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1.0 INTRODUCTION 

Turbulent ducted flow is commonly found in diffusers, nozzles, test cells, and wind 

tunnels. The complexity of the flow involved depends upon many factors such as the 

geometry of the wall, the turbulent nature of the flow, flow separation, three-dimensional 

effects, the Mach number effect, etc. 

For incompressible turbulent flow, a method (Refs. 1 and 2) has been developed to 

obtain the finite-difference solution of the Navier-Stokes equations with a two-equation k-¢ 
turbulence model. It has been used in the computation of both separated and nonseparated 

turbulent diffuser flows 'with nonuniform inlet conditions. The original analysis was 
formulated for two-dimensional (2-D) or axisymmetrical flows with a single-wall boundary 
layer and a coordinate transformation, in order to handle general nonsymmetrical 2-D flows 

and annular diffuser flows, another wall boundary layer and coordinate transformation 
were added to the analysis in the present study. With this modification, a fairly general class 

of ducted flow problems can now be computed easily with the incompressible Navier-Stokes 
code. Among other important changes are (1) a simple exponential coordinate 

transformation to handle the two boundary layers, (2) a formula for the initial flow-field 

guess, and (3) a new approach for computing the pressure field. 

For the compressible flow computations, the requirement to calculate the density 
variation makes it necessary to know the temperature and pressure fields. It is the purpose of 
the present study to extend the incompressible analysis to the compressible flow regime 
within the framework of the vorticity-stream function formulation of the Navier-Stokes 

equations. The derivation of the governing equations in terms of the vorticity and the stream 

function, the coordinate transformations, the logic of the numerical procedure, and some 

preliminary results are presented. 

2.0 THE VORTICITY-STREAM FUNCTION FORMULATION 

The basic governing equations are the continuity, momentum, and energy equations. 
The set of  steady-state equations can also be expressed in terms of  the vorticity and the 

stream function. These are given in both 2-D Cartesian and cylindrical coordinates as 
follows (different vorticity-stream function formulations can be found in Refs. 3 and 4): 

Vorticity Equation 
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L - ! 8 .  - - f I  I __-O#t (/~ + #t) 
1 (# + #~) ~ 0, ,2 1 4 - m  4- - 

r ( /Z + /J.t ) 0x 0x 0r 2 /_J 

(~. + ~.t) 8x (/~ + ~.t) 0x 

of, + ~,) L\a,,2 ~ / \a,, axa, \a ,  

where 
[•l.I f~V ,,V 

v . ~  = _ _ + _ _ _ 8 . _ _  
O~x 0 r  r 

(,i) 

Stream Function Equation 

= - p r S g  

where 

U 

V -- 

pr 8 0r 

aF 8 0x (2) 

In the vorticity equation, the first two second-order terms represent the diffusion term, the 
next two first-order terms represent the convection term, and the rest represent the vorticity 

source terms. Of the vorticity source terms, the first term comes from the cylindrical coor- 

dinates used, the second term is related to the density variation, the next t~'o terms are 

related to the first-order eddy viscosity variation, and the last term is related to the second- 
order eddy viscosity variation. The eddy viscosity (#0 and the density (p) which appear in the 
vorticity and the stream function equations must be determined from the turbulence model- 

ing, the energy equation, the equation of state, and the pressure equation. 

3.0 THE PRESSURE EQUATION 

There are several methods available to recover the pressure field, namely (1) by direct 
integration of the momentum equations, (2) by solving a second-order pressure equation, 
and (3) by solving a new pressure equation described in the present analysis. 

6 
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3.1 The Conventional Pressure Equation 

( In the first approach, it is possible to obtain a pressure field distribution by direct 
integration of the momentum equation. In the region where the flow variables are relatively 
smooth and continuous, the pressure integration is straightforward. Otherwise, the local 
error generated will be carried along the path of integration. As a result, the pressure level at 
the end of the integration path is usually inaccurate. This happens often along the wall 
where the velocity gradient is large. This method can be used when the velocity field 
obtained is accurate and there are enough grid points to define the solution smoothly. The 
line integration methods used to obtain the pressure distribution, although good for some 
simple applications, do not generally provide a unique solution. 

