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I INTRODUCTION

This study describes and evaluates a tracking algorithm that can
follow a maneuvering target by filtering time-sequenced measurements
from multiple observers. The algorithm can be used when several units
are passing targeting data to a single unit on which the tracking
solution is computed. The data may consist of (1) x-and-y (latitude-
and-longitude), (2) range-and-bearing, (3) bearing-only, or (4) course-

and-speed measurements, along with estimates of the measurement errors.

The tracking algorithm is applicable to the OTH (over-the-horizon)
targeting situation shown in Figure 1. Here two ships cross-fix the
target ship by using towed-array bearing-only measurements, and locate
each other by range-and-bearing measurements using an intermediary
helicopter as a radar target. The helicopter also relays the targeting
information from the second ship to the first ship. The tracking
algorithm was specifically designed for this kind of problem, in which
the locations of several units (both friendly and target units) are
unknown but can be deduced by time-processing position and velocity
measurements, especially bearing-only\measurements from an ESM receiver
or a passive sonar. The tracking algorithm is called MURLOC, an acronym

for Multiunit Relative Localization.

MURLOC has several unique characteristics'that make it a versatile

tracker in OTH targeting scenarios:

e All units are correlated by employing a single state vector
that contains the positions and velocities of all the units,
instead of multiple state vectors, one for each unit. The
reason for using a super-state vector is to capture the
statistical correlations between units. Thus a range-and-
bearing measurement on an own-force unit automatically
adjusts the estimates of relative position on all units
including the target.

g alr B RSN s o ool
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FIGURE 1 QTH APPLICATION OF MURLOC

Measurements are transformed to Cartesian coordinates before
they are filtered; thus MURLOC uses a standard Kalman filter
without having to compute partial derivatives at predicted
positions, as done in an "extended" Kalman filter. This
"transformed-measurement' approach avoids problems that are
inherent in extended Kalman filters,

Bearing-only measurements are treated as range-and-bearing
measurements by estimating a pseudo range using a special
"ellipse tangent' algorithm. The range-and-bearing values

are then transformed to Cartesian coordinates and filtered.
The "transformed-measurement' approach to filtering and the
"ellipse tangent" algorithm for bearing-only measurements seem
to work very well in the multiunit-type scenario.

A model noise covariance matrix is adapted to the measurement
residuals so that unknown maneuvers can be tracked. MURLOC's
maneuvering-target adaptive algorithm is simple and seems to

be effective,
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The impetus for creating MURLOC was the ship-launched Harpoon
targeting problem of (1) processing data from radar, sonar, and ESM
sensors that are located on the Harpoon ship and other ships or air-
craft, (2) tracking several targets and own-force units at the same
time, and (3) producing decision aids to help determine when to launch
a missile. The main computations needed are the fire-control solution,
the estimate of errors associated with the solution, the probability
that the Harpoon missile seeker will illuminate the target, and the

probability that the target is within counterattack range.

These shipboard computational requirements can be marginally
satisfied with a multiplicity of plotting techniques, tables, graphs,
slide rules, and hand-held calculators. Many different techniques must
be developed for the many different situations that can arise. These
techniques will be complicated if they are designed for situations in
which the data are distributed in time and come from sources other than
own-ship sensors. The calculation of targeting errors and other decision

aids will be quite difficult without automated methods.

An alternative to the multiplicity of techniques is to use a
tabletop programmable calculator (such as the Wang 2200 or HP 9830) to
compute the required decision-aid and fire-control parameters. The
idea is that all the various targeting methods can be integrated into
one system by developing programmable-calculator software that can
incorporate each new measurement as it arrives in the command center.
The data may be from own-ship radar, sonar, or ESM; another ship's
sensors; or the LAMPS helicopter's sensors., In addition to originating
from different sources, the measurements may be staggered in time, may
come in late, or may be out of time order. The targeting software
should be capable of calculating tracks on several targets at the same
time; and since the position of friendly units is important to targeting

solutions, the software should also calculate tracks on friendly units.

