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I INTRO DU CTION

• This study describes and evaluates a tracking algorithm that can

follow a maneuvering target by filtering time-sequenced measurements

from multiple observers . The algorithm can be used when several units

are passing targeting data to a single unit on which the tracking

solution is computed. The data may consist of (1) x-and-y (latitude-

and-longitude), (2) range-and-bearing, (3) bearing-only, or (4) course-

and-speed measurements , along with estimates of the measurement errors.

The tracking algorithm is applicable to the 0TH (over-the-horizon)

targeting situation shown in Figure 1. Here two ships cross-fix the

target ship by using towed-array bearing-only measurements, and locate

each other by range-and-bearing measurements using an intermediary

helicopter as a radar target. The helicopter also relays the targeting

information from the second ship to the first ship. The tracking

algorithm was specifically designed for this kind of problem , in which

the locations of several units (both friendly and target units) are

unknown but can be deduced by time-processing position and velocity

measurements , especially bearing-only measurements from an ESM receiver

or a passive sonar. The tracking algorithm is called MURLOC, an acronym

for Multiunit Relative Localization.

MURLOC has several unique characteristics that make it a versatile

tracker in 0TH targeting scenarios:

. All units are correlated by employing a single state vector
• that contains the positions and velocities of all the units,

instead of mult ipl e state vectors , one for each unit. The
reason for using a super-state vector is to capture the
statistical correlations between units. Thus a range-and-
bearing measurement on an own-force unit automatically
adjusts the estimates of relative position on all units
including the target.

1
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FIGURE 1 0TH APPLICATION OF MURLOC

• Measurements are transformed to Cartesian coordinates before
they are filtered ; thus MLJRLOC uses a standard Kalman filter
without having to compute partial derivatives at predicted
positions, as done in an “extended” Kalman filter. This
“transformed-measurement” approach avoids problems that are
inherent in extended Kalman filters .

• Bearing-only measurenwiits are treated as range-and-bearing
measurements by estimating a pseudo range using a special
“ellipse tangent” algorithm. The range-and-bearing values
are then transformed to Cartesian coordinates and filtered .
The “transformed-measurement” approach to filtering and the
“ellipse tangent” algorithm for bearing-only measurements seem
to work very well in the tnultiunit-type scenario.

• A model noise covariance matrix is adapted to the measurement
residuals so that unknown maneuvers can be tracked . MIJRLOC’s
maneuvering-target adaptive algorithm is simple and seems to
be effective.

2
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The impetus for creating MURLOC was the ship-launched Harpoon

targeting problem of (1) processing data from radar , sonar , and ESM

sensors that are located on the Harpoon ship and other ships or air-

craft , (2) tracking several targets and own-force units at the same

time , and (3 )  producing decision aids to help determine when to launch

a missile. The main computations needed are the fire-control solution ,

the estimate of errors associated with the solution , the probability

that the Harpoon missile seeker will illuminate the target , and the

probability that the targe t is within counterattack range.

These shipboard computational requirements can be marginally

satisfied with a multiplicity of plotting techniques , tables , graphs ,

slide rules , and hand-held calculators . Many different techniques must

be developed for the many different situations that can arise. These

techniques will be complicated if they are designed for situations in

which the data are distributed in time and come from sources other than

own-ship sensors. The calculation of targeting errors and other decision

aids will be quite difficult withou t automated methods.

An alternative to the multiplicity of techniques is to use a

tabletop programmable calculator (such as the Wang 2200 or HP 9830) to

compute the required decision-aid and fire-control parameters. The

idea is that all the various targeting methods can be integrated into

one system by developing programmable-calculator software that can

incorporate each new measurement as it arrives in the command center.

The data may be from own-ship radar, sonar, or ESM; another ship ’s

sensors; or the LAMPS helicopter ’s sensors . In addition to originating

from different sources, the measurements may be staggered in time, may

come in late, or may be out of time order. The targeting software

should be capable of calculating tracks on several targets at the same

time; and since the position of friendly units is important to targeting

solutions , the software should also calculate tracks on friendly units.

MtJRLOC was created as a prototype algorithm for the tracking

portion of such a targeting system. So far, only the rnultiunit , bearing-

only, and maneuvering-target tracking capabilities of MURLOC have been

investigated . A major unanswered question is whether or not the

3
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processing of MURLOC’s super-state vector requires so much computation

time on a tabletop programmable calculator that the tracking solution

cannot keep up with the data. The major factors in this question are

the number of units in the tracking problem and the data rate. Another

question is how to filter data tha t arrive out of time sequence.

Because MURLOC is a recursive algorithm , solutions would probabl y have

to be saved periodicall y so tha t the tracker could be initialized at

the closest solution to the old (bul newl y arrived) measurement , and

then recycled through the stored measurements following that old

measurement .

Whether or not MIJRLOC is used in a shipboard targeting system , it

can stand alone as a method for ana lyzing multiunit tracking scenarios .

MURLOC can be used to process a time sequence of simulated random

measurements and predict the target track. Many replications of the

random-measurement sequences can be processed and the average estimated

track compared to the true track. This was, in fact , the method used

to investigate MURLOC’s tracking capability.

A time sequence of average position and velocity errors was

computed using MIJRLOC on 50 replications of a maneuvering-target scenario.

M[JRLOC was compared to another tracking algorithm that used a batch-

processed least-squares method . The comparison analysis showed that h
MURLOC tracked the maneuver quite well , especially in estimating the

target ’s relative position . MURLOC does, however, underestimate its

own errors .

The least-squares algorithm is also a product of the stud y.
Research on how to perform weighted nonlinear least-squares computations

and how to select the best set of measurements resulted in a tracking

methodology that , with further research, might be usefu l in targeting

software. In any case, the use of the least-squares algorithm provided r

a good benchmark for judging MURLOC’s tracking capability.

The MURLOC computer program is coded in FORTRAN for SRI’s CDC 6400

computer. The source deck is approximately 500 cards , and with array

dimensions that can accommodate 10 units , the program takes about

4
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15 ,100 words ot memory. The running time depends on a nunther of factors;

for example , one repl ication of a scenario with 3 units , 1( t ime steps ,

and 5 measurements each time step, required about 16 S&~. u t i d -  1

time . The MIJRLOC computer program source code is l i - ’ted i t  A ,~~ t t , d i x  A .
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II MIJ RLOC TRA CKING ALGORITHM

• This chapter describes the major features of the MURLOC algorithm
and gives an example of how multiunit measurements can be processed

with MURLOC.

A, MURLOC Description

MIJRLOC can accept time-sequenced position or velocity data on

multiple targets from multiple observers. M(JR.LOC processes the input

data at each step in time and estimates the position and velocity

vectors, the range and bearing between units , and error ellipses .

MURLOC uses a Kalman filter with one multiunit state vector that causes

full correlation between units. A unique adaptive covariance scheme

reduces the problem of the linear motion assumption. Table 1 defines

the various symbols that are used in this chapter, and Table 2 summarizes

thee major equations that are the essence of the MURLOC algorithm.

~ I. State Vector

MtJRLOC uses one multiunit state vector. For example, if there

are five units in the problem , the state vector will have 20 components;

the first four components are the position and velocity (x y ~ ~‘) of the

first unit, the next four components are the position and velocity of

the second unit , and so on. The covariance matrix of this example is a
• 20-by-20 matrix; thus, the state values can become correlated , not only

- by position and velocity correlation on a single unit , but also by

correlation between units.

MIJRLOC is designed so that units report data on other units;

no distinction is made between friendly and enemy units other than

knowing which is which by unit number. Thus, data from a radar fix on
a companion ship are processed in the same way as data from an ESM fix

• 
. 

on an enemy ship. This design was chosen because of the real-world

- •  7
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Table 1

FILTER VARIABLES

Variable Definition Dimension*

Estimate of the state vector, given the 4n-by-l
measurement at to (the filtered state ) - 

-

P Covariance matrix of x 4n-by-4n
0 0

y Measurement vector at time t
1 

2 -by-i

R Covariance matrix of y 2 -by-2

x Estimate of the state vector at t1 before 4n-by-l
the measurement at t1 is filtered (the
predicted state)

P Covariance matrix of x 4n-by-4n

F State transition matrix from time t 4n-by-4n
tot 1 

0

Q Model noise covariance matrix 4n-by-4n

M Measurement matrix (state-to-measurement 2 -by-4n
trans formation)

r Predicted measurement residual error 2 -by-I
(also called “innovation” )

S Covariance matrix of r 2 -by-2

K Filter gain matrix 4n-by-2

Estimate of the state vector, given the 4n-by-l
measurement at t1 (the filtered state)

