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THE TRANSONIC OSCILLATING FLAP

-
by Wilson C. Chin

L
Specialist Engineer, Acrodynamics Research Unit, The Boeing Company, Secattle,

Wash. Correspondence Address: 10017 S, E. 48th Drive, Bellevue, Wash. 98006,
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Numerical experiments for the unsteady transonic flow past a symmetric atrtotl
with an oscillating flap in free air are carried out for a range of
supercritical Mach numbers and reduced frequencies using two newly devised
computational schemes. The inviscid results, unhampered by the complicating
effects of wind tunnel wall interference and shockwave and boundary layer
interaction, cevaluate the extent to which the unsteady loading responds
linecarly to changes in flap deflection and also the dependence of shock excursion
amplitude and net unsteady 1ift and moment coefficients on oscillation
frequency. The main conclusions are discussed in light of recent experimental

findings.
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A characteristic of transonic unsteady flow with shockwaves is the
potentially large phase lag between boundary motion and induced surface pressure.

Moreover, net force coefficients generally exceed those in subsonic and

© TN T,

supersonic speed regimes. These effects tend to increase the likelihood of .
aeroelastic instability, making transonic speeds most critical for aircraft
flutter. Landahl's classic monograph [l] addresses the basic physical and
mathematical issues, cemphasizing tractable linear models.

The inherent nonlinearity of the problem obviously forbids general
analysis. However, two somewhat limited numerical capabilities currently
exist. The first analyzes the unsteady loading induced by small amplitude
oscillations using a relaxation solution of the mixed-type time Fourier
transformed disturbance equation which results from lincarization about a
presceribed steady nonlincar mean {low and applies to motions of arbitrary
frequency [2] . The sccond, somewhat more general, integrates the governing
small disturbance equation in time using an efficient alternating-direction-
implicit factorization, but with a restriction to low-frequency motions LS] °
Shortcomings are present in each of these methods. 1In the first case the
nonharmonic part of the total disturbance flow is artificially fixed and taken
as the steady solution that obtains when no forced oscillations are present:
the required nonlinear feedback and energy transfer trom harmonic components
to mean flow, accounted for in direct time integration methods, which depend

on both oscillation frequency and amplitude, are completely neglected. This

linecarization is probably valid for sufficiently high reduced {requencies, of
course, but the extent to which this validity holds for large detlection
amplitudes is not clear. 1In the sccond case the neglect of high-trequency terms, P

while self-consistent for small reduced {requencies, renders the treatment of 1




fast oscillations and gust-like responses impossible. The confidence we
attach to low-frequency results, not to mention the exact consequences of
small disturbance theory without restrictions to the degree of unsteadiness,
are of obvious engineering interest.

In this paper two numerical methods are devised, the first extending
the work of [2] to account for the "back-interaction" of the primary harmonics
on the nonharmonic mean flow, and the second extending the ADI method of [3]
to handle general unsteady motions. These algorithms, used here to resolve
the issues formerly cited, e.g., the linearity of the unsteady load response
to changes in surface deflection, the influence of frequency on shock
excursion and mean shock location, etc., aim at increasing our present
understanding of unsteady nonlinear interactions. Apart from their

fundamental interest, these problems are important in engineering.

However we deal only with oscillating trailing edge flaps as
opposed to pitching motions of rigid airfoils. We stress that these examples
are physically distinct and qualitatively different. In the former case the
mean flow is roughly fixed throughout the unsteady motion in the sense that
supersonic zones terminated by shock waves appear on both upper and lower
surfaces. In contrast, for pitching oscillations at moderate angles, ecach
chordwise surface alternates between shockfree subcritical and supercritical
shocked flow states. Thus, to a certain degree, flap induced effects are
higher-order. Qualitative results and trends obtained here for flapping
oscillations generally do not apply to pitching motions, but they may be

typical of flapping motions in general and therefore of useful design interest.




