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A. J. Durelli, "Experimental Strain and Stress Analysis of Solid Propellant

Rocket Motors"--March 1965.
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Photoelasticity and moiré methods are used to solve two-dimensional problems

in which gravity-stresses are present.
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A. J. Durelli, V. . Parks and C. J. del Rio, "Stresses in a Square Slab
Bonded on Cne Face .o a Rigid Plate and Shrunk"--November 196S.

A square epoxy slab was bonded to a rigid plate on one of its faces in
the process of curing. In the same process the photoelastic effects
associated with a state of restrained shrinkage were "frozen-ir."
Three-dimensional photoelasticity was used in the analysis.

A. J. Durelli, V. J. Parks and C. J. del Rio, "Experimental Determinaticn
of Stresses and lisplacements in Thick-Wall Cylinders of Complicated
Shape'--April 196¢.

Photoelasticity and moiré are used to analyze a three-dimensional rocket
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V. J. Parks, A. J. Durelli and L. Ferrer, "Gravitational Stresses

Determined Using Immersion Techniques'--July 1966.
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A. J. Durelli and V. J. Parks. "Experimental Stress Analysis of Loaded
Soundaries in Two-Dimensional Second 3oundary Value Problems''--

February 1967.
The pinching effect that occurs in two-dimensional bonding problems,

noted in Reports 2 and 4 above, is analyzed in some detail.

A. J. Durelli, V. J. Parks, H. C. Feng and f. Chiang, "Strains and

Stresses in Matrices with Inserts,"-- May 1967.
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A. J. Purelli, V. J. Parks and S. Uribe, "Optimization of a Slot End
Configuration in a Finite Plate Subjected to Uniformly Distributed

Load,'" ~-June 1967.
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A. J. Durelli, V. J. Parks and Han-Chow Lee, "Stresses in a Split
Cylinder Bonded to 1 Case and Subjected to Restrained Shrinkage,' -~

January 1968.
A three-dimensional photoelastic study that describes a method and
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A. J. Durelli, "Experimental Stress Analysis Activities in Selected
European Laboratories"--August 1968.
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through several European countries. A list is given of many of the
laboratories doing important experimental stress analysis work and of
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to abstract the main chacacteristics of the methods used in some of

the countries visited.
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J. A. Clark and A. J. Durelli,

J. A. Clark and A. J. Durelli, "Photoelastic Analysis of Flexural Waves

in a Bar"--May 1969.
A complete direct, rfull-field optical determination of dynamic stress

distribution is illustrated. The method is applied to the study of
flexural waves propagating in a urethane rubber bar. Results are
compared with approximate theories of flexural waves.

J. A. Clark and A. J. Durelli, "Optical Analysis of Vibrations in

Continuous Media'"--June 1969.
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V. J. Parks, A. J. Durelli, K. Chandrashekhara and T. L. Chen, "Stress
Oistribution Around a Circular Bar, with Flat and Spoherical Ends,

Embedded in a Matrix in a Triaxial Stress Field"--July 1969,

A Three-dimensional photoelastic method to determine stresses in composite
materials is applied to this basic shape. The analyses of models with
different loads are combined to obtain stresses for the triaxial cases.

"Stresses in Solid and Hollcw

A. J. Durelli, V. J. Parks and L. Ferrer,
Surface Tractions'"--

Spheres Subjected to Gravity or to Normal
October 1969.
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The method described in Report No. 10 above is a
problems. An approach is suggested to extend the solutions to a class

of surface traction problems.
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Moiré Patterns'--December 1969.
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Stress on the Propagation of Flexural wWaves in ©
3ars'--December 1173,

Experimental analysis of the propagation of flexural waves in orismatic,
elasiic bars with and without prestressing. The effects of prestressing
by axial tension, axial compression and pure bending are illustrated.