P1 Covariance matrix of x1 4n-by-4n - ‘

* n Number of units being tracked .

~~~ 
•
~~~~~~~~— 

- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



Table 2

MU RLOC ADA PTIVE ALGORITHM

Filtered State at Time to

x
0

P
0

Measurement at Time t1

y

R

Predicted State at Time t1

x =  Fx
0

r y  - M x
S = R  + M F P  FT MT

~~~~~~~4r
T
~~~

1
~~~

q = ( r
1 

r
2 

r1/i r
2/T 

)T

Q =~~~q q
T

P = F P
0 
FT + Q

Filtered State at Time

K = P M
T (R + M P MT)i

L 1 - K M

x1 x + K r

P
1

L P L T + K R K T

L —
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prob l em of t racking friendl y u n i t s , In addi t Ion to the ino rt obvious

problem of t racking enemy u n i t s . Beca use the p o s i t i o n — v e l o c i t y  state

of f r iendl y u n i t s  i s part of t he proble m , the friendly units ’ st~itc

vectors must also be estimated. The only way this can be done withou t

restrictions and ad hoc assumptions is to incorporate all state vectors

into one large state vector . Althoug h this appr oach requires considerable

computation to process one measurement , It is beneficial because It uses

data properly . For example , the range—and—bearing data from Unit on

Unit 5 will , in general , change the state estimates of ~jj the units

because of past Interaction among them.

The state vector at t ime t is denoted x • The estimate of
- 

0 0 
-

x is denoted x , and the covarlance matrix of the error in x Is
0 0 0

denoted p • The state at t ime t = t evolves from the state at t ime t
0 1 o

by:

x F x  + w
0

where F is the transition matrix from to to t1, and w Is a random

vector that Is normally distributed with zero mean and covarlance Q. As

discussed later , the Q-matrix is defined as a function of the predict ed

measurement residuals and Is the mech anis m for  adap t ing  the filter for

maneuvering targets. The transition matrix , F, Is built up fr ~~iI sub-

mat r i ces , f :

fO-

where the submatrix f Is given by:

i o ~~ & - a

O l O T  
-

f
o 0 1 0

9 ° ° L
and ~ is the t ime step: i- t 1 — to.
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2. Measurements

Four kinds of measurements can be used in MIJRLOC: (1) x-and-y

position, (2) range-and-bearing , (3) bearing-only, and (4) course-and-

speed. Standard deviations of errors in the measurements are also input

parameters. Measurements are processed each time step, time steps may

be variable , and multiple measurements at any one time may occur.

Measurement errors are assumed to be uncorrelated from one measurement

to another. Als o, range errors, bearing errors, course errors, and speed

errors are assumed to be uncorrelated with each other. However, the

• x-and-y position errors are assumed to be correlated and are given in

terms of error ellipse parameters--the standard deviations along the two

principal axes, and the angle from North to the major axis. Latitude -

and-longitude measurements can be processed by first transforming to a

Cartesian coordinate system a few hundred miles in size. Latitude-and -

longitude measurements are the assumed origin of the x-and-y position

measurements,

Before being filtered , the measurements are transformed to

Cartesian coordinates and the coordinate errors are approximated by

linear functions of the measurement errors. Usually tracking algorithms

use an “extended” Kalman filter that linearizes the measurement equations

around the predicted state by calculating first-order partial derivatives.

This procedure is acceptable if the true state values are inside the

linear region; however, if the predicted state is in error by a large

amount, the tracker will behave poorly. Instead, MURLOC linearizes

around the data point before filtering, and thus avoids the problem of

calculating partial derivatives at the wrong place .

Range-and-bearing, bearing-only, and course-and-speed measure-

ments are transformed; x-and-y measurements do not need to be transformed.

For example, range-and-bearing (r,8) are transformed into a measurement

vector, y, by:

Ir sin e
y =

Lr cos e

- .  II
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The measurement covariance, R, is calculated by an approximation that

assume s tha t the standard deviations of the errors in range and bearing

are small:

cos 
~ 
sin el 1r 2c~

2 
0 1 cos e -sin e

= 

[-sin e cos e]  
~ 

e 
a~j sin e cos

Beari ng-only measurements require an estimate of range before

the transformation can be performed. The range is estimated from the

predicted positions and covariance of the observer and target units.

The estimated range is calculated by expanding (or contracting) the

predicted relative error ellipse until the ellipse just touches the

measured bearing line; the tangent point then defines the estimated

range, as shown in Figure 2. The “predicted relative error ellipse”

is the error ellipse that is relative to the observer; it is computed

from the predicted covariance elements of the observer and target (the

equations are in Subroutine RE PORT, which is in Appendix A). The

standard deviation of range error is assumed to equal the estimated

range. Thus, as shown in Figure 2, the bearing-only measurement is

transformed to a long, thin ellipse that lies along the measured bearing

BEARING MEASUREMENT

SIGMA BEARING
X

ESTIMATED RANGE

SI GMA RANGE - EST I MATED RANGE

ESTIMATED
RANGE /
/ PREDI CTED TARGET POSITION

_____ PRED I CTED RELATIVE ERROR ELLIPS E
EXPANDED TO TOUCH BEA R ING L I NE

OBSERVER

FIGURE 2 LINEARIZATION OF BEARING-ONLY MEASUREMENT
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and is centered on the estimated range , The measurement vector, y, and

the covariance mat r ix , Fl , are then computed as though the bearing-onl y

measurement were a range-and-bearing measurement . 
-

Even though a psuedo-range is used as data , and the assumption

of small range error is violated , the above method of tracking with

bearing-onl y data seemed to work quite well. Another method for estimating

range was tried but it introduced large range errors after a target

maneuver . The other method estimated the range by the intersection of a

line that was perpendicular to the bearing l ine, and contained the

predicted target position. The other method was cotnputationally simple ,

but the “ellipse tangent” al gorithm shown in Figure 2 proved to be far

superior to the “perpendicular intersection” algorithm.

Course-and-speed (‘,- ,s) measurements are transformed in the same

way as range-and-bearing measurements , except that the measurement vector

consists of velocity components:

s sin ‘y 1y 1  I~L s cos ‘I’ J

The covariance , Fl, is also similar to the range-and-bearing case:

R = 

cos ~ sin ~, f 2  ~ 
2 ~ 

cos ~, -sin 
~

-sin y cos ‘~‘ [0 02 [sin ~ cos ‘y

where the input parameters a~ and 02 a re the pr inc ipa l -ax is  components

of the velocity error elipse: 0 1 is perpendicular to the velocity

vector, and 0 2 is parallel to the velocity vector. This method of input

is used instead of course and speed sigmas so that zero-velocity error

distributions can be input easily. Course and speed measurements are

thought of as a polar-coordinate representation of the velocity vector ;

the error along the vector is assumed to be uncorrelated with the error

13
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acros s the vector .  When the course and speed standard deviat ions

are small , the approx imation:

a.Y ~2 s

can be used to estimate the velocity error ellipse .

By l1neari~ ing the inpu t data , the measurement vector , y ,

becomes a random vector that is a linear function of the true state

values . X :

y M X + v

where 14 is the measurement matrix , and v is a random vector that Is

c~ rmatly distributed with zero mean and covariance , Fl.

The value of the measurement matrix , M, depends on the kind

of measurement and the units Involved . 14 Is represented as a matrix of

• submatrices:

H ( M~ M,~ . . H t
where k = i ,2,..,n is the Index of a unit being tracked . For x-and-

position measurements, 14 is determined by:

1 1 0 0 0 1
A

Lo  1 0 0

A for  k index of the report ing un i t

0 otherwise .

- 

_ 
For range-and-bearing or bearing-only measureme nts, M is determined by:

A for k index of the targe t unit

for k index of the observing uni t

0 otherwIse .

14
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For course-and-speed measurements , M is determined by:

10 0  1 0
B =

• L o o o i

B for k = index of the reporting unit

0 otherwise .

3. Predicted State

MURLOC assumes that the units move with constant course and

speed. The estimated state at time t = t
1 
is predicted from the estimated

state at t

x F x
0

The predicted covariance is not , however , the usual F P F T matrix wi th
some constant mode l noise, Q, thrown in . Instead , the predicted co-

variance is required to be consistent wi th the measurement by making Q
a function of the measurement residuals. The residual vector, r, is

supposed to be normally distributed with zero mean and covariance matrix, S:

I
S = R + M F P FT MT.

However , when a unit changes course or speed , the residual vector can be

many standard deviations from zero and the statistics of r are not

what they are supposed to be because the assumptions of the mod~1 are

violated. A procedure that is philosophically similar to Jaz;linski l sl*

(but not mathematically the same) is used to let the model noise Q
adapt to the residuals.

The adaptive algorithm is very simple. First a beta factor is

calcul ated:

T -l
= I - exp (-

~~ 
r S r).

* References are listed at the end of this report .
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• An error vector , q, is then defined in terms of the residual vector ,

but dimensioned the same as x:

q =  (00... 4k •,, 0 0 )
1

where k is the index of the targe t unit. The vector 
~~ 

depends on

whether the measurement is a position measurement (x-and-y, range-and-

bearing , or bearing -only) or ve l ocity measurement :

Position: = ( r
1 

r2 r1/T r9/1 )

Velocity: 
~~~ 

= ( 0 0 r
1 

r9 ).

