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The multi—level programming problem is defined as an n—person
nonzero—sum game with perfect information in wbiztL the players move sequen-
tially. The bi—level linear case is addressed in detail. Solutions are
obtained by recasting this problem as a standard mathematical program and
appealing to its implicitly separable structure. The reformulated optimi-
zation problem is linear save for a comp].einentarity constraint of the form

~~ . 0 - This constraint - is decomposed in a tanner that permtt~ us
to achieve separability with very little cost in dimensionality . A general
branch and bound algorithm is then applied to obtain solutions . Unlike the
conventional mathematical program though , the multi—level program may fail
to have a solution even when the decision variables are lefined over a com—
pact set. An auxiliary optimization problem is employed to detect such
failure. Finally, the general max—win problem is discussed within the
bi—level programming framework. Examples are given for a vari ety of r~latsd
problems. 
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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Ecience

Institute for Management Science and Er.gineering
Program in Logistics

AN EXPLICIT SOLUTION TO THE MULTI—LEVEL
PROGRAMMING PROBLEM

• 1.0 Introduction

Multi—level progr~~~{r~g was first defined by Candler and Townaley
(12] as a generalization of mathematical programming. In this context, the
constraint region is implicitly determined by a series of optimization
problems which must be solved in a predetermined sequence (cf., .  Bracken and
McGill [8 ]). Alternatively) the problem can be vtewed as an n—person ,
nonzero—sum game with perfect information (Luce ani Raiffa [28]) where the
order of play is specified at the outset and the playeza’ strategy sets are

no longer assumed to be disjoint. As a consequence, the moves available

to a player change as the game progresses and hence, may be limited by the

actions of the preceding players. When interdependent strategy sets are

introduced the difficulty of the overall problem markedly increases.

The problem that we address differs from the conventional formulation

of the n—person game in that our players are required to move in turn. When

the moves are assumed to occur simultaneously , disagreement often arises as
to which of several measures is most likely to predict the actual outcome

(see Davis and Maschler (14] or Luce and R.aiffa (28], Chapter 9). We avoid

such arguments by appealing to the natural relationship between the multi-

level program and the standard mathematical program and define a solution

accordingly. This leaves us free to focus on the problematic nature of the

computations.

iL o,r~ - 
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To define the problem, suppose there are n optimizers, each of
- 

- 

whom wishes to raaximize his own objective functio~i f1 . As in the conven-

tional setting, each optimizer has control over a set X~ C R~ of decision

variables, and each objective function collectively depends on the decisions

made by each optimizer. Here, however, we shall assume that optimizer 1

has the first choice and selects x1 c X1 , followed by optimizer 2 who

selects x2 c X2 
, and so on through optimizer n

We shall further assume that the choices made by optimizers 1 through i

may affect the set of feasible strategies available to optimize i + 1 . Now

let gi:R~~+1~~ f fl
+ k~ , i l,...,n , be given functions of x1,...,x~ ;

then the set

{x~ :g1(x1,...,x~~~,x~) >

depends on the settings of through x1
~~ . For simplicity, we shall

assume these sets are not empty; i.e., the ith player always has some recourse.

Optimizer l’s problem then becomes

1 2  n 2max f1(x ,x ,... ,x ) where x so~.ves

1 1
— x c x

g~(x
1
) ~ 0

1 2  n 3max f2(x ,x ,...x ) where x solves

2 2x eX

• 2 1 2g(x ,x ) > O
. S S

• 1 2  nmax f
n(X ,x ,...,x ) where x solves

a n
x c x

n

I

— 2 —  
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If n 1, problem (1) becomes a standard optimization problem.

If n = 2 , and f2(x) 
= —f1(x) , problem (1) is equivalent to the “max—mm ”

problem
max mm f Cx)
x1cX 1 x2cX2 1

- g1(x’)>O g2(x’,x2)>O

Even here, note that this is not a standard max—mm problem due to the

dependency of the inside optimizer’s constraints on x1 . Indeed, in

both of these cases , optimal solutions are guaranteed to exist when

f1, g
1, g2 are continuous over the compact sets and X2 . This is

not true in general for the multi—level program, as we shall see in
section 3.1.

In this paper, we will restrict ourselves to the case where n 2

and all the functions are linear. Even with these restrictions , the corres—
ponding problem is equivalent to a nonconvex program and thus can have local

optima. As such , little hope exists in developing an algorithm that would
exhibit monotonic improvement in the objective function . The approach that
we use La based on a transformation of the two—level or bi—level programming
problem into a standard mathematical program. The resulting optimization

problem, distinguished by a complementarity constraint, is decomposed in a

manner similar to that proposed by Bard and Falk ( 4 ]  for computing equilibria.
A branch and bound algorithm is applied to obtain solutions. The algorithm

itself is applicable to any nonconvex program whose functions are upper semi—

continuous and can be put into a separable form. Consequently, extensions

of the proposed raethod are limited to cases where the objective functions

and f2 in (1) are nonlinear and separable.

An economic interpretation of the bi—level programming problem has
been offered by Candler and Townsley . The first  player (or outside player)
is referred to as the higher level decision maker who has control over “policy

variables,” x1. For example, this player or teem of players may be able to

— 3 —
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control directly tax rates and the size of the government’s budgetary deficit,

* thus setting policy . The second player (or inside player) is referred to as

the lower level decision maker who has control of the (remaining) “behavioral

variables,” x
2, which are manipulated in light of the levels of the policy

variables. The behavioral variables such as rate of private investment, and

agricultural production may be decided by many decentralized decision makers
following their own behavioral rules , but the effect is viewed collectively.

In addition , a third level can be added if the higher level decision
maker wishes to influerce a third set of “impact ” variables , generally outside
the control of either decision making group. Although no direct means of
control may exist for such variables as pollution, unemployment, rate of

inflation, and balance of payments, policy makers most certainly would like

to influence their impact on the economy .

Throughout this paper we will f ind it convenient to substitute the

vector (x,y) for (x1.,x
2’
Y when only two players are involved. In the next

section we discuss a variety of related problems ~nd the Candler~
.Towns1ey

approach to the two—level linear progr~imm1ng problem. Next, some structural

considerations relating to the absence of solutions and the order of play

are presented. This is followed by the development of an alternative solution

technique based on nonconvex programming. Examples are given to demonstrate

the computational aspects of the approach. Finally, the max—mm proble’it

is explored in the current context .

2.0 Background

In spite of its potential applicability, the multi—level programming

problem has been given little attention and is only now beginning to emerge
as an independent component of nonconvex programming. Problems of this type

have recently been investigated in connection with government oil pricing

schemes (De Silva [15]) and armed conflict (Bracken , et al [ 9 ]). In addition,
a host of related examples can be found in the well-established area of

n—person game theory (see e.g., Owen (32]). In order to compare the struc-

tural similarities and differences between these- two areas, ~Ie present an

outline of the n—person game in normal form. This game consists of:

— 4 —  
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(i) a set of n players

(ii) the n strategy sets S1, S2 ...,S , and

(iii) the n real—valued payoff functions

where ~~~~~~~~~~~ is the payoff to player I when the players

j (j — 1, 2 ,...,n) use strategies x1 c S~ . A basic assumption is that

each player knows the entire structure of the game in this form and that all
players are governed in their behavior by an infletible desire to maximize

their expected payoff (Luce and Raiffa [28]).

In contrast to (1) it is usually assumed that the strategy sets S~

for all i are independent or disjoint md that all players move simul—

taneoualy. A further consideration is one of cooperation among the players.

While this may work out to everyone’s advantage, instances arise where the
rules of the game or the realities of the situation strictly forbid any type

of agreements (e.g., anti—trust laws or the inabil.ty to communicate). Two -
•

cases must therefore be distinguished:

1. The noncooperative case, in which any type of collision,

such as correlated strategies and side payments, is
prohibited.

2. The cooperative case, in which all such agreements

are permitted.

The noncooperative case most accurately reflects the assumptions implicit

in the multi—level prograxiwing problem.

In the remainder of this section, we will highlight the structure

and properties of a special n—person game known as the bimatrix game. This

will be followed by a discussion of a variant of the standard mathematical

program which contains optimization problems in the constraints. Such prob-

lems stand mid—way between the multi—level and standard form of the mathe—

matical program, while containing elements of the t~o—pereon, zero—sum game.

We will close by sketching the approach used by Canc~ler and Towneley in
solving the two—level linear program.

— 5 —
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2.1 The Bima~rix Game — In general, a finite two—person nonzero—sum
game can be expressed as a pair of m x n matrices, A = (a

11
) and

B = (b~1
) , or equivalently, as an m x a matrix (A, B) each of whose

entries is an ordered pair (au , b11). The eat rie3 a41 and b11 are

the payoffs (in utilities) to the players I and II, assuming they choose,

respectively, their ith and jth pure strategies. A game in this form is
called a bimatrix game.

