- AD=A070 050 STANFORD UNIV CALIF INFORMATION SYSTEMS LAB

FAST ALGORITHMS FOR SPEECH MODELING.(U)
DEC 78 M MORF: D T LEFE
UNCLASSIFIED

| *3
£
!

F/6 17/2

DCA100-77=-C=0005
NL

e—— _ R _




ocb )UNlo,v

. \‘\‘\

INFORMATION SYSTEMS LABORATORY

é )
S Ansadh

T

L

STANFORD ELECTRONICS LABORATORIES %
DEPARTMENT OF ELECTRICAL ENGINEERING SANIZED

STANFUHD UNIVERSITY - STANFORD. CA 94305 LEV El

FINAL REPORT TO THE

-

DEFENSE COMMUNICATION AGENCY

FOR RESEARCH ON

BA070050

FAST ALGORITHMS FOR SPEECH MODELING

Contract Number: DCA100-77-C-0005, g

For a period of one Year
" December 8, 1976 - December 8, 1977

Report Date: December 16, 1978

, '»I‘“ :‘}.-u.:'. nt hes bmn&’;’r;t;vvad ¢

e roar and sale; 1
sibution is vy xhz ritad,

A ———
—————

“’“ﬁ{{i COPY

E

i et R



SE_A AN oo A oo

R TN T A T VRV Sy

. — e e s . e < e o

e

STANFORD UNIVERSIT¥ .

INFORMATION SYSTEMS LABORATORY
STANFORD, CA 94305

/\

- FINAL REPG’IIO 'I‘HE
gDG(, /4‘8 D -..._‘./
DEFENSE COMMUNICATION AGENCY

FOR RESEARCH ON
FAST i\LGORITHMS FOR SPEECH MODELING . /

. ' b Bz e o
Contract Number nu1¢n-77-c-9d¢51

—

December 8, 1976 - December 8, 1977

Report Date: December 16, 1978

g T




Abstract

A\

W
1

This constitutes our final report on a research program aimed at the development
of a high quality low data rate speech transinission system based on new types of

speech modeling algorithms. Several such algorithms were developed and tested on

‘simulated and real speech data. These algorithms have many desirable features

including the capability of rapidly tracking time-varying model parameters.

The best algorithm was used as the basis of a speech transmission system in order

to test the quality of the speech models. The model parameters (refleétion

coefficients) together with pitch information and speech energy form a speech
parameter vector to be transmitted and used to reconstruct the original speech.

Several parameter quantization methods were considered to achieve the desired low

bit rates.

The various algorithms as well as the ccinplete transmission system were coded
and tested. Simulation results are very promising and the usefulness of our new

approach for speech modeling has been successfully established.
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1. Introduction

This investigation was concerned with the tdevelopment of digital voice
communication systems capable of low data transmission rates. Such systems
construct a time-varying linear model of the speaker's vocal tract, and transmit the
encoded model parameters over a digital network. The receiver reconstructs the
model from the coded parameters and synthesizes an approximation of the original
speech signal. The model is traditionally constructed by the method of linear
predictive coding (LPC), which predicts future speech samples as linear
combinations of past speech samples, where the linear combination is chosen to
minimize the prediction error. This results in a vector A of coefficients which
characterize the speech production mechanism in terms of an inverse filter a(z) (the
vocal tract is considered the filter 1/a(z) ). The A coefficients can be used to
reconstruct the speech signal. In practice they must be encoded to achieve low bit
rates, but this problem can be separated from the modeling problem pfoper.

Our goal was to investigate the application of new linear estimation algorithms
to speech modeling. This involves both modeling and encoding issues. There are a
large number of ways to approach the speech modeling problem, but here we
restrict our attention to exact least-squares linear estimation procedures (there is
currently no reason to examine sub-optimal or approximate methods). These
estimation methods find linear models which fit the (speech) data optimally in
terms of minimizing the sum of the squared errors--hence the term "least-squares".
The LPC methods currently used in speech modeling are least-squares estimation
procedures which find all-poie or autoregressive (AR) models. The assumption
that an all-pole model is sufficient is valid for vowel sounds (disregarding sound
radiation). However nasal sounds require zeros and a pole-zero or
autoregressive-moving average (ARMA) model should produce a more efficient
speech encoding. Another aspect of our modeling effort is the extensive use of

ladder-form realizations and their reflection coefficient K for speech
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parametrizations. The K coefficients have many advantages over other model
parametrizations, such as better numerical properties and fast convergence, and can
be used directly in a ladder-form synthesis structure. Each representation can be

converted to the other in a one-to-one fashion, but the K coefficients have physical

significance in speech modeling because they correspond to acoustic reflection

coefficients in a segmented tube model of the vocal tract. Actually, it is possible to
modify the Levinson recursion to avoid the use of the prediction parameters A
when computing the reflection coefficients, as mentioned in [MLNV]. See also
[Vieira)].

Various new speech modeling algorithms were developed using the techniques
associated with our fast algorithms:

- Pre-windowed ladder-form (AR)
- Covariance ladder-form (AR)
- Pole-zero ladder-form (ARMA)

All of these techniques use exact recursive least-squares parameter estimation
algorithms, i.e, they are ideal on-line modeling methods, with fast "adaptive"
properties. Their computational requirements (per sample) are proportional only to
n, the number of model parameters - again a feature that is well suited for
hardware, parallel processing or pipeline implementation of our algorithgs.

The implementation of the pre-windowed (PW) ladder-form has been enkanced
with the introduction of tracking of time-varying parameters. This can only be
done with an on-line method and meshes naturally with the PW ladder
formulation. The effect is that the parameter estimates track the actual dynamics
by weighting recent data more heavily than older data. The dynamics in model
order can also be tracked. These tracking capabilites are necessary for estimates of
transients (or transemes) or plosives. The weighted forms of the covariance ladder
and the rational ladder algorithms were developed. We discovered that the tracking
ability of our algorithm is actually even better for voiced speech, as the glottal
pulses help the parameters to converge within a few samples virtually to a constant

over a pitch period - a fact that leads to reduced data rates, For unvoiced speech (i.e.

Lot




Gaussian type residuals) the tracking is still fast but very smooth - another
desirable feature.

This PW ladder-form algorithm provides the basis for our digital speech
transmission system. The system consists of a speech analyzer which produces a
(slowly) time varying parameter vector, an encoder that converts a single frame of
speech parameter vectors into a binary data stream, anci a Aecoder that converts the
binary stream into parameter vectors which are used by the speech synthesizer to

reconstruct a signal that sounds like the original speech. The speech parameter

vector consists of the reflection coefficients, the pitch period-(or time index of the.

beginning of the pitch period), and the energy contained in the speech frame (or
equivalently in the residuals). The pitch information is obtained by a novel pitch
detection method, resulting from our recursive ladder-form algorithm, using a log
likelihood ratio parameter that is computed by the algorithm in order to separate
out the jump process type pitch pulses from the residuals,

Several quantizing methods were considered, for moderate bit rates, (e.g. 4800 -
9600), single symbol quantization, i.e. independent quantization of each parameter
is considered sufficient. For lower (e.g. 1200 and below) rates, a new parameter
vector quantization scheme based on a minimum distortion measure was
considered. Such methods are being developed by R. M. Gray at Stanford (under
AFOSR sponsorship). (See [Buzo].) These new quantization schemes are still in the
development stage; however they are sufficiently promising so that a short sample
speech segment was quantized with approximately 3 db Itakura-Saito rate
distortion deviation ( from the unquantized reconstruction ) at a rate of roughly
700 bits per second. In this new method the parameter space of the reflection
coefficients is partitioned into a number of cells. Whenever the parameter vector
falls within a given cell, the binary number representing that cell is transmitted.
The partitioning of the parameter space is chosen so as to minimize a given, e.g.
Itakura-Saito, distortion measure. In the actual (on-line) quantization, a
mean-square error (Euclidean distance) criterion is used to pick the actual code

transmitted. These methods have great botential to provide high quality low bit

L N e b e s S




rate digital voice encoding for the future. In the simplest case, pitch period and
(log) energy or gain are envisioned to be coded via a standard delta modulation type
scheme; however, this is only considered in order to be able to compute an
achievable lower bound on the transmission rate. A real implementation could use
more sophisticated coding schemes, a task beyond the scope of this research. Using
rate distortion encoding schemes, a given (low) rate can be achieved with a
minimal loss in speech quality, once a suitable distortion measure (such as the
Itakura-Saito) has been agreed apon. A number of simulations were performed on
the complete transmission systems and the results so far are very promising.(See
Section 5.)

This final project report presents the theoretical results of our research, the
actual algorithm implementations, and the simulation results of the first year of an
origi‘nany estimated two years worth of research. Sections 2 and 3 present all the
analytical work that was performed. Section 4 and Appendix C discuss the
software generated as a result of our analysis, and Section § describes the actual

simulation results.
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2. Algorithms for Speech Modeling

A number of new algorithms for speech modeling were developed in the course
of our investigation, using our fast algorithm approach to estimation and system

identification. The main features of these algorithms are

= They are exact least-squares methods

= They are recursive in time and in the order of the model and

thus capable of processing data as it comes along (i.e. not

block-by-block, unless desired)

- Compute directly either the predictor coefficients (AR model)

or the reflection coefficients (ladder form); provide

true unbiased estimates

- Capability of tracking time-varying model parameters

= Good stability and convergence properties

- Computationally efficient

In this section we describe in detail the development of several algorithms. For

several reasons, the emphasis is on the development of ladder-form realizations. In
particular the reflection coefficients appearing in these forms turn out to be an
excellent way of parametrizing speech. Both autoregressive (AR) and pole-zero or
autoregressive moving-average (ARMA) type algorithms are derived.

Sections 2.1 - 2.4 present the detailed derivation of the algorithms for the
pre-windowed and non-windowed (covariance-form) ladder-forms. The

pre-windowed versions of these algorithms play a central role in our investigation,

2.0.1 ‘




and Section 2.3 discusses the necessary modifications to make them capable of

tracking time varying parameters. Pole-zero or autoregressive moving-average
(ARMA) algorithms are derived in Section 2.5 .

The computational requirements of various algorithms are summarized in
Section 2.6 and compared to currently used methods. Finally, some difficulties
which arose during the algorithm implementation phase and the method by which
they were rectified are briefly described in Section 2.7.

For an overview of the various algorithms derived in this section and the way
they are related to each other - see Appendix A. The importance of ladder form

realizations in estimation and modeling is briefly summarized in Appendix B.
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2.1 Autoregressive Models

In this section we introduce a framework which is later used for developing
several exact least-squares algorithms for AR - type models. The basic problem is
presented from an estimation theory approach which leads to the deterministic

least-squares framework.

2.1,1 Basic Problem
We model speech as the output of a time-varying linear system, which, over a

short time interval, can be approximated by a time-invariant filter of the form
¥z) = H@) u), (1)

with %(z) being the z-transform of the discretized speech signal, H(z) the overall

transfer function, and u(z) the input driving function which consists of a periodic

pulse train (approximating the glottal pulses for voiced sounds), and zero-mean'

white noise (for unvoiced sounds). Such a model is widely accepted by the speech
research community as a good description of the speech generation process.
Detailed discussions on this model can be found in [MKD] and [Fla]. A particularly
popular model, see e.g. [MG], is one where H(z) is a finite order all-pole filter

P
Ho = t1(1+ Y 40k
k=1

Such a model is equivalent to modeling { ) } as an autoregressive (AR) process

(P)

D * APmﬁ':-l + ..+ APy p = Y . (3

Rewriting (3) as
P
- A o @
the all-pole filter of (2) forms a one-step linear predictor for { y() }

P
Ni(s-14-P] © = kz-l AP(k) Nk - (8

2.1.1
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A very common and practical criterion is to choose the predictor that minimizes
the squares of the prediction errors, thus leading to a least-squares estimation
problem.

We assume for the moment that {%()} (for generality we let j, be
m-dimensional vectors) is a stationary process with known covariance m by m
matrix function

E 39k = R
Ry = R k=0,1,...,P ; (6)

The innovations or the forward prediction errors are then given by

€pe = I = dii-1,:-P)

-y + AP(” Vg1 * v - +AP(P) 9;-p
= A Vjup) (7)
with
Ay w4V T, (m by (P+)m)
y[m-P]T = Ef gy ) (Qly(Peim)
= the m by m identity matrix. (8)

The innovations should satisfy the following orthogonality property
E ¢p,35 = 0. t-Pskst-l €))

£ €py ‘P,tT - E €ps A
- R%p N (10)

From (S) and (10), we see that AP can be obtained as the solution of the linear

matrix equation called the Normal Equation

- e
Rp
0
RPAP s |0
0
Le Js (11)

where Rp is the (P+1)m by (P+1)m block Toeplitz matrix

2.1.2




Rp = E Yp,.p) Yp) ; (12)

Writing it out in full
[ Ry R, R, Bp |
Ry By By Rp.1
R, - R, Ry
R4
PR B e (13)

We note that by virtue of stationarity of { ) } that R¢p is independent of ¢ and

that the covariance matrix R p s Toeplitz. This special structure makes it possible
to solve the normal equation (11) with fewer than the O(P3) computations
generally necessary to solve P linear equations in P unknowns. In fact, Levinson ;
[Lev] and them, for vector processes, Whittle and independently Wiggins and
Robinson [WR], derived a scheme for solving (11) with 0(P?) computations. (Here
a computation is taken as one multiplication of two real numbers.) This algorithm,
which we call the LWR algorithm, involves the simultaneous solution of (11) and

an auxiliary equation
RP BP - [ 0, 0, v & s 3 RrP ]T ’

where
By o T35 85, B, b T, (14) ‘

and is actually a backwards predictor, with backwards prediction errors defined by

TPg = P = J1-Pi[1-P+1, 1]

- BP(P)y‘ * s W BP(I) 93-?01 + yt-P '

- BTP Y[m_p] ’ . (15)
and

E "P,z’kT « 0, t-P+1skst

201!3 : . ” I I -‘ ld




T T
E rpyrpy) = Erpyyp = Rp

(16)

The basic idea of the LWR algorithm is to compute Am and Bm recursively in

discussion can be found in [K-74] and [Vie].

2.1.2 LWR Algorithm

Iterate on n=0 until n=pP

-order from n = 0 to P . Here we give the recursiona of the algorithm, and a detailed

A 0 Re B
An 0
4,, B, = 8,01
gl B,
L Y Ry T B (17)
where
Im 'R-‘n AmlT
eml 5
-RT, AL 4 (18)
n-1
Apy = "2_;0 4,00 R e Bl 0] = Ele, )
(19)
with initial conditions:
RS = Ry = Ry,
Ay - By =1, (20)

The A,,; defined in (19) is known as the partial correlation coefficient

(PARCOR) between the forward and backward prediction errors, and when

T e

PO g,




appropriately normalized by R‘n and R’ a they become the so-called reflection

coefficients.

A compact way to rewrite the algorithm is

Rtp 0 Ry A
e 0
Ap B, - 8, 6293...6P
0 T
i 0 R'p | ] R, Ry i (21)
The important point which (21) dbrings out is that both AP and BP can be
completely characterized by {6,,n=1,..., P}, and therefore by
{Rg; &, in=l, ... ,. P }. It turns out that this parametrization of the predictor

offers many advantagss such as "stability by inspection" property" [MLUN] and
they form the basis for implementing the predictor in ladder forms. The

development of various ladder forms will be presented in the subsequent sections.

In real time applications, no ensemble averages are available. The covariance

functions usually are not directly obtainable and must be approximated by time

averages from the given data. This leads to the following deterministic

least-squares problem.

e b
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2.1.3 Deterministic Least-Squares Problem
Given a series of observations {(t), Ss¢sT}, where {5} can be
m-dimensional vectors, we wish to find the linear one-step predictor of order P,
parametrized by the (matrix) predictor coefficients { -Ap ,S,T(i)' i=1,...,P}, that

minimizes the sum of the square of prediction errors € P,S,T(t) , Where

EpSTD = % = p-),...,-P
L A AP,S,T(” Y t oo +AP,S,T(P) %P+ SstsT. (22)

In matrix notations, we have

tpsrd = Apsr Vipy (23)
with
Apsr = Ul apssV oo apsrP 1,
Voapy = L3 0 oa" 0 o 0p T (24)

We can express the squared-error, ¢ PST» by

f
EP,S,T = ¢ 2 ‘P,S,T(t) ‘TP,S,T(I) }
t=3

= [r { ATP,S,T RP,S,T AP,S,T } ’ (25)

with Rp 5,7 being the sample covariance matrix given by

Rpsr = Ypsr Y'psr (26)
and
’- yi ....... y,
YP,S|T -
- yi-P """" yI-P‘ > (27)

It is well-known in least-squares theory that the AP ST that minimizes ¢ PS,T
is obtained by solving a linear matrix equation called the Normal Equation of the
following form




P T T R B g T EgT T AU e TAgy = T

—

r ¢ -
RpsT
0
RP,S,T AP,S,T ~
0
SRR e (28)
where
tr R‘P,S,T - Min‘q EP'S,T 5 (29)

The solution for 4 PS,T in (28), for the scalar case, would involve the inversion
of Rp ST» an n by n matrix, and thus would require O(n3) computations.
However, when R PS,T carries some shift-invariance structure, for example a
Toeplitz matrix, a reduction of computations is achieved. In the case where R PS,T
is Toeplitz, equation (28) can be solved via the Levinson algorithm [MG], [MVLK],
requiring only O(nz) computations. The basic approach is to build up the predictor
recursively in order, i.e. by recursively obtaining {AP ST p=l, ..., P},

In our present problem, the structure of R PST depends on the cheice of i and f.
Here we consider the following three cases of importance:

(1) i=8,f=T,

This is called the "pre-windowed" case, since one has to make the assumption

that ¥(t) « 0, for ¢ < S.Thus ¥p s, becomes

’S"'ySOP"'yT

YP,S,T -

L B PPl (30)
(2) i=S+P,f=T.

This is called the "non-windowed" case, i.e. no windowing is applied to the
observed data. This is also known as the "covariance" method. In this case YP S,T

2.1.7
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becomes

YP,S,T -

f
Bt yr-pJ- (31)

(3) i=S, f=T+P.

§ This is called the "pre- and post-windowed" case, since one must now assume
kY that %) = 0, for ¢t < § and ¢ > T. This is also known as the "autocorrelation"
B method. In this case zeros are added both before the first sample and after the last

sample, and ¥ p g  takes the form

FyS"’SoP‘yT

Y, ST "

- ys > 4 ke yT"P- Raa 5 yT- >

(32)

The names "covariance” method and "autocorrelation” method are traditional
in the speech processing literature, but from a statistical point of view such
nomenclature is not completely justified.

We may note that only in the "pre- and post-windowed” or "autocorrelation”
method, Rp 5,7 15 a Toeplitz matrix, while in the other two case it is no longer |
Toeplitz. However, even though RP S.T is non-Toeplitz when defined in (30) or |

(31), it is the product of two Toeplitz matrices and therefore still carries a certain
shift-invariance structure. A class of algorithms are presented in [FMDK] and ;
[MDKV] for inverting matrices which are sums of products of Toeplitz matrices |

and the algorithm as investigated here is a special case of that class.
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2.2 The Pre-Windowed Ladder Form -

——

In this section we present a detailed derivation of the pre-windowed (PW)
ladder form. At the end of the section we will show that this particular form is
actually a good approximation to a recursive maximum likelihood method for the
autoregressive model.

| 2.2.1 Algorithm Development
i For notational convenience, we let the observations start at time zero, i.e.§ = 0,

ki and thus from here on we simply drop the § index altogether. Thus in the

T

pre-windowed case the covariance matrix for order p has the form

{ T
‘ 1 By = %rlur i»
N ---¥ -0
' YP)T = .
o 9
- W e I (2)

The matrix Rp.T defined above satisfies the following shifting properties (or 3
recursive identities).

Order-update (down-shift):

xl sz 1
RP“,T -
X, Rp.T-l (3) 1




Order-update (up-shift):

F t Rp,T %
|
? RP’I,T -
xsT X, (4)
|
| S
F
r Time-update:
i T T
i | Rp,Td 0 Rp,T ¥ FyTvl (o T+l © 0 I T-pal ] ’
&
E
[
-
{ .?T-p"ld
(5)
P' E where the X's represent unspecified matrix elements along the appropriate edges.
|
"‘ DefmeAP,T,BP’T,ande,Tforp-0, ) SR g
- &
3 W 0. "y
0 1 " ¥y
F;‘ S
1 Ry (4. B,7.Cpp) ' -
E‘ ¥ |-V I IT-ps1
bt
: [ 0L e lopy, - | o (8)
A where AP,T and Bp,T are respectively the forward and backward predictors of the
form
T . ($)] (p)
4 pT ( Im ? AP»T APsTP ] v (7
»
T 1
| By = (859, .. ..8% L 1, (8)
H
h and C p,T 1S an auxiliary vector which can also be expressed by
1 3 1
! Cor = Bor N g (92) |
and )
o -1
i cpﬂ' Yr[m'-r] RP»T - (8v) :

2.2.2




We define ¢ aT the forward prediction errors or innovations, and To,T" the

backward prediction errors by

ATp,T r

¢ T

T
rPnT - B pT 1y

yT-p#l
.yT'P J 8 (10)

We define an auxiliary quantity ¥ AT by

Yol = Cor Yirir-p) - ‘ (11a)

From the definition of C o,T &iven in (), ¥, 7 can be interpreted as the weighted

energy of the observations { Irps e T }, which can also be expressed as
T T -1
Yar = Lfpe o - ool Fr (91
yT-p . (11b)

It also has an interpretation as a'ukelihood variable which we will discuss furthur

in a later part of this section.