Finally, the model noise , Q, Is constructed by taking the outer product

of q with itself and reducing the resulting matrix by the beta factor:

Q = ~ 3 q q
T

The predicted covariance of ~ is then given by:

P F P FT + Q

The purpose of the adaptive model—noise matrix , Q, is to open

up the predicted covariance so that the most recent measurement has a

significant influence on the filtered state. Whe n the residual vector

is large, the Q matrix will also be large , P will then be large, and the

relative ly smaller measurement covariance, Fl, will cause the filtered

state to be drawn to the measurement . This idea is shown in Figure 3 . -

Residuals can be large when a unit maneuvers ; unfortunatel y,

residuals can also be large for large but natural fluctuations in the

measurement . Thus, there is a tradeoff between (1) makIng the algorithm

sensitive to target maneuvers and letting it be influenced by bad data ,

and (2) decreasing the maneuver sensitivity so that bad data can be

smoothed out. For the b.~ta factor as defined above, the algorithm is

rather sensitive to the residuals , as can be seen in Figure ~~~. For cx-

ample, a two-sigma residual produces ~ 0.86 and will cause a moderate-

to-large influence on the predicted covariance. To reduce the influence

16
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of residuals , the beta factor can be raised to some power; for example .
S

will cause the al gorithm to react only to very large residuals.

The construction of the Q-matrix was intuitive rather than

based on a probabilistic derivation . Our desire was to create an

algorithm that was continu ous--that is, a Q-matrix that does not suddenl y

jump in value as the residual becomes large.

An example of a Q-matrix tha t does jump is the following:

let Q equal zero if the residual is ins ide , say.a two-sigma elliptical

17
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window ; and let Q equal a given noise matrix if the residual is outside

the window . Another similar , but more sophisticated method is Bayesian

in nature : Let the algorithm decide between a maneuvering or nonrnaneuve r-

ing hypot hesis. The maneuve r covariance matrix , the a-priori probabilities ,

and a tactical value-of-decision matrix can be inpu t to reflect the

scenario conditions . In both of the above methods , the algorithm must

choose between two (or more ) predicted covariance matrices each time a

measurement is taken. These decision-type algorithms can underreact to

a slowly maneuvering target that stays inside the window, and overreact

to bad data that fall outside the window . In an attempt to smooth out the

under- and overreaction properties of the decision-type algorithm , the

corttinu ous-Q algorithm was created.

• TThe choice of q q as the basis matrix for Q was prompted

by the desire to enlarge the predicted state covariance only in the

direction that is indicated by the data. This procedure keeps the Q-
matrix as small as possible but at the same time makes the predicted

state covariance , P, consistent with the residual vector , r, The

velocity components, r
1
/1 and r

2/T , are included in the q vector

because the residual position error is assumed to be caused by a maneu-

vering target that has changed course and speed ; therefore the velocity

submatrix of the predicted covariance must be increased to let the

state velocity move to a new value.

When multiple measurements occur at the same time, the order

in which they are filtered affects the solution. The reason is tha t the

covariance matrix , P, is a function of the data , whereas in a nonadaptive

Kalman filter the covariance is independent of the data , and the order

in which the simultaneous measurements are filtered makes no difference.

With the adaptive algorithm, the solution will be better for one ordering

of simultaneous measurements versus some other ordering . The best order

cannot be determined as the calculations are made ; this nonoptimum

property of the MU RLOC adaptive algorithm is part of the price that is

paid for the capability of tracking a maneuvering target while using a .

constant-velocity model .

18 -
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Two ways of computing simultaneous measurements were tried.

The first method computed the Q-matrix for the first measurement only,

and then let Q equal zero for the rest of the measurements. The first

method did not perform as well as the second method , in which Q was

computed for each of the measurements. For the second method , the

value of tau in the velocity error computation was held constant and

was set equal to the time duration between sets of measurements. The

second method caused more fluctuations in the solution , especially in

the velocity components , but it seemed to react to a maneuvering target

more quickly than the first method .

4. Filtered State

Once the predicted state vector and covariance , x and P, were

calculated , standard Kalnian filter equations were used to compute the

filtered state vector and covariance matrix , x~ and P1:

K = P MT (R + M P MT)i

L = I - K M (I Identity matrix )

x
1 x + K r

P
1

L P L
T + K R KT

The above covariance equation was used instead of the more common

P1 
= (I - K M) P equation , because the above method (1) produced a

symmetric , positive definite matrix, and (2) was less sensitive to

numerical errors in the filter gain matrix , K.

B. MURLOC Example

As a way of describing the input and output format of the AURLOC

computer program, a four-unit scenario was created as shown in Figure 5.

There are two observer ships, one helicopter, and one target ship. The 
r

r first ship (Unit 1) measures a sonar bearing to the target ship (Unit 4)

• and launches the helicopter (Unit 3) to relay information and serve as

a radar target. The first ship measures target bearings, radar range-

and-bearing to the helicopter, and own course-and-speed. The second

19
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FiGURE 5 FOUR-UNIT SCENARIO FOR THE MURLOC EXAMPLE

ship (Unit 2) also measures target bearings , radar range and bearing to

the helicopter , and own cour se and speed , an d then re lays this informa-

tion to the first ship. The sonar bearing measurements from both ships

are assumed to be smoothed for 10 minutes and have a standard deviation

of 1.5 degrees. Table 3 shows the assumed sigmas of the various

measurements.

Measurements from Unit 1 are assumed to be processed 5 minutes

late and measurements from Unit 2 are processed 10 minutes late. Table 4

shows the time sequence of measurements. “Data time” is the time when

the measurement is taken; “filter time” is the time when the measurement

is processed. For example, at time t = 10, Unit 2 measures (1) bearing

20

H 
_______ -. - ._ _  

_ _ _ _ _ _
— 

-— - 
-

-— —— - - -.— —
~~~~~~~~ 

- .._ •_______s___ •__ __
~~~~~~~~~~—

•__-
~

-_ -
~~ 

—



Table 3

STANDARD DEVIATION OF MEASU REMENT ERROR S
IN THE MURLOC EXAMPLE

Measurement Sigma

*Bearing (1,4) 1.5 deg

Bearing (2,4) 1.5 deg

Range (1,3) 0.5 nmi
Bearing (1,3) 2 deg

Range (2,3) 0.5 nmi
Bearing (2,3) 2 deg

Course (1) 1.9 deg

Speed (1) 1 kt

Course (2) 3.8 deg

Speed (2) 2 kt

* Bearing (1,4) is the bearing
• from Unit 1 to Unit 4, etc.

to Unit 4, (2) range and bearing to Unit 3, and (3) own course and speed.

These data are relayed to Unit I via the helicopter, and 10 minutes later

(t = 20) they are filtered onboard Unit 1. Table 4 shows that the example

data are mostly bearing measurements to the target with occasional radar

measurements on the helicopter and course-and-speed measurements on the

ships.

The numbers listed in Table 4 are the true values of the parameters
• calculated at the data time; thus, the tracking example uses measurements

with no errors. Tracking results produced by zero-error measurements

cannot be used to evaluate the tracking algorithm, but instread can be

used to roughly estimate the magnitude of tracking errors that would be
expected if the measurements were randomized around the true values.

Zero-error measurements were used for the MURLOC example because the

• F 21.
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Table 4

LIST OF MEASUREMENT S FOR THE MURLOC EXAMPLE

Time Sonar Bearing Radar Range Bearing Course , Speed
(mm ) (deg )

________ 

(nini , deg) (deg, k t )

Data Filter Units 1 ,4 Units 2,4 Units 1,3 Units 2,3 Unit I Unit 2

0 5 081.9 000, 15

5 10 083.6 5 .6 , 122.2

10 20 040.8 54 .1, 359.4 000, 15

15 20 087 .2

20 30 040.9

25 30 091.4 27.8 , 122.2 025, 18

30 40 041.2 47 .6 , 016 .51
35 40 096 .4 Effec t  of these
40 50 041.4 

measurements sho~~ in
Appendix B

50 100.1

50 60 040.0

55 60 102.2

60 70 038.5

65 70 104 .6

70 80 036.9

75 80 107.5

80 90 038.5

85 90 109.5

90 100 043.3

95 100 111.2

100 110 
— 

048.0 17.3, 126.1 53.2, 014.7
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emphasis of this section is on the input and outpu t format of MURLOC

rather than Its performance. Tracking performance is the subject of

the next chapter.

1. T -p ~~

There are three versions of the MURLOC computer program:

(1) a time-share prototype version that requires the data to be entered

interactive ly, (2) a generalized version that uses card inpu t , and

(3) a specialized version that uses randomized data containe d on a disc

• file . The card-input version of MURLOC is listed in A ppendix A and is

the subject of this section. The file-outpu t version of MURLOC was

used in the Monte Carlo performance analysis of the next chapter.

Table 5 shows the data card format that is used to input

measurements to the program . For example , the card for the bearing

measurement from Unit 2 to Unit 4 at time t = 10 reads :

TP TD KEY KO K Xl X2

20.0 10.0 3 2 4 40.8 1.5

Values for X3 through X5 do not need to b&~ punched for a bear in g
• 

• measurement card .