-: Definition 1. A mixed strategy for I is a column x of nonnegative elements

x1 , which represent the probability with which I will play his ith pure

strategy. Thus x1 + x2 
... + 1 . Likewise, a mixed strategy for II

is a column y whose nonnegative components y
1 

sum to 1.

If on each play of the game I and II select a pure strategy

randomly, according to the probability distributions given by x and y

( their expected payoffs in matrix form are

<x,Ay> and <x,By>

A “solution” to the game is often characterized by an equilibrium
point——a collection of strategies, one for either player , such that no player
is able to increase his payoff by changing his strategy choice when the
other holds his fixed. More formally, an equilibr ium pair is defined as
follows.

Definition 2. A pair of mixed strategies (x*,y*) f,r  the bimatrix game
(A,B.) is said to be in equilibrium if , for any other mixed strategies,
x and y

.4 <x,Ay*> <

<x*,By> ~

r Nash [31] has shown by a fixed point argument that every game has at
least one mixed strategy equilibrium pair. In general , equilibrium points

— 6 —
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are neither equivalent (yield the same payoffs) nor interchangeaLle (yield
an equilibrium point when such strategies are intermixed). It has long
been known (see, e.g., Tucker [34]) that an equilibrium pair for the zero—

sum matrix game, i.e., the case where B = —A , may be recognized as a

pair of optimal solutions to an associated dual pair of linear programs .
Although no direct linear formulation exists in the general case , Lemke and
Howson [27 ] have shown by an algebraic argument , that an equilibrium pair

lies on a path joining a sequence of adjacent extreme point s of a certain

convex polyhedron. Such a path , and hence equilibrium point , is readily
computed by exp loiting comson linear programming techniques ; namely, the

perturbation of a convex polyhedron , and the generation of adjacent extreme
points. The constructive proofs presented in their paper demot~~trate the
equivalence of the bimatrix game and the linear complementarity problem
(Eaves [16 ] , Mangasarian (29 3 ) ,  which is fu r ther explored in a sequel by
Lemke [29]. His results apply to the case where the matrices A and B exhibit
special structures; Bard and Falk ( 4  1 offer a ful! treatment of the general
case.

2.2 Optimization Problems in the Constraints — The second type of
problem that we will discuss also has a game—theoretic interpretation which
can be extended to any number of players acting in sequence . Its structure
derives from the standard form of the mathematical program as parameterized
by the vector t c T C R~ . The associated problem is one of finding a
vector x c Rn to

max{(f(x) : x C S(t)}  (2)

where
• S(t)  = {x : g(x,t) ~ O} (3)

f.Rn + R and g:R n 
÷ Rm 

. - This problem has been studied extensively

I from the point of view of sensitivity - analysis (e.g.,  see Fiacco and McCormick
[22 ] or Armacost and Fiacco [ 1] ) .  As t varies over a set of values T
the minimal value of the obj ective function may also vary . Evans and Gould
[17] give conditions for which this variation is a continuous function of t
Fiacco [21] extends this work to establish a theoretIcal basis for utilizing

— 7 —
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a penalty function method to estimate sensitivity information of a local
solution and its associated Lagrange multipliers.

If (2) must be satisfied for all values of t C T , we get the

infinitely constrained problem (Blankenship and Falk [ 6  ]). If , however ,
the parameter t is viewed as an additional variable subject to the control
of a second decision maker, we get an optimization problem within an optimi—

• - zation problem. To see this, consider the problem proposed by Bracken and

McGill [ 8] of finding vectors x and t to

max f(x) (4.1)
xCX

subject to
h(x) = max g(x,t) < 0 (4.2)

teT
a m nwhere h:R ÷ It and X is a compact subset of R . Problem (4) differs

slightly from problem (1) in that X and T are independent , f is not a

function of t , and the outside player’s selection, x~ must be such that

the maximum value of g(x*,t) does not exceed zero. Further, the inside

player now has m rather than one function to optimize. In both cases , it

is assumed that all functions and const raint sets are generally known.

Alternatively, rather than viewing the constraint region (4.2) to be
under the control of one player, we may assign the .~ontrol of each of the m
constraints to a different player. From a structural point of view, this

interpretation, though suggesting a much more complex problem, would bring

(4) closer in line with (1) .

It is possible to generalize the constraint region (A.2)  to allow the

solution of prob lem (4) to be constrained by the value of a two—sided opt imiza-
tion problem. Bracken and McGill indicate two ways in which the new feasible
region may be parameterized by x , the primary decision variable. To achieve
the desired formulation both the objective function and the constraint set

of the outside player associated with the two—sided problem will be defined

as a function of x . The following problem illustrates this parameterization:

find vectors x — (x1,. .. ~x~) , t — ~~~~~~~~~~~ and u = (ui,...,ur) to

— 8 —
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max f(x ) 
(51xCX . )

subject to

h (x) — miii max g(x,u,t) < 0 (5 2)ucU (x) teT

- 
_ where U(x) CRr is assumed to have the following form:

U (x) {u: d1(x,u) < 0, l=l ,2 ,...,1i}

- 
. 

which is analagous to the set parameterization given in (3).

In order to interpret (5), note if the two—sided optimization problem

given in (5.2) has a saddle—point in (u,t), then the solution of this two—

sided problem does not depend on the order in which u and t are chosen.

Thus, x is chosen first followed by choices of u and t • If there is

not a saddle—point in (u,t), then the proper inte~pretation is that of the

outside player choosing x and u , followed by the inside player choosing t

• In this case, the two-sided problem in constraint I In (5.2) is a mm —max
problem.

Conditions are given in [8] for which problems (4) and (5) are

convex programs——a desirable feature if the work required to obtain global

solutions is to be minimized. A computer program called INSUMT has been

developed [7] fot use with the sequential unconstrained minimization tech-

nique (SUMT) of Fiacco and McCormick [22] to solve mathematical programs
with optimization problems in the constraints.

2.3 The Candler—Townaley Approach to the 31—level Linear Pro&ram — The

method developed in [12] for solving the bi—lev4 linear program is based on

an implicit enumeration scheme which generates global information at each

iteration to be used in the search for locally better solutions. The global

information defines a set of necessary conditions which are used to avoid

returning to any previously explored basis.

The problem to be treated is a special case of (1) where k — 2 and
all the functions are linear. It can be stated as follows:

— 9 —
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P6 — Find values for the policy and behavioral variables

n1
x C R  and y c R  such that

— max {c
1x+d1

y} where y solves (6.1)
x>O

=

= max {c
2x+d2

y} (6.2)
y~0

subj ect to A1x + A2y ~ b 
- (6.3)

where A1 is (m x a1) and A2 is (m x a2). Typical column vectors in

A1 and A2 will be denoted by A~ and A~ , and for convenience it is

assumed tha t rank (A ) = in

Three related linear programming (LP) problems will now be defined.
Each of these problems plays a role in the development of the algorithm.

P7 — For any given (kth) set of nonnegative values for the

policy variablea x — x~~ > 0 , find values for the

behavioral variables y , such that

f 2 = max {c2x~~~+ d2y} (7.1)
y•~.O

subject to

A2y > b — A1x(
~~ (7.2)

P7 will be referred to as the “behavioral” or “inner” LP problem; -

~ 

-

• there is no guarantee that P7 will have a feasible solution for any given

set of values x(k) >

P8 — Given a basis set Bk from A2 r’~at is optimal with respect

to the behavioral 12 problem P7, find values of (x, ~
(l~) such

that

41 — 10—
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f1 — max {c1x + d1y~~~} (8.1)

subject to

A~x + Bky~~ 
> b (8.2)

x, ~(k) > 0 (8.3)

The basis Bk is termed a behavioral optimal basi9 (BOB) If the associated

reduced cost coefficients of the behavioral objective function are nonnegative,

i.e., if

C2k Bk
1 A~ — C

21 
> 0 , for all j

Note that behavioral optima].Ity is unaffected by the settings for the policy _ -

variables x • The values for the policy variables only affect the feasibility

of a behavioral basis.

P8 will be referred to as the “policy” or “outer” 12 problem and is
defined only for behavioral variables (activities) that are members of .

P9 - Final values of x and y such that

inax{c1x + d1y} (9.1)

subject to

A1x + A2y > b (9.2)

x, y > O  (9.3)

Clearly the solution to P9 provides an upper bound for the solution

to P6.

Solution to P6

By comparing problems P6 and P7, it can be seen that if P7 has an

optimal feasible solution y~~~, then (x~~ ,y~~~) is a feasible solution

to the bi—level linear program P6. If there are no feasible solutions to

P7 , then x — x~~ is not a feasible setting for the policy variables in

P6. —

— 11 —
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In addition , if we are given a behavioral optimal basis to the

behavioral 12 problem P7 , then it can be shown that values for (x~~~ , ~ O~
))

satisfying the constraint set for the policy LP problem P8 (i.e., 8.2 and 8.3)
: are also feasible solutions to P6. Now let x — x* be an optimal feasible

setting for the - policy variables in P6. Then, from the definition of P6,

there exists a basic optimal feasible solution to the behavioral LP problem
P7 : 

y* — B 1 b - B 1 A1 x* > 0 for A~ C B~

= 0 otherwise,

such that f~ = c
1x* + d1y* is the optimal value for the policy objective

function and B
~ is the (BOB) for P7. The relationship between the solutions

for P6 and P8 are clarified in the following theorem.