In the second approach, a Poisson type of pressure equation is derived from the 
momentum equation through a (V o) operation. The result is a second-order field equation, 

agp a'p~ a(..~r ) + -~,V + ~- = Sp (3) 

where 

0 0 - p . - -  (v.;) (v.~) (v.~) 2 
ax - pv~ - p 

02p.t ~au 2 (V. + - -  2 
+a-7 c a-~-~ ~,~ ~, 3 

,.o ,0 ] 
- ~  + 2  ( V . ~  

0x r 3 0x 

a#, E2afl a.v aa 2a :~ - -  - - + 2  + - - - ( V .  ~') - - -  (V.  
+ Or ax " 7 "  3 Or 3 r 

o~2#.t (Or 
+ 2 axa---T 7, --+ +7 ("+"') W (v.:)+.~ (v.;~ -~(v.;r or 

For 2-D incompressible, constant viscosity flow, Eq. (1) is reduced to the following form: 

(4) 
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where ~ is defined as (p/p). 

The second-order pressure equation derived represents an improvement over the direct 

integration scheme. But there are difficulties associated with the boundary conditions~ In 
most ducted flow problems, the pressure along the wall is not known. For flow between two 
walls, the zero normal pressure gradient condition would have to be used. As a result, the 

boundary condition becomes weak in controlling the absolute pressure level. In addition, 

slow convergence characteristics usually exist for the gradient-type boundary conditions. So 

far, no satisfactory method has been developed to improve the situation. 

3.2 A New Pressure Equation 

With the weakness of the second-order pressure equation known, it is possible to create a 
new pressure equation from the momentum equations with stronger convergence properties. 
The idea is to retain as much as possible the first-order nature of the momentum equations, 
while at the same time working with a second-order field equation. Although the approach is 

highly heuristic, the results of this approach discussed in later sections do support the basic 
idea. The basic idea behind this new equation is simple and is explained briefly as follows. In 

most ducted flow problems, there are inviscid and viscous boundary-layer regions. In the 

subsonic inviscid region, the flow variables change relatively smoothly along the main flow 
direction (or along the streamline). It is possible to determine a path function in such a way 

that the resultant pressure equation is highly convective along this path. With proper 
selection of the coefficient, one can make the second-order diffusion term relatively small. 

Thus one can achieve the forward integration of the pressure by solving a second-order 
diffusion-convection pressure equation. In order to obtain the pressure field for the rest of 
the flow field, one can specify the path function normal to the main flow direction (or 
normal to the boundary layer). 

The pressure equation with this new set of path functions will pick up the pressure 
information along the main flow direction and propagate it across the boundary layer to 

reach the wall. This is a natural approach, in a sense, because the normal pressure gradient is 

usually small. Therefore, one would expect to have relatively accurate pressure distributions. 

The key to the success is the creation and specification of the vector path function. The new 
pressure equation derived from the momentum equations with the vector path functions PI 
and P2 is as follows: 
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+ -  + 

op Ou b op av. L( a_( a~ --ax-" a , / - ~  --,Vax ~ -P.Ua,, v.~)-ovor v.~)-P(v.;)'- 

a2pt I20u 
@x 2 ax 3 Or 2 Or 3 j ax ar + r ~ ('" ~)1 ,~ ax 

+ 0-7- 0-7 - F  - ÷ - - C ' v "  ~ ) - -  (v .  v + 2 

[o, o, ,] 4(~+~) (V.v)+~(v .~)+-  (v.~ 
~; ~ or 2 r ~  

(; T~,~ ~ L Ox -~(v. or \ o ,  ÷ 
P1 

+ ( .  + .,) g -, +-~ ~} v .  v 

{ o,., (or r o., , , .  pu,. -P + + + 
~ P2 

-(. +.,, r~+4-~(v. ;)] } 
Lax 8 ar (5) 

where PI and P2 are the vector path functions and uc is a reference velocity. 

The strong convective nature of this new second-order pressure equation is controlled by 
the path function and the coefficient [OUc/(~ +/~t)]. The path function must be specified in 
advance. It could be changed to improve the accuracy on the basis of the velocity dis- 
tribution. In general, the path function depends on a particular flow problem to be solved. 
For the ducted flow application, Pl is one along the centerline or the midposition line and is 
zero elsewhere. This has an effect of convecting the pressure along the midposition line in 
the downstream direction. The other path function, P2, is zero along the midposition line, is 
one in the positive half of the flow field, and is minus one in the lower half of the region. 
The information about the pressure is then spread away from the midposition line in the 
normal direction. The underlying physics is explained in the following example: 

9 
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For a parallel channel flow with a boundary layer and a core region, the new pressure 
equation behaves in the core region as 

p u  0(.~._) 
P _ ~ q  _ 1 .  . : ~  
ta-~') ; P 

On the other hand, in the boundary layer region, it becomes 

(02p~ p,, iOpl 
~------, S 

(6) 

(7) 

Because of the strong coefficient (pUc/#), the pressure field is being convected along the 
prescribed direction of PI and P2. 