A. J. Durelli and J. A. Clark, “Experimental Analvsis of Stresses in a
Buov-Cable ivstem Using a Birefringent Fluid"--Felpuary 1971,
An extension of the method of photoviscous analvsis is presented which
permits quantitative studies of strains associated with steady state
vibrations of immersed structures. The method is applied in an

' investigation of one forn of behavior of bduov-cable svstems loadec »ov
‘ the action of surrace waves.
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28. AL J. Durelli and S. Machida, " tresses and Strain in a D{sk with Variable

Modulus of Elasticitv'--March 1972
A transparent material with variable modulus of elasticity has been

manufactured that exhibits pood photoelastic properties and can also be
strain analyvzed by moiré. The results ohtained suggests that the stress
distribution in the disk of varfable I' is practically the same as the
stress distribution in the homopeneous disk. 1t also indicates that the

strain fields in hoth cases are verv Jditferent. but that {t {s possible, :
approximately, to obtain the stress field from the strain field usinyg the |

value of E at everv point, and Hooke's law.

29. A, J. Durelli and !. Buitrapo, “State of Stress and Strain in a Rectangular
4

Belt Mulled Over a Cvlindrical Pullev'--lune o7y,
Two~ and three-dimensional photoelasticity as well as electrical strain

rages, dial pages and micrometers are used to determine the stress distri-
butfon in a belt-pulley svstem. Contact and tangential stress for various

contact angles and friction coefficients are piven,
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T. L. Chen and A. J. Durelli, "Stress Field in a Sphere Subjected to
«arge Deformaticns'--June 1972,
Strain fields obtained in a sphere subjected to large diametral compressions
from a previous paper were converted into stress fields using two approaches.
First, the concept of strain-energy function for an isotropic elastic
body was used. Then the stress field was determined with the Hookean
type natural stress-natural strain relation. The results so obtained

were also compared.

30.

A. J. Durelli, V. J. Parks and H. M. Hasseem, "Helices Under Load"--

July 1973,

Previous solutions for the case of close coiled helical springs and for
helices made of thin bars are extended. The complete solution is
presented in graphs for the use of designers. The theoretical development

is correlated with experiments.
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T. L. Chen and A. J. Durelli, "Displacements and Finite Strain Fields in
a Hollow Sphere Subjected to Large Elastic Deformations'--September 1373.

The same methods described in No. 27, were applied to a hollow sphere
with an inner diameter one half the outer diameter. The hollow sphere
was loaded up to a strain of 30 per cent on the meridian plane and a

reduction of the diameter by 20 per cent.

32.

A. J. Durelli, H. H. Hasseem and V. J. Parks, '"New Experimental Method
in Three-Dimensional Elastostatics"--December 1373.

A new material is reported which is unique among three-dimensional
stress-freezing materials, in that, in its heated (or rubbery) state
it has a Poisson's ratioc which is appreciably lower than 0.5. For a
loaded model, made of this material, the unique property allows the
direct determination of stresses from strain measurements taken at

interior points in the model.

33.

J. Wolak and V. J. Parks, "Evaluation of Large Strains in Industrial
Applications"--April 1974,

It was shown that Mohr's circle permits the transformation of strain from
one axis of reference to another, irrespective of the magnitude of the ﬂ
strain, and leads to the evaluation of the principal strain components !
from the measurement of direct strain in three directions.
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3s. A. J. Durelli, "Experimental Stress Analysis Activities in Selected

European Laboratories'"--April 1975.
Continuation of Report No. 15 after a visit to Belgium, Holland, Germany, |

France, Turkey, England and Scotland. |

36. A. J. Durelli, V. J. Parks and J. 0. Bihler-vidal, "Linear and Noa-linear
Clastic and Plastic Strains in a Plate with a Big Hole Loaded Axially in
[*

its Plane"--July 1975.
Strain analysis of the ligament of a plate with a big hole indicates that

both geometric and material non-linearity may take place. The strain
concentration factor was found to vary from 1 to 2 depending on the level

of deformation.
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A. J. Durelli, V. Pavlia, J. 0. suhler-vidal and G. Cme, "Elastostatics
of a Cubic Box Subjected to Concentrated Loads'--August 1975,
ain, stress and deflectian of a cubic box

Analysis of experinental stn
subjected to concentrated loads applied at the center of two opposite
faces. The ratio between the inside span and the wall thickness was

varied between approximately S and 121.