2.2.3
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2.2.2 Order Update Recursions
Suppose we already have the predictors AP,T and BP,T and want to increase the
 predictors order to p+1. We therefore would like A, 1 and B, 7 to satisfy the
normal equation
[ pe
B oyrl 0
O] 0

Rpf‘ T { Apol,T ’ Bp#l,T i t I

0 | Ry ] (12)
and we start by using relation (¢ ):

RP’lsT AP)T i RP!T & AF'»T

0 x X x 0

A7) (13)

where

A1 = Ulastblock-rowof R yp )| A 7
0

T
= 20 y‘_P_l eTP,T(t) . (14)
L=
Here, we can relate A pol,T to the partial correlations discussed in the previous

section.
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Similarly, using the relation ( 3 ):

0 @ 0 Bs ool T
RP’X,T = % - 0
BP’T‘I " RPtT‘l BP)T'I 0
0
0
LR 1 Jo (18)
where
Loar = [ first block-row of Roar) g
BP’T‘l J
T
- 2 y‘ rTP,T_l(t-‘) . (16)
t=1
We can show that A, 7 =T,y 7 by noting that R, 1 is symmetric, and
[* T .
= »T 0 1 APvT 0
Rpol,T
T
2 0 B P’T‘l. 0 Bp,T-l
= ’ =
; ATP.T 0 [ R T l.‘p*l.T
- 0 0
[0 BT,,T.J 0 0
0 0
0 0
L Apol,T R’p,T-l o
€
3 R pT rp#l,T
Apur Rora (17)
By symmetry, we establish the identity
(18)

T
r p+,T

Apd,T

=
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Thus postmultiplying ( 15) by R~ pT-1 A pel,T » Where R’ is the inverse of R”, and

then subtracting the result from the right hand side of ( 13 ), we have the

following order update recursions for AP’T and R¢ oT"

r

AP‘I,T - [AP,T i 0 R7pT-1 Bpa,T
L ¢ BP;T“ '

€ € T =
Rpar = Rpr = &Lar RMpra Bpar -
A similar set of order update recursions for BP:T and R p,T 2Te obtained as

A

-€ T
BP*I,T = 0 X T R%pr B par

B 1.1 0

-€ T
Rrp*l,T % Rrp. 1~ Bpar Ropr Alpar

(18)

(20)

(21)

(22)

To obtain the order update recursions for c pT » We first observe that the last

block row of R-i p,T isequal toR7, 1 BTp’T. (This can be obtained from the normal

equation for B,7.) Thus from the definition of C,r , we can obtain the last

block-row of C,, as
-1 -r
last block row of c g = Rp,T Y[T;'r.p] - R »T "nT

Using the relation ( 4) , we have

RP‘lvT cPrT " pT S aT
0 ¥ %X 0

r?T

IT41

IT-pe1

- acp’T o ¢

where

(23)

(24)




6C’p’T = [ last block row of Rpol,T 1 C'P,TT . 037 (25)
Here we want to show that
Cpr = IT-prT-pTY
Partitioning Rp*l.T as given in (4), we write the Normal Equation for Bp*I,T as

follows
R,r X B*M.T 0
=| 0
x 2 In "po,T ke
where
BX ip = [ B(p)p’Tr, e Ak Bmp,TT T

ie., B*P’LT is the block vector formed by the first p elements of B pel1,T"
Thus we can rewrite (26) into
K
RPvT = P*’LT i 3 0
T B
X' B sl * Z = Rrpd.T
From the first equation above we have
T * 1
e p+1,T RP:T
and recalling from (Sb) that
-1
Cor = Bpr ¥irrpa)
equation (25) becomes
T
8CP'T = x CP’T
% T
s= & T Y[T:T-p‘l]
= IT-p-1[T-p:T] -
From the observation from ( 23 ) that the last block-row of C is equal to
p+1,T
R\ T Tps,r 2nd also that the last block-row of B,y 7 is I, we can obtain the

order update recursion for C oT

cpol,T ¥ cp,T 5 Bpol,T R-rpol,T Tpel,T -

0 (27)

2.2.7
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Also along the same lines an alternate update for C, 1 is obtained as

-€
cp#l,T = 0 ® Apd,TR peL,T €pa1, T

(¢4

pT-1 (28)

Thus equations ( 19) - (22), (26), (28) give a set of order update recursions
for A, 7, B, and C, 7. These recursions for 4,, 1 and B,,; r are similar to the
multichannel version of the Levinson algorithm [WR], [MVLK], and [Rob].

However, the recursions for C,,; 7 are new results.

2.2.3 Time Update Recursions

Using the relation ( 5 ), we obtain

& ¢ 9 5
Rp,T’l APvT = R T + rde GTP’T(T'PI)
0 T
0 IT-p
ol e

(29)

We then apply relation (4¢)to[ 0, CT p-1,T ]J" so that after post-multiplying the
result by €' p,T(T+1) , We can force the right hand side of ( 29 ) to satisfy the normal

equation ( 12 ). After some algebra, the time update recursion for AmT is obtained

as follows
T
AP,T’I - A P,T - 0 4 P,T‘T+ l)
Cour (30)
Furthermore, we premuluply( 295y [y s - -0 9101 p ] and obtain
T T T
€1 = €opT+) = Yy 1 €, [T+1)
and recalling that v p-1T is a scalar process, we rearrange terms to get
‘p,T‘l = ‘p,T(T*l) (1 - 7P_1'T ) % (31)

2.2.8




Thus the time update recursion for R¢ p,T 15 Obtained as follows

€ €p,Ts1 ‘TpTOI
R p + BBt (32)

R‘
pT+1 ) - ‘YP_ LT

A similar set of time update recursions for B, 7 and R, - are obtained as

4
r
B s 2o -l e R B8
T+l T p-1,T+1 l-?P-l.T'l
0
(33)
T
Tp,T+1 T p,Ts1
R’ - R’ + ______P, b . (34)
T+l T T=%, 11
and for €, ; pand ¥, 7 via
-€
cP|T'1 i 0 * AP7T’1 R pT+1 ‘P’T’l
cp-l,T ' (35)
T -¢
7P"11T i ‘YP'liT i ‘PJT‘I R pTl ‘PrT’l
T -€ T -
- ‘YP,T + € pT1 R pT+1 ‘p,Td - rp,T R rp,T rp,T . (38)

Equations ( 19)-(22), (26)-(28), (30), and(32)-(34) form a complete
set of order and time update recursions for 4, 7, B, r and C,, .
By using the same techniques, a time update recursion for A pel,T » which will

be useful in the ladder form implementation, is obtained as follows
: T
nT € pTa (37)
1 - 7P-I,T
It is clear now that the time update of Apol,T is in fact a time-average of the

Apvl,Td z Apol,T i

cross-correlations between o T and ¢ pTe1r except for the special gain factor

'1—'11'_ . The significance of this gain factor is explained next.
= "p-\T

z.z.g




2.2.4 Likelihood Variable
In this section we establish the significance of the variable ¥ pT 3823 likelihood
variable. Consider the Gaussian case where the joint distribution for
{9 9710 0 - -+ J’T-p} is given by
POps .97y = RTR VR exp (- 5 PITT-pIRIVITT-p).  (38)
It can be shown that [R | is related to { IR&l, i=0, ..., p} which in turn are

relatedto{ K;, i=1, ..., p} (see [MG], for ex.ample) by

Ro|= RS+« « o < IRY,

(39)
IRE,, 1 = 1RSI (1= K1) .
(40)
Therefore the logarithm of (38), becomes a log-likelihood function
' He wmBl o+ i
B g mRG + 7,
= ln |Ry| + im(1-|m|2) + T, (41)
i=

We can indentify the variable ¥ oT obtained from our exact least-squares
recursions as the ¥ P appearing in the log-likelihood function. Thus the ¥ T factor
acts as a good detector for non-Gaussian components in the observations. Our
simulation results indeed demonstrated that ¥ aT would take high values (close to
1) at non-Gaussian components. It therefore also acts as an optimal gain factor in

that the gain can adjust the gains immediately when non-Gaussian

RS TS
1-% pT
components are present in the observations. Simulation results are shown in a later

section of this report,

NRRINSY Y S TR e T ¥

|
|




B e Dt

PERETY TS

2.2.5 Exact Least-Squares Ladder Recurrsions
Premultiplying ( 30), (33), and (26) by [y'p, ..., ’TT-pd ] we obtain the

following order update recursions for € pT+ TpT and ¥ pT?

‘P*I,T - ‘P’T - Krp*l,T rP,T-l (42)
€
rP’l)T i rP;T'l = & p+L,T ‘P’T (43)
T -
7’”1'1' - 7P)T $ T pd,T R rp*l,T rp#l,T ’ (44)

where K¢ pel, 30d K . pe1,T are the reflection or PARCOR coefficlents given by
€ -€

KEoar -° Acar R%pr (45)

K'P’l’T £ AP’LT R-rPDT'l (46)
A a o7 €pTe1 (47)

= + e
p+1,T+1 p+1,T =47
The initial conditions are given by

By = sy = X T: Y3r = U

€ T
Ror = Rior = 2 %3

t=0

- Ropa + I03'Ti
for p2T:
1 = Sppi Tpr = Tppi Ygr = Trr o
Ré,r = R'ppi Ry = Rppi
Ajar - 0;
Bpa,pn = 3 €pupa (48)
The recursions ( 45 ) - ( 47 ) compute the sample cross-covariance of the
forward and backward innovations, using the optimal weighting 1 (( 1 -7.,.),
in contrast to other suboptimal schemes [SV].
As the dual to the stochastic forms in [IS]), [Wak], [Mo), [SKM], equations ( 42) -
( 47 ) are a complete set of order and time update recursions to obtain the exact

least-squares ladder form predictor, which is shown in Figure 1.

2.2.11
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Figure 1. Ladder realization of exact one-step least-squares predictor.
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2.2.6 Iavertibilityof R,
Here we establish a criterion to guarantee that R T is invertible. From relation
(5)wehave .
T
Rr =Ry + Vr¥r
T T T
‘VT -[yT,...,yT_p]. (49)
So, using the well-known matrix inversion lemma, we have
1 -1 -1 T R-1 -1 T R-1
Rl p=BUpy - Rl yp L+ yp ' R0y yp Ty R 7 (50)

pre- and post-multiplying the above by ¥ and ¥, we have

2
a“pT T
7 - a - P’ - p’ (51)
T T ’
P P 1+ aT 1+ apr
where
T -1
aPlT = yT R p,T-l yT > 0 (52)
or
a
G g wogEBL G (53)
Py 1+ ap,T

Thus when ¥ -\T" 1 , recursion will stop indicating that Rp,T is not invertible, or
equivalently that the columns of YP,T are linearly dependent. However,in the
scalar case R, p > 0 if 50 and R, 7 is always invertible. If m > L
(ma=dim(y,))we require T 2 p + m. These singularities can be avoided by
including a priori estimates of the covariance Rp. or equivalently including a
weighted norm of the predictor AP in the error criterion ¢ a T Several such
modifications have been proven useful in actual implementations. See also the use
of the special quantity ¥ in our pitch detection algorithm on Section 2.7 and 5.4.

z‘z. 13
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2.2.,7 Maximum Likelihocd Estimate

In this section we show the close connection between the pre-windowed
method and recursive maximum likelihood method for autoregressive models.
Suppose we have a p-t4 order stationary Gaussian autoregressive process (for
simplicity we consider the scalar case here)
%+ AP(” Bl ® s . b AP(P) Bp = &

(54)
where { €, ] is an independent identically distributed zero-mean Gaussian random
process with variances 602, Given the observations Yr=[3. ....9p), from
this process, the likelihood function is given as [BJ]

“T1)/2 -1/2 Y7 B yr
A = (2m) W wp{- =——1 .
(55)

Ry - E yryy
(56)

Conditioningon {yp, . . ., Ip-1 } , we express A as

2 T
A (21‘2»-(7'01)/2 | MP l1/2 exp{ - %‘ ( z ‘gz + Y10, ?-l]T MP Y10, n-1))}, (57)
t=p
where

(M1) 5 = E(ppyy)iot , 0sijisp. (58)
Collecting all the terms in observations into a matrix 2 p We have
2
A o« ety TRy 12 ey -F (] T, @) )
(59)

& (1) (2) (p) 1T
a, [1,AP,AP,....AP"J

Then it can be shown that 2 » is related to the pre-windowed covariance matrix
as defined in (4) as follows

2.2.14
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zp 4 YmT YTP,T 3, Lp LPT (60)

where
it e e
L - S i o
0 % 0
L e s Sy

(61)

Moreover the maximum likelihood estimates for ap is obtained by setting thé
derivative of A with respect to ‘p to zero, and neglecting the data record length
independent terms (justifications of such approximation can be found in [BJ]), we

have the following normal equatioa for such estimates

=2 T
ZPAP-[u'P,o.....OJ (62)
20 2@ 2 p) 7T
AP-[I.aP v 8y, ....aPPJ (63)
3 ] T
al, = 4, zp 4, (64)

We can see now that the Pre-windowed method is a good approximation to
recursive maximum likelihood (RML) estimates, both LP and | M, | are
independent of data record length, and asymptotic properties of the maximum

likelihood estimates are preserved, when T >> p.
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2.2.8 Summary of Algorithm

initialization

TR
Rg « Rog < 3 %;
for i«1 upto pmex do Ai,i « 0;
main loop
for T «1 upto Nsamples  do
begin By & By ot F Tips * 9
R « Ror « Ry +  oror i
Orderupdate; !
end;
procedure Orderupdate; |

for p « 0 upto (pmex min T) do
begin Aoar “8pura * Tpraber! (1=Yp )
‘Vp,T - ‘Yp-l,T + T rp,Tl R’ pT
Kpar < Bpar!REps
K'pnr ¢ Bpar!Rpras
Qare  r = Kpar Tpraas
Tpsl,T € Tp,T-1 = Kepol,T €T
if T s pmax then begin

€ € .
le,T € Rp,T = Krpol,T Apd,T' |
3 . |
Rpnr « Rpra = KparBpar: !
end
else begin

M 4

€1 o1 s Y p-1,7-1 )i

+

‘ ¢
RPpaT “Rpara
Ripnr *Rpara*  prfr!(1=Ypra);

end; 1

end;
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2.3 Tracking Time-Varying Parameters

So far we have assumed that our observations { §(t), 0 < ¢ <T }, are generated from
a constant parameter model. When the parameters are changing with time, the
general algorithms must be modified to track these changes. Using time update
recursions of the algorithms, we apply a simple approach to the tracking problem
by including an exponential weighting factor, w, or the so-called fading memory

factor, into the error criteria.

2.3.1 Exponentially Weighted Algorithms

We define the squared error criterion for the pre-windowed case ( s=0, f=T ) as

T 5
tor = ;0 W™ € ) 0 (1)

where w is a constant <1, ( e.g. w = 0.99) so that the past prediction errors, being
weighted with w, will have smaller influence ou the estimates. Other weighting
schemes such as using time-varying weights, w(?), are more complicated (see
Ljung[Lju), for example). For simplicity, we only consider the case of constant w.
We introduce a simple procedure to obtain the ladder form for this exponentially
weighted case by first considering the simple time-weighted case. The Normal
Equation is weighted with respect to the length of observations, i.e. the time

index,
R* pA,p = (R®,7,0,0,...,00, (2)

where
R*P,T E Ti_l' o : &
T .. (4)

This time-weighted Normal Equation ( 2 ) retains the same form as the

non-weighted one, and the least-squares predictor for the two cases must be

2.3.1
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identical.

Thus both the forward and backward predictors would remain the same while

only the auxiliary quantity C ,,T Deeds to be modified to
C*p,'[‘ - (T+ l ) CP,T ’ (5)

and the defining relation for them also retains the same form

-R‘*p,rl 0y .
O I R
RY plA,p, Byp, C¥pdad . 1 . I
(o KA [N | IT-pel
[ O Rup o, | - ®)

with R™ 1. defined by 7‘%‘1 R,
Similarly, the forward innovations, € oI and backward residuals, To,T remain
unchanged, while Y pT" the auxiliary quantity, is modified to
v = (T+D7,1. (7
The defining relations for them again retain the same form
ar [ i

€T oT or
Int | * BTp,T )71
.,xp, c*TP’T
IT-p+1
| Irp. ] (8)

We next consider the time-update recursion identities for the matrix R*p,T

which is given by

T 1
Rer = g Fora *+ mq o | D0 o o0 1)

IT-p (9) '

Thus if T of the weighting factor is set to any constant T), we can interpret the

T
ratio 7'o+f , which is s1, to be the exponential weighting factor, w, and this T

2.3.2
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can also be interpreted as the a priori time constant for the underlying

time-varying model.

Recursion ( 9 ) can be rewritten into
R*P,T = R*p,T-l + { yT [yTT 5 8 yTT~p] - R*P.T'l }/(T + 1 ) ’
IT-p (10)
and we can identify ﬁlj- as some time-varying parameter, A(7"), that is related to a

time-varying weighting factor, w(T'). Indeed, it can be easily shown that w(f) and

A(¢?) are related by
At)

At+l) = m; A0) = 1. (11)

The order-update recursion for R*P;T retains the same form as the non-weighted

case and is given by
K X
R P,T = R P'I,T X
xr x x ; (12)

while the time-shifted order update is modified to

R*P,T - x X x

R : =
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2.3.2 Ladder Recursions

Having set up the time, order, and time-shifted order update recursions for

R*p,T in ( 10 ), ¢ 12 ) and ( 13 ), various recursions for other quantities can be

obtained in the same fashion as described in Task Report I, therefore we will only
glve the important results and also drop the superscript "*" from here on so that all
quantities are defined in the time-weighted context.
Again we obtain A pol,To r p+1,T DY the following
" r~ ‘ -
RP’I’T AP’T E: RPlT * AP)T > IR »T
0 X X x 0 0
0
0 ;
& p+1,TJ (19) 3
where
A g1 = Ulastblock-rowof R, 1|4, 7
0
T
T
= y g € 1(:) . ( 1 5)
- 1" p
and similarly for T, 7
q
Lo = [first block-row of R, 1 ] 0 i
Bp,T-l w
T i
o 2 b rfp,T-l(t"l) . (186)
t=
with
T
Ap’l,T « T p,T (17)

as given by the so-called Burg-type lemma.
The forward and backward reflection or PARCOR coefficients are given by

K‘pol,T 3 Apvl'T R.‘p,T ’ (18)

T - T+l
K'par = ATpar Rpra (51 (19)

2.3.4 .
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Notice the { I;—l } factor in the K" pe1,T QU@ to the shifted time index of R" pT-1"

{ The ladder recursions are given by

4 Gar = 1 - KpnrTer (20)
Taa T = Tpr1 — Kparer (21)

‘ 7p¢l,T 52 7p,T * erd,T R-rpd,T Tpel, T (22)
; R ar = RGyr - Alar R-rp,T-l{Z%l} Ajar - (23)
? Ripur = Rprg {T%} - Apar Rér Aar - (24)

i ! The time update for A »T requires some similar algebraic manipulations and is

Egiven by

' e n el .
- X pT " pT+l o 1 :
! Apara = Bpar + 1 L= ¥p,pl T+1) St Mgl - @26
{

Initial Conditions
b | The initial conditions remain the same as the unweighted case, and a time

constant is needed to set up the desired weighting factor.

‘O.T - TO,T = ’T F 7.1’10 - 0 .

T
1 € 1 T
i R O’T - R’O’T ] m ‘go y‘ y‘

- 1
Riora + ULpd'r = Riopal {gg)hs

3 _ o7 * Sppi Gy * TPFG Ygr % Ypr s
1 R'yp = Rippi Rpr = Ripps
§ Asar L
Apapel = % Cppa
_ (26)
Other aspects of the ladder form like invertibility of R,  remain unchanged from

the unweighted case.
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2.3.3 Summary of Algorithm

initialization

‘0’0 - 7‘0’0 - 0 ;
€ .
Rhgg ¢« Rog  « 3 %:;
for i+« | upto pmax do

Ai,‘ - 0;
main loop
for T « 1 upto Nsamples do
begin o ¢« Tor - I

if tracking = true then
begin ttau « T min tau;
Ti « l/ttau ;
Tli « 1/(tau+1) ;
TOT1 « ttau | (ttau + 1) ;
TITO « 1/TOT1 ;

end
else
.begm Ti « 1/ T
i o+ LTl
TOT1 « TI(T+1);
TITO ¢« 1/TOT1 ;
end;

end;




procedure OrderUpdate;

Lo Bl o e . S SRR L B ot o Lo e

! for p « 0 upto (pmex min T) do
t begin
AP’I,T .-AP*LT'l + Tli [rp’T_l ‘P)T/ ( l Gt (Ti) ‘Yp_l’T-l ) - AP*I,T'IJ H
i o ¢ Ypr ALY L% TR
(1 € 3
Kpar « Apar! Rpri

Krp*l,T - TITO Aptl,Tl R’P,T'l;

Garc GHir = K'par o1

¢ )

rP’I’T * rP9T'l =k p+1,T ‘P) A

if T s pmax then begin
‘ ¢ )
Rpnr « Ropr = K Bpu,rs
¢ !
Ripar «TOTVR 1y = Kopur Bpars
end
else Dbegin

€ € 17 ; .
R p,T «R p+1,T-1 + Tl ‘p,T ‘P)TI ( l - (Tl)‘yp-l,T-l ) 3

R'pd,T ‘-Rrp’l,T-l + Tli TP’T TP’TI ( i- (Tiwp-l,T-l ) H
end;

end;

end of algorithm
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2.4 The Covariance Ladder Form

As mentioned earlier, the covariance ladder form is even better suited for speech
modeling than the pre-windowing form, since it does not require any windowing
of the data. This is of importance when the analysis involves short data segments as.
is the case in speech modeling. Strictly speaking, the covariance or non-windowed
form uses a rectangular window on the data, i.e. it uses only "the available data
set". The weighted pre-windowing form uses an exponential window (on the error
sequence) that acts like a sliding window of a covariance type. Therefore the
behavior of the weighted pre-windowed form is expected to be similar to a fixed
sliding window covariance form (a slightly more complex covariance type form).
To derive the covariance form algorithms we use the notation introduced in Section
2.1,

2.4.1 Basic Definitions

The covariance matrix, Rp ST satisfies the following recursive identities:

RP,S,T = RP,S,T'I + yT [yTT, v s ar oy yTT.p]
IT-p (1)
Rosr = Bosar + |95 | Dlsepr - - - 0 9's])
L)S
(2)
Rp,S,T A x x
- " Rp-l,s,T-l
(3)
Rsr = | Rasar  ®
‘ X X x : (4)

where the x's represent unspecified elements along the appropriate edges.




Deftne 4,5 1,B,57,C,57and D, sy

Q Rosr!l 0 o 19sy
S 1971 1952p1
RP»S’T [AP;svT' BP)S’T' CP»S»T' DP»51T 1 E - I .
i ¢ [0 lyT—p;ll Js+1
0 | R, ls | (9 |
where AP ST and BP ,S,T are respectively the forward and backward predictors,

g : with AP,S,T and BP,S,T by
k. T g 1) ()
| 3 4 pS,T [Im g AP»SvT Yt T BP;SyTP 1.

