal

analyze; • linear prediction

S quantize; • /) O?41f l4t4? trans mLssion

synthesize; * reconstruct speech 
-

write output data block; a output speech & diagnostics

end;

- S 

_ _ _ ~~~~~~~_~~~~~~~ S_ ~~~_~~ 
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A block would be Just a single sample for an on-line method. This structure

represents a sub-experiment; It is enclosed in a loop which allows the initialize

procedure to change parameters which must remain fixed while reading the Input S

speech file, such as block size. The same speech file is re-read for each

sub-experiment, and the output speech tile is a concatenation of the results of each

sub-experiment. The defineExp procedure is called at the very beginning of the

total experiment to set initial parameter values.
S The SU-AI SAIL system does not support the MS module concept , so a similar

• structure was worked out that is compatible with SAIL and upgradable to

S 
MAINSAIL. Essentially each module is a separate program, e.g. analyze, quantize , and

- S synthesize. The communication between the “modules” is via data files. A number

of other programs have been written to manipulate these data files, including an

interactive graphing program. The internal structure of each program is still clean,

however, since the 1/0 required is simple (It emulates the MS 1/0 system). Also, the

S 
modules are broken into several procedures for clarity, and structured coding

S practices were used to maximize the readability.

S 
The flow of control In each module can be better ascertained from the MAINSAIL

(MS) source than from a flowchart-type description, which does not convey the

hierarchical structure. The flowchart Is an attempt to document the flow of

S control in a program which has poor structure. With languages like Fortran,

S where undisciplined use of GOTO5 and three-way IF statements obscure the

control-flow, the flowchart may provide some information. But with

block-structured languages like MS and SAIL, the control flow is most naturally

described using the language features provided for structured control, namely

WHILE, FOR, CASE, and IF-THEN-ELSE. In addition , the variable names have more

meaning because both upper and lower case are allowed, and may be any length.

Flowcharts were not made for the programs included in the appendix because such

a flowchart is more difficult to understand than the actual sources.

4.3
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5. Simulation Results

In this section we present results of the simulations carried out to test and

verify our algorithms.

5.1 Constant parameter AR models S

We first present simulation results of the analysis of data generated by

time-invariant models using the pre -windowed ladder form and the Levinson

algorithm. Both algorithms were applied to autoregressive (AR) systems of various

orders. Reflection coefficients were computed on-line in the pre-windowed ladder

form. In the LevInson algorithm, reflection coefficients were computed with data

blocks of increasing blocksize, a excellent method for testing block methods for

consistency.

Data generated from two AR models, 4th and 8th order, were tested. Zero—mean

unit variance white noise input was used. The parameters for the 8th order model

were taken from [MG ,p. 128].

The model parameters ( A coefficients ) and their corresponding reflection

coefficients for the two models are shown in Table 4.1 and output data are shown

in Figures 4.1 a , b .

5.1.1 Simulation Results

A large number of simulations were performed on the most promising

algorithms and a few characteristic examples are presented here. For each

algorithm, 1000 samples of data were analyzed and the estimates of the reflection

coefficients were plotted as a function of number of samples. All figures have time

or number of samples as abscissa, where “1” corresponds to 1000 samples. The

ordinate is the scale for the values of the various estimates of the reflection

coefficients, using an automatic scaling of maximal and minimal value

- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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corresponding to the top and bottom of the graph. A horizontal line indicates the

true value of the estimated reflection coefficients; hence the asymptotic behavior

or convergence of the estimates as a function of time can easily be Inspected.

In order to eliminate the irregularities in the estimates caused by block
S boundaries, some windowing was applied to the data within each block.

A trapezoidal window of the following form

w(n) — n / I 0 , f o r l � n s 9

— (7 ’ — n + I ) / I O , for ( T — 9 )  ~ n ~ T

— 1 , otherwise

and a Haznmlrzg window of the following form

w(n) — 0.54 — 0.46 cos (2  7r 
~ = )~~~

S were used.

Estimated Parameters of 4th Order Model

In order to illustrate and compare the convergence properties of each algorithm,

the estimated reflection coefficients from each algorithm were collected and.

S displayed at each prediction order. The results are shown in Figures 4.2 - 4.5. In

each figure, the displays are arranged in the following order 
S

(a) pre-windowed ladder form KC
I2,T ,

(b) pre-windowed ladder form KtPT
(c) Levinson K~,T without windowing,

(4) LeVifl5Ofl KP,T with trapezoidal window, and

(e) Levinson Kp,T with Hamming window.

S The algorIthms were also extended to estimate beyond 4th order upto 8th order ,

and the results are shown in FIgur es 4.6 - 4.9.
S Estimated Param.ter~ of 8th Order Model

The results for the 8th order model were arranged in the same fashion as for the

4th order model, and they are shown In Figures 4.10 - 4.17

5.1.2 Discussion of Results

S 

6.2 
- -~~ -- -- - ---
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A comparison of the various simulations shows the foilowing characteristics.

1. Comparing the estimates of the reflection coefficients from the
S 

pre-windowed ladder form and those from the Levinson algorithm, it can be

readily seen that that the latter estimates have a higher variance, i.e. they are very

“noisy”. Closer inspection reveals that the pre-windowed estimates match one of

the “envelopes” of the noisy estimates computed via the Levinson recursions;

furthermore it is the envelope closer to the true estimates. Hence the Levlnson

estimates appear to be uniformly worse than the pre-windowed estimates in terms

of mean bias.

2. The convergence of both pre-windowed and Levinson recursions seem to

S 
depend somewhat on the index of the reflection coefficients. The pre-windowed

estimates converge In general to within 10/. on less than 250 samples, (i.e. a

typical bloclcsize for speech analysis). However the Levinson recursions produce

estimates that are so “noisy” that only non-linear schemes could improve them S

because of the asymmetry of the Irregularities. (The pictures suggest the idea of

“weeds” growing away from the best estimates represented by the envelope closer

to the true parameter value).

3. In order to reduce the high variance of the estimates obtained from the

Levlnson recursions, windowing has traditionally been used. Our simulations

using a Hamming window show unfortunately that windowing can quite

drastically alter the dynamics of the estimates. The initial transients are completely

different even with a trapezoidal window which affects only peripheral points ( it

- 10 ). Even more drastic differences are produced by the use of the Hamming

window. It appears that the transients are now a complicated convolution of the

original response and the window function. Smoothing is achieved for some
S parameters but at the cost of new transients lasting over 500 samples, or more than

twice the commonly used blocksize. This would lead to biases in the estimates of

the reflection coefficients and would ultimately result in “rough” speech.

4. In light of these results, several alternatives will be explored. The

pre-windowed method can be easily modified to use an exponential weighting or

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



scaling so that the most recent data contributes most to the estimates. The V
convergence variance and bias of the estimates can be studied via the forward and

backward prediction errors. The Levinson recursion without windowing can serve

as a standard to compare other forms like pre-windowed, “covariance” and Burg

type estimates. The somewhat ad hoc windowing commonly used can lead to

drastic changes in the transient behavior of these algorithms, and should therefore

be used with great caution! Methods which don’t require windowing, such as the

ladder - forms, avoid this problem altogether.

I -
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4th order AR proc ess

~ 

X[j]

0 1.000000 .0000000

1 — 1.313600 — .7424092

2 1.440100 .8082622

3 — 1.091900 .01756615

4 .8352700 .8352700

8th order AR process

£ Ati) X[j ]

0 1.000000 .0000000

1 —2.346440 — .9421574

2 1.656970 .9238739

3 — .005990000 — .5619754

4 .3230500 — .09454902

5 —1 .482 130 .202 1682

-
, 6 1.154630 .5359436

7 — .1896600 — . 329222 1

8 — . 05899000 — . 05899000

Table 4.2 Model parameter and reflection coefficients of AR models.
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S 250 samples . 2
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1000 samples

S Figure 4.1(a) Data generated from 4th order AR model .
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S •~~ 250 samples

_ _ _ _ _ _  

~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1000 samples

Figure 4 .2(b) Data generated f rom 8th order AR model .
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(a) Forward Reflection Coefficient , Pre—windowed Ladder Form
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~
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(b) Backward Reflection Coef~ ieient ,Pre—windowed Ladder Form

V
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(c) Reflection Coefficient, Levinson Algorithm without windowing 
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(d) Reflection Coefficient, Levinson Algorithni with Trapezoidal window

H ‘ K1

_~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4.2 First order reflectiol% coefficient of 4th order AR process.
All algorithms give reflection coefficients that converge within

100 samples. Notice the smoothing effect of the two windowed estimates .
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(a) Forward Refl ection Coefficient , Pre—windowed Ladder Form

a •.ZS a s  5.75

(b) Backward Reflection Coeffici ent , Pre-windowed Ladder Form

.7.

.1

.~s —

S •.z~ . ••~ 
•.7$ S

(c) Reflection Coefficient, Levinson Algorithm without windowing
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(d) Reflection Coefficient ,Levinson Algorithm with Trapezoidal Window

.5 1, . 
..z~ 

..~~

: Ce) Reflection Coefficient , Levinson Algorithm with Hamming window

Figure 4 .3 Second order reflection coefficient of 4th order process .

S Both reflection coefficients from Pre—windowed Ladder Form converge to

the true value in 250 samples. Also, estimate f rom Levinson Algor ithm
without windowing converges in the same fashion as the Pre—windowed

- Ladder Form . Both, of the windowed estimates exhibit smoothing effects
and in pa rticular , the Hamming window introduces biased beha viour -:

- at around 250 samples region.
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(a) Forwa rd Reflection Coefficient , Pre—windowed Ladder Form

Kr

~~~~ •.7~

(b) Backward Reflection Coefficient , Pre—windowed Ladder Form

a s.z5 5.5 Sac I

Cc) Reflection Coeff .cient , Levinson Algorithm without windowing
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(d) Reflect ion Coeff icient , Levinson Algorithm with Trapezoidal wir.~ow

(e) Reflection Coefficient , Levinson Al gorithm with Hamming window

Figure 4 .4 Third order reflection coefficient of 4th order AR process .
Notice the noise—like spikes appearing in the estimates obtained
from Levinson Algorithm without windowing. The picture suggests

the idea of “weeds” growing away from the best estimates represented
by the enve’ope closer to the tru e parameter value .
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(a) Forward J~2flection Coefficient, Pre—windowed Ladder Form
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(b) Backwa rd Reflect ion Coeff icient, Pre—windowed Ladder Form
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Cc) Reflection Coefficient , Levinson Algorithm wi thout windowing
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Cd) Reflection Coefficient, Levinson Algorithm with Trapezoidal window

‘ LV.
(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4,5 Fourth order reflect ion coeff icient of 4th order AR process.

Notice how the Hamming window alters the transient behaviour during
the first 250 samples.

L



(a) Forward Reflection Coefficient, Pre-windowed Ladder Form

(b) Ba ckward Reflection Coefficient, Pre—windowed Ladder Form

~ 

/k~1k~4~ kJ4I ~~~~~~
(c) Reflection Coefficient, Levinson Coefficient without windowing
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(d) Reflection Coefficient, Levinson Algorithm with ¶rapezoidal window

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4.6 Filth reflection coefficient of 4th order AR process.
• Bias was observed on all algorithms. Notice the drastic “weeds”

appearing in the estimates I rain Levins~n Algorithm without windowing

and the smoothing effects of the two windows .
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(a) Forward Reflection Coefficient, Pre—windowed Ladder Form

r

(b) Backward Reflection Coeff icient , Pre—windowed Ladder Form

(c) Reflection Coefficient, Levinson Algorithm without windowing
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(d) Reflection Coefficient, Levinson Algorithm with Trapezoidal window

K6

~~~25~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I

(e) Reflection Coeff icient, Levinson Algorithm with Hamming window.
• Figure 4.7 Sixth order reflection coefficient of 4th order AR process.

All algorithmsgi”e estin~ tes that converge to zero, the true

value in 100 samples.

_ _ _ _  
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(a) Forward Reflection Coefficient, Pre—windowed Ladder Form

r -

K ,

(b) Backward Reflection Coefficient, Pre—windowed Ladder Form

K,

~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Cc) Reflection Coefficient , Levinson Algorithm without windowing
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- • (& Reflection Coefficient, Leviuson Algorithm with Trapezotdal window

Ce) Reflection Coefficient,. Levinson Algorithm with Hamming window

Figure 4.8 Seventh order reflect ion coeff icient of 4th order AR process
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(a) Forward Reflection Coefficient, Pre-’windowed Ladder Form

r
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I; ..,L ’
~~~

1

(b) Ba ckward Reflection Coefficient, Pre—v’indowed Ladder Form
F-

H K~

• . is —

I

Cc) Reflection Coefficient, Levinson Algorithm without windowing
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( d) Reflection Coeff icient, Levinson Algorithm with Trapezoidal window

25~~~~_ _ _

(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4.9 Eighth order reflection coefficient of 4th order AR process.
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(a) Forward Reflection Coefficient, Pre—windowed Ladder Form
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(b) Backward Reflection Coefficient, Pre—windowed Ladder Form
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Cc) Reflection Coefficient, Levinson Algorithm without windowing
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I 5. 25 5 .5  S. ,s  I

Cd) Reflection Coeff icient, Levinso~ Algorithm with Trapezoidal window

K~I —  -

— .5 —

• i . , . I , • ,
I • 2 5  s .s

(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4 .10 First order reflection coeff icient of 8th order AR process.

All algorithms give estina tes that converge to the true value in 50 samples .
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(a) Forward Reflection Coefficient , Pre—windowed Ladder Form

rK2

-
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• S.ZS 5.1 5.75 1

(b) Backwa rd Ref lection Coefficient , Pre—wind owed Ladder Form

r V • I 1 I I ! ! ( I ~~~~~~~~~~~~~ h 1 1 T  I I

5 S 2 3  1.6 5.76 1

Cc) Reflection Coefficient, Levinson Algorithm without windowing
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Cd) Reflection Coefficient, Levinsor.. Algorithm with Trapezoidal window

K1

(e) Refl~~ tion Coefficient, Levinson Algorithm with Hamming window

Figure 4.11 Second order reflecton coefficient of 8th order AR process.
Both reflection coefficients of the Pre—windowed Ladder Form converge
to the true value with 100 samples . In the Levinson algorithm without
windowing, the envelope also converges in the same rate . In both
of the windowed caseS, the initial transients were altered . In the
Ramming window case, bias in the estimates are apparent .
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(a) Forwa rd Reflection Coefficient, Pre—windowed Ladder Form
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(b) Backward Reflection Coefficient, Pre-windowed Ladder Form
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(c~ Reflection Coefficient , Levinson Algori thm without windowing
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Cd) Reflection Coefficient, Levinsori Algorithm with Trapezoidal window

z:

Ce) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4. 12 Third order reflection coeff icient of 8th order AR process.

~~tice the drastic effe cts of “weeds” in the estimates of Levinson

Algorithm with windowing.
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(a) Forward Reflection Coefficient, Pre—windowed Ladder Form

• —  .,r

(b) Backward Reflecton Coefficient, Pre—windowed Ladder Form

K~

~~~~~~~~~~~~~~ ~A -
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(C) Reflect ion Coeff icient , Levinson Algorithm without Windowing
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(d) Reflection Coefficients, Levinson Algorithm with Trapezoidal window

~25

•

(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 413 Fourth order reflection coefficient of 8th order AR process

Bias is observed for all est imzte~ .
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(a) Forward Reflection Coefficient, Pre—windorred Ladder Form
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(b) Backward Reflect ion Coeff icient, Pre-windowed Ladder Form

(c) Reflection Coefficient, Levinson Algorithm witbnut windowing
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Cd) Reflection Coefficient, Levinson Algorithm with Trapezoidal window

5

. 