Theorem 1 — Given there exists an optimal feasible solution to the

bi—level programming problem P6, there exists a (BOB), B
~ , 

such that the

corresponding basic optimal feasible solution to the policy LP problem P8
is an optimal feasible solution to P6.

As a corollary to Theorem 1 we have:

Corollary 1 — An optimal feasible solution to the bi—level programming

problem P6 can be represented as a basic feasible solution to problem P9.

Theorem 1 suggests an alternative to solving P6 directly. By concentrating

on the solution to P8 as it varies with the choice .-,f (BOB), the solution to
P6 will eventually be uncovered. Candler and Townaley of fer a systematic way
of moving from one (BOB) to another without retracing any path already examined.

• By focusing on the reduced cost coefficients of the variables not In the (BOB),

their algorithm provides a monotonic decrease in the number of behaviorally

optimal bases which need to be examined.

3.0 Structural Considerations

• - 3.1 Indifference Points and Nonexistence of Solutions — It was

4 mentioned previously that unlike the general mathematical program, the multi—

level program may not possess a solution even when f~ and 8
m are continuous

— 1 2 —
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1

over the compact sets X1 , I 1,...,n . To see this , let us consider
problem (1) for the case where a — 2 . Suppose that the outside player
selects a point x~ . The inside player is then faced with a simple
maximization problem parameterized by the vector x* . In certain instances,

the solution set to this problem may contain more than one member. For

example, if all the constrairit functions were linear, it is possible that

y*(x*) , the set of all solutions to the Inside player’s problem for

x x* fixed, might consist of some nontrivial subset of a hyperplane.

This would mean that the inside player would be indifferent to any point
on that hyperplane ; however , the outsid e player might not experience the
same indifference with respect to his objective function. His best result

might only be realized at one particular point in y*(x *) , but there may

be no way to induce the inside player to show any preference for that point.

It may fu rther be true tha t if the outside player chooses any point other
than x* , his maximum payoff will never be realized. This situations is

- i . illustrated in the following example.

= 

~~~ 
{ (x~ ,x~) (:.~ :~(~)~

= max {—(2y 1 + 3y2)x1 — (4y1 + y2)x 2} (10.1)
x>0

where y solves

= 

~~~ 
{ (x~ ,x~) (

~ 
- ) (

~ }~
max {(x 1 + 3x2)y1 + (4t~ + 2x2)y

2} - 
(10.2)