A. J. Durelli, V. J. Parks and J. 0. Bilhler-vidal, "Elastostatics of

Cubic 3oxes Subjacted to Pressure'--March 1978.
cns in a cubic box

Ixperimental analysis of strain, stress and deflecti
subjected to either internal or external pressure. Inside span-to-wall

thickness ratio varied from S to lu.

Y. Y. Hung, J. D. Hovanesian and A. J. Durelli, "New Optical Method to
ty After

Determine Vibration-Induced Strains with Variable Sensitivi

Recording'"--Novemper 1976.
A steady state vibrating object is illuminated with coherent light and
The resulting specklegram is "time-

its image slightly misfocused.
integrated" as when Fourier filtered gives derivatives of the vibrarional
amplitude.

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "Cyelic
Stress Studies by Time-Averaged Photoelasticity"--November 1975.
"Time-averaged isochromatics" are formed when the photographic film is
exposed for more than one period. Fringes represent amplitudes of the
oscillating stress according to the zeroth order Bessel function.

Y. Y. Hung, C. Y. Liang, J. D. Hovanesian and A. J. Durelli, "Time-
Averaged Shadow Moiré Method for Studying Vibrations'--November 137&.
Time-averaged shadow moiré€ permits the determination of the amplitude
distribution of the deflection of a steady vibrating plate.

J. Buitrago and A. J. Durelli, "On the [nterpretation of Shadow-Moiré

Fringes'--April 1977,
Possible rotations and translations of the grating are considered in a
general expression to interpret shadow-moiré fringes and on the

sensitivity of the metnod. Application to an inverted perforated tude.

J. der Hovanesian, "18th Polish Solid Mechanics Conference." Published in
European Scientific Notes of the Office of Naval Research, in London,

England, Dec. 31, 1976.
and organization of, and scientific content of

Comments on the planning
paper prasented at the 18th Polish Solid Mechanics Conference held in
Wisla-Jawornik from September 7-14, 1978,

A. J. Durelli, "The Difficult Choice,"--May 1977,
The advantages and limitations of methods available for the analyses
of displacements, strain, and stresses are considered. Comments are
made on several theoretical approaches, in particular approximate
methods, and attention is concentrated on experimental methods: photo-
elasticity, moiré, drirtle and photoelastic coatings, gages, grids,
holography and speckle to solve two- and three-dimensional problems in

elasticity, plasticity, dynamics and anisotropy.
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48.

Durelli and J. D. Hovanesian,

C. Y. Liang, Y. Y. Hung, A. J.
1 Sctrains in Plates Using Projected

"Direct Decermination of Flexura

Gratings,''--June 1977.
The method requires the rotation of one photograph of the deformed

grating over a copy of itself. The moiré produced yields strains by
optical double differentiation of deflections. Applied to projected
gratings the idea permits the study of plates subjected to much larger
deflections than the ones that can be sctudied with holograms.

A. J. Durelli, K. Brown and P. Yee, "Optimization of Geometric
Discontinuities in Stress Fields"--March 1978.

The concept of “coefficient of efficiency" is introduced to evaluate
the degree of optimization. An {deal design of the inside boundary of
a tube subjected to diametral compression is developed which decreases
its maximum stress by 25%, at the time it also decreases its weight by
10%. The efficiency coefficient is increased from 0.59 to 0.95.

Tests with a brittle material show an increase in strength of 20%. An
ideal design of the boundary of the hole in a plate subjected to axial
load reduces the maximum stresses by 26% and increases the coefficient

of efficiency from 0.54 to 0.90.