To initialize the program , Card I contained TD = 0, KEY 6 ,

and KO — 4. This card told the program to initialize the state at

t = 0 and to set the number of units to 4. Card 2 was a position

measurement for Unit 1 so that the coordinate system could be defined.

Card 3 was a course-and-speed measurement on Unit 1. Card 4 initialized

the position of the target by using a range-and-bearing format; bearing

was measured (81.9°) and range was estimated. The bearing-only format

could not be used for the first bearing measurement because the position

• of the target was not yet defined; therefore a large , but reasonable ,

value of range was used--in this case , 50 nmi , as compared to the true
value of 70 nmi . Card 5 set the course and speed of the target to zero

and the velocity sigmas to 30 knots. Cards 6 through 34 contained the

j data shown in T~ble 4 starting with the second line . The final card

contained KEY — 7 to end the run.
23
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Table 5

DATA CARD FORMAT

Variable Meaning Units Columns Format*

TP Time at which the measurement mm 1-10 F
is filtered

TD Tim e of measurement mm 11-20 F

KEY Indicator : - 21 1

1 Position measurement
2 Range-and-bearing

measurement
3 Bearing-onl y measurement
4 = Course-and-speed

meas ur ement
5 = Outpu t
6 = New run
7 = End

KO Index of observing unit - 25 1

K Index of target - 27 I

Xl Key:

1 = x-position~ nmi 3 1-40 F
2 Range nmi.
3 = Bearing (true ) deg
4 = Course deg

X2 1 y-position nnti 41-50 F
2 = Bearing (true) deg
3 = Bearing sigma deg
4 = Speed kt

X3 1 — Minor axis sigma mimi 51-60 F
2 — Range sigma mini
4 = Sigma perpendicular to

velocity vector

X4 1 Major axis sigma mimi 61-70 F
2 = Bearing sigma deg
4 — Sigma parallel to kt

velocity vector

X5 1 Angle to major axis deg 71-80 F
from North

* F — Floating point , I Integer.

Value of KEY parameter determines the meaning of Xl through X5.

24
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2. Output

A partial listing of the output from the example scenario is

contained in Appendix B. The program prints out the information con-

tained on a data card and then prints the results of filtering those

data. The filtered results are : (1) the time of the data and the time

of the calculation , (2) the location of one unit relative to another,

and (3) the position and velocity of each unit. The relative location

parameters are:

OBSR UNIT RNG BRC SIGI SIG2 ANG CEP .

Under the OBSR and UNIT headings are listed all combinations of

observer and target unit indices . RNG and BRG are the “predicted range

and bearing”; this parameter pair is a polar coordinate representation

of the vector from the predicted position of the observer to the target

(RNC and BRG are not average values of range and bearing). SIGI and

SIG2 are the predicted minor axis and major axis standard deviations , and

ANG is the angle from North to the major axis of the error ellipse.

The error ellipse is in a coordinate system that is relative to the

observer unit. CEP is the predicted radius of a circle, centered on the

• point defined by the predicted range and bearing, such that there is a

50 percent probability that the point defined by true values of range

and bearing lies inside the circle. CEP is a single-parameter measure

of the three-parameter error ellipse , and is useful  in quickl y assessing
• the track quality. CEP is a function of SIC1 and SIG2; the equations

• • are given in Function FCEP, which is in Appendix A .

The output parameters for the predicted position of the units

are :

UNIT X Y SIGI SIG2 ANG CEP

- 

and the parameters for the predicted velocities are:

• CRS SPD SIGI SIG2 ANG CEP.

25
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The predicted x-and-y position of each unit is listed along with the

parameters describing the position error ellipse (SICI , S1G2, ANC , and

CEP). Error ellipses are in absolute (geographic) coordinates , not in

relative coordinates as are the range-and-bearing position error

ellipses. CRS and SPD are the “predicted course and speed” of each unit;

this parameter pair is a polar coordinate representation of the predicted

velocity vector (CRS and SPD are not average values of course and speed).

The next four parameters (SIG1 , S1C 2 , ANC , and CEP) are parameters of the

velocity error ellipse. A velocity error ellipse is used because this

is a more natural way to show the velocity covariance terms than

numericall y calculating the predicted course and speed error standard

• deviations and correlation between course and speed errors.

Figure 6 shows the results of the four-unit scenario example.

The range from the first ship to the target ship is plotted against

time. The target maneuvers at t = 40 and again at t 75 minutes, The

first maneuver is not discernible on the range plot , but the second

maneuver is more radical and is easily seen. The true range is plotted

and the tracking results using zero-error measurements are shown as a

dotted region. The region shows the approximate magnitude of position

errors that would be expected if randomized measurements were used. The

dotted region was plotted by using the predicted range plus and minus

the relative-position CEP value of Unit 4 relative to Unit 1. The

s ta i r s t ep  e f fec t  is caused by the ever-expanding predicted-position CEP
being periodicall y contracted by measurements that are filtered at

10-minute intervals. The range estimate overshoots the second maneuver

but comes back and brackets the true range. The overshoot is mostly due

to the 10-minute delay in information from the second ship, rather than

slow reaction of the tracker. Figure 6 shows that position errors of

rough ly 5 nmi can be expected in a four-unit targeting scenario involving

over-the-horizon ranges and measurement errors as shown in Table 2.
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I I I  MURLOC TRA CKING CA PABILITY

MURLOC’ s tracking capability was investigated by a Monte Carlo
analysis of tracking errors. A three-unit scenario was defined and

50 replications of randomized measurements were calculated and stored

on a disc file. Then MIJRLOC was run 50 times using the random measure-

ments; the resulting position and velocity errors were averaged and

output as measures of tracking capability. In addition to running the

MURLOC al gor i thm, two versions of another tracking algorithm were run

to compare against MURLOC. Thu s, by using the same file of 50 replica-

tions in all three algorithms , a valid comparison could be made. The

comparison algorithms employed a batch-processed least-squares methodology

that is described in part in this chapter and in detail in the next

chapter.

A. Three-Unit Scenario

Figure 7 shows the three-unit scenario used for the tracking

capability analysis. Two ships (Units 1 and 2) cross-fix the target

ship (Unit 3) with bearing-only measurements, and find their baseline

with range-and-bearing measurements. Measurement sets were 10 minutes

apart; there were 10 sets of measurements (10 time points) each

replication, and 8 measurements were made within each measurement set.

Table 6 lists the 8 measurements that were generated at each time point,

along with the standard deviations used in the randomizing the measure-

ments. A normal distribution of measurement error was used and the mean

value of the measurement of a parameter was set equal to the true value

of the parameter at the time point. There was no delay time between

measurement and calculation; in the vocabulary of the previous chapter,

“data time” equaled “filter time.” The two observing ships maintained

a constant course and speed throughout the scenario. The target ship

made a 90-degree course change at the fifth time step (t = 40 mm ), but

maintained its speed of 24 knots.

29
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FIGURE 7 THREE-UNIT SCENARIO FOR THE MURLOC TRACKING CAPABILITY ANALYSIS

At each time step, MURLOC processed the 8 measurements as 5 groups

of simultaneous measurements. The order in which the measurement groups

were filtered is shown in Table 7. Switching the order of Bearing

(2 ,3) and Bearing (1,3) degraded the tracking result slightly. Other

than investigating the above bearing switch, no attempt was made to

find the best order for the simultaneous measurements.

B. Least-Squares Comparison

A least-squares methodology was used to compare against MURLOC by

formulating two algorithms: An algorithm that decided the best set of

measuremen ts us ing an op timization procedure , and (2) an algori thm tha t •

was told when the target maneuvered and could therefore process the

best set of measurements. These two algorithms are called “self-
optimizing” and “maneuver-known,” and are discussed below. 

•
1
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Ta ble 6

STANDARD DEVIATION OF MEASUREMENTS
IN THE THREE-UNIT SCENARIO

Measurement Sigma

1. Bearing (l ,3)* 1.5 deg

2. Bearing (2,3) 1.5 deg

3 . Range (1 , 2)  0.5 nmi

4. Bearing (1,2) 2 deg

5. Course (I) I deg

6. Speed (1) 1 knot

7. Course (2) 1 deg

8. Speed (2) 1 knot

r

* Bearing (1,3) is the bearing
from Unit 1 to Unit 3, etc.

Table 7

ORDER OF FILTERING THE MEASUREMENTS IN MURLOC

Order Measurement Group

1 Bearing (2,3)

2 Range-and-bearing (1,2)

3 Bearing (1 , 3 )

4 Course-and-speed (1) h
5 Course-and-speed (2)
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1. Self-Optimizing Algorithm

The self-optimizing least-squares algorithm processed a

variable number of measurements at each tiiime step. For example, at the

n-th time step, the algorithm first processed 16 measurements:

8 measurements from the current time, t = n, and 8 from the imediately

preceding time, t = n - 1. These 16 measurements were used to estimate

10 state parameters: 2 velocity components for Unit 1, 4 position and

velocity components for Unit 2, and 4 components for Unit 3. With a

state estimate based on 16 measurements , the algorithm then calculated

a test statistic and saved it. The process was repeated using 24

measurements from time steps t = a, n - 1, and a - 2, and again a test

statistic was calculated and saved. The calculations were repeated as

many times as it took to use up all of the measurements ; thus at the n-th

time step, a - I state estimates and test statistics were calculated.