5 .25 1.5’ 
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(e) Reflection Coefficient, Levinson Algorithm with Haitm~ing window

Figure 4.14 Fifth order reflection coeff icient of 8th order AR process .

Notice the bias in the windowed estimates.
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(a) Forward Reflection Coefficient, Pre—windowed Ladder Form

5 —

I

~

• 5.21 5.5 S.75

(b) Backward Reflection Coefficient, Pre—windowed Ladder ~Form

(c) Reflection Coefficient, Levinson Algorithm without windowing
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- (d) Reflection Coefficient, Levinson Algorithm wi-th Trapezoidal window
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Ce) Reflect on Coefficient, Leyinson Algorithm with Hamming window

Figure 4.15 Sixth order reflection coefficient of 8th order AR process.

Notice the bias introduced into the estimates in the windowed cases.
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(a) Forward Ref 1ectoi~ Coefficient, Pre—windowed Ladder Form
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(b) Backward Reflection Coefficient, Pre—windowed Ladder Form
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- • Cc) Reflection Coefficient, Levinson Algorithm without windowing
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Cd) Reflection Coefficient, Levinson Algorithm with Trapezoidal window

Ce) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4.16 Seventh Order reflection coefficient of 8th order AR process.

Notice that even in the windowed cases, “weeds” are still present in the

estimates. I
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(a) Forward Reflec~~on Coefficient, Pre—windowed Ladder Form
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(b) Backward Reflection Coefficient, Pre—windowed Ladder Form
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Cc) Reflection Coefficient, Levinson Algorithm witb,ut windowing.
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(U) Reflection Coefficient, Levinson Algorithm with Trapezoidal window

ft

(e) Reflecth~ Coefficient, Levinson Algorithm with Hamming window

Figure 4 .17 Eighth order raflection coefficient of 8th order Ar process .
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5.2 Time-Varying AR models

5.2.1 Results on Simulated Vocal Tract Behavior

This set of tests is to demonstrate the tracking ability of the PW ladder form.

Two sets of data were generated from an 8th order AR model with time-varying

(piecewise constant) reflection coefficients that converge exponentially to zero.

The first set of data was obtained by driving the input with Gaussian white noise

only. The second was obtained by driving the input with Gaussian white noise plus

a pulse train. The pulses occur at the step changes of the reflection coeff icients, and

thus closely simulate actual vocal tract and speech behaviour. Figure 1(a) and 1(b)

show the actual data. Figures 2 - 9 show the convergence of all eight of the
• reflection coefficients. Figure 10 shows the behavior of the likelihood quantity

gamma7, suggesting Its possible role In a pitch detection scheme.

The data sets are each 2048 samples long. The step changes occur at every 128

samples. The time-constant of the tracking rate was set at 100, i.e. at about the rate

of the changes.

Observations

Observe that for the unvoiced data, the estimated reflection coefficients all tend

to fluctuate when they are close to zero. While for voiced data, the estimated

reflection coefficients converge uniformly to the true piecewise constant behavior.

A carefull study of the log-likelihood function as described in the context of pitch

detection and the conditioning of the underlying covariance matrix explains these

phenomena. The log-likelihood function is proportional to ln( 1 — I( ~
2), i.e. if the

magnitude of the K s’s are close to one, the log-likelihood is a very sensitive

function or conversely If the K ’s are small they are not very Important , therefore -

they are harder to estimate with a least-squares criterion. An other observation is

that if the very first sample is a pulse, this Implies that the problem is

ill-conditioned. Simulations show that if the first few samples are gaussian type

5.6
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signals, the convergence is much Improved. This typically is the the case after a

“numerical reset”, i.e. ladder recursions recover rapidly after a reset. -~ 
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• - Fig. 1(a) An 8th order AR process with  time-varying (piecewise constant)
reflection coeff..~cients that~ converge exponentially to zero.Process was driven by gaussian white noise only.
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• Fig. 1(b) Same 8th order AR process but driven by sum of gaussian
wh ite no ise plus ~n impulse train.
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Fig .2 (a )  Firs t re f lec t ion  coefficient , K~ 1 o~~- under1ying model .

K
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Fi g .2 (b )  Estimated K1 from a r t i f i c i al  unvoiced da ta.

-

Fi~ .2(c) Eatimcted K~ from a r t i f i c i a l  voiced speech data .
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Fig. 2(d). Estimate of K1 using time-varying 
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Fif. 2(e). EstImate 3f I(i using time-varying 
weighting factor on

artificial voiced data.
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Fig.3(a) Second reflection coefficient , 1(2 , of underlying model .
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Fig.3(b) Estimated 1(2 from driving function of white gaussian noise only.

- 
Fig.3(c) Estimated 

~2 
from impulse plus white gaussian noise input .
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Fig. 3(d). Estimated K2 of gauss ian input onlu , using time—varying
weighti ng factor.

K

Fig. 3(e) Estimated (2 of non-gaussian Input , using time—varying
weighting factor. .
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Fig.4(a) Third reflection coefficient , 5, of underlying model.
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Fig.4(b) Estimated 5 of unvoiced data (generated by white noise only).
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Fig.4(c) Estimated 1(3 from v3iced data (generated by impulse train
- plus whi.~ e noise) .
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Fig. 4(d). Estimated I(3-of gaussian input only 
using time-varying

weighting factor. 
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FIg. 4(e). EstImated K3 of non—gaussian Input , using 
time-varying

weighting factor.
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Fig.5(a) Fourth reflection coatricient , K4 ,  or underlying model .
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Fig.5(b) Estimated 1(
4 of unvoiced data (generated ~y wti.ite noise only) .
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Fig.5(c) Estimated K of voiced data (5eneraced oy impulse train plus
white noise).
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Fig. 5(d). EstImated K4 of gaussian input only using time-varying

weighting factor. 
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Fig. 5(e). EstImated 1(4 of non-gaussian Input using time-varying
weighting factor.
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Fig.6(b) Estimated K~ of unvoiced data (generated by white noise only).
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- Fig.6(c). Estimated K~ 
of voiced data (generated by Impulse t r a in  plus
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white noise). 
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Fig. 6(d). Estimated K
5 of gaussian input only using time—varying

weightin g factor

K5

: 
~~~~~~ ~-.--J’~~ ~ ~T~TI 1TI.~Fig. 6(e). Estimated K5 of non-gaussian input using time-varying
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• Pig.7(a) Sixth reflection coefficient , K5
, of underlying model.

Fig.7(b) Estimated K6 
of unvoiced data (generated by white noise only). 
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weighting factor.- -
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Fig. 7(e). Estimated 1(5 of non-gaussian 
input , using time-varying -

weighting factor.
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Fig.8(a)  Seventh reflection coef f ic ien t , 1(7~ of underlying model.

1(
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Fig.8(b) Estimated 
5 

of unvoiced data (generated by white noise only) .

Figure 8(c) Estimated 1~7 of voiced data . (generated by impulse train plus
- white noise).
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weighting factor.

FIg. 8(e). Estimated K7 of non—gaussian input, using time-varying• weighting factor.
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Fig.9(a) Eighth reflection coefficient , K8, of underlying model.
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Fig.9(b) Estimated of unvoiced data (generated by white noise only).
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FIgure 9(e). Estimated of non-gaussian input, using time-varying
weighting factor. -
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5.2.2 Results on Real Speech Data

5.2.2(a) Local Behaviour of Reflection Coefficients

This test Is to demonstrate the dynamic behaviour of the estimated reflection

coefficient during a segment of voiced speech data. Two sets of speech data were

used. The first set is taken from a series of high resolution, sampling rate of 20,000

samples per second, speech data. The data was the vowel I el in. the word. “the ’.

This test will illustrate the local behaviour of reflection coefficients within a few

pitch periods.The total number of samples in. the segment is 960 and the time

constant of the tracking rate was set at 300. The estimated reflection coefficient,

the normalized prediction errors or innovations, and gamma, which is part of the

likelihood ratio, were Illustrated for the following order: 1st, 5th, 10th, and 15th.

Observations

The 15th order PARCOR coefficient K[ 15] converges to almost zero for voiced.

sounds. Reflection coefficients clearly show piecewise constant behavior.

~~~~~
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Fig.ll Speech waveform of f~/ in “the” - 960 samples .
Sampling rate 20,000 Hz. •
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Fig. 12(b) 1st order prediction error covariance.
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6.2.2(b) Global Behaviour of Reflection Coefficients S

In this set of simulations, speech data sampled at 8000 samples per second was

used.. The sentence is “the pipe began to rust while new”, female voice. In this set

of simulations, the algorithm was set to track starting at the first non-zero input

and was stopped at the last input sample. The various illustrations described below

are just exerpts from the entire run in order to demonstrate some of the more

interestin.g features.The tracking time constant was set at 160 samples, i.e. S

equivalent to two frame widths.

S Formant Transition

The first set of illustrations show the behaviors of the reflection coefficients up

to to 13th order during a formant transition which occurs at about sample 6150.

Observe the variations of the reflection coefficients during the change.

Phoneme String

In this Set of Illustrations, reflection coefficients of the entire word “pipe” are

d isplayed, showing the changes in reflection coefficients during the entire passage.

5 
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5.2.2(c ) Pitch Detection Scheme

The first set of illustrations decribes a pitch detection scheme that is based on

the likelihood ratio parameters, namely ‘V (gamma parameters).

The second set shows the results of using a different ImplementatIon of the log

likelihood. ratio In detecting the pitch of a different segment of voiced speech,

namely a) ‘V~ only, b) ~~ plus 1n_R’~ part and C) the true likelihood ratio,

indicating the progressive contributions of the In part, (c.f. likelihood formulas

above.)
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This illustration shows the global picture of the log likelihood ratio over the
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6. Conclusions

S The results of the initial testing of our new speech modeling algorithms have

been very promising. These algorithms seem to be very well suited for speech

modeling as indicated. by the “constant parameter” behavior during the pitch

period, good tracking capability and a novel likelihood ratio based. pitch detection

techn1~ue associated with the ladder form. Their performance is very promising

both In terms of achievable speech quality and potential for data rate reduction.

Due to the short term and limited scope of this research effort , our results can

only be considered preliminary. Further research and testing is needed, particularly

in the area of pole-zero (ABMA) modeling and. parameter quantization

(coding/decoding) methods. The pitch detection problem (not part of the scope of

S this project) also requires further study and refinements, especially in the context

of mixed processes.

It is expected that Improved system performance can result by pursuing our J
approach further and by performing more extensive testing to “tune” the

transmission system. Real-time special-purpose processor hardware would be

needed to effectively test various algorithms that have shown promise with a

larger data base. The current development and simulations are clearly processor

limited if done on a general purpose time-sharing system.

On a more general level, a number of important research problems are

incompletely resolved at this point and need further study. They are not just of
S interest to speech modeling since they Include basic pertaining to representations

of mixed processes such as Gaussian and poisson-type jump processes (potentially

useful for modeling voiced speech). Good performance measures for speech

transmission systems, such as acceptable distortion measures, and the establishment

of the basic limits of speech compression , i.e. the distortion rate function of speech

processes, are needed for further investigation in speech modeling.

6.1
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Abstract
Applications of linear systems modeling have recentlT developed quite rapidly inspeech modeling, seismic data processing, and other areas. Due to the diversity ofthese developments, there exists a plethora of methods for estimating theparameters of linear models given input-output data, transfer functions, orcovariance functions. This paper attempts a systematic classification of existingleast-squares modeling methods. Within this framework, we shall point out somerecently developed algorithms that have many computational advantages overS existing ones.
In particular, the methods of interest will be classified according to how theinput/output data Is acessed and according to Its type. Data can be accessed eithersequentially or in blocks; the data can. be either input/output signals, transfer

S - - functions, or covariance functions. Since we consider state—space,S autoregressive—moving average models, and the related ladder realizations, we shall - ‘distinguish the following three classes of algorithms~ Biccati or square-root typemethods, recently developed “fast” algorithms, and their ladder forms. Wh.lle theS 

first class typically requires computations of 0(n3) or 0(n2) with n equal to the
number of model parameters, the “fast” forms only require operations and storage

S of 0(n). The ladder realizations have several advantages, such as lowest -
S S computational complexity and. their stability “by inspection ” properties. -In the appendices, we present an example of our new exact least-squaresrecursions for ladder forms, and show how to obtain stable partial minimal 5realizations of the Joint impulse response - and covariance - matching type.

* This work was suppor ted by he Defense Communications Agency under contract
DCAIOO-77-C-000$; the National Science Foundat ion under Contract NSF En115—18952; the AirForce Office of Scientific Research, Air iorce Systems Command under Contract/1144-620-74-C-0068; the Joint Services Electronics Pr ogram under Contract N00014-75-C-0601;the Insitiute of Biomedical Technology in Ziuich Switzerland; and by AAIRPA through the use
of tie. Stanford Artificial Intelligence Laboratory f acilities.
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I. Introduction 
- 

S

The long history and widespread use of linear modeling [K-S74] has resulted in.

many independently developed methods for det~rmin1ng such models. We attempt 
S

a classification of exact least-squares procedures that are recursive and opt ima) in

S some sense, and discuss some recently developed methods that have computational

and structural advantages over existing ones. We shall only Indicate examples of

the much larger class of suboptimal or approximate methods.

In Section II we introduce the modeling problem by reviewing external and

S internal (linear) models, and consider the different types of observed data. We

then. introduce a systematic classification in tableau f orm of the various methods

S to be discussed. It should be stressed here that these least-squares modeling S

methods can in general only determine the unique izzuovatlozzs representatio n

model (K-S74). The parameters of this model are chosen to produce behavior

statistica lly equivalent to the observed data.