' BTp,S,T . [Bp,S,T(p) e e Bp,S,Tm o T (8)

F . and C 5,7 and Dp 5,7 are auxiliary quantities. 3

We define ¢ ST the forward prediction errors or innovations, and Tp,S,T the

{
1 backward prediction residuals, and auxiliary scalar quantities gp S,T and A4 ST by
|
i

;
(s | [Ansr | [or
ST | = | Bpsr | |94
85T | | Casr

T
L hP:S:T J L D ST 2
yT-pQ{ ‘
[IT-p } S0
and one more auxiliary scalar quantity fp,T by
Iost = Dpst Visen:s): 8




The quantitiesf, g 1. £, s, and 4, g1 ara related by

8pS,T ST e Va4 - - V1 [ 37 IS+p 1
- R-l 2 ST
Apst foST Ysep Y sept © - Vs
IT-p+1 IS41
| )T-p IS
= 7 S - - 1y
C Cosr» Dpsr ]
YspYsep1 + - Is
20 (8)

‘We now let the basic observation record span 0= S st < T, and drop subscript 0

when no confusion is created.
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2.4.2 Order Update Recursions
We would like 4,,, 7 and B, 7 to satisfy the normal equation

_ R‘p¢l,7' | 0
Rpol,T ( Ap#l,T : Bpol,T ]l- 0 | 0
0 | Rpyg (10)

and we start by using relation (4 ):

€
RP’ltT AP’I T i RPJ’T ¥ APtlvT 8 plL,T

0
0 X% % 0 Aparl. (11)
where
A1 = Ulastblock-rowof Royp 1| A, 1
0 : (12)
Similarly, using the relation ( 3):
Rr ¢ fufl & % @ 0 I RYRY '
0
B, 1. x Ryr, B, 1 L
(13)
where o = (first block-row of R ;7] 0
BP)T°’- X
(14)

Applying the so-called Burg-type lemma,
r

ATPsltT 0 RP’lvT Ap,l,T 0
T
|0 Bl g, 0 B,
[ A o | [ ~e r
pl, T pL,T p1,T
- 0 0
0 BTP,T-L Apol,T Rrp,T-l

204'4




s R‘p,T r pl,T
Apd,T R’p.T-l ’
note that these expressions are all symmetric matrices. Therefore we get the
important identity
Apar = Toar _ (18)
Thus postmultiply ( 13 ) by R~ oT-1 A pol,T » where R~ is the inverse of R", and
then subtract the result from ( 11 ), to obtain the following order update recursions

€
for Ap,T and R pT
AP’I»T a5 AP)I;T i 0 R-rP’T‘l AP’I:T
0 o T-1 (16)
€ € T <
R pl, T ° R pLT = a p1,T R rP1T'1 AP’LT : a7
A similar set of order update recursions for B oT and R” T is obtained as
-€ T
BP’I’T ¥ 0 g AP»LT R alLT A p+,T
Bp' 21 0 (18)
-€ T

R'P’lvr < RerT'l ) AP’lsT R alL,T a p+l,T - (19)

To obtain the order update recursions for C T » We first observe that the last
2 - T

block row of R, 1 is equal to R r o B pT- Thus from the definition of (¢4 T » We
can obtain the last block-row of C, r i.e.

Cor = Rzl

IT-p (20)

inplies

( last block-row of C, 0] = R,p 1,7 . 21)

2.4.5
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Using the relation(4), we have

i i
RP’l’T cpvl)T i RP)IDT 4 cpvl»T . ir
i IT1-
0 X X X (]
yT-p
x ] 22)

and from the observation ( 21 ) that the last block-row of C pe1,T s equal to
R™ .7 Tpa,r a0d also that the last block-row of B ,; 7 is I, we can obtain the

order update recursion for C o.T 85

Conr = | Coar |+ Bpar R o1 Tpa D)
0 (23)

Similarly, the order update recursion for DP.T is obtained

DP*X,T - 0 + AP*I,T R-‘POI,T ‘p*l,T(P* 1).
Dora)- (24)

Thus equations ( 16 ) - ( 19 ), (23 ) and ( 2¢ ) give a set of order update
recursions for AP;T' BM-. c o1 and D, 1. These recursions are very similar to the
multichannel version of the Levinson algorithm ([WR], [MVLK], and [Rob]).

2.4.6
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2.4.3 Time Update Recursicns

Using the relation( R! ), we obtain

0
0 yTol -p

(25)

We then apply relation (3)to[ 0, CT p-1,T J" so that after post-multiplying the
result by €' p,T(T"'” , We can force the right hand side of ( 23 ) to satisfy the normal

equation ( 10 ). After some algebra, the time update recursion for Ap,T is obtained

as follows
-
AP:T'I - AprT i g . PvT(T+ l)
cp—l,T
(26)
Furthermore, we premultiply (25) vy {3'r,; . . . ., 3'p, ., ) and Otain
Cora = CprTH) = gy €, 0T+ (27)
and recalling that &1, is a scalar, we rearrange terms to get
‘p,T‘l - ‘P,T(T+l) ( | gp-l,T ) ¥ (28)
Thus the time update recursion for R p,T i Obtained as follows
RE RE ‘P T+1 ‘TgiT’l (29) ;
- + 2 .
pT+1 »T l-¢g p-1,T |
A similar set of time update recursions for B, » and R”_n is obtained as @
T aT i
' M Tl
B « B - |G TR
pT+l pT p-1,1,T+1 l-gp-l,l,Td
0
(30)
R’ a R + % yT'+1 rT ,T+1 (31)
P,T’l P|T l - gp-l,l,T’l

Equations ( 16 ) - ( 19), (23), (24) and (26 ) - ( 31 ) form a complete set of order
and time update recursions for 4,1, B, 7, C,rand D, 1.

2.4.7 I
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2.4.4 Time-Shifted Recursions and Scalar Updates

By using the same techniques for obtaining the order and time updates, we can
also obtain the time-shifted updates of various quantities and updates for the scalar

quantities. The time-shifted updates for R¢ pT Rpri By 1, By, C,pand D, 1 are

given by:
Ré a1 = Repp U1+ s ’T: T’;:;ﬁp’ﬁp) =L
Rirq = Ripp L1+ R pr 1r TT;:)T’Y;:,T(T) | f
Aar = (A5 PIL_;';-T@ I RE o RE
Bp,T-l - [Bp.T + CL}T_—'.;# ] R"p’T RrpT-l
Corr = Cor+ Dpr "?:T
D "o

- D + c
pT-1 »T alT T= 5 T
The scalar updates for Jp1 8p1and A, 7 are given by

fp*l,T ” fp,T’-l i ‘Tpﬂ,T(P"' D R-‘pd,T ‘p+l,T(P+ 1
2

A pT T R-€
- fP’T + = + ep,m-(p«»l) pol,T ‘p-ol,T(ﬁ"'l)

T =
Ep,T = &p1,T * T pet,T¥T) R poy 1 7o) 1KT)

AT
y T -
S ngT * l-fp,T i P’I'T(T) R rP’laT rp’va(T)

T -)
Ap,T = Aol T * T pa,TAT) R poy 1 Ty 7p+ 1)
T -€
- hp,TOl + € P*l,T‘(P+l)R p#l,T tp,x'ﬁT) .

A time update recursion for 4 ,,; 7, which will be useful in the ladder form

implementation, can be verified to be given by

T
erT . P}laT’l(T+l)
l T :P-l,l,T

Apol,Td o Apol,T ”
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2.4.6 Ladder Type Realization
Premultiplying ( 26), (30), and (23) by [y'p, .. ., yTT_P,l ] we obtain the

following ordef update recursions for € aT and Tp T

. ‘P'l,#T) = GP’I’T(T) - Krp’l.T rp,T_l(T—l) (33)
g ¥T) = Tor(T=1) = K&, €, KT) (34)
Apo1,7-1
(time update) (35)
: Apo1,T-1
‘P’I’T(T) - ‘P:T(T) - ‘PsT(P ) T—-m'—l (36)

where K¢ pe1, 73R4 K F p+1,T are the reflection or PARCOR coefficients given by
€ T -¢
Kpar = Al Ropr Gl

Kpar = Bpar Rpra (38)

The recursions ( 33)-(38) compute the sample cross-covariance of the
forward and backward innovations.

In contrast to the approximate schemes ( [SV], [MG] ) that have been presented
to solve the stochastic ladder forms given in [IS], [Wak], [Mo], equations
(33)-(38) form a complete set of order and time update recursions to obtain the

exact least-squares ladder form predictor, which is shown in Figure 1. .
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2.4.6 Initial Conditions
In the covariance ladder realization, we may not start the recursion at 7" = 0 and
Just keep doing order and time updates. This is because for small valuesof 7", R 2,0,
is always singular. More specifically if T < p(m + 1) + m - 1, where m = dim ;s then
Rp,O,T will certainly be singular, for then Yp,O,T will be of low rank. To properly
initialize the covariance ladder, we can wait until enough data is obtained, say { Yo

<5 91 }» sothat R p,0,T1 is nonsingular for all orders p to be considered. Thus if

pmex is the maximum order of the ladder, we have only to check the

nonsingularity of R, ,, 07| since in this case R, o will be nonsingular for p s
pmax , T 2T as can be easily verified.

In practical situations (e.g. the scalar case), it is to be expected that 7'l is close to
2pmax. Now suppose we have determined 71 such that Rpm“’o,n is nonsingular.
From { Y -9 } we recursively compute the last row of of Rp,O,Tl for
p=0, ..., pmex and keep the first pmax values { y;, . . . , Ipmas }. Using the

€ r
recursions given above, we can then compute Ap,Tl' R pOT1 R p0,T1 and
€p071(p) for p=0, ..., pmax, which constitute the initial conditions for the
time update of these quantities.

The initial conditions for order updating the laddér recursion are given by

€oT = 1T = Toor " IT (39)

fapr = Capr * Aapr = 0 . (40)

There exist simpler alternatives for initializing the ladder form but they would
require a more extensive explanation and justification; we therefore leave them
for later publications. For example, we may initialize the various sections of the
ladder in a recursive way, that is we initialize the first section at time 7| (in the

scalarcaseT | = 0 ), the second at time T2, and so on.

24.11 : ‘ '
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2.4.7 Invertibility of R, 1
Here we establish a criterion to guarantee that R 5,T 15 invertible. From relation
( Rl ) we have

Rr =Ry, + ¥V
T T T
y = [yT {2 GO yT-P ]- (41)
So, using a well known matrix inversion lemma, we have
-1 -1 -1 T R-1 -1 T R-1
R »nT * R aT-1 = i pT-1 yu i & »T-1 yriy A pT-1" (42)

Pre- and post-multiplying this by ¥” and ¥, we get

¢2 T
= £ Py
gp,T “p,T l*aP’T ’ (43)
where
: -1
gy = ¥V Bho, ¥ > 0 (44)
or
o
& ol
o < gp,T l+aP‘T < 1 . (45)
A similar argument shows that
0 < fp,T < 1 . (46)

Thus we see that the invertibility is equivalent to the condition ( 45), ( 46 ) so that
divisions by | - &p T and | - fp,T can be carried out.

2.4.12
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2.4.8 Summary of the Algorithm
initialization: ( See Text)
main loop

for T «Tl upto Nsamples do
begin €r <« Tor o+~ IT
Lypat Bapd © Aapa ¢ B
Rlop « Rop  «Riyrq +  ypors
Ry « Ror  «RYrq + orors
OrderU pdate;
end;
Procedure OrderUpdate;
for p « 0 upto pmax do
begin €, {p) e € ()= € ph gp gl (1=-gp )
QLT < r v GO A (=S ra)s
Apar *8para + Tprabear/ (=g
Epa T Epra + Apral(1-fopg)
o T¢ &parat*t SarSur! Ré s
hor ¢ Aparat i e R‘P»T;
fo ©  foara+ I Qe RS g
Rpgyr « Rr = ek, ) (1-fpyp)
K ur «  Bpar! RS
K'par <  Bpar!R,ra
Gar ¢« Gur - Kpar pras
Tosl,T ¢ TpT-1 ~ K‘pOI,T €p\T

€ € .
R p},T  © R al,T i KrP"liT AP’lvT K
{ s
R'pol,T b R'p,T-l -K p,T ApOI.T'
end;
end of algorithm
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2.6 Pole-Zero or Autoregressive Moving
-Average(ARMA) Ladder Forms
In this section we present ladder forms for pole-zero or autoregressive
moving-average (ARMA) models. Our approach here is to embed the underlying
ARMA model into a two-channel AR model resulting in a Jjoint innovations
representation of the process. The two-channel predictor of this joint process may
be implementated as a two-channel AR ladder.

2.56.1 Joint Innovations Representation of the ARMA Process
Given a pole-zero (ARMA) model of the following form
9 + "lyt-l + ...+ Anyn = By + By Uy +...+Byu, N, (1)
where {9, 0st<T } are m-yector observations, { u, } the input process which is
assumed to be an uncorrelated sequence of m-vector random variables, and 4 nand B,,
the m by m matrix coefficients of the model.
The model equation can be rewritten as
Yot Ayt AN - By - - Byuy = Bouy,  (2)

and in matrix notation, we have

ay ¥, - bW u o« B, €
with
7 JRC T TR R R |
Pl - Lo, & & ., My @
 ATIE R & SO e
u“' - [u‘T. s gl u‘_nT]. (8

leading to the following augmented equation
T
ay’ by Vil = |Bo%
0 8 u, u |, (8)

where §; is the first m by m block unit vector.

2.5. x




This embedded model can be interpreted as a 2-channel AR model of the Joint
Process { 9+ %, }. Here, the right hand side of the augmented equation is equal to
the joint innovations of { y,, ¥, }, since

& Yt = Fefe-1 Bgu,
€ | (% = Yy U |- (7
Indeed if we apply a simple interleaving permutation of (I, 3, 5,
2N+1, 2, 4, 6, . . . 2N+2) to the augmented equation, we have the familiar joint

2-channel one-step predictor of the form

Az - ¢ , (8)
where
Lo 4 =5 Ay ~B
AN L ’ ’ ’
o, 1. lo, o g B .
(9)
z‘T.[y‘T' u‘T, & e e y‘_NT, u‘_NTJ " (10)

In the stochastic case, the problem of finding the linear least-squares predictor

is then reduced to solving the normal equation of the following form

R By o« [ R, 00 . . . .0F , (11)
where
.
R™y R¥, . . . Ry ]
T
Ry R

R’"N' Ez z‘f.

RN . o o R ], (12)
RY, = Ely, [7t-n’ u;-.TJ ) R‘N - £ ¢ C‘T

U

(13)
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R,,(O) Ryu(O) Ry(n) R (n)

RY%, = R =

T
RO Ipy o 0 (14)
Since Ryv N is a block Toeplitz matrix with blocks of size 2m by 2m, the solution
to this normal equation can be obtained via the Levinson algorithm [WR]. The
parameters estimates which are embedded in the solution are recursively computed

in order. (Note the sparseness of R¥* and 4, .)

2.5.2 Least-Squares Recursions for ARMA Models
In the deterministic least squares case, the joint forward and backward

prediction errors of order n at time T is defined as

(7"’7, r= ’TIT-IMT-R
€ aT " - - AN,TT Z[T:T-n) ,
“ar ) 47 ¥NT,.Ton (15)

Yol | (IT-n = IT-nT-ne1,.T
r T= - = "'TT z{T:T-ﬂ]

“aT | |¥T-n = ¥T-niT-nel,,T (16)

The covariance matrix for the joint process is thus similar to that given in
Section II, and with its shifting properties, one can obtain recursions for the

2-channel ladder forni from the recursions of an AR case, i.e.

T - .
€ped,T = Cpr - D n+l,T R rn,T-l "n,T-1 (17)

-D R \Téar - (18)

TRel,T = TaT-l n+},T
In the two-channel case, D, 7, the partial correlation matrices exhibit addition

structures, due to the embedding of the white input process of the ARMA model
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into an AR model. Since all future inputs are assumed to be uncorrelated with the
present and past outputs, half the elements Dml,T matrix are approximated by
zeros. Indeed the partial correlation matrix is given by

T
Ayn’l,T Om . % 1."t—n-l‘yn,T‘(t)T Om
Aml,T' 5 2
ull#l,T om ‘E ‘u‘-nol‘yu,r(t)r om . (19)

The time-updates for these partial correlations obtained in a similar manner as in

Section II.
o
aT * * nT+l
Slwifg = Spap + L o= ] (20)
n-1,T
o @t
T * " n,T+1
A“ml,Tol = Aunol,T [ "] (21)

- ‘Yn-l,T

In order to obtain ladder recursions for the prediction errors, inversions of the
Joint 2m by 2m prediction error covariances, R‘"’T and R’ n,T are needed. These
inversions are simplified by first decomposing them into upper-diagonal-lower
form and then taking inverses. Examples of ladder forms obtained this way are

presented in [Lee]. Figure 2.5.1 shows an example of one such structure.

:
|
|
J
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Notice the feedback structure of the embedded ARMA ladder form. The output of
l the forward innovations section is fedback as input to the backward residual for
{ 4, }. Assuming that{ u, } has unit variance, we have

YT BT [ T €7 T i ey e

up = RPyp eonr (22)

Instead of using one single feedback, as in ( 22), it is also possible to obtain up by -
distributed feedbacks. Ladder forms of such kinds are still under investigation and
2 results of these studies will be available in later publications.




2.6 Computational Complexity

One of the attractive features of the class of algorithms described in the previous
sections is their computational efficiency. The computational requirements of the
fast algorithms are in fact proportional to the number of model parameters. This
compares favorably with currently used methods as indicated in Table I. There are
many ways of measuring computational complexity; the measure adopted here is
the number of multiplications per N samples of speech (N may be the number of
samples per frame) for a p-t4 order autoregressive model. All index calculations are
ignored. For methods that store the full covariance matrix, two-dimensional array
indexing has to be performed which may be costly on a machine having only
integer arithmetic. Our fast algorithms compute, in addition to the model
parameters and gains, numbers that allow us to efficiently compute the log
likelihood-ratio used for pitch extraction, i.e. decomposition of the driving process
into a jump process and a Gaussian process, Many LPC systems use more
computations in the pitch detection section than for the actual modeling, this is not
the case for our algorithms. For optimal vector quantization schemes the number
of operations is also much larger than the number required for the model parameter

computations.




Table I Comparisons of Operation Counts for Fast Algorithms

! Estimated number of operations per frame of size N and model order p,
multiplications denoted by x, divisions by /, square-roots were ignored.
The number of additions is equal to the number of multiplications.

Pre&Post-Wind.* Pre-Windowing Non-Windowing MEM-type™

AR |(Np+p2)x + p/ | N(dpx + 4/) | N(6px + 6/) | Np(2% + 2/) |

| AR Ladder [(Np+p2)x + p/ | Np(6w + 4/) | Np(1ls + 10/) | Np(5% + 2/) |

» | CENCTEESErToE0r CECTESTOITETOEE CENECEITETNETEE weCEereCTSErTeEeeE®

pran

k! ARMA Ladder l(Np+3p")a + p/] 3Np(6% + 4/) | 3Np(llx + 10/)]| not available |

Gk die e

References [Lev], [Mo] [MLNV] [MVL] [Burg]

ol Lo

Actual program complexity depends heavily on the computer language used. For
example most of our algorithms require programs of a half a page to a page of
clearly structured code of the ALGOL type language MAINSAIL. (A FORTRAN §

program would take about S times more!)

* The Levinson and the MEM - Maximum Entropy Methods are not recursive in

time, i.e. they would have to be recomputed for every change in frame size or

place.

1
|
|
|
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2.7 Implementation Issues

Generally speaking, the implementation of the exact recursive algorithms is
fairly straight-forward, if at least some care is taken that is advisable in
implementing any algorithm on a computer. Since we implicitly solve linear
(normal) equations, the usual precautions for solving linear equations apply also to
our case, such as conditioning (ratio of largest to smallest eigenvalue), consistency,
etc. Le. if fewer data samples than parameters are available, the set of equations is
over-determined and the covariance matrix or prediction errors are singular, a
situation that can arise during startup of a (recursive) algorithm. Some of these
properties can be observed in the spectrum of the (speech) signal used. For example,
a sum of a finite number of sine-waves without noise leads to a covariance matrix
of finite rank (twice this number), i.e. if the number of parameters is more than
twice the number of frequencies, the covariance matrix is singular. Numerically it
is very possible that the high order prediction errors can become negative and
consequently the prediction filter leads to unstable models. It is on the other hand
possible for recursive algorithms to have a "self-healing property", that is they can
converge back to a stable solution. For a time-varying model this is permissible
since the output power can still be bounded; however if the model parameters are
sampled, for instance at the end of a transmission frame, the sample could lie in an
unstable region that would lead to unstable reconstructions.

Another area of concern during the implementation process is the implicit
(statistical) assumptions one makes by choosing particular initial states (say zero)
in recursive algorithms. These choices correspond to particular assumptions about
the a priori distributions of parameters, which in turn might not be consistent
with t_he actual information available. For instance assuming zeroes for data before
the start 92‘» the first data sample is equivalent to assuming the data is a white noise
(the predictor is initialized as a feed-through); however we are working here with
speech, i.e. we have at least an idea what an average spectrum looks like (say from

300 to 3kHz). In order to achieve top performance, many of these issues have to be

T — ,,@3_________.-_—.—“‘ — —— ‘




considered, i.e. if the performance is judged unacceptable it is most of the time due

to some underlying assumptions that are inconsistent.

To demonstrate this we discuss two practical problems which appeared during
the implementation of these algorithms. The first one is concerned with the
accurate tracking of model parameters when strong transients, i.e. nongaussian
driving process (e.g. pitch pulses or plosives), are present in the initial data
samples. The second problem deals with the capability of fast resets of the
recursive algorthms when the underlying model parameters suddenly decrease to

zero, i.e. accurate tracking of zero-valued parameters (e.g. no speech).

2.7.1 Non-Gaussian Driving Process

Non-Gaussian signals can have two effects: either they can help to track
parameters extremely fast, i.e. within a few samples, or they can "Kick the
parameter estimates way off", which leads to very slow convergence to the true
value of the parameter. Our algorithms produce a likelihood type quantity that can
detect the presence of nongaussian components with extreme sensitivity. The
second condition can be remedied or prevented as follows. A non-zero (small)
initial prior convariance estimate of the input process should be used and a linearly
time varying weighting factor (Tau) up to the maximum window length (constant
Tau) is applied to the errors in the least-squares criterion. In the program this just
implies that the variable Tau is initialized to some initial weighting (say T'au(0) =
10*order) and linearly increased proportional to the running time s¢ up to a fixed
window time constant (say Taumax) and then held constant (i.e. Tau = (st = 10xorder)
min (Taumax) ). This is consistent with the knowledge that speech signals are
expected and not just nongaussian inputs or even out-lyers such as switching
noises. The problem really is that the condition number (extreme eigenvalue ratio)

of the covariance matrix can get very large if the first sample is unexpectedly

2.7.2
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large. For example, if the a priori estimate of the power is s;xxall, say 1/10,000, and
the first sample is a modest 10, its square is 100 and the condition number is equal
to the ratio 10%/(1/10,000) or one million. For 6 significant figures in integer
arithmetic this is already at the end of the range, i.e. the covariance would be
numerically singular. Another good numerical alternative is the square-root form
of the normal equation or of our ladder-forms. The solution using a nonzero a
priori covariance estimate is simpler, but ultimately we would prefer the

square-root versions since they can gain a factor of two in effective wordsize.

