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ABSTRACT

> We consider the problem of interpolating a surface given its values at a finitc number of
points. We place a special emphasis on the question of choosing the location of the points
where the function will be sampled.

Using minimal norm interpolation in reproducing kerncl Hilbert spaces, equivalently

Bayesian interpolation, and N-widths, we provide lower bounds for interpolation error relative

to certain error criteria.  These lower bounds can be used when evaluating an cxisting design,

T or when attempting to obtain a good design by iterative procedures to decide whether further

minimization is worthwhile. The bounds are given in terms of the eigenvalues of a relevant

reproducing kernel and the asymptotic behavior of these eigenvalues for certain tensor product
spaces in the unit d-dimensional cube is obtained. \

We demonstrate that for H,,, the d-dimensional tensor product of Sobolev spaces
u":"" (0.1] and Pyg, the minimal norm interpolant to g at N given data points, the uniform
convergence of | |g — Pygl |, over g in the unit ball in H,,, cannot procecd at a rate faster

d-1\ 2m ™ 3 : : 3 5
than (( log N) '/N)"". Certain conjcctures concerning designs converging at this rate are
made.

*The research of this author was supported by the Office of Naval
Rese:rch under Grant No. N00014-77-E?0675.
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1. Introduction.

We are interested in the problem of recovering a surface 8(1),1eT, from obscrvations of g
N
at a discrete set Ty = {¢,};_,of points in T (called the "design"). In particular, we are
N
interested in choosing Ty so that an estimate, say, 8y of g from the data {g(r,)} i=1iS closest to

8 in some appropriate sense among all designs Ty.

This problem arises in numerous applications. To cite one group of examples, T may be a
sphere (the surface of the earth) or a rectangle and g(t) the S00 millibar height or the
temperature, or the concentration of some air pollutant at position t. The interpolation

problem requires an estimate of g over the entire surface given its values on Ty while the

design problem concerns optimal or nearly optimal choices of Ty.

In this introduction we shall briefly survey several different ways of viewing the interpola-
tion problem i.e. reconstructing the function from its sample values, and then follow this

discussion with a description of some known results for the design problem in one dimension.

In this discussion of interpolation we will distinguish between the Baycsian approach and
the function-analytic or deterministic approach. We further distinguish the problem of
estimating g(t). for all t € T from estimating g(t) at a single point in T as well as introduce the
possibility that our observations are distorted with errors. However, this latter feature is not

primary for our objectives here.

4 - BE- ST - E-8 @
g !:> e e 8 oualoe
w < ja BP0
ad i3 e+ et Y 0| o
IR | 3 w0
i ed (= H O a o )}
' c o e
P 9;‘ ,J‘ o gj o
N g e |ob o 0 AR
L o] .s_),. L te ct O 8 o]
o - {l""' D e - o
0 (o 2 5 o
< Lp |
P = '
=& o
\ o
O |a
B o
)]
' |

.




The Bayesian approach is as follows: We suppose g(1), t € T, is a Gaussian stochastic
process, or "random field" with zero mean and given strictly positive definite (prior) covari-
ance K(s.t) = Eg(s)g(t), s.t € T. Given the data 8(ty),....8(zy) the Bayesian estimator for g(t)

is
gu(t) = E{g(0) | g(e))....8(ty)}

8(‘|)
= (K, (0. K (KR! '
8(ty)

where K,'(I) = K(1,.1) and K is the NxN matrix with i, jth entry K(ti.lj). and thus

od 2
min E(g(t)-iE|a,-g(l,-))

= E(g(-gy(en?.

The functional analytic approach is closely related to the Bayesian approach . Instead of
assuming that g is a stochastic process, suppose g is a fixed element of H,, the reproducing

kernel Hilbert space with space reproducing kernel K.

Then g, may be shown to be the minimal norm interpolant to g on T in Hy, the Hilbert
space with reproducing kernel K. Observing that <g.K,,>K = g(1;) where <',->y is the inner

product in Hy it can be verified that if Pyg is the minimal norm interpolator of g on Ty i.c.