Several obvious advantages can be obtained by using the newly derived pressure 
equation: (1) the second-order diffusion-convection equation can be easily solved by the 
general finite-difference formulation with decay function; (2) the path function can be 
selected in such a way that the error in the pressure field is minimized; (3) a fast convergence 
rate is realized because of the strong convective nature of the equation; and (4) the problem 
with the wall boundary condition is relieved because the wall pressure is now approached in 
the normal-to-the-wall direction. 

Some feeling for the complexity of the transformed equation in the computational 
domain may be gained from the transformed pressure equation shown here. 

Transformed Pressure Equation for Co mpre_ssible Flow 

1 Or 

= Sp 

i,  

10 
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where 

, , .  [,u ( I  " ;]! • + @ .  . ~ . ~  +2 . . . .  ,. ,~. 
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- . ~ • u ~ .  +-~ + " a ~ "  
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-P]  pu~ ( oI~d) 0,,(9 ] ou d)r°"' co~o~, (o~-)] 
"'i- ~" ~ g" ~ ~T L~ \o;/ 7 ~; (g + gt) # u  + -pv • + • • 

1[o. r,,,.. (,,,-)] 1[,,,. ("1 • 2 ~ . . . . . .  ..I- • 

{ ,"')f/, (a~'~_~...+4 [~..(v.,~)(o~ o (2-'~1"~! 
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- P2 PUc ( o,, c")] o,. (Or) ¢ ) ]  • 4 - p u  + • . + • 
c~+~,,) i ~ b-f ~ - p v ~  ~ 

• (" o,, 0,,, (o,-)] 
• _ + - . g - - . ~ , , . ) , /  - f f - . ~  . ~ +~'~ . 

+ ( P ' P t ) ' {  " ~x "1-~-' ~x + 3 0 - ~ ( V ' ~ ' ) "  \ O r / ) )  

ou { ~ I  

(8) 

4.0 A TWO-EQUATION k-e TURBULENCE MODEL 

The closure problem related to the turbulent shear stresses is handled in the present 
analysis through the eddy viscosity concept. The eddy viscosity (gt) is determined from a 
two-equation k-~ model through the Prandtl-Kolmogorov relation. The molecular viscosity 
effect, which is important in the viscous sublayer region, is modeled through the eddy 
viscosity coefficient (C~,) and additional terms in turbulent kinetic energy (TKE) and 
dissipation equations. 

The Prandtl-Kolmogorov Relation for #t is 
k 2 

gt = pC# 

where 

A 
Ctt = 3(a+A/b) ' A = v ' ~  kyp/g, a=l,100, b=0.27 

(9) 

12 
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and where k is determined from the turbulent kinetic energy equation: 

\ ~ + ~ /  (~,-+~,,) "-a, l 'aC-(~,+~,,)  ,, ~ a. T "~, 

., love, I ,-+,,; ( ' )  
-,- - - -  2 ~ + & .  + - p ( + 21L 

and e is determined from the TKE dissipation equation: 

1 1 OE 
~ ) .  . . . . . .  v . ~ 

( #t • 2 c, ~, L\~,/ 

where 
C l = 1.36, C 2 = 1.92 [ 1 - 0 . 3 e x p ( - B 2 ) ] ,  R = pk2/iz~). 

(io) 

(11) 

5.0 BOUNDARY CONDITIONS AND INLET CONDITIONS 

The boundary conditions for turbulent ducted flow problems can be divided into four 
groups, namely wall condition, symmetry condition, exit condition, and inlet condition. Of 

these, the inlet condition requires special attention. Therefore, it is discussed separately 

below. For the solid-wall boundary condition, the nonslip condition is usually used (i.e., u 
= v = 0). When a line of symmetry exists in the computational domain, a zero normal 

gradient condition is commonly used. At the downstream side of the computational domain, 
it is necessary to specify the exit conditions because of the elliptic nature of the problem. 

Since one does not know the exit solution in advance, a zero axial gradient condition is 
normally used to simulate the nearly parallel condition at the exit station. 