2.7.2 Tracking Zero-Valued Parameters

Another problem is the tracking of zero-valued parameters. When the
underlying parameters suddenly decrease to zero they can reduce the data samples
to very small values. conversely, if the signals get very small, the parameter
estimates are not much excited. Special cases of this are when the correlation
between two signals goes to zero or the model order of a time-varying model
decreases. In all these cases the tracking of the zero-valued parameters becomes
very slow, e.g. exponentially in the case where an exponential window is used on
the error. This is a basic problem in parameter estimation. Briefly, the reason is
that the time-update is obtained by minimizing a squared-errors criterion. When
inputs are zeros, the time-update for the pre-windowed unweighted case just take
the previous estimate as the optimal estimate, because the error criterion "doesn't
care" what the non-excited parts of the system does! The existence of an
exponential weighting function in the error criterion, the estimates only converge
to zero at the rate of the associated time constant, which is undesirable if fast
tracking of zero-valued parameters is important for reconstruction of speech. The .
solution may be to make use of the likelihood ratio parameters to detect the
condition for reseting the appropriate parameters. This is a fairly new problem in

system identification and not much theory is yet available.
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3. The Speech Transmission System
The algorithms described in Section 2 are the basic building blocks of a complete
speech compression system. The structure of the system which was developed and
tested during our investigation is described in Section 3.1. The rest of the section

presents in greater detail the various components of this system.

3.1 General System Description

The basic structure of the speech transmission system used to demonstrate the
performance of the new speech modeling algorithms is given in figure 3.1, The
sampled speech is the input data to one of the ladder-form algorithms described in
Section 2. The ladder form is a recursive type algorithm and produces a new set of
outputs at each sample time. The model parameters (reflection coefficients) are
sampled at each transmission frame time and they constitute the main part of the
per frame speech parameter vector. The other components of that vector are pitch
information and residual energy (or gain). The pitch information is obtained from
one of the coefficients computed by the ladder form algorithm, as will be described
in more detail in 3.2. The energy parameter is a measure of the total energy in the
speech frame being transmitted and serves to control the synthesis algorithm
driving signal.

The speech parameter vector is used to reconstruct or synthesize the speech from
which 4t was generated. First, however, it is necessary to transmit this
information from the analyzer to the synthesizer. Furthermore, the objective of
our work is to be able to do this transmission at a low data rate. Thus, the
parameter vector has to be quantized and encoded in an efficient manner (e.g. with
few bits, but minimum distortion). This function is performed by the
encoder/decoder which is discussed in Section 3.3. The coder/decoder is capable of
reconstructing a good approximation to the speech parameter vector at the speech
synthesizer input.

The speech synthesizer uses the model parameters provided by the encoder to set




up a speech model which in some sense reflects the shape of the vocal tract. The
pitch and enery information from the parameter vector is used to generate a
driving process which is then used to drive the speech model. The details of the
synthesis algorithm are presented in Section 3.4.

A basic quantity of the speech transmission system design is the frame size. The
frame is a segment of the speech which is chosen as the basic unit of the
transmission system. During each frame time a single block of quantized speech
parameters is transmitted. To see the relationships between the various quantities
let

fs = Sampling rate [ Hz ]

Ns = Number of raw speech samples in a single frame [ samples/frame ]

B = Transmission rate [ bits/second ]

Nb = Number of bits per coded speech parameter vector [ bits/frame ]

In order to get real time transmission we must have (fs/Ns) < (B/Nb) or
(Block Transmission Time) s (Frame Time) (1)
In words, the transmission of the parameters for a speech frame must be completed
in less than the frame time. In most cases a strict equality will be chosen in
equation (1), thus

Nb|B = Ns|fs bps (2)
i.e. B = Nbfsl|Ns (3)

Some typical values used in our simulations are
fs = 8000 , Ns =60, Nbs= 18, (4)
which means that a transmission rate of B = 2.4 kbps is required and that the frame

duration is 7.5 msec, i.e. within a commonly accepted limit on the rate of change of

speech parameters.
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3.2 Speech Analysis and Parameter Transmission

The computation of the reflection coefficients can be carried out by any one of
the algorithms described earlier. For the actual simulations the pre-windowed
ladder form was chosen as being the most cost-effective candidate for this purpose
(see Section 5). Outputs of the algorithm feed a transmission module which selects
the contents of the per-frame parameter vector.

Because of the recursive nature of our algorithms, they can be run continuously
and do not have to be synchronized to the frame period. Once in every frame period
the best estimates of the reflection coefficients are chosen for transmission.
Similarly pitch and energy information is passed on to the transmission encoder.

The analysis algorithm decomposes the original speech signal into a model, to be
represented by the reflection coefficients, and a driving process, to be represented
by pitch and energy. Since the analyzer operates "continuously"”, its outputs track
the original speech. This permits us to logically separate the speech modelling
from the data transmission. Provided we transmit the model parameters "often
enough", we are at liberty to choose the frame size to optimize transmission
efficiency. There is a tradeoff to be made. We can choose a short frame and send
parameter updates more often, but at the expense of having fewer bits available to
do it with. Alternatively, we can choose a long frame, providing many bits to
quantize the parameters, but at the expense of sending fewer parameter updates.
The tracking property of the analysis algorithm allows this tradeoff to be made
independently of the algorithm design.

3.2.1 Model Parameters
At each frame time, we choose a best estimate of the model parameters for the
frame., Sampling the model parameters current at the frame boundary is appealing,
but we have adopted a slightly modified strategy. Simply stated, at each frame

boundary, we transmit the most recent "reasonable” model parameters. Since the
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algorithm tracks so fast, if a pitch pulse or algorithm reset occurs very near the end
of a frame, a pure sampling strategy would select parameters not representative of
the entire frame. The transmission module maintains a short history of the model
parameters; if a pitch pulse or reset occurs in approximately the last third of the
frame, then we transmit parameters current slightly before the disturbance.

This rules were motivated by our finding that in the voiced case the reflection
coefficients are piece-wise constant. From a rate distortion point-of-view we
would have to test the time-varying model against a set of prototype models (that
could be constant within a frame) and send the index of the "nearest" model in a
distortion measure.

First we used a uniform quantization scheme to test out our programs and the
limits of a simple quantization scheme, acceptable for 8600baud transmission rates.
In order to compare our models against other modeling schemes we selected for one
set of experiments up to 10 reflection coefficients using the optimal quantizer
published in [MG], and bit rates of 3050 and 6100 just for the reflection
coefficients were observed. As a next test our own pitch detection algorithm was
used to test out a complete transmission system. This is unfortunately a difficult
step since a separate evaluation of the modeling part of the system can only be done
with a perfect pitch detector which was unavailable to us at the time of
evaluation. (This is somewhat similar to trying to test race-tires on a passenger

car!)

3.2.2 Pitch Information

Pitch detection is a crucial and difficult part of most speech compression
techniques. Many kinds of pitch detection techniques have been used (see e.g. the
survey by Rabiner [Rab]).

The ladder-form algorithms developed in this investigation provide a novel
integral pitch detection method which seems to be very promising. The speech
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driving process consists of a gaussian part (unvoiced), and a jump part (voiced).
The separation of such a mixed process may be described as a Doob-Meyer
decomposition into predictable and Martingale difference components. Such
decompositions have recently been receiving increased attention in the non-linear
estimation literature but almost no practical results are available.

A parallel algorithm might be designed to obtain the pulse positions from the
original time series, but the non-whiteness of the gaussian component will act to
cloud the position of the impulses. In our ladder-form algorithm, the time update
Y (gamma parameter) is a liklihood ratio directly useful in separating the mixed
driving process. The normalized log-likelihood function for a process parametrized
by its innovations representation using ladderforms can be obtained relatively
easily using the formulas appearing in the ladder form equations given in previous
section. Given a (zero mean) scalar gaussian process with covariance matrix R, the
determinant |R| = R‘o- ... *R¢ B where the { R‘,- } are the prediction error
covariances related to the reflection coefficients X; in the stationary case via R‘i, 1
- R‘i (1-K i2 ) . Now the log-likelihood function / can be obtained using (29') of

Section 2 and the standard formula

U = mR + [hlPg1 = f%zn RG + 7, . (5)
1=

We applied several versions of this formula to the pitch detection problem. The
increase in /! per sample, i.e. the time differenced form § ! is a very sensitive
measure of the "unexpectedness" of a time sample, i.e. a measure of deviation from
non-Gaussianness. We have Used a simple local maximum algorithm either on &
Y pt OF $ !l combined with an exponential threshold detector to locate the position
of driving impulses. As the figures in Section § show, the result is quite
remarkable. The large jumps in !/ or ¥ itself can clearly be related to the start of a
new word or even phoneme. Eventhough this research was not directed towards
pitch detection, we discovered that a high quality pitch detection scheme was
required in order to test our modeling methods. The likelihood approach is

extremely well matched to our modeling approach, so some effort was directed
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towards the development of this method. However we consider this as only a first
attempt in the direction of finding methods to decompose (discrete) mixed
processes. Such results would hopefully avoid the use of any more or less ad-hoc
schemes containing internal "tweeking" factors of heuristic nature, a characteristic
of most present day pitch detectors.

The end result of all this is that the speech analysis algorithm includes an
integral pitch detector which provides a pitch-pulse-present signal at every sample
time. In our transmission module, we have adopted the strategy of transmitting
the time indices of these pulses. In a loose sense, we are using a run-length coding
scheme to transmit the sparse one-bit-per-sample sequence which represents the
pulse locations. An important result of this technique is that there is no need to

make the usual voiced/unvoiced decisions.
3.2.3 Energy
The ladder-form residuals, or innovations, contain the energy of the driving
process. Our transmission module computes the frame average driving source

power by summing the energy of the innovations of the original signal over each

frame.
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3.3 Quantization Issues

For comparison reasons we used the uniform single symbol quantization scheme
given in [MG]. At 80 samples per frame and 10th order models the 61bits per frame
lead to a transmission rate of 6100bits per second for the K's only. The speech
degradation using this quantization was not perceptible in our experiment. A few
trials were made with rate-distortion quantizers at 8 bits per frame for the K's, i.e.
about a reduction of a factor of 8 in transmission rate for the K's alone. The
prototype models needed in the rate-distortion have to be trained to the particular
method and a collection of representative speakers. Nevertheless, in one of our
experiments we encoded our model parameters obtained without pre-emphasis
with respect to a set of prototypes trained on a different speaker set using a
standard LPC system with pre-emphasis, see [MG]. Using also a subgrade pitch
detector, the result was surprisingly good considering the fact that only 8 bits (i.e.
256 prototypes) were used. We do not consider this a conclusive experiment, but
rather a strong indication that these methods are very promising and have the
potential to achieve the desired low transmission rates. Pitch information and
energy parametrization can be handled similarly, if our modeling techniques can be
extended to produce somewhat more accurate pitch period estimates than this first
attempt. The raw pitch period estimates obtained now would have to be smoothed
over several pitch periods and rate-distortion encoded. Energy or gain can be

handled relatively simply via rate-distortion encoding, i.e. similarly to the K's.

A
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3.4 Speech Synthesis

The speech synthesis uses the frame synchronous parameter vector to set the
model parameters of a ladder form filter and to set up the appropriate driving
process. The model creation is straightforward. There is no need to modify the
reflection coefficients to create the appropriate inverse filter as a ladder form may
be inverted by reversing its signal flow graph and running it backwards.

The synthesis module creates a driving process based on the per-frame 'pulse
position and energy information in the parameter vector. If no pulses are present in
a frame, the source energy is put into a gaussian noise component - i.e. an unvoiced
decision is made. If pulses are found the source energy is distributed equally
among them. Ultimately the driving process could be a mixture of a gaussian and
jump component, each with its own gain (and even its own linear filter.)

Many future practical problems remain, such as inter- and intra-frame
smoothing and dividing up the energy between gaussian and jump components.

Again, ideally a time-varying rate distortion encoder could take care of this.

3,10 | _ I'i




4. Software Tools

The similarity between the various speech processing algorithms suggested that
they be written as simple modules which "plug" into a framework that supplies I/O
facilities, graphics, and debugging tools. The resulting algorithm module expresses
the essence of the algorithm, and removes the extraneous code required to interface
the algorithm to some particular machine environment. We have also attempted to
write the framework as well as the modules in a machine-independent fashion.
This necessitates a machine-independent language, and we have chosen MAINSAIL

[Wil], a dialect of Algol patterned after SAIL [Reis].

4.1 A Machine-Independent Language

Unlike Fortran, which is not actually portable, MAINSAIL (MS for short) was
expressly designed to allow program portability to any reasonable machine with a
word length of 16 bits or larger. The compiler itself is written in MS, and
currently generates code for PDP-10s and PDP-11s. Support for Data General
machines, IBM 370s, Interdatas, and other machines is planned. We expect that the
module sources will be very portable as a result. The frame and existing modules
are written in MS, but are now compiled with SAIL because the MS compiler is not
well supported at SUAI yet. The PDP-11 UNIX version of MS is expected soon. A
library of SAIL macros and procedures is currently used to simulate MS syntax and
its runtime environment. Preliminary experience indicates that about S minutes of
editing is required to convert one of these modules to the real MS syntax. Programs
which use more extensive syntax require more effort.

The MS language supports integers and long integers with guaranteed minimum
sizes of 16 and 32 bits, respectively. The long integer construct is essential here
for sample numbers, etc. MS supports reals and long reals with minimum sizes of 6
and 11 decimal digits, respechely, with base 10 exponent ranges of plus or minus
38. There are garbage-collected strings ala SAIL and PL/1, and garbage-collected "
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records and pointer variables. An important point is that /0 is carefully defined so
that both text and data files can be randomly accessed in a way which is relatively
independent of the machine and operating system. The data files themselves are
not directly portable, but programs which read and write data files are

functionally equivalent on different machines.

4.2 Frame and Module Structure

Each algorithm module is separately compiled and dynamically linked with the
framework at run-time by the MS run-time system. This costs very little, since
each MS module is position-independent, and accesses data and procedure fields in
other modules via a pointer/field addressing scheme. It also means that very large
programs can be supported in a small memory space by breaking them into modules
which are demand swapped into memory by the run-time system. This requires
that the machine architecture support position-independent code so that modules
may be loaded anywhere without relocation. MS code modules are
garbage-collected just like records when space is needed.

Each algorithm module consists of 5 procedures and some internal data fields.
The procedures are named defineExp, initialize, analyze, quantize, and synthesize.
The frame calls these when appropriate; its main processing loop has the following
skeleton structure:

initialize; » set up initial state
Jor block « 0 upto Nblocks-1 do
begin
read input data block; e input speeck signal

analyze; o linear prediction
quantize, e parameter transmission
synthesize ® reconstruct speech

write output data block; e output speech & diagnostics

end,;




A block would be just a single sample for an on-line method. This structure
represents a sub-experiment; it is enclosed in a loop which allows the initialize
procedure to change parameters which must remain fixed while reading the input
speech file, such as block size. The same speech file is re-read for each
sub-experiment, and the output speech file is a concatenation of the results of each
sub-experiment. The defineExp procedure is called at the very beginning of the
total experiment to set initial parameter values.

The SU-AI SAIL system does not support the MS module concept, so a similar
structure was worked out that is compatible with SAIL and upgradable to
MAINSAIL. Essentially each module is a separate program, e.g. analyze, quantize, and
synthesize. The communication between the "modules" is via data files. A number
of other programs have been written to manipulate these data files, including an
interactive graphing program. The internal structure of each program is still clean,
however, since the 1/0 required is simple (it emulates the MS 1/0 system). Also, the
modules are broken into several procedures for clarity, and structured coding
practices were used to maximize the readability.

The flow of control in each module can be better ascertained from the MAINSAIL
(MS) source than from a flowchart-type description, which does not convey the
hierarchical structure. The flowchart is an attempt to document the flow of
control in a program which has poor structure. With languages like Fortran,
where undisciplined use of GOTOs and three-way IF statements obscure the
control-flow, the flowchart may provide some information. But with
block-structured languages like MS and SAIL, the control flow is most naturally
described using the language features provided for structured control, namely
WHILE, FOR, CASE, and IF-THEN-ELSE. In addition, the variable names have more
meaning because both upper and lower case are allowed, and may be any length.
Flowcharts were not made for the programs included in the appendix because such

a flowchart is more difficult to understand than the actual sources.
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8. Simulation Results

In this section we present results of the simulations carried out to test and

verify our algorithms.

5.1 Constant parameter AR models

We first present simulation results of the analysis of data generated by
time-invariant models using the pre-windowed ladder form and the Levinson
algorithm. Both algorithms were applied to autoregressive (AR) systems of various
orders. Reflection coefficients were computed on-line in the pre-windowed ladder
form. In the Levinson algorithm, reflection coefficients were computed with data
blocks of increasing blocksize, a excellent method for testing block methods for
consistency.

Data generated from two AR models, 424 and 8:% order, were tested. Zero-mean
unit variance white noise input was used. The parameters for the 8¢4 order model
were taken from [MG,p.128].

The model parameters ( A coefficients ) and their corresponding reflection
coefficients for the two models are shown in Table 4.1 and output data are shown

in Figures 4.1 a,b.

56.1.1 Simulation Results
A large number of simulations were performed on the most promising
algorithms and a few characteristic examples are presented here. For each
algorithm, 1000 samples of data were analyzed and the estimates of the reflection
coefficients were plotted as a function of number of samples. All figures have time
or number of samples as abscissa, where "1" corresponds to 1000 samples. The
ordinate is the scale for the values of the various estimates of the reflection

coefficients, using an automatic scaling of maximal and minimal value
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corresponding to the top and bottom of the graph. A horizontal line indicates the
true value of the estimated reflection coefficients; hence the asymptotic behavior
or convergence of the estimates as a function of time can easily be inspected.

In order to eliminate the irregularities in the estimates caused by block
boundaries, some windowing was applied to the data within each block.

A trapezoidal window of the following form

win) = n/10, for 1 sns9
= (T-n+1)/10, for (T-9) s nsT

A [ otherwise

and a Hamming window of the following form

w(n) = 0.5¢4 - 0.46 cos (2T 72-l)

T-1

were used.
Estimated Parameters of 4th Order Model

In order to illustrate and compare the convergence properties of each algorithm,
the estimated reflection coefficients from each algorithm were collected and
displayed at each prediction order. The results are shown in Figures 4.2 - 4.5. In
each figure, the displays are arranged in the following order
(a) pre-windowed ladder form K¢ o T
(b) pre-windowed ladder form K", 1 ,
(¢) Levinson Kp,T without windowing,
(d) Levinson K,T with trapezoidal window, and
(e) Levinson K, with Hamming window.

The algorithms were also extended to estimate beyond 4th order upto 8th order,
and the results are shown in Figures 4.6 - 4.9,

Estimated Parameters of 8th Order Model

The results for the 8th order model were arranged in the same fashion as for the )

4th order model, and they are shown in Figures 4.10 - 4.17

5.1.2 Discussion of Results

5.2




A comparison of the various simulations shows the following characteristics.

)5 Comparing the estimates of the reflection coefficients from the

pre-windowed ladder form and those from the Levinson algorithm, it can be
readily seen that that the latter estimates have a higher variance, i.e. they are very
! "noisy". Closer inspection reveals that the pre-windowed estimates match one of
the "envelopes" of the noisy estimates computed via the Levinson recursions;

furthermore it is the envelope closer to the true estimates. Hence the Levinson

L i Al e sl LA LU

i estimates appear to be uniformly worse than the pre-windowed estimates in terms
of mean bias.

: 2. The convergence of both pre-windowed and Levinson recursions seem to

depend somewhat on the index of the reflection coefficients. The pre-windowed i

estimates converge in general to within 10% on less than 250 samples, (i.e. a

typical blocksize for speech analysis). However the Levinson recursions produce

estimates that are so "noisy" that only non-linear schemes could improve them

oot ool o

because of the asymmetry of the irregularities. (The pictures suggest the idea of

"weeds" growing away from the best estimates represented by the envelope closer

to the true parameter value).

3. In order to reduce the high variance of the estimates obtained from the

Levinson recursions, windowing has traditionally been used. Our simulations
using a Hamming window show unfortunately that windowing can quite 7
drastically alter the dynamics of the estimates. The initial transients are completely
different even with a trapezoidal window which affects only peripheral points( n
= 10 ). Even more drastic differences are produced by the use of the Hamming
window., It appears that the transients are now a complicated convolution of the
original response and the window function. Smoothing is achieved for some
parameters but at the cost of new transients lasting over 500 samples, or more than
twice the commonly used blocksize. This would lead to biases in the estimates of
the reflection coefficients and would ultimately result in "rough" speech.

4. In light of these results, several alternatives will be explored. The
pre-windowed method can be easily modified to use an exponential weighting or

6.3 o - : ‘




scaling so that the most recent data contributes most to the estimates. The

convergence variance and bias of the estimates can be studied via the forward and
l backward prediction errors. The Levinson recursion without windowing can serve
as a standard to compare other forms like pre-windowed, “covariance" and Burg
type estimates. The somewhat ad hoc windowing commonly used can lead to
drastic changes in the transient behavior of these algorithms, and should therefore
be used with great caution! Methods which don't require windowing, such as the
ladder -~ forms, avoid this problem altogether.
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4th order AR process

8th order AR process

Table 4.1 Model parameter and reflection coefficients of AR models.

- O

(=)

2
3
4
5
6
2
8

Al) K[i)
1.000000 0000000
-1.313600  -.7424092

1.440100 .8082622
-1.091900 .01756615
.8352700 .8352700

Al K[i)
1.000000 .0000000
-2. 346440 -.942157¢

1.656970 .9238739
-.005990000 -.561975¢

.3230500 -.09454902
-1.482130 .2021682

1.154630 .5359436
-. 1896600 -. 3292221

-.05899000  -.05899000
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Figure 4,1(a) Data generated from 4th orde}- AR model,
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(b) Backward Reflection Coefiieient,Pre-windowed Ladder Form

(c) Reflection Coefficient, Levinson Algorithm without windowing
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Figure 4.2 First order reflection coefficient of 4th order AR process.
All algorithms give reflection coefficients that converge within

100 samples, Notice the smoothing effect of the two windowed estimates.
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4,3 Second order reflection coefficient of 4th order process.