MURLOC was created as a prototype algorithm for the tracking
portion of such a targeting system. So far, only the multiunit, bearing-
only, and maneuvering-target tracking capabilities of MURLOC have been

investigated. A major unanswered question is whether or not the

3




processing of MURLOC's super-state vector requires so much computation .

time on a tabletop programmable calculator that the tracking solution

cannot keep up with the data. The major factors in this question are
the number of units in the tracking problem and the data rate. Another
s question is how to filter data that arrive out of time sequence.
Because MURLOC is a recursive algorithm, solutions would probably have
to be saved periodically so that the tracker could be initialized at
the closest solution to the old (but newly arrived) measurement, and
then recycled through the stored measurements following that old

measurement.,

Whether or not MURLOC is used in a shipboard targeting system, it

can stand alone as a method for analyzing multiunit tracking scenarios.

T

MURLOC can be used to process a time sequence of simulated random
measurements and predict the target track. Many replications of the
random-measurement sequences can be processed and the average estimated

track compared to the true track. This was, in fact, the method used

T

to investigate MURLOC's tracking capability.

A time sequence of average position and velocity errors was
computed using MURLOC on 50 replications of a maneuvering-target scenario.
MURLOC was compared to another tracking algorithm that used a batch- %
processed least-squares method. The comparison analysis showed that '
MURLOC tracked the maneuver quite well, especially in estimating the k3
target's relative position. MURLOC does, however, underestimate its

own errors.,

The least-squares algoritim is also a product of the study.

Research on how to perform weighted nonlinear least-squares computations

and how to select the best set of measurements resulted in a tracking

-

methodology that, with further research, might be useful in targeting

s g

software. In any case, the use of the least-squares algorithm provided ] r

a good benchmark for judging MURLOC's tracking capability.

The MURLOC computer program is coded in FORTRAN for SRI's CDC 6400 ; ,
computer., The source deck is approximately 500 cards, and with array

] dimensions that can accommodate 10 units, the program takes about




15,100 words ot memory., The running time depends on a number of factors
for example, one replication of a scenario with 3 units, 10 time steps,
and 5 measurements each time step, required about 16 seconds of computer

time. The MURLOC computer program source code is listed in Appendix A,

.
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IT MURLOC TRACKING ALGORITHM

This chapter describes the major features of the MURLOC algorithm
and gives an example of how multiunit measurements can be processed

with MURLOC.

A. MURLOC Description

MURLOC can accept time-sequenced position or velocity data on
multiple targets from multiple observers. MURLOC processes the input
data at each step in time and estimates the position and velocity
vectors, the range and bearing between units, and error ellipses.

MURLOC uses a Kalman filter with one multiunit state vector that causes
full correlation between units. A unique adaptive covariance scheme
reduces the problem of the linear motion assumption. Table 1 defines

the various symbols that are used in this chapter, and Table 2 summarizes

the major equations that are the essence of the MURLOC algorithm.

i
!

] L State Vector

MURLOC uses one multiunit state vector. For example, if there
are five units in the problem, the state vector will have 20 components;
the first four components are the position and velocity (x y %X y) of the
first unit, the next four components are the position and velocity of
the second unit, and so on. The covariance matrix of this example is a
20-by-20 matrix; thus, the state values can become correlated, not only
by position and velocity correlation on a single unit, but also by

correlation between units.

MURLOC is designed so that units report data on other units;
no distinction is made between friendly and enemy units other than
knowing which is which by unit number. Thus, data from a radar fix on
a companion ship are processed in the same way as data from an ESM fix

on an enemy ship., This design was chosen because of the real-world

i A s DN, PG INRT 0 f FPT . AW T £ A T




Table 1

FILTER VARIABLES

*
Variable Definition Dimension
io Estimate of the state vector, given the 4n-by-1
measurement at t (the filtered state)
Po Covariance matrix of io 4n-by-4n
y Measurement vector at time tl 2 -by-1
R Covariance matrix of y 2 -by-2
X Estimate of the state vector at t; before 4n-by-1
the measurement at t; is filtered (the
predicted state)
P Covariance matrix of x 4n-by-4n
State transition matrix from time to 4n-by-4n
to t;
Q Model noise covariance matrix 4n-by-4n
M Measurement matrix (state-to~measurement 2 -by-4n
transformation)
r Predicted measurement residual error 2 -by-1
(also called "innovation')
S Covariance matrix of r 2 -by-2
Filter gain matrix 4n-by-2
il Estimate of the state vector, given the 4n-by-1
measurement at t; (the filtered state)
P1 Covariance matrix of 3 4n-by-4n
* L :
n = Number of units being tracked. ¥