y•~0 
-• 

-
~~~~~

subject to x1 + x~ 1, y1 + y2 — 1 (10.3)

Note, the structure of (10) is identical to that of a bimatrix game but now
the order of play is sequential rather than simultaneous. The solution to the

insid~e player’s problem y as a function of x is

L 
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(1,0) for x1+3x2 
> 4x2+2x1 ; i.e., x1 < 1/4

• y( x) = + y2 — 1 for x1 
— 1/4

(0 ,1) for x1 
> 1/4

Substituting these values into (10.1) the outside player’s problem

becomes

—2x1 
— 4x2 ; x1 < 1/4

f = max —2y — 3/2 (0 < y < 1) ; x = 1/4 (11)
1 x>O 1 = 1 =  1

- —3x1 — x 2 ;

subj ect to
x1 + x 2 1

At x1 1/4 , f 1 is not a well—defined funatio* -and an attempt to solve

(11) leads to difficulties. This can be seen by substituting 1 — x1 for
L 

• x2 and plotting the value of the objective function f1 as x1 varies

between zero and one. The results are shown in Figure 1.

¼ ¼ ¾ 1
I I I ~~~~~~~

I
’

~~
i .  

~1

Figure 1. Bi—level Program with No Solution.
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The largest payoff (f1 
= — 1.5) for the outside player occurs when he selects

x — (1/4, 3/4) and the inside player selects y — (0 ,1) . There- is no guar—
— antee, however, that the inside player will choose (0,1) since he is indifferent

to any point on the line y1 + y2 1 . The only way to assure this selection

is for the outside player to pick a point such that x1 > 1/4 , say

x~ — (1/4 + c , 3/4 — C)

where c > 0 is arbitrarily small. The corresponding payoff is = 1.5 — 2C

which is not the best result that he could have achieved . Thus , there is no
sure way for the outside player to realize his maximum payoff.

This result suggests that some type of cooperation , perhaps in the
form of side payments, would work to one advantage of both players. Such a

change in the rules is outside the context of the present model and will not
be considered here. Note that if cooperation among the players were permitted,

• it might be mutually beneficial for one player to accept a lower payoff than

he might ordinarily receive in order for another player to receive a much
• larger payoff. The difference could then be split. In section 4.0 , we demon-

strate the equivalence between the bi—level programming problem and the standard
form of the mathematical program . In the accompany ing reformulation, ambiguities
or indifferences arising in solution values will be resolved by giving the out-
side player complete control over any multiple optimal solutions that the

inside player may have. That is, while the original problem may not have a
solution , we circumvent this difficulty by allowing the outside player more
control than the original model permitted. In ection 5.4 we provide a check

for existence.

3.2 Significance of Order of Play — Unlike the rules of noncooperative

game theory where each player must choose a strategy simultaneously, the defuni—

tion of multi—level programming requires that the outer player move first. In
order to demonstrate the significance of the order of play, let us reverse the

structure of problem (10). The new problem becomes

—15 —
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= max 1(x~+3x2)y1 + (4x
1

+2x
2
)y
2~ 

(12.1)

where x solves

— = max ~—(2y1+3y2)x1 
—

• 

(4y 1+y2)x 21 (12. 2)
x>O

subject to x1 + x2 = 1 (12.3)

y1 + y2 = l  (12.4)

The solution to the inside problem (12.2) and (12.3) for y fixed is

(1,0) for —2y1 
— 3y2 > —I.y1 

— y2 ; i.e., y1 > 1/2

x(y) = x1 + x2 = 1 for y1 
— 1/2

(0,1) for y1 
< 1/2

We can now rewrite the outside problem by substituting x(y) into (12.1);
— i.e.,

y1 + > 1/2

= max - (3—2x1)y1 + (2x1+2)y2 ; y1 — 1/2

y142 ”l 3y1 + - ; y1 < 1/2

— ; y1 > 1/2

= max 5/2 ; y 1 = l/2
O~yl~l- 2 + y 1 ; y 1 < l/2

The solution y* = (1/2 , 1/2) can readily be determined from the plot of

for 0 < y1 < 1 given in Figure 2.

— 1 6 —
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0 1 Y~

Figure 2. Solution to Problem 12.

The corresponding solution x~ for the inside player is any point within

the set {(x1,x2) : x1 + x2 = 1, x1 > 0 , x2 > 0) . Thus, as in problem (10),

the inside player is indifferent to a range of points but now the outside

player will receive the same payoff regardless of the inside player’s choice.

- 

- 
Further, if we assume that the outside player in problem (10) achieves

his maximum payoff, the two problems can be compared at their solution points.

This comparison is presented in Table 1.

TABLE 1
SIGNIFICANCE .OF ORDER OF PTAY

Problem (10) Problem (12) Bimatrix Game

Solution (x) (1/4, 3/4) x1 + x2 1 (1/4 , 3/4)

Payoff (f1) —3/2 —5/2 —5/2

Solution (y) (0, 1) (1/2, 1/2) (1/2, 1/2)

Payoff (f 2) 5/2 5/2 5/2

— 1 7 —
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The last column in Table 1 represents the solution to the corresponding
bimatrix game (see Bard [ 3]). It can be seen that if the player who controls
the x variable is given the first move, he can realize a greater payoff than
had he been assigned a different position. Of course, in most practical set-
tings the order of play is determined logically by the underlying dynamics
(e.g. , by government regulation and industry’s response) so reversing the order
would make no sense.

4.0 Reformulation of the Bi—level Programming Problem

In order to put problem (1) into a more manageable form , (when n 2) ,
we will make use of the Kuhn—Tucker conditions associated with the inside
player ’s problem. To begin, let us restate the general bi—leve]. programming
problem for the case where no restrictions are placed on the attending func—

1 2 1 2 —tions; that is, find vectors x C R” and y C R” (where n + n — a) to

max f1(x ,y) - where y solves (13.1)
x

• ~ax f2(x , y : x) (13.2)
y

subject to g(x , y) >~ 0 (13.3)

— 

- where f1,f2 : Rn -‘ R and g : + R~ .

The inside player ’s problem defined by (13.2) and (13.3) for x fix ed
is generally a nonconvex program and often difficult to solve since it may
possess local optima . This means that even if the first and second order opti— 

•

mality conditions hold at a point, there is no guarantee that this point is a
global, rather than local solution. If we now assume that f2 and g are

smooth, and that f2 and g are concave in y for x fixed , then a

necessary and sufficient condition for (y*,u*) to solve (13.2) and (13.3) Is
that the following first order conditions are satisfied . H

V f 2(x ,y*) + u*V g(x y*) — 0 (14.1)

— 18 —
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• <u*,g(x,y*)> = 0 (14.2)

• g(x,y*) ~ 0 (14.3)

- 
. u*~~~ O

where u is an rn—dimensional row vector of Kuhn—~Lucker multipliers and V

is the gradient operator. This leads to the following theorem.

Theorem 2 — A necessary condition that (x*,y *,u*) solves (13) Is that
(y*,u*) satisfy conditions (14.1) — (14.4) for x = x* fixed.

In light of Theorem 2, it is possible to reformat the bi—level program

(13) as a standard mathematical program. The resulting problem is:

max f1(x,y) (15.1)
x ,y,u

subject to

V f 2(x,y) + u V g(x ,y) = 0 (15.2)

<u,g(x,y)> = 0 (15.3)

g(x,y) > 0 (15.4)

u > 0 (15.5)

Problem (15) is also a nonconvex program ant~, in general, no explicit

solution technique exists that will reliably produce a global optimum. Mdi—

tional restrictions must be placed on the functions if any progress is to be

made towards obtaining a solution. Accordingly, consider the case where all

the functions are linear. This leads to problem (6) which, when put into the

form of (15), becomes

max~c1x + d1y } (16.1)

subject to 2
C

2 + uA + U2
I~ 2 — 3 (16.2)

<u,(A1x + A2y — b)> + <u2,y> — 0 (16.3)

A1x + A2y ~ b (16.4)

x > O , y > O , u > O , u2 > o  (16.5)

‘1 — 1 9 —
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where u
2 is an a —dimensional row vector of Kuhn—Tucker multipliers

associated with the nonnegativity constraint of the inside problem, y > 0

and I~2 is an n2
—dimensional identity matrix. The only constraint in (16)

that is nonlinear is (16.3), the complementary slackness condition, which has

the general form
m
E u~~1 O

1=1

By observing that both u1 and g1 must be greater than or equal to zero

at the solution we get the following lemma.

Lemma 1. The complementarity constraint (15.3) can be replaced by

E min(u .,81(X ,y)) = 0 (17)

without altering the solution of (15) ; that is , if (x*, y*, u*) solves (15)

it will also solve the new problem created by replacing (15.3) with (17).

Condition (17) as it is written is not yet In a useful form and,

in fact , may seem more of a burden than a help because the functions are

no longer smooth. Nevertheless we may rewrite (17) as follows:

m
E {min(O, (g~—u1)) + u~

} = 0
1—1

Making one more transformation in this sequence by replacing g~ 
— u1

with a new set of variables w1 , i = l,...,m , we get

a

E {mtn(0, w~) + u~} = 0 (18.1)
i—i

w1 
— g~ + u~ — 0 , I — 1, 2 ,...,m (18.2)

which for our purposes, is the equivalent of (15.3) that can be exploited

with most advantage . The m components of the vector w will be referred

‘‘4 to as the auxiliary variables. As can be seen , (18.1) is a piecewise linear

function in w and u but more importantly, when taken together with

(18.2), these two equalities provide a separably representation for (15.3)

in terms of g and u .
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Let us now return to problem (_o) and replace (16.3) with the

• equivalent form given by (18). The following problem results.

max c
1

x + d1y (19.1)

subject to 
2

C
2 

+ uA + U
2 

I~~ = 0 (19.2)

~ f~ i~ (O , w .) + u } = 0 (19.3)
1 i

i=l

w — A
1
x - A

2
y + b + u — O  (19.4)

w2
— y + u

2
0 (19.5)

A1x + A2y > b (19.6)

x > 0, y > 0 , u > 0, u2 > 0 (19.7)

where w2 is an n —dimensional vector of auxiliary variables.

Prob lem (19) is still a nonconvex program, but is now in a much more
manageable form than either (6) or (16). Because all the functions are

separable in the variables x, y,  u and w we can use an existing algorithm
(e.g., Falk [18] or Beale and Tomlin [5 ]) to obtain global solutions. In

the next two sections we present some examples that demonstrate the computation
aspects of this formulation.

5.0 Computational Implications and Experience

A common requirement in the development and use of algorithms designed
to solve general classes of optimiza tion problems is that the functions be
continuous and smooth, (e.g., see Cabot [U] or F-ia~co and McCormick [221). This

requirement assures the existence of first order differential information

which gives direction in the search for a Kuhn—Tucker point. In the reforms—

tion of the bi—level program (6) into a nonconvex p:ograin (16) we have

sacrificed smoothness for separability ; that is, all the functions can now
be written in the following form:

— 2 1 —
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n
f(x) = E f 4 (x 4 )

j—l -‘ ‘

The traditional method for treating separable problems involves
calculating piecewise linear approximations of the associated functions and

applying a modification of the simplex method to the resulting problem
(see, e.g., Miller (30 1). The modification amounts to a restriction on the

usual manner of selecting variables to enter and leave the basis and will
yield a local but not necessarily a global solution to the approximate

problem.

• An algorithm for finding global solutions to nonconvex separable
problems was developed by Falk and Soland [20]. The method is based on the
branch and bound philosophy and yields a (generally infinite) sequence of

points whose cluster points are global solutions of the problem. The imple-

mentation of the method is limited by the necessity of computing convex
• envelopes of the functions involved, although a number of applications have

been shown possible when the functions exhibit special structure (e.g.,

• concave or piecewise linear).

The inherent limitations that special problem structures impose
have been overcome by the introduction of two algorithms independently
developed by Beale and Tomlin [5 ] and Falk [18]. For this paper , we have

used the programming code ~~GG based on the algorithm proposed by Falk and

written by Grotte [24].

The algorithm itself is based on branch and bound techniques and
works by enclosing the feasible region of the separable nonconvex program

in a linear polyhedron which is then divided into disjoint subsets. A lower

bound on the optimal value of the problem is found by minimizing the obj ective
function over each of these subsets and selecting the smallest value obtained.
A check for the solution is made which , if successful, yields a global solu—
ti n of the piecewise linear approximation to the separable nonconvex pro-
gram. If the check fails, the subset corresponding to the smallest lower

bound is further subdivided into either two or three new linear polyhedra

and the process continues as before with new and sharper bounds being deter-

mined. The process is finite and terminates with a global solution of the
approximate problem.
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F
5.1 Example 1 — For purposes of illustration, we will first examine

the problem presented by Candler and Townsley to test their iterative scheme.

This example , along with three others , will be used to highlight the computa—
tional aspects of the approach developed above .

2 3The problem is to find vectors x C R and y c R that

max {8x1 + 4x2 
— 4y

1 + 40)T2 
— 4y 3

} where y solves
x>0

max {—x1 —2x
2 — y 1

— y
2

— 2 y
3
}

y~0

subject to

• 
y1 ~“ 2

— 2x1 + y1 
— 2y2 + O.Sy 3 > — 1

— 2 x 2 — 2 y 1 + y2 + ° ~~~3~~~~~i

Rewriting this problem in the form of (19) we get

max{8x1 + 4x2 
— 

~“1 + + 4y3
}

subj ec t to 
6
E {min (O ,w1) + u~ )

i—i

— u 1 — u2 — 2u3 — u 4

u1 + 2u
2 

— u3 — u5 = —l

— 0.5u
2 

— 0.5u3 
— u6 = —2

wl — 

~‘l 
+ + Y3 + u1 — 1

+ 2x1 
- y1 + 2y 2 

- O.5y 3 + u2 1

w3 + 2x2 + 2y1 
— y 2 

— 0.5y3 + u3 — 1

V
4 

- yl - +u4 
= 0

— 
“2 + u 5 — 0

— y3 + u 6 0

_________ - - - - - - - 
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~“l “2

• — 2x1 + y1 
— 2y 2 + O.5y 3 ~ - 1

— 2x2 
- 2y1 + y 2 + O.5y 3 ~ 

— 1

x~~~0 , y ~~~O, u~~~o, w~~~O

Ordinarily , the algorithm (MOGG) gives only an approximate answer

to the nonconvex program because the original functions are replaced with

their piecewise linear approximations. A related problem is then set up

and solved. In the case of (19) though, no replacements will be made

because all the functions are already piecewise linear. Therefore, MOGC

will produce an exact solutioi~i to problem (1.9) and hence (6).

The computations generated by a branch and bound algorithm are

customarily depicted by a branch and bound tree. In this type of arrange—

ment the nodes of the tree correspond to the related linear subprobleins,

while the branches of the tree correspond to the set on which the branch-

ing variables are defined. In other words, the feasible region associated

with any node in the t ree is , in part , determined by •the hyperrectangle

defined by the branches connecting that node with the origin. With each

extension of the tree, the approximation to the feasible region becomes

increasingly sharper until no more branching is possible. A solution is

obtained at the node where the best upper bound and the best lower bound

converge. For problems where all the nonlinear functions are piecewise

linear and contain only one break, the tree will be at most a branches

• deep , where m is the number of nonlinear functions. This means that the

domain of each of the associated nonlinear variables can be divided into at

most two segments so a maximum of — 1 subproblems might have to be

solved.

- 2 4 -