Both reflection coefficients from Pre-windowed Ladder Form converge to
the true value in 250 samples, Also, estimate from Levinson Algorithm
without windowing converges in the same fashion as the Pre-windowed
Ladder Form . Both of the windowed estimates exhibit ‘'smoothing effects
and in particular, the Hamming window introduces biased behaviour %

at around 250 samples region.
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Figure 4.4 Third order reflection coefficient of 4th order AR process.
Notice the noise-like spikes appearing in the .estimates obtained
from Levinson Algorithm without windowing. The picture suggests
the idea of "weeds" growing away from the best estimates represented

by the envelope closer to the true parameter value,
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4.5 Fourth order reflection coefficient of 4th order AR process,

Notice how the Hamming window alters the transient behaviour during
the first 250 samples.
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Bias was observed on all algorithms, Notice the drastic

(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Fifth reflection coefficient of 4th order AR process,

"weeds"

appearing in the estimates from Levinson Algorithm without windowing

and the smoothing effects of the two windows,
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Figure 4,7 Sixth order reflection coefficient of 4th order AR process,

All algorithmsgive estima tes that converge to zero, the true
value in 100 samples,
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(a) Forward Reflection Coefficient, Pre-windowed Ladder Form
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(b) Backward Reflection Coefficient, Pre-windowed Ladder Form
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4.8 Seventh order reflection coefficient of 4th order AR process
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4,9

Eighth order reflection coefficient of 4th order AR process.
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4,10 First order reflection coefficient of 8th order AR process.

All algorithms give estim tes that converge to the true value in 5Q samples,
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(a) Forward Reflection Coefficient, Pre-windowed Ladder Form
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(b) Backward Reflection Coefficient, Pre-windowed Ladder Form
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(c) Reflection Coefficient, Levinson Algorithm without windowing
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q Figure 4,11 Second order reflecton coefficient of 8th order AR process.
Both reflection coefficients of the Pre-windowed Ladder Form converge

to the true value with 100 samples, In the Levinson algorithm without
windowing, the envelope also converges in the same rate, 1In both
of the windowed caseS, the initial transients were altered., In the

Hamming window case, bias in the estimtes are apparent,
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(b) Backward Reflection Coefficient, Pre-windowed Ladder Form
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(c) Reflection Coefficient, Levinson Algorithm without windowing




(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4, 12 Third order reflection coefficient of 8th order AR process.
Notice the drastic effects of "weeds" in the estimates of Levinson

Algorithm with windowing,
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(a) Forward Reflection Coefficient, Pre-windowed Ladder Form
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(d) Reflection Coefficients, Levinson Algorithm with Trapezoidal window
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4,13 Fourth order reflection coefficient of 8th order AR process
Bias is observed for all estimstea,.
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(c) Reflection Coefficient, Levinson Algorithm without windowing
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Notice the bias in the windowed estimates.

Figure 4,14 Fifth order reflection coefficient of 8th order AR process.
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(c) Reflection Coefficient, Levinson Algorithm without windowing
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(e) Reflect on Coefficient, Levinson Algorithm with Hamming window

Figure 4,15 Sixth order reflection coefficient of 8th order AR process,
Notice the bias introduced into the estimates in the windowed cases,
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(a) Forward Reflecton Coefficient, Pre-windowed Ladder Form
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(e) Reflection Coefficient, Levinson Algorithm with Hamming window

Figure 4,16 Seventh Order reflection coefficient of 8th order AR process,

Notice that even in the windowed cases, "weeds" are still present in the

estimates,
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(b) Backward Reflection Coefficient, Pre-windowed Ladder Form
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Figure 4,17 Eighth order raflection coefficient of 8th order Ar process.
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6.2 Time-Varying AR models

6.2.1 Results on Simulated Vocal Tract Behavior

This set of tests is to demonstrate the tracking ability of the PW ladder form.
Two sets of data were generated from an 8th order AR model with time-varying
(piecewise constant) reflection coefficients that converge exponentially to zero.
The first set of data was obtained by driving the input with Gaussian white noise
only. The second was obtained by driving the input with Gaussian white noise plus
a pulse train. The pulses occur at the step changes of the reflection coefficients, and
thus closely simulate actual vocal tract and speech behaviour, Figure 1(a) and 1(b)
show the actual data. Figures 2 - 9 show the convergence of all eight of the
reflection coefficients. Figure 10 shows the behavior of the likelihood quantity
gamma7, suggesting its possible role in a pitch detection scheme.

The data sets are each 2048 samples long. The step changes occur at every 128
samples. The time-constant of the tracking rate was set at 100, i.e. at about the rate

of the changes.

Observations
Observe that for the unvoiced data, the estimated reflection coefficients all tend
to fluctuate when they are close to zero., While for voiced data, the estimated
reflection coefficients converge uniformly to the true piecewise constant behavior.
A carefull study of the log-likelihood function as described in the context of pitch
detection and the conditioning of the underlying covariance matrix explains these
phenomena. The log-likelihood function is proportional to {n(l - K iz), i.e. if the

magnitude of the K;'s are close to one, the log-likelihood is a very sensitive

function or conversely if the K's are small they are not very important, therefore.

they are harder to estimate with a least-squares criterion. An other observation is
that if the very first sample is a pulse, this implies that the problem is

ill-conditioned. Simulations show that if the first few samples are gaussian type

5.6
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signals, the convergence is much improved. This typically is the the case after a

“numerical reset", i.e. ladder recursions recover rapidly after a reset.
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- Fig. 1(a) An 8th order AR process with time-varying (piecewise constant)
reflection coefficients that converge exponentially to zero.
Process was driven by gaussian white noise only.

Fig. 1(b) Same 8th order AR process but driven by sum of gaussian
white noise plus &n impulse traia.
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Fif. 2(e). Estimate of Ky using time-varying weighting factor on
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Fig.3(c) Estimated K, from impulse plus white gaPssian noise input,
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Fig. 3(e) Estimated Ky of non-gaussian input, using time-varying
weighting factor.
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Fig. 5(e). Estimated K.4 of nonfgaussiah input using time-varying
weighting factor.
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Fig. 6(d). Es'timated K5 of gaussian input only using time-varying
weighting factor.
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Fig. 6(e). Estimated K6 of non-gaussian input using time-varying
weighitng factor.
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Fig,7(8) Estimated K6 of unvoiced data (genéra;ed by impulse train

plus white noise).
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Fig. 7(d). Estimated K6 of gaussian input only using time-varying
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Figure 8(c) Estimated ¥, of voiced da@. (generated by impulse train plus
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Fig9(c) Estimated K8 of voiced data (generated by impulse train plus white
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Figure 9(d). Estimated K8 of gaussian input only, using time-varying
weighting factor.
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Figure 9(e). Estimated K8 of non-gaussian input, using time-varying
weighting factor.
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5.2.2 Results on Real Speech Data

E 1 6.2.2(a) Local Behaviour of Reflection Coefficients

| This test is to demonstrate the dynamic behaviour of the estimated reflection
i coefficient during a segment of voiced speech data, Two sets of speech data were !
' used. The first set is taken from a series of high resolution, sampling rate of 20,000 |

samples per second, speech data. The data was the vowel /e/ in the word "the",

This test will illustrate the local behaviour of reflection coefficients within a few
: pitch periods.The total number of samples in the segment is 960 and the time
constant of the tracking rate was set at 300. The estimated reflection coefficient,

the normalized prediction errors or innovations, and gamma, which is part of the |

likelihood ratio, were illustrated for the following order: 1st, Sth, 10th, and 15th.

O‘bservat;ons
The 15th order PARCOR coefficient K[15] converges to almost zero for voiced

sounds. Reflection coefficients clearly show piecewise constant behavior.




Fig.1ll Speech waveform of /e/ in "the" - 960 samples.
Sampling rate = 20,000 Hz.
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6.2.2(b) Global Behaviour of Reflection Coefficients
In this set of simulations, speech data sampled at 8000 samples per second was
used. The sentence is "the pipe began to rust while new", female voice. In this set
of simulations, the algorithm was set to track starting at the first non-zero input
and was stopped at the last input sample. The various illustrations described below
are just exerpts from the entire run in order to demonstrate some of the more
interesting features.The tracking time constant was set at 160 samples, i.e.

equivalent to two frame widths.

Formant Transition
The first set of illustrations show the behaviors of the reflection coefficients up
to to 13th order during a formant transition which occurs at about sample 6150.

Observe the variations of the reflection coefficients during the change.

Phoneme String
In this set of illustrations, reflection coefficients of the entire word "pipe" are

displayed, showing the changes in reflection coefficients during the entire passage.
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5.2.2(c) Pitch Detection Scheme

The first set of illustrations decribes a pitch detection scheme that is based on
the likelihood ratio parameters, namely ¥ (gamma parameters).

The second set shows the results of using a different implementation of the log
likelihood ratio in detecting the pitch of a different segment of voiced speech,
namely a) 7, only, b) 7, plus ln-R‘p part and ¢) the true likelihood ratio,
indicating the progressive contributions of the /n part. (c.f. likelihood formulas
above.)
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5.2.2(d) Global Behaviour of Log likelihood function.
t ; This illustration shows the global picture of the log likelihood ratio over the
whole sentence, and its potential for segmenting speech.
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6. Conclusions

The results of the initial testing of our new 'speech modeling algorithms have
been very promising. These algorithms seem to be very well suited for speech
modeling as indicated by the "constant parameter"” behavior during the pitch
period, ood tracking capa.bility and a novel likelihood ratio based pitch detection
technigue associated with the ladder form. Their performance is very promising
both in terms of achievable speech quality and potential for data rate reduction.

Due to the short term and limited scope of this research effort, our results can

only be considered preliminary. Further research and testing is needed, particularly

in the area of pole-zero (ARMA) modeling and parameter quantization
(coding/decoding) methods. The pitch detection problem (not part of the scope of
this project) also requires further study and refinements, especially in the context
of mixed processes.

It is expected that improved system performance can result by pursuing our
approach further and by performing more extensive testing to "tune" the
transmission system. Real-time special-purpose processor hardware would be
needed to effectively test various algorithms that have shown promise with a
larger data base. The current development and simulations are clearly processor
limited if done on a general purpose time-sharing system.

On a more general level, a number of important research problems are
incompletely resolved at this point and need further study. They are not just of
interest to speech modeling since they include basic pertaining to representations
of mixed processes such as Gaussian and poisson-type jump processes (potentially
useful for modeling voiced speech). Good performance measures for speech
transmission systems, such as acceptable distortion measures, and the establishment
of the basic limits of speech compression, i.e. the distortion rate function of speech
processes, are needed for further investigation in speech modeling.
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APPENDIX A

A Classification of Algorithms
for S
ARMA Models and Ladder Realizations *

M. Morf, D.T. Lee, J.R. Nickolls and A. Vieira

Information Systems Laboratory
Stanford University, Stanford, CA 94305

Abstract

Applications of linear systems modeling have recently developed quite rapidly in
speech modeling, seismic data processing, and other areas. Due to the diversity of
these developments, there exists a plethora of methods for estimating the
parameters of linear models given input-output data, transfer functions, or
covariance functions. This paper attempts a systematic classification of existing
least-squares modeling methods. Within this framework, we shall point out some
recently developed algorithms that have many computational advantages over
existing ones. i

In particular, the methods of interest will be classified according to how the
input/output data is acessed and according to its type. Data can be accessed either
sequentially or in blocks; the data can be either input/output signals, .transfer
functions, or covariance functions. " Since we consider state-space,

,autoregressive-moving average models, and the related ladder realizations, we shall

distinguish the following three classes of algorithms: Riccati or square-root type
methods, recently developed “fast" algorithms, and their ladder forms. While -the

first class typically requires computations of O(n3) or O(n?) with n equal to the
number of model parameters, the “fast" forms only require operations and storage
of O(n). The ladder realizations have several advantages, such as lowest
computational complexity and their stability "by inspection" Pproperties,

In the appendices, we present an example of our new exact least-squares
recursions for ladder forms, and show how to obtain stable partial minimal.
realizations of the joint impulse response - and covariance - matching type.

* This work was supported by the Defense Communications Agency under contract
DCA100-17-C-0005; the National Science Foundation under Contract NSF Eng15-18952; the Air
Force Office of Scientific Rasearch, Air Force Systems Command under Contract
AF 44-620-14-C-0068; the Joint Services Electronics Program under Contract N00014-75-C-0601; .
the Insitiute of Biomedical Technology in Zurich Switzerland; and by ARPA through the use
of the Stanford Artificial Intelligence Laboratory facilities.




1. Introduction
The long history and widespread use of linear modeling [K-S74] has resulted in
many independently developed methods for determining such models. We attempt
a‘classification of exact least-squares procedures that are recursive and optimal in
séme sense, and discuss some recently developed methods that have computational
and structural advantages over existing ones. We shall only indicate examples of

the much larger class of suboptimal or approximate methods.

.~ .

In Section II we introduce the modeling problem by reviewing external and

internal (linear) models, and consider the different types of observed data. We
then introduce a systematic classification in tableau form of the various ‘methods
to be discussed. It should be stressed here that these least-squares modeling
methods can in general only determﬁe the unique innovations representation
- model [K-S74]. The parameters of this model are chosen to produce behavior
statistically equivalent to the observed data. .

In Section III we coﬁsider batch methods that are best suited for cases where data
is accessed in blocks. This situation typically occm§ when the data is in the for:;1
of a covariance function or transfer function.

In Section IV recursive (in time) algorithms that access the input/output signals

sequentially are discussed. In the control context they are considered on-line

methods [AE], [MKL]. In both sections III and IV we point out the fast versions -

which take advantage of certain matrix properties.

In Section V the ladder (or lattice) type realizations of the fast algorithms
discussed in Sections III and IV are introduced [1S], [Mo]. These new methods have
several nice properties from both the theoretical and application viewpoints. -

In Appendix A we show how to obtain stable partial minimal realizations of the
Joint impulse response- and covariance-matching type. In Appendix B, we present

an example of our new exact least-squares recursions for ladder forms.
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II. The Modeling Problem

The many different types of linear models can be classified into "external® or
input/output descriptions, and "internal” or state-space descriptions. We will first
consider "external" descriptions, which are sometimes referred to as transfer .
function type models. . .

Let us consider a finite-dimensional linear system (FDLS) with inputs { u() } and
outputs { () }. The outputs represent sampled data, such as speech where y's are
scalars, or seismic signals from a geophone array where j's are r-vectors. The
{nput-output relationship can be described by an autoregressive - moving average

(ARMA) model,
%ot . 4G, =W, (2.1a)
w;-bou,--»-...-rbqu‘_q, i20, n>¢20, (2.1b)

where { w(-) } is a moving average of a white noise sequence { u(-) } and the values

{940 ---» 9 p}and {u, ..., u_q} are initial conditions. The modeling
problem here is to determine the model parameters g; and b; . Applying the
z-transform
0 > S
ya) = 3y (2.2)
i=0 :
to equation (2.1) yields
a(z)y(z) = Kz)u(z) + { terms involving the initial conditions } , (2.3a)
a(z) = ™ +¢lz"‘l+ co. te,, ~ (2.3v)
Ka) = b+ o™l e L 4 p T ~ (2.3¢0)

With zero initial conditions and scalar processes, the ratio of y(z) and u(z) gives the
transfer function T(z) = Kz)a(z) . When &z) = z¥, %20 then {w(?) } is a white
noise sequence and { )} is called an autoregressive (AR) process; the model is‘
referred to as all-pole. Alternatively, when a(z) = 2", { %(:) } is a moving average
(MA) process and an all-zero model is obtained.




s

Turning to “internal” models of the FDLS, we can consider { ()} as being
generated from { u(+) } with a suitable initial condition {xy} by the state~space model

Xie1

% = Hx . i20. . (2.4)

- &x 4+ Ty, ,

.This model can be chosen to have the given transfer function

T = H(d-8)-1:T - g‘é’, . (2.5)

Note that for convenience we have used a model driven by u;,y» rather than the
more commonly used model driven by u; [MKD] since they can be related [Mo]. .
Given the transfer function, a simple way to choose the matrices { H,®,T ) is

the "observer canonical” form
® - zZ - almH v H - ‘11' T = [qu’ OT]T - (2.6)

where T denotes transpose, &,,, fOn= [, . . ., ¢, ), B_fOn= (b, . . ., bq]", Z is the
*delay matrix": Zi’jjOA- if (j—i = 1) then 1else 0,and ¢ fon= (1,0, ..., 0l isthe’

first unit vector. The state-space model provides a convenient way of computing s

the covariance function of the output process. Even though the underlying model |,
{H,® Tjor{a

not stationary due to “transients” caused by the initial conditions. However, if ® is

Sues bq } is time-invariant, the output process { ) } is in general
a stability matrix where all eigenvalues have magnitude less than one, then as i-w
the transients eventually die out and the process becomes stationary. In the
stationary case, the covariance is a function of |i-j| given by
Ri.) - H $#-/IMTH' , where Il is the state covariance matrix as i»e (see
(DEM)). S

ARMA models and state-space descriptions are just two different methods of
representing the input-output relations of a FDLS, and they can be closely related to
each other using matrix fraction descriptions (MFD's) [DKM]. A lesser-known class

of FDLS representations are the ladder realizations, which are discussed in section

V and are also related to the ARMA and state-space models.




In modeling a process as a FDLS driven by white noise, the observed data is
usually available in one or more of the following forms:
a) input-output pairs { u(-), ) };
b) impulse response or related sequences such as mdments, (or moment estimates,
e.g. obtained from input-output pairs);
c) covariance functions or second order knowledge of 11‘1'1;uts and/or outputs, (or

estimates, e.g. from the impulse response).

Batch methods are used when data is accessed in blocks, as in, b) and ¢); efficient
methods for determining model parameters are recursive in order. Recursive (in
time) methods are appropriate when data is accessed sequentially, as in a). Model
parameters can then be estimated recursively both in order and time. Tabi"e 1
{llustrates the modeling methods that we will discuss; they are divided first into
batch and recursive groups, then by model class: Riccati or square-root methods,
“fast" algorithms, and their ladder forms. Within each class the name or code for

each method appears along with some pertinent references.




II1. Batch Methods

When observed data is available in blocks, batch modeling methods are
convenient.” We will first consider AR models because of their widespread use
[Makh]. The 1 - developed "linear predictive coding” (LPC) speech
compression schem . example, are a direct application of least-squares fitting
of AR models [AX], [1S], [Wak] (for a survey see [MG]). AR models have also been
very useful in statistics [Par], [BJ], spectral analysis [UB], [Aka], and multichannel
geophysical applications [Rob], [WR]. '

Normal Equations
It is well known in least-squéres problems that the parameters of an AR ﬁ:odel
satisfy a set of linear equations called the normal equations (see [K-§74], [MG)) :

a'R, «[l,-a;, ..., =R =[R,0,...,0] . (3.1)

An alternate form is the Yule-Walker equation [Par] :

& TR 1oy, . IR oo md T (a.e)
In both forms R_is a covariance matrix and the g;'s are the "predictor” or AR mode}
parameters. R¢ 1is the "predictiox; error" or innovations covariance, a
non-increasing function of n (typically the model arder). In speech processing, two
popular methods of obtaining the normal equation are the "antocorrelation': method
and the "covariance" method [MG], but there exist many ways of estimating the
covariance R, [BJ], [MDKV], [Di]. General methods for solving such linoar
equations include Gaussian elimination (GE), Cholesky decomposition, Householder

transforms [Hou), [GGMS]; however, they all require computations of O(n3),

The Levinson-Wiggins-Robinson (LWR) Algorithm
An algorithm that requires only 0(n%) computations for the recursive solution of
normal equations with TOplitz covariance - matrices (corresponding to an

assumption of stationarity of the process) was first described by Levinson [Lev]

and later extended by Wiggins and Robinson [WR). By making use of certain




shift-invariance properties of TOplitz matrices (the i,j-th entries are only a
function of i-j), this algorithm solves the normal equation via a set of recurstons

that update the AR parameters or the predictor parameters in increasing order

[Rob], [K-S74]. The Levinson recursions are also closely related to the orthogonal

Szego poiynomials [Sze], [GS], [KVM]. Levinson's algorithm plays a.central role
because it can be generalized to handle multi-channel data [WR],
multi-dimensional or image processing problems [LKM], nonstationary processes
with "shift-low-rank” [Mo], [FMKL], ladder realizations [MV], [MVK] and ARMA
or state-space models [MKD], [MKL], [DKM]. .

ARMA Models
In state-space terms, the problem is to find a triple {H,%,T } such that
T;= H&T, where {T;} 1s a given set of “first order" data characterizing the
impulse response of a linear system. This is the partial realization problem [KFA],
[DMK]. The central role in this realization theory is played by the Hankel matrix

with ;ntries H T The columns or rows of this matrix are known to span

iej-l *
the state-space; so any method for finding a basis is a viable realization method. Of
particular interest are methods for finding the smallest basis resulting in minimal
order n realizations [HK], [Si], [YT); they all require O(n3) operations.

From a transfer function point-of-view, the partial minimal realization problem
is that of finding two relatively prime (matrix) polynomials a(z) and &z) such that
the given power series T(z) matches say & terms of the expansion. of &z)/a(z) . This is
the classical Padé approximation prob_lem; which in the scalar case Yyields
T(z) a(z) = z) + {termsin 24, i>k-n } . Equating coefficients of z". O0sisn,

’

we get
Hnan - 0,, 0r H [a,, ....q]‘ L ¥ TR Y LY (3.3)
where H, is a Toplitz matrix containing the reversed column ordered Hankel

matrix H,, . Note the similarities here to the normal equation (3.1) and to Prony's
method [MG].
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Again, standard methods could be used to solve for &, but they all require
computations of O(n%). However, if one takes advantage of the structure of the
Hankel or prlitz matrices, fast algorithms can be found. Such algorithms have
been developed (in a coding theory context) by Berlekamp [Be] and for minimal
realization by Massey [Mass]. Multivariable versions have also been developed
[Mo), [DMK]. These recursions are strikingly similar to Levinson's recursions; the
Berlekamp-Maséey algorithm can also be related to v.::rthogonal Lanczos polynoﬁuals
[Lanc), [Mo]. An alternative method for obtaining stable partial minimal
realizations is discussed in Appendix A. It can also be derived by considering a
Gram-Schmidt (GS) orthogonalization on the columns of the Hankel matrix H n OF
the Toplitz matrix H, [Mo], or more generally by using projection methods

(xKM]. "

Spectral Factorization and Innovations Representations

The problem of obtaining a model of a process { %)}, given its covariance

function or second order information, is called stochastic realization. We are -

interested in representing { %) } as the output of a linear model driven by white

noise. In gefieral, there exist many such models, however the only stable and

stably invertible model is the (unique) innovations representation (IR) [K-S74].
The inverse model is the whitening filter that produces a white noise process, the
innovations { €(-) }, when driven by the observed data. In discrete-time or time
series analysis, the innovations are the one-step prediction errors of the
observations. If the process { 5(:) } is stationary, the problem of obtaining the IR
essentially reduces to one of spectral factorization.