Finally, the measurement set that produced the minimu m test statistic

was picked as the “best” set to use at time t a.

The above optimization procedure was used because of the

maneuvering-target problem. If tracks were always straight lines, then

the -alculation of state estimates would utilize as many measurements

as possible. But the chance of a maneuvering target required the IJ

algorithm to decide what measurements to use , since measurements taken

before a maneuver cause large errors in estimating the state after the

maneuver. Ideally, the optimization procedure would process all

measurements from the time of the maneuver onward. However, in practice,

the test that is used to determine the measurement set necessarily

operates on random values and cannot always determine the truly best set

of measurements .

2. Maneuver-Known Algorithm

The maneuver-known, least-squares algorithm was allowed to H
process the truly best set of measurements each time step. For example ,

at Time Step 9 , the measurements at 9, 8 , 7 , 6 , and 5 were used , but

measurements before Step 5 were not used because they occurred before the

target maneuver. The reason for defining the maneuver-known algorithm 
•
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was to show the best possible use of the measurements . Since it was a

batch-processed least-squares methodology that is allowed to know the

t ime of target maneuver, the algorithm produced a lower bound on the
tracking error. It must be remembered, though, that MURLOC and the

self-optimizing least-squares algorithm were real trackers, whereas the

maneuver-known algorithm was not real, in the sense that it could not

calculate state estimates based solely on measurements.

C. Results

The position and velocity errors as a function of time were

averaged over 50 replications and used to determine tracking capability.

1. Position Errors

“Position error” is defined as the distance from the true

position of the target to the estimated position in a coordinate system

that is relative to Unit 1. Position error is thus relative position

error, and it is the magnitude of the vector difference of the estimated

position vector minus the true position vector, using Unit 1 as the

origin for the two vectors.

Figure 8 shows the average position error as a function of time

for MURLOC and the two least-squares algorithms . MURLOC performed very

well when compared to the lower bound.

The fact that MEJRLOC and the self-optimizing algorithm

performed about the same suggests that the optimizing procedure could be

improved for the least-squares tracker. The test statistic that was

used is related to the sum-of-squares of the residuals. Another test

statistic is suggested in the next chapter, but we did not have the

resources to investigate it or other alternative self-optimizing

procedures.

Figure 9 shows the percent of rep lications for which the posi-

tion error is less than the estimated CEP of Unit 3 relative to Unit 1.

For each replication and at each time step, CEP is estimated from the

• covariance matrix. This single-parameter estimate of position error is
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useful in making targeting decisions ; however, CEP is a random variable

and may not represent the actual position errors. Figure 9 indicates

that, in both MURLOC and the self-optimizing least-squares algorithm,

the CEP values were smaller than they should have been. If CEP were

est imated better , approximately 50 percent of the replications would

result in position errors less than the CEP values .

The reason for the overly optimistic estimate of the error is

not known, but since the maneuver-known algorithm approached the

theoretical curve better than the other two algorithms, optimw i use of

the data may play an important part in correctly estimating error

variances.
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2. Velocity Errors

“Velocity error” is the distance , in velocity space , from the

true velocity potnt to the estimated velocity point of Unit 3. In othei
• words, velocity error is the magnitude of the vector difference of the

estimated velocity vector and the true velocity vector of the target.

Figure 10 shows the average velocity errors as a function of

time for the 3 tracking algorithms. Even at best , 10 knots error is not

• too impressive , for MURLOC or the self-optimizing algorithm, but the

long-range geometry combined with the 1.5-degree bearing sigmas make the

estimation of velocity most difficult. The maneuver-known algorithm

results are significantly lower , and show the improvement that might be

possible with an accurate maneuver detector .

Even though the maneuver is known to occur at t 40 mm , a

large velocity error is recorded for the maneuver-know n al gorithm
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because the velocity estimate was based on data from Time Steps 1

through 5. The target course estimate was close to 315 degrees, but the

program defined the target’s course at Step 5 as 045 degrees, whereas

• actually the course is both 315 and 045 degrees. Thus, a large velocity

error shown at the time of maneuver is a result of a programming defini-

tion, rather than a result of estimation difficulties. These comments

also apply to the two other algorithms.

Figure 11 shows the effect on the MURLOC results when the
bearing errors for both Bearing (1,3) and Bearing (2,3) are drawn from

a normal distribution with a standard deviation of 1 degree instead of

1.5 degrees . The improvement indicates that the velocity errors are

signif icantl y af fected by the underl ying error structure of the scenario.

Figure 12 shows the percent of replications that had velocity

errors less than the estimated velocity CEP . The results show tha t 
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MURLOC and the self-optimizing algorithm were as overly optimistic in
velocity estimates as they were in position estimates. The maneuver-

known algorithm again approximates the theoretical.

3. Summary

The Monte Carl o results for the defined scenario show that

MIJRLOC can track a maneuvering target, that the target position errors

in relative coordinates will be close to the lower bound , and that the
• target veloci ty erro rs will be reaso nabl y small, as compared to a

self-optimizing least-squares method . MURLOC estimates its own errors

• smaller than they reall y are , and theref ore decisions based on error

• estimates would have to take MURLOC’ s overl y optimistic behavior intoL account . An examination of other scenarios and other least-squares
optimization procedures would undoubtedly add to the knowledge of
MURLOC’ s tracking capabil i ty ,  but the above basic anal ysis does show
that MURLOC is a reasonabl y good tracking algorithm.
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IV TUE COMPAR ISON ALGORITHM

The tracking capabi l i ty  of MURLOC was compared to the capabil i ty of

another tracking algorithm that employed a batch-processed self-optimizing,

least-squares methodology. Upon receiving measurements at the n-th time

step, the self-optimizing algorithm computed an estimate of the state

vector using measurements from time n and a - 1; then it computed another

state estimate using measurements from time n, n - 1, and n - 2; and so
on down to the f i r s t time step. The a - I state estimates were checked
to see which one produced the smallest value of a defined test s t a t i s t i c ;

the chosen one was then used as the best state estimate at t ime step a.
State estimates were calculated by processing measurements in a nonlinear

weighted least-squares algorithm. The algorithm employed an iterative

method to find the best least-squares solution. The sections that follow

describe the comparison algorithm in detail.

