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ABSTRACT

We consider the prob lem of interpolating a surface given its v~ ues at a finite number of
points. We place a special emphasis on the question of choosing the location of the points
where the function wifl be sampled.

Using minimal norm interpolation in reproducing kernel filbert spaces, equivalently
Bayesian interpolation, and N-widths, we provide lower hounds for interpolation error relative
to certain error criteria. These lower bounds can be used when evaluating an existing design.
or when attempting to obtain a good design by iterative procedures to decide whether further
minirni~ation is worthwhile. The hounds are given in terms of the cigenvalucs of a relevant
reproducing kernel and the asymptotic behavior of these cigenvalucs for certain tensor product
spaces in the unit d-dimensional cube is obtained.

We demonstrate that for H~1), the d-dimensional tensor product of Sobolcv spaces
U~
l,l~

)
(0.l I and Pug, the minimal norm interpolant to g at N given data points, the uniform

convergence ~~ $~I 
g —

~~ 
P NS I H over g in the unit ball in H2,,, cannot proceed at a rate faster

than (( tog N) — IN) m Certaifl conjectures concerning designs converging at this rate are
made.

*The research of this author was supRorted by the Office of Naval
Research under Grant No. N00014-77-i.-0675.



I. Introduction.

We are interested in the problem of recovering a surface g (s) ,1c T. from observations of g

at a discrete set TN lI1J~_ 1Of points in I (called the “design”). In particular, we are

interested in choosing TN so that an estimate, say, ~~ of g from the data tg(t~) ~ 
closest to

g in some appropriate sense among all designs TN.

This problem arises in numerous applications. To cite one group of examples, T may be a

sphere (the surface of the earth) or a rectangle and g(t) the 500 millibar height or the

temperature, or the concentration of some air pollutant at position t . The interpolation

problem requires an estimate of g over the entire surface given its values on TN while the

design problem concerns optimal or nearly optimal choices of TN.

In this introduction we shall briefly survey several different ways of viewing the interpota-

lion problem i.e. reconstructing the function from its sample values, and then follow this

discussion with a description of some known results for the design problem in one dimension.

In this discussion of interpolation we will distinguish between the Bayesian approach and

the function-analytic or deterministic approach. We further distinguish the problem of

estimating g(t), for all t T from estimating g(t) at a single point in T as well as introduce the

possibility that our observations are distorted with errors. However, this latter feature is nut

primary for our objectives here.
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The Bayesian approach is as follows: We suppose g(t), t c T, is a Gaussian stochastic

process, or “random field” with zero mean and given strictly positive definite (prior) covari-

ance K(s.t) — Eg(s)g(t), s.t I. Given the data g(11),....g(1 ) the Bayesian estimator for g(t)

Is

— Efg(r) lS(
~l)’•~

t( N~
i

(s(i i )

— (K,1(i) 

~g(1~
)

where K,(:) — K (:1.:) and KN is the NxN matrix with I. jth entry K (t ,,11) , and thus
N

nun E(g(i)—~~a1g(t,))
a

—

The functional analytic approach is closely related to the Bayesian approach . Instead of

assuming that g is a stochastic process, suppose g is a fixed element of ~~~ the reproducing

kernel filbert space with space reproducing kernel K.

Then g~ may be shown to be the minimal norm intcrpolant to g on TN in H
~
, the Hu bert

space with reproducing kernel K. Observing that <g.K,>~ g(t,) where <‘,>~~~ 
is the inner

product in H~ ii can be verified that if 
~Nt is the minimal norm interpolator of g on TN Ic.

I IP~,gI ‘ A~ 
— mm I IhI I~

, (1NR)(
~,~

then PNS is the orthogonal projection of g onto span IK,,1 .,1 and that 
~ NS — RN, see

Kimeldurl and Wahba (6). In particular.

(I I) inn E(g(t)— ~~ 4~g(Ij ))
2 

— mjn I I K,— a1K,I I ~j Est
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Minimal norm interpolation also has the striking properly that it furnishes the best

estimator for g(t), g £ HK among all estimators (lir.ear or nonlinear in S~’l~’•’•’ 0N)) which

uses the information R(’I)’~
,Z(

~N) with <S R>j~� I, that is,

mm max If ( s) —A  (1(t1 ) /(‘N)
~ 
I

where A is any map from (J(
~i ) ’•~ J ( ’N ) )  into the real line is achieved for -

A
~S(’i )‘ “t(’N)) — SN• This property and various extensions and related matters in other

normed spaces is described in CA. Micchelli and T. .1. kivlin (131.