~~~~~~~ — -- —. • . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- .•-~~--~—



_ _ _ _ _ _ _ _ _ _  
- 

- - — ~~~~ TT. - T ~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~ - ~~~~~~~~~~

T-388

When branch and bound techniques are used the solution is often
uncovered before it is recognized. Here, the solution was uncovered at the

14th stage after 28 subproblems had been solved but was not recognized until

the 51st stage. In all , 103 subproblems had to be solved. The branch and
bound tree for this problem will not be presented because of its extensive

length. The solution values are :

• x~ = (0.0, 0.9) u~ = (0.0, 1.0, 3.0, 6.0, 0.0, 0.0)

y* (0.0, 0.6, 0.4) w* = (0.0, —1.0, —3.0, —6.0, 0.6, 0.4)

f~~= —1.9

In this example , the number of nonlinear (auxiliary) variables is six.
The theoretical upper limit on the number of subproblems that might have to

be solved is theref ore, 127. As can be seen, the number of subproblems
actually solved was undesirably close to the upper limit. If this were true

in general , there might be reason to call into questicn the efficiency (but
not necessarily the usefulness) of the approach. Subsequent examples prove

otherwise.

5.2 Example 2

max {2x 1—x 2— 0 .5y 1
} where y solves

x>0

max 1-x 1—x 2+4y1-y2 }
y~0

subj ect to
2x1 — y 1 + y 2 > 2.5

— x 1 +3x 2 — y 2~~~— 2

— x 1 — x2 > — 2

When this problem is recast as a standard mathematical program , two

new sets of variables comprising auxiliaries and Kuhn-Tucker multipliers,
respectively, are created . Each set is pairwise assocIated with the four

inequalities containing the behavioral variable y .

— 2 5 —

(I
-~~--~~~~~~~~ -- .— - -~~~~~~S~~~~~~ -——-~~~~ ~~~--~~~ -



rr ~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ 

- - 

~~~~ =~~~~
—- • -

~~
- - —- -  -

T—388

In theory, a total of 31 subproblems might have to be solved before

convergence takes place. In fact, the algorithm converged in the seventh

stage after 15 subproblems had been solved. The branch and bound tree is

shown in Figure 3. The two numbers adjacent to each node represent the best
upper and lower bounds for that subprob lem. A bar in the place of the best
upper bound indicates that no corresponding feasible point to the approximate

problem exists. The numbers along the branches refer to the branching

(auxiliary) variables associated with the preceding node. The left branch (+)

indicates that the particular variable was permitted to range over the set
of positive real numbers while the right branch (—) indicates the same for the

set of negative real numbers. The bars appearing below the nodes indicate
that either the lower bounds of the associated subprobleins are all greater

than the current best upper bound or that they are infeasible and, therefore,

cannot contain the solution.

The solution values for the decision and auxiliary variables are as
follows:

x* = (1, 0) u* = (4 , 1.5 , 0 , 0)

y* = (0.5, 1) w* = (—4 , —1.5 , 0 , 5, 1)

The optimal value of the outside player ’s objective function f~ — 1.75

while the corresponding payoff for the inside player 4 = 0

5.3 Sensitivity of MOGG to the Size of the Feasible Region — At

each iteration MOGG solves a linear program whose objective function value

at the solution provides a lower bound on the associated subproblem . If the

solution vector to the linear program is feasible to the original problem
(in its approximate form), then it also produces an upper bound to this

- 
- problem. The availability of an upper bound in the early stages of the

algorithm usually speeds convergence because a comparison can then be made

with current lower bounds. No branching will take place from a node whose

lower bound is greater than the best upper bound in the tree. In Example 2,
a feasible point was not found until the 10th subproblem was solved;

while in Example 1, 82 subproblems had to be solved before an upper bound

was produced. In both cases, this point happened to be the solution as
well as the only feasible point uncovered.
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For a given problem, there does not seem to be much we can do , short
of redesigning the algorithms to produce a feasible point at an earlier

stage than was otherwise noted. Nevertheless, it may be instructive to know

• the way in which MOGC’s rate of convergence varies as the parameters in the
original problem are perturbed. To get an understanding of this relationship,

we investigated the convergence properties of Example 2 for a range of right—

hand side values. Specifically, the value of b1 , the resource parameter

associated with the first inequality was varied between 1.5 and 3.5 in incre-

ments of 0.1. This had the effect of first loosening and then gradually

shrinking the feasible region of the original problem. For b
1 

< 3 no

change resulted in the rate of convergence. Fifteen subproblems were set up

and solved in all instances. For b
1 ~ 3 , however, )IOGG converged on the

first iteration, i.e., the solution vector for the f irst subproblem was
feasible to the original problem and the respective objective function values

were equal. Similar behavior was observed as b
2 

was varied between —2.5

and —1.0. In this case, the threshold value for immediate convergence was

b
2
= —l.5.

These results tentatively indicate that the size of the feasible

region plays an important role in the efficiency of the algorithm. They also

lend support to the proposition that the earlier an upper bound is determined ,

the faster will be the rate of convergence.

5.4 Determining When No Solution Exists — In section 3.1, it was

shown that tne multi—level programming problem may not possess a solution

when a particular player is indifferent between a number of points. In the

reformulated version (15) of the bi—level program (13), the potential for uncer-

tainty in the existence of a solution is eliminated because a single player

now controls all the variables. Nevertheless, it is important to know
whether or not the values computed for this problem would actually be realized

in the play of the game. If the inside player is faced with multiple solu-

tions, there is no guarantee that he will select the value that optimizes

9 . the outside p layer ’s problem.

— 2 8 —
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En order to determine if the current solution (x*,y*) actually solves
the bi—level prog ram or wnether no solution exists at all, we must examine
the inside player ’s problem for x fixed at x* • Let y (x*) be the corres—

• ponding solution set. If every value in y(x*) produces a unique value for

the outside player ’s objective function f
1 , 

then (x*,y*) is indeed the solu-
tion. Unfor tunately, the explicit form of y(x*) is rarely known , but even
if it were, it would be a tedious, if not impossible mat ter to determine f 1
for each member. As a more practical check, we propose solving the following

optimization problem:

mm f
1

(x*,y) (20.1)

subject to
g(x*,y) > 0 (20.2)

= f 2 (x*,y*) (20.3)

Const raint (20.3) determines y(x*) implicitly by assuring that the
inside player realizes his maximum payoff .  If the optimal value of the

• objective function f
1 

in (20.1) is equal to f
1

(x *,y*) then the current

solution is achievable. Conversely, if is less than f 1(x*,y*) it

• becomes immediately clear that the inside player has multiple optima, but
more importantly, no solution exists for the original bi—level program.

For purposes of illustration, let us return to problem (10) and check

to see if the solution that would have been derived from solving (13) is

guaranteed to exist. Putting (10) into the form of (20) when x* — (1/4 ,3/4)
we get

= mm {-.Z. YI~~ y }
y>0 2 ~~2 2

subject to

y1 +y 2 1 .

The solution to this problem occurs at y — (1,0); the corresponding

value of the objective function — — 7 . From Table 1 we see that
2

— - 3 which is greater than . Therefore , our initial conclusion1 2
that problem (10) does not have a solution is confirmed .

— 2 9 —
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6.0 The Max-mm Problem

The max—mm problei~ is traditionally defined (Danskin (13]) as a
two—stage optimization problem in which the minimizing (inside) player acts

after the maximizing (outside) player has chosen his strategy. It can be

viewed as a noncooperative, zero—sum game with petfect information taking

the following form :
max mm f (x ,y) (21)xEX yCY

where x is an n’—dlmensional vector , y is an n2—dimensional vector, and
2

• X and Y are assumed to be compact subsets of - Rn 
- and Rn . Problem (21)

is a special case of the bi—level program (13) and therefore holds a special
interest for us. To see the similarity between these two problems, let us

rewrite (21) in the form of (13) by setting f 1 = — f 2 . As a result , we

get
max f ( x ,y)
xCX

where y solves

max — f (x ,y)
• yCY

The original constraint region (13.3) is now disjoint and given by X

an d Y .

Danskin [13] has developed a basic theory of max—mm which is
- 

- 
analogous to the elementary theories of mathematical programming. In order
to highlight equivalent concepts, let us define

~(x) = mm f (x ,y) (22)
y

• and assume that f(x,y) and its partial derivatives f (x,y) with respectxi

to x~ , i = l,...n 1 
, are cont inuous . The problem then is to max imize

0(x) , where 0(x) is a continuous function of x (since f is continuous

on X).

The major difficulty in studying 0(x) is that this function,

however smooth the original function f(x,y) , is not in general differen—
- - tiable in the elementary sense. In particular, it may not be differentiable

_ _ _ _ _ _ _ _ _  _ - T
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I
in x at the point yielding the maximum. Characteristically, 0(x) has

sharp ridges; nevertheless, Danakin has shown that this function has a direc—

tional derivative D that can be explicitly computed for all directions.

More formally, if (v1, . . ., V 1) represents a direction of unit length in the

n’—dimensional space, then

D 0(x) = atm E v4 f i (x ,y)
V ycY ix

the minimum being taken over the set Y~ of all those y ’s which yield

the minimum against x in (22). Corners and sharp ridges in 0(x) occur

only when consists of more than a single point.

In addition, he has shown that the Lagrange multiplier principle
associated with the maximization problem for 0(x) is valid when the con-

straint set X is polyhedral. That is, if x* maximizes 0(x) subject

• to p side conditions

~ a~ 4 x 4 > b 4 j  =

• I ~~ ~~~= •~

then there exist nonnegative A1,.. .,A such that

D~~~~(x*) < 0

for any direction v , where

tp (x) — 0(x) + ~ A 4 a~ 4 x~
i,j J J

Bram (10] has extended this result for the more general constraint

- 

~

- set given by X {x: g(x) > 0} , where g :Rn 
~‘ R~ is continuously differ—

entiable for all x in X and Vg~ (x) # 0 , j  — 1,. . . ,p , everywhere..

More recently, Schmitendorf [33] has developed necessary and sufficient

conditions for the max—mm problem while obtaining a Lagrange multiplier

rule in the form of an equality rather than in ineqt.ality .

j Thus, the framework exists for solving the max—mm problem as it is

traditionally formulated, although most such problems ~an only be solved
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implicitly. If the problem is now viewed as a specialized version of the

• bi—level program, however , we can recast it into a more manageable form and

- 
- obtain solutions explicitly. This reformulation has the additional benefit

of permiting us to extend the framework described above to the more general
case where the players ’ strategy sets are jointly dependent.

Before app lying the methodology of section 4.0 to the max—mm problem ,
we will briefly discuss a few other solution techniques that are available
f or solving the strictly linear case .

6.1 The General Linear Max—Mm Problem — In the problems that we

— . have been considering, the decision of the maximizing player ordinarily

influences both the obj ective function and the constraint region of the mini—

mizing player. When all the functions are linear , (21) can be rewritten as

follows to take this interdependence into account

max min (cx + dy : A’x + A 2y > b  , x > 0  , y > 0 }  (23)
x y

n 2 1 1 2 2where x ,c c. B. , y, d c B. , A is an at x n matrix , A is an at x n

matrix, and b e Rat

A number of applications which exhibit this structure can be found in
Konno [25] . In addition , Falk [191 has cited a potent ial example which is

directed at finding approximate, global maximizing points of convex functions

defined over linear polydedra. An algorithm which can be used to solve

problems equivalent to (2 3) has been developed by Konno [25]. The algorithm

yields an “c—optimal solut ion” in a finite number of steps and is based on
• Ritter’s cutting plane method.

Falk has also developed an algorithm based on branch and bound
techniques by first demonstrating the equivalence of the two—stage max—mm

problem and the nonconvex program. His work is grounded in the following

theorems, presented here to further characterize the properties of (23).

Theorem 3 (Falk [19]). Problem (23) is equivalent to a nonconvex
program whose objective function is a piecewise linear, convex function and
whose constraints describe the linear polyhedron P~X) , where

P(X) — {x > 0 :~~ y > 0 for which A1x + A2y ~ b} . If the feasible region

— 32 —
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k
for (22) is defined by

S = {(x,y) > 0 : A1x + A2 y > b}

n 1
then P (X) represents the projection of S onto R

It will be said that a point (x*,y*) is an optima]. solution of (23) if

a) y* is optimal to the inside minimization
problem for x = x* fixed , and

b) for all x c P (X)

• cx* + dy* > mm {cx + dy : A2y > b — A1x , y ~
-
~~~~~~ 

