=)

&~
g
=

Report No. 4121

L

-
.HERMES Security Design

DDG_FILE_COPY.

James R. Miller

March 1979

Prepared for:
Naval Research Laboratory and
Defense Advanced Research Projects Agency

imited.

R
' distribution is un:

| This docms at has been appxovﬂ
i for public rslzase ARG scle; 8

-
1” SECURITY CLASSIFICATION OF THIS PAGE (When D.l.lEnlnad)

#h REPORT DOCUMENTATION PAGE L T

1. REPORT NUMBER 2 GOVTY ACCESSION NO(3 RECIPIENT'S CATALOG NUMBER

BBN Report No. 41217

- 4. TITLE (and Subtitle) . piomeoy E.BE'P
; \ — Technical Report /
. é?'HERMEs SECURITY DESIGN e / (1] Jlesorta,

= e
———— 6. PERFORMING ORG. REPORT NUMBER

i ‘i

| @P=P= 7 @37

CONTRACT

MDA903~76-C-0212

- ARPA O'rder-310L

PvIv]

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Bolt Beranek and Newman, Inc.
50 Moulton Street

EMENT PROIECT:
AREA & WORK UNIT NUMBERS

- Cambridge, Massachusetts 02138
11. CONTROLLING OFFICE NAME AND ADDRESS AL -samm-cana
Advanced Research Projects Agency , Mar,h—}979
Information Processing Techniques Offic _
1400 wilson Blvd., Arlington VA 22209 31
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)
e UNCLASSIFIED

v
BBN-43131 |
15a. DECL ASSIFICATION DOWNGRADING

e ——————— . s—r SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Distribution of this document is unlimited. It may be
released to the Clearinghouse; Department of Commerce for
sale to the general public.

47, DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dilferent trom Report)

18. SUPPLEMENTARY NOTES
This research was supported by the Defense Advanced Research

Projects Agency under ARPA Order No. 3161.

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)
Hermes
Tenex Security
Message Processing

\ —

20. ABSTRACT (Continue on reverse aide I necessary and ldentily by block number)

¥* In this paper, we describe two successive attempts to develoj
a version of the Hermes Message System that represent a workable
compromise between the goals of security policy, the fact that com-
puter software cannot in general be trusted (or proven correct) and
the need for good human factors in an interactive system. Our con-
clusions are that acceptable human factors must be designed into the
system. Intensive efforts should be made to develop effective soft-

ware verification techniques or other means for making it possible-

DD ,79™, 1473 €0ITION OF 1 NOV 65 15 OBSOLETE 0 é 0 o, 00 < p’),

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A4

R T NN e

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. to trust‘as much of the software as possible.

“Accession For
HELS GRAKL
PA TAB
9 I yed
i ‘n-~—-—_...__-—4-—
pnEE
SR
, Dist gpeclail
|
1
|
| s

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

.

BBN Report No. 4121

HERMES SECURITY DESIGN

James R. Miller

March 1979

Prepared for:
Naval Research Laboratory and
Defense Advanced Research Projects Agency

Copyright (C) 1979 Bolt Beranek and Newman, Inc.

]~ HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.
1 TABLE OF CONTENTS
- @
.
1. Security Policies for Computer Systems « « « « « o 1
T 1.1 Single Level Computer SYStemS . « o« « o o o o o o o & 1
- 1.2 The MITRE Model as a Basis for a Secure
Computer SYStem . « « o » o o o ¢ s s o o o o o o o o 1
- 1.3 The 'Security Kernel' Concept . . . ¢« « ¢« ¢« o o o« « « 3
i. 1.4 The MME Security Model . « « ¢« ¢ ¢ ¢ ¢ ¢ ¢« o ¢« « « « o 4
b 2. The Evolution of Secure Hermes sia s o gl a oon ol
2.1 The Hermes System Before the Securlty Design . . « o« « 7
- 2.2 The Preliminary Security Design Using the AIM Kernel . 8
2.2.1 The Concept of the Trusted Job 10
1 2.2.2 Message Structure and Message-Files 11
2.2.3 Output Operations . . =« <« o s & s & o o s o s o & 12
2.2.4 The Draft Message . ¢ « o « s o s & o o » = » » 13
2.2.5 The Object Editors . . . e aiee e e e 18
2.3 The Change to a Simulated Securlty Des1gn S Sl e o o AU
2.4 The First Secure Hermes -- March 1977 14
2.4.1 Message Display R oA e R e e e 15
2.4.2 Access to Message- Flles and Messages » o 15
2.4.3 The Creation of the Draft Message 16
2.4.4 Draft-Files (files containing text)« . . 16
2.4.5 File-Names S e T e Wl
2.5 Hermes Objects Other Than the Draft Message 18
2.6 The Design Consequences of the Trusted Job and
the —PLEOPELEY ¢ o o o o & & & s o s & » o o & o SR

2.FT ObJect BAIEOLS 0 & o o o s Gl e o e e s e w e e s e A9
2.8 Terminal SecULity .« o « o o o o o o s » o o o s s o = 20

3. The results of Experience with the First Security Design
3.1 The Confirmation Problem . ¢« ¢ « o « s & s« o o o &
3.2 The Problem of Changes in Security Level
3.3 The Problem of Interruptions by the Trusted Job . .

e o o
N
—

4. The Second Security Design -- November 1977 24
4.1 The Reactivation of Secure Hermes &«
4.2 The Revised Security Design for Hermes

4.2.1 One Security Level per Message « . =«
4.2.2 Automatic Transitions Between Security Levels
4.2.3 Changing Security Levels . . . ¢« « ¢ ¢ ¢ « &

.
.