In Section Ill we consider batch methods that are best suited for cases where data

Is accessed In blocks. This situation typically occurs when the data is in the form

of a covariance function or transfer function.
S In Section IV recursive (in time) algorithms that access the input/output signals

sequentially are discussed. In the coz~trol context they are considered on—line

methods [AZ), ( MKL) . In both sections Ill and IV we point out the fast versions

which take advantage of certain matrix properties. .

In. Section V the ladder (or lattice) type realizations of the fast algor t~m~

discussed in Sections Ill and IV are Introduced [IS), (Mo). These new methods have

several nice properties from both the theoretical and application viewpoints.

in Appendix A we show how to obtain stable partial minimal realizations of the

pint impulse response- and covarlance-matching type. In ~.ppen.d.tx B, we present

as .xa ple of our new exact least-squares recursions for ladder forms.
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II. The Modeling Problem

S 
The many different types of linear models can be classified Into Iexternall or

input/output descriptions, and “Internal” or state-space descriptions. We will first

consider “external” descriptions, which are sometimes referred to as transfer
S function type models. 

- 

S

Let us consider a finite-dimensional linear system (YDLS) with inputs ( u(.) 
~ and

outputs. { y() }. The outputs represent sampled data, such as speech where y’s are

scalars, or seismic signals from a geophone array where y’s are r-vectors. The

input-output relationship can be described by an autoregressive - moving average

(A.BMA) model,

+ + .. . + a,.~~~ — w1,  (2.

b07Lj  4 . . + ~~~~ I � O~ fl ~ q � 0 (2.lb) 
S

where { w( .) J Is a moving average of a white noise sequence ( u(.) } and the values 
S

{ y_~, . . . ,~ } and { u_11 . . ~ are initial conditions. The modeling

problem here is to determine the model parameters Oj and b1 . Applying the

z-transform S S

S 

~(z) a 
E 

- 

(2.2)

to equation (2.1) yields

S a(z)y (z) a b(z) u(x) + ( terra.s Involving i/i. initial conditions J , (2.3a)

S a(s) a + + . . . + a, , - (2.3b)

K:) a + + . • + . (Z.3c)

With zero initial conditions and scaler processes, the ratio of ~(z) and u(s) gives the

transfer function T(z) . b(s)/a(s) . When 6(z) a h , k ~ 0 thea. f zu(•) } Is a white

noise sequence and. (~ (•) }  Is called an autoregressive (AR) process; the model is

referred to as all-pole. Alternatively, when a(s) a z”, (y(•)) Is a moving average

(MA) process and an all-zero model Is obtained.

L —~~-
— -

~ 
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Turning to “internal” models of the FDLSP we can consider { y(•) J as being

generated from ( u(.) ) with a suitable initial condition (x0J by the state—space model

S . ~ + r Uj +1

. H x~ , - 
I � 0 . . (2.4)

- This model can be chosen to have the given transfer function
S 

T(z) a H(zI—~~y~~zr - . (2.5)

Note that for convenience we have used a model driven by zi141, rather than the

more commonly used model driven by u1 [MKDJ since they can be related [Mo].
- S - Given the transfer function, a simple way to choose the matrices (H , 4 , F)  is

the “observer canonical” form

• Z — a1~ H , H (b~~, 01)T , (2.6)

where T denotes transpose, al:n f0t~. ~~ 
an1~’ 

bq fDA. (b0, . . bq)
•
~i Z is the

“delay matrix”: Z~J fOAa If (J—1 a J) then 1 the 0 , and e1 JD,..a’ [1, 0, . . , , 0]~ Is the ’

first unit vector. The state-space model provides a convenient way of computing

S 
the covarlance function of the output process. Even though the underlying model

( H , •, r ~ or ( a 1:,,, bq ) is time-invariant, the output process (y(’) } is in. general

not stationary due to “transients” caused by the initial conditions. However, if 4’ is

a stability matrix where all eigenvalues have magnitude less than one, then as i—i.

S the transients eventually die out and the process becomes stationary, in the

S stationary case, the covariance is a function of ~—jI given by

I R7(i ,J) . H 4’~~fI 11 H~ , where 11 is the state covarlance matrix as 1.4. (see

(DKMJ). 
- .

• ARMA models and state-space descriptions are Just two different methods of

representing the input-output relations of a FDLS, and they can be closely related to -

each other using matrix fraction descriptions (MTh’s) (DKM) . A lesser-known class

t of FDL,S representations are the ladder realizations, which are discussed in section

V and are also related to the ARMA and state-space models.

L . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In modeling a process as a FDLS driven by white noise, the observed data is

usually available in one or more of the following forms: 
- S

a) input-output pairs { u(.), y(’) );

b) impulse response or related sequences such as moments, (or moment estimates, )i
e.g. obtained from input-output pairs);

c) covariance functions or second order knowledge of inputs and/or outputs (or

estimates, e.g. from the impulse response).

Batch methods are used when data Is accessed in blocks, as ID. b) and C); efficient

methods for determining model parameters are recursive In order. Recursive (In

time) methods are appropriate when data is accessed sequentially, as in a). Model

parameters can then be estimated recursively both in order and time. Table 1

illustrates the modeling methods that we will discuss; they are divided first into

batch and recursive groups, then by model class: Riccati or square-root methods,
- 

S 

“fast” algorithms, and their ladder forms. Within each class the name or code for

each method appears along with some pertinent references. S

• 
. 

I



111. Batch Methods

When observed data Is available In blocks, batch modeling methods are

convenient. We will first consider AR models because of their widespread use

(Makh). The z developed “linear predictive coding” (LPC) speech
S compression schen, - ~xamp1e, are a direct application of least-squares fitting

of AR models (AR), (153, (Wak) (for a survey see (MG)). AR models have also been

very useful in. statistics [Par], (BJ], spectral analysis [UB], (Aka), and multichannel

- geophysical applications (Rob], (WR3. 
-

1 Normal Equations
- - 

It is well known in. least-squares problems that the parameters of an AR model
S satisfy a set of linear equations called the normal equations (see (X-S74), (MG)) :

S 
8

~
’ R,, s (1, —4

i . . . . —as,] R1. (R~ 0 , . . . , 0] . (3.1)

I 

An alternate form is the Yule-Walker equation [Par) : 
S

S 

•1~~T R~.1 a [a1 • . . , a,~) R~:1 
a . . , r,,) . (3.2)

- In. both forms R Is a covariance matrix and the are the “predictor or AR model
S parameters. R~ Is the “prediction error” or innovations covarlance, a

S non-increasing function of n (typically the model order). In speech processing, two

popular methods of obtaining the normal equation are the “autocorrelatlon” method

S 
and the “covariance” method [MG), but there exist many ways of estimating the

- covariance R,, [BJ), [MDXV], (Dl]. General methods - for solving such linear
S equations include Gaussian elimination (GE), Cholesky decomposition, Householder

S transforms (Hou], (GGMS); however, they all require computations of 0(n3) .

The Levinson-Wiggins-Robinson (LWR ) Algorithm

S An algorithm that requires only 0(n2) computations f or the recursive solution of

normal equations with Tôplitz covariance matrices (corresponding to an

S assumption of stationarlty of the process) was first described by Levinson [Lev)

and later extended by Wiggins and Robinson (WR). By making use of certain

- 

- 6
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shift—Invariance properties of Tàplltz matrices (the £ ,j-th entries are only a

function of i—j), this algorithm solves the normal equation via a set of recurstons

S that update the AR parameters or the predictor parameters in increasing order

(Rob], (K-S74]. The Levinson recursions are also closely related to the orthogonal

Szegã polynomials [Sze), [GS], [KVM]. Levinson’s algorithm plays a~central role

S because it can be generalized to handle multi-channel d ata [WR3.
multi-dimensional or image processing problems (LLM3, nons-tatlonary processes

with “shift-low-ranlc.~ (Mo], (FMICL], ladder realizations [MV), (MVX] and ARMA

I or state-space models (MKD], [MKL), (DKM).

S ABMA Models S

- S In state—space terms, the problem is to find a triple .( H , ‘, r ~ such that -

S T~ a H$11’, where { T1 } is a given set of “first order” data characterizing the
S 

- impulse response of a linear system. This Is the partial realization problem (KFA],
tDMK]. The central role in this realization theory is played by the Han Jce l matrix

with entries H111 T~ 11 . The columns or rows of this matrix are known to span

-~ the state-space, so any method for finding a basis is a viable realization method. Of

particular interest are methods for finding the smallest basis resulting in minimal
S order n realizations (HK], (Si], (YT]; they all require 0(n3) operations.

S 

From a transfer function point-of-view, the partial minimal realization problem
S 

is that of finding two relatively prime (matrix) polynomials a(z) and, b(z) such that

S 

- the given power series T(z) matches say k terms of the expansion, of b(z) / a(z) . This is

the classical Pads approximation problem, which in the scalar case yields

T(z) a(x) a b(z) + [ t.rms in s 1, I ~ k—n ) . Equating coefficients of z~ , 0 s I � it ,

we get

— O~~, or H,~ (a~ .... ,a1
]T — — (T 1~ 1, . .. , T,~]~ ; (3.3)

where is a Tóplitz matrix contai~111~g the reversed column ordered Bankel.

matrix H~ . Note the similarities here to the normal equation (3.1) and to Prony’s

method (MG]. -

— 7 -
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Again, standard methods could be used to solve for a~, but they all require S

computations of 0(n 3). However , if one takes advantage of the structure of the

Hankel or Tbplltz matrices, fast algorithms can be found. Such algorithms have S

S - been developed (in a coding theory context) by Berlekamp (Be) and for minimal

realization by Massey (Mass). Multivariable versions have also been developed S

[Mo), (DMK). These recursions are strikingly similar to Leviuson’s recursions; the S

Berlekamp-Massey algorithm can also be related to orthogonal Lanczos polynomials

(Lanc), (Mo). An alternative method for obtaining stable partial minimal
S 

realizations is discussed in Appendix A. It can also be derived by considering a

Gram-Schmidt (GS) orthogonalization on the columns or the }Iankel matrix H~ or

S the ropiitz matrix I~f,, (Mo), or more generally by using projection methods

(KKM). -

Spectral Factorizatlon and Innovations Representations

The problem of obtaining a model of a process ( y(•) ), given its covariance

function or second order information , is called stochastic realization.., We are -

S 

- 
- interested in representing { y( .) ) as the output of a linear model driven by white

noise. In geheral, there exist many such models, however the only stable and
S 

stably invertible model is the (unique) innovations representation (IR) (K-S74].
• The inverse model is the whitening filter that produces a white noise process, the

innovations { €(.) ), when driven by the observed data. In discrete-time or time

S series analysis, the innovations are th~ one-step prediction errors of the

observations. If the process { y(.) ) is stationary, the problem of obtaiTihig the lB

essentially reduces to one of spectral factorlzation.

An efficient method for obtaining the spectral factors of S7(z)

3,(z) — Kr) bC—i) I a(z) a(—z) (3.4)

is given as a two-step procedure in [DKM), [MKD), [Mo). In the stationary and

scalar process case considered here, the truncated or one-sided power spectrum 3 (z)

of { y(•) ) is formed from the covariance sequence. A, minimal realization algorithm

- 
— 8- .
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S

S is then used to approximate 3,(z) by q(z) Ia(z) where lIa(z) is the LB-part of the
S desired model. From

— a(z) S7(z) a(f 1) • a(z)q(z4) + q(z) a (z4)

- 

— 6(z) 6(r1) (3.5)

- 
. -it can be seen that the spectral factorization problam for ( y(•) } is now reduced to S

the simpler factorization problem for a MA-process { w(.) } , where the factor Kr) Is S

the MA-part of the desired model. It can be obtained by Cholesky and other S

factorization procedures. Thus { y(.) } is modeled by the cascade of the AR and MA.

parts driven by the innovations, a white noise.

S In the time-domain this corresponds to a factorization of the (stationary)

covariance (a T’áplltz matrix) into triangular factors. The “fast-Cholesky”
S factorization given by (Mo) is an efficient algorithm for stationary and

S 

. non-stationary covariance matrices with “shift-low-rank”. It should be noted that 
-

many popular covariance estimates have this property. 
S

L ___ ________



IV. Recursive “in Time” Methods

When the observed data is available as input-output pairs that must be accessed

sequentially, recursive modeling methods are the most appropriate. Many recursive

least-squares methods have been developed in the Identification and control area;
- they typically Involve solving Riccati-type equations and have computation and S

- 
storage requirements of 0(n3) and 0(n 2) respectively. Recently “fast” algorithms

S 
have been develop 3d with reducea computations and storage of 0(n) using ABMA. or

S ladder realizations. - -

S An Important set of least-squares recursive methods for AR-type models Is

described in detail in [SLG) and more recently in. [MICL]. The discussion includes
- least-squares (LS), weighted least-squares (WLS), generalized least-squares (GLS),

- S instrumental variable (IV) and recursive maximum-likelihood (RML 1, 2) methods

S for ARMA models. All these methods solve a Biccati equation that recursively
- 

updates the inverse of the matrix appearing in the normal equation of the problem.

S 
An alternative to the Riccati equations are the square-root forms discussed for

instance in (MX). They make use of the numerically preferrable orthogonal

S transformations (Hous], (GGMS].