y

Theorem 4. (Falk (1~ ] ) .  There exists a solution (x*,y*) of problem

(23). Moreover , there is a solution such that x~ is a vertex of P(x) .

Theorem 5. (Falk [19]). There is a solution (x*,y *) of problem (23)

which is a vertex of S

Unfortunately, the results of Theorems 3—5 cannot be extended to
the bi—level programming problem (6). The proof of Theorem 3 is based on
the fact that both players are optimizing the same objective function,
albeit in different directions. The best that can be done is to show that

(6) is equivalent to maximizing a piecewise linear n~nconvex function over

a linear polyhedron. Such prob lems do not necessaril y have vertex solutions.
Further , we have already shown in section 3.1 that (6) need not have a
solution; however , it should be noted that the outside problem is bounded
above on P(x) by max {c1x + d1y : (x ,y) c s} , and that the inside problem

is bounded above on P(y) (the proj ection of S ont o R ) by
max {c2x + d2y : (x ,y) c s}

From Theorem 3 it can be seen that (23) is equivalent to a problem
• of maximizing a convex function over a linear polyhedron . Although a number

of methods have been proposed to solve such problems (e.g. ,  see Cabot Ill ]
or Tui (35]), none can be directly applied here since each requires an

explicit representation of the objective fun~ction and the constraint region.
Neither 0 (x) nor P(x) meet this requirement.
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By Theorem 5 , %ie know that a solution of problem (23) may be found

• at a vertex of S . Hence , one possible way to find such a point would be

to generate all vertices of P (x) (e.g. ,  see [ 2 ] )  and test each one as a
possible local solution by minimizing in y for fixed x . Rather than

enumerate all vertices of S explicitly,  Falk has developed an algorithm

which will implicitly search all possible solutions and select the best of

these as the global solution. The simplex method is used to obtain the
upper bounds required in the branch and bound algorithm and to select

candidate solutions . Branching takes place on individual variables and

is effected by holding variables out of the basis .

Finally, Gallo and Ulkiicii [23] address the same max—mm problem as

Falk but take a completely different approach . Whereas Falk shows that this

prob lem is equivalent to a concave minimization prob lem, Gallo and Ulkiicii

• reformulate it as a nonconvex program with a linear obJective function and

a nonconvex feasible region. They give necessary and sufficient optimality
conditions for the equivalent problem and use these conditions to develop
an explicit search routine. The proposed algorithm is of the cutting plane
type , generating a sequence of enlarging polyhedra in a manner similar to

-
• that taken by Tui [35] for solving concave mlnimizetion problems . Each

iteration of the algorithm involves solving n+l linear programs, where
n is the number of neighboring vertices associated with any nondegenerate

vertex. However, because n of the programs differ from each other by

only one column, it is possible to significantly reduce the overall com-

putational requirements by linking the solutions. No proof of finite

convergence is given but the authors note that cycling has not been a
problem .

6.2 Sample Computations — Two sample problems will be presented

in this section in order to demonstrate the computational aspects of
• solving the linear max—mm problem by the method developed in section 4.0.

The first example was cited by Falk [19] who used a branch and bound

algorithm based on linear programming techniques to obtain a solution.

Candler and Townsley also applied their iterative scheme to this problem.
The second example has not been studied elsewhere , but was constructed
with the specific (but not germane) motive of ensuring that the global
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solution occurred at a particular vertex of P (x) . Two other local

• solutions are known to exist, each occurring at different vertices.