[\S]
o

* o o o
.
N
wm

"l-ll.lll-!unu-!!l!n-uu-u-.--—-u---—-—-—-p —————————p—— ~——

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.
TABLE OF CONTENTS (CONTINURD)

£
%
[2
e
i
3
§
L)
b
i

4.2.4 Multi-level Fields Removed 26
4.2.5 Security Downgrading Confirmation 1s

Rarely ROQUIEMD . o & & » % 5 & & % % & » 2 w o « 27

4.3 Restricted Access to the TENEX Executive System

5. Summary and Conclusion

. 29

——

LIST OF FIGURES

Figure 1. N N e e R e

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

1. Security Policies for Computer Systems

1.1 Single Level Computer Systems

Today, most commonly used computer systems in the Department of
Defense handle data at one security level at a time. There are
strict rules that regulate the "cleansing" of a system before the
introduction of data at another security level. For example, in
order to be sure that no Top Secret data can be read from memory by
an unclassified program, core memory must be cycled from all zeroes
to all ones at least 999 times before Unclassified material can be
processed on the same computer system which has processed Top
Secret data.

This policy allows a user access to data at only a single level at
a time. Such a policy is acceptable, for example, when a user |is
analyzing fleet movements and all data is classified at one level.
However, in a typical message system the data base consists of
messages which are classified at many different security levels,
and a user must be aware and able to deal with them at the
appropriate level. For example, it may be necessary to reply to an
incoming confidential message with either a Top Secret message, or

an Unclassified one.

1.2 The MITRE Model as a Basis for a Secure Computer System

In order for a computer system to allow simultaneous access to data
of different security classifications, a different apprcach than
that used in single-level computer systems is required. One such
approach uses the "MITRE Model" of computer system security
reference. This model divides all entities in the computer system
into two categories: "Subjects", the active entities, and
"Objects", the entities that a subject may access or modify.
(Notice that some subjects, such as processes, may also be

Rp— .

— ey — -

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

objects.) The model assigns a security level to each subject and
object in the system and defines two major rules relative to them:

1. The Simple Security Rule

The first rule, called the Simple Security Rule, states
that a subject cannot be aware of the existence of an
object classified above the subject's security level. This
corresponds to the ordinary paper-world constraint that a
person without the necessary clearance cannot see a
classified document.

2. The *-Property Rule

The second rule, called the *-property, states that a
subject cannot in any way modify an object below its
security level. The analog of this rule in the paper-world
is less obvious. It is this rule which prevents a program
(one form of subject) from downgrading classified material.
In the paper world, this rule is tempered by human
judgment. Human beings are permitted to read a classified
document to which they have access and downgrade parts or
all of the document when they deem it appropriate. (Their
judgment may later be evaluated by other authorities.) A
computer system, however, is not given this freedom, and is
prohibited from doawngrading any material.

The MITRE Model security policy is considerably more flexible than
the single-level model. It allows the computer to store data at
several different levels. Thus a user can access data at any level
to which he is cleared. Moreover, the user can ask the computer to
upgrade the classification of material. For example, he may request
that the computer automatically insert Unclassified paragraphs into
classified documents.

v e

P e B B B B

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

For the message system application, there is a significant problem
with the MITRE model. Unfortunately, there is no way to downgrade
data. For example, once a secret document is prepared, there is no
way for a human to 1look at the document and request that a
paragraph be extracted from it and stored as Unclassified. (This
would violate the *-property.) The only recourse is for the user
to request a printout of the document, and then retype the
paragraph.

1.3 The 'Security Kernel' Concept

In order to enforce the two rules of the MITRE Model it has been
suggested that a computer program, known as a "Security Kernel", be
constructed to monitor the operation of other programs. This
Kernel must be examined carefully to ensure that it works
correctly. In fact, the entire security of a computer system
employing a kernel is dependent on a detailed analysis of the
security properties of the kernel. Several kernels have been
developed to date, although as yet none of them have been
completely analyzed; at the same time, a number of "program
verification" systems, and "verifiable programming languages" have
been developed, aimed at proving these programs to be correct.
Although this is still an area of active research, at least two
operating systems are being constructed commercially which contain
partially verified kernels. <*1>

<Rl >, Secure communications processor (SCOMP): Overview of
contract and Honeywell development effort. Unpublished handout.
Honeywell, Tampa, Florida, July, 1978. g

Computer program dgvelopment specifications (type B-5): Department
of Defense kernelized secure operating system. Ford Aerospace &

Communications Corp., Report No. WDL-TR7811, Palo Alto, California,
March, 1978.

PN " . PP S saiia

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

1.4 The MME Security Model

During 1975 and 1976, BBN participated in a joint NAVY/DARPA
project called the Military Message Experiment, or MME. As part of
this project three different message handling systems were designed
and built: SIGMA (created by the University of Southern California
Information Sciences Institute (ISI)), MSGDMS (created by the
Massachusetts Institute of Technology), and BBN's HERMES. All three
systems were intended for operational use at the Commander-In-Chief
Pacific (CINCPAC) headquarters.

Since CINCPAC handles a very high volume of messages, and much of
the traffic is classified, all three systems were required to have
a human interface which might eventually be built in a truly secure
manner.

After considerable work on solving some major security problems in
the three candidate message systems for the MME, all participants
in the experiment acknowledged that a viable message system could
not be built on a system which rigidly enforced the MITRE model.
In particular, message systems have functions such as Reply which
require violations of the *-property in order to work.

