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A ch ar a c te ri s t  Ic of I i ’ ans t’n l c  u n s te ad y  f l o w  w i t h  s i i t * . kct .iri ’s i s  t h e

put  out  I a l l y  I a I’ge pbs so lag  he t w i t ’ll b ou nd a r y  mi~t i cii  a nd induced s t an  ace pi’oSs t i re ’

Moreover , ne t  for c e  coo f f 1  c len Is  gene.  r a t  ly t ’~~t’e~~d t hose’ in  su b s o n i c  and

super son i c  speed reg imes .  These e f f e c t s  t end I t ’  l n t’i’case ’ t h e  I I k e l  Ihood of

acroe’l as t  Ic i i i st ab i  i i  tv , making  t r . t u s t ’t i i C speeds most cr 1  ( I  c a l  f o r  a i r c r a f t

1.1 u t t e r .  I . , i u t l a h l  • S (‘1 . tS ~
, it ’ 1Ii. ’ Ii.*~ i’aph  [1 1 a~ld i’ * ’ ~ a t ’s I hi ’ l i i  a Ic  pbs’ s i c a l  and

m at  he ’ma t i c ’ 81 i S a Ui ’S , e ’Ifl p ha si ~‘ I h g  I I’ .1 c t  .ili  1 i’ I l i i i ’  a r u~ sIt ’ 1 S

The j u l i e  r en t  llt~ll I I l i t ’  8 F 5  t v  of I he’ p i d ’  1cm cI*’. I .‘us lv  I t ’  i’h I *is g e n e r a l

anal)’  sis . However , t w o  somewhat  I lIn t (i ’d I W i ’ i i  cal  .1I~~iLi m i t t  l os  cu r r e n t l y

e x i st .  l’he f i r s t  . I I % . I I y  .‘cs t h e  u n s t ead y  l e ’a *l ln g in duced  by sai ia i  1 ampi  it  t ide

t ’St’ ill  ~st ions  us ing  .i i’e 1 .i 5.111 CIII sol sit  ion *‘t t he ’ liii sod ( p e  1 Inc Eon ri ci’

t i ’ansfor med  di st urb an c i ’  e’qu .I t I on wl i i  e’h i’i ’s t i I  t s I i’om 1 I i e ’ a  r I , ’ . t ion abou t  a

p rest ’ r t bcct s (5’ asty non I tnt’ a v nit’ .sn I. I ow ’aa’ai aypi I es 1 o mot I ois s of a r 3a i t  r a

f re qu e n c y  2 ] . l’he acce ’uc i , st’lIii ’w i i a t  mor e ’ i~e’nt ’t ~ ll  , i n te g r a t e s  t he’ gove ’i’n i n g

sm.i 11 cii st sit’b~ nce’ e q u a t i o n  In  I m it’ u s ing  an o f t ’ i c i  ou t  a l to  m i  I i n g — d i  t’ et’t I Oil —
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fast usc ill.tl ion s and gust-like ruspui~ses impossible. The co n f i den ce  we

a t t a c h  to low-frequency result s , not to mention the exact consequen ces of

small disturbance theory without restrictions to the deg ree of u n s t ea d i n e s s ,

are of obvious engineering interest.

In this paper two numerical methods are devised , the first exten ding

the work of [2 ’l to account for the “back -interaction ” of the primary i l a mn o l lic s

on the nonhannonic mean flow, and the second extending the ADI method of [
~1

to handle general unsteady motion s . These algorithm s, used here to resolve

the issues former ly  ci t ed , e. g . ,  the l i n e a r i t y  of the  uns teady  l oad response

to changes in su r face  d e f l e c t i o n, the i n f l u e n c e  of f requency on shock

excurs ion and mean shock locat ion , e t c . ,  a im at i nc reas ing  our presellt

u n d e r s t a n d i n g  of unsteady n o n l i n e a r  i nt e r a c t i o n s .  Apar t  f rom t h e i r

f u n d a m e n t a l  in te res t , these problems are impor t an t  in engineer ing.