Example 3

f = max mm {2x
1—x2

—8y}
x>0 y>O

subject to

x1 +x2 + y < 3

xl 
_ y

~~~O

• -x1 - x 2 + y < 1

x + x  < 2

Rewriting this problem in the form of (19) we get

max {2x 1—x 2—8y}
x,y,u,w

subject to
4
Z {min(0 ,w~ ) + u1

} = 0
i=l

u1 - u 2 + u 3 — u 4 = 8

w1 + x 1 + x 2 + y + u 1 = 3

t -

W
2 

+ x 1 -y  + u 2

w3 — x 1 — x 2 + y +u 3 = 1

— y  + u 4 0

x + x  + y < 31 2 =

_ / J  xl - y  ~~0

- x 1 - x 2 + y < 1

x + x  < 21 2 —

x > 0 , y > 0 , u > 0

H

~ 

_ _ _
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The solution occurred on the f i rs t  iteration of MOGG so no branch

and bound tree developed. The computed values are

x* = (1,1) u* = (8,0,0,0)

y* = (1) w~ = (—8 ,0 , 2 ,1)

Note that the f irst  and second constraints are b inding for the inside

player ’s problem , but strict complementary slackness hold s only for the

first. In add ition , observe that the maximum value of the objective func—

don occurs at (0 ,0 ,0) with f = 0 , but the point y = 0 is not optimal

with respect to the point x = (0 ,0) . In fact x (0 ,0) , y = (1) is

a local solution with f —8

Finally, a perturbation analysis was performed on this example to

test the sensitivity of MOGG ’s convergence rate to the size of the feasible

region. The right—hand—sid e parameters of the original constraints were

increased both separately and in unison in 0.1 increments. In each case ,
i~~~when a certain threshold value was reached, the nu~ther of subproblems that

had to be solved j umped from one to either 15 or 17. This behavior tends

to corroborate the findings presented in section 5.3 implying a relation-

ship between the relative size of the feasible region and the convergence

properties of the algorithm.

Example 4

max mm ~-x1 
+ 0.1 y

2
}

x~0 y~0

subject to

x2 + y1 ~
‘2 = ~~

x1 - 2x 2 + 2 y1 + 2 y 2 < 8

- 

- 

lly l + 2 y 2~~~ 44 —

—2x + 2x < 11 2

x + 4x < 131 2 =

x1 
- l.5x2 < 2

— 3 6 —
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F
In this example , P( x) , the project of the feasible region S onto

• the x space is given explicitly by the intersection of the last three

inequalities and the nonnegativity condition x > 0 . Because the resulting

polyhedron is in two—dimensional space, it would be an easy matter to enu—

merate all the vertices of P(x) and, by appealing to Theorem 4, solve the

inside problem for each vertex and then pick out the solution. As was pointed

out, however, enumerating vertices is often a difficult task even for poly—

hedra with a limited number of faces. Moreover, the work required to deter—

mine P(x) when it is not given explicitly is usually comparable in scope
• to that of solving the original problem.

When Example 4 is recast as a nonconvex program , five auxiliary
- 

- variables appear in the reformulation. The solution occurred and was recog-
nized in the 22nd stage of MOCG a fte r 45 subproblems had been solved . The

associated branch and bound tree is depicted in Figure 4. At the terminal

node containing the solution the tree is five branches deep . The results are
given below .

• x~ (5, 2) u* = (0.5 , 0.2 5, 0, 0, 0)

y* = (2.75, 0.75) w* = (—0.5 , —0.25 , 12.25 , 2.75 , 0. 75)

The vector of Kuhn—Tucker multipliers ind icates the first and second
constraints are binding. The optimal value of the objective function

f* — —2.55 . In addition, we note that this problem contains two other

local solutions occurring at

= ((l~3)~ (~~~~~~ 

, and ((2 ,0), (3 ,0))

Only the second was uncovered by the algorithm and this was in the twenty—
first stage.

7.0 Conclusions

The multi—level programming problem can be tentatively viewed as

a standard mathematical program whose constraint region has been modified - :~

to include a series of implicitly defined functions. Although other

problems such as those arising in the traditional max—mm context may be
classified in a similar manner, multi—level programming is now emerging

in its own right as an independent component of optimization theory.

— 3 7 — 

~~~— - - -~~ -



-
• 

- T—388

S 
.~.• I—

1* 1—
• 2.1 U 1. 1—

2— —Tb ~~ $.~~ j ~
2+ 2—

~~~ 
4.1 4.2 .~~~~~ ~~

, 2—

• ~is Li  52 ~~ 
2. 2—

• •
- 5+ 5.1

~~~
7.1 U

3+ 3—

.~~~~ ti s., j j

-ii ‘-i

• / .u ~~ ~~~~~~~~~ ii 
• 

4•  4—

• 
4~/ 

~~- I 1 ~ “‘

~7 ~ 

I 

— — 

j~s~~s.i~ Q~
jj

~ i-i- ~~~~~~~~~ 14.2

/ 252

NLU1ISN- 
—

~~~ i1
Figure 4. Branch and Tree for F~cample 4.

— 3 8 —

- - - ~~~~~~~
- 

- 
-~~ - _______________  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-



- _ _ _  

- - 

-- 
— -

~~~~~~~~~~~
- --

~~
—-- - 

~~~~~~~~~~~~
-
~~~~~

- 
~~~~~~~

T—388

Applications have been cited in such areas as goverimtent regulation and

armed conflict, but potentially exist in all settings where opposing forces

operate in a strictly competitive and open manner. Strong structural simi—

larities can also be found within the theory of n—person, noncooperative

games , the primary differences being limited to the order of play and the
definition of strategy sets. In multi—level programming, the players no

• longer move concurrently but in a preassigned order, and must select their
strategies from dependent rather than disjoint sets.

In this paper , the treatment of the multi—level program has been
limited to the bi—level case. It was shown that the resulting program could
be recast as a standard optimization problem characterized by an inherently
nonconvex constraint region. Because one player rather than two now chooses

— 

the values of all the variables, a solution is guaranteed to exist.

In the reformulated program , the inside player is eliminated and the
Kuhn—Tucker conditions associated with his problem are appended to the

constraint region of the remaining player. When all the f unctions are

linear, the resulting problem can be put into a seDarable form by modifying

the complementary slackness condition associated with the inside player’s

problem. From a practical point of view, function separability is important

because it enables us to use an existing optimization routine to obtain

global solutions.. No algorithm currently available will reliably produce

global solutions to the general nonconvex progrem.

If the original functions are not separable, it is often possible

to reforimilate them by adding a sequence of auxiliary variables to the con-
straint set; however, the algorithmic efficiency decreases as dimensionality

increases. The advantage of the approach developed herein owes to the fact

that separability has been achieved at very little cost in dimensionality.
Further, when all the functions are linear, the first order stationarity

— condition for the inside player naturally leads to a set of linear equalities

in the Kuhn—Tucker multipliers. This suggests that the use of the MOGG

could readily be extended to problems where f 1 and f2 are separable in

x and y , and f 2 is concave in y for x fixed . Thus, we are now able

to explicitly solve a general class of bi—level programs.
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For all such programs, the algorithm is guaranteed to converge in a
finite number of iterations. The few cases investigated, however, have shown

that the rate of convergence is likely to depend uj~on the relative size of

- 

- the constraint region. For the smaller region convergence appears to be

immediate . As the region is enlarged a threshold is reached. At this
point the number of subproblems that must be solved jumps significantly
from one to between 50 to 70 percent of the theoretical upper limit. This

is due in part to the fact that as the feasible region becomes less restricted
the probability of the best lower bound coinc iding with the actual solut ion

decreases . For the bi—level program , this suggests that it might be possible

to divide the constraint region in a more efficient manner than is currently

prescribed .

- 4 0 -



~~~~~~~~~~~~~~~~

T—388 

~ 
Ii

REFERENCES

[1] ARMACOST, R. L. and A. V. FIACCO (1974). Computational experience

in sensitivity analysis for nonlinear prograimning . Mathematical

Programming ~ (3) 301—326 .

[2] BALINSKI, M. (1961). An algorithm for finding all vertices of a

convex polyhedral set. SW ( Journal ,~~ (1) 72—88.

[3] BARD, J. F. (1979). The application of nonconvex programming techniques

to the equilibrium and the multi—level programming problems. D.Sc.

Dissertation , Depar tment of Operations Research , The George

Washington University.

14] BARD, J. F. and J. E. FALK (1978). Computing equilibrium via nonconvex

programming. Technical Paper Serial T—386. The George Washington

University.

[5] BEALE, E. M. L. and J. A. TOMLIN (1970). Special facilities in a

general mathematical programming system for nonconvex problems using

ordered sets of variables. Proceedings of the Fifth International

Conference on Operations Research (J. Lawrence, ed.) 447—454.

Tavistock Publications, London.

[6] BLANKENSHIP , J. W. and 3. E. FALK (1976). Infinitely constrained

optimization problems. 3. Optimization Theory and Appl. (2)

261—281.

• [7] BRACKEN, 3. and J. T. McGILL (1972). Computer program for solving

mathematical programs with nonlinear programs in the constraints. P—801.

Institute for Defense Analyses. Arlington, Virginia. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -  -A



- 
I 

— ‘- - • - - -  
-

~~~~~ 

- — ~ --~~ •- —~~- -
- -~~ —

~
:‘-—-—

~ 
—

~~~~~-- ~~~~~~ -~-~--—- ~~~~~- - - - -~~~~~~—•-~~~~ -
~~

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
5 -- -

T—388

[8] BRACKEN, 3. and J. T. McGILL (1973). Mathematical programs with

optimization problems in the constraints. Operations Res.

~~ (1) 37—44 . ;

[9] BRACKEN, J., .1. E. FALK, and F. A. MIERCORT (1977). A strategic

weapons exchange allocation model. Operations Res. 968—976.

[10] BRAN, 3. (1966) . The Lagrange multiplier theorem for max—mm with

several constraints. 3. SIAM Applied Math. 
~4 (4) 665—667 .

[111 CABOT, A. V. (1972). Variations on a cutting plane method for solving

concave minimization problems with linear constraints. Indiana

University.