For example, imagine a user attempting to reply to a SECRET message
with an UNCLASSIFIED response. In order to make a reply, the user
may wish to copy part of the incoming message (for example, the
subject field which is not stored separately in AUTODIN messages) .
In order to do this, however, the text of the subject must be
formally downgraded from SECRET to UNCLASSIFIED. This 1is not
permitted by the MITRE model, so the user would have to type the
text in from scratch.

In order to accommodate these functions with minimum impact on the
MITRE security model, a modification to enforcement of the
*-property was adopted for the MME:

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

The security kernel of the computer system permits a
violation of the *-property provided that the kernel

recelves explicit confirmation of the violation from the

human user.

The MME policy requires that the user be aware of the reason for

Bl e e e e

the kernel's confirmation request, and the kernel must always
r display to the user exactly what data 1s being declassified. For
- example, when a user declassifies a document using a display
‘ terminal, each screenful of material must be 1ndividually confirmed

. to be certain that all the data displayed 1s to be downgraded.

- The MME policy is a closer model of the security policy in a manual

. system, It allows a person the ability to examine data at several
different levels, and create new 1nformation at some other,
possibly lower, level based on that data. In a manual system this
1S not a problem, since the tools available (such as paper, pens,
etc.) are completely under the control of the person using them. A
computer 1s different: we probably can never expect to be able to

£t 1 prove that the computer 1s doing exactly what a user expects

- {although there 1s some hope that we can show 1t does what he
- commands -- not at all the same thing!). Therefore, there must be
- some way of assuring that even 1f the computer 1s not doing what

the user expects, 1t 1s at least not violating a security
restriction without the user being aware. This 1s precisely what
i the MME policy permits: Whenever the computer violates the policy,
I% the security kernel appeals to the user to approve the action that
¢ his highly complicated tool 1s taking.

! -
i; ' The three candidate systems for the MME each defined a special part
: -

i of their system known as a "Trusted Job." These jobs, called TJs,
+

: T were the only part of the system permitted to violate the
-

*-property. They are extensions to the security kernel used to

provide a more elaborate policy decision than those included 1n the h

5
§

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

MITRE model. The TJs are called by the message systems when a
*-property violation must occur. The TJ then explains the nature of
the violation to the user and asks him to confirm the action. If

the user approves, the violation occurs. If not, it is rejected.

The TJ, as described above, is only a sample of the kind of
security policy decisions that can be made in this way. Other
decisions can also be implemented that allow other kernel enforced
rules to be violated. However, the TJ must be proven to operate
correctly, since it functions as an extension to the kernel. Also,
1f 1t appeals to the user for permission to violate a policy rule,
1t must "talk the user's language". Therefore the TJs for each
system were vastly different -- they were expected to explain each
different kind of violation to the user and display the data being
downgraded in a manner appropriate to the system and the command
causing the downgrade.

By adopting the MME Security model security policy, each of the
three systems in the MME competition was able to provide the
functions required for use at CINCPAC. Within the security policy,
however, each system chose to implement a different user interface

and therefore made a different set of design decisions.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

2. The Evolution of Secure Hermes

Below, we describe the decisions affecting the security design of
the Hermes message system. <*2> Initial design decisions were
made during the summer of 1976 in preparation for a formal
evaluation period scheduled for March, 1977. These decisions were
reconsidered in the fall of 1977. Because this re-evaluation
period occurred after the formal evaluation of the three systems,
the current security design of Hermes takes advantage of important
features in each of the three message systems. We are fortunate in
having had the opportunity to do this redesign, and feel! that
significant knuwledge can be gained by studying both the original

design and the decision process leading to the more recent design.

2.1 The Hermes System Before the Security Design

Before describing the initial security design of Hermes of March,
1977, we will review some important facts about the original
Hermes. Work on the Hermes message system began in mid-1974. 1In
fact, a version of Hermes was already widely used on the ARPANET
prior to the design of the Hermes security interface. Since the
message system was already quite large, and had undergone several
years of intensive review and improvement, we felt that it was
essential that the "secure Hermes" be as similar to the ARPANET
version as practical. As a result, a deliberate constraint on the
security design was that the actual implementation would be added
to existing Hermes code under a compile-time switch. This
requirement was retained in the fall of 1977 during the subsequent
redesign of the security interface.

A number of very powerful reasons caused us to make the secure

version of Hermes as similar to the non-secure version as possible.

<*2>. Burchfiel, J. and Myer, T. Message technology research and
development. Bolt Beranek and Newman Inc., Report No. 3783,
Cambr idge, Mass., July, 1978.

T e e

T ——— R YN0

¥
i

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

For one thing, unlike other military message systems, the systems
developed for the MME were intended as experimental vehicles. We
were not constrained to handle only AUTODIN formal military
messages, but were required to test the use of a computer for
processing informal messages as well as internal formal memoranda.
In order to accomplish this, it was important to produce a system
that was as flexible as possible. We planned to allow the users of
our system to modify much of the system as they felt necessary.
For this purpose, Hermes already contained a powerful set of tools
which had been carefully tested by untrained users on the ARPANET.

Since we were already responsible for maintaining, testing, and
distributing new versions of the Hermes system on the ARPANET, we
felt that debugging the secure system would be simpler if most of
the code was being used daily by our large user community. Thus,
if the code could differ only slightly from the standard ARPANET
version of Hermes, the incremental cost of maintaining a secure

version could be kept quite low.