A special case of the IV method Is obtained by using the n-step delayed outputs as-

instrumental variables. This can be shown to be equivalent to a minimal realization

problem given (estimated) covarlances R . Recall that In the given (estimated)

covarlance case we discussed a two step procedure. The first step was to obtain a

minimal realization, or rational approximation of S,(z) by q(z)Fa(z), ~r in the

time-domain of R~ by Q A 1  (DKM], [MK.D). In matrix notation we obtain

R, A s Q  , . (4.1)
S 

- where A and Q are banded matrices of “band Width” it , if the underlying Linear

model is of that minimal order. The first column of (4.1) corresponds to equation

(3.3)

~~~ 
. II ,, a,, . 0,, • (4.2

— 10 —
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where ~~~,, is the (2,1) block entry of the appropriately partitioned triangular

Tóplitz matrix R~ . The matrix 1?,, is the cross-covariance of the last it observations

and. the same set it time—steps delayed. ~~ clearly plays here the role of the 
S

reversed ordered Hankel matrix II,~. By noting that the Riccati-type equation can

be interpreted, as a recursion for (low rank) updating of the inverse of a matrix, we

see that the IV method can be viewed as a recursive (in time) updating procedure

for the minimal realization solution for a in equation (3.3).

S 

- 

Past Algorithms for Recursive “In. Time” Methods S 
-

In (MKL) the development of “fast” algorithms for the recursive least-squares S

methods is discussed. in. detail. Efficient recursions for time and/or order updates
S S 

for AR-type models were first derived in (Mo]. The basic idea there was the S

S 

observation that the matrices encountered in. many least-squares problems have a~
S shift invariance” or a “shift-low-rank” property. It can be characterized by the - -

(low) rank p of the shifted difference ofamatrlx M: p ( M  ZT M Z )  where S

the “delay” matrix Z was defined in Section II. This property is generated by the
S 

- 

fact that -these matrices are sums of products of Tôplitz or Han lc.el matrices. 
S

also be used to obtain fast Cholesky algorithms for MA processes, thus obtaining
S recursive whitening filters of the AR type ( e.g. B.MH5 algorithm in (Mo)).

Similarly we can obtain general LWR recursions in order and time for AR

processes, i.e. updating the MA. prediction (whitening filter) parameters a1. A.

surprising feature of the fixed-order recursive-in-time algorithms is that explicit
S updating of the covariance estimate is unnecessary, basically because the model

parameters are an implicit cha.raclerization of the covariance. Since the details of

these algorithms can be found in (MXD],(DKM],(Mo],(PMKL) , we shall only give a

comparison of the LWR-type algorithms, assuming that the reader Is already

familiar with the Levlnson recursions as described In (Wie), (WR], or more

recently (K-S74]. 
- 

S

The recursions for the generalization of the LRW algorithm for covariance

matrices exhibiting a shift invariance property have a very similar form to the

L - S~~~~ 
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original Levinson recursions. However, in contrast to the two solutions required in

the LWR algorithm, the so-called forward and backward predictors, we require in

general more solutions for non-T~ópl1tz matrices. It turns out that the S

“shift-low-ranlC p of the covariance matrix, regardless of its size, is equal to the

number of solutions required in the recursions. For the case of covarlance

estimates that can be written as products of two Thplitz matrices (typically

containing input-output data), the number of solutions required is at most four in

the scalar case, and 2rn+2 for rn-channel data. S

For combined ABMA models we can either attempt to model first the AR or the

MA part and then try to estimate the remaining part of the model. In the batch

methods of Section III we discussed ways of obtaining the AR part f irs t via minimal
S realization and then the MA part via spectral factorization. The other order of first

obtaining the MA part could be obtained by working with (an estimate of) the

Inverse of the covariance matrix, the so-called information matrix (MX].

The cascaded approach can be carried out also in time recursive form by

estimating the AR part via a (fast) recursive form of the IV method, as discussed
above, cascaded by the fast Cholesky recursions for a MA process - (e.g. RMH5 in
(Mo]). The only difficulty now Is that both parts estimate the models in the

so-called controller or “tapped delay line” realization, a dual form to the observer

form, which cannot be merged by inspection.

The j oint innovations representation approach discussed in Section Ifl and

Appendix A is ideally suited for recursive in time methods. Even though the
S 

driving inputs (conceptually the innovations) are usually not available, they can be

replaced with their best estimates obtained by using the best current parameter
S estimates. This is clearly only possible for methods with sequential data access. It

turns out that this seemingly “suboptimal” approach of substitution has Itself

optimality properties (see e.g. (SLG)); a similar situation occurs in detection of ,,

unknown signals, and in the famous separation result of linear quadratic control

using state estimates (KFA). The recursive maximum likelihood methods In (SLG]

and (MXL] can be derived from such an approach. Once estimates of current

-12 - _ 
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prediction errors are obtained , they can conceptually be treated as known data, and

S 4 entered for instance In normal equation expressions. The only problem that might

arise lies in theoretical proofs of the convergence of such methods.
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V Ladder Reali~at1ons

In Section II we discussed the realization of a given transfer function T(z)

b (x)/ a(z) via transfer function or state-space type models such as ABMA, controller,

or observer canonical form.s. If the roots of a(z) are known, T(z) can. be represented

by a partial fraction expansion. Using polynomial evaluation formulas we can

obtain the so called Jordan canonical or parallel decomposition, form (even for

matrix transfer functions) (Mo). The Jordan form has the nice property that 5

stability can be checked by merely inspecting the magnitude of’ the roots . Finding 5

the roots, however, is numerically sensitive.

The ladder (or lattice) canonical realizations provide a very promising

alternative. They also have the property that stability and even minimum-phase
S can be checked by inspecting the PARCOFI or reflection coefficients (IS], (Wak], -

(MG], (Mo), (Cla2). In contrast to the methods for finding roots of polynomials this

requires only a finite algorithm, the Schur-Cohn test for stability. This is actually

equivalent to the Levinson or orthogonal Szeg6 polynomial recursions performed in

decreasing order on a1 or a1(z) , [K-S74). Given the stationary covariance matrix R ,

i.e. second order information, the a1’s and the reflection coefficients can be

computed via the LWR algorithm. From a stochastic process point of view we can.

identify these coefficients with the p artial correlation (PA.RCOR) coeff icients or

singular values. They also have physical significance in the scattering theory of

waves [IS], [Wak], (K-S74], [MV], [MVX]. S

The Levinson algorithm can actually be carried out using only the reflection

coefficients as parametrization, since the Inner product k1 of a vector
r foA- [Ti, . . , r )~ and the coefficient vector a11 can be obtained as the current

output k1 of a ladder realization driven by a previous input sequence containing

{r1, . . . , r1). Similarly we can translate other algorithms for AR models, such as the

various generalized Levlnson algorithms (Mo), (DEM), (LKM), Appendix A, into

their ladder form equivalents as in (MVK), [MV), Appendix B. These forms are of

S Interest by virtue of their stability properties and their numerical robustness ——
they typically require sample correlation operations. These forms have also



canonical (Mo] and invariance properties (MVX), as well as minimal storage

requirements for modeling algorithms, as seen from a comparison of the the

recursions f or the PARCOR and the a1 parameters Iii Appendix B.

ABMA niodels

Recall that the first step of realizing an ARMA model in Section III was a minimal

realization problem. The solution to this MB problem can be carried out in ladder

S form by using a Berlekanip Massey (BM) - type algorithm. These recursions are

actually very similar to the LWR recursions, as noted in [Mo]; therefore we can use

an analogous derivation to obtain ladder forms for the BM recursions, as presented

in [GrMo).

Alternatively, the joint lB approach explored in Apper4ix A, leads (even for
S scalar) processes to the theory of niultichannel ladder realizations of the AP~ type -

5 discussed above. Since we embedded the underlying ARMA model in a two channel

A?~ model, the lB model will again be of order 2n , i.e. non-minimal. This would also
S hold for a ladder realization.. S 

-

Minimal models can be obtained by merging the AR and MA parts in. the observer

form. It is also possible to obtain a minimal rational ladder, form [MG-], [Mo]. The

basic idea In state-space terms Is to add a suitable input matrix Cr) or output matrix

(H) to a ladder form realization of the AR part of the model; this is possible sInce

the ladder forms are controllable ( or their dual observable ) [Mo].

The second step of the stochastic realization procedure of Section lU requires a

spectral factorization for the determination of the MA part. As indicated., we need.

to determine the triangular factors of the (banded) covariance matrix of the MA

process. They can be obtained from the Cholesky facto~rs or the RHS of the LWR

recursions. Similarly it is possible to obtain the ladder realizations of the MA part,

since the fast Cholesky recursions “by rows” have the form of’ a state-space

equation with a dynamic matrix I that has precisely the same form as the I matrix

of a feedback ladder form in state-space notation [Mo]. As for the LWR recursio ns,

there similarly exists a ladder form of the fast Cholesky algorithm that requires

15

_ _ _ _ _ _  

_ _ _

5 -  _ _ _5

~

S 5 S 5 5 S S S S S 5

~

5 5 5

S~



FrI AD—A070 050 STAPEORD IRIIV CALIF INFORMATION SYSTEMS LAB FIG 17/2
FAST A1.GCRIT)*S FOP SPEECH MOOELING. (U)
DEC 70 N MORFp 0 T LEE OCA IOO—77—C—0005

LN4CLASSIFIED Pt.

UUOfl i~fl1flUU

S



~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ w -~~~

only reflection coefficients as par ametrization.
S ( -

Ladder Forms for Recursive “In Time” Methods

The ladder forms for exact least-squares solution to AR modeling have been

developed in [MV). In Appendix B, we shall present the simplest one of the many

possibilities of such ladd er forms , the “prewlndowlng” case (MDKV ]. It is

interestin g to note that the partial correlation coefficients are computed as sample

crosS correlations between the “forward” and “backward” pred iction errors as

expected from the stochastic derivat ions of the ladder forms [Wak], (Mo), [5KM].

The ladder forms of the GLS and RML 1/2 methods discussed In (SLG3, (MKL] and,

Section IV can be obtained by embedding the modeLs in an appropriately augmented

AR model as In Appendix A . The IV method led to nonsymmetr ic Biccati equations,
- : therefore the fast versions also requ ire a nonsymmetr ic form of the LWB

• recursions. However It Is clear that these recursions are then of the BM type since

this algorithm also works with nonsymmetxic (though triangular) Tbplitz

matrices. Therefore , we could obtain “nonsymmetric” ladder forms of the type

given in (GrMo). Although the final algorithms of these ladder forms are simple to

• Implement , the exposure of the “shift-Invariance ” Is In general nontrivial [MV).

Our preliminary experience with the numerical properties of these algorithms

has been very encourag ing; Lu general ladder realizations are superior , to direct

forms for computing estimates of the coefficients of a(z) and 6(z) . Stochastic

approximation or gradient type methods using ladder forms can be obtained easily,

e.g. (SV]; however , they have drawbacks ~tmflar to other stochastic approximation
• 

• 

methods , especially for covariance matrices with extreme elgenvalue distributions.
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Appendix A Stable Partial Minimal Realizations

In this appendix we show how to obtain stable partial minimal realizations of

. the Joint impulse-response and cou-ariance-matching ty pe. It will turn out that wej ~ can obtain an ABMA model by i~nbedding it in a two channel AR modeling problem. -

• Given an ABMA model as represented by the difference equation of section II, we

I 
can rewrite it as (let q n) - 

•

- 

+ a1y1_~ + • • • + ~~~~ — b1 — . • • — ~~~~ — b0u~ , (At)

- or aTy1~~~b1Tu, ~~~~ where
• 

- aT . ( 1 , z1 1 . . . . g0 ) ,  ~~~~~~~~~~~~~~~~~~~~~

b1
T 

— 1 o , • • • . b,~ J , u1
T f , . . •. , ~~~ 3

Now consider the following augmented equation • 
-

i . 
aT _blTl 

~ 
b~u~ 1 -

• 1 0 
• e1~ J u1J u1 J, (AZ)

Is the first unit vector)• This equation can be Interpreted as an AR model for

- 
the Joint process (7, U )  (Mo), since the fiRS is equal to the Joint Innovations of

U • (Y, U ) , since

s 

~ ~ It_1 1 1ioU
~1

~
gJ Zig — 

~tfr- I J u1J • 
(A3)

- Detw~4n4~tic Cu~
We first consider the deterministic case when, we mrs given impulse response

data or the Markav parameters. Writing the input/output relationship in matrix - 
-

• notat ion (see sec. III ) yields

r , 0 ]  a
~1 . bal -

~ T TTJ °TJ OTJ . (A4)

- A l-

_______ 
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T
where T~ is a lower-triangular and 7

~T Is a full Toplitz matrix of the - Markov
{ parameters 

~
1T is the column reverse ordered Hankel matrix). Letting T-,., we get

I the normal equation • 
-

• T~T 
~~T

T T~ I a 0 1 —

• • 

• 

- 1 a lI~ o _b
1~ 1J • 

-
.

• - 

- - 

a R~, ~~ 1 a 0 1 — s1b0b0’ elbol
• - 

• 

- r~ I J —b~ ‘ii •~fr ‘~ J (A5)

- Stochastic Case
I 

From a stochastic process point of view we can express the normal equation

- 
• • associated with the augmented AR model as

- 

. 

~ f y~ (y,T u,T ]  a 0 } . E (  7, (u ,b0 u, 3J
U,

3 . 

• 

a R~ T ,’ 1 
a 

01 
a •1b~b0T .1b0]

• • • • • Ta 1n j —b1 eiJ .1b0 ~ J (AG)

We can solve for the normal equation of a~

• 

- 

- 

R~ a, -. — Ta
T Ta )Sa • (~~~~T~~~~j a  a e1R~,~ • (A?)

The equations (A5), (AG), and therefore the aon-Toplitz equations (A7) (1) can be -•

• ) -

. solved recursively with the LWR algorithm. Note that If R’k a 0 , the minimal
• • order * - k. We could bring equations (A5), (AG) Into a more f~n~111ar form by the

1 interleavIng permutatIon (1 , 9, 5, . . •, 2*— 1 , 2, 4, 6, • • •, 2n+2), cf. (MDRV], to convert

the two-process covarianc e matrix Into a a by a block Thplitz matrix , with 2 by 2

blocks, however the LWB algorithm clear ly applies to both representations with

• suitable modifications.

Thus we have shown that the Joint Impulse response/covarIance matching

- 
. -~~~~~~~~~~~~~

L— ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.
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~ Iii problem is equivalent to solving a set of normal equations associated with a two

- 
channel AR modeling problem. Since the predictor for the Joint process is

triangular and minimum phase, the denominator a~ of the underlyi ng ABMA

Ii 
- model is also minimum phase and therefore stable, (for all k).

• 
-

• - 
• Equations (A5) and the elegant stability proof were actually first obtained by

I — Claerbout (Cia 13 via a Least-squ ares rational approximation. The connections

between the Joint Innovations representation, the augmented normal equations,

and the Hankel matrix were pointed out In (Mo) end also in (MDXV), (MED),

(DKM3, where algorithms were given to solve equations of the type seen In (AS)

and (A?). For the special case where I? has a *ah1ft_low~rankN of one of the type

-
~ I (B5), called the past-windowing method in (MDXV), a Levinson-typ. algorithm

was given recently by ~MB). Th. stability property of the AR model was proved

- 
• there using a somewhat more complicated Lyapunov technique. • 

-

I I  5
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Appendix B: LS-Recursions for Ladder Forms

The Prewlndowtng Case 
- 

• -

Given a series of observations (y(t), Ost�T), where ( y(’) } can be m vectors , we

wish to find the least-squares one-step predictor of order p parametrized by the

(matr ix) coefficients {A~,T(i). 1.1, . .., p}. We can define many different squared

error criteria EAT, for instance as a function of i and/ In 
- 

-

EAT 1T~,~~~) ~~(:) , 2 4T
,,,~ y (t t—p ] , 

.

—a

~ (1 , 4T
~,~(1)~ ... . A~,,,2

4P)) 1 yrtg..t_pJ 2 , ... , ~_,,‘3 (BI)

An obvious choice from an innovations point-of-view is (s.O,f.iT), the

“pre-windowlng” case (MDXV). If s - p and f - T the so-called “coi~arlance”

method Is obtained, and if $ - 0 and f a T + p we get the pre- and post-windowed

case or the “correlation” method (MG). The total squared error can be expressed as

• 

EAT a tr (4~~~ ~~r 4~r ) . R,~~ a T~r rAT ,

• 

2 (yt O:—p) . flI :— p+13 . . . . , YtT:T—p) 3 (82)

Thus the problem of determi”lng 4AT by minim f~4ng EAT leads to -

- 

RAT AAT (R~~ ., 0, ... ,03’ . tr R’~,T - If llf l Ep,T.  (83)

• • - Although R~~’is not T~plitz, it still carries a certain shift-Invariance structuxe,

given by the following IdentIties

- 

I RAT ~ AT.1 ~~~
• YtT:T-p] Y(T:T-p) T - .

a x x x ~ R~ 1,7 
~ 

-

x R~..1,r_iJ x r 
- 

. (15)

• • Defin, the backward predictor 
~ J I~3’ and the smooth lug errors CAT

BTAT RAT 2 (0 ,..,  0 , WAT] ; CT
AT RAT ~ 7(7’:T—p J . (15)

Then the forward and backward prediction errors (Innovation s), ‘AT’ and rAT ,and

an auxiliary scalar can be defined by 
-

. 

• 

-

, T  ~3 I A  Yr i r a  a
~ j T ’  r Ay ,  ?p,~~J a Y r~T:T-~ ~~‘AT ’ °p,T ’ “p ,T

_ _ _ _ _  
_ _ _ _  --~~~~ •~~~~~~~~~ •~~~~~~~ 
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Order Update Recursions

Using the three shift-invariance Identities for RAT (B5) and using some

symmetry properties , the order update recursions for 4p T ’  Bp,T . C13,y R~,,y ,  and

• 

• 

~~AT&C • 
S 

-

I ~~~. ~
Tp41,T ~~~~~ 

31 — KT
~,r R~ P,T.4 ( 0 , BT

~,r_i

• a (0 , ~~~~ — KAT ~~~p,T t AT
P,TI 0 3T (B?)

• 

• 

• 
- CTp.~,y ( C Tp,yi 0 31 + fTp.j,~ 1~

’p4l,T BT 
P.1 ,~I’ where 

-

• KAy — ( last block row of RP.1,r ) ( A TAy~ 0 )~ 
-

a (o~ B
T ,,y~ 3 ( f irs t block row of RP.1,r 11. 

•

• 