In each instance above the data is viewed is known exactly. Frequently in applications 4
only “noisy” data is available and this leads to the problem of data smoothing. We briefly

discuss this problem in Section 5.

As a criteria for choosing ~ ‘N we minimize

(1.2) E _f ~
(g (I) _ g N (f ) ) 2d:: — J(TN)

where the expectation is taken with respect to the prior covariance K(s.O. It is not hard to

show that

(1.3) J — J(T,,,,) — 
f IK ( s ,1)_ (K ,,(s) K, (:)) K ~~(K , ,(,),...K ,~(i)) ’lth. 

-

In practice K may have to be estimated by use of a fine, trial grid of points than will

ultimately be used, or from physical principles governing 11w phenomena under study . The

covariance of air pollution measurements for example surely depends on the local geography.

If K is known, then, frequently the minimization of J will have to be carried out numerically.

In this paper we will provide a lower bound for J in terms of the cigenvalues associated with

the integral operator induced by K. Thus, trial solutions for the design TN minimizing .1 may

-_

_ _
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be compared against the lower bound to decide whether the further minimization is worth

while.

Theorem 1. Let the operator K defined by (Kf)(t) — fT K(14f (s) ds be a symmetric compact

operator of L2( 1’) into itself and have eigen values A 1 ~~ A2 a.... Then

jul J(TN)� A,~ — f K(t,t)dt— A1,T i—Nil T i—I

It is not known whether or not his lower bound can be achieved.

A fair amount is known about optimum designs for Tu. 10.11. sec Sachs and Ylvisaker

(IS), Wahba (19J, Hajck and Kimeldorf (3). A sequential procedure for choosing an optimum

design for Ti. 10.11 is given in Athavale and Wahba El i . The sequential procedure depends

heavily on properties of optimal designs known from the earlier papers and does not at present

generalize to Ti. (0.1) x 10,1] or the sphere. In fact it appears that nothing is known about

best possible convergence rates in several dimensions for I I .~ — 
~NR I I ~ see Ylvisaker (21).

Sachs and Ylvisaker 1161 have shown that I Ig—PNRI I;
2 is the variance of the

Gauss-Markov estimate of P in the model

Y(t) — Og(:) + X(:). Ic T. EX(s)X(t) — K(sj)

giscn )( e’)j e T~

If it is known that g is in some class C then it might be desirable to choose TN to

minimiic sup i Ig — P ~g I  I~ . Through the nolion of N-widths, introduced by Kolmogorov Ill.

anti asymptotic estimates of the eigcnvahses of certain integral operators we will provide lower

bounds for the suprcmium of the design error for g in a certain class C. The class we will

consider here is the natural generalization of the function class for which optimal one dimen-

sional designs were obtained in (3. IS, 191. Before stating this result we review briefly some

results for optimal experimental design from (191 for T — 10,1 ~.
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The basic assumption made in (19) about K is that it has the characteristic discontinuity

of a Green’s function for a 2m th order self-adjoint differential operator,

52m— l
(1.3), a(s) — urn X(s.t)— u rn K(sj).

z+t as2m _ l 
~~ 852m—I

Suppose that g has a representation

g(t) — f ’K(s ,s)p (s) di. pc L2(O, I) .

N
for some p c L210, I] and let TN — t

~,N1 ~i. I be determined by a strictly positive density 1,

f”~’f (s)ds — i/(N + I,) I — I,2,...,N; N — 1,2 

Under various regularity conditions including a,p>O
2

I It ..... ‘TNt I 1K

— 
(
~m~~ fIP2(5)a(S)

d5~~(1 + o(I)) 

. 

S

N2
~’ ( o /2m)(S) )

where C_ is a constant depending on m. The density I is chosen to minimize the quantity in

brackets, see (191. Thus the rate of decay of I Ig—P
~~gI I~~is asymptotically the same as the

decay of the eigcnvalues of K (see Naimark (14)).

We return now to a general set T and reproducing kernel K.

Theorem 2. Let K be a symmetric compact operator from L2( T) into itself with eige,t values

A 1�A 2 �.... Let. C — Ig:g(g) — Jr K(1,5)p (5) nus,Jr p2 (s)ds~ I~.