Table 2

MURLOC ADAPTIVE ALGORITHM

Filtered State at Time t,

Measurement at Time t;

y
R

Predicted State at Time ty

x =Fx
o
e Y A= M X
S=R + MFP F M
B =1 - exp(-% 9 r)
gt o |
L t:]. to ]
T ]
q = ( r, r, rl/T rz/T ) |
T
Q=8 qq
T

P=F Po F" +Q

Filtered State at Time t

K=pPM (R + MPMT)'1

L=I - KM
| >'c1=>'c+xr \
) P1=LPLT+KRKT
i 9 |
L




problem of tracking friendly units, in addition to the more obvious

problem of tracking enemy units, Because the position-velocity state

of friendly units is part of the problem, the friendly units' state
vectors must also be estimated. The only way this can be done without
restrictions and ad hoc assumptions is to incorporate all state vectors
into one large state vector. Although this approach requires considerable
computation to process one measurement, it is beneficial because it uses
data properly. For example, the range-and-bearing data from Unit 3 on
Unit 5 will, in general, change the state estimates of all the units

because of past interaction among them,

The state vector at time to is denoted X e The estimate of
X, is denoted xo, and the covariance matrix of the error in xo is
denoted Po. The state at time t = tl evolves from the state at time to
by:

x = F xO + w

where F is the transition matrix from to to tl' and w 1is a random
vector that is normally distributed with zero mean and covariance Q. As
discussed later, the Q-matrix is defined as a function of the predicted
measurement residuals and is the mechanism for adapting the filter for
maneuvering targets., The transition matrix, F, is built up from sub-

matrices, f:

where the submatrix f is given by:

=
1
0Ol1L O

0010

[0 001

and v is the time step: 7 = t| - t,.
10
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2.  Measurements

Four kinds of measurements can be used in MURLOC: (1) x-and-y

position, (2) range-and-bearing, (3) bearing-only, and (4) course-and-
speed. Standard deviations of errors in the measurements are also input
parameters., Measurements are processed each time step, time steps may
be variable, and multiple measurements at any one time may occur.
Measurement errors are assumed to be uncorrelated from one measurement
to another. Also, range errors, bearing errors, course errors, and speed
errors are assumed to be uncorrelated with each other. However, the
x-and-y position errors are assumed to be correlated and are given in
terms of error ellipse parameters--the standard deviations along the two
principal axes, and the angle from North to the major axis., Latitude-
and-longitude measurements can be processed by first transforming to a
Cartesian coordinate system a few hundred miles in size., Latitude-and-
longitude measurements are the assumed origin of the x-and-y position

measurements,

Before being filtered, the measurements are transformed to
Cartesian coordinates and the coordinate errors are approximated by
linear functions of the measurement errors. Usually tracking algorithms

use an "extended" Kalman filter that linearizes the measurement equations

around the predicted state by calculating first-order partial derivatives.
This procedure is acceptable if the true state values are inside the F
linear region; however, if the predicted state is in error by a large i
amount, the tracker will behave poorly. Instead, MURLOC linearizes )

around the data point before filtering, and thus avoids the problem of

ey

calculating partial derivatives at the wrong place.

Range-and-bearing, bearing-only, and course-and-speed measure-
ments are transformed; x-and-y measurements do not need to be transformed.
For example, range-and-bearing (r,0) are transformed into a measurement b

vector, y, by:

|
]
|_
].
!
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The measurement covariance, R, is calculated by an approximation that
assumes that the standard deviations of the errors in range and bearing

(or,oe) are small:

cos O sin g rzog 0 cos @ -sin ©

2
-sin © cos 9 0 o, sin © cos ©

Bearing-only measurements require an estimate of range before
the transformation can be performed. The range is estimated from the
predicted positions and covariance of the observer and target units,
The estimated range is calculated by expanding (or contracting) the
predicted relative error ellipse until the ellipse just touches the
measured bearing line; the tangent point then defines the estimated
range, as shown in Figure 2, The "predicted relative error ellipse"
is the error ellipse that is relative to the observer; it is computed
from the predicted covariance elements of the observer and target (the
equations are in Subroutine REPORT, which is in Appendix A). The
standard deviation of range error is assumed to equal the estimated
range., Thus, as shown in Figure 2, the bearing-only measurement is