- ~~~~~ 
- 

• 

- xT
~,T ~~

‘AT-l KAy

• ~~~~~ a RtAy..~ - ~~~ ~~
‘AT KT

~,,y.  CBS) 
- 

•

The order update recursions are very .cfmllar to the multivariate version of the

S 

• Levlnson algorithm, and a similar set of recursIons for time-u pdate can also be

obtained (MDXVJ,(MoJ.
- Ladder Type Rea lization

- - premultiplying the above equations by ytT:T-p+ 1) • we obta in the following

• 

• 

order update recursions for tAr ’ ~p ,T ’ ‘
~‘p ,T

~p ,T - K’p,T ~~‘p ,T-1 ?AT4

?p 4,T tAy4 - K~y 19~ p,y (p,y

- “PI T + 
~ p 4,T ~~~p.l,T tp~~ j~7I~~~ - (39)

The “Kalman gain” ~~~ Is obtained from (MV) as follows — .
IKP,T.l - KAy + rAy l Ay,I I ~~l 5 ’~’p.~,T~ (310)

and the reflection or PARCOR coefficients are obtained by -

. 

gE
1~~ 2 Kj,y Rt j,y; K’~y 2 K’S,T R~’4T.l . (311)

- B 2 -
~~~~~~~~~~-~~~~~~~~~~~~~~~~
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.

The initial conditions are given by 
-

a r0,~. ~r 7-,,T — ~~

r S -

•
R’

O,T 
- P1017 a 

~~ Yg Yt~ 
_ R ~o,y 1 +yy yly ;

- gaO
for p� T :

• 
• 

(p,~ *~~~; ~ r ry 7 ; 7PIT -. 1T,T i

• 
~
‘t

p,y - R~y,y ; R”~,,y - Rrry ;  K~,7, - 0;

— ‘o ~pp.i
T 

- 

-

As the dual to the stochastic forms in [IS], [Wak), (Mo], (SKM). equations

(B8)-(B1 1) are a complete set of order and time updat, recursions to obtain the

xact least-squares ladder form predictor, which Is shown in lIgure 1.

• 1 7, ) O,T . + 
11,T ~~~~ • + ,T

H 

• 

~~~~~

- 

_ _ _ _ _ _  _ _ _ _ _ _ _  _ _

- ~~~ 
p.I,T-I p. -

S. .  . • .  
S

Figure 2. Ladder realiza tion of exact one-step least-squares pr .diâtor.

The recursion (B 10) computes the sample crQss-covarianc e of tb -forward and

backward iiznoviUorzs, u~dr ig the optimal w.lghzlng 11(1-?., .), corzipared to other

• suboptlmal sch.mes (SV]. In the scaler cue RAT~O 1I~~i.0, or in general If

since O�?Ay~L (MDXV). If si’ , we require T~p+ei. These singularitIes ca~ be

avoided by Including a priori estimates of the covarianca R,, or equivalently

Including a weighted norm of the predictor a, in the error criteria Z,~,y. Several

• such modifications have been proven useful in actual Implement atIons.

• 
_
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APPEND IX B

Ladder Forms in Estim ation and System Ide nti fication

M. Mon

lnlormatioii System s Laboratory
Stanford Umversity, Stanfor d, CA ~4~OS

Abstrac t directly to she ladder realizations IMol. It, fact they are the
• Ladder terms are probably the moSt promising canonical ~~~~~~~ 

j,, natura l “stabi lity canonical form ” for (discrete —ti m.) Lyapuoov
esti mation. and system idc,.tification. Many rec~nl sppt icationii, suck as equatio ns, since the assoc iated pos itive defin ite (covarhece)
in geophys ical signal processing, high resolution C,nazimum ent ropy ”) matr ices are diagonal or respec t ively an identi ty matrix . The
spectra l catimation and speech cncoding, j ustif y the intcrest 1,, these s imilarity trans for m ations to this form involv e s matr ix
Iorw.. They appear in many conle*ts, such as icalIcrii ,g and netw ork square—root of the assoc iated cov arianc. matrix. Tb. ladder formstheory and she theory .1 eribogensl p.ty.osnials. iii , state-sPace model 

are therefo re closely connected to square—root algorith msladle, ,eaheations are very clntely related so (Mock) Schwarz matril
ea,wmlcal for ms, which general ly appear I. the contest of stability including the ones of Cholesky and Ckandrasekhar type. I,,
analysis, I.. fact thcy are the natural stability canon ical form ” for realization theory these forms are obtained via orthonormal
(Jiacr.te—lime) f.yap un.. equatio ns since ii.. associated positive definite state-space bases using Cram—Schmidt type procedures, due to she
(cicarlanee) matrices are diagonal rasp. an Ident ity. ibis fact leads .15. tact that this ortho— normalization is again related to m atrix
to clues connections so square-root .lgeriihms inclu1in~ the ones of square-root and ort hogon al polynomials.Cholcch y and Chandrasckkar type, since again la.lder forms arc the

• natu ril ca,ontcal forms. In realization theory these forms are obtained Ladder forms have many other interestin g properties. Due to
cia .,t hono rmal state-space bases using Cram-Schmidt type procedures. the fact that they are in many problems the natu ral canonical
ladder for um base many .ihcr ad.autagcii, such a. lowes t ceinpuIatIonhl form ”, they lead to algori thms with lowest computational
co.npleslt y , goad numcrical beha,ior, stability “by inspection” proper t ies complexity compared to other canon ical forms. Although a detailed

• i and ,elations so phys ical properties such as refl ection or part ial study is st il l outstanding, there are many indications that thi s form
• • eorreliticn coefficients, and perhaps absorpt ion coeffi cients. leads to good numerical behavior of the associated algorithms , $We shall prercal an outl ine of some newer results conn ect ing these

top ics and present new ciamplcs .1 our new ezact least-squares property that is not shared with most canonical forms.
,scw,,iii’s (or radapei.c ) lajde, forms with polcs and zeros, We close Furthermore , the stab ility “by inspection ” - property ove’a the 4• wttI S (Ow euculs’.tou etmuples, inct efin g eke Wentt(tcztbow sf a Isyoved ladde, coeffi cusets is shared only by the Jordan or modal canonical •

• media (via ultra -sound). form. However , the latter one requires the knowledge of the
• elgen-values that are in general not very easily obtained, compared

I. Introduction to the finite algorithm required to get the ladder coefI ic,ents.
Ladder forms have attracted much attentio n recently t.~ ause They itt turn have other interesting interpretations and relationsF ih.y are probabl y the most prom4si ng canonical forms in estimation to physic al properties such as reflection , and perhaps absorption

and system identi fi cation. These forms have appeared in many coefficients. In stochastic process modeling and spectral estim ation
sppl ications such as geop hysical signal processing for quite some the ladder coeff icients turn out to be partial corr elation or
time , and note recent ly such models are being used in high canonical corre lation coefficients , which leads to very simple
resolution ( maximwe entropy ” ) spectral estimation and speech methods to determine these parameters either from covarianc e
encoding. Ladder ( sometimes called lattice — a term we would lik , data or even directl y from meas ured data.
t o reserve for two and higher dimensional extensions (LK M)) forms In (MLNV) we presented a cla ssification of exact least—squares
appear in many contexts , first perhaps in scattering and network mode ling methods. The material discussed here is s sequel so the
theory where th. scattering of waves in layered media or In results discus sed there , in particular we will concentrate here on
(non—homogeneous) transmission lines leads very naturally to the ladder forms and the associated algorithms. ~

1e shall present
ladder forms , see ej . (C1a2J, (LKF~ (RMfl (Kelly). an •~(lj n, of rome newer resul ts eouectir.g these top ic, and

Ladde r forms appear explicitly but more often impticilly in
many contex ts. They ar. directly related to the scattering of present new examples of our new exact least—squares recursions
waves and therirfu re perhaps first int roduc ed in physics. Some of for (“adapt ive ”) ladder forms with poles and zeros. We clos, with

a Few simulation examp les, including the identi f,cation of a layeredthe associated mathematics are used in network theory, where the media (via ult ra—sound ).cess.~di ssiu ct urc of ,~.e lood .r tor,.n ps~r: a~e ir~ c..tt ,.l ol,. Thc
notion of tran sfe r functi ons leads very naturally to the next II. I_adder Realizations
coemeetton, th. theory of otthog ~ttal polynomials. They in tur n also • In (MLNV3 and (MVL) we discussed va rious ladder realizat ions.
appear in die stability analysis of linear systems. The state—sp ace We assume here familiarity with this material and would like to
m odels that are related to orthogona l (matrix) polynomials are th. give here only a missi ng link to state space realizations , namely the
so—ca lled (block) Schwarz matrix canonical forms , sue e.g. (AiM), fact that the ladder forms can be obtained vi. anp (Ss). However , the special structure of these matrices leads ver y ortho-n orma lizatio n of the state space. In this context It Is well

known, that various canonical state space realization can bep obtained vi. methods that construct a basis of either the MandrelThis won was su ppont c,I by the l)efcnse Ctn,nuu,,icati nne Agency matrix of the Markov parameters , resp. the impuls, response
under contract DCAIOO-fl-C-000h she National Science Foundat ion parameters of the system , or bases of the controlla bil ity orunder C.ut,act NSF Eng7S-18952; t he Air Fore. Office of Scientific observabi lity matrices of ike system , see e.g. (K-Sit). V. will -Resear ch, Air Force Systems Csun,,anl •adcr Contract
AF44-øo-74-C.0061h iii. Joint Sirvices Electronics Prog ram under present here sn outline of the scahr discrete— ti m. constant

L 

Centred N~~OI4-7S~~~~6Jl; the Institu te of Siomej ical 1~~~nolagy In - parameter case. For convenience we use an intermediate canon ical
Zurich Swit acri and; and by ASPA throug h the use of the Stanford form , t he controller form. It has the properly that she j .5
Artificial Intelligence Laborator y f.cllities. compo nent of t he is state vector x ’(a) can be obtained from the

Bi
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• 1:

input si(s) in Z-tra nsf orm notation via r1(e) ” ti (s)z”41el*) , where ~,.r 
— • YtT: T-p) YfT;T-p)’ (111 4)

p.,.-,

ela) is the characteristic polynomial. The ladder Forms are r 
~ ~ r 1 — 

~ 
B,17. ri

obtained in a simi lar manner via x .’(t) — u(zlbkz)/ .(z) , where 6~(5) 
[ ~ ~

1,
~
1j [ r x rJ . (Ill-s)

is the i’~ (dual ) ort ito-norma l polynom iil Ut, t he unit circ le 1Sse).
Writing these facts in matrix notatio n, we obtain the results that Define the backward pred ictor fl,~ and the smoothing errors C,,7.
lb. t he state at time is is given by r,, — C,, s4n-I,O), ‘4s ,j) — (ui,

where C1, is th. usual controllability matrix. For the 
~
‘ r ~~,,,. (0 ,.,I ,R’,,.]; C’p r s,,,. .YfT:T-p](I114)

controller fo rm it is now not too surprising that C — Then the forw ard and backward prediction err cr s (i’movat.lons),

f I the inverse of unit upper triangular Toeplitz and ~~~ and ~~ scalar 
,. ~ 

can be defined by
• • matrix .t the coefficients of a(s) . the Ladder forms on the other

• 
• hand result in (see (Mo)) C,, B,, 

~~~~~~~ 
, where B,, is $ • t

~
’
~’.T ’  ~~~ , i,,~.) 7’(T:T-p) (A ,7., JI~y , C,T )

lower tria ngular matrix containing as rows the coefficient vectors
of bt(z). Due to Its orthogon ality property B,, B,,’ — R,, , the is by Order Update Recursions

Using the three shift —invariance identities for fl,,,~. (111—5) and
n Toepl itz matrix associated with the (Z-transformed ) correlation
function R(z) u h/lo(z)l’. R,, is also the steady state covariance using some symmetry properties, the order update recursions for

C matrix of the controller form R ,°, if a(s) t he input is a white A,7., B,, 3. , C,,,., fl1,,3. , and R’,, ~. are

process. Now, since the similarity trans form matrix S from one A’,,13. — (A,, ~ 0)’ - 

~
‘p.~,r R ,,..1 ( 0~ ~~~~ J

state space form to an other is given for instance by the ratio of
• th. controllability matrices , it is clear that S — C~ (Cc)~ — B,, — 1V,.1~ 