[1Ppgl I = min | [hl |y, (Pyg)(1,) = g(1)
h(r)=g(¢))

N
then Pyg is the orthogonal projection of g onto span {K ,‘l j=i and that Pyg = gy scc

Kimeldorf and Wahba {6]. In particular,

(Ln min E(g(1)- ﬁalg(ll))2 = min | | K~ ﬁa,-l(,ll 'IK
Jj= Jjm|




- N
= W pg

Minimal norm interpolation also has the striking property that it furnishes the best
estimator for g(t), g € Hg among all estimators (lirear or nonlinear in g(¢y),...8(1y)) which
uses the information g(¢)....g(1y) with <g.g>x<1, that is,

min max | f(0)=A(t)),.... ) |
p PP ol i s
where A is any map from (f(l,)....J'(t,{,)) into the real line is achieved for

A(g(1)),...g(ty)) = gy. This property and various extensions and related matters in other

normed spaces is described in C.A. Micchelli and T. J. Rivlin [13].

In each instance above the data is viewed is known exactly. Frequently in applications
only "noisy" data is available and this leads to the problem of data smoothing. We briefly

discuss this problem in Section §.

As a criteria for choosing ¢,...,/y We minimize

02 E fr €D -gn(dr: = J(Ty)

where the expectation is taken with respect to the prior covariance K(s.,t). It is not hard to

show that

(13) J=XTy = fr|x(u)-(x,,m.....x,,u))xp'(K,..(:)....K,N(m'm.

in practice K may have to be estimated by use of a fincr trial grid of points than will
ultimatcly be uscd, or from physical principles governing the phenomena under study. The
covariance of air pollution measurements for example surely depends on the local geography.
If K is known, then, frequently the minimization of J will have to be carricd out numerically.
In this paper we will provide a lower bound for J in terms of the eigenvalues associated with

the integral operator induced by K. Thus, trial sofutions for the design Ty minimizing J may

——
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be compared against the lower bound to decide whether the further minimization is worth

while.

Theorem 1. Let the operator K defined by (K[)(1) = [r K(1,5)f(s)ds be a symmetric compact
operator of L(T) into itself and have eigenvalues A 2X,2 ... Then

il KTy T = fr Kndi-$a,

imNe| =l
It is not known whether or not his lower bound can be achieved.

A fair amount is known about optimum designs for T= [0,1], see Sachs and Ylvisaker
[15), Wahba [19], Hajck and Kimeldorf [3]. A sequential procedure for choosing an optimum
design for T= [0.1] is given in Athavale and Wahba [1]. The sequential procedure depends
heavily on properties, of optimal designs known from the carlier papers and docs not at présenl
generalize to T= [0,1] x [0,1] or the sphere. In fact it appears that nothing is known about

best possible convergence rates in several dimensions for | | g~ PNSI li’ sce Ylvisaker [21].

Sachs and Yivisaker [16] have shown that | | g—Pyg| I;z is the variance of the

Gauss-Markov estimate of @ in the model
Y(¢) = 0g(1) + X(1), €T, EX(s)X(1) = K(s.1)
given Y(1)reTy

If it is known that g is in some class C then it might be desirable to choose Ty to
minimize sup | | g-Ppg| li-. Through the notion of N-widths, introduced by Kolmogorov |7],
and asyn:;uﬁic estimates of the cigenvalues of certain integral operators we will provide lower
bounds for the supremium of the design error for g in a certain class C. The class we will
consider here is the natural gencralization of the function class for which optimal one dimen-

sional designs were obtained in [3, 1S5, 19]. Before stating this result we review briefly some

results for optimal expcrimental design from [19] for T = [0,1].




The basic assumption made in [19] about K is that it has the characteristic discontinuity

of a Green's function for a 2m th order self-adjoint differential operator,

alﬂ-' azﬂ-"
(1.3), a(f) = lim =% K(s.t1)- lim
ste 3™ ste gs2m-!

K(s.0).

Suppose that g has a representation

1
8(1) = j; K(t,s)p(s)ds, pel,(0,1).

N
for some p € L,[0,1] and let Ty = {r,5},_,; be determined by a strictly positive density f,

L"'f(sm =i/(N+1) i=12. N N=12..

Under various regularity conditions including a,p>0

2
Iig-Prallk

€ \lpz(s)a(s)
- sz{j; o g ds}(l + o(1))

where C,, is a constant dcpending on m. The density f is choscn to minimize the quantity in
brackets, see [19]. Thus the rate of decay of | lg"PT,.,S' Iiis asymptotically the same as the

decay of the eigenvalues of K (see Naimark [14])).
We return now to a general set T and reproducing kernel K.