transformed to a long, thin ellipse that lies along the measured bearing

BEARING MEASUREMENT

SIGMA BEARING
X
ESTIMATED RANGE

SIGMA RANGE = ESTIMATED RANGE

ESTIMATED
RANGE
PREDICTED TARGET POSITION

PREDICTED RELATIVE ERROR ELLIPSE
EXPANDED TO TOUCH BEARING LINE

OBSERVER

FIGURE 2 LINEARIZATION OF BEARING-ONLY MEASUREMENT
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and is centered on the estimated range. The measurement vector, y, and
the covariance matrix, R, are then computed as though the bearing-only

measurement were a range-and-bearing measurement,

Even though a psuedo-range is used as data, and the assumption
of small range error is violated, the above method of tracking with

bearing-only data seemed to work quite well. Another method for estimating

range was tried but it introduced large range errors after a target

maneuver, The other method estimated the range by the intersection of a
line that was perpendicular to the bearing line, and contained the
predicted target position. The other method was computationally simple,
but the "ellipse tangent' algorithm shown in Figure 2 proved to be far

superior to the "perpendicular intersection' algorithm,

Course-and-speed (Yy,s) measurements are transformed in the same
way as range-and-bearing measurements, except that the measurement vector

consists of velocity components:

s sin vy
Vite .
S cos vy

The covariance, R, is also similar to the range-and-bearing case:

cos y siny 012 0 cos y =sin vy

s 2
-sin Yy cos Y 0 Oy sin vy cos Y

where the input parameters o) and o, are the principal-axis components
of the velocity error elipse: o) is perpendicular to the velocity
vector, and 05 is parallel to the velocity vector. This method of input
is used instead of course and speed sigmas so that zero-velocity error
distributions can be input easily. Course and speed measurements are
thought of as a polar-coordinate representation of the velocity vector;

the error along the vector is assumed to be uncorrelated with the error

13




across the vector. When the course and speed standard deviations

(o\‘os) are small, the approximation:

can be used to estimate the velocity error ellipse.

By linearizing the input data, the measurement vector, Yy,
becomes a random vector that is a linear function of the true state

values, X:
y=MX + v

where M is the measurement matrix, and v is a random vector that is

rormally distributed with zero mean and covariance, R.

The value of the measurement matrix, M, depends on the kind

of measurement and the units involved, M is represented as a matrix of

submatrices:

M= ( Ml Mo Mn )

2

where k = 1,2,..,n is the index of a unit being tracked. For x-and-y

position measurements, M is determined by:

1000
A=
0100
‘ A for k = index of the reporting unit

bt

0 otherwise.
For range-and-bearing or bearing-only measurements, M is determined by:

A for k = index of the target unit
Mk = l-A for k = index of the observing unit

0 otherwise,

14
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For course-and-speed measurements, M is determined by:

0010
B =
0001
‘B for k = index of the reporting unit

"

lO otherwise.

3e Predicted State

MURLOC assumes that the units move with constant course and
speed, The estimated state at time t = t1 is predicted from the estimated
state at t @

o

x = F x
(o}

The predicted covariance is not, however, the usual F POFT matrix with
some constant model noise, Q, thrown in, Instead, the predicted co-
variance is required to be consistent with the measurement by making Q

a function of the measurement residuals. The residual vector, r, is

supposed to be normally distributed with zero mean and covariance matrix, S:

r= oy =M x

S=R+MF Po FT MT.

However, when a unit changes course or speed, the residual vector can be
many standard deviations from zero and the statistics of r are not
what they are supposed to be because the assumptions of the model are
violated, A procedure that is philosophically similar to Jazwinski'sl*
(but not mathematically the same) is used to let the model noise Q

adapt to the residuals,

The adaptive algorithm is very simple, First a beta factor is

calculated:

-

B=1-exp (- rT S~ r).

References are listed at the end of this report,
15
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An error vector, q, is then defined in terms of the residual vector,

but dimensioned the same as x:

q=(00000qkoo-00)T

where k 1is the index of the target unit. The vector Q) depends on
whether the measurement is a position measurement (x-and-y, range-and-

bearing, or bearing-only) or velocity measurement:

Position: w(x ¥, Tir r.lv)

A"
Velocity: q =
Finally, the model noise, Q, is constructed by taking the outer product

of q with itself and reducing the resulting matrix by the beta factor:
Q=8aqq.
The predicted covariance of X is then given by:
P=FP F + Q.