A. Least-Squares Problem

At each time step, a, a stat e estima te , z ,1~ (where p = 1 to n - 1),

is computed such that  a sum of weighted squares is minimized . Th e sum
of squares , G , is given by:

~~~ - 

~~k ~~~~~~ 
- F~ (z )]

2

/M
~

for t ime-step summation ind ices k p to a, and measurement indices

j a ~ to 8. The actual state vector at t ime a is denoted z~ , the

measurements at time k are denoted mj~, and the measurement models at

time k are denoted F
1~
(z); these three objects are defined below. The

measurement variances at time k are denoted M~; they are input parameters.

There are n - 1. s ta te  estimates, ~~~ a t time step a, and one of
them is bet ter  than the others . The best one is found by computing a test
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statistic, S , and choosing the state estimate that produces the smallest

value S . The test statistic is defined in Section C of this chapter.pn

1. State Vector

At each time, a, where a ranges from 2 to N, an estimate of

position and velocity for each of 3 units is required. This estimate is

based on a contiguous time-sequence of measurements. Let

x = The x-coordinate of Unit i at time ani
= The y-coordinate of Unit i at time a

x = The velocity in the x-direction at time a

= The velocity in the y-direction at time a

where i = 1,2,3 is the unit index . Positi on is expressed in nautical

miles and velocity is expressed in knots. The state vector has 10 com-

ponents and is defined as:

. . . . . .
Z~~ = (x 1 ~‘nl X

a2 ~
‘n2 Xn2 ~

‘n2 
X

n3 )‘~3 Xn3 Y~3
)

It is convenient to let z denote the j-th component of z
nj a

The state vector does not contain the x and y positions of

Unit 1 because only the relative positions need to be estimated. In

effect, the x,y-coordinate system is redefined at each time step rela-

tive to the position of Unit 1.

2. Measurement Vector

The measurement vector at time n is defined as:

/ 1  8\T
m = tin . ..  m

a \ n  a

where the m3 ( j  — 1 to 8) are defined in Table 8. We assume that m is
n n

a random vector distributed as a multivariate normal deviate and that

the components of in are uncorrelated. We call N the covar iance mat rix
of m and use M~ to denote the j-th diagonal term of M .a a n

4
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Table 8

DEFINITION OF MEASUREMENTS FOR THE COMPARISON ALGORITHM

Symbol Meaning

Bearing (l,2)*

2
fl\( Bearing (1,3)

Course (1)

4
Range (1,2)

5
Speed (1)

Bearing (2,3)

7
Course (2)

8 Speed (2 )

*Bearing (1,2) is the bearing from
Unit 1 to Unit 2 at time step k.

3. Measurement Model

A model of the measurements m.k 
at time k can be cons tructed

from the state vector and the position of Unit 1 at time a . First
define the relative x-position by:

x~~ = (x . - x~~ ) + (k - n) i• ()~~j 
-

where r is the time-step duration, and i and j  are unit indices. Define
a similar equation for y~~ . Then components of the measurement model can
be written ; for example , the components corresponding to and are :
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1 -l / nk Ink
F
k
(Zn) 

= tan

8 j. 2 . 2\~Fk(Z) 
= ~ (X

2
) + 

~
‘n2~ I

We say that

Fk(z) 
= (F~ ( z )  ... F~ (z ))

is the measurement model at time k.

B. Nonlinear Least-Squares Algorithm

References that surveyed literature directly addressing the

solution of nonlinear-least squares problems were examined ; see Bard,
2

Broyden,
3 Draper and Smith,

4 Fletcher,~ and Powell.e The examination

revealed that all algorithms that solve nonliaear least-squares problems

are iterative. They calculate a sequence of points V1, V2, ... , that

should converge to a V*, which solves the nonlinear least-squares

problem. These algorithms frequently substitute linear approximations

evaluated at V
k 
for the nonlinear functions, and these linear approxima-

tions are then used to calculate Vk+l. A conclusion of this review of

relevant literature was that the Gauss-Newton method, and variants of

it, were the best algorithms with which to minimize the sum of squares,

G . The particular variant of the Gauss-Newton method that we used inpn
the optimized, iterative, least-squares tracking algorithm makes use of

a technique to ensure that C strictly decreases for each point of the

sequence generated.

In the following sections, G~ is denoted G(z); in other words,

the p and a subscripts are suppressed and the functional dependence

on the state vector z Z~~ is emphasized.
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1. Gauss-Newton Method

Algorithm (a) in Bard2 was used as the variant of the Gauss-

Newton method for handling the nonlinear problem. For the first itera-

tion, the algorithm was provided an initial estimate of the state. To

• reduce the chance of a nonconverging solution, we used the true state

values to start the Gauss-Newton algorithm.

At time step n and iteration i , F~(z) is approximated by

the linear function:

fj~(z) = F
1~

[ z ( i)] +~~~ Jj~5(i) [z - z(i)]

where the state summation index is s = 1 to 10, the measurement index is

j = 1 to 8, the time step index is k = p to n, and :

= 

= z ( i)

• The values f
1~
(z) are used to approximate G(z) by the sum of squares:

The vector d(i), which minimizes g(z), is then determined.

The estimate of state at iteration i is denoted z(i). A new

estimate z(i+l) is found using the formula:

z(i+l) = z(i) + r d(i)

where d(i) is the solution of least-squares problem at time a and

• • iteration i, and r is a scalar chosen so that :

G[z(i+l)] < G[z(i)]

• •~~~ ~~~~~~~~~~~ - • 
_ _ _ _ _ _  
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The iterations at time a continue until any one of the following four

termination criteria is satisfied :

• The number of interpolations (defined below) reaches its
maximum allowed value (10 were allowed) and

C[z(i) + r d(i)] G{z(i)]

• The iteration counter, i, reaches its maximum allowed
value (5 iterations were allowed).

• All absolute components ~r d(i)t are less than 0.0001
times the corresponding absolute components I z ( i ) I  + 0.001;
see Bard,~ page 168.

• G[z(i)] — 0.001 < Gtz(i+lfl < G[z(i))

The scalar r at iteration i is calculated by the following steps :

(I) Use the value of the interpolation index q from
iteration i - 1 (if i I set q 0).

(2) Divide q by 2 and retain the integral part.

(3) Set r =

(4) Ii G~z(i) + r d(i)1 < G~z(i~ J, use z(i4-1) = z (i) +
r d(i) as the new estimate of state. Otherwise
perform Steps S through 8.

(5) Construct as a function of s the polynomial of
degree 2 that equals CI z(i) + s d(i)] for the two
points s 0 and s — r, and for which the slope
equals h V h at s 0. The vector h and
the matrix V are defined in the next section.

~6) Compute the value s at which the first deriva-
tive of the polynomial is zero and call this
value Let

= max [0.25r, mm (0.75 r,

An execution of Step 6 is called an “interpolation.”

(7) Increase q by one.

(8) Replace r with 8
2 

and return to Step 4.

2. Least-Squares Solution

Several algorithms were available to compute d(i), (see

Lawson and Hanson).7 Since the covariance matrix of d(i) was desired ,

an algorithm was selected that provides the covariance matrix as a
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b yp roduct of the computation of d (i ) .  Execution time and programming
ease were also considered. Consequently, the normal equations of the

linear weighted least-squares problem were derived, the Cholesky (or

square-root) method was applied to the matrix determined by the normal

equations, the upper triangular Cholesky factor was inverted, and the

d(i) that solved the linear weighted least-squares problem and its

covariance matrix was then computed.

Below we show the form of the normal equations f or the linear least-

squares problem. Let p and a be integers such that p = 1 to n - 1.

Let the 8-by-lO matrix, Jk
(i), contain the (j,s)-th component,

J1~~(i) for k = p to n. Define the matrixes:

= [J
T~~~ ... J~(i)]

M 0
n

M —

o 
~Mp

Define the vector :

[m - F[z(i)J1
D — l  :

• 
[m F 1 z(i)jp p

• The normal equations at time a and iteration i are then given by:

J
T
M
_l

J d(j) J
T
M
_l

D

1. T -lNow J M .1 is symmetric and positive definite; thus Cholesky ’s
method (see Lawson and Hanson7 or Forsythe and Moler8) is used to find
an upper triangular matrix U such that:

U
T U _ J T M

1
J

_••~ ___~~_ .•• __•_ _ •-~ - _ •—~ •—.— - --— • — —-----•------ • -——•~- —••- -•— ------ -—-— —



and U is inver tible by using formulas from Lawson and Hanson.7 The

covariance matrix of the solution of the linear weighted least-squares

problem, V, is computed from the formula:

V = U
1 (U l

)
T

The vector h is:

h = ~T M
1 
D

and the solution of the linear weighted least-squares problem, d(i),

is calculated by:

d(i) = V h

C. Test Statistic

Two test statistics are presented below ; the first was used in the

self-optimizing least-squares algorithm presented in Chapter III. The

second statistic is suggested as a possible candidate for the optimiza-

tion process, but no experimentation was performed to see if it would

work better than the first statistic.

i~ Residual Mean Square

The residual mean square, 5, was the test statistic minimized

by the self-optimizing algorithm. For each time step a, the statistic

5pn (where i = 1 to n - 1) was computed and the estimate of state, ~~~
which produced the smallest S was chosen as the best estimate of

pa
state at time n. The statistic was calculated by:

5
pn 

= G(Zpn)/[8(fl - i + 1) - 10]

where the sum of squares, Gpn~ 
was evaluated at each of the state

estimates, z .pa
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2. Mult iple  Correlation Coeff ic ient

The square of the m u l t i ple correlation coeff ic ient , R2
, is a

statistic that is frequently computed for multiple regression analysis

(see Draper and Smith’). R
2 

is a measure of how well the regression

explains the data: R
2 

is between 0 and 1, and the larger it is, the

better the regression. R
2 

is offered here as a candidate test statistic

to determine the best of the a - 1 state estimates, ~ . Suppose z
pa pa

was obtained on Iteration i; then the test s tat is t ic  is given by:

R2 — (h T V h  - a) / ( D T M
_ 1

D - a)

where

a_ [E ED~~~~~~]

2

/8 (n - P ÷ l )

for time-step indices k — p to a and measurement indices j = 1 to 8.
The state estimate that is associated with the largest value of R2

pn
(where p 1 to n - 1) would then be chosen as the best estimate at

time a.
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Append ix A

MIJRLOC COMPUTER PROG RAM

PROGRAM MURLOC( I NPUT , OUTPUT , TAPE5~ I NPUT. TAPE6=OUTPUT)
C
C is KEY
C ** 1 GEOGRAPHICAL POSITION DATA
C ** 2 RANGE AND BEAR ING DATA
C ** 3 BEARING-ONLY DATA
C ** 4 COURSE AND SPEED DATA
C ** 5 OUTPUT

** 6 NEW RUN
C 7 END
C ** K UNIT NUMBER
C is KO OBSERVER NUMBER
C is TM UPDATE TIME (MIN)

** RNG RANGE (NM I)
C ** BRO TRUE BEARING ( DEG)
C 5* RS IO RANGE STANDARD DEVIATION (NM I)
C ** BSIG BEARING STANDARD DEV IATION (NMI)
C is XE EAST COORDINATE ( NM I)
C is YE NORTH COORDINATE (NMI)
C is RI X-ROTATED PR I NCIPLE STANDARD DEVIATION (NM I)
C is R2 Y-ROTATED PRINC I PLE STANDARD DEV IATION (NMI)
C *5 ANG ANGLE OF ROTATION FROM NORTH ( DEG )
C is CR5 COURSE (DEG )
C *5  SPD SPEED (KT)
C is TO LAST TIME OF UPDATE (M IN )
C is E(I) STATE VECTOR (X1 ,Y 1 ,VX 1 ,VY1 , X2,Y2 ,VX2 J VY2 , ETC.)
C is V( I ,J) COVAR IANCE MATRIX
C is H(I .J) STATE-TO -DATA TRANSFORMATION MATRIX -

C is 0(N) DIFFERENCE OF DATA AND PRED I CTED DATA
C is W (I ,J) DATA COVAR IANCE MA TRIX
C
C

COMMON/A! KEY, TM, TO,KO,K,KM, IMAX . UB, TDO
COMMON/B! D(2) , W ( 2 , 2) , H(2 , 36)
COMMON/Cl E(36) , EE ( 36) ,V(36 ,36) . VV(36 , 36) ,A (36 , 36)
COMMON/El RNG,BRG , RSIG , BSIO , XE ,YE
DIMENS ION X (5 )

C
P1.3.1415926536
TPlz2 . sPI H
UB.PI/180.

5 W RITE (6 ,450)
READ (5,620) TP,TD,KEY ,KO,K ,X
TMsTP

LL~~1IF(KEY-6)110 ,20, 150
C
C is INITIALIZE

20 CONTINUE
TPSZTP $TDS~ TD
TO.TD STDO~ 0.
KM.KO
IMAX.4s KM
IM36z36* I MAX
00 22
A ( I ) z O .

22 V (I)aO.
00 24 I.1 ,IMAX
E( I )s0.
A (I,I).1.

24 V ( I , 1)~~25 . E4
00 TO S