Finally, by making the underlying data structures for the secure
and non-secure versions similar, the secure system could be tested
experimentally on the ARPANET, and we could ask selected users of
ARPANET Hermes to use the secure version for their daily message
processing. In this way, we could actually get feedback from a
very large user community even before the system would be available
to users at CINCPAC,

2.2 The Preliminary Security Design Using the AIM Kernel

When we first faced the problem of creating a version of Hermes
with a "secure human interface," we expected to use a secure
version of the TENEX monitor, known as AIM,. <*3> Qur 11nitial
<*3>, Ames, S.R., Jr., and Plummer, W.W., TENEX security
enhancements. Mitre Technical Report No. MTR-3217, Bedford, Mass.,
April, 1976.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

design assumed that we would build a certifiably secure system for
which AIM would provide file-handling capabilities.

AIM, which stands for Access Isolation Mechanism, is a version of
the TENEX monitor with enhancements necessary to provide a secure
system. The enhancements were modelled on the secure MULTICS
monitor in use at the Air Force Data Services Center. There were
two major enhancements provided by AIM. The first was to add to the
TENEX filenames a new field indicating the security level of the
file. This security level is used by AIM to enforce the MITRE model
rules for file access. The second enhancement 1is to the
interprocess communication facilities to enforce the rules for
process-to-process communication. AIM was intended to provide a
reliably secure TENEX system, but was not expected to be proven. It
was therefore not truly written as a kernel although it can be
regarded as an unprovable kernel from a TENEX programmer's point of

view.

Under this approach the user views the system as four complete and
independent copies of the standard message processing program, one
at each of the four security levels. This is an easy model to
understand and allows the user to control his security level at all
times. Some functions (such as reply) require interaction between
the different copies of the program. For example, when the user
creates a reply to an incoming message, the subject and references
may be copied into the outgoing message; this may involve different
security levels or changes in security level. However, this is
also easily understood.

This system provides the user with a simple conceptual model that
closely matches the actual computer program. In addition, it can
be built easily on top of the AIM version of TENEX.

The AIM monitor provides access mediation to all files and separate
names for files at different security levels. This gives the user

b s i s i i i el

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

maximum flexibility by allowing the existence of all the Hermes
objects at any level and providing some naming convention to allow
for unique identification of objects at different security levels
(for example, by adding ".T" to the names of Top Secret objects,
".S" to the names of Secret objects, and so on). The only
difficulty we foresaw was that when the user displayed a message,
only those portions at or below the security level of the current
Hermes would be seen. This might lead to some surprises if the
user, for example, went to the Unclassified Hermes to display a
message and saw only the addressees and the date (i.e., the
Unclassified portions), but not the (classified) text or subject.
Oon the other hand, if a user were constantly conscious of his
current security level, this would not come as a surprise at all;
it would, in fact, be “proof" that the system was working

correctly.

2.2.1 The Concept of the Trusted Job

The user logs into Hermes at either the user's maximum security
level (i.e., his clearance) or the maximum security level of the
terminal, whichever is lower. Commands within Hermes allow the
user to change his security level. Hermes includes a "Trusted Job"
which acts as the coordinator between the Hermes activities at

different security levels.

The Trusted Job, in turn, creates a separate and complete Hermes
job at the user's maximum security level and at each security level

below. Each "security-level Hermes" job operates independently.

All communication from higher to lower security levels 1s done
through the Trusted Job. This communication is handled as follows:

For any information other than commands without arguments, the
Trusted Job first displays the information to the user, requests

confirmation, and upon receiving confirmation passes the

m——

oA AR

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

information to the lower security level. The details of this

communication process are:

a. Commands without arguments whose effects can be seen at
lower levels are redisplayed to the user and then passed in
canonical form. No confirmation i1s required. This alerts a
user that a *-property violation is occurring, and allows
him to easily detect incorrect or excessive violations; it
also acts to limit the speed with which violations can
occur, and hence limits the bandwidth of possible security

compromise channels.

b. Commands with arguments which affect lower levels are
passed in canonical form and require user confirmation.
These are: add, compose (1f a template 1s given), Delete,
Erase, Explode, File, Move, Get (1f a message-file 1s

given), Release, Reply, Refile, Send and Undelete.

) [File names are passed to lower levels in the form
<DIRECTORY>FILENAME. The directory is omitted if it 1s

the connected directory.

e Object names are passed as strings of alphanumeric

characters.

3. Sequences are passed as a list of message numbers; the

list may include ranges.

4. Numbers are passed as numbers.

2.2.2 Message Structure and Message-Files

To the user, a 'message-file' looks like a single file, containing
messages with fields at different security levels. In the
software, each message-file actually consists of four TENEX
message-files, one at each of the four security levels. Each file

at a given security level contains only those portions of the

e S A

T —

B ———————

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

messages which are classified at that security level. Each
security level file contains a machine-readable header line for
every message. Therefore, in order to display the contents of a
message, Hermes must examine the contents of all the images of the
message in the security level files which are at or below the
current security level. Each security level file has 1ts own parse
file.

The design is not dependent upon policy decisions about the
classification of various message fields, and many different
arrangements can be supported. It is possible to have multiple
instances of certain wessage fields at different security levels.
Th1s permits, for example, a message to have two different
subjects, one unclassified and one secret. While this facility is
not currently available through AUTODIN, it can clearly be useful
and 1n fact exists in the paper world: some classified documents
are available in unclassified form with the only difference being

the name!