The purpose of the adaptive model-noise matrix, Q, is to open
up the predicted covariance so that the most recent measurement has a
significant influence on the filtered state. When the residual vector
is large, the Q matrix will also be large, P will then be large, and the
relatively smaller measurement covariance, R, will cause the filtered

state to be drawn to the measurement. This idea is shown in Figure 3.

Residuals can be large when a unit maneuvers; unfortunately,
residuals can also be large for iarge but natural fluctuations in the
measurement, Thus, there is a tradeoff between (1) making the algorithm
sensitive to target maneuvers and letting it be influenced by bad data,
and (2) decreasing the maneuver sensitivity so that bad data can be
smoothed out, For the beta factor as defined above, the algorithm is
rather sensitive to the residuals, as can be seen in Figure 4, For ex-
ample, a two-sigma residual produces B8 = 0,86 and will cause a moderate-

to-large influence on the predicted covariance, To reduce the influence
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of residuals, the beta factor can be raised to some power; for example,

BS will cause the algorithm to react only to very large residuals.

The construction of the Q-matrix was intuitive rather than |
based on a probabilistic derivation. Our desire was to create an

algorithm that was continuous--that is, a Q-matrix that does not suddenly

jump in value as the residual becomes large.

An example of a Q-matrix that does jump is the following:
let Q equal zero if the residual is inside, say,a two-sigma elliptical
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window; and let Q equal a given noise matrix if the residual is outside
the window., Another similar, but more sophisticated method is Bayesian

in nature: Let the algorithm decide between a maneuvering or nonmaneuver-
ing hypothesis. The maneuver covariance matrix, the a-priori probabilities,
and a tactical value-of-decision matrix can be input to reflect the
scenario conditions. In both of the above methods, the algorithm must
choose between two (or more) predicted covariance matrices each time a
measurement is taken. These decision-type algorithms can underreact to

a slowly maneuvering target that stays inside the window, and overreact

to bad data that fall outside the window. In an attempt to smooth out the
under- and overreaction properties of the decision-type algorithm, the

continuous-Q algorithm was created,

The choice of q qT as the basis matrix for Q was prompted
by the desire to enlarge the predicted state covariance only in the
direction that is indicated by the data. This procedure keeps the Q-
matrix as small as possible but at the same time makes the predicted
state covariance, P, consistent with the residual vector, r. The
velocity components, rllT and r2/T, are included in the q vector
because the residual position error is assumed to be caused by a maneu-
vering target that has changed course and speed; therefore the velocity
submatrix of the predicted covariance must be increased to let the

state velocity move to a new value.

When multiple measurements occur at the same time, the order
in which they are filtered affects the solution. The reason is that the
covariance matrix, P, is a function of the data, whereas in a nonadaptive
Kalman filter the covariance is independent of the data, and the order
in which the simultaneous measurements are filtered makes no difference.
With the adaptive algorithm, the solution will be better for one ordering
of simultaneous measurements versus some other ordering. The best order
cannot be determined as the calculations are made; this nonoptimum
property of the MURLOC adaptive algorithm is part of the price that is
paid for the capability of tracking a maneuvering target while using a

constant-velocity model.
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Two ways of computing simultaneous measurements were tried.

The first method computed the Q-matrix for the first measurement only,
and then let Q equal zero for the rest of the measurements. The first
method did not perform as well as the second method, in which Q was
computed for each of the measurements. For the second method, the

value of tau in the velocity error computation was held constant and
was set equal to the time duration between sets of measurements. The
second method caused more fluctuations in the solution, especially in
the velocity components, but it seemed to react to a maneuvering target

more quickly than the first method.

4, Filtered State

Once the predicted state vector and covariance, x and P, were
calculated, standard Kalman filter equations were used to compute the

filtered state vector and covariance matrix, x, and P, :

1 1
K=pM (R + MpM)L
L=1 - KM (I = Identity matrix)
x1 =x + KTt
P. =L P LT + KR KT .