Theorem 2. Let K be a symmetric compact operator from L(T) into itself with eigenvalues

Ay2Ag2.... Let C = {g:g(1) = [ K(1.5)p(s)ds, [ pz(.l')dls 1}.

Then

sup| lg=-Ppg Iizhn,
geC .

Next, (Section 3) we investigate the eigensequences for certain uscful reproducing kerncls

on T = 710,1), the tensor product of [0,1] d times. We will prove




Theorem 3. Let Hy = OJHQ' where H 0 is an r.k.h.s. on [0,1] with Q satisfying (1.3). Then

2m

(1.3) Ay =0((log M*'/N)

Based on this result, we make some conjectures (Section 4) concerning good designs in
H y using results from the multi-dimensional quadrature literature. In particular, we conjccture
(1.3) is the optimal rate, which has only been proved for d=1, as explained above. Finally in

section S we make some observations concerning noisy' data.
2. Lower bounds for optimal designs.
We begin with the proof of

Theorem I. Let the (symmetric) operator K defined by ( Kf)(1) = IT K(t,5)/(s)ds be compact with

eigenvalues A 2, 2.... Then

3 < 2 &
inf J(Ty)=inf| ||K-PyK,||5sdt 2 A,
Ty N r.wfr T v-§+|'

Proof: The equality is immediate from (12). Since

fr | 1K~PpK, | | 2dt

2 2
= [ V1K = [ 112K

" ﬁx,-fr A

V-l
, N
it suffices to show that [ | | PyK,| I;dls‘):'A,.
e

Let ¢.....0 be any N orthonormal functions in H ;. Then the projection of K, onto span

».
{9 imy is




PNK, - ‘2 ’,‘(')’;'

and

2 2
PnK - -
Joriewkik '_glu,ll,,,

Let K'/2 be the symmetric square root of the operator K. Then by the properties of the

reproducing kernel norm,

: 2 2
o1z, = 11K 28,0 1k

Now by the extremal properties of the eigenvalues of K,

supl K261 12/11811% = A,
o€l

supl 1K 241 12/1 161 1% =7,
¢€H ¢

("" )L,-o

where ¢, is the maximizing element for the first equality above, etc. Thus,

st Sa,

iw} re )

This result is also a conscquence of a classical result from the theory of integral equations

(see [18), 149 ) .

Theorem 2. Let H y be any N dimensional subspace in H y and Py be the orthogonal
projection onto Hy Then there exists a function 8.
8(0) = [y K(1,8)p(s)ds,

such that

@1 l1g = Py gl 1 k2Ay Sy ol(e)ds

A




Proof: The proof of this theorem also follows directly from the cxternal propertics (or the

eigenvalues of K /2 3nd has an interpretation in the theory of N-widths, [17]). Specifically we

have

. 2
inf  supllg=Pysll
Hy geC Hx A

= inf sup | | Kp—Py Kol |i
He Vpllg,=t

Kl/2 KI/Z

= inf sup| |

o—Py
Hy 11p11,,=1 o

2
"”Lz'

The extremal properties of eigenvalues and eigenfunctions of symmetric operators imply that

2
sup| 1K' 2p—Py K" 201 1
Hpllg,=1 :

achieves its minimum for My equal to the span of the first N eigenfunctions of K 172 and the

value of the minimum is Ay ;.

To prove the existence of an optimal design we must find a subspace of the form span
{K 1€ Tyl for some design Ty which achieves the lower bound in (2.1) which would be

expected to be close to the span of the first n eigenfunctions.

Jt should not be expected that for an arbitrary covariance kernel K an optimal design
exists for cach N. However, for certain classes of kernels existence of optimal designs has

been shown, sce  Melkman [10]; Mclkman and Micchelli (11].
3. Good designs in Tensor Product Spaces

To make use of Theorem 2 we will obtain the asymptotic rate of decay of the cigenvalues
of the r.k. for H y of the form

Hy= O‘HQ (tensor product of d copies of H o)

i a




10

where IIQ is an r.k.h. s of functions on [0,1] with cigcnvalucs that decay as a power,
A, = ¢r"2™(1 + 0(1)),v=w, For instance, if Q behaves as a Green's function for a 2mth order
linear differential operator this condition is satisfied. As a simple example of this possibility,

let Hy = {£:ff ./ ™" abs. cont. ™ €L,[0.1]/7(0) = £°(1).r = O,1....m — 1} with

inner product,

| | 1
- d d m) (m) d »
<f8&> (];f(u) u)(j;g(u) u) + J;j‘ (u)g"™ (u)du

Then ther. k. Q is

2wiv(s—1)
Q) =1+ 3 -’——‘—2.'-
0 (2w0)

and the corresponding eigenvalues and eigenfunctions are

(1,.299) ™ = 21,..], ("%, vy =0,21,).