The concept of a "current" or "active" message-file is supported.
At any time, a copy of Hermes at a given security level can be
attached to a single (user visible) message file. The Hermes job
will "see" only as much of the total file as the security level

permits. Thus a Hermes job running at Secret will have access to

the single-level files at Secret, Confidential, and Unclassified
and display to the user only data at those security levels.

2.2.3 Output Operations

Output commands are applied to all of the security levels that are
accessible at the user's current security level. Message fields
above that level do not appear in the output.

Since a machine-readable header exists at all security levels for

each message, the presence of a message is known at all security

[Pr—————

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

levels. The message numbers, at least, can always be printed out by
a user at any level. 1In practice, fields such as the addressee

fields and the date are always required to be unclassified in order

to allow message delivery software to be coordinated by an

unclassified process.

2.2.4 The Draft Message

HERMES has an object known as "CDRAFT", the current draft message.
A user can add, remove, or change fields in the draft message. He
can insert text from draft-files into fields and store fields into
draft-files. The draft is normally 1ntended for eventual release as
a message to other message system users, either within the TENEX
system or on another site on the ARPANET or AUTODIN,

The draft message is maintained much the same as a message file. It
1s composed of a multi-level virtual file, with each constituent
physical file containing message-fields that were input through the
Hermes job at the file's security level. The draft message 1s
accessible for display (and output) according to the logic
described for message-files. A copy of Hermes at a given security
level can access all parts of the draft that are at the same level
or below. All of the input and modification of the draft fields is

accomplished through Hermes at the appropriate level.

2.2.5 The Object Editors

The non-secure version of Hermes consists of a main command level
and several subsystems, referred to as "object editors". The
objects visible to a user are messages, files, a draft message,
templates, filters, switches, user-field dictionary, and sequences.
In designing the security interface to Hermes, 1t was necessary to
make decisions about the classifications of each of these objects.

These decisions have an 1impact on the user 1nterface to the

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

editors., For example, 1f a template (which is a pattern for
creating or displaying a message) can be used to store classified
data (such as a standard subject), it must be classified, and the

template editor must be able to handle templates at different
security levels.

2.3 The Change to a Simulated Security Design

Later in the development of the secure Hermes system, the
5 assumption that AIM would be present was eliminated. We were
therefore faced with the problem of designing and implementing a
system without an available security kernel. The solution for the
MME experiment was to design and build a system with simulated
security, in the expectation that we would adapt it to a security
kernel when one became available.

At this point, a major difficulty arose with our model based upon
four complete copies of Hermes. Any such system requires large
amounts of "security bookkeeping"™ to keep track of different
versions of different objects at different security levels. Since
we did not have the AIM security kernel to perform the security
bookkeeping, this would constitute a major performance burden on

Hermes.,

2.4 The First Secure Hermes -- March 1977

As a result, we re-evaluated our design, and decided that although

we would keep the quadruplicate structure of the message-files, we

did not need to operate four simultaneous Hermes systems for
message display. We changed the design of the top-level commands
so that instead of giving the user a choice of security levels for

reading messages, the system always operates at the User's maximum

security level.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

2.4.1 Message Display

Our 1initial goal for the secure version of Hermes was that it
should have the same set of commands, command syntax, and command
input style as the non-secure version. This requirement precluded
the use of techniques which made active use of the good features of
the video terminals which were provided for the experiment. For
example, we believed it was more important to have the advantage of
an acceptable, tested, user inter face. With this 1n mind, we
examined the existing commands to see where security issues would

require that change be made.

The most obvious impact is in displaying the message. We felt that
the flexible message structure in use on the ARPANET, consisting of
arbitrary headers and text, should be maintained in the secure
version. Further, it was clear that some headers (such as the date
the message was created) were unclassified, while others (such as
the subject) had to be classified. Since our goal was to make
Hermes flexible, there were no constraints placed on the
classifications of these header fields. Instead, we said that
there would have to be three categories of header fields: a) those
restricted to a particular security level (either by other factors
in our design, or by administrative fiat), b) those restricted to a
single security level selected by the creator of the message, and

c) those which could contain data of more than one security level.

2.4.2 Access to Message-Files and Messages

Having settled on the security aspects of the i1nternal structure of
a message, we began to concentrate on that of the overall message
and message files. While several people involved with the project
advocated a policy of "message classification" to restrict access
to all parts of a message, we felt that this was unnecessary. We

interpreted the security regqulations to allow anyone who had access

HERMNES SECURITY DESIGN Bolt Beranek and Newman Inc.

to the message-file containing a message to see the parts of the
message for which he was cleared. Further, mostly for ease of
implementation, we did not provide for minimum access to message
files either. Hence access to a message was dependent on privacy
controls <*4> provided by the operating system (and not
necessarily guaranteed by the security kernel), while the security

rules were enforced on individual fields of the message.

2.4.3 The Creation of the Draft Message

Our next step was to consider the draft message. Since non-secure
Hermes makes no distinction between messages which have been
transmitted with the SEND command and those which have been placed
iIn a message-file by some other command (such as File or
Redistribute), we felt that the same should be true of the secure
version. Therefore, we construct all messages as if they were for
internal use 1n Hermes. Different fields may be protected as
single level or multi level objects. Each header field 1s either
fixed at a system-defined level, a user-defined level, or it can
contain portions at several levels. Messages released to AUTODIN
are converted to single-level objects at the time of release and
not before. This permits the Hermes user to have great flexibility
when dealing with messages within the TENEX environment. It 1S only
when a message is to be moved outside of TENEX that more
restrictive requlations are imposed.