— ( 0 , 
~~~~ 7 - Ap.,~~

. fl ~~,,,. ~ 
A’,,~, 

03T (111—7)

(R,,9 ’1’ i.e. from an arbitrar y (controllable ) state space form the C’ 1~. — (C’,,7,O7 • r’p.~r ~~~~~~~~ 
8’,.~r were

similarity transform is given by t he inverse square—root of the
sleady state cova niance. This leads fin ally to th. connection with ~~..l,T — ( lass block rosa .1 fl,.1,,. J (A’,,y, 0 7
Lyapun ov equatlois typ o characterization of the ladder forms , — (0, 

~~~~~ 
( first Mod , rots .1 B,•1 7. 7.

namely that their covariances are an Identity (or diagonal ) which Is
- I precisely the characteristic propert y of Schwarz matri zes, see ~~~~~~ 

— - A’,.1~. fl’ ,y1 ~~(AIM), th. stats space feedback matnx of ladder (OTTh$ (Mo). Due
to limitations we deter a more detailed discussion of the details R’ — 

~~ 
Rt ,, A’,.I.T, (lll $)

and various extensions to (ML). 
p.1,3. “ ,.T

The orde r spdéte recursions are very similar to the
50. LS-Recursion s for Ladder Forms muttivariate version of the Levinson algorith m, and • similar set of

The Prewi ndowi ng Case recursions for time -update can also be obtained (MDKVUM4
In (MLVK) we presented this cue, for completeness and kt Ladder Type Realizatio n

irder to correct some typograp hical errors we repeat some of the Premultiplying the above equations by 3P(T:T-pel) , we obtain
equations here. Civen a series of observations (y(O,OsscT), where the followin g order update recursions for t,,~., ~~~ ?,,y

• (~44) can be rn vectors, we wish to find the least—squares
one-step predictor of order p parametrized by the (matrix ) ,.s.T — J ,T — A ,.i. T ‘~

‘p,T-I ~p,T4

coefficients IA,x(i),l—l,...,p I. We can define many diff erent
squared error criteria E,,~, for Instance as a function of a and I In ‘,ET — 1p.T4 — ~~p4,T 1~~

1
py ~~~~~

1’, ~~ 
— 7 0 r’p.),). fl-e~.1~ p.l .T ’ (111-9)PT

t’,,,*) i,,7b) , i,~ ~ A’,~. 7(s s-p) The . Kelman geln” A,,1,~. is obtained from (lll-S),(lll -1)
(cfLMVJ) v ia

a..

A’,3. ~ ( I  ,A’,~*l) ~
_ ,A’,,,7(p) ) ,  Y’(u-p) Li,’ s.. , y,,’~ll—I ) A,.l .T.1 — Ap4.7. ~p,T ~~~~~~~ 

I l l  - Pp.~•,.OIl—1S )

An obvious choice from an innovations point-of—view is (a—Of—fl and the r.f1.ccion or PARCOR coefficients are obtained by
the pr.—wi ndow in( case (MDKV). It a — ~ end I — T the 

~
I,17 ~ ~~~~~~~~~~~~~~~~~ 

K’~,17. a’1•,,~P-’~,.’ltI-.i1)
so-called “covariance” method is obtained [MDKV), (MVL], and if a
— I and I — T • p we get the pre— and post-windowed case or the The initial conditions are given by
coroelstlon” method (MCi The total squared error can be — tS.T — ?4J — 0 ;

• expressed u 

~~ A’,,3. fir,; APT ) I Rp,3. — 
~
‘p,T T’,,3., ~~,.i — 11’,, . — 

~, ‘,‘ 
— 

~ %,T.I Y~

T,jr ( 7LO~~~ ) ,  3’ (h-ps)),... , 34T:T-p J ) (111—2) For p�T :
I,. ,. - ~~~~ f~; - I 7~,i - 7I T  I

Thus the prob lem .1 determini ng A,~. by minimizing E ,~. leads to 
fl ’,,,. — fl’

3.,,.1 ~‘.r 
— W3.,~; ~~~~ — I ;

• R,,p. A,~ — fR11,7., 0, . ,0J ’ , •, fl4~,3. — ml,, E,7. (111-3) A,.l ,,,I — 1
Althou gh fl,,~. is not Tipliiz, it stil l carr ies a certain As the dual to the s ochastic forms ‘tie (IS), tWak), (Mel, ISKM),

equations (lll-$)—(l Il-11) are a complete set of ecder and ibm.
shift-Invar iance str ucture , given by the followi ng Identities update recursions to obtain the ezoc l least-squares ladder form

predictor , which Is shown In Figure 1.
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I 7. 1 ••y .,. ~i.T •p.iY ~~
, •,,1’ or a’y , — b1

1u, — b,u, , where
a’ — ( l ,.~,..., a,, ), 7, — Li ,...., i,., ).
13~’~ (0 , h, , . . . ,  5, ) ,  U,’ • (u, ,~~.., 3 , , ) .

• ti ii~~il ~~ 
Plow consider the Following augmented equation

I a’ -b1’i F i~1 - rt.~, 1
• •

o .,‘J [u,J [us J. (IV-2)
tS,T4 f,~~ 

~,.4,T-l + 
(e 1’ is t he first unit vector ). This equatio n, can be int erpreted as

Figw’e L Ladder realization of exact one-step least-squares en AR model fo r the joint process (7, U ~ [Mu), sir~ce the RHS
predictor. is equal to the joint innovations of (7 ,  U ) , since

— [cvi] 
— 

[i~ ~~.a-i 1 — I61u,l
The recursion (Ill-to ) computes the sample cross-covoriance of iv u - , J [~, J. (IV—3)the forward and backward innovations, using the optimal •weljhsing 1/(1-7.,.), compared to other sub opilmal schemes ISV). -

See in the appendix a sample comparison of the exact ver sus two • Stochastic Case
C approximate methods. In the scaler case B, ~~ if i,—O, or in From a stochastic process point of view we can express the

genera l it lp.~~.Cl , since O~7,,,,.t1 [MDKV], LMVL]. If ,n~t, ...~~ 
norma l equation associated with the augmented AR model as

require Tap.,.,. These singul arities can be avoided by including a E ( 1Y,1( Y~
’ U,’ 3) F a 01) — £ t [y~1t u151., 3) j

priori estimates of the cova niance B,,, or equiva lently including a fr,J [‘b1 .~j [u,J
weig hted norm of the predictor a,, ~ the error cr iteria E,,.. For 

— [ R,, T,,’ V a ol — 
~~~~~~~ 

e,6,1trac king of time—v arying parameters , e.g. in speech modeli ng 
~ i ti—b •met hods , these equation s can be modified , either by put ,ng an a n Jf i ij [ •1~ 

e1 j . t1V4)
exponent ial weight on past errors as discussed in (MKLJ, We can solve fo r the normal equation of a,,:(imp lemented in the simulation in the appendix ). Altern atively, thelower bound of the erro r crite rion ‘tie (Ill—fl can be InicT eased , e.g. , B a — [R ,, — r’ r 3 a — (71 ~7f 1 a — e7R’JIY—S),, 

~ ,, m a— T — / ,  where I is the (constant) “slidi ng” time fra me width of 1,

• t he analys is. This corresponds also to a sliding wi ndow on the The equations (tV—I) and therefore the ,aon—T~phitz equations
prediction error s The resu lting equations are similar to the ones (IV—S) (9 can be solved recursively with its. LWR algorithm.
In (MVL]. - Note that it R~ — 0 , the minimal order is — k. We could bring

Instead of computing t he scalars 1 one can also wor k with a equations (lV—4) into a mo re familiar form by the inter leaving• second set of prediction errors based on the “old” paramete r permutation (l,3,5~ ,2n-I,2,4,6,_.,2n.2), cf. (MDKV], to convert theest imates , since two—process covariance matrix Into a n by is block Tipl itz matrix ,
— 

~~~ 
/ ( I  - ~~~~~~~ . with 2 by 2 blocks , however the LWR algorithm clearly applies to

This alternate form was also found by .J. Baker , IBM Yorktow n both representations with suitable modif icatio ns.
• (private commumcation ). A similar sit uation occur s in the Fast Thus we have shown that the joint Impulse response &

Cholasky (least—squares) algor ithms for estimating moving—average covariance matching problem is equivalent to solving a set of
parameters via feedbac k filters described in (Mo), where a “second normal equations associated with a two channel AR modeling
fi lter” or “predictor fi lter ” appears that comp utes variable s of the problem. Since the predictor For the joint process is triangular
type i,,,.(T.1). It is Interesting to note in this context , that t he and minimum phase, the denominator 1,, of the underlying

• unwindowed (“covariance ”) method actu ally also leads to signal ARMA model Is also minimum phas. and therefore gaMe, ((or
• feedback pat hs (actually a smoothing filter) , see CMVI.], but the all 5).

simp ler prewindowing case is feed forward only. Equations (IV -4) and the elegant stability proof were actually
Many modifications have been prove n useful in actual first obtained by Claerbout (CIa)) v ia a least—squares rational

implementations , they are partially due to the tact that many anorox imatio n. The connections between the Joint innovations
additional identiti es exist and others are due to diff erences in representation , the augmented normal equat ions , and the Hanket
numerica l behavior and t rade-offs in- operatio ns count and memory matrix were pointed out in (Mo) and also in (MOkV), tP.IKDJ,requ irements. Syst ematic experiments are new In progres s and will (DKMJ, where algorithms were given to iolve equation s of thebe reported on short ly. • type seen in (IV—4) and (IV-5).

IV. LS.Recursions for Rational Ladde r Forms
Rational or A RMA Modeling Determ inistic Ca,.

Rational or pole-zero or AIIMA modeling methods were In (MLNV) we considered the determinist ic cue where wo are
described in (SLC), (MKLJ and their relation to joint innov ations given Impulse response data or the Markov parameters , here we

• representation via an imbedding of ihe A RMA model In . two (m) shall assume that we are given a series of observations and we
channel A R model in (MLNV] and (Mo). The same Idea also leeds to want to find a least—squares (deterministic ) one—step ARMA
sta ble partial minimal realizatio ns of the joint Impulse—response and predictor recursively from the data equivalent to the RML
covariance- matc hing type (MLNV 1 Civen an ARMA model as algorithms described in [SLC] and (MKL). Our approach wi ll not
represente d by the di fference equat ion we can rewrite it as lat e a new way how to derive thes e algorit hms, but It will also

give us very quickly the ladder forms.• •s’.-i a’i,, - 1’p ~ ,.1 - ~~~ — 51n,, (I” 1) Writing the Input/output relations hip in matri x notation yields
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are the negative of the ones of the denominat o, polynomial .1 theI T ,,3 o lr a 1
~ ~r — 1’ b,,~. 1 transfer function. We can readily see then, that our rational

I ~~T 7 7 ~~~. j [ ~~. j , (lv-S) ladder form speci alizes and we get only one set of reflection
coefficients that can be associated with the ones of the layered• where T,,,r lower —triangular and ~~ is a ful l matrix, but both are a medium that generat ed the data. This particular cas, is treated
from a circuit point of view by Kung (Kun). rigure 3 shows anproduct of two Tiplits matrices containing the data and the example using rea l ultrasound returns and the estimates of thenormalized one—step prediction errors , wh Ich take place of th. reflection coefficients using a ladder structure.
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Recursions (or Rational Ladder Forms

observations. It is easily verified in the same context (hat half of 

~

c_, .~_ I
This partitioning leads easily to the rational ladder recursions. zFormall y the seine recursions can be used. However, the fact that ~the forward predictor is triangular simp lifies and actually makes —~a— —t he recursions possible at all, since t he one -step prediction errors &~

• ii are not needed until (he next iteration , i.e. they are feed back ‘~‘~“
~.1~and tr eated at the next time step as the (“ othe r h~I1” ci the ) Is.

the entries in A,,~. are zero, which guarantees that the one—step
- I 

prediction errors are not used before they are required in the
• • recursion . The following Figure 2. clearly shows this. . 

-
Li”) )
(y ,)  1ef + ‘IT ) •5•47

- 
Figure 3: Identification of • layered medic tea atlerasosu,4.

T
~~~~~~~ S 4-ir

S i,p.,, ~.i.ee u,.cc

— 

~~K’_~~~~~~~~~~~~ in t he Stanford Electronics Laboratory of Prof. ~ Meindi. The
— The experiments were performed by Linda Joint and Dough Boyd

D 
+ ir.~ ( 

••
~.I,T~l 

+ ~ 
ref lection coefficient estima tes appear to be much smaller than

4.3 4.1-I ant ici pate d from the experimental set up, this it due to several
I factors: The ladder structure actually identifies reel only the

Figure 2. Rational Ladder realization of exact one-step medium and the single reflecting plate in the path of the ultrasound
beam, but also computes an equivalent layer model for the

least-spuares jaredictor. • transducer, The estimated values of the first large reflection
Appendix: Computer Simu lations coefficients show, t hat the transducer is very inefficient and not

• Layered Media Identification very well matched because the largest value is very close to one,
• The t.~odetin.g sin of Isyeded media it sf inter ’t t I,, many &ress , which tend to “turn off” all higher order reflection coefficients.

nota bly in Ceophysic s, see e.g. Claerbout (Clal,2) and more Further more , because of the wave lengs used the layers of the
recently in medic al imaging or nondestruc tive testing. There are medium have a continuous reflect ion coeffic ient density which
tw. basic situa tions that occur in these areas. The firs t one , indicates that th is direct scheme must fail since we tried to
wher e the source is on the opposi te side of the receiver is the estimate the derivative of a function (with noisy data!) It wou ld
stra ight for ward case , it leads to autore gressive or all—pole models, require the use of a modified ladder form that is parameterized by
wic h can be readily ident ified by using the various metho ds to th. equ ivale nt of the “ area function” used (or instance en the

- est imate reflec tion coefficients by cross-correlati on of the speech modeling context (Walt) .
for ward and backward residuals in the whitening filter in ladder Sample Comparison of Diffe rent Reflection Coeff icient tstim atet
term, see e.g. (Cl~1,2J. The second case , w here the source and Ladder coefficien t estimates were in the past said to converge
receiver are on the same side did up to now not lead to such very slow ly, indeed this is the case for app roximate recursi ve
simple processi ng as the fi rst case , because the (imput) transfer methods as demonstrated in its. Figure 4, w here three methods are
function is rational in gene ral, or in the best case where a total
reflection occu rs within some layer the transfe r function ~ ~ 

compared. Two approximate recursive methods using aritk meiic
mean definitions of the prediction error (see e.g. (Malt), (MLVK))

al l-pass netwo rk. In this case the zeros are equal to the reflected and and other compu tationaly attractive method using the average
poles and the ‘reflec t ion coefficients ’ of the numerator polynomial of the product of the signs of the Forwar d and backward
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• pred ictior error , which ar ises from Li norm considerations see ~~ °“~ 
Rung, S T., “0.-L ine ident Ific atio n ~ Layered Modla,”

• Claerbou t(C1a3] and has often been used in circuit design. Aac,lomar Cent, flcceniber 1911.
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APPENDD~ C

- 

. BEGIN ‘speech’

comment
This is a complete analysis program that compuute

- reflection coefficients, pitch, and energy Information
as each new data Is sampled. The analysis Is done

• ‘ Independent of transmission frame size. It resets to
start state whenever silence or pause Is encountered.
The pitch detection scheme is based on testin g the log

I .  - likelihood ratios at each sample and there Is no time delay
in the transmission. .

f’ t1 1 The main program first calls FILEOPEN to open necessaary files.
— Then It calls LADDER which perform time update operations.

LADDER calls the following procedures:
INITIALIZE for Initialization of global variables,

~ I TRINIT for initialization of transmission strategy,
PITCHINIT for initialization of pitch detector,
ORDERUPDATE for update of ladder variables,

- RESET when silence or bad numerical condition is encountered,
1 PITCHDETECT for pitch detection,

TRANSMITTER for transmitting reflection coefficients, pitch,
and energy information at each transmission frame
boundary

FILECLOSE Is called at the end of Input file; 
-

~ •j . 

• 

- 

. .

Ii
• 

.