J. D. Hovanesian, Y. Y. Hung and A. J. Durelli, "New Optical Method

to Determine Vibration-Induced Strains With Variable Sensitivity After
Recording''--May 1978.

A steady-state vibrating object is illuminated with coherent light and
its image is slightly misfocused in the film plane of a camera. The
resulting processed film is called a "time-integrated specklegram."

When the specklegram is Fourier filtered, it exhibits fringes depicting
derivatives of the vibrational amplitude. The direction of the spatial
derivative, as well as the fringe sensitivity may be easily and continu-
ously varied during the Fourier filtering process. This new method is
also much less demanding than holographic interferometry with respect to
vibration isolation, optical set-up time, illuminating source coherence,

required film resolution. etc.

Y. V. Hung and A, 1. Durelli, " imultaneous Determination of Three
strain Components in Speckle Interferometryv Using a Multiple Image
Shearing Camera,'--September 1978
This paper describes a multiple image-shearing camera. Incorporating
coherent light illumination, the camera serves as a multiple shearing
speckle interferometer which measures the derivatives of surface
displacements with respect to three directions simultaneously. The
application of the camera to the studv of flexural strains in bent
plates is shown, and the determination of the complete state of two-
dimensional strains is also considered. The multiple image-shearing
camera uses an interference phenomena, but is less demanding than
holographic interferometryv with respect to vibration isolation and the
coherence of the light source. It is superior to other speckle
techniques in that the obtained frinpes are of much better quality.
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31.

A. J. Durelli and K. Rajaiah, "Quasi-square Hole With Optimum Shape
in an Infinite Plate Subjected to In-plane Loading"*—January 1979,
This paper deals with the optimization of the shape of the corners
and sides of a Square hole, located in a large plate and subjected
to in-plane loads. Appreciable disagreement has been found between
the results obtained Previously by other investigators. Using an
optimization technique, the authors have developed a quasi-square
shape which introduces a stress concentration of only 2.54 in a
uniaxial field, the Comparable value for the circular hole being 3.
The efficiency factor of the proposed optimum shape is 0.90. whereas
the one of the best shape developed previously was 0.71. The shape
also is developed that minimizes the stress concentration in the
case of biaxial loading when the ratio of bilaxiality is 1:-1.

A. J. Durelli and K. Rajaiah, "Optimum Hole Shapes in Finite Plates
Under Uniaxial Load,"--February 1979.

This paper presents optimized hole shapes in plates of finite width
subjected to uniaxial load for a large range of hole to plate widths
(D/W) ratios. The Stress concentration factor for the optimized
holes decreased by as much as 442 when compared to circular holes.
Slmultaneously, the area covered by the optimized hole increased

by as much as 262 compared to the circular hole. Coefficients of
efficiency between 0.91 and 0.96 are achieved. The geometries of
the optimized holes for the D/W ratios considered are presented in
a form suitable for use by designers. It is also suggested that
the developed Seometries may be applicable to cases of rectangular
holes and to the tip of a crack. This information may be of
interest in fracture mechanics.

A. J. Durelli and K. Rajaiah, "Determination of Strains in
Photoelastic Coatings,"--May 1979

Photoelastic coatings can be cemented directly to actual Structural
components and tested under field conditions. This important advantage
has made them relatively popular in Industry. The information obtained,
however, may be misinterpreted and lead to serious errors. A correct
interpretation requires the separation of the principal strains and S0 1
far, this operation has been found very difficult, Following a previous g
paper by one of the authors, it is Proposed to drill small holes in the
Ccoating and record the birefringence at points removed from the edge of

the holes. The theoretical background of the method is reviewed; the
technique necessary to use it 1is explained and two applications are
described. The precision of the method is evaluated and found satisfactory
in contradiction to information previously published in the literature.