[12 ] CANDLER, W. and R. J. TOWNSLEY (1978). A linear multi—level programming
I

problem. (Unpublished paper) .

[13] DANSKIN , 3. W. (1966). The theory of max—mm with applications.

3. SIAN Applied Math. ~~ (4) 641—664 .

[14] DAVIS , M. and N. MASCBLER (1965) . The kernel of a comparative game.

Naval Res. Logist. Quart. J~ 223—259. 
-

[15] DE SILVA, A. (1978). The application of formulas for nonlinear factorable

programming to the solution of implicitly defined optimization problems.

D.SC. Dissertation. The George Washington University.

[16] EAVES, B. C. (1971). The linear complementarity problem. Management

612—634.

‘1 
-42 -

—~‘-———~rr ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  -



—

T—388

— [17] EVANS, 3. F. and GOULD, F. 3. (1970). Stability in nonlinear

programming. Operations Res. 107—118.

[18) FALK, 3. E. (1972). An algorithm for locating approximate global

solutions of nonconvex, separable problems. Technical Paper Serial

T—262. The George Washington University.

[19] FALK, 3. E. (1973). A linear max—mm probleir.. Mathematical

Programming. ,~~ 169—188.

[20] FALK, 3. E. and R. H. SOLAND (1969). An algorithm for separable

nonconvex programming problems. Management Sci. 550—569.

[21] FIACCO, A. V. (1976). Sensitivity analysis for nonlinear programming

• using penalty methods. Mathematical Programming j.~ (3) 287—311.

[22] FIACCO , A. V. and McCORMICK, C. P. (1968) . Nonlinear programming:

8equential Unconstrained Minimization Techniques. Wiley, New York.

[23]. GALLO, G. and A. ÜLKiICÜ (1977). Bilinear programming : An exact

algorithm. Mathematical Programming ;i~ 173—194.

[24 ] GROTTE, 3. H. (1976). Program MOGG — A code for solving separable

nonconvex optimization problems . P—l318 . The Institute for

Defense Analysis. Arlington , Virginia. -

[25] KONNO, 3. H. (1971). Bilinear progrmmning : Part II. Applications of -;

bilinear programming . Technical Report No. 71—10. Operations

Research House. Stanford, California.

L 
- - _



— - - - - -  - ~~~~~~~~~~~~~~~~~~~ -~ -~~~~ ‘ -  _._~~~~~-- -

T—388

[26] LEMKE, C. E. (1965). Bimatrix equilibrium points and mathematical

programming. Management Sci. 681—89.

[27] LENKE , C. E. and 3. T. HOWSON , JR. (1964). Equilibrium points of

bimatrix games. 3. SIAN ~~ (2).

[28] LUCE , R. D. and H. RAIFFA (1957). Games and Decisions. Wiley, New York.

[29] MANGASARIAN, 0. L. (1976). Characterization of linear complementarity

problems as linear programs . Computer Sciences Technical Report

#271. Computer Science Department, University of Wisconsin —

Mad ison.

• [30] MILLER, C. E. (1963). The simplex method for local separable programming.

Recent Advances in Mathematical Progran~ning (R. L. Graves and

P. Wolfe, eds.) 89—100. McGraw Hill, New York.

[31] NASH, 3. (1951). Non—cooperative games. Ann. of Math. ,5j~ 286—295 .

[32] OWEN, G. (1968) . Game Theory. Saunders, Philadelphia.

(33] SCHMITENDORF, W. E. (1977). Necessary conditions and sufficient

conditions for static mm —max problems. 3. Math. Anal. and Appl.

,%2~, (3) 683—693.

[34 ] TUCKER, A. W. (1960). Solving a matrix game by linear prograimning .

IBM 3. Res. Develop. ~~, 
(5) 507—517.

[35] TUI , H. (1964). Concave programming un~ -r constraints. (Translated)

Soviet Math. Doki. 1437—1440.

— 4 4 —

LL ~~~~~~~~
‘
~~

— ----- -
~~~~~~~ . ~~~~~~ 

- -  

~
- 

~~~~~~~~
- - - - ~~~~ — .--~~~~ --- ~~~~~~~~~ ~ -- - --~~~~~~~~

-
~~~~ 

- - -~~~~~~ - - -~~i~. - —-- .~~~~~~



r. - -_ 
-~~~~~~~~~ 

--
- 

_ _  ~~~~~~~~~~~~~ -~~~~ - - 
_  

_
— ~~~~~~~~~~~ 

-
~

-
~~~~

.--

— 

. — 

~~~~~ 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~

( ~
;uç~.

_- rr~~~~~~~ w~ 
— Wi1

TI~-E GEORGE WA S I-I I NC TO NTh NlV~~R SITY . .:
-
~ 

- 3 B E N E A T H  T HIS  PL A Q U E  -

- - 
- - . . -

~~~~~ IS B U R I E D  -
- 

- -
~~ 

•. ~~ 
‘
~~~ ~
.

- A V A U L T  FOR T H E  F U T U RE  
- 

-‘ -
. 

-

I N  T H E  Y E A R  ~ O56 - 
-

- S T O R Y  OF EN C I N I - E K I N C  IN I H I S  Y E A R  01 111 1. I ’LA C I N C  01 I H E  ~~A U L~ ~~~~~ 
¶
~ ~ -

- •  C ( N E ERI NG  HO P E S  10K T H E  T O M O RR O W S  A S  W R I  l i E N  IN THE RECUIIUS 01

~ i .. FOLLOw INC G O V E R N M E N T A L  A N D  P R O F E S S I O N A L  E N G I N E E R I N G  O R G A N l LA I I~) M ’  A~~D ~ ~~
~~~~~~~~~~~~~~~~~ THOSE OF T H I S  G EO R G E  WA Sf f T RG IO N  U Nf V ~~K S I T Y .  - 

- - - - 
- . S  —

- .

~~~ 

- B O A R D  OF C O M M I S S I O N E R S  D I S T R I C T  OF COLUM B IA  . - . 
~~~~~~ ~ 

. 
~ . 

-

S UNITED S T A T E S  A T O M I C  E N E R(~Y C O M M IS S I O N  # - ,  -

- - D E P AR T M E N T  OF T HE A R M Y  UNITED S T A V E S  OF A M E R I C &
- D E P A R T M E N T  OF T H E  N A V Y  UNITED S T A T E S  OF A M E R I CA  S

.~~~~~~~ D E P A R T M E N T  OF TH E A IR FORCE IINIJF~D c lArEs  OF A M L R I C A  ~
N A T I O N A L  A t )V IS O R Y  C0MMTt’t fl ra~ A EWO ~~A U1ICS - ‘5 •

• N A T IO NA L  B U R E A U  OF S1-~N D A R D S  (1 S DIPAI f lMEN1 OF C O M M T .H C E  .~
- ‘ ‘ A M E R IC A N  S 0 C I E T V  OF C I V I L  E N G I N E E ~~S -

A M E RIC A N  i N s T I r I ~~IL  O~ E L E C T R I C A L  r N G I N E r Rs  
- 

- -. - ~~~- \ i THE A M E R I C A N  soc l Er\ ’  OF MEC}~A N I CA L  ENC INEERS - - - 
~

- 
- 

-
-

p -TH E s o C I ET Y  OF A M E R I C A N  M I L i T A I V ~ I N C I N EE R S  
- 

. 
- - - -

-

( 

A M E R I C A N  I N ST I T U T E  or M IN I N C  & M E I A L L U P C ~ CA L  E NC I N E E RS  -
-

- . D I S T R i C T  OF C O L L T M R I A  SO C I E T Y  OF P R O F r S S I O N A L  ENG ~~~~~~~~~~~ ~
S TU~F I N S T IT U T E  OF R A D I O  E N G I N E F k s  INC . - ‘, ~~~

‘ - -

TV-f E C H E r 4 I CA L  I~NC i N EE~~S CL Uf l  OV - W A S I 4 I N C 1 ~ Th S - 
•. . 

- .

WAcI-nNt~TON ~ O C I E T \  OI~ E N C I N E P R S  S .  -
~ -. - 

S~ 
-

~ f A C L k N I ~P gINCSIIUR’~’ & STE NHYU SE*  A R C H F~FCT - . 

S -
~~ -~~~~

fF T Y a O~~~E~~~~E N N E E R ~~~~~~~~~~~~~~~~~~ 1 

~~~~~~

~I1E PURPOSE OF T
I-u S VAULT 

_ _ _ _ _ _ _  *~ 
-

.

To cope wit h the expanding technok)gy. our  society must
he assured of a continuing supp ly of rigorousl y traine d
and educated engineers. The School of Engineering and
App lied Science ~ comp letel y committe d to this ob-
ject i ye.

~

- -

~ 

—-- --- -~~~ - --— - - - - - ----- -~~~~ - -  - - - - - --~~~~ --~~~~~
_----- --- - _