- ~~~~~~~~~~~~~~~~~ ~~~~~~~ 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~
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• 1

require ‘msailm.saI(exp,lee)’ source_file;
require msallp.sal(exp lee)’ load_modu le;
# Compiletime definitions of speech analysis constants;

define MAXP ‘ 38; # max order supported ;
define MAXPP a 6; # number of pitch pulses/ frame;

# Compiletimme definitions of I/O buffer sizes, the values used
# here are Important only from efficiency considerations;

define BUFSIZE ~ 4896; # number of speech samples In core buffers;• define OBUFSIZE = 128; # in core transmission values;
define RBSIZE = 128; # history registers;
define BUGBUF = 4896; # buffer for debug file;

I • # Housekeeping variables;

Integer fpy ; # pointers for Input files;
Integer fko, fpo, feo; # pointers for output files;
Integer fbugl, fbug2, fbug3, # pointers for debug data files ;

fbug4, bt;

Integer Fsample, Nsamples; # first sample and total number of speech samples;
Integer 1, J; # general purpose loop counters;

# Analysis ladder form parameters and data storage; -

• Integer t,st,tt,tmlnpaax,lst; # time ifldlces;
Integer tau; # time constant for weighting ;
integer p, pmax; # parameter order counters;
real ttau ;
real delta; # prior value of covariance;
real tI, til, tOti, tltB ; # lit, 1I(t+1), t/(t+1), (t+1)/t ;
real resetsup resetlnf; # upper and lower reset threshold;
rea l array # variables of analysis ladder;

e, eZ , r, rZ , -

D, K, Ke,. Kr,
Re, Rr, RrZ [0 tc PIAXP);

real array g, gZ[-1 tc MAXP]; .

real yt; . # current input;

# Data buffering considerations:
0 Data buffer management is handled Independently from the
0 analysis. The particular sizes of the following buffers are only
0 Important in that particular values allow efficient operation

• 0 of the 5(1-Al disk system;

rea l array y[8 tc BUFSIZE-1]; # input data buffer; . _. -

0 output buffers for transmission parameters;
0 the first index changes per frame, the second index represents the
O number of parameters of that type per frame;

rsal array 0 reflection coefficients;
okb(8 tc OBUFSIZE,1 tc NAXP];

• rea l array 0 pitch information;
opitchb(8 tc OBUFSIZE,1 tc NAXPP);

real array 0 energy lntörmatlon ;
oenergyb(0 tc OBUFSIZE];• rea l array 0 debug data buffers;
bugi,
bug2, .

~ 

.~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - .- • -~~
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bug3,
bug4(0 tc BUGBUF);

0 Buffer management variables:
0 In general, whenever a buffer empties or fills up, at that
0 poInt, an I/O call Is made to refill or drain it;

• integer obp; 0 output buffer pointer ;
integer kbsize, pbslze; 0 multiples of OBUFSIZE;

• Transmlsion strategy variables;

boolean pp,lr,rs; 0 pitchpulsi, lower reset, reset;
integer framesize; 0 number of samples . per transmission;
real Energy; 0 per frame energy of speech samples;
Integer array p1(1 tc MAXPP]; 0 pitch position indicator;
Integer ppptr; 0 pointer into p1 array;
0 These following variables are ring buffer management varialbes;
• RBSIZE is ring buffer size, should be the largest pre-deadzone;
O (The transmission module maintains recent history of the
0 reflection coefficients);

• real array
rkb(0 tc RBSIZE-1,l tc MAXP];

Integer rbp,trp; 0 buffer counters; . -

O dead zone su es and related variables for transmission;
0 pre and post deadzones for pitch pulses, lower threshold resets
O and upper threshold resets;
O Variables nextXX, nextXXs, otdel, and dzcount reflect imp lementation
0 details of the deadzone strategy rather than algorithmic details;

Integer pppredz,pppostdz,rspredz,rspostdz,lrpredz, lrpostdz;
integer pptotdz,rstotdz, lrtotdz,otdel;
Integer nextpp,nextlr,nextrs;
Integer nextpps,nextlrs,nextrss;
Integer dzcount;

0 pItch detector variables; -

real dglnf, dgniax, taup, rho, oldmaxpt, maxpt, plnf, pt, oldpt, dg, aiphap;
Integer deadzp, nextp, sgnp, lastptlme, ppwindow;

H 
~~~~~~~~~~~~~
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0 These procsdures are largely self-explanatory. At the beginning
0 of processing, all the required files are opened, at the end

1.  0 they ar. closed;

procedure filsOpen; - •c ‘fileOpen’ 0 Create files; •
fpy . open (‘speech Input file: ‘, DATA I INPUT I PROMPT );
Ito ? O~~~fl (‘kkk.dat’, DATA I CREATE I OUTPUT );
f’po ~ open (‘pit.dat’, DATA I CREATE I OUTPUT );
Tao .“ open (‘en.dat’, DATA I CREATE I OUTPUT );
fbugl ‘“ open (‘bugl.dat’. DATA I CREATE I OUTPUT );
fbug2 ~ open (‘bug2.dat’, DATA I CREATE I OUTPUT );
fbug3 ~ open (‘bug3.dat’, DATA I CREATE I OUTPUT );

L 
fbug4 ~ open (‘bug4.dat’, DATA I CREATE I OUTPUT ); •

~ fileOpen ;

procedure fileClose ; -

c ‘fileClose’ .

close(fpy);
• close(fko);

.close(fpo); -

close(feo); -

close(fbugl); • 
• -

ttyWrite( ‘BUGl.OAT contains predetection pitch postitton’, ni);
close(fbug2); -

.

• 

- ttyWrite( ‘BUG2.DAT contains postdetection pitch postition’, nI);
- close(fbug3);

ttywrite( •BUG3.DAT contains dg’, ni); .

. close(fbug4);
ttyWrite( ‘BUG4~DAT contains Innovations’, nl);

~ ‘flleClose ; -

• 

. 
- 

• .
. 

. 

- •
.

- 
•
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procedure initialize;
c ‘Initialize’ - :

• InItialize analysis algorithm variables;

ttyWrite(’Inltialization of tracking parameters:’, ni);
• ttywrite(’ tau (168) =

read(ttykead, tau);
ttyWrite(’ Prior covarlance (8.88881) =
read(ttyRead, delta);

- ttyWrite(’ upper reset threshold on g[pnax] (8.99) =
read(ttyRead, resetsup ); -

•

ttyWrite(’ lower reset threshold on g(pmax] (8.8881)= ‘);
read(ttyRead, resetinf );

• for I 0 upto pmax do
- • 

- 
c e(iJ r(I] rZ(i] 8; •

- D(i] . Ke(i] . Kr(i) ~“ K(i) .- 9; .
Re [i].Rr(1]~~ RrZ[i]i- 8; -

g(i3 gZ(i] 8; - •H ~ g[-1] .- gZ (—l ] ~ 8; -

Re(0] ‘“ Rr[0] ~ delta ; . -

St ~ 8; 0 set reset pointer to 0; . 
- 

-

1st ~ —28; 0- printout Interval for last reset;

I initialize data buffering;
• br Iefly, the idea is to break up Nsamples into groups;

• I of no more than BUPSIZE , reading and writi ng is done on;
- 

I these smaller segments;

• buffer management , Initialize poi nter s ;
bt a 9; I pointer for debug file;

- rbpa8 ; •

obp .- 0; - •

trp ’- 8;
kbs1~e OBUFSIZE * MAXP;

• 
- pbslze OBUFSIZE * NAXPP; . • • 

.

-
• for 1 ~ 8 upto RBSIZE-1 do 

-

for J~~ l upto NAXP do -

rkb (i,J3 8;
for 1 8 upto OBUFSIZE-l do
c for ,J 1 upto PIAXP do

okb[i,J] 8; . 

-

- 
• for .j ~ 1 upto MAXPP doopltchb(i J] -1; •

oenergyb(I] 8; . -

~ ‘initialize ’; 
• • 

—

.

• 

. 

. . 

• 

- 

. 
• 

. 
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procedure reset;

C ‘reset’ • 
-

I This procedure is nearly equivllent to the analysis

I - 
I algorithm parts of the initialize procedure above;

if (t - 1st) geq 28 then
c if rs then ttyWrite (‘Upper Reset at t = ‘, t, ml)

• else ttyWrIte (‘Lower Reset at t = ‘, t , n i ) ;
• -- 1st~~ t;

• . st ’- -l;
for 1 a 9 upto pmax do

c 
• 
D(I].- Ke (i]aKrEi]~~K(i]4” 8;Refi].- Rr(i] 4” RrZ(i] 8;
e[i) a r(i] rZ(1) a- 8; -

- g(i] a gZ(1] 8;

Re[8] a Rr(8] a- delta;
~ ‘reset’;

• 

.

- 

• 

• 

. 
S
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• 
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-
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procedure trinit;

1 c ‘trinit’
0 

1 initialize transmission strategy variables; 0

- 

• 

Energy .- 8; 
.

- 

ttyWrlte (‘Initialization of transmitter parameters:’, ni);
ttyWrite ( ‘ Transmission framesize = N) ;
read (ttyRead , framesize);

- 
ttyWrite ( pp pre dz (3): ‘);

• 0 • read ( ttyRead, pppredz );
- ttywrite ( ‘ pp post dz (28): ‘);

read C ttyRead, pppostdz );
ttyWrlte ( ‘ . low reset pre dz (8): ‘);
read C ttyRead, lrpredz );
ttyWrlte ( ‘ low reset post dz (28) ‘);

- . . read ( ttyRead, lrpostdz );
ttyWrIte ( ‘ reset pre dz (pmax)a 5);

• read ( ttyRead, rspredz ); . 
. 

-

ttyWrite C ‘ reset post dz (28)’ ‘);
read ( ttyRead, rspostdz );
.pptotdz a- pppredz + pppostdz;
lrtotdz a- lrpredz + lrpostdz; S

. I - rstotdz a- rspredz + rspostdz; .

otdel a- pppredz max ( lrpredz max rspredz );
nextpps a- otdel - pppredz + 1;

‘ nextlrs a- otdel - lrpredz + 1;
nextrss a- otdel - rspredz + 1;

~ ‘trinit’;
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procedure pitchinit;
C ‘pitchinit’ •

• 
- I initialize pitch detector variables;

- 
ttyWrite ( ‘Initialization of pitch detector parameters:’,nl);

L ttyWrite ( N post detect deadzone : ( 38) ‘);
read C ttyRead, deadzp );
ttyWrite ( ‘ scanner time constant taup : (58) ‘);

0 read ( ttyRead, taup );
- . ttyWrite C ‘ scanner upperthreshold factor : (3) ‘);

• 0 read ( ttyRead, aiphap);
ttyWrlte C ‘ pre scanner window ( 18) ‘);
read C ttyRead, ppwindow );

- ttyWrite ( ‘ scanner lower threshold Pin? = ( 8.803) ‘);
read C ttyRead, pin? ); .

.

L ttyWrite ( inf for dg (8.81)= N

read ( ttyRead, dginf );
ttyWrite C ‘ norm for dgmaxp (8.25)’ • );
read ( ttyRead, dgmax );
oldpt a - 8 ; 0• oldinaxpt a- n,axpt a- pinf; • -
rho a- exp ( -1/taup); 

- 
-

lastptiine a- nextp ‘- 8;
for I a- 1 upto NAXPP do p1(1] a- -1;
ppptr a- 8; - 

-

~ ‘pitchinit’; 

- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
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procedure orderupdate; 0

c ‘ordorUpdate’ - 
•

• I See algorithm descriptions for an explanation of this procedure;

I order updates the Innovations;
for p a- B upto C tmlnpmax - 1 ) do
c ‘stepupOrder’

I Update the partial correlations;

• If tI*gZ(p—1] geq 1. then I numerical conditioning control ;
c ttyWrlte(’gZ(’, p-i, ‘3 >= ‘, 1./tI, ‘at t ‘, t , NL);

gZ(p—1) a- 8.99/tI

•D[p+1] a- D(p+1] + tlX*(rZ(p ]*e (p]I (1 - tI*gZ(p—1]) —
g(p] a- g(p—1] + r(p) * r(p] / Rr(p];

• Ke(p+1) a- D(p+1) / Re[p);
Kr(p+1) a- tltO*01D+!.] / RrZ(p];
K [p+1] a- 1T (D(p+I]<8)

then - sqrt( abs( Ke(p+1)*Kr[p+1]))
• else sqrt( abs( Ke[p+13*Kr[p+1])) ;

0
•

I Update the prediction errors and their covariances;

— r(p+13 a- rZ(p3 - Ke(p+1] *
e(p+13 a- e(p] - Kr(p+13 * rZ[p];

l f p = (s t - 1 ) t h e n
c I Order update on initial covariances;

Re(p+1] a- Re[p] — Kr(p+13 * D[p+1];
• 

Rr[p+1] a- tBtl*RrZ(p] - Ke[p+1]*D[p+1);

else - -

I Time update on - subsequent covariances;

Re(p+13 a- Re[p+1) + tlI*( e[p+13*e (p+1]I(1-tI*gZ[p]) — Re[p+1] );
Rr(p+1] a- Rr(p+1] + tlI*( r(p+13*r(p+1]/(1-tlI*g(p]) — Rr(p+1] );

~ ‘stepupOrder ; 0

I Update g(tminpmax];
g( tminpmax] a. g( t.inpmax-1] + r( tainpmax]*r( tminpmax]iRr( tml npmax);

~ ‘orderUpdate’; 
0 

- 

0
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1

procedure pitchdetect; •
. 

• - 5

C pltchdetect’ 
. 

-

I compute differentiai likelihood ratio; —

dg a- (tlI*g(tmlnpmaxj - tI*gZ(tminpmax])/dgmax;
1? do < dgint then dg a- 8; .

j L lf dg neq B -

then I extract nongaussian pulse;
- 

c If abs(eZ(tminpinaxj) > abs(e(tmlnpmax])
then pt a- eZ(tminpmax3

- else pt a- e(tminpinaxj;
3

• 
j - else p t a - 8 ;

If pt < 8 then I invert negative pulse; -:
- C pt ’--pt/2;

• 1  - sgnp a- -1;
— L - I - -

• else sgnp a- ~; 
- -

• bug3(bt) a- pt * sgnp;

I - I start pitch scanner; -

- lft>next p
- then I start exponential scanner;

c maxpt a- ( maxpt * rho ) max pin?;
- if pt > maxpt then I hit first pitch pulse;

c I set new scanner threshold;
maxpt a- pt mm C alphap * oldmaxpt );
oldmaxpt a- maxpt;
oldpt ’- pt ;
iastptime a-

- 
nextp a- t + deadzp; -

- • pp a-TRUE;
3;

3 5

else If ( (t — lastptime) leq ppwindow ) and ( pt > 2 * oldpt )
— then c I encounter 2nd higher pulse, restart scanner; •

- . nextp a- t + deadzp; • 

0

- - mexpt a- pt miti C aiphap * oldmaxpt );
-~ - 

oldinaxpt a- maxpt;
- 0 oldpt .- pt; -~~

• - 
. 

- I discard and update current pitch location;
- • pl(ppptr max 1] .. t mod FRAMESIZE;

3
- else pp a- FALSE;

I output debug variables;
- 

. bug4[bt] a- e[tminpmax3;
bug2(bt3 a- dg; • 

-~~
- 

- If pp then bugl(bt) a- pt * sgnp else bugl[bt) a- 8; - 
-

• 
- 

- bt a- C bt + 1 ) mod BUGBUF; -
-

- - 
0 If bt ’Bthen - -

c aryWrite( fbugl, bugi, BUGBUF );
aryWrlte( fbug2, bug2, BUGBUF ); •.

•~ 
aryWrite( fbug3, bug3, BUGBUF );

( I  aryWrite( fbug4, bug4, BUSBUF );

3 ‘pitchdetect ; 0

-• ,~~~~~~ 4 k  
-
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procedure transmitter;
c ‘transmitter’

- 
. I This procedure Implements the transmission strategy;

I mark pitch positions; - -

If pp then
- 

- c ppptr a- ppptr +1;
t - if ppptr leq MAXPP •

then pi (ppptr] a- ~ mod FRAMESIZE;
5 3;

O compute total input energies since last transmission;
Energy a- Energy + e(B]t2; -

- I save ref coeffs In ring buffers;

rbp a- (rbp + 1) MOD RBSIZE; 0 
-

for I a- 1 upto pmax do- -

- • rkb(rbp,I] a-

0 1 This section of code Implements the strategy for -

O transmitting ‘reeasonable’ reflection coefficients; . —

I calculate transmit pointer in ring buffer;
if pp then nextpp a- nextpps; I consti;
if ir then nextir a- nextirs; I constl;

• if rs then nextrs a- nextrss; I consti;
If nextpp : 1 then dzcount a- dzcount max pptotdz;
if nextlr = 1 then dzcount a- dzcount max lrtotdz;
If nextrs = 1 then dzcount a- dzcount max rstotdz;

• If nextpp > B then nextpp a- nextpp - 1;
If nextlr > 8 then nextir a- nextlr - 1;
if nextrs > 8 then nextrs a- nextrs - 1;

O If we are in a deadzone, then leave transmit pointer alone,
O otherwise, update it;

If dzcount ) 8
then dzcount a- dzcount - 1
else trp a- (rbp - otdel + RBSIZE) MOD RBSIZE;

O If we are at a frame boundary then transmit parameter vector;
• If ((t+1) PlOD framesize) a 8 then

c ‘transmit’ -

~ 0 

I move vector to output buffers; - 
—

for 1 a - l u p to pmax do
okb(obp i] a- rkb(trp,i]; -

- for I’- iupto KAXPP do
opitchb(obp,1] a- p1(1];

oenergyb(obp] a- Energy;

I If necessary, empty buffers;
obp a- (obp + 1) MOO OBUFSIZE;
lf obp alth en

C

iryWrite(fko,okb,kbsize);
arywrit.(fpo,opitchb,pbsiz.); —

eryWrlte(feo,oensrgyb,OBUFSIZE); 
0
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1. I reset pointers for new frame;
• for I a- 1 upto MAXPP do p1(i) a- -1; 0 reset pitch indicators;

~ 5 ppptra-9; -

- 1 Energy a- 8; 0 reset residual energy;
D ‘transmit’;

3 transmltter’;
1_i - - 

- :

• - - :

i- - I - ‘-~ • 
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-

I 0 

0 

- 

- 
- - • 

-

I 
-

1~

10

- 

S 

• 

- 

- 
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procedure ladder; •

-- c ladder’
O Perform one-step predictor ladder form;

• . I Procedures required: Initialize,- pitchinit , trinit;
I orderupdate, transmitter;

initialize ; I Initialize ladder variables;
trinlt; I initialize transmission strategy;

• pitchinit; I initialize pitch detector variables; 
- 

•

• 

0 

• 0 data prescan to eliminate leading zeros;
I skip all zero inputs;
i a - B ;  -

setPos (fpy, Fsample);
aryRead(fpy,y,BUFSIZE);
while (y(iJ -: 8) do

C -
-

ja - 141;
if (1 mod BUFSIZE) ‘ 8 then

h - iryRead(fpy,y,BUFSIZE);
3; 

-
- - yt a- y(i]; -O check threshold of first Input data;

If abs(yt) ( delta then
c ttyWrite (‘ yta ‘yt,’ ( delta : ‘,delta,, 0 •

yt a- sgn(yt)*delta ,NL);
yt a- (yt/abs(yt)) * sqrt(delta);

• setpos(fpy, Fsample+i);

0 start recursive ladder form;

t t a - l ;  -

for t a- 0 upto Nsamples do
c ‘mainloop’

If (tt mod BUFSIZE) a 9
then c t t a - 8 ;

L aryRead(fpy y,BUFSIZE);
3; 

.

If (t mod 512) a B then ttyWrlte (‘1’);

I set time elm order Index since last reset;
tmlnpmax a- St am pmax;

I f t ø Bt h e n yt a- y( tt 3; —• 1 J - 
- 0 compute weighting factor ;

lf t a u s O
then I time-weighted; - - - 

-

I r  - C tlI a- 1./Ct . 1.);
tltl a- t/(t.1.);
lft)$thsn c tla-1./t; -

-

- tltla- (t i 1.)it;

[I else tI a. titi a- 1;

else I exponential weighting;
C tt •U ..-( St + lBepmax ) mm tau ; -

S 
S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----5- - --- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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0 

- 

- 

S

- - tI a- 1./ttau; - .
-

tlI a- -1./(ttaU + 1.);
1.  • tOti a- ttau/Cttau + 1.); . -

- 
- - titO a- (ttau + 1.)/ttau;

3; -

I Update delayed values;
for I — B upto pmax do -

- 
c rZ(i) - a- r(i).; - 

- - 
-

eZ(I] a- e(13; -

• RrZ(1] a- Rr(i); -

- 

S gZ(i] a- g(i3; •

3; -

0 start zeroth order ladder; - 
S

I - e(8] a- r(B] a- yt;
Re(8) .- Rr(B] a- Rr(B] + tlI*(yt*yt - Rr(B]);

0 order update the ladder; -

~~ 

- 

- 
orderUpdate;

# test for reset;
-If (tlI*g(13 geq resetsup) then rs a- TRUE

- 
else rs a- FALSE;

- - if (tiI*g(tainpmax] < resetinf) then ir a- TRUE
- - else lr a- FALSE;

-

~ ~ If rs v ir then reset ; -

• 1 • 

0 call pitch detector ;
pItchdetect; - 

-

-
- I Update time Index since last reset;

4 - st a- st+i ;
- 