Then

supl Ig—P,4I I~~�A~~,
gCC

Next, (Section 3) we investigate the eigensequcnccs for certain useful reproducing kernels

o 1 — •‘(o,1), the tensor product of (0,11 d times. We will prove



1

Theorem 3. Let 11K — ~~
dHQ where HQ is an r.k.h.s. on (0,1) with Q satisfying (1.3) . Then

(1.3) AN — 0(( log N)
d_ h

/ N )2m.

Based on this result, we make some conjectures (Section 4) concerning good designs in

HK using results from the multi-dimensional quadrature literature. In particular, we conjecture

(1.3) is the optimal rate, which has only been proved for di.I, as explained above. Finally in

section 5 we make some observations concerning noisy data.

2. Lower bounds for optimal designs.

We begin with the proof of

Theorem I. Let she (symmetric) operator K defined by ( ICf) (t)  — IT K(t ,s)f (s)ds be compact with

elgenvalues A 1 ~~ 
A 2 a.... Then -

inf J(TN) — inff I I K,—PNK, I I ~dI ~ ~~ A,.T, T

Proof: The equality is immediate from (12). Since

I I K ,—P NKII I I ~dt

— 
~~

A ,_f
~ 

$ IPNK,I $~ dt,

2 N
ii sufficcs to show that jr I I ‘SN”, I I xdt�Z A ,.

p.’

Let •I• ’ ’ N  be any N orthonormal functions in H~. Then the projection of K, onto span

l~ j Ij~..$ ~S
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PNK,i.
I. I

and

f ~. I I P NK,I I~ — I I,,I I~~.

Let K ”2 be the symmetric square root of the operator K. Then by the properties of the

reproducing kernel norm,

II + gI I
~.2

i. $$ KIf2,1II~

Now by the extrema l prop erties of the eigenvalues of K.

sup ( IK h/2,II~~/ ( I , I l~~_ A ~,

sup I 1 K ”2
~ I 1 ~/ I I # I ~ — A2,

•EHK

//
where #~ 

Is the maximizing element for the first equality above, etc . Thus,

t $I,,It~2~ tA ,.I_ I v— I

This result is also a consequence of a classical result from the theory of integral equations

(see (IS], l 49 ) .

Theorem 2. Let HN be any N dimensional subspace in and 
~ N be the orthogonal

pr.ject~ot. onto 
~~ 

Then there exists a function g. j
t(’) — IT Kft,s)p (s)ds, 

.

such that

(2.1) I $ g — P H g I $ ~~�A N+ l f r p 2(s) ds
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Proof: The proof of this theorem also follows directly from the external properties (or the

eigenvalucs of K t12 and has an interpretation in the theory of N-widths. (17]. Specifically we

have

m l  sup l Ig—P ~~g I I~H,, 5CC

— m l  sup I I Kp—P H,,KPI I~H,, lI,ll,~,— I

— m l  sup I (K ”2 p—P H,,K ”2 p I I L2H,, l ’ PII t~~
1

The extremaL properties of emgenvatues and eigenlunctions of symmetric operators imply that

sopl IK h/2p~~PffvKh/Z PI 
~‘-2~Il,l l~~.I

achieves its minimum for HN equal to the span of the first N eigenIunctions of K ”2 and the

value of the minimum is X N+; .

To prove the existence of an optimal design we must find a subspace of the form span

(A,:sc TN t for ~omc design TN which achieves the lower bound in (2.1) which would be

expected to be close to the span of the first n cigenfunctions.

It should not be expected that for an arbitrary covariance kernel K an optimal design

exists for each N. However , for certain classes of kernels existence of optimal designs has

been shown, see Mclkman (10); Mclkman and Micchelli (Ill.

3. Good designs in Tensor Product Spaces

To make use of Theorem 2 we will obtain the a*ymptolic rate of decay of the cigenvahies

of the rh. for “K of the form

- •‘NQ (tensof PIroduct OfdeOPlc$ OI MQ)
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where lI
~ 

is an r.k.h. s of functions on (0,11 with cigenvalucs that decay as a power,

A, — cr 2 (1 + o( 1)),r...o, For instance, if Q behaves as a Green’s function for a 2mth order

linear differential operator this condition is satisfied. As a simple example of this possibility,

ki HQ — tf :ff , . . . J (m_ u al,s. coin. /“1 L2(o,IJf(o) ~~f’(l),r — 0,l...jn — I) with

inner product,

<Is> — (f1f (u) d u) ( f ’g (u)d u) + f ~~
*) (u)g~

”) (u) du.