The above covariance equation was used instead of the more common
P = (I - K M) P equation, because the above method (1) produced a
symmetric, positive definite matrix, and (2) was less sensitive to

numerical errors in the filter gain matrix, K.,

B. MURLOC Example

As a way of describing the input and output format of the MURLOC
computer program, a four-unit scenario was created as shown in Figure 5.
There are two observer ships, one helicopter, and one target ship. The
first ship (Unit 1) measures a sonar bearing to the target ship (Unit &)
and launches the helicopter (Unit 3) to relay information and serve as

a radar target., The first ship measures target bearings, radar range-

and-bearing to the helicopter, and own course-and-speed. The second
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FIGURE 5 FOUR-UNIT SCENARIO FOR THE MURLOC EXAMPLE

ship (Unit 2) also measures target bearings, radar range and bearing to

the helicopter, and own course and speed, and then relays this informa-

tion to the first ship. The sonar bearing measurements from both ships
are assumed to be smoothed for 10 minutes and have a standard deviation
of 1.5 degrees. Table 3 shows the assumed sigmas of the various

measurements. i

Measurements from Unit 1 are assumed to be processed 5 minutes \

late and measurements from Unit 2 are processed 10 minutes late. Table 4
shows the timc¢ sequence of measurements. ''Data time'" is the time when |
the measurement is taken; '"'filter time' is the time when the measurement

is processed, For example, at time t = 10, Unit 2 measures (1) bearing
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Table 3

STANDARD DEVIATION OF MEASUREMENT ERRORS
IN THE MURLOC EXAMPLE

Measurement Sigma
Bearing (1,4)* 1.5 deg
Bearing (2,4) 1.5 deg
Range (1,3) 0.5 nmi
Bearing (1,3) 2 deg
Range (2,3) 0.5 nmi
Bearing (2,3) 2 deg
Course (1) 1.9 deg
Speed (1) 1 kt
Course (2) 3.8 deg
Speed (2) 20 Nkt

Bearing (l,4) is the bearing
from Unit 1 to Unit 4, etc.

to Unit 4, (2) range and bearing to Unit 3, and (3) own course and speed,
These data are relayed to Unit 1 via the helicopter, and 10 minutes later
(t = 20) they are filtered onboard Unit 1, Table 4 shows that the example
data are mostly bearing measurements to the target with occasional radar
measurements on the helicopter and course-and-speed measurements on the

ships.

The numbers listed in Table 4 are the true values of the parameters
calculated at the data time; thus, the tracking example uses measurements
with no errors, Tracking results produced by zero-error measurements
cannot be used to evaluate the tracking algorithm, but instread can be
used to roughly estimate the magnitude of tracking errors that would be
expected if the measurements were randomized around the true values,

Zero-error measurements were used for the MURLOC example because the
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LIST OF MEASUREMENTS FOR THE MURLOC EXAMPLE

Table &4

Time Sonar Bearing Radar Range Bearing Course, Speed
(min) (deg) (nmi, deg) (deg, kt)
Data | Filter | Units 1,4 |Units 2,4]| Units 1,3 Units 2,3 Unit 1 Unit 2

0 5 081.9 000, 15
5 10 083.6 5.6, 122,2
10 20 040.8 54.1, 359.4 000, 15
15 20 087.2
20 30 040.9
25 30 091.4 278, 122.2 025, 18
l 30 40 041,2 47.6, 0[6.;]
| = e 0384 Effect of these I
l 40 50 041.4 measu:zz::sixs;own in
l_z.s 50 100.1 |
50 60 040.0
55 60 102.2
60 70 038.5
65 70 104.6
70 80 036.9
75 80 107.5
80 90 038.5
85 90 109.5
90 | 100 043.3
95 100 111.2
100 | 110 048.0 |17.3, 126.1 | 53.2, 014.7

—r T
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emphasis of this section is on the input and output format of MURLOC
rather than its performance. Tracking performance is the subject of

the next chapter.

1. Tnput

There are three versions of the MURLOC computer program:
(1) a time-share prototype version that requires the data to be entered
interactively, (2) a generalized version that uses card input, and
(3) a specialized version that uses randomized data contained on a disc
file. The card-input version of MURLOC is listed in Appendix A and is
the subject of this section. The file-output version of MURLOC was

used in the Monte Carlo performance analysis of the next chapter.