Inlet conditions for the turbulent ducted flow problem normally consist of a core region 
and boundary-layer regions. The profiles in these regions usually are highly nonuniform. 
They can be either obtained from experiment or specified by analytical modeling. In most 

cases, it is not possible to obtain the complete set of data needed for computational purposes 
from tHe core region into the turbulent boundary layer-region and through the relatively thin 

13 
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sublayer to the wall. Therefore, it is highly desirable to have formulae which can be used to 

generate a set of complete profiles for the numerical computation from some gross features 

of the inlet flow. In the present analysis, the inlet condition is analytically calculated on the 
basis of the given boundary-layer thicknesses and the Reynolds number. Within the 

boundary-layer region, the modified Van Driest formula is used to provide the complete 
profile of the velocity gradient throughout the viscous layer on the basis of an assumed total 
shear stress distribution (Ref. 2). The related flow variables such as velocity and stream 
function are derived numerically. 

With a two-equation turbulence model, it is necessary to know the turbulent kinetic 
energy (k) and the dissipation rate (e) throughout the whole turbulent boundary layer. This 
cannot be easily achieved experimentally. Therefore, it is computed analytically from the 
following TKE-shear stress relation 

k _ 
P " (12) 

where Cj, is modelled as A/3 (a + A/b), A = x/ '~ Y/p, a = 1,100and b = 0.27. The above 
equation is an equation for k and y. It must be solved iteratively because of its nonlinearity. 
The asymptotic behavior of this relation in the region away from the thin wall layer is given 
by the conventional TKE-shear stress formula as 

k _ 
0.a p (13) 

It must be emphasized again that it is very important to provide a self-consistent set of 

profiles so that one can avoid sudden readjustments of the numerical solution near the inlet 

station. 

6.0 NUMERICAL METHOD AND COORDINATE TRANSFORMATION 

In the present analysis, the physical flow field is first transformed into a rectangular 
computational domain, and the solution is obtained iteratively, with an initial flow-field " 
guess, through a general finite-difference formulation with decay functions. 

6.1 COORDINATE TRANFORMATION 

The general coordinate transformation is described in Refs. I and 2. In short, the domain 
of interest is first transformed into a rectangular region through a nonorthogonal coordinate 
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transformation. A second coordinate stretching is then applied to provide an adequate 
solution definition throughout the boundary layer, including the sublayer. In the former 
approach, the coordinate stretching was provided by two matched stretching functions, 
while in the present approach, a simple exponential coordinate stretching is employed for 
the boundary-layer region. The difference is in the ease of handling. In the core region, a 
simple uniform grid arrangement is used. 

K J _ I  
y = A h l ~  

K - I  
(in the boundary-layer region) 

Ay = Constant (in the core region) (14) 

where y is measured normal to the wall, Ah2 is the first mesh size, and K is the ratio between 
two successive mesh sizes. The first mesh size, Ahl, can be determined by selecting the first 
grid point inside the viscous sublayer at y+ = 2 (i.e., hi -- 2 p/v*). The coefficient K must 
be determined iteratively when the range of y and the total number of  grid points in the 
boundary-layer region are given. 

For example, the condition is 

Ymax 
2v K J N -  I 

v* K - 1 
(15) 

where JN is the number of grid points which covers the range Ymax. The coordinate 
transformation factors are evaluated numerically after the transformation function is 
determined. The transformation function has the advantage of smoothing out the 
discontinuity which normally occurs at the matching points. It must be emphasized that the 
proper evaluation of the transformation factors is important and that the reproduction of 
the inlet profile can be used to check the validity of the transformation. 

6.2 INITIAL FLOW-FIELD GUESS 

The initial flow-field guess for the steady-state iterative procedure is very important. It 
affects not only the rate of convergence but also the stability of the iteration procedure. For 
turbulent flow computations with a low Reynolds number model, it is not known whether 
there is a unique path from an initially laminar region to a finally turbulent region, and vice 
versa. Therefore, it is important to use an initial guess with turbulence properties which are 
reasonably close to the final solution. 

15 
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In the present approach, the inlet condition is used to obtain the initial flow-field guess. 
The local profile is decomposed into two parts, namely the inlet profile part and a wake 
profile part. These two profiles are combined to satisfy the global continuity equation (Fig. 
1). For example, the velocity profile is written as 

U = Ui(Y)(Umean--~u)4- !]. +COS I(Y-- ~Yl) o frli  ° u l , c  AYl 

At the inlet, Au = 0 and Umean = Ul,c; therefore, u = ui(y). 

tt 

/ /  '/ 

1 
Y 

/ / / J  

____~mean 

i 

I 
I 

AY I 

Au 

(16) 

Figure 1. Decomposition of initial velocity profiles. 