However we deal only w i t h  o s c il l a t i n g  trailing edge t’l aps its

opposed to pitching motions of rigid airfoils , We stress that these examples

are physically d i s t i n c t  and qua li tativel y di ft ’erent. In the former case the

mean f low is roug hly fi xed t hroughout the u n s t e a d y  mot ion  in the sense t h a t

supersonic zones te ’rmillated by shock waves appear on both  upper and lowe r

su r f aces .  In cont ras t , for p i t ch ing  osc i l l a t ions at moderate angles , each

ohordwise .sur fa t ’e  a l t e r n a t e s  between shockfree s u b c r i t i c a l  and supe ’rcr i t  ical

• shocked f low s tat e s .  Thus , to a c er t a i n  degree , f l a p  induced e f fe c t s  are

hig her—orde r .  ~~ia l it a t i ve  resul ts  and t rends obtained here fo r  f l a p p i n g

osc i l l a t i ons  gen e r a l l y  do no t  apply  to p i t c h i n g  mot ions , but  t hey may be’

t yp i ca l  of f lap p i n g  11101 ions  in genera l  and t h e r e for e  of u s e f u l  des ign  in t e re s t

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ‘~~~~~~- 
.
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III ANALY SIS
Time-Ma rc h in4 AD! Me t hod

Accurate solutions for instlwtaneous shock strength and position are

needed to calculate net forces and moments, since t he departure of the shock

from its mean position produces an additional local lift contribution

proportional to the strength of the steady shockwave and the differential

upper and lower surface shock motion . Those are also essential to the

a nal y s i s  of unsteady viscid-inviscid interactions and transonic aileron buzz .

We therefore  f o r m u l a t e  the numer ica l  problem fo r  general  unsteady motions ,

however , within the framework of t r anson i c  s m a l l - d i s t u r b a n c e  theory . Consider

the nondimensional  equat ion  Aa Øt~ 
+ 2B~~~ C + where i s

the disturbance velocity potential normalized by U~~ c 
~~2j ’3 

, c is the

chord , U~~ is the f r e e s t r e a m  speed at i n f in i t y  and is the maximum

thickness  to  chord r a t i o,  Let U) be the  o s c i l l a t i o n  frequency and d e f i n e  a

reduced f requency by k W c/U~~~. I f  M~~ is the f i’eestream Mach number ,

the required coefficients are A = k2M~~ / ~~~~~ , B = kM~~ 
~~~~~~~ and

C = (l-M ~~ )/~~~
”3 

- (~~
‘+l)M~~~~ , where ~ = 1 .4  is the ratio of specific

heats, nondimensional variables having been assumed in the form r = U~~ kt/ c,
1/3

= x/c and 17 
~~ 

y/ c , x , y and t being s treamwise , t ransverse and

time coordinates. Consistent boundary conditions are the specification

of ( ~ ,Ot, ~~) = f~ +akf~ on the chord 0 ~ ~ 1, where f is the

ins tantaneous ai r fo i l  d ispl acement normal ized by , pr essure cont inu ity

across the trailing edge wake (the pressure coefficient is evaluated from

2/3
C = —2 $~ 

(~~ + ak4~~ ) )  and v a n is hi n g  di s turb ance  velocities at infinity .

Note that  a = 0 in the low-frequency approximation and a = 1 In the general

case .

_ _  

_ _ _  
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Solutions to the governing equation are obtained by an alternating-

direction-implicit scheme which advances the solution for at each

meshpoint from time level V to 
~~n+l 

through the sequential procedure

• - sweep: ~~ ;(~~_~ $) +

- sweep :

2 n 2/3
where g = ~(C 

~~ 
+ (l—M~~) / 

~ 
). In the low-frequency limit our

decomposition , dubbed GTRAN2, reduces to the LTH AN 2 method of [3 3 . This

2
lat ter method is O( j’

~ 
) accurate and unconditionally stable on a

von Neumann basis. For general unsteady motions the present scheme

consistently approximates the given equation with O(gt) accuracy ; while

not uncondit ionally stable, it appeal’s to be reliable and instabilities

have not been observed. Here S,,,, , and U
1 

are t he central , backward

and mixed difference operators defined in [3) ; for brevity details related

to tangency , wake, shock and farfield conditions, being straightforward

modi fications to LTRAN2, will not be discussed .

Nonl inear Harmonic Method

For small amplitude osc illatory airfoil motions the harmonic method

of [23 is adequate. However, for larger surface deflections, Ilonhitlear

frequency expansions must be used to account for the back-interaction of the

primary harmonica on the mean flow . ‘
~~i physical grounds the “mean” or, more

precisely, the nonharmonic part of the total disturbance flow “freezes” for

sufficiently fast oscillations [lJ . Thus the dominant effects of nonlinear

feedback are felt only for low-frequency motions, where large shock

excursions are also anticipated , and we consistently set a=O. For unsteady
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tr,insonic flows t h e  bas i c  approach to  mode l ing  t h i s  b a c k- in t e r a c t i o n  was

first described by the present author in [4 1. Essentially the disturbance

potential (and likewise , the uns teady airfoil displacement) is expanded in

the f orm ~ 
(~ ,)

~ ,t )  = ~~~ 1 I ~~~ 
) +~~~~(~~~1

e~~ + ~~1
e

•’
~~~ ) + ... where