2.4.4 Draft-Files (files containing text)

Files that contain pieces of text 1ntended to be used within the
Draft-Bditor are called "draft-files™ 1n the Hermes system.

Non-secure Hermes has two classes of draft-files: (1) unstructured

<*4>, The term "privacy control® 1s used here to mean access
controls imposed outside the kernel. On TENEX these controls are
based on the login name of the user requesting the access.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

text files, which can be used to store single fields of the draft
message. These are handled with the Store-Field and Append-File
commands. (2) Structured files, which contain more than one field,
but which are not in a form to be accessed by Hermes
message-reading commands. These are handled with the Store-Draft
and Restore-Draft commands. We did not wuse the structured
draft-files in secure Hermes since the Edit Message and Refile
commands allow unsent messages to be saved 1n message-files and

handled with the same tools as messages.

2.4.5 File-Names

One of the functions of the security kernel 1n the 1nitial security
design was to supply file-names that contain security i1nformation
to Hermes. In order to provide this function without the AIM
kernel, we 1implemented the Hermes file-name mode of operation.
Under this scheme, the "extension" portion of che TENEX file-name
<*S> is used to tell Hermes the distinction between draft-files,
which are classified at a single level, and message-files, which
are multi-level. The file-names appear to the user to be single
words consisting of the first portion of the TENEX name. For
example, the file "MESSAGE.TXT; 1" appears to the user as "MESSAGE".
All files with the extension ".TXT" are recognized by Hermes as
multi-level message-files. The single-level draft-files are given
the extension U, C, S or T. depending upon their classification
level, for example, PEOPLE.U;1 or WARNING.S;1.

{*5>, Myer, Theodore H., Barnaby, John R., and Plummer, William W.
TENEX executive language manual for users (Revised edition). Bolt
Ber anek and Newman Inc., Cambridge, Mass., January, 1971, revisions
published April, 1973.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

2.5 Hermes Objects Other Than the Draft Message

Although the Hermes objects known as sequences, filters and
templates could all contain classified information or be given
classitied names, we made the decision to require them to be

unclassified 1n Secure Hermes. <*6>

This decision was made because of time constraints. Under the
original design, 1f the facilities of the security kernel are not
available tor handling object names, some means would have to be

tound to prevent duplication of object names at different security

<*&>, The classification of an object and the name of an object
are very difterent concepts, and have different effects. Consider
three cases: the object and 1ts name classified at the same level,
the object at a classification above i1ts name, and with the name
above the object.

The first case 1s the 'normal' case. The object 1s accessible to
anyone who has access to its name -- notice that this statement 1s
not true of access to files on most traditional computer systems,
where access regulation rarely applies to names of files.

The second case, with the name classified below the object, leads
to a situation where a subject can appear to be aware of the
existence of an object classified above 1ts level. In fact, the
subject 1s aware only of the NAME of the object -- something which
1s not classified above the subject's level. This 1s similar to
the situation discussed above where the message number i1s known at
all levels within HERMES, even though there may be no fields in the
message.

The third case, with the name classified above the object, 1is
frequently 1gnored as "ridiculous®". There are, however, at least
two situations where this can be useful. It allows for one form of
minimum access control, since most references to an object will
come through the object's name. If the system allows other
(1nternal) references to the object, however, then i1t 1S possible
to 1mplement another scheme. As mentioned above, an object could
have several names, each at a different security level. If instead
of "name" we think of a "pointer", then this allows for a pilece of
unclassified text to be contained 1n a secret document (via a
pointer) and yet still be accessed from outside of that document as
unclassified text. Depending upon the security policy that 1s to
be enforced on overall classification this can be either a distinct
advantage or a major objection to this form of a pointer
implementation.

o

P

P

g

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

levels, without passing i1nformation about these names from a higher

to a lower level.

2.6 The Design Consequences of the Trusted Job and the -property

Once the general design of secure Hermes was established,
consideration of the trusted job and the *-property revealed

further problems. These are described below.

2.7 Object Bditors

Although the secure Hermes objects such as sequences and filters
are themselves unclassified, the commands used with the editors may
involve potential violations of the *-property. For example, in
order to add all messages with "ROSES" 1n the subject field to a

sequence of messages, the user gives the command:
> Add Subject: Roses

to the sequence editor. The search must be performed at maximum
security level because a subject fi1eld may be at any security
level, and the word being searched tor may 1tself be classified.
Since the resulting sequence will (like all Hermes objects) be
unclassified, security requires that when the search 1s completed
the results of the search must be redisplayed to the user. The user
must confirm the downgrade of the sequence from 1ts current level,
that of the search, to the eventual level ot the sequence

(unclassified).
Example:
User types: >>»Add Subject: Roses

TJ types: Add 1:5,7,1585 [CONF IRM]

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

2.8 Terminal Security

Since each message is displayed at the user':s maximum security
level, several different security levels may be shown on the screen
at any one time, and it is necessary to keep the user informed

about the maximum security level on the screen.

Our solution to this problem is to provide a vertical security bar
at the left margin of the display screen, which shows a security
level for each line of the display in reverse video. The maximum

level on the screen is displayed in a summary across the top.

TSRS © e

P pe—

;
g
ﬁ
3
§
%

R AP TN NI P s, YT A T -

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

3. The results of Experience with the First Security Design

We asked a number of military and civilian users, many of whom had
never had experience with computers before, to experiment with the
first secure Hermes. As a result of this work, we found three
major problem areas in the design of the user interface.