~~~
- tt a- t t + 1 ;  

-

1 - 0 call transmitter;
transmitter;

~ ‘mainloop’;
0! : - 

~~ ‘ladder’;

1 
-

a _ S

S i

I- 

• 

S
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I - MAIN PROGRAM ;

ttyWrlte(’flrst sample ‘);

I read(ttykead, Fsample);
- ttyWrite ( ‘Nsamples ‘ ‘ ) ,

- 
- read C ttyRead, Nsamples );

• 1 I ttyWrlte C ‘peax : U) ;
- .. read ( ttyRead, pmax );

- 

ii fileOpen;
• I~ 

ladder;-- - fileClose;

END ‘speech’
• 

- 
- .
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0
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- 
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-

• BEGIN ‘synthesis’

• comment 0 
-

I This ts a speech synthesizer program, it takes
I as input vectors transmitted by SPEECH program

- 
- and synthesis speech according to the frameslze

— j and order of filter prescribed; 0

I- - 
.

- 

-

S —

- I

~ L

t I -

I 

-
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-
;

require ‘msailm.sal(exp lee)’ source_file; —

- 
require ‘msailp.sai (exp,lee]’ load_module; -

- define PHAX a 12; -
define OBUF a 4896;
define IBUF ‘ 128;
define MAXPP a 6;

a integer p, ppmax, Nsainples f r , t i; -

- integer ptcount; -.
real Re, gnoise, gain, pulse, npulse, mu; - -

- Integer fpy,fpg,fpe,fpp,fpk; I file handles; - • - -

: 1 Integer bt; I buffer pointer;- -
•

— -  real yt; - . -

— real array e, r, rZ ( 8 tc PHAX 3;
- - real array K( 1 tc PHAX ]; - 

- -

real array C( 0 tc IBUF , - 1 tc PPIAX ];
real array pp( 0 tc IBUF , 1 tc PIAXPP );
real array pltch( 1 tc MAXPP ];
real array y( 0 tc OBUF ]

~ 
-

real array En( B tc IBUF ); -

real array rannum ( S tc 4880); -

F Integer frnum , framesize; • -

integer obp; - -

- integer cbsize,ppslze; -

~~~ 

i

II 
S 

- 

-

~~

- 

- 

. 

S

-
S

H 
-
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- 
-
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procedure initialize;
- c ‘Initialize’ -

- ttyWrite C ‘ number of frames a 
~ 

);
- - read ( ttyRead, frnum );

ttywrlte ( ‘ framesize $ ‘ );
read ( ttyRead, framesize ) ;
fpk a- open ( ‘coefficient filename : ‘, data I input I prompt );- - fpp a- open ( ‘pit.dat’, data I input );
fpe a- open ( ‘en.dat’, data I input );

- fpg a- open ( ‘grand .da(sp,iee)’, data I -Input );
- • aryRead ( fpg ranmum , 4808 ); —

close ( fpg );
1~~ 

- for I a- B upto PMAX do
• e(i] a- i(I] a. 1; S

I-- yt ’- B;
Nsampies a- 1;

• 
fpy a- open ( ‘y.p36’, data I create I Output );

obp a -8 ; 0

for I a- 0 upto OBUF - 1 do
y ( 1 ) a - O;

cbsize a- PMAX * IBUF;
- ppslze a- PIAXPP * IBLIF;

1 
~~ ‘InitIalize’; -

•

~~~~ 
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procedure ladder;
c ‘ladder’

1. for p a- 8 upto (pmax - 1 ) do rZ(p] a- r(p];
- 

gnoIse a- rannum [ Nsaniples mod 4808 ];
- - If pltch(1] = -1

- 
then nu a- gnoise * gain

I 
- else c mu a- npulse;

for I a- 1 upto MAXPP do
I I - if Ct ‘ pitch(I]) then mu a- pulse;

5 -  

- 
~~~;

- 

S

if Nsamples < PMAX
then

• • for I a- 1 upto Nsamples do
mu a- mu * sqrt ( ( I - K(i)*K[1) ) );

- 
ppmax a- Nsamples mm PIIAX;

I 
• 

- e ( ppmax ] a- mu;

0 for p a- ppmax down to 1 do
I e(p-1] a- e(p] + k(p] * rZ[p-1];
I !- for p a- 1 upto ppmax dO -

r[p) a- rZ(p—1) — K(p] * e(p—1];

yt a- r(0] a- e(B);
I - y(obp] a- yt; - - -

- obp a- (obp + 1-) mod OBUF;
- 

-
•
~ 

- 
- if obp = B then

~ I. aryWrite(fpy,y OBUF); -

If (Nsamples mod 512) a 5 then
H .ttyWrlte(’$’);

-
- 

t 
0 

- Nsamples a- Nsamples + 1;

~ ‘ladder’;

~ F 
- 

—

F 
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. Initialize ; 
-

aryRead(fpk,C cbsize);
aryRead(fpe,En,IBUF);

• aryReadCfpp,pp,ppsize);

bt a. 0; 0

for fr a. 0 upto frnum - 1 do 
• 

- 

- 
0

c I synthesis one frame of speech;) • for I a- 1 upto PHAX do -

- 
- K(l] a- C(bt ,i];

Re a- En(bt]; -

- fo r  I a- 1 upto P1-lAX do -

-~ - Re a.Re *C 1—K (i)t 2 );
for I a. 1 upto PIAXPP do

- pitch (i3 a- pp[bt, 1);
If pitch(1] = -1

then gain a- sqrt( Re/FRAJIESIZE )
else S

• - c ptcount a. B;
for I a- I upto MAXPP do 

S

If pitch(i] neq -1 then ptcount a- ptcount + 1;
pulse a- sqrt C Re/ptcount );

• 
- 

5 npulse a. 8;
5
; i 

- 3; 
- 

—

0

~ - 
for t a- B upto frames.Ize - I do 

0

0 ladder;

bt a- (bt + 1) mod IBUF;
1f bt 8

- • then c -
aryRead(fpk,C,cbsize);

a aryRead(fpe ,En ,IBUF) ;
aryRead(fpp,pp,ppsize);

J 
- 3;

-
I 

- 3; - - 
5 

- 

5

- 

close(fpy);
j  close(fpk);

- - closeCfpe);
- close(fpp); -

END ‘synthesis’; -

i~ 
- -

I —
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