higher harmonic terms arc not shown, is the complex conjugate of Ø
~

( 
~ 
, ~

and ~ is proportional to the oscillation amplitude , and substituted into the

governing equations. For small amplitude motions a sequence of problems can

be obtained by equating coefficients of like powers of E ; this results in the

usual steady nonlinear formulation for and a linearized problem for

(e.g., see [2] ). As previously discussed this expansion is not uniformly

valid in time : the mean flow is artificiall y frozen because does not
‘0

depend on k or E . For s l i g h t l y  larger ~ t h i s  usage degenerates even more

and f a l la c i o u s  r e s u l t s  arc possible. This defect is remedied by equating,

ins tead , c oe f f i c i e n t s  of l i ke  harmonics , in which case an i n f i n i t e  system of

nonl inear ly coupled e q u a t i o n s  for the is obtained. To leading order

the effects of secondary and  t e r t i a r y  harmonics  can be neglected . Thus the

resulting equation for is formally identical with the equation obtained

by straightforward lineariiation ; however , the coefficients are formally

unknown because the e q u a t i o n  f or the “ mean f low ” now contains an
0

2.
a d d i t i o n a l  t e rm of the form aI~1I / a I  which  f u r n i s h e s  the required non l inea r

coupling . Althoug h thi s t erm is formal ly  O( £

2
) it  may exert a cumula t ive

O( E ) in f luence , espec ial ly  nea r  shockwaves. The result ing equa ti ons for

and are solved i t e r .it i v e l y,  in each case using the m i x e d- d i f f e r e n c i n g

column r e l a x a t i o n  described in [2 ]  . A t r i v i a l  s o l u t i o n  f i r s t i n i t i a l i z e s

the  ca lcu la t ions .  One co m p u t a t i o n a l  “ sweep” of the f l ow f i el d  solves the