With the velocity profile decomposition method, the initial stream function distribution 
is derived. The related variables such as the vorticity and the velocity are obtained 
numerically. The initial viscosity distribution is computed as 

V t -- Vt, [ • Ul, c L. Ay I 
(17) 

where the first term represents the contribution from the adjusted inlet condition and the 
second term represents the corresponding wake contribution; Ayl is the assumed local 
boundary-layer thickness. Improvement in the initial flow-field guess could be further 
carried out by combining experimental data, computed results, and a simple integral method 
to make the Navier-Stokes computer code "smart." 
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6.3 NUMERICAL SOLUTION PROCEDURE 

The governing equations and the corresponding boundary conditions are solved in the 
transformed space by a general finite-difference method with decay functions (Refs. 5 and 
6). The program logic for the incompressible flow computation is shown in Fig. 2. The 
vorticity and the stream function equation form a main loop along with the eddy viscosity 
computation. The pressure equation forms another separate loop because of the pressure 
decoupling mechanism in incompressible flow. 

For the compressible flow computation, the vorticity, stream function, eddy viscosity, 
energy, and pressure equations form a main loop (Fig. 3). The pressure field must be 
updated constantly because of the density coupling in the compressible flow. Basically, the 
compressibility effect appears in the convection term because of the density modification. 

7.0 RESULTS AND DISCUSSION 

The application of the general finite-difference method with decay functions to the 
solution of the Navier-Stokes equations in terms of the vorticity-stream function 
formulation is new. Therefore, it is very important to know the validity and the limitation of 
this approach. In previous work (Refs. 1 and 2) it was studied very carefully and was applied 
to the laminar diffuser flow computations, where the numerical solution can be easily 
verified without the complication of turbulence modeling. With the coordinate stretching, 
the technique was applied to the computation of incompressible 2-D planar diffuser flows 
and several separated and nonseparated conical diffuser flows. The results, by comparison 
with a limited amount of available data, were encouraging. Obvious extensions to the 
previous work were 1) to include more complicated boundaries, such as annular diffusers, 
and 2) to account for compressibility effects. To evaluate the first extension, the analysis and 
the computer code were applied to a wind tunnel diffuser with centerbody. To answer the 
question about compressibility, several steps were taken. These are described in the 
following sections. 

7.1 INCOMPRESSIBLE WIND TUNNEL DIFFUSER FLOW COMPUTATION 

The wind tunnel diffuser modeled is part of the AEDC Propulsion Wind Tunnel Facility 
(PWT) Aerodynamic Wind Tunnel (161"). The outer wall of the diffuser is three- 
dimensional. A square inlet section is followed by a transition section which changes the 
cross section from square to circular (Fig. 4). The diffuser centerbody is axisymmetric. The 
computations were made for an equivalent axisymmetric annular diffuser which has the 
same axial distribution of flow area as the actual diffuser. The computed flow field can be 
expected to be significantly in error in those parts of the diffuser where the cross section of 
the outer wall deviates greatly from axisymmetric. However, if the predicted flow field is in 
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Figure 4. 16T diffuser geometry. 

reasonable agreement with experiment, then the numerical computations can be used to 

assess the effect of  geometric and Reynolds number variations on the performance of  the 

16T diffuser. 

In the course of this analysis a completely new formulation was carried out to include 

both the wall and the centerbody turbulent boundary layers. Unfortunately, this placed a 
very heavy demand on the coordinate transformation, because it meant that one must 
handle two viscous layers, two sublayers, and a core region. The two-function matching 

procedure proved to be insufficient to provide a smooth and continuous transformation in 
the realistic Reynolds number range 'of '4  x l06 with about 61 grid points in the radial 

direction. This problem was later solved with a simple exponential function transformation 
which is described in Section 5.1. With this approach, the core region was handled by a 
uniform grid, and the two boundary layers were covered by a two-exponential function 

transformation. 