- ~~~~~~~~~~~~~~~~ ~~- —~~~~~~-~~ •-—_ - • -~~~~~~
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C
C *s GEOGRAPHICAL DATA

30 CONTINUE
IF(T M . OT . TO) CALL UPDATE (1)
XE .X (1) $YE X (2)
R1.X (3) 5R2=X (4) $ANG.X (5)
I 2=Ks4-2 $11 .12—i
DC 1) ~XE—E( I i )
D (2)zYE-E( 12)
1M2=2 S I MAX
00 33 Ia i , 1M2

33 H(I):0.
H (1 , I 1 )~~1. SH (2,I2)~~1 .
B=ANO * UB
CALL ROTATECR 1 ,R2 ,B,W( 1 ,1 ),W (1 ,2),W C 2 ,2))
W (2, 1 ) W( 1 ,2)
CALL KALMAN (2 ,F)
LL=2 $TM=TP $00 TO 110

C
C ~~z RANGE AND BEARING DATA

40 CONTINUE
RNO=X( 1) SRSI0~X (3)
BRG=X(2) $BSI0~X (4)
CALL REPORT
CALL KALMANC2 . F)

$00 TO 110
C
C is BEARING ONLY DATA

44 CONTINUE
BRG .X(1)
BSIGzX(2)
CALL REPORT
CALL KALMAN (2 ,F)
LLs2 $TM ~TP $00 TO 110

C
C is VELOCITY DATA

50 CONT INUE
CRS~X ( 1) $SPD X (2)
S1zX(3) SS2zX(4)
IF(TM .GT .T0) CALL UPDATE (1)
B’CRSsUB
14.Ks4 $13.14-i
D( i ) .SPD*SIN(B)-E(13 )
D(2)zSPD5COS(B)-E( 14 )
IM2.25 I MAX
DC 52 1.1 1M2

52 H(I).0.
H (i , I3)~~1 . $H(2, I4)z1
CALL ROTATECS1 ,S2,B ,W(1 . 1 ),W( 1 ,2),W (2,2))
W(2, 1 )~ W( 1 ,2)
CALL KALMAN (2,F)
LL.2 $TM.TP $90 TO 110

C
C ii OUTPUT

110 CONTINUE
KOZzKC SKZ~K 

- .

IF(TP.EQ .TPS.AND .LL .E0.1) 00 10 130
WR I TECS , 650)
WR I TE (6,530) TO
WR I TE (6.535) TM •

WR I TE (6,700)
CALL UPOATE (0)
IF(KM . EO. i )  GO TO 120

52 j



C
C is OUTPUT UNIT LOCATION RELATIV E TO OBSERVER

W R I T E  C 6 , 540)
KMM.KM- I

DC 115 KC.1 , KMM
J2.KO.4 2  $JIsJ2 -I
KK .KO+ 1
DO 1 15 K.KK ,KM
I2.K s4-2 $11 .1 2 — i
EX .EE (Il)-EE (JI)
EY .EE C 12)-!E(J2)
RNG.0. $BRO.0.
I~~CEX . E0 .0 . .ANO . EY . E0•0 . )00 TO 112
RNG .SORT C EX5EX+EY.EY )
BRO-ATAN2 (EX , EY)
IF C BRO.LT .0. )BRG.TPI+BRG
BRG .BRO/UB

1 12 V 11 .VV (l1 , I i )-2.*VV C I 1 ,JI)+VV( JI ,J I )
V22~VV (I2 , I2)-2. iVV (I2 ,J2)+VVcJ2 ,J2)
V 12 .VV (11 , 12 )-VV( 11 ,J2)-VV C J 1 , I2)+VV(J I ,J2)
CALL ELL IPSE (V 11 ,V 12 ,V22 ,Ri ,R2,AA )
ANO. AA/UB
CEP .FCEP (RI ,R2)

115 WR ITE (6,55O ) KO ,K .RNG ,BRO ,RI ,R2 ,ANG ,CEP
WRI TE (6, 700)

C
C Ii OUTPUT UNIT STATE

120 CONTINUE
WRI TE(6 , 545)
00 125 K .1 ,KM
1 4.Ks4 $13 .14-i 112—13-1 $11 .12- i
V i i  .VV ( Ii , I I )
V 2.VV ( Ii , 12)
V22 .VV ( 12 I2)
CALL ELLIPSE(V li ,V 12 ,V22 ,R i R2 ,AA )
ANGaAA/UB
CEP.FCEP(Rl ,R2)
IF (EE (I 3 ).EQ0 .AND .EE (14) EO ,0.)OO TO 121
C .ATAN2(EE (1 3) EE(14))
IF (C.LT. O. )C.TPI+C
C-ClUB
00 TO 122

1 21 C-0.
122 S.SORT(EE (I3)5s2+EE(14)*s2)

V33.VV ( 13, 13)
V34.VVI %~~, 14)
V44 .VV (I4 I4)
CALL ELL I PSE(V 33,V34 ,V44,A1 ,A2 ,AA )
AAA~ AA/UB
VEP~ FCEP (A1 ,A2 )

125 WR ITE (6,555) K ,EE C I I ) ,EE CI2 ) .R l ,R2 ,ANO ,CEP ,
+ C . S , A I , A2 , AAA , VEP

C
130 CONTINUE

IF (LL .EQ .2) 00 TO S
KO .KOZ $K.KZ
TPSsTP STM-TD
IF CTO .OT .TDS) T00.CTD-TO)/B0
TOSs TO
WR I TE(6,650)
W RIT E C B,590)
W RIT E C 6 ,600)TP ,TO ,KEY ,KO ,K ,X
GO TO (30 ,40 ,44 ,50 ,5) KEY

~ I 1 •
I i
I i

____________________ ~~~~~~~~~~~ ~~~~~~~~~~~~ -~~~~
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C
450 FORMAT(IH1 )
650 FdRMAT (1H I1H )
700 FORMAT (1H
590 FORMAT C5 DATA TP 5 ,

+ 5 TO KEY KO K Xi 1(2 1(3 X4 X6 5)
600 FORMAT (6X ,2F6 . 1, 13 ,14 ,12 , SF6. 1)
620 FORMAT (2F10 .0,Ii ,I4 ,12 ,3X, 5F1O ,O)
530 FORMAT (. TIME OF LAST DATA •5,F 6.i)
535 FCRMAT(* TIME OF PRED I CTION -s ,F6 .1)
540 FORMAT (* OBSR UNIT RNG BRG 3101 $102 ANG CEPi )
550 FORMAT ( 15 . 16 , F7. 1 , SF6.1)
545 FORMAT(s UNIT IC V 3101 3102 ANG CEPI,

+ 9X , 5CRS SPO SlOt $102 ANG CEPi )
555 FORMAT( Ill , iX , 6F6 . I , 6X , 6F6 . 1)

C
150 CONT INUE

END

SUBROUTINE UPDATE(L .)
COMMON /A/ KEY ,TM,TC,KO,K ,KM, IMAX ,UB,TDO
COMMON/C/ E(3 6) , EE(36) , V(36 , 36) , VV (36 , 36) , A C36 , 36)
1-(Th-TO)/60.
P1113. IMAX-3

DO 10 I — i ,IMPI3,4
AC I, l+2)aT

10 A (l+ 1 ,I+3)— T
00 20 I-1 ,IMAX
EE( I ).0.
DC 20 M.i ,IMAX

20 EE (I).EECI)+A (I ,M)*E(M)
00 30 I-1 ,IMAX
DO 30 J-I ,IMAX
VV( I ,J).0.
00 30 M.i , IMAX
DO 30 N.1,IMAX
VV( I , J) .VV ( I , J )+A (I , P1) sV (M, N) *ACJ , N )