An efficient method for obtaining the spectral factors of §,(z)

$,x) = &z) &-2) / a(z) a(-2) , ' (3.4)

is given as a two-step procedure in [DKM], [MKD], [Mo]. In the stationary and
scalar proceéé case considered here, the truncated or one-sided power spectrum S,(z)

of { %) } is formed from the covariance sequence. A minimal realization algorithm




—

is then nsed to approximate §,(z) by ¢(z)/a(z) , where 1/a(z) 1s.the. AR-part of the
desired model. From
Sy2) = al2)s y(z) az’l) = alz)gz’h) + q(z)a(z'l)'
- K2 azh) (3.5)

it can be seen that the spectral factorization problem for { ¥(:) } is now reduced to

the simpler factorization problem for a MA-process { w(:) } , where the factor z) is
the MA-part of the desired model. It can be obtained by Cholesky and other
factorization procedures. Thus { () } is modeled by the cascade of the AR and MA
parts driven by the innovations, a white noise.

In the time-domain this corresponds to a factorization of the (stationary)
covariance (a Toplitz matrix) into triangular factors. The "fast-Cholesky”
factorization given by [Mo] is an efficient algorithm for stationary and
non-stationary covariance matrices with "shift-low-rank". It should be noted tha.t

many popular covariance estimates have this property.
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IV. Recursive "in Time" Methods

When the observed data is available as input-output pairs that must dbe accessed
sequentially, recursive modeling méthods are the most appropriate. Many recursive
least-squares methods have been developed in the identification and control area;
they typically involve solving Riccati-type equations and have computation and
storage requirements of 0(n3) an& O(n?) respectively. Recently "fast" algorithms
have been developad with reduced computations and storage of O(n) using ARMA or
ladder realizations . . 2 .

An impozltant set of least-squares recursive methods for AR-type models is
described in detail in [SLG] and more recently in [MKL]. The discussion includes
least-squares (LS), weighted least-squares (WLS), generalized least-squares (GLS),
instrumental variable (IV) and recursive maximum-likelihood (RML1,2) methods
for ARMA models. All these methods solve a Riccati equation that recursively
updates the inverse of the matrix appearing in the normai equaftion of the problem.

An alternative to the Riccati equations are the m&e-rwt forms discussed for
instance in [MK]. They make use of the numerically preferrable orthogonal
transformations [Hous], [GGMS]. R

A special case of the IV method is obtained by using the n-step delayed outputs as
instrumental variables. This can be shown to be equivalent to a minimal realization
problem given (estimated) covariances R ., Recall that in the given (estimated)
covariance case we discussed a two step procedure. The first step was to obtain a
minimal realization, or rational approximation of §,(z) by ¢zl/a(z), cr in the
time-domain of R, by Q 4-1 [DKM), [MKD]. In matrix notation we obtain

R4 «R ;. - (4d)
where 4 and Q are banded matrices of "band width" n , if the underlying linear
model is of that minimal order. The first column of (4.1) corresponds to equation
(3.3)

n 0 , (4.2)
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where R" is the (2,1) block entry of the appropriately partitioned triangular
Toplitz matrix R, . The matrix Ru is the cross-covariance of the last n observations
and. the same set n time-steps delayed. R,, clearly plays here the role of the
reversed ordered Hankel matrix H n- BY noting that the Riccati-type equation can
be interpreted as a recursion for (low rank) updating of the inverse of a matrix, we
see that the IV method can be viewed as a recursive (in time) updating proced:ure

for the minimal realization solution for @ in equation (3.3).

Fast Algorithms for Recursive "in Time" Methods
In [MKL] the development of "fast” algorithms for the recursive least-squares
methods is discussed in detail. Efficient recursions for time and/or order updates

for AR-type models were first derived in [Mo]. The basic idea there was the

observation that the matrices encountered in many least-squares problems have a°*

"shift invariance" or a "shift-low-rank" property. It can be characterized by the

(low) rank p of the shifted difference of a matrix M: p (M = Z'M 2], where

the "delay” matrix Z was defined in Section II. This prpperty is generated by the
fact that these matrices are sums of products of Toplitz or Hankel matrices. It can
also be used to obtain fast Cholesky algorithms for MA processes, thus obtaining
recursive whitening filters of the AR type ( e.g. RMHS algorithm in [Mo]).
Similarly we can obtain general LWR recursions in order and time for AR
processes, i.e. updating the MA prediction (whitening filter) parameters ¢;. A
surprising feature of the fixed-order recu;'slve-in-time algorithms is that explicit
updating of’ the covariance estimate is unnecessary, basically because the model
parameters are an implicit characterization of the covariance. Since the details of
these algorithms can be found in [MKD],[DKM],[Mo],(FMKL] , we shall only give a
comparison of the LWR-type algorithms, assuming that the reader is already

" familiar with the Levinson recursions as described in (Wie], [WR], or more

recently [K-574].
The recursions for the generalization of the LRW algorithm for covariance
matrices exhibiting a shift invariance property have a very similar form to the

il
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original Levinson recursions. However, in contrast to the two solutions required in
the LWR‘algorithm. the so-called forward and backward predictors, we require in
general more solutions for non-Toplitz matrices. It turns out that the
“shift-low-rank" p of the covariance matrix, regardless of its size, is equal to the
number of solutions required in the recursions. Fo_f- ihe case of covariance
estimates that can be written as products of two Toplitz matrices (typically
containing input-output data), the number of solutions required is at most four 111
the scalar case, and 2m+2 for m-channel data. :
I-‘or' combined ARMA models we can either attempt to model .tirst the AR or the
MA part and then try to estimate the remaixﬁ.ng part of the model. In the batch
methods of Section III we discussed ways of obtaining the AR part first via minimal
realization and then the MA part via spectral factorization. The other order of first
obtaining the MA part could be obtained by working with (an estimate of) the

. inverse of the covariance matrix, the so-called infor mation matrix [MK].

The cascaded approach can be_carried out also in time r_ecurslve form by
estimating the AR part via a (fast) recursive form of the IV method, as discussed
above, cascaded by the fast Cholesky recursions for a MA process.(e.g. RMHS in
[Mo]). The only difficulty now is that both parts estimate the models in the

‘so-called controller or "tapped delay line" realization, a dual form to the observer

form, which cannot be merged by inspection.

The joint innovations representation approach discussed in Section III and
Appendix A is ideally suited for recursive in time methods. Even tﬁough the -
anin.g inputs (conceptually the innovations) are usually not available, they can be
replaced with their best estimates obtained dy using the best current parameter
estimates. This is clearly only possible for methods with sequential data access. It
turns out that this seemingly "suboptimal® approach of substitution has itself
optimality properties (see e.g. [SLG]); a similar situation occurs in detection of .
unknown signals, and in the famous separation result of linear quadratic control
using state estimates [KFA). The recursive maximum likelihood methods in [SLG]

and [MKL] can be derived from such an approach. Once estimates of current
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prediction errors are obtained, they can conceptually be treated as known data, and
8 ‘ entered for instance in normal equation expressions. The only problem that might

arise lies in theoretical proofs of the convergence of such methods.




(V]

V. Ladder Realizations

In Section II we discussed the realization of a given transfer function 7(z) -
&z)/a(z) via transfer function or state-space type models such as ARMA, controller,
or observer canonical forms. If the roots of a(z) are known, 7(z) can be represented
by a partial fraction expansion. Using polynomial evaluation formulas we can
obtain the so called Jordan canonical or parallel decomposition form (even for
matrix transfer functions) [Mo]. The Jordan form has the nice property that
stability can be checked by merely inspecting the magnitude of the roots . Finding
the roots, however, is numerically sensitive. :

The ladder (or lattice) canomical realizations provide a very promising
alternative. They also have the propérty that stability and even minimum-phase
can be checked by inspecting the PARCOR or reflection coefficients [IS], [Wak],
[MG], [Mo], [Cla2]. In c?ntrast to the methods for finding roots of polynomials this
requires only a finite algorithm, the Schur-Cohn test for stability. This is actually
equivalent to the Levinson or orthogonal Szegd polynomial recursions performed in
decreasing order on &; or afz) , [K-S74]. Given the stationary covariance matrix R,
i.e. second order information, the a;'s and the reflection coefficients can be
computed via the LWR algorithm. From a stochastic process point of view we can
identify these coefficients with the partial correlation (PARCOR) coefficients or
singular values. They also have physical significance in the scattering theory of
waves [1IS], [Wak], [K-§74], [MV], [MVK].

The Levinson algorithm can actually be carried out using only the reflection
coefficients as parametrization, since the inner product k; of a vector

T fon= [ry, ....r,-]1 and the coefficient vector &; | can be obtained as the current

output k,- of a ladder realization drivea by a previous input sequence containing

{ry» ..., 7} . Similarly we can translate other algorithms for AR models, such as the
various generalized Levinson algorithms [Mo], [DKM], [LKM], Appendi:; 4, into
their ladder form equivalents as in [MVK], [MV], Appendix B. These forms are of
interest by virtue of their stability propertie's and their numerical robustness --

they typically require sample correlation operations. These forms have also
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canonical [Mo] and invariance properties [MVK], as well as minimal storage
requirements for modeling algorithms, as seen from a c;:;nparison of the the

recursions for the PARCOR and the &; parameters in Appendix B.

ARMA models

Recall that the first step of realizing an ARMA model in Section III was a minimal
realization problem. The solution to this MR problem can be carried out Ln ladder
form by using a Berlekamp Massey (BM) - type algorithm. These recursions are
actually very similar to the LWR recursions, as noted in [Mo]; therefore we can ﬁse
an analogous derivation to obtain ladder forxﬁs for the BM recursions, as presented
in [GrMo].

Alternatively, the joint IR approach explored in Appendix A, leads (even for
scalari processes to the theory of thi&amel ladder realizations of the AR type
discussed above. Since we embedded the underlying ARMA model in a two channel
AR model, the IR model will again be of order 27, i.e. ;zon-mlnimal. This would also”
hold for a ladder realization. :

Minimal models can be obtained by merging the AR and MA parts in the observer
form. It is also possible to obtain a minimal rational ladder. form [MG], [Mo]. The
basic idea in state-space terms is to add a suitable input matrix (T') or output matrix
(H) to a ladder form realization of the AR part of the model; this is possible since
the ladder forms are controllable ( or their dual observable ) [Ma].

The second step of the stochastic realization procedure of Section III requires a
spectral factorization for the determination of the MA part. ;\s indicated, we need
to determine the triangular factors of the (banded) covariance matrix of the MA
process. They can be obtained from the Cholesky factors or the RHS of the LWR
recursions. Similarly it is possible to obtain the ladder realizations of the MA part,
since the fast Cholesky recursions "by rows" have the form of a state-space
equation with a dynamic matrix € that has precisely the same form as the & matrix
of a feedba'ck ladder form in state-space notation [Mo]. As for the LWR recursions,
there similarly exists a ladder form of the fast Cholesky algorithm that requires

o I8 w
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only reflection coefficients as parametrization,

Ladder Forms for Recursive "in Time" Methods .
The ladder forms for exact least-squares solution to AR modeling have been
developed in [MV]. In Appendix B, we shall present the simplest one of the many

- possibilities of such ladder forms, the "prewindowing" case [MDKVJ. It is

interesting to note that the partial correlation coefficients are computed as sample
cross correlations between the “forward" and "backward" prediction errors as
expected from the stochastic derivations of the ladder forms [Wak]), [Mo'J, [SKM].
The ladder forms of the GLS and RML1/2 methods discussed in [SLG], [MKL] and
Section IV can be obtained by embedding the models in an appropriately augmented
AR model as in Appendix A . The IV method led to nonsymmetric Riccati equations,
therefore the fast versions also require a nonsymmetric form of the LWR
recursions. However it is clear that these recursions are then of the BM type since
this algorithm also works with nonsymmetric (though triangular) Toplitz
matrices. Therefore, we could obtain "nonsymmetric" ladder forms of the type

- given in [GrMo]. Although the final algorithms. of these ladder forms are simple to

implement, the eWre of the "shift-invariance" is in general nontrivial [MV].
Our preliminary experience with the numerical properties of these algorithms
has been very encouraging; in general ladder realizations are superior, to direct
forms for computing estimates of the coefficients of a(z) and ¥z) . S.t;ochastic
approximation or gradient type methods using ladder forms can be obtained easily,
e.g. [SV]); however, they have drawbacks similar to other stochastic approximation
methods, especially for covariance matrices w.ith extreme eigenvalue distributions.
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- ( ’lT is the first unit vector). This equation can be interpreted as an AR model for /

Appendix A: Stable Partial Minimal Realizations
In this appendix we show how to obtain stable pa}ual minimal realizations of
the joint impulse-response and covarx.ance-matching type. It will turn ;mt that we
can obtain an ARMA model by imbedding it in a two channel AR modeling problem.

Given an ARMA model as represented by the difference equation of section II, we
can rewrite it as (let ¢ = n) : '
Bty * - 460, bytupy = o= bpu " bo¥, » (A1) 1

or a'y, - b'u, = byu,, where - :
&7-[1,41,....4.], y‘T'["'---' ,‘."]v g ]

biTe 10,8 ,.... 8, Yl =y, ..., 3] -

Now consider }he following augmented equation

al =BT\ ¥t - |bgw, |
o . ‘]T ug : u | X (A2)

the joint process {y,u} [Mo], since the RHS is equal to the joint innovations of
{¥,u?},since : ’e ey !

€ = |€%] = 1% Feu1 | = |Bo% B {
" S TIEIE : ‘A:f) :

Deterministic Case
We first consider the deterministic case where we are given impulse response
data or the Markov parameters. Writing the input/output relationship in matrix
notation (see sec. III) ylelds ) BE

0 a - b

T L] ]

Hy 7o || Op Or| » (a4q)




SO SE S W

where T, is a lower-triangular and Hp is a full Toplitz matrix of the. Markov
pafameters (HT is the column reverse ordered Hankel matrix). Letting T-w=, we get
the normal equation .
T, B |[T,1||a o] =

I o ||Hpo|d ¢

= [ Rn Ta [[ @ 0= eibobg’ b :
: Tll I -bl ‘1 : ¢1b° ‘1 . (A5)

Stochastic Case
From a stochastic process point of view we can express the normal equation
associated with the augmented AR model as

E{fv,]tr.'u.*l a o} - £ Vc]["c"o“c]}

e

Y "By ¢ &

b o

P

[ R TIY[ 2 0] = [eete” et
g T" In ‘bl ‘l ¢lbo ¢1 . f (AB)

L
We can solve for the normal equationof &, : °

L .

R,a, = (R, =TT 18, = (HH,la, = R, . (A7)

The equations (AS5), (A6), and therefore the non-Toplitz equations (A7) (!) can de
solved recursively with the LWR algorithm. Note that if R¢, = 0 , the minimal

“order n = k. We could bring equations (AS), (A6) into a more familiar fom by the

interleaving permutation (1,3,5,...,2n-1,2,4,6, ..., 2n+2), cf. [MDEV], to convert
the two-process covariance matrix into a n by n dlock Toplitz matrix, with 2 by 2
blocks, however the LWR algorithm clearly applies to dboth ;oprucnuuom with -
suitable modifications. :

Thus we have shown that the joint impulse response/covariance matching '




.

problem is equivalent to solving a set of normal equations associated with a two
‘ 1 L channel AR modeling problem. Since the pr.edictpr for the joint process is
| triangular and minimum phase, the denominator @, of the underlying ARMA
model is also minimum phase and therefore stable, (for all k). '

Equations (A5) and the elegant stability proof were actually first obtained by
Claerbout [Cla1] via 2 least-squares rational approximation. The connections
between the joint innovatioiu representation, the augmented normal equations,
and the Hankel matrix were pointed out in [Mo] and also in [MDKV], [MKD),
[DKM], where algorithms were given to solve equations of the type seen in (A6)
A and (A7). For the special case where R has a "shift-low-rank" of one of the type
E : ! ‘(35), called the post-windowing method in [MDKV], a Levinson-type algorithm
’ was given recently by [MR]. The stability property of the AR model was proved
E q : there using a somewhat more con;plicated Lyapunov technique. :

P —
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Appendix B: LS-Recursions for Ladder Forms
The Prewindowing Case
Given a series of observations {y¢), 0stsT}, where { ) } can be m vectors, we
wish to find the least-squares one-step predictor of order p parametrized by the
(matrix) coefficients {APJ(i).i-l. ...sp}. We can define many different squared

error criteria £ T for instance as a function of s and f in
7 :
A T T o
Ep,T > 2 ¢ pJ“) ‘pd‘(‘) ' ‘p,t s 4 pT Ve P] 19

t=s

A S (L AT, 0, AT O, YT-p) 2 0Ty, ) (31)
An obvious choice from an I{nnovations point-of-view is (s=0,f=T), the
"pre-windowing" case [MDKV]. If s = p and f = T the so-called "covariance”
method is obtained, and if s = 0 and f = T + p we get the pre- and post-windowed

case or the "correlation” method [MG]. The total squared error can be expressed as

i ey 4

4T
EAT""UP.TRP,T"AT’ - T pT * pT*

Y’,T : [y[&-?] . y[':-?+l] 9 0o ey ytT:T"P]] (BZ)
Thus th_e problem of determining APJ' by minimizing E aT leads to
Rypdyr =R p,0 ....0", R zomnk,g. (B3)

Although Rp.r is not Toplitz, it still carries a certain shift-invariance stmétun.

_ given by the following identities

R - 'A,._, & YITT-p) YITT-p)"

-]l x x x . Rﬁ_, r x
x R,_,J_, x x % (BS)
Define the backward predictor B T and the ni:oothln.g errorsC aT
B, rRr800,.,0R 10; ¢ rR ¢ & yIIT-p]. (BS)

Then t_ho forward and backward prediction errors (innovations), ¢ T and ™o and
an auxiliary scalar 7, p can be defined by _ -
\ 4 J A Trye.
[. ”TI r"rl ?”T] L] y[T.T-f] [Ap’ro BP.T' C"T] .




e

Order Update Recursions
Using the three shift-invariance identities for R, 5 (B5) and using some

—~—

symmetry properties, the order npdfte recursions for 4 pT B pT* Cp.T , R€ pT» and
Rr

PvT are 3 i
g \ T _ i
s | § Apar = (4p 0V - Kor R-’P,T'l (o, BTP,T'l y
| Blour =010 Byry T - KpROrlA g oF (87)
T : T T et -
(o p1,T = [C pT’ o ] + r pL,T R rp‘l,T BTP‘LT where

K,y = Ulastblockrowof R ;7] (A, 0F : :
Lo, B',p.y ) [first block rowof R,y 1 T'. f

_'; ‘ : Bonr = R‘p.T - Kpr Bppy Kpp

Foar= Ry - Ky R-‘P.T Kipr - i (83)

The order update recursions are very similar to the multivariate version of the

Levinson algorithm, and a similar set of recursions for time-update can also be

obtained [MDKV],[Mo].
Ladder Type Realization

Premultiplying the above equations by Y{T:T-p+1] , we obtain the féuovdng
order update recursions for ¢ pT T 4 pT
' T
Car = Gr - KB,
= Tt = KprFhrer
X
Youal = Yo+t Tpar Bpartpar- . (B9)
The "Kalman gain" K , 1 is obtained from [MV] as follows
Kp,rd - KP.T + rp.T ‘Tp,r’l , (1- 7,_1'1-) Y (B10)
and the reflection or PARCOR coefficients are obtained by

e K“r s KI,TR.“,T; K"'r & KT‘.TW‘,T-I . (B11)




The initial conditions are given dy
‘O.T = ro'T - yf s 7.-’,7. - 0
RE or * R’o,r = 320 n 7c1 'mmT-l ""77'717"
for p2T: :
€T = frpi T,r = Tpyi Tpr = Ty o
. o - e T
By = Bypi Fyp = Rppi Xy = 0;
T
Kpmi = 30 CGpa-
As the dual to the stochastic forms in [IS], [Wak), [Mo), [SKM], equations
(B8)-(B11) are a complete set of order and time update recursions to obtain the
exact Iem-sqdares ladder form predictor, which‘ is shown in Figure 1.

{ Y,,_} €T

b & g

Figure 1 .. Lfd&er realization of exact one-step least-squares predictor.