3.1 The Confirmation Problem

The numerous confirmations required by the security design proved
to be very annoying. They were too frequent, because most commands
were typed at the user's maximum level, and had to be downgraded
before each command was processed. In addition, to guarantee to
the security kernel that the user understood that he was confirming
a downgrade and hence a possible security violation, the user was
required to use a special key not normally used by Hermes. The
result was that the users perceived the confirmations to be

dissimilar to normal Hermes commands.

3.2 The Problem of Changes in Security Level

The users felt that the concept of being "at a security level"
while drafting a message was very confusing. Contrary to our
expectations, the users expected the computer to move them to the
correct security level for the part of the job at hand, rather than
having the users instruct the computer to change levels. The users
clearly would have preferred a less flexible message form if it
relieved them from the burden of thinking about the security level
of each part of the message.

We analyzed the choices that could be made for assigning security
levels to message fields. A tree-structured diagram of these
choices is shown in Figure 1. The design of the first secure
Hermes occupies one position on the tree, and the two alternative
methods of using the second secure Hermes occupy two other
positions.

"Illl'Ill!.lH-l-lI!!!-H!l-lllllHHIQIII!F-n-nuuu—-_ - —

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

Figure 1.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

3.3 The Problem of Interruptions by the Trusted Job

There appeared to be too many interruptions by the Trusted Job to

announce changes of security level.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

4. The Second Security Design -- November 1977

In November 1977, ARPA requested that BBN resume the CINCPAC
related work that had been suspended in March 1977, and that we
prepare Hermes for possible use in the MME.

4.1 The Reactivation of Secure Hermes

We reactivated and installed the CINCPAC version of Hermes in our
research computer center, and we obtained and reviewed
documentation on the evaluation of Hermes from the preceding March.
After further consultation with potential Hermes users. We

undertook modification and extension of the secure Hermes software.

To provide a simplified command repertoire and improved
per formance, we converted to our H2 software (which presents the
user with a subset of Hermes commands) as a basis for CINCPAC
support. We then designed and implemented an entirely new security
interface with improved security safequards and substantially

improved human factors.

4.2 The Revised Security Design for Hermes

The user interface associated with the second version of secure
Hermes provides a simpler system, with a smoother transition
between security levels than the system demonstrated in March 1977,

Our goal was to ensure that operations take place at the
appropriate security level, and that, as far as possible, changes
in security level occur automatically. The only times that the
user is required to supply security level information is when he

reclassifies a message or creates a new message.

- 24 -

oo

—— o

W—“_—m ————

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

4.2.1 One Security lLevel per Message

Each message has only one security level. Fields that identify

: originators and recipients, dates associated with the message, the

! classification of the message, the message type, and the
;I precedence, are required to be UNCLASSIFIED. Other fields may be
classified but they are all classified at a single level within a
given message.

4.2.2 Automatic Transitions Between Security Levels

Each user logs in at his maximum security level and then 1is
automatically transferred to UNCLASSIFIED. The user is at the

UNCLASSIFIED level whenever he inputs commands. If the commands
call for display of a message, the wuser 1is automatically
transferred to the security level of the message so that all the
information is displayed. A user cannot display messages classified
above his maximum level.

If the user wishes to set a lower maximum security level for the

current Hermes session, he can give the command
>MAXIMUM SECURITY LEVEL <classification><CR>

This security level will remain in effect until the user logs out.

4.2.3 Changing Security Levels

When the user gives a command for message composition, such as

COMPOSE, the series of prompts presented to the user is controlled
by a Hermes template. One type of template item automatically asks
for the security level of the message. As the user responds to the
series of COMPOSE prompts, the message is automatically created
with fields like To:, Cc: and Date: at the required UNCLASSIFIED
level, and fields such as Subject: and Text: at the classification
level that has been specified by the user. When the user SHOWS the

r——_,‘ o rre——— T = o ey roe e e e ‘]

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

unsent draft message, Hermes also makes the transition between
security levels, without efforts on the user's part.

If the user desires to change the classification of the message, he
may do so at the end of the COMPOSE command. The user is left in
the draft-editor where he can use the RECLASSIFY command before
sending the message. The user may also add more fields, edit or

erase existing fields, show the draft message or Send it, as in

regular Hermes.

When the classification is upgraded, only the RECLASSIFY command is
necessary. If the RECLASSIFY command is used to downgrade, Hermes
displays the entire draft for review and requires the user to
confirm the reclassification.

The user is continually informed of the classification of each line
displayed on the terminal by means of an inverse video "bar"
displayed at the left-hand edge of the scope screen. The first
four character positions are used to display the classification
character (U, C, S or T) that applies to the line.

Whenever the classification at which the user operates is changed,

the user is notified by an inverse video line, e.g.,
FROM UNCLASSIFIED TO SECRET

Similarly, any confirmation of change of classification required by
the system is highlighted by inverse video.

4.2.4 Multi-level Fields Removed

Multi-level draft fields were abolished in accordance with the new
security concept of automatically moving the user to the correct
security level. If it is possible to create a field at more than
one level, it is not possible for the computer to determine the
"correct" level, so the user would have to supply the information.

- 26 =

o o U SR RSSEPEEE SN TSI SRS SRR e

HERMES SECURITY DESIGN

4.2.5

l.

Bolt Beranek and Newman Inc.