Table 5 shows the data card format that is used to input
measurements to the program. For example, the card for the bearing

measurement from Unit 2 to Unit 4 at time t = 10 reads:

TP TD KEY KO K X1 X2

20,0 10.0 3 2 4 40,8 1.5

Values for X3 through X5 do not need to be punched for a bearing

measurement card.

To initialize the program, Card 1 contained TD = 0, KEY = 6,
and KO = 4, This card told the program to initialize the state at
t = 0 and to set the number of units to 4. Card 2 was a position
measurement for Unit 1 so that the coordinate system could be defined.
Card 3 was a course-and-speed measurement on Unit 1. Card 4 initialized
the position of the target by using a range-and-bearing format; bearing
was measured (81.9”) and range was estimated. The bearing-only format
could not be used for the first bearing measurement because the position
of the target was not yet defined; therefore a large, but reasonable,
value of range was used--in this case, 50 nmi, as compared to the true
value of 70 nmi. Card 5 set the course and speed of the target to zero
and the velocity sigmas to 30 knots. Cards 6 through 34 contained the
data shown in Table 4 starting with the second line. The final card

contained KEY = 7 to end the run.
23
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Table 5

DATA CARD FORMAT

Variable Meaning Units | Columns [ Format™®
| TP Time at which the measurement min 1-10 F
? is filtered
f TD Time of measurement min 11-20 F

KEY Indicator: - 21 I
1 = Position measurement
2 = Range-and-bearing
measurement
3 = Bearing-only measurement
4 = Course-and-speed
measurement
5 = Output
6 = New run
7 = End
KO Index of observing unit - 25 [
K Index of target - 27 1
X1 Key:
1 = x-position’ nmi 31-40 F
2 = Range nmi
3 = Bearing (true) deg
4 = Course deg
X2 1 = y-position nmi 41-50 F
2 = Bearing (true) deg
3 = Bearing sigma deg
4 = Speed kt
X3 1 = Minor axis sigma nmi 51-60 F
2 = Range sigma nmi
4 = Sigma perpendicular to
velocity vector
X4 1 = Major axis sigma nmi 61-70 F
2 = Bearing sigma deg
4 = Sigma parallel to kt
velocity vector
X5 1 = Angle to major axis deg 71-80 F ‘
from North

*
F = Floating point, I = Integer.

' Value of KEY parameter determines the meaning of X1 through X5.
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2, Output

i A partial listing of the output from the example scenario is
contained in Appendix B. The program prints out the information con-
tained on a data card and then prints the results of filtering those
data. The filtered results are: (1) the time of the data and the time
of the calculation, (2) the location of one unit relative to another,
and (3) the position and velocity of each unit. The relative location

parameters are:
OBSR UNIT RNG BRG SIGl SIG2 ANG CEP,

Under the OBSR and UNIT headings are listed all combinations of

observer and target unit indices. RNG and BRG are the 'predicted range
and bearing'; this parameter pair is a polar coordinate representation
of the vector from the predicted position of the observer to the target
(RNG and BRG are not average values of range and bearing). SIGl and
SIG2 are the predicted minor axis and major axis standard deviations, and
ANG is the angle from North to the major axis of the error ellipse.

The error ellipse is in a coordinate system that is relative to the
observer unit. CEP is the predicted radius of a circle, centered on the
point defined by the predicted range and bearing, such that there is a
50 percent probability that the point defined by true values of range
and bearing lies inside the circle, CEP is a single-parameter measure
of the three-parameter error ellipse, and is useful in quickly assessing
the track quality., CEP is a function of SIGl and SIG2; the equations

are given in Function FCEP, which is in Appendix A.

The output parameters for the predicted position of the units

are:
UNIT X Y SIGl SIG2 ANG CEP
and the parameters for the predicted velocities are:

CRS SPD SIGl SIG2 ANG CEP.
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The predicted x-and-y position of each unit is listed along with the
parameters describing the position error ellipse (SIGL, SIG2, ANG, and
CEP). Error ellipses are in absolute (geographic) coordinates, not in
relative coordinates as are the range-and-bearing position error
ellipses., CRS and SPD are the "predicted course and speed" of each unit;
this parameter pair is a polar coordinate representation of the predicted
velocity vector (CRS and SPD are not average values of course and speed).
The next four parameters (SIGl, SIG2, ANG, and CEP) are parameters of the
velocity error ellipse. A velocity error ellipse is used because this

is a more natural way to show the velocity covariance terms than
numerically calculating the predicted course and speed error standard

deviations and correlation between course and speed errors.