• equation subject to mean boundary condit ions and an assumed zero 
~~~~~~~~ 

Next

a
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~~l 

equation is solved wi th  unsteady boundary condit ions and la tes t

p available values , followed by a solution of using latest

values, and so on. Apart from the noted change to the equation, details

related to body and wake conditions, shock capture and farfield updates

follow [2] and will not be rediscussed here. We indicate the slow convergence

of the method, however.

j~J RESULTS
p

Time-marching solutions for an unpitched symmetric NACA 64A010 airfoil

section at Mach 0.82 were made for an aft quarter-chord flap with the

angular deflection history o((C) = l°sin t at reduced frequencies k = 0.05,

0.5 and 5.0, All time integrations were initialized with a steady flow and

marched over four periods to rid solutions of undesired initial transients.

GTRAN 2 and LTRAN2 results  were obtained using identical fine spatial meshes, and

time steps were chosen in each case such that truncation terms were formally

of the same order. Computed unsteady shockwave positions appear in Figure 1.

The shock excursions obtained in both GRTAN 2 and LTRAN 2 modes

for  the lower surface are similarly ~inusoidal (second harmonic e f fec t s  are

not visually perceptible). Both suggest a mean shock location at 56% chord

independent of frequency and recover , in agreement with Landahi [1] , the

shock motion freeze that obtains in the l imit  of large reduced frequency .

Moreover GTRAN 2 and LTRM2 results are not s ign i f icant ly  d i f f e r en t, al though

the la t ter  overpredicts the peak excursion amplitudes somewhat. In the

• k = 0.05 case the unsteady shock traverses a net distance of 18% chord, a

situation that may be critical to acceptable boundary layer behaviour. The

corresponding net l i f t  and moment coeff icients, shown in Figure 2, of course ,

are similarly large in comparison to the k = 0.5 and 5.0 results. Figure 2

*

-~

-~~ —&
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also compares exact small disturbance results (GTRAN2) wi th  those obtained

in the low-frequency approximation ; for sufficiently large reduced frequencies

the latter yield inaccurate amplitudes as well as phase information.

The chordwise dependence of unsteady loading on flap deflection is best

represented using nonlinear harmonic expansions. Calculations for the

NACA 64A006 airfoil with an aft-mounted quarter chord flap were carried out

for  M~~= 0.85 and k5~ 
= 0.24 and M0 = 0.80 and k5~ 

= 0.064 assuming maximum

deflection angles of 10, 2
0 

and 3
0 

in each case (k
~~ 

is the reduced

f re quency based on semichord). We stress that deflections greater than 1~~,

approximately, are on the order of the thickness ratio 6~, thus falling
outside the range where Ehiers ’ straightforward linearization [2] holds.

While our neg lect of higher harmonics also implicitly assumes “small” ampl itudes,

the account of mean flow distortion extends somewhat the applicability of the p
harmonic method to larger unsteady perturbations. For convenience introduce

r r I
the functions C~ , C~ and C~,1 

through C~ = C~ + € (C~1
cost -C1,1

sin t ) and

r,i £ r,i
define = -ç C~ . Figure 3 compares results of M,,,= 0.85 and k5~ 

= 0.24

cal cul at ions wit h experiment 1~J 
and with linear theory for a flap deflection

of 5 = 1
0
. The qualitative agreement obtained for this supercritical flow is

good but precise results are difficult owing to wind tunnel wall interference

and unsteady viscous interactions. Results of S = 20 and 30 appear in

Figure 4. The unsteady loading is seen to vary linearly with changes in

defl ection angle, an observat ion not ini t ia l ly  ant icipated because, as previously

indicated, $ > Se, . This linearity also follows as a consequence of the

extremely weak dependence of ~
r,l. on E. Similar calculations and results forp1

the M ,,,= 0.80 and k5~ 
0.064 case are shown in Figure 5. 

—-•—•-— .~~~~~ • • -~_ -~~~~~
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~ UI8CUSSI~~ AND CLOSING RKMA R KS

This paper extends the scope of an ava i lab le  t ime-marching ADI me t hod L~3