OPTIMIZED INNER BOUNDARY SHAPES IN CIRCULAR RINGS

UNDER DIAMETRAL COMPRESSION

by
A. J. Durelli and K. Rajaiah

ABSTRACT

Using a method developed by the authors, the configuration of the
inside boundary of circular rings, subjected to diametral compression, has
been optimized, keeping cleared the space enclosed by the original circular
inside boundary. The range of diameters studied was 0.33 g ID/OD g 0.7.
In comparison with circular rings of the same ID/OD, the stress concentra-
tions have been reduced by about 30%Z, the weight has been reduced by about
10%Z and coefficients of efficiency of about 0.96 have beer attained. The
maximum values of compressive and tensile stresses on the edge of the hole,
are approximately equal, there are practically no gradients of stress
along the edge of the hole, and sharp corners exhibit zero stress. The

geometries for each ID/OD design are given in detail.




OPTIMIZED INNER BOUNDARY SHAPES IN CIRCULAR RINGS

UNDER DIAMETRAL COMPRESSION

by

A. J. Durelli and K. Rajaiah

INTRODUCTION

Consider a circular ring with outer diameter OD and inner diameter ID
subjected to a diametral compressive load P. As a classical problem in
elasticity, theoretical solutions have been found for this problem by

by

Timoshenko and others The problem has several practical applications

in tunnel, roller and pipe designs and many experimental investigations

(2),(3)

have also been reported in literature Stresses in a thick cylinder

having a non-circular hole, when subjected to diametral compression, were
perhaps first analyzed by Seika(b). Using the complex-variable approach,
he presented numerical results for some typical quasi-square holes in a
cylinder with a near circular outer boundary. However, it does not

appear to have been realized till recently(s) that the stress concentration
factor (s.c.f.) on the inner boundary can be very effectively brought

down and the hole shape optimized by suitably changing the inner boundary

(5) showed for the first time that

of the ring. Durelli, Brown and Yee
simple photoelastic experiments can be utilized for this purpose and the
removal of material from low stress regions around holes in any stress
field leads to optimum shapes for the hole boundaries. In the present

paper, the same approach is followed and optimized inner boundarv shapes

for circular rings with different ID/OD ratios are presented.




CONSTRAINS OF THE PROBLEM

For the optimization process, the follow.ng constrains were stipulated:
a) the outside boundary has to be kept circular with diameter OD, b) the
inside boundary has to clear a circle of given diameter ID, and c) the

allowable maximum stress for tension is about the same as for compression.

METHOD

The optimization process requires the use of two dimensional photo-

elastic models, loaded in a large field polariscope. The removal of material
from the low stress regions around the hole is obtained by careful filing
till an isochromatic fringe coincides with the boundary in the tensile and
compressive regions respectively. The constrains of the problem dictate

the amount of material that may be removed.

(5)

It was proposed in an earlier paper

(6),(7)

and used subsequently in other
optimization studies that the degree of optimization be evaluated

quantitatively by a coefficient of efficiency keff defined as

S ~S
[ 1o+ds j 2cr-ds
t S t
el 1 0 B ity
ff 82—80 °+ i
all

e

where O,yq Tepresents the maximum allowable stress (the positive and
negative superscripts referring to tensile and compressive stresses,
respectively), So and Sl are the limiting points of the segment of boundary
subjected to tensile stresses and S, and S

1 o are the limiting points of the

segment of boundary with compressive stresses.
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The significance of the coefficient of efficiency was discussed in
Refs. (5) and (6). The same criterion has been used in the present work

to evaluate the optimized hole shapes.

EXPERIMENTAL PROCEDURE

Two dimensional photoelastic experiments were conducted with 0.23 in.
(5.8 mm) thick Homalite-100 plates (fringe constant of 133.2 1b/in-fr
(23.3 kn/m=fr)). The outer diameter of the ring was maintained at 5 in.
(127 mm) while the {nner diameter was progressively increased. Optimization
of the inner boundary was carried out for ID/OD= 0.33, 0.43, 0.53, 0.63
and 0.70 with the models subjected to a diametral compressive load P.
Material was removed from low stress regions as explained above. To improve
the control of the filing process, a binocular magnifier with a set of

‘polarizer and quarter wave plates attached to each of its lenses was used.