In the computation, a 69 by 105 grid was generated in the radial and axial directions. In 

the radial direction, the two boundary layers along the outer diffuser wall and the 
centerbody were covered by the grid. The centerbody was extended to the inlet plane with a 

small sting to eliminate the direct computation of the stagnation point region of the 
centerbody. The computed wall and the centerbody pressure coefficients are shown in Fig. 
5. Also in Fig. 5, experimental results are presented from a 1/16 scale model of the diffuser 

tested in the AEDC-PWT Aerodynamic Wind Tunnel (IT). Agreement with IT model data 
is good except for the wall pressure in the square inlet section, where large three-dimensional 
effects exist. The Reynolds number per foot is 4 x 106. The computations required 
approximately one hour on an IBM 370/165 computer. The storage requirement with 
double precision is about 1.2 x 106 bytes. From the convergence history shown in Fig. 6, it 

can be seen that the solution reached a converged state in about 30 minutes. The pressure 
distribution was obtained from the new pressu're equation. The convergence history with the 
new equation is shown in Fig. 7. It can be seen that the convergence is relatively fast 

@ 

compared to the vorticity-stream function cycle. This is very im'portant because the pressure 
cycle must be updated constantly in the future computation of compressible flows. 
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Obviously the ability to efficiently obtain accurate pressure distributions with the new 

method has been successfully demonstrated. Finally, it is worthwhile to mention that these 
computations were carried out with a uniform axial mesh arrangement, which may not be 
adequate for flows with large variation in geometry along the axial direction. Therefore, 
extension to include a variable mesh in the axial direction is also desirable. 

Although only the pressure distributions are presented here, a complete set of  flow-field 
variables was tabulated as the output of the computer code. 

7.2 COMPRESSIBLE LAMINAR FLOW IN A SUDDEN EXPANSION DIFFUSER 

Although the vorticity-stream function formulation has been very successful in handling 
incompressible two-dimensional flow problems, the capability of this approach to obtain 
compressible flow solutions must be demonstrated. The reason behind this is that it becomes 
necessary to update the pressure constantly by solving a pressure equation. The old problem 
associated with the conventional pressure equation (i.e., slow convergence and boundary 
condition) has discouraged people from using it. It is therefore very important to select a 
well-defined and physically realistic test case so that the present logic for the compressible 
flow can be verified. For this reason, the planar laminar flow in a sudden expansion diffuser 
was chosen to eliminate the additional complication involved in the use of  the k-¢ turbulence 
model. 

The velocity profile is shown in Fig. 8. At the inlet, the Mach number in the core region is 
0.8, and there is a laminar boundary layer near the wall. The computation was started at one 
step height (H) ahead of the expansion so that the elliptic nature of the flow could be 
properly included. The flow separates smoothly from the corner and forms a long separation 
region. For a Reynolds number equal to 70, the length of the recirculation region is about 
7.5H. The centerline velocity also decreases continuously because of the diffusion process. 

In the computation, the conventional pressure equation of the Poisson type was used. It 
is likely that one can include the new pressure equation in the analysis and modify the 
computer code to obtain accurate pressure distributions in a more efficient ~vay. The 
convergence characteristics are shown in Fig. 9 with the conventional pressure equation. The 
grid arrangement is a 101 by 36 uniform mesh, and the computing time was about 8.5 rain. 
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8.0 CONCLUDING REMARKS 

The present steady-state vorticity-stream function formulation has been shown to 
provide convergent solutions for both compressible and incompressible internal flows. The 
new pressure equation derived also provides fast and accurate pressure distributions for the 
fairly complicated 16T model diffuser configuration. The full potential of the present 
formulation should be further validated for the Much number, effect when additional data 
for the 16T model diffuser are obtained. The extension to three-dimensional flows also 
should be carried out with a vorticity-velocity formulation because most flow problems are 
three-dimensional in nature. 
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NOMENCLATURE 

Variable, = 2~y /~ ,  

Consta~lts 

Coefficient in the eddy viscosity model 

Pressure coefficient 

Step size 

First step size 

Integer 

Coordinate transformation constant 

Turbulent kinetic energy (TKE) 

Mach number 

Vector path function 

Pressure 

Exit wall pressure 

Gas constant 

Radial coordinate 

Pressure source term 

Temperature 

Axial and radial velocity components 

Wake component in velocity profile 

Reference velocity 

/ 

Exit reference velocity 

Inlet reference velocity 
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Umcan 

X 

Y 

~y 

Ayl 

e 

ut 

p 

g 

Mean velocity 

Friction velocity 

Axial coordinate 

Normal coordinate 

Step size in y 

Boundary-layer thickness 

2-D flow, = 0; axisymmetric flow, = 1 

TKE dissipation 

Molecular viscosity 

Eddy viscosity 

Eddy viscosity divided by density 0~t/p) 

Density 

Stream function 

Vorticity 

D 

.} 
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