to handle general unsteady motions and also general izes  an exis t ing harmonic

• analysi , tool [2] to handle larg e amplitude oscillations. Immediat e applicati ons

using the forme r method include the modeling of sudden gust l oading s, (or

e x ample , while the latter scheme , for  instance , all ows us to define flutter

boundaries using both  f re quency and amplitude parameters. Here the new

comput a tional al gorithms are used to study the f low induced by the tr a n sonic

osc i l l a t ing  f lap systematically . The generali zed *1)1 method reproduces the

shock motion freeze in the l i m i t  of large r educed frequency , as an t ic ipa ted  by

Landahl [i] , and also i l lustrates  the sizable net l i f t s  and moments t hat

characterize I%I ’ r odyna mica l ly undesirable low—frequency osc i l l a t ions .  Moreover

th u results of the time—marching algorithm developed he re i l l u s t r a t e  va ri ous

inaccuracies associated with low-frequency models and suggest tha t  t hei r  use

be l i m i te d  to reduced frequencies (based on chord ) of less t han 0 . 2 , say .

Calculated result s for the S — 1
0 ease (e.g., see Figure 1) indica te  that

the mean f low doe s not change with fre quen cy .

The nonlinear ha rmonic method was used to study the e f f ec t  of f l ap

deflection on unsteady ehurdwi se l oading for several low reduced frequencies.

The inviscid r esu l t s, unhampered by the e f f ec t s  of wind tunnel wal l

interfc i.encu and unsteady viscous interact ions , indicate  that the  local

unst eady loading varies l inea r ly  with respect to changes in deflection

angle , even though the do fluet ions ar e not s m a l l .  Thia question was also

~ ar t  in Uy  pur sued by Tij deman [sJ  
. N x p o r lm e n t s  were conduct ed to  i ’st abl  t s h

the range of possible maximum i1ap i le f l u e t i o n  ampl i tudes  over which a linear

rel at ionship existed between and the resulting unsteady loading .

$ 
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10

l i n e a r i t y  ~as est  i~bl I shed but , u n (or t  ~inate1y , l i m i t a t i o n s  in the  leborat  ory

s et — u p  allowed only maximum values of 10 for  eonaidi’rst ion . For such smal l

de fl e ct io n s  the b u f f e r  fu rn i shed  by the boundary layer  reduce s f l ap

e f f e c t i v i t y  and the ex ten t  of ‘~inviac id n on l in e a ri ty ’ could not be t r u l y

assessed. However the resul ts  of the Present computa t ions  support

Tijdemnn ’ a conclusions: the observed linearity is si g n i f i c a n t  and may be ti f

some eonseq~ience in the  eng ineering of a i r c ra f t  controls .  Tijdemas ~ fu r t  her

reports t hat  “ the mean steady pressure distributions correspond reasonably

ael l ~ i th  the  steady pressure d i s t r ibu t ions  obtained on th e

nonosci I i  at 1mg model ” (this observntl on is based on a f l a p  deflection of 1
0

~ i t h  low reduced fr equenc ies  and supercr it i ea l  Mach numbers) . Again our

compu tat i on s  support (h i s  conel usi on (e.g. , see Figures 1, 4 and 5) .

A ddi t  ions) numerical  exper iments , not reported here , i nd i c at e  t h a t  for  m l )  dl)

supererit (cat f l o w s  the back—interaction e f f ~ et is a weak one aini that

t n t e g  ra ted  norma l f~~ •i~ ’s and p i t  eh ing moments i~esp~~~ si nuso ida l  l y

The two numerical ~lgori  t hms presented here fo r  tins t ea~ty t rauson Ic f t  ow

~ i t  Ii shoekaavt ’s provide  use fu l  vehic lea (or unsteady a er o d y n am i c  en leul at  ions

and r equi re  only simple moti I f i  i’ei t ions to existing ~e 11 used computer coitus .

In  t h i s  ipt ’*• t hey a i.e syst ematic ally app) ied to the study of e f f e c t  ~ I

by ch ; ingi~ s in I I ap angle and oscillation frequency in the case of a ~~~ muie i t t ’

un~’ It t hud aIr rot  i . The results ag ru e wi th  s~~~e phy a t cal argumen t s  i’t

1.an itahl {iJ and the experimental work of Tij i luman {sJ but t hey do not b ,’ar

thu l i n t I t ag  r e st  n e t  ion t o  sm a l l  f l a p  i luf  le t  I tons . 
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