RESULTS

The fsochromatic patterns for two typical hole shapes are shown in
Figs. 1 and 2. The stress distributions around the optimized boundaries
for the ID/OD ratios considered are presented in Fi{g. 3. Information

regarding the stress distribution around circular holes in rings with the

same ID/OD ratios is also included in the same figure for comparison

purposes. Seika's theoretical results(“) for two ID/OD ratios which are

relevant to the stress distribution considered are also included. The

stress concentration factor (s.c.f.) for the tensile and compressive regions

of the optimized holes for different ID/OD ratios are plotted in Fig. &4

e T

and are compared with those for the circular holes.
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The empirically developed optimum geometries of the inner boundary
have been fitted with a combination of circles of different diameters and
common tangents at the points of intersection. The inner hole geometries
for the different ID/OD ratios are shown in Fig. 5.

By consolidating the information regarding the geometries, the
different radii of curvature for the optimized hole edges are presented

in graphical form in Fig. 6 in a way which can be directly used by designers.

DISCUSSION

The isochromatic patterns in Figs. 1 and 2 show that the inner
boundaries are well optimized with an isochromatic fringe following the
boundary very closely. Fig. 1 for ID/OD = 0.43 shows that optimization
of the inner boundary has not affected the stress distribution on the
outer circular boundary. Fig. 2 for ID/OD = 0.7 shows that optimization
of the inner boundary has lead to the optimization of the outer boundary
as well with a small increase in the stress on the outer boundary. The
results indicate that such favorable situations occur for ID/OD > 0.53.

The stress distributions around the optimized boundaries given in
Fig. 3 show that as the ID/OD ratio increases, the s.c.f. also increases.
The increase is, however, much smaller for the optimized shapes than for
the circular rings. Comparison of Seika's results for the two ID/OD ratios
brings out the fact that he could get more favorable stress distributions
than those for a circular ring at least on the tensile segment of the
boundary for ID/OD = 0.32 and on the compressive segment for ID/OD = 0.344.
Due to the limitations of the mapping function used by him, his method
cannot yield hole shapes which are favorable from the stress point of view

both on the tensile and compressive portions of the boundary.
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The s.c.f. for the tensile and compressive portions of the boundary
for the circular and optimized rings in Fig. 4 show that the optimization
has lead to a significant reduction in stresses. The reduction in the

tensile concentration factor is much larger than the reduction in the

compressive concentration factor. The reduction in s.c.f. is highest for
ID/OD = 0.33, decreases slightly and then increases again beyond
ID/OD = 0.53. The reduction in weight of the ring increases with increase
in ID/OD approximately in a linear way. The coefficient of efficiency keff
for all the optimized holes 1s about 0.95, the corresponding keff for
circular rings being about 0.61.

The optimized hole geometries in Fig. 5 show that the hole shapes
have similar appearance with changes only in the radii of curvature.
For ID/OD = 0.43, a shape very close to the optimum can be obtained using
a radius equal to (Ro + Ri) for both the tensile and compressive boundaries.
The information on the radii of the elements of the holes given in Figs. 5
and 6 indicates that for small hole sizes, the optimized hole shape would

(6)

be the same as the one in an infinite plate under uniaxial loading with

the tensile edge becoming a straight line.
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FIG, 1  ISOCHROMATICS IN A CIRCULAR RING WITH OPTIMIZED INNER
BOUNDARY, WHEN SUBJECTED TO DIAMETRAL COMPRESSION
1D/0D = 0.43




FIG. 2 ISOCHROMATICS IN A CIRCULAR RING WITH OPTIMIZED INNER
BOUNDARY, WHEN SUBJECTED TO DIAMETRAL COMPRESSION

ID/0D = 0.70
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FIG, 5 OPTIMUM SHAPE OF THE INNER BOUNDARY OF CIRCULAR RINGS
SUBJECTED TO DIAMETRAL COMPRESSION.
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