AR A

111

ANALYSIS

Time-Marching ADI Method

Accurate solutions for instantaneous shock strength and position are
needed to calculate net forces and moments, since the departure of the shock
from its mean position produces an additional local 1ift contribution
proportional to the strength of the steady shockwave and the differential
upper and lower surface shock motion. These are also essential to the
analysis of unsteady viscid-inviscid interactions and transonic aileron buzz.
We therefore formulate the numerical problem for general unsteady motions,

however, within the framework of transonic small-disturbance theory. Consider

the nondimensional equation Aa + 2B = C + where is
C © it q ¢'C'C 4 u 2/37)7] ¢
the disturbance velocity potential normalized by U, ¢ 80 , ¢ is the

chord, U is the frecestream speed at infinity and Jo is the maximum
thickness to chord ratio. Let (W be the oscillation frequency and define a
reduced frequency by k = Wc/U,. If Mgy is the freestream Mach number,

2 ¢ 2/3 2 2/3
the required coefficients are A = k Mzo, F 3 Jc g Ba BN _ /é; and

i

2/3 2
C = (1-ui)/&/ - (X+1)M~¢l , where J 1.4 is the ratio of specific

heats, nondimensional variables having been assumed in the form T = U kt/c,
1/3
z = x/c and 7] = So y/c, X, y and t being streamwise, transverse and
time coordinates. Consistent boundary conditions are the specification
+ t 4
of ¢” (2,0’-,[) = f§ +akft on the chord 0 £ { £ 1, where f 1is the
instantaneous airfoil displacement normalized by 80 , bressure continuity
across the trailing edge wake (the pressure coefficient is evaluated from
2/3
Cp a <3 8° (¢; +uk¢t )) and vanishing disturbance velocities at infinity.

Note that a = 0 in the low-frequency approximation and a = 1 in the general

case.




Solutions to the governing equation are obtained by an alternating-
direction-implicit scheme which advances the solution for 47 at each

meshpoint from time level ‘Cn to T through the sequential procedure

n+1l

2 - sweep: %.% 5‘(6’¢”) ” lg * 8,”¢'

n - sweep: 0:;;l{qyﬂtz¢r+¢ri}{'%%ﬁ%(¢;f:$) :iéS5”(¢" ‘4’n)

h P, sa+4%) % 5%, 1 the tow-t limit our

'] - = - ~ "— r! ul ™' L&

where g ¢{ + " X so n the lo equency

decomposition, dubbed GTRAN2, reduces to the LTRAN2 method of [3.]. This
2

latter method is O( AT ) accurate and unconditionally stable on a

von Neumann basis. For general unsteady motions the present scheme

consistently approximates the given equation with O(AT ) accuracy; while

not unconditionally stable, it appears to be reliable and instabilities

have not been observed. Here S,’ s Ji and D are the central, backward

"
and mixed difference operators defined in [3] ; for brevity details related
to tangency, wake, shock and farfield conditions, being straightforward

modifications to LTRAN2, will not be discussed.

Nonlinear Harmonic Method

For small amplitude oscillatory airfoil motions the harmonic method
of [2] is adequate. However, for larger surface deflections, nonlinear
frequency expansions must be used to account for the back-interaction of the
primary harmonics on the mean flow. “n physical grounds the "mean" or, more
precisely, the nonharmonic part of the total disturbance flow "freezes" for
sufficiently fast oscillations [l] . Thus the dominant effects of nonlinear
feedback are felt only for low-frequency motions, where large shock

excursions are also anticipated, and we consistently set a=0. For unsteady
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transonic flows the basic approach to modeling this back-interaction was
first described by the present author in [4] Essentially the disturbance

potential (and likewise, the unsteady airfoil displacement) is expanded in

the form ¢({," ,C) = ¢0({,n) +]2(¢leit+ale—it ) + ... where

—

higher harmonic terms are not shown, ¢1 is the complex conjugate of ¢l(§ N,
and & is proportional to the oscillation amplitude, and substituted into the
governing equations. For small amplitude motions a sequence of problems can
be obtained by equating coefficients of like powers of € ; this results in the
usual steady nonlinear formulation for ¢0 and a linearized problem for ¢1
| (e.g., see [2] ). As previously discussed this expansion is not uniformly
valid in time: the mean flow is artificially frozen because ¢0 does not
depend on k or €. For slightly larger &€ this usage degenerates even more