Theorem 3. Let Hy = O‘HQ where the eigenvalues {A} of HQ satisfy A, = r'z"'(l + o(1))

then the eigenvalues (£} of H y satisfly

( log N)d-l

2m
5 )7 (1 + o(1))

f'; -. (
Proof. Since K = OdQ. the eigenvalues of K are the tensor product of the eigenvalues of Q
i.e. if §,2£,2... are the eigenvalues of K then

|‘~l - ‘AIIAlI.”AI‘: (jl'".jd)' jlo”.\id - lvzt'-'.

To estimate the decay of §{y we observe that the number of lattice points (j,,...j,) satislying

4 R N d-1
ﬂ/lskuk(logk) (1 + o(1)).
v-'

Hence, since A, = »~2™(1 4 o(1)) we have

B




£|u tog AN T k721 + o(1)).

([x] = greatest integer € x). Choosing k = [N( log N)d-'] gives the desired conclusion,

d-! 2m
LO&_N)—) (1 + o(1)).

GN-( N

It is not known for d>1 whether there exists a design for which

d-1
1 2 (log N) 2m 2
- P <. (——— du.
15 = Prgl Vs const £y [ o urdu

However designs with a convergence rate approaching the optimum rate have bcen given in
Wahba [20] for d=2.
Define
; 5. :
Z{, = {7k = l._....n’}

and

fol J l4+1-j
T.\',I tigl 2,92, %

In [20] it is shown that TN ¢ has N = ¢ + l)n"‘z—hl“'l distinct points and for

(t+2)°

3.1) llg-P,. gl 12 <const
sl atl+02m

( f pX(u)du)(1 + o(1))
T

2+(f’—’)zm

l42
pr Lt ([ o2dn + o(1))
T

where g = Kpand o(1)-0 as n-cx
Choosing ? = ( log N)”(1 + o(1)) for any p, 0 < p < 1 we have
N =+ Dnl*2(1 + o(1))

or log N = plog log N + ( log N)’ log n(1 + o(1)). Hence
log N-p log log N
( log Ny

log n = (1 + o(1))
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and n = provided 0<p<1 (for p=1 this conclusion fails). Setting p = m': n into (3.1) gives

(I+L'-lm)/(m+l)

s {42 %
Hs-PNglli-O(( LY. ) :
7

{42
N

a convergence rate which approaches the optimum rate of (log N/ N)zm implied by Theorems

2 and 3.
4. Optimal quadrature - a conjecture

A quadrature formula for f,-g(l)dt can be obtained by setting fr (Png)(1)dt -'_g'cig(ri). Then
| f7 g0t fr (P ng)(0)dr|
= I<p.g - P>kl
= [ <n - Png-Pyg>l
Slin=-Pynllxllg=Ppgl |y
Slin=Pynllglligllyg
where 7 is the representer of integration in H x
n(s) = <n.K,}K = [r K(s.u)du

An optimal quadrature probiem may be formulated as: Find ¢ ... 7y t0 minimize

| In=Ppal | x.

There is a large literature on choosing sequences in the d-dimensional unit cube which
N
makes the error for the spccial quadrature formula 7:'- iz'gu,.) asymptotically small. This
=

work has focused on finding sequences Ty = {7, ...y} for which the discrepancy Dy defincd
by

Dy= n:plf'u(l)-r(t)l
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is small. Here F, is the cumulative distribution function of the point set and F is the cumula-
tive distribution of the uniform density, see Kuipers and Neiderreiter [8 ], Halton [4 ), Halton

and Zaremba [S), Zaremba [22).

It is known that the Hammersly sequences defined below, have discrepancy
d-1
l N :
Dy = (—E—=)(1 + o(1))

see Halton (4].