The recursion (B10) computes the sample crqss-conrunco of the-forward and
backward innovations, using the optimal weighting ll(l?7. » +), COTAPared to other

suboptimal schemes [SV]. In the scalar case R, 10 if 390, or in general if ¥, ; y<l,

since Oﬂﬂsl (MDKV]. If m>1, we require T2p+m. These singularities can be
avoided by including a priori estimates of the covariance R,, or equivalently
including a weighted norm of the predictor 2, in the error criteria E_ . Several
such modifications have deen proven useful in actual implementations.
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APPENDIX B

Ladder Forins in Estimation and Systern Identification

M. Morf

Information Systems Laboratory
Stanford University, Stanford, CA 94305

Abstract

Ladder forms are probably the most promising canonical forms in
estimation, and sy identificat Many rccent applications, such as
in geophysical signal p ing, high lution ("mazimum entropy”)
spectral estimation and specch encoding, justify the interest in these
forms. They appear in many contexts, such as scaticring and network
theory and the theory of orthogonal polynomials. The statc-space model
Sadder vealizations are very closcly related to (block) Schwarz matrix
canonical forms, which generally appear in the context of stability
snalysis. In fact they are the matural “stability canonical form® for
(discrete-time) Lyapunov equations since the sssociated positive definite
(covariance) matrices are diagonal resp. sn Identity. This fact leads slso

to close connections to square-root algorithins including the oncs of -

Cholesky and Chandrasckhar type, since again ladder forms arc the
matural caronical forms. In rcalization theory these forms are obtained
via orthonormal state-space bascs using Cram-Schmidt type procedures.
Jadder forms have many othcr advantages, such as lowest computational
complexity, good mumerical behavior, stability “by inspection” properties
and rclations to physical propertics such as reflection or partial
corrclation coclficients, and perhaps absorption cocfficicents.
We shall prescot an outline of some ncwer results connecting these
fopics and prosent wew eaamples of our mew exact least-squares
ions for ("adaptive”) ladder forms with polcs and zeros. We close
with 8 few simulation examples, including the identification of » fayered
media (via ultra-sound)

1. Introduction

Ladder forms have attracted much attention recently Lecause
they are probably the most promising canonical forms in estimation
and system identification. These forms have appeared in many
applications such as geophysical signal processing for quite some
time , and more recently such models are being used in high
resolution ("maximum entropy”) spectral estimation and speech
encoding. Ladder ( sometimes called lattice - a term we would like
1o reserve for two and higher dimensional extensions [LKM)) forms
appear in many contexts, first perhaps in scattering and network
theory where the scattering of waves in layered media or in
(non-homogeneous) transmission lines leads very naturally to
fadder forms, see eg. [Cla2], [LKF], [RMY], [Kelly)

Ladder forms appear explicitly but more often implicitly in
many contexts. They are directly related to the scattering of
waves and therefure perhaps first introduced in physics. Some of
the associated mathematics are used in network theory, where the
cosvade suucture of ihe ladder forms pay: 2a impuitant 19le. The
notion of transfer funclions leads very naturally to the next
connection, the theory of orthogonal polynomials. They in turn alse
appear in the stability analysis of linear systems. The state-space
models that are related to orthogonal (matrix) polynomials are the
so-called (Mlock) Schwarz matrix canonical forms, sce eg. [AJM],
[SS1 However, the special structure of these matrices leads very

' This work was supporicd by the Defense Communications Agency
wnder contract DCA100-77-C-0005; the National Sci Foundati

wnder Contract NSF Eng15-18952; the Air Force Office of Scientific
Research, Air  Force  Systems Command  wnder  Contract
AF44-620-74-C-0068; the Joint Services Elcctronics Program wnder

Contract NOV014-15-C-0601; the Institute of Biomedical Technology in .

Zerich Switzerland; and by ARPA through the wse of the Stanford
Artificial Intelligence Laboratory facilities.

directly to the ladder realizations [Me]l In fact they are the
natural “stability canonical form” for (discrete-time) Lyapunov
equations, since the associated positive definite (covariance)
matrices are diagonal or respectively an identity matrix. The
similarity transformations to this form involve 3 matrix
square-root of the associated covariance matrix. The ladder forms
are therefore closely connected to square-root algorithms
including the ones of Cholesky and Chandrasekhar type. In
realization theory these forms are obtained via orthonormal
state-space bases using Cram-Schmidt type procedures, due to the
fact that this ortho-normalization is again relsted to matrix
square-root and orthogonal polynomials.

Ladder forms have many other interesting properties. Due to
the fact that they are in many problems the "natural canonical
form”, they lead to algorithms with lowest computational
complexity compared to other canonical forms. Although 3 detailed
study is still outstanding, there are many indications that this form
leads to good numerical behavior of the associated algorithms, a
property that is not shared with most canonical forms.
Furthermore, the stability "by inspection™ property given the
fadder coefficients is shared only by the Jordan or modal canonical
form. However, the latter one requires the knowledge of the
eigen-vafues that are in general not very easily obtained, compared
to the finite algorithm required to get the ladder coelficients.
They in turn have other interesting interpretations and relations
to physical properties such as reflection, and perhaps absorption
coefficients. In stochastic process modeling and spectral estimation
the ladder coefficients turn out to be partial correlation or
canonical correlation coefficients, which leads to very simple
methods to determine these parameters either [rom covariance
data or even directly from measured data.

In [MLNV] we presented a classification of exact least-squares
modeling methods. The material discussed here is 3 sequel to the
results discussed there, in particular we will concentrate here on
the ladder forms and the associated algorithms. We shall present
an outline of rome newer results conrecting these topics and

present new examples of our new exact least-squares recursions
for ("adaptive”) ladder forms with poles and zeros. We close with
a few simulation examples, including the identification of 3 layered
media (via ultra-sound).

I1. Ladder Realizations
~ In [MLNV] and IMVYL) we discussed various ladder realizations.
We assume here (amiliarity with this material and would like to
give here only a missing link to state space realizations, namely the
fact that the ldder forms can be obtained viz an
ortho-normalization of the state space. In this context it is well
known, that various canonical state space realization can be
obtained via methods that constyuct a basis of either the Hankel
matrix of the Markov parameters, resp. the impulse response
parameters of the system, or bases of the controllability or
observability matrices of the system, see eg. [K-S74) We will .
present here an outline of the scalar discrete-lime constant
parameter case. For convenience we use an intermediate canonical
form, the controller form. It has the property that the i
component of the n state vector x'(z) can be obtained from the
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input ufz) in Z-transform notation via x¥(z) = u(z);"‘la(z) » Where
afz) is the characteristic polynomial. The ladder forms are
obtained in 2 similar manner via x,/(z) = u(z)0b’z)a(z) , where bi(z)
s the i'* (dual) ortho-normal polynomial un the umit circie (Sie}
Writing these facts in matrix notation, we obtain the results that
the the state at time n is given by x, = C_ ufn-1,0), uli,)) = [u,
o “i)' where c. is the usual controllability matrix. For the
controller form it is now not too surprising that C¢ =
lﬂ'(a......a.)" » the inverse of a unit upper triangular Toeplitz
matrix of the coefficients of a(z) . the Ladder forms on the other
hand result in (see [Mo) C.! = B, UTla,,...a,)?, where B, is 3
lower triangular matrix containing as rows the coefficient vectors
of bi(z). Due to its orthogonality property B, B."' = R_, the n by
n Toeplitz matrix associated with the (Z-transformed) correlation
function R(z) = 1/la(z)?. R, is also the steady state covariance
matrix of the controller form R %, il u(x) the input is 3 white
process. Now, since the similarity transform matrix S (rom one
state space form to an other is given for instance by the ratio of
the controllability matrices, it is clear that § = C! (C°)! « B_ =
(R_')'” 2 je. from an arbitrary (controllable) state space form the
similarity transform is given by the inverse square-root of the
steady state covariance. This leads [inally to the connection with
Lyapunev equation type characterization of the ladder (orms,
namely that their covariances are an ldentity (or diagonal) which is
recisely the characteristic property of Schwarz matrizes, see
JM], the state space feedback matsix of tadder forms {Mol .Due
to limitations we defer a more delailed discussion of the details
and various extensions to (ML}

III. LS-Recursions for Ladder Forms
The Prewindowing Case
In [MLVK] we presented this case, (or completeness and in
order to correct some typographical errors we repeat some of the
equations here. Civen a series of observations {y(t),0<1<T}, where
{y))} can be m vectors, we wish to find the least-squares
one-step predictor of order p parametrized by the (matrix)
coefficients M’J(i),i-l,...,p). We can define many different

squared error criteria E_ 5, for instance as a function of s and f in

" E,r - g"n’m.ﬂ"" v &y - A,y Yles-p),
A S (LA 00 A0, Yieep) € 13, ey, BI-D)

An obvious choice from an innovations point-of-view is (s=0,f=T),
the "pre-windowing® case (MDKYL If s = p and f « T the
so-called “"covariance” method is obtained [MDKV), [MVL), and if s
=0and f = T + p we get the pre- and post-windowed case or the
*correlation” method [MCl The total squared error can be
expressed as ¥

E"r * :’ ' A"Or n'o' A"T, e n"r ] Y"r pT!
Y, r = [ Y0:-p), Y2iopl), ..., VITT-p)] (D)

Thus the problem of determining A,y by minimizing E_ ¢ feads to
R, Az = (R, 1,000, B o« minE, (I3

Although R",. is not Toplitz, it still carries a certain

shift-invariance structure, given by the following identities

9
.

R, - R, « YITTp) YiFTp) (19

-|lr x =x - ﬂ’_'.,- x
* R ,r) x r x]. (n-s)

Define the backward predictor B’.,. and the smoothing errors C",.

B, R, =(0,,0/,,]); C R = VITT-pXili-6)

Then the forward and backward prediction errcrs (innovations),
LI and T and an auxiliary scalar Y, rcm be defined by

(€,5.¢5: %) = VTT-p) (A,y,B,7.Cr)

Order Update Recursions
Using the three shift-invariance identities for Rp.T (111-5) and

using some symmetry properties, the order update recursions for
A,riB,r:Cors R"J. ,and R"',. are
Ay = (Ap0) - A R o, [0B, ,)
Bur = (0B, 7 - A, R (4,507 QII-7)
Coag = (Copn0) o o g R p By Whete
A,,r = [lastblock row of R'.,'r] (A, no)
- (0,B,r, 3 ( fiest block row of R'.,'r 7.

Ro,r- By - 8, R 8.y
R’pcl.‘l' e R'r.f 3 Apol.T R‘pf A'NI.T' n-8)

The order updite recursions are very similar to the
multivariate version of the Levinson algorithm, and a similar set of
recursions for time-update can also be obtasined [MDKV][Mc]

Ladder Type Realization
Premultiplying the above equations by ¥{T:T-p+1] , we obtain
the following order update recursions for € v, 7 ¢4 ¥ 1

R‘"J._| 1
R

€ ¢
»J "pT
. r".m. R'"."r "d‘r . ("I")

Gar “r - ALar

War = Hra - Ly
"rl.r e 7;.,'
The “Kalman gain™ A&,y is obtained from (H1-S)(11-T)
(cf{MV)) via

Arl.’l‘d = Apcl,T a 'p.T "p.‘l'-l /1 Q '1p-l.1'°"-l.)
and the reflection or PARCOR coef ficients are obtained by

K&or = Do Ky = A%, B 0011

....rn W
The initial conditions are given by
Gr = ng "y i Yay - 0

T
Ry = Ryp - ?_;. vy RYrioyry'ns

for p2T:
Gr = &pi fr = rppd Yy = Trpod
Ky » Bopi By « Fypt Goup < %

Apl.pol i Y ¢ o) *

As the dual to the stochastic forms in [lerWlk]. (o), {SKM],
equations (11I-8)-(1ll-11) are a complete set of order and iime
update recursions to obtain the exact least-squares ladder form
predictor, which is shown in Figure 1.
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Figure L. Ladder realization of exact one-step leau-squar‘cs
predictor.

The recursion (llI-10) computes the sample cross-covariance of
the forward end Backward innovations, using the optimal
weighting 1/(1-7..), compared to other suboptimal schemes [SV]
See in the appendix a sample comparison of the exact versus two
approximate methods. In the scalar case B30 if y,=0, or in
general if ¥, , ;<1, since 0s¥, 4<1 [MDKV], fmvel 1 m>l, we
require T2pem. These singulirities can be avoided by including a
priori estimates of the covariance R_, or equivalently including a

weighted norm of the predictor a_ in the error criteria E’r For

tracking of time-varying parameters, eg. in speech modeling
methods, these equations can be modified, either by puting an
exponential weight on past errors as discussed in [MKL),
(implemented in the simulation in the appendix). Alternatively, the
lower bound of the error criterion in (Il-1) can be increased, eg. s
= T - [, where [ is the (constant) "sliding™ time frame width of
the analysis. This corresponds also to 2 sliding window on the
prediction errors. The resulting equations are similar to the ones
in (MVL] ;

Instead of computing the scalars ¥ one can also work with a
second set of prediction errors based on the "old” parameter
estimates, since

AT = €0y /1 (1-7,,5) .

This alternate form was also found by J. Baker, IBM Yorktown
(private communication). A similar situation occurs in the Fast
Cholesky (least-squares) algorithms for estimating moving-average
parameters via feedback filters described in (Mo}, where a “second
filter™ or “predictor filter™ appears that computes variables of the
type € 5(T+1) . It is interesting to note in this context, that the

unwindowed (“covariance”) method actually also leads to signal
Jeedback paths (actually a smoothing filter), see [MVL], but the
simpler prewindowing case is feed forward only.

Many modifications have been proven useful in actual
implementations, they are partially due to the fact that many
additional identities exist and others are due to differences in
numerical behavior and trade-offs in- operations count and memory
requirements. Systemtic experiments sre now in progress and. will
be reported on shortly.

IV. LS-Recursions for Rational Ladder Forms

Rational or ARMA Modeling

Rational or pole-zero or ARMA modeling methods were
described in [SLC), [MKL) and their relation to joint innovations
representation via an imbedding of the ARMA model in 3 two (m)
channel AR model in [MLNV) and [Mo] The same idea also leads to
stable partial minimal realizations of the joint impulse-response and
covariance-matching type [MLNV] Civen an ARMA model ss

represented by the dilference equation we can rewrite it as

Vet oy g0y, bu - by = b, (IV-1)

or ay, - b.'". * by, , where
B'-[l,al,..., 0], y.'—(,‘..... Yem)s
b'~[0,b,..., b)), u! clupeees 5, -
Now consider the following augmented equation

PR e

(e," is the first unit vector). This equation can be interpreted as

an AR model for the joint process { ¥, w} [Mo), since the RHS
is equal to the joint innovations of { ¥, U }, since

CEEERITEL e

Stochastic Case
From a stochastic process point of view we can express the
normal equation associated with the augmented AR model as

E{ly iy u'llla o) - E{|¥,[(ubyu, ]}
ﬂ' ‘ -bl.l u

| Ra T |2 Of = |eabedy’ @by
. L |2 aby o). (V-0
We can solve for the normal equation of a, : :
Ra «[R-T'T,)a = [H_'H_]a = ¢R*(IV-5)

The equations (IV-4) and therefore the non-Toplitz equations
(IV-5) () can be solved recursively with the LWR algorithm.
Note that if R“ = 0, the minimal order n = k. We could bring
equations (IV-4) into a more familiar form by the interleaving
permutation (1,3,5,...2n-1,2,4,6....2n+2), cf. [MDKV], to convert the
two-process covariance matrix into 3 n by n block Toplitz matrix,
with 2 by 2 blocks, however the LWR algorithm clearly applies to
both representations with svitable modifications.

Thus we have shown that the joint impulse response &
covariance matching problem is equivalent to solving a set of
normal equations associated with a3 two channel AR modeling
problem. Since the predictor for the joint process is triangular
and minimum phase, the denominator a of the underlying

ARMA model is also minimum phase and therefore stable, (for
all k).

Equations (IV-4) and the elegant stability proof were actually
first obtained by Claerbout [Clal]) via a least-squares rational
soproximation. The connections between the joint innovations
representation, the augmented normal equations, and the Hankel
matrix were pointed out in [Mo) and also in [MDAV], [MKD},
(DKM), where algorithms were given to_solve equations of the

" type seen in (IV-4) and (IV-S).
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Deterministic Case

In [MLNV] we considered the deterministic case where we are
given impulse response data or the Markov parameters, here we
shall assume that we are given a series of observations and we
want to find a least-squares (deterministic) one-step ARMA
predictor recursively from the data equivalent to the RML
algorithms described in [SLC] and [MKL)L Our approach will not
give 3 new way how to derive these algorithms, but it will also
give us very quickly the ladder forms.

Writing the input/output relationship in matrix notation yields

st e e 0 SO B S
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where T,_ ;. lower-triangular and H,. is a full matrix, but both are a

product of two Toplitz matrices containing the data and the
normalized one-step prediclion errors, which take place of the

inputs u = R¢,¢- % - ;‘H , where R"‘,- =E, rin
&= |- r’c “ Yo | = [Bette
A

, e = %ol-) “,

[r-.r' Hr']['..r l-[‘ i
I o || Hy0][De
= |Ra. 1‘._,-'- a0 = GIR‘n.T “1by
T.r 1 -b, 'y ey e | (1V-6)

Recursions for Rational Ladder Forms

This partitioning leads easily to the rational ladder recursions.
Formally the same recursions can be used. However, the fact that
the forward predictor is triangular simplifies and actually makes
the recursions possible at all, since the one-step prediction errors
are not needed until the next iteration, i.e. they are feed back
and treated at the next time step as the (“other hull” cf the)
observations. It is easily verified in the same context that half of
the entries in A. T e zero, which guarantees that the one-step

prediction errors are not used before they are required in the
recursion. The following Figure 2. clearly shows this.

’ €pr) :
(%)} W e e

- ‘ AT or

Figure 2. Rational Ladder realization of exact one-step’
least-squares predictor.

Appendix: Computer Simulations
Layered Media ldentification

The raodeling un of hiyeded media ic of interest in many ireas,
notably in Ceophysics, see eg. Claerbout [Cla},2]) and more
‘recently in medical imaging or nondestructive testing. There are
two basic situations that occur in these aress. The first one,
where the source is on the opposite side of the receiver is the
straight forward case, it leads (o autoregressive or all-pole models,
wich can be readily identified by using the various methods to
“estimate reflection coefficients by cross-correlation of the
forward and backward residuals in the whitening filter in ladder
form, see eg. [Ch1,2] The second case, where the source and
yeceiver are on the same side did up to now not lead to such
simple processing as the first case, because the (imput) transfer
function is rational in general, or in the best case where a total
reflection occurs within some layer the transfer function is an
all-pass network. In this case the zeros are equal to the reflected
poles and the 'reflection coefficients’ of the numerator polynomial

are the negative of the ones of the denominator polynomial of the
transfer function. We can readily see then, that our rational
ladder form specializes and we get only one set of reflection
coefficienls that can be associated with the ones of the layered
medium that generated the data. This particular case is treated
from a circuit point of view by Kung [Kunl Figure 3 shows an
example using real ultrasound returns and the estimates of the
reflection coelficients using » ladder structure.
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Figure 3: Identification of e layered media via ultrasound.
The experiments were performed by Linda Joint snd Dough Boyd
in the Stanford Electronics Laboratory of Prof. J. Meindl. The
reflection coefficient estimates appear to be much smaller than
anticipated from the experimental set up, this ic due to several
factors: The ladder structure actually identifies not only the
medium and the single reflecting plate in the path of the vitrasound
beam, but also computes an equivalent layer model for the
transducer. The estimated values of the first large reflection
coefficients show, that the transducer is very inefficient and not
very well matched because the largest value is very close to one,
which tend to "turn of(” all higher order reflection coelficients.
Further more, because of the wavelengs used the layers of the
medium have a continuous reflection coefficient density which
indicates that this direct scheme must fail since we tried to
estimate the derivative of a function (with noisy data!) It would
require the use of a modified ladder form that is parameterized by
the equivalent of the “"area function” used for instance in the
speech modeling context [Wak]

Sample Comparison of Dif(erent Reflection Coefficient Estimates
Ladder coefficient estimates were in the past said to converge
very slowly, indeed this is the case for approximate recursive
methods as demonstrated in the Figure 4, where three methods are
compared. Two approximate recursive methods using arithmetic
mean definitions of the prediction error (see eg. {Mak}, (MLVK])
and and other computationaly attractive method using the sverage
of the product of the signs of the forward and backward

B4

< ol s Dah Aois SRRt ao o oot




predictior ervor, which .:rises from L1 norm considerations see
Claerbout[Cha3] and has often been used in circuit design.

"‘W Remucnow Geex " Renecron Gee - RerEcrion CooF.
Sy TRE EsT Lg ~Doi™ JYPE EST. EXACT - \BAST- SOUARES B3I,
b1 ips i
[ X = K, & Sq) splP) Kw T
=2 e 50
200 SAnPLES 200 SAHMES 200 SAHPLES
»
-0 onew. 4 v a8 T A
F i‘“". 4: Comparison of Two Approximate and One Exact
Recursive Method.

The third method uses our recursive exact least-squares equations
(pre-windowed case). The first two schemes give very similar
results, i.e. 3 bias of 50% on the only nonzero third reflection
coefficient (-8) and sidelobes as high as 20% and 10% typical value,
whereas our exact method has virtualy no bias and half the maximal
and typical sidelobe values. Furthermore, they actually converged
slready after around 30 samples compared with the 200 samples
used in Figure 4 . We may note that the other schemes took much
longer to actually converge.
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L APPENDIX C .
"~ BEGIN "speaech® :

comment
i B This is a complete analysis program that compuute
‘ F i ; reflection coefficients, pitch, and energy information
' as each new data is sampled. The analysis is done

independent of transmission frame size. It resets to
{ B start state whenever silence or pause is encountered.