and fallacious results are possible. This defect is remedied by equating,

instead, coefficients of like harmonics, in which case an infinite system of
nonlinearly coupled equations for the ¢J is obtained. To leading order
the effects of secondary and tertiary harmonics can be neglected. Thus the

resulting equation for ¢1 is formally identical with the ¢l equation obtained

by straightforward linearization; however, the ¢0 coefficients are formally

unknown because the equation for the "mean flow" ¢0 now contains an

2
additional term of the form 8/%/ /3% which furnishes the required nonlinear
coupling. Although this term is formally O( f,z) it may exert a cumulative
O( € ) influence, especially near shockwaves. The resulting equations for
¢0 and ¢l are solved iteratively, in each case using the mixed-differencing

column relaxation described in [2] . A trivial solution first initializes

!
i
|
f
|
|

the calculations. One computational "sweep" of the flowfield solves the ¢0

equation subject to mean boundary conditions and an assumed zero ¢l' Next
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RESULTS

the ¢ equation is solved with unsteady boundary conditions and latest

1
available ¢O values, followed by a solution of po using latest ¢1
values, and so on. Apart from the noted change to the ¢0 equation, details

related to body and wake conditions, shock capture and farfield updates

follow [2] and will not be rediscussed here. We indicate the slow convergence

of the method, however.

Time-marching solutions for an unpitched symmetric NACA 64A010 airfoil

section at Mach 0.82 were made for an aft quarter-chord flap with the

e R TR I § TR sgar (1 Aoy

angular deflection history X (T) = 1°sin T at reduced frequencies k = 0.05,
0.5 and 5.0. All time integrations were initialized with a steady flow and
marched over four periods to rid solutions of undesired initial transients.
GTRANZ and LTRAN2 results were obtained using identical fine spatial meshes, and
time steps were chosen in each case such that truncation terms were formally

of the same order. Computed unsteady shockwave positions appear in Figure 1.
The shock excursions obtained in both GRTAN2 and LTRAN2 modes

for the lower surface are similarly sinusoidal (second harmonic effects are

not visually perceptible). Both suggest a mean shock location at 56% chord
independent of frequency and recover, in agreement with Landahl [1] , the

shock motion freeze.that obtains in the 1limit of large reduced frequency.
Moreover GTRAN2 ard LTRAN2 results are not significantly different, although

the latter overpredicts the peak excursion amplitudes somewhat. In the &

}
k = 0.05 case the unsteady shock traverses a net distance of 18% chord, a y
|
situation that may be critical to acceptable boundary layer behaviour. The E

corresponding net 1ift and moment coefficients, shown in Figure 2, of course, }

are similarly large in comparison to the k = 0.5 and 5.0 results. Figure 2




also compares exact small disturbance results (GTRAN2) with those obtained ]
in the low-frequency approximation; for sufficiently large reduced frequencies

h the latter yield inaccurate amplitudes as well as phase information.

The chordwise dependence of unsteady loading on flap deflection is best

represented using nonlinear harmonic expansions. Calculations for the

NACA 64A006 airfoil with an aft-mounted quarter chord flap were carried out

for M,,= 0.85 and k. = 0.24 and Mg, = 0.80 and k_ = 0.064 assuming maximum
deflection angles 5 of 1°, 2o and 3o in each case (ksc is the reduced
frequency based on semichord). We stress that deflections greater than 10,
approximately, are on the order of the thickness ratio 5; , thus falling

outside the range where Ehlers' straightforward linearization {2] holds.