These sequences are defined (in d-dimensions) by
N-1I
l%.oz(n).¢,(n)....¢,‘(n))l,.-o
M
where the subscripts in the ¢'s are successive primes and if n -}2 n ,’ where M = | log prin
=0
Mel _’_
then ¢’(n) -’_‘E!n,-p .

Ny
Bounds on €y = |fr8(')dl-——;-v- .2|x(l,-)|
I=

in terms of the discrepancy appcar in the literature, see Kuipers and Neiderreiter [8, p. 157),

Zaremba [22] and references therein.
In [8] it is shown for certain sequences that e N= O(D',',,) where g has
Fourrier coefficients 5,

satsifying

#2000 Pg

' M
ltlLll...."l s .l
(17»)°
=)
where
| 2 | »;#0
LA . "
| »,=0
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We conjecture that similar results obtain for Hammersley sequences and that for spaces
H  satisfying the hypothcsis of Theorem 2 the optimal convergence rate

Llg - Pugl 15 = Ay, (1 +0(1))

Clog N)*~!
N

will hold for Ty the Hammersly sequence and g of the form g=K p.

-( ™1 + o(1))

5. Noisy Data

In this section we include some remarks concerning estimation based on inaccurate data.
If instead of observing g(¢).re Ty, we assume that the data is given by

y‘-g(’l) + ‘,‘, EG,-EI--G,-,-.
then the minimum norm estimator

min E(g(l)—ﬁa,-y,)2 = | IK,—ﬁaiK,ll I} + ozﬁa}
j=)

im Jj=1
leads in the functional-analytical approach to

- i 2 2 2
(5.1 = min <['l}|::s' 1 fC0) ia}f(l,)l +0 ﬁaj

im| j=|

Recently, this variational problem has been solved by Laurent [9]. It has been shown that
the minimum norm estimator is the smoothing "spline” in H ; with paramcter o~2, that is. if

gy minimizes
(5.2) min {| | /] li + a'zﬁ (f(:,.)-g(:,))zl
i=|
N
then gp(1) = .I'c,u)g(l,) is the minimum norm cstimator for g when we have noisy data.
=

Note that the smoothing parameter o does not dcpend on the value t € T at which we choose

to estimate g(t). The following short prool of this result is instructive: We wish to determine




i IR . TR 2
min | IA,—ﬁa,A,.l lx + ozﬁaj
im] J=1

To this end, we introduce the tensor product space H,‘ORN = {(f.a)lfe Hx.aeRNI with the
norm
2 2k s
ll@gall,=1lgllx+ a‘Z‘a,-
Then the above problem in H KORN becomes ks

5 N 2
min | lh—jf'ajhjl e

h = (K,0). h;= (K,l.—ej) ey =8

But from the theory for estimating exactly given data, as in (1.1), the minimum a = (ay.....ay)

may be obtained from the best interpolant,

& 2
min S, =
<(f.a) (K, .—e)>=glt)

N
min {1171 - 072X () -1}
in agreement with (5.2).

It has not yet been determined if the optimality of smoothing "splines” persists when an
estimator for the full function g(t), t € T when the error criteria (1.2) is used. However, let

us replace (S.1) by

1fo-3 :
min  max (0= 2, a,(f/Ut;) + €r)
@ <ff>¢l / s s o)
5
2 s
1=
that is, we minimize the worst Icast square error when we know the noise in the data is in the
N
region ); = f(1) + €r,. ‘Slr,zs I. It has been shown that in this setting the smoothing spline
i=m
is also optimal. However, unlike (5.1), the smoothing paramcter depends on € as well as t €
T. Moreover, this theory holds in great gencrality, including, in particular, estimating the full

function g(t), t € T (sce Melkman and Micchelli [13] for the details). For methods of

J
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choosing the smoothing parameter using a cross-validation procedurc based on the data sce

Craven and Wahba [2].

The design problem of Theorem 1, has an analogue for noisy data which may be described

as follows. Let g(1), t €T be a stochastic process as before and let gy (/) =

EO1yymon) = (K, (00K, (O)Ky + 67D 0y .y

Then J, becomes

Iy=E fr (@) -g () ’dr

- fr (K0 =(K, (0. K7 (NKy + D7 (K, (O....K, (1) dr.

which may be compared to equation (1.2).

respers

e g a2
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