é The pitch detection scheme is based on testing the log
1ikelihood ratios at each sample and there is no time delay
in the transmission.

iR

The main program first calls FILEOPEN to open necessaary files.
Then it calls LADDER which perform time update operations.
LADDER calls the following procedures:
INITIALIZE for initialization of global variables,
TRINIT for initialization of transmission strategy,
PITCHINIT for initialization of pitch detector,
ORDERUPDATE for update of ladder variables,
RESET when silence or bad numerical condition is encountered,
" PITCHDETECT for pitch detection,
\ : : TRANSMITTER for transmitting reflection coefficients, pitch,
i : and energy information at each transmission frame
5 | boundary, . : 4
i FILECLOSE is called at the end of input file; ;




require "msaiim.sai[exp,lee]” source_file;
require "msailp.sai[exp,lee]" load_module;

# Compiletime definitions of speech analysis constants;

define MAXP = 38; # max order supported;
define MAXPP = 6; # number of pitch pulses/ frame;

# Compiletimme definitions of I/0 buffer sizes, the values used
# here are important only from efficiency considerations;

define BUFSIZE = 4896; # number of speech samples in core buffers;

define OBUFSIZE = 128; # in core transmission values;
define RBSIZE = 128; # history registers;
define BUGBUF = 4896; # buffer for debug file;

# Housekeeping variab)es;

integer fpy; # pointers for input files;

integer fko, fpo, feo; # pointers for output files;

integer fbugl, fbug2, fbug3, # pointers for debug data files;
fbug4, bt;

integer Fsamplo; Nsamples; # first sample and total number of speech samplés;
integer 1, J; _ # general purpose loop counters;

B A ————————

# Analysis ladder form parameters and data storage;

integer t,st,tt,tminpmax,1st; # time indices;

integer tau; # time constant for weighting;
integer p, pmax; # parameter order counters;

real ttau;

real delta; # prior value of covariance;

real tI, t1I, totl, tlts; £ 1/t, 1/(t+l), t/(t+l), (t+l)/t ;
real resetsup,resetinf; # upper and lower reset threshold;

real array # variables of analysis ladder;
e, eZ, r, rZ, ; :
D, K, Ke, . Kr,
Re, Rr, RrZ [6 tc MAXP];

real array g, 9Z[-1 tc MAXP]; -

real yt; . # current input;

# Data buffering considerations:

# Data buffer management is handled jndependently from the

# analysis. The particular sizes of the following buffers are only

# 1important in that particular values allow efficient operation

# of the SU-AI disk system;

real array y[® tc BUFSIZE-1]); # input data buffer; : &

# output buffers for transmission parameters; : ' ‘

# the first index changes per frame, the second index represents the
# number of parameters of that type per frame;

real array - # reflection coefficients;
okb[8 tc OBUFSIZE,1 tc MAXP]; :

real array # pitch information;
opitchb[8 tc OBUFSIZE,1 tc MAXPP]; -

real array # energy information;

: oenergyb[8 tc OBUFSIZE];

real array # debug data buffers;

bugl, :

_ bug2,

o i i Vi et el s R e o




"

bug3,
bugd4[8 tc BUGBUF];

# Buffer management variables:
# 1In general, whenever a buffer empties or fills up, at that
# point, an I/0 call is made to refill or drain 1t;_

integer obp; # output buffer pointer;
integer kbsize, pbsize; # multiples of OBUFSIZE;

# Transmision strategy variables;

boolean pp,Ir,rs; # pitchpulse, lower reset, reset;
integer framesize; # number of samples per transmission;
real Energy; # per frame energy of speech samples;
integer array pi[l tc MAXPP]; # pitch position indicator;

integer ppptr; # pointer into pi array;

# These following variables are ring buffer management varialbes;
# RBSIZE is ring buffer size, should be the largest pre-deadzone;
# (The transmission module maintains recent history of the

# reflection coefficients);

real array
rkb[® tc RBSIZE-1,1 tc MAXP];
integer rbp,trp; # buffer counters;

# dead zone sizZes and related variables for transmission;

# pre and post deadzones for pitch pulses, lower threshold resets

# and upper threshold resets;

# Variables nextXX, nextXXs, otdel, and dzcount reflect implementation
# details of the deadzone strategy rather than algorithmic details;

integer pppredz,pppostdz,rspredz,rspostdz, Irpredz, Irpostdz;
integer pptotdz,rstotdz,irtotdz,otdel;

integer nextpp,nextlir,nextrs;

integer nextpps,nextirs,nextrss;

integer dzcount;

# pitch detector variables;

real dginf, dgmax, taup, rho, oldmaxpt, maxpt, pinf, pt, oldpt, dg, alphap;
integer deadzp, nqxtp. sgnp, lastptime, ppwindow;
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# These procedures are largely self-explanatory. At the beginning
# of processing, all the required files are opened, at the end
# they are closed;

procedure fileOpen; ;
c "fileOpen® # Create files; .
fpy « open (“speech input file: ", DATA ! INPUT | PROMPT );
fko « open ("kkk.dat", DATA | CREATE | QUTPUT );
fpo « open ("pit.dat®, DATA | CREATE ! OUTPUT );
feo «~ open (“en.dat®, DATA ! CREATE ! OUTPUT );
fbugl « open ("bugl.dat®, DATA ! CREATE ! OUTPUT );
fbug2 « open ("bug2.dat®, DATA ! CREATE ! OUTPUT );
fbug3 « open ("bug3.dat®, DATA ! CREATE ! OUTPUT );
fbug4 « open ("bug4.dat®, DATA | CREATE ! OUTPUT );
2 "fileOpen" ; :

procedure fileClose;
c "fileClose"
close(fpy);
close(fko);
.close(fpo);
close(feo); :
close{fbugl); : :
ttyWrite( PBUGI.DAT contains predetection pitch postition®, nl);
close(fbug2);
ttyWrite( "BUG2. DAT contains postdetection pitch post1t1on‘. nl);
close(fbugl);
ttyWrite( "BUG3. DAT contains dg", nl);
close(fbugd);
ttywrite( "BUG4.DAT contains innovations*, nl);
> *fileClose"; : .

(Eadhei s
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procedure 1nitialize;.
c *initialize"

# 1initialize analysis algorithm variables;

ttyWrite("Initialization of tracking parameters:*, nl);

ttyWrite(® tau (168) = *);
read(ttyRead, tau); . ’
ttyWrite("” Prior covariance (8.86081) = “);

read(ttyRead, delta);

‘ttyWrite(® upper reset threshold on g[pmax] (8.99) = *);

read(ttyRead, resetsup );

ttyWrite(" lower reset threshold on g[pmax] (8.8881)= *);
read{ttyRead, resetinf );

for { « 8 upto pmax do

c e[i1] « r[i] « rZ2[i] «~ 8; .
. D[1) » Ke[1] « Kr[i] « K[1] « 6; -
Re[1] = Rr[i] « RrZ[i] «~ 8;
g[i) « gZ[1) « 8;
EH
gl-1] « gZ[-1] ~ &;
Re[8] « Rr[08] « delta ;
st - 0; # set reset pointer to 8;

Ist « -28; # printout interval for last reset;

# initialize data buffering;

# briefly, the idea is to break up Nsamples into groups;
# of no more than BUFSIZE, reading and writing is done on;
# these smaller segments;

# buffer management, initialize pointers;
bt « 0; # pointer for debug file;
rbp « 8;
obp «~ 8;
trp « 8;
kbsize « OBUFSIZE % MAXP;
pbsize « OBUFSIZE = MAXPP;
for i1 « 8 upto RBSIZE-1 do
for J « 1 upto MAXP do-
rkb[1,J] ~ 8;
for { « 8 upto OBUFSIZE-1 do
c for J « 1 upto MAXP do
okb[1,J] «~ 0;
for J « 1 upto MAXPP do
opitchb[1,3] « -1;
oenergyb[i] « 8;

5;
2 "initialize";

s




_procedure reset;
c "reset" ;

# This procedure is nearly equivilent to the analysis
# algorithm parts of the initialize procedure above;

if (t - lst) geq 20 then '
if rs then ttyWrite ("Upper Reset at t = ¥, t, nl)
else ttyWrite ("Lower Reset at t = “, t, nl);
Ist « ¢;
3;
st - -l|
for i «80 upto pmax do
€  D[i) ~ Ke[1] « Kr[1] « K[1] +
Re[i]= Rr[i] « RrZ[i] B:
e[i1) « r[i]) = rZ[i]) ~
- gli] =~ 9Z[i] - 6;

Re[ﬂ] « Rr(8] ~ delta*
o "reset";




procedure trinit;
c *trinit®

‘# 1initialize transmission strategy variables;

2 "trinit";

e ea ae T i,

Edergy L H

ttyWrite (“Initialization of transmitter parameters:", nl);
ttyWrite ( * Transmission framesize = ");

read (ttyRead, framesize); :

ttyWrite ( pp pre dz (3)= *);

read ( ttyRead, pppredz );

ttyWrite ( pp post dz (28)= ");

read (- ttyRead, pppostdz );

ttyWrite ( ®* - low reset pre dz (8)= *);

read ( ttyRead, lrpredz );

ttyWrite ( " Tow reset post dz (28)= ");

read ( ttyRead, 1rpostdz );

ttyWrite ( " reset pre dz (pmax)= *);

read ( ttyRead, rspredz );

ttyWrite ( " reset post dz (28)= *);

read ( ttyRead, rspostdz );

pptotdz « pppredz + pppostdz; 11
Irtotdz « Trpredz + lrpostdz; g
rstotdz « rspredz + rspostdz;

otdel « pppredz max ( lrpredz max rspredz );
nextpps « otdel - pppredz + 1;

nextirs « otdel - Irpredz + 1;

nextrss « otdel - rspredz + 1;

sttt
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procedure pitchinit;
“pitchinit®

~

# 1n1£1a112e pitch detector variables;

ttyWrite ( "Initialization of pitch detector parameters:*,nl1);
ttyWrite ( " post detect deadzone = ( 38) ");

read ( ttyRead, deadzp );

ttyWrite ( " scanner time constant taup = (58) ");

read ( ttyRead, taup );

ttyWrite ( * scanner upperthreshold factor = (3) ");

read ( ttyRead, alphap);

ttyWrite ( * pre scanner window = ( 18) “);

read ( ttyRead, ppwindow );

ttyWrite ( " scanner lower threshold Pinf = ( 6.803) *);

read ( ttyRead, pinf );

ttyWrite ( inf for dg (8.81)= * );
read ( ttyRead, dginf );

ttyWrite ( * norm for dgmaxp (8.25)=
read '( ttyRead, dgmax );

oldpt « 8;

" oldmaxpt « maxpt < pinf;

rho « exp ( -1/taup);

lastptime « nextp « §;

for 1 « 1 upto MAXPP do pi[i] « -1;
ppptr « 6;

> *pitchinit®;

e
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procedure orderUpdate;
c ‘“orderUpdate"

# See algorithm descriptions for an explanation of this procedure;
# order updates the innovations;

for p « 8 upto ( tminpmax - 1 ) do
c "stepupOrder"®

ab—r—.

# Update the partial correlations;

if tIxgZ[p-1] geq 1. then # numerical conditioning control; =
c ttyWrite(“gz[”, p-1, "] >= ", 1./¢tI, "at t = ", t, NL);
gZlp-1] « 8.99/tI ;

-
L D[p+*l] « D[p+1] + t1Ia(rZ[plre[p]/(1 - tIxgZ[p-1]) -~ D[p+1]);

& g glpl « glp-11 + rlpl * rlp) / Rrlp);

2 : Ke[p+1) « D[p+1] / Re[p];

E ; Kr[p+l] « t1t825{p+1] / RrZ[p];

2 K [p+1] « if ( D[p+1] < 0 )

1 ; then - sqrt( abs( Ke[p+l1]+«Kr{p+1]))

e | ‘ else sgrt( abs( Ke[p+1J#Kr[p+l])) ;

1 # Update the prediction errors and their covariances;

r{p+1] « rZ{p] - Kelp+1] » e[p];
e[prl1] « e[p] - Kr[p+l] » rz[p]:

ifps=z(st-1) then
c # Order update on initial covariances;

Re[p+1] « Re[p] - Kr[p+1] » D[p+1];
Rrlp+1] « t8t1aRrZ[p] - Ke[p+1]#D[p+1];

-
else
c # Time update on subsequent covariances;

Re[p+1] « Re[p+1] + t1Is( e[p+1)we[p+1]/(1-tI*gZ[p]) - Re[p+l] );
Rr(p+1] « Rr{p+1] + t1Ix( r(p+1]ar[p+1]/(1-t1Ixg[p]) -~ Rrlp+l] );

53 :
> “stepupOrder";

# Update g[tminpmax];
g[tninpmax] « gitminpmax-1] + r[tainpnax]nr[tminpnnx]lkr[tminpwax].

‘2 'orderUpdato';

NIRRT T =




procedure pitchdetect;
c "pitchdetect”

R/ ' # compute differential likelihood ratio;
i dg « (tlItg[tminpmax] - tI*oZ[tminpmax])/dgmax.
. ‘if dog < dginf then dg « 0;
if dg neq ® ,
then # extract nongaussian pulse;
, : c if abs(eZ{tminpmax]) > abs(e[tminpmax])
t | then pt « eZ[tminpmax]
£ ¢ else pt « e[tminpmax];

——

-]
else pt « 6;
if pt < 8 then # invert negative pulse;
c pte-pt/ 2;
sgnp « -1;
b=
else sgnp « 1;
bug3[bt] « pt * sgnp;

r——

—— e

# start pitch scanner;
if t > nextp
then # start exponential scanner;
c maxpt « ( maxpt * rho ) max pinf;
if pt > maxpt then # hit first pitch pulse;

# set new scanner threshold;
maxpt « pt min ( alphap # oldmaxpt ):
oldmaxpt « maxpt;
oldpt ~ pt;
lastptime « ¢;
nextp « t + deadzp;
pp < TRUE;

e S S ST I ol T

2

- :
else if ( (t - lastptime) leq ppwindow ) and ( pt > 2 = oldpt )
then ¢ # encounter 2nd higher pulse, restart scanner;
nextp « t + deadzp; .
maxpt ~ pt min ( alphap * oldmaxpt );
oldmaxpt « maxpt;
oldpt « pt;
# discard and update current pitch location;
pilppptr max 1] « ¢ mod FRAMESIZE;

else pp « FALSE;

# output debug variables;
bugd[bt] « e[tninpnax].
bug2{bt] «~ dg;
if pp then bugl[bt] « pt » sgnp else bugl[bt] « 8;
bt « ( bt + 1 ) mod BUGBUF;
if bt = 8 then
c aryWrite( fbugl, bugl, BUGBUF );
aryWrite( fbug2, bug2, BUGBUF );
! arywrite( fbug3, bug3, BUGBUF );
aryWrite( fbug4, bug4, BUGBUF );
EH :

> "pitchdetect”;




procedure transmitter;
c “transmitter®

# This procedure 1mp1em9nts the transmission strategy;

# mark pitch positions;
if pp then
c ppptr « ppptr +1;
{ if ppptr leq MAXPP :
then pi[ppptr] « t mod FRAMESIZE;

———

2

# compute total input energies since last transmission;
.Energy « Energy + e[08]t2; '

# save ref coeffs in ring buffers;

4 : rbp « (rbp + 1) MOD RBSIZE;
i for 1 « 1 upto pmax do.
‘ ; . rkb[rbp,1] « K[1];

i it # This section of code implements the strategy for
E # transmitting "reeasonable® reflection coefficients; -4

% # calculate transmit poiﬁter in ring buffer;
if pp then nextpp « nextpps; # const!; |
if Ir then nextlr « nextlrs; # const!; ,

if rs then nextrs « nextrss; # const!;
if nextpp = 1 then dzcount « dzcount max pptotdz;
if nextlr = 1 then dzcount « dzcount max 1rtotdz;
if nextrs = 1 then dzcount « dzcount max rstotdz;
if nextpp > 8 then nextpp « nextpp - 1;
if nextir > 8 then nextlr « nextlir - 1;
4f nextrs > 8 then nextrs « nextrs - 1;

# 1if we are in a deadzone, then leave transmit pointer alone,
# otherwise, update it;

if dzcount > 0
then dzcount « dzcount - 1
else trp « (rbp - otdel + RBSIZE) MOD RBSIZE;

# if we are at a frame boundary then transmit parameter vector;
if ((t+l) MOD framesize) = 8 then
c "transmit® :

# move vector to output buffers;
for 1 « 1 upto pmax do
? okb[obp,1] « rkb[trp,1];
. for 1 « 1 upto MAXPP do
opitchblobp,1] « pi[1];
oenergyb[obp] ~ Energy:;

# 1{f necessary, empty buffers;

obp « (obp + 1) MOD OBUFSIZE;
if obp = 8 then

[
aryWrite(fko,okb,kbsize); . 4
aryWrite(fpo,opitchb,pbsize); i
aryWrite(feo,oenergyb,0BUFSIZE); R




# reset poinior: for new frame;

for { « 1 upto MAXPP do pi[i] « -1; # reset pitch indicators;
‘ ppptr « 8; 3
. } Energy « 0; : # reset residual energy;
‘i 2 "transmit®;

> "transmitter*®;
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pfocedure ladder;

- c *ladder"
§ # Perform one-step predictor ladder form;
<. ; # Procedures required: initialize, pitchinit, trinit;
) # orderupdate, transmitter;
‘f .~ initialize; # initialize ladder variables;
‘ ‘g trinit; # initialize transmission strategy;
i ‘ pitchinit; # initialize pitch detector variables;

E R # data prescan to eliminate leading zeros;
' # skip all zero 1nputs.

-1« 8;

E g1 setPos (fpy, Fsample);

Pl aryRead(fpy,y,BUFSIZE);

i while (y[i] = 8) do

: c

{e i+]l; sJ
if (1 mod BUFSIZE) = 8 then -
iryRead(fpy,y.BUFSIZE);
:.
yt « y[i];

# check threshold of first input data;
If abs(yt) < delta then
c ttyWrite (* |yt= *,yt,*| € delta = ®,delta,”,
yt « sgn(yt)rdelta *,NL);
yt « (yt/abs(yt)) * sqrt(delta);

DR ———— —
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setpos(fpy, Fsample+i);

ST

# start recursive ladder form;

tt « 8;
for t « 8 upto Nsanples do
c "mainloop" : [

if (tt mod BUFSIZE) = 8
then ¢ tt « §;
uryRoad(fpy.y.BUFSIlE).

PR ——

B

if (t mod 512) = 8 then ttyWrite ("$");

# -set time min order index since last reset;
tminpmax « st min pmax;

if t # 8 then yt « y[ tt J; : -

# compute weighting factor;
if tau = 8 f
then ¢ time-weighted; : g

c tlI«1./(t + 1.);
totl « t/(t + 1.);
i t >0 then c tI « 1./¢;
tite « (t + 1. )It.

| e else tI e tlts ~ 1;

2
else # exponential weighting;
| € ttau «( st + 18=pmax ) min tau;

W e i e
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tl - 1./ttau; .
tlI « 1./(ttau + 1.);
tétl « ttau/(ttau + 1.);
" t1t8 « (ttau + 1.)/ttau;
2 :

# Update delayed values;
for i+« 8 upto pmax do
c rZ[i1]) - «r[i]);
eZ[i] « e[i]
RrZ[i] e« Rr[i
g2[i]" « gli]

25

# starf zeroth order ladder;
e[8] « r[8] « yt;
Re[8] « Rr[8] « Rr[8] + tlIx(ytsyt - Rr[8]);

¢# order update the ladder;
orderUpdate;

# test for reset;
if (tlIxg[1] geq resetsup) then rs « TRUE
else rs « FALSE;

if (t1159[tninpmax] € resetinf) then Ir « TRUE
. else Ir « FALSE;
if rs v Ir then reset;

# call pitch detector;
pitchdetect; ;

# Update time index since last reset;
st « st + 1;
tt « tt + 1;

# call transmitter;
transmitter;

> "mainloop";
> "ladder";




‘MAIN PROGRAM;

ttyWrite("first sample = *);
read(ttyRead, Fsample);
ttyWrite ( "Nsamples = ");
read ( ttyRead, Nsamples );
ttyWrite ( "pmax = *);
read ( ttyRead, pmax );

fileOpen;
ladder;
fileClose;

END *speech"”




_ BEGIN "synthesis"

_i . comment , ?
This ¥s a speech synthesizer program, it takes
as input vectors transmitted by SPEECH program
' & and synthesis speech according to the framesize
“ | and order of filter prescribed; :

oy

Pre———y
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require "msaiim.saifexp,lee]* source_file;
require "msailp.sai[exp,lee]* load_module;
define PMAX = 12;

define OBUF = 4696;

define IBUF = 128;

define MAXPP = 6;

integer P, ppmax, Nsamples, fr, t, 1;
integer ptcount;

real Re, gnoise, gain, pulse, npulse, nu;
integer fpy,fpg,fpe,fpp,fpk; # file handles;
integer bt; # buffer pointer;"
real yt; oL

real array e, r, rZ [ 8 tc PMAX J;
real array - K[ 1 tc PMAX ]; i
real array C[ & tc IBUF ,.1 tc PMAX ];
real array ppl 8 tc IBUF , 1 tc MAXPP 1];
real array pitch[ 1 tc MAXPP ]; i
real array y[ 8 tc OBUF ];

real array En[ 8 tc IBUF ];

real array rannum [ 8 tc 4668];
integer frnum, framesize;

integer obp; .

integer cbsize,ppsize;
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procedure initialize;
c "initialize" g

ttyWrite ( ® number of frames = * );

read ( ttyRead, frnum );

ttyWrite ( ® framesize = * );

read ( ttyRead, framesize );

fpk « open ( “"coefficient filename : *, data | input ! prompt );

fpp « open ( “pit.dat®, data ! input );

fpe « open ( “en.dat", data ! input );

fpg « open ( "grand.da(sp,leel]", data ! input );
aryRead ( fpg , rannum , 4868 );
close ( fpg );

for 1 « 8 upto PMAX do

e[i] « r[i] « @0;

yt « 8;

Nsamples « 1;

fpy « open ( "y.p36*, data ! create ! output );

obp ~ 8;

for 1 « @ upto OBUF - 1 do
y{i] « 8;

cbsize « PMAX # IBUF;

ppsize « MAXPP = IBUF;

2 "initialize";
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prdcedure ladder;
c "ladder"

for p « 8 upto (pmax - 1 ) do rZ[p] « rip];
gnoise « rannum [ Nsamples mod 4888 J;

if pitch[l] = -1

then nu « gnoise = gain

else c nu « npulse;

for i « 1 upto MAXPP do
if (t = pitch[1]) then nu « pulse;
EH

if Nsamples < PMAX
then

for i « 1 upto Nsamples do
nuenus«sqrt ( (1 -KL1JsK[1] ) );

ppmax « Nsamples min PMAX;
e [ ppmax ] « nu;

for p « ppmax downto 1 do
e[p-1] « e[p] + K[pl * rZ[p-13;

for p e« 1 upto ppmax do '
rlp] « rZ[p-1] - K[p] * elp-1];
yt « r[8) « e[0];
ylobp] « yt;
obp « (obp + 1) mod OBUF.
if obp = B then
aryWrite(fpy,y,0BUF);

if (Nsamples mod 512) = 8 then
ttyWrite("s");

Nsamples + Nsamples + 1;

o> "ladder";
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s initialize;
aryRead(fpk,C,cbsize);
aryRead(fpe,En,IBUF);
aryRead(fpp,pp,ppsize);

bt « 8;

for fr « 8 upto frnum - 1 do _
c # synthesis one frame of speech;

for 1 -« 1 upto PMAX do
K[1] « C[bt,i];
Re « En[bt];
for 1 « 1 upto PMAX do .
. . Re~Re*(1-K[i)t2);
for 1 « 1 upto MAXPP do
pitch[i] « pplbt, 1];
if pitch{l] = -1
then gain « sqrt( Re/FRAMESIZE )
else
c ptcount « 8;
for 1 « 1 upto MAXPP do
if pitch{1] neq -1 then ptcount « ptcount + 1;
pulse « sqrt ( Re/ptcount );
npulse « 8;

B r
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for ¢ « 8 upto framesize - 1 do
ladder;

bt « (bt + 1) mod IBUF;
ifbt =28
then c

o —— e . et | 5 2 s

aryRead(fpk,C,cbsize);

aryRead(fpe,En,IBUF);

aryRead(fpp,pp,ppsize);
2;

close(fpy);
close(fpk);
close(fpe);
close(fpp);
END "synthesis";
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