While our neglect of higher harmonics also implicitly assumes "small" amplitudes,
the account of mean flow distortion extends somewhat the applicability of the

harmonic method to larger unsteady perturbations. For convenience introduce

T i r i
the functions C C and C thr hCc =2C C os -C__si nd
o’ P1 By FEOEEEL Sty ¢ B, S0 TGy mant ) a
r,i £ r,i
define ﬂp = §C91 - Figure 3 compares results of M_= 0.85 and k_ = 0.24

calculations with experiment [5] and with linear theory for a flap deflection

o
of S = 1 . The qualitative agreement obtained for this supercritical flow is

good but precise results are difficult owing to wind tunnel wall interference

o

o
and unsteady viscous interactions. Results of 5 = 2 and 3 appear in

Figure 4. The unsteady loading is seen to vary linearly with changes in 3
deflection angle, an observation not initially anticipated because, as previously H
indicated, s > So. This linearity also follows as a consequence of the |
extremely weak dependence of C;'i on €. Similar calculations and results for ) 8

the M__= 0.80 and ksc = 0.064 case are shown in Figure 5. rl
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DISCUSSION AND CLOSING REMARKS

This paper extends the scope of an available time-marching ADI method [3]
to handle general unsteady motions and also generalizes an existing harmonic
analysis tool [2] to handle large amplitude oscillations. Immediate applications
using the former method include the modeling of sudden gust loadings, for
example, while the latter scheme, for instance, allows us to define flutter
boundaries using both frequency and amplitude parameters. Here the new
computational algorithms are used to study the flow induced by the transonic
oscillating flap systematically. The generalized ADI method reproduces the
shock motion freeze in the limit of large reduced freqQuency, as anticipated by
Landahl [1] » and also illustrates the sizable net lifts and moments that
characterize aerodynamically undesirable low-frequency oscillations. Moreover
the results of the time-marching algorithm developed here illustrate various
inaccuracies associated with low-{requency models and suggest that their use
be limited to reduced frequencies (based on chord) of less than 0.2, say.
Calculated results for the 8 = 1Y case (e.g., see Figure 1) indicate that
the mean flow does not change with frequency.

The nonlinear harmonic method was used to study the effect of flap
deflection on unsteady chordwise loading for several low reduced frequencies.
The inviscid results, unhampered by the effects of wind tunnel wall
interference and unsteady viscous interactions, indicate that the local
unsteady loading varies linearly with respect to changes in deflection
angle, cven though the deflections are not small. This Question was also
partially pursued by Tijdeman [5] . Experiments were conducted to establish
the range of possible maximum flap deflection amplitudes over which a linecar

relationship existed between 8 and the resulting unsteady loading.
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Linearity was established but, unfortunately, limitations in the laboratory
set-up allowed only maximum values of 1° for consideration. For such small
deflections the buffer furnished by the boundary layer reduces {lap
effectivity and the extent of "inviscid nonlinearity” could not be truly
assessed. However the results of the present computations support
Tijdeman's conclusions: the observed linearity is significant and may be of
some consequence in the engineering of aircraft controls. Tijdeman further
reports that "the mean steady pressure distributions correspond reasonably
well with the steady pressure distributions ..... obtained on the
nonoscillating model” (this observation is based on a flap deflection of (i
with low reduced frequencies and supercritical Mach numbers). Again our
computations support this conclusion (e.g., sce Figures 1, 4 and 5H).
Additional numerical experiments, not reported here, indicate that for mildly
supercritical flows the back-interaction effect {8 a weak one and that
integrated normal forces and pitching moments respond sinusoidally.

The two numerical algorithms presented here for unsteady transonic flow
with shockwaves provide useful vehicles for unsteady aevodynamic calculations
and require only simple modifications to existing well used computer codes.
In this paper they are systematically applied to the study of effects induced
by changes in flap angle and nsctllntiZn frequency in the case of a symmetrvic
unpitched aivfoil. The results agree with some physical arguments of
Landahl [l] and the experimental work of Tijdeman [5} but they do not bear

the lmiting restriction to small flap deflections.
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