30 VV(J .I )V V (I ,J)
IF(L. EQ. 0)RETURN
00 70 I -1 , IMAX
E( I) .E E( I)

• DO 70 J.i , IMAX
70 V (I ,J).W (I.J)

TO-TM
RETURN
END
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SUBROUTINE REPORT
COMMON/A/ KEY ,TM,TO,KO,K ,KM, IMAX ,UB,TDO
COMMON/B/ D(2),W C 2 ,2),H(2,36)• COMMON/C/ E136),EE(36),V (35,36),W(36,36),A (36,36)
COMMON/E/ RNG ,BRG ,RSIG,BSIG,XE ,VE
IF(TM .GT .TO) CALL UPDATE(1)
12.1(14—2 $11.12-i
J2.KO54-2 $J1 .J2-1
5-BRO 5UB
IF(KEY .EQ.2) 00 TO 15
XO .E(I1 )—E CJ1 I
YD.E( 12) -E (J2)
V 11 V (Ii ,I1 )— 2 . 5 V ( I 1 ,Ji)+ V (J1 ,Ji )
V22’ V( 12 12)-2 .s V( 12 ,J21+ V(J2 ,J2)
V 12= V ( I t .12 )— V ( 1 1 ,J2 )— V (J 1 ,12) +V(Ji ,J2)
CALL ELL I PSE (V i1 ,V 12 ,V22,R1 ,R2,AA )
CAA .COSCAA )
SAA .SINCAA )
XC .XD5CAA-YD5SAA
YC .YDiCAA+XDSSAA
BA .B-AA
SBA.SIN (BA)
CBA .COS (BA)
1F(ABS (SBA).LT . .0001) 00 TO 10
IF(ABS (CBA).LT . .0001 ) 00 TO ii
TBA .SBA/CBA
R .(Ri/R2) $RR .R*R
y. (RR5YC+TBA5XC) / (TBA5 TBA+RR)
X .TBA5Y
RNG=SQRT (X5X+Y5Y) $00 TO 12

1 0 RNO-ABS (YC) $00 TO 12
11 RNO .ABS(XC )
12 CONT I NUE

RSIG.RNO
15 CONTINUE

R1.RNO*BSIGSUB
R2.RSI 0
XE .E (J1 )+RNO5SIN (B)
YE .E (J2)+RNG5CCS(B)
0(1 ).XE—EC Ii )
0C2)~ YE-E( 12)
IM2.2* I MAX
00 25 Iu I IM2

25 H (I).0.
H (1 ,Ii ) s i .  $H(2,I2).1.
H(1 ,Ji) .-1. $N (2,J2) -i.
CALL ROTATE (R1 ,R2,B,W (1, 1 ),W (t ,2),W(2,2))
W (2, I ).W(1 ,2)
RETURN
END
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SUBROUTINE KALMAN (KA ,F)
C
C *5 FILTER EQUATIONS , JAZW INSK I P. 270
C *5 0 = VSH * (H5V5H + W)ss-1
C 5 *E E + O * D
C *5 V • (I-OsH)sVi(I-O5H) + O*WsQ
C

COMMON/A/ KEY ,TM,TO,K0,K ,KM, I MAX .L$,TOO
COMMON/B! D(2) , W ( 2 , 2) ,H(2, 36)
COMMON/C/ EC36),EE(36),V (36 ,36).VV (36,36),A (36,36)
DIMENS I ON VH (36,2),0(36,2),P(36, 36),VS (36,36),U(2,2)

C
I4—Ks4 $13=I 4— 1 112=1 3-1 $11 .12— i
L 0

C
1 DO 10 I—l ,IMAX
DO 10 J.I ,2
SUM=0.
D O5 N . 1,IMAX

5 SUM=St*I+V(1,N)*H(J ,N)
10 VH ( I ,J).SUM

C
00 20 1.1 ,2
DC 20 J=i ,2
SUM=W (I ,J)
00 15 N=1 ,IMAX

15 SUPI=SUM+H(I,N)5VH (N,J
20 U(I~~J).SUM

C
DET— U( i , 1 )~~U(2 , 2 )— U ( 1 , 2)s U(2 , 1)
Ui 1 U ( 1 , 1)
U(1 ,i)=U (2,2)/DET
U (i ,2).-U(1 ,2)/DET
U(2 , 1) .~J( 1,2)
U (2,2)=Ui i /DEl
IF (L .EQ.1 .OR .TDO .E0 .O.) GO TO 24

C
R0.
00 21 M’i ,2
DC 21 N .1 ,2

21 R R+D(M)SU(M,N)*O(N)
F EXP(-R/2. ) $FF.1. -F
IF (KA.EQ . 1) RETURN

C
GO TO (22,22,22,23) KEY

22 V( l1 ,l1 ) — V ( Ii ,ll )+D(1 )sD(1 )sPF -

• V (I2,12)zV (12 ,12) + D(2)sD (2)*FF
V (l1 ,12)—V( I1 ,I2) + D (1)SD (2)SFF
V ( 12 ,11 ).V ( 11 ,12)
03-DC 1 I/TOO
04.0(2)/TOO
V (I3,13)=V (13 ,13) + 03sD3*FF
V (14,I4)sV( 14 ,I4) + D45D4sFF
V (13,14).V (13 , 14) + O3sD45FF
V (14, I3) .VCI3 , 14)
V (I 1 ,13) .V (Ii ,13) +D (i)5D35FF
V (11 ,14).V (I1 ,I4) + D(1)sD4sFF
V C I2 ,13 )-VC I2 ,13) + D (2)sD35FF
V C I 2 ,I4).V (I2,I4) + D (2)5D45FF
V (13 ,Ii) .V (I1 ,13)
V ( 14 , Ii ).VC 11 ,14)
V C I 3 . I2)~ V (I2, 13)
V (I4, 12)*V (12 , 14)

• L.1 $GO TO i
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23 V (I3 ,I3)~ V C I 3 ,I3) + OC1)*D (1)*FF
V (14,I4).V (I4,14) + 0 (2)5DC2)*FF
V( 13 ,14).V (I3 ,14 ) + 0( 1) s DC2 )* F F

• ‘ V( I4.I3).V(13 ,14)
L-1 $OO TO 1L .  C

24 00 30 I=i ,IMAX
DO 30 J.i ,2
SUM.0.
DO 25 P 1 1 ,2

25 SUM.SUM+VH(I N) 5UCN ,J)
30 G(I ,J).SUM

C
DO 40 I.i ,IMAX
DO 40 J-1 ,JMAX
SUM O.
IF ( I .EQ .J)SUM=i.
00 35 N-1 ,2

35 SUM SUM-G (I ,N)sH(N ,J)
40 P(I ,J)=SUM

C
DO 55 I 1 ,IMAX
DO 55 J= I , IMAX
SUM=0.

DO 45 N a 1 ,IMAX
DO 45 M 1 , IMAX

45 SUM SUII+P(I, N )5 V C N ,M)s P(J ,M)
DO 50 N 1 , 2
00 50 M i , 2

50 SUM=SUPI+G (I,N )SW (N ,M )sO (J ,M )
55 VS ( I , J).V$ (J, 1)-SUM

C
00 65 I.i ,IMAX
00 60 N.i ,2

60 E( I)s E( I)+0( I ,N)sD(N)
DO 65 J.L ,IMAX

65 V C I ,J) =V (J , I ) — V S C I ,J)
RETURN
END

- 1
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SUBROUT I NE ELL I PSE(Vli ,V i2 ,V22,R1 ,R2,A )
IF (Vi2 .EQ .0.) GO TO 10
A .,55ATAN2C2. 1V 12 ,V22 -V ii )
SINA SIN (A )
cOSA~c0S A
SSIN .SINAs SJNA
SCOS=SINA5COSA
CCOS-COSA5COSA
RR1 CCOS5V1 1 -2. *SCOS5V1 2+SSI N5V22
RR2-SSI NsV 1 1+2 . 5SCOS*Vi2+CCOS5V22
R1-SORTCRR 1 )
R2.SQRT(RR2 )
RETURN

10 R 1 S QRT CV 11)
R2=SQRT C V22)
AzO.
IF (R2.GE.Ri ) RETURN
R-Ri $R1=R2 $R2 R $A 3.i4159265359/2.
RETURN
END

SUBROUT I NE ROTATE (R1 ,R2,A ,Vi 1 ,V 12,V22)
SINA SIN (A)
COSA~~~COS C A I
SSIN SINA*SINA
SCOS SI NA5COSA
CCOS COSA5 COSA
RR1 -Ri sRi
RR2 R2*R2

• V i i  .CCOS5RR1 +331 N*RR2
V 12 SCOSS C RR2 -RR I)
V22 SSI N5RR 1 +CCOS5RR2
RETURN
END

FUNCTION FCEP(R1 ,R2)
CE?.. 562sR2+ . 61 5sRl
IF (Ri .LT ..3sR2) CEP-R2s(.675+ .79444s(Ri/R2)s*2)• FCEP CEP
RETURN
END
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Appendix B
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