Then the r. k. Q Is

2.t.(s—t)
Q(s ,t ) — l +  ~~ C 

2a
.*o (2,.)

and the corresponding eigenvalues and eigenfunctions are

— ±1,...), Ic2”; v — 0,±l ,).

-S

Theorem 3. Lee Hx — •
dHQ where ;he elgenvalues IA,) of H~ satisfy A, — .

~~
“( I + o( 1.))

then the eigenvalues IU of H~ satisfy

+o( 1))

Proof. Since K — .~Q, the eigenvalues of K are the tensor product of the cigenvalucs of 0

i.e. if £ 1212?... are the eigenvalucs of K then

lINt — IA,,A,2”A 14: (J, •
~J11) J 1, J~ — 1,2,... I

To estimate the decay of 1N we observe that the number of lattice points (j 1 ,... Jj ) satisfying

f l J 1Sk is k( log h)~ (I +.(l)).
.1

Hence, since A, — .~~~(l + .0)) we have



II

log A )’~~I 
= A 2

~(l + o(l)).

((xJ — greatest integer � x). Choosing k = (N( log N) °’~~ I gives the desired conclusion,

1N — ( ( log N) 
+ o(l)).

It is not known for d> I whether there exists a design for which

I It — PNgI I~~~.const(’ 
10~~1~~~~1 

2n1f 2

However designs with a convergence rate approaching the optimum rate have been given in

Wahba (201 for d—2.

Define

Z’,~ — {-~-:k — I 
‘I’ -

and

1+~Tvt = U  Z~i.~Z~
+I

~
J .

•
~~

In (201 it is shown that TN,  has N — (1 + I),,t+2_,,,’4l distinct points and for

- H Q~~II Q

(3.1) I It — 

~~~~~~~ 
gI I~ �const (~~÷~~)

2 (f p2(u)du)(I + o(1))
,1(l+ l)2m T

‘1+2 ’
<const~

1
~~

2
~ (f p

2(u)du)( l + 0(l))
Ti — i2m

N 1+2’

where g — Kp and o(1)~~0 as n~~=

Choo;ing l — ( log N)’(l + o(1)) for any p. 0 < p < I we have

N — ( 1  + l)nf~ 2(l + o(l))

or log N — p log log N + ( log N)’ log n(l + o(l)). Hence

log n — (I + o(l)) log N—p log log N
( log N) ’
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and n provided 0<p< I (for p— i this conclusion fails). Setting p — 
m into (3.1) gives

m +l

(~+L±!.,,’~n~+n
‘ 1+2 /

I I g —P wg I  i — o( 
( log N) )lni

1+2
N

a convergence rate which approaches the optimum rate of (log N/N) 2’” implied by Theorems

2 and 3.

4. Optimal quadrature - a conjecture

A quadrature formula for fTg( t)d s can be obtained by setting fr (P Ng)( s)dt . t c1g(t 1) . Then

I f r t~~° ’f  r (P Ng) (t)d t I

— I <~,g — P Nt> K I

— <is — P,ep .g—PNg>K I

�Ik—PN’t I I &I I S—PNSII K

� I Iis~
PNisI ‘N I I t t t x

where ~ is the representer of integration in Hx

~I(s) <1,,K,) x —

An optimal quadrature problem may be formulated as: Find 1~ ~•~‘
tN £0 minimize

I I1i P~ 1I IN.

There is a large literature on choosing sequences in the d-dimcnsional unit cube which

makes the error for the special quadrature formula — 
- 
£ g(v1) asymptotically small. This

N t .l

work has focused on finding sequences Tw — 1
~I~~~~N1 for which the discrepancy DN defined

by

— sup IF,~(t)— F (t) I
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is small. Here FN is the cumulative distribution function of the point set and F is the cumula-

tive distribution of the uniform density, see Kuipers and Neiderreiter [8 J, Halton (4 3, Halton

and Zaremba (51. Zaremba [22].

It is known that the Hammersly sequences defined below, have discrepancy

— ( 108 N )( 1 + o( l) )

see Halton (4].

These sequences are defined (in d-dimensions) by

Mwhere the subscripts in the ~‘s are successive primes and if n — ~ n~p’ where M — L log ,nI.
j~~0

*f+ I
then ~~(n) ~~~ nj p 1. 

-

N
Bounds on e~ — I frg (t)dt_ * !,g(t,) I

in terms of the discrepancy appear in the literature, see Kuipers and Neiderreiter (8, p. 137],

Zaremba 1221 and references therein.

In (8J it is shown for certain sequences that N — 0(D ~.~) where g has

Fourrier coefficients c, ,,  satsifying

AlIc .l..,z. ...I_ l, I � 41
(11 ~~1=1

where

— 
(I.~I .~øo

r i _ I
( I r,— 0
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We conjecture that similar results obtain for Hammersicy sequences and that for spaces

H~ satisfying the hypothesis of Theorem 2 the optimal convergence 
rate

l I s — Pp J g I I~~~~
AN+t ( I + o ( I ) )

_ (
(10~ N) )2N(I + o(l))

will hold for TN the Hammersly sequence and g of the form g=K p.

S. Noisy Data

In this section we include some remarks concerning estimation based on inaccurate data.

if instead of observing g(fl,fc TN, we assume that the data is given by

= g(11) + £~, 5e 1e1 —

~hsti she minimum norm estimator

mm E(g (t) — ~~~ a,y~)
2 

— I I K,— a1K, I I + ~2 
~~ a~I_I ‘ 1_ I

leads in the functional-analytical approach to

(3.1) m1~n ,.yax 1 
If( O— ~~ a/ (t ,) ~2 

+ o2±aJ

Recently, this variational problem has been solved by Laurent (91. It has been shown that

the minimum norm estimator is the smoothing “spline” in H~ with parameter i2, thai is. if

SM minimizes

(5.2) mm I I lil t ~~
. + ~—2~~ (f(,~)_ ~(,,))

2)
i_ I

then 
~~~~ 