Security Downgrading Confirmation is Rarely Required

The user is required to reconfirm when leaving the sequence
editor, since editing that involves message-fields always
involves a potential security violation. There are two
opinions about requiring confirmation. (a) the user could
be required to confirm every time he leaves the sequence
editor, even though the commands that he gave involved only
fields required to be unclassified. The user would then
not be surprised by an unexpected requirement for
confirmation. (b) The wuser should be asked for
confirmation only if the commands involved fields that
might be classified. Surprise is desirable because it
calls the user's attention to the fact that there might be
a security violation.

Confirmation is required when the user gives a command that
requires Hermes to look at fields at the maximum security
level. This occurs when the message specification for
command involves a potentially classified field, such as
the subject field. Commands which can be given such a
message specification are Redistribute, Append, Assign,
Comment , Explode, Remove, Add, JumpTo, File, Move Consider,
Delete, Undelete, Mark or Reply.

Confirmation is required when the user sorts a sequence on

a potentially classified field.

4.3 Restricted Access to the TENEX Executive System

Security is enforced by restricting the access of Hermes users to
the TENEX Executive System. <*7>

QPR < S TN R

<kT>,

Myer , Theodore H., Barnaby, John R., and Plummer, William W.

TENEX executive language manual for users (Revised edition). Bolt
Beranek and Newman Inc., Cambridge, Mass., January, 1971, revisions

published April, 1973.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

Users are placed directly in Hermes upon logging into the system,
and must logout directly from Hermes. There is no provision for
dropping into the Executive system in a lower fork through the EXEC

command as there is in reqular Hermes.

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

5. Summary and Conclusion

The need for military security in computer systems generates a
three way conflict between the goals of security policy, the fact
that computer software cannot in general be trusted (or proven
correct), and the need for good human factors in an interactive
system. Computer security research can be viewed as a continuing

search for acceptable compromises between these three fctors.

Conflict, and the need for compromise, are present for the

following reasons.

1.) Basic security policy governs human behavior 1in a paper
world. This policy works well because the paper world 1s
simple, and because the humans who have been given access
to classified information are trusted to adhere to the
rules with regard to that material. For example:

. Multiple security levels may occupy a single sheet of
paper (or multi page document) .

. Provided the environment is secure, the user may-freely
write information at any level or intermixed levels. The
decision on how to classify the results of his writing
can be left till the writing is complete.

2.) Within the computer, things are neither so simple, nor can the

computePAand its software taken together be trusted to

adhere to the security rules. 1In particular:

. Information must be segregated by security level, even
though that information may constitute a single document
or message.

. Information, including commands, must be entered 1nto the
system at its correct level. To enter i1nformation at too
low a level would leave 1t exposed to unauthorized
access. Entered at too high a lvel, the 1nformation
wodld require subsequent downgrade, which cannot be
entrusted to computer software.

w

a—

et e

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

3.) The goal of good human factors implies ease of use. In terms
of security, a computer system with good human fctors would
at the very least be as straightforward as the paper world.
Unfortunately, this goal is in direct conflict with point 2
above, which tends to imply a system of considerable
complexity.

In this paper we have described two successive attempts to develop
a workable compromise between these forces. Like many such efforts
this one began with relaxation of the restrictions placed on
computer software. In particular, the ability to downgrade
information, but with human confirmation of each such downgrade
proved to be a necessary relaxation of the original MITRE model.
To make possible this extension, the Security Kernel of trusted
software that is generally created to support the MITRE model was
augmented by a "Trusted Job"™ that carries out user assisted
downgr ades.

Starting from this point of departure we proceeded to create two
successive security designs, the second more acceptable than the
first in terms of human factors.

The first design took a "do it yoursel f" approach. It assumed that
the user would be willing to manipulate directly the rather
intricate structure through which the security rules were to be
implemented in the computer. This design was modular, and, we
thought, elegant. It allowed the user to move freely about the
security levels viewing what the security rules would allow at that
level. Messages could contain any mix of classified information,
and thus a message might appear quite different at each viewing

level. Draft messages were constructed by shifting to each of the
security levels to be contained in the draft, and then entering the
information classified at that level.

&

HERMES SECURITY DESIGN Bolt Beranek and Newman Inc.

In a second stage of this initial design, we modified the system so
that all viewing operations were carried out at the user's top

level, so that the maximum possible information could be seen.

el S

However, draft composition was still carried out by stripping the

- system through successive levels.
- : ! : :

Neither version of this first design proved satisfactory to our
T users. What we thought straightforward and modular proved arcane
- and confusing. It became clear that users would prefer to have the

- system shift levels automatically as required, without
& confirmations and without the numerous notifications required by
successive level changes.

- In the second design, we restricted the number of security levels
per message to just two (unclassified and one other); we provided
for command input at the unclassified level (which avoids the
command downgrade problem) and we arranged for almost all level
changes to take place automatically. Only when indicating the

security level for a new message or when reclassifying stored

{ information must the user be aware of security level. This second
| i .
E - design proved much more satisfactory to our users.
i This research emphasized the human use of a multi level secure
- -

system. The dominant conclusion is that for such use to take place

~4

at all, acceptable human factors must be designed i1nto the system.

Good human fctors would not be hard to achieve 1f the system
software could be trusted not to violate basic security provisions
(especially writedown). It is our present inability to veritfy and
therefore trust software that makes it such a struggle to achieve
good human factors. Thus, a second conclusion 1s that i1ntensive

efforts should be made to develop effective software verification

:
i
’

i
I
L
I
I
1

techniques or other means that would make it possible to trust as

much of the software as possible. |