— 1c 1(i)g( t ,) is the minimum norm estimator for g when we have noisy data.

Note that the smoothing parameter .2 does not depend on the value t c T at which we choose

10 estimate g(1). The following short proof of this result is tnstructive: We wish to determine



mm I I K ,—~~~a~K, l l~ + o~~~ aJ

To this end, we introduce the tensor product space — I(f,a) l f c H~.acR ”) with the

norm

II (g.a)II~~— I I g I I ~x +o 2 Z
N

a~

Then the above problem in H~.RN becomes
N 2

mm I lh— Iah .I I ,

h — (K,0). h~ — (K ,,—e1) (e,) k —

But from the theory for estimating exactly given data, as in (1.1), the minimum a — (aI,...,aN )

may be obtained from the best interj,olant,
2

nun Il(f.a) I I~~—

2 2N 2mm 1JIfI I~ + o~ I ~g(i 1) — f (t,) II . s_ I

in agreement with (5.2).

Ii has not yet been determined if the optimality of smoothing “splines” persists when an

estimator for the full function g(t). t c T when the error criteria (1.2) is used. However, let

us replace (5.1) by

S 

fllfl max I f ( t )—
~~ a1(f (,1) +

t ’~~
l

I_I

that is. we minimize the worst least square error when we know the noise in the data is in the
NS 

regitin y, — f ( s,) + cs 1. I ~~ I. It has been shown that in this setting the smoothing splinc
sal

is also optimal. However, unlike (3.1), the smoothing parameter depends on c as well as I

1. Moreover, this theory holds in great generality, including, in particular, estimating the full

function g(t), I c I (see Melkman and Micchellm (131 for the details). For methods of



lb

choosing the smoothing parameter using a cross-validation procedure based on the data see

Craven and Wahba (2].

The design problem of Theorem I, has an analogue for noisy data which may be described

as follows. Let g(t), I cT be a stochastic process as before and let SN~
) —

EIg (t) IJ~,...,Jç,,,I — (K , (t),...,K, (O)(K N + °I) (Yl..YN).

Then ‘N becomes

‘N — Ej
’
T

(g (t) _ SN (:)) 2dt

— f (K(t ,s)— (K ,1(t) ...,K T (s)) (K ,, +

which may be compared to equation (1.2).
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