Figure 6 shows the results of the four-unit scenario example.

The range from the first ship to the target ship is plotted against
time. The target maneuvers at t = 40 and again at t = 75 minutes. The
first maneuver is not discernible on the range plot, but the second
maneuver is more radical and is easily seen. The true range is plotted
and the tracking results using zero-error measurements are shown as a
dotted region. The region shows the approximate magnitude of position
errors that would be expected if randomized measurements were used. The
dotted region was plotted by using the predicted range plus and minus
the relative-position CEP value of Unit 4 relative to Unit 1. The
stairstep effect is caused by the ever-expanding predicted-position CEP
being periodically contracted by measurements that are filtered at
10-minute intervals. The range estimate overshoots the second maneuver
but comes back and brackets the true range. The overshoot is mostly due
to the 10-minute delay in information from the second ship, rather than
slow reaction of the tracker. Figure 6 shows that position errors of
roughly 5 nmi can be expected in a four-unit targeting scenario involving

over-the-horizon ranges and measurement errors as shown in Table 2.
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IIT MURLOC TRACKING CAPABILITY

MURLOC's tracking capability was investigated by a Monte Carlo
analysis of tracking errors. A three-unit scenario was defined and
50 replications of randomized measurements were calculated and stored
on a disc file. Then MURLOC was run 50 times using the random measure-
ments; the resulting position and velocity errors were averaged and
output as measures of tracking capability. In addition to running the
MURLOC algorithm, two versions of another tracking algorithm were run
to compare against MURLOC., Thus, by using the same file of 50 replica-
tions in all three algorithms, a valid comparison could be made, The
comparison algorithms employed a batch-processed least-squares methodology

that is described in part in this chapter and in detail in the next

chapter.

A, Three-Unit Scenario

Figure 7 shows the three-unit scenario used for the tracking
capability analysis. Two ships (Units 1 and 2) cross-fix the target
ship (Unit 3) with bearing-only measurements, and find their baseline
with range-and-bearing measurements. Measurement sets were 10 minutes
apart; there were 10 sets of measurements (10 time points) each
replication, and 8 measurements were made within each measurement set.

Table 6 lists the 8 measurements that were generated at each time point,

along with the standard deviations used in the randomizing the measure-
ments, A normal distribution of measurement error was used and the mean
value of the measurement of a parameter was set equal to the true value
of the parameter at the time point. There was no delay time between

measurement and calculation; in the vocabulary of the previous chapter,

""data time'" equaled "filter time.'" The two observing ships maintained

a constant course and speed throughout the scenario. The target ship

made a 90-degree course change at the fifth time step (t = 40 min), but
maintained its speed of 24 knots.

29




4 ™ I T I T T T
FIRST SHIP TIME STEP = 10 min
i (Unit 1) X
030°

18 kt
30

£ —
c
| TARGET
2 SHIP
O 20 (Unit 3)
2 =
w
(o]
o
]
> —
SECOND SHIP
(Unit 2)
| 85 000° _-
18 kt
" I | | I | I | 1
()} 10 20 30 40 50

x-POSITION — nmi

FIGURE 7 THREE-UNIT SCENARIO FOR THE MURLOC TRACKING CAPABILITY ANALYSIS

At each time step, MURLOC processed the 8 measurements as 5 groups
of simultaneous measurements. The order in which the measurement groups
were filtered is shown in Table 7. Switching the order of Bearing
(2,3) and Bearing (1,3) degraded the tracking result slightly. Other
than investigating the above bearing switch, no attempt was made to

find the best order for the simultaneous measurements.

B. Least-Squares Comparison

A least~squares methodology was used to compare against MURLOC by
formulating two algorithms: An algorithm that decided the best set of
measurements using an optimization procedure, and (2) an algorithm that
was told when the target maneuvered and could therefore process the
best set of measurements. These two algorithms are called '"self-

optimizing" and '"maneuver-known,'" and are discussed below.
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Table 6

STANDARD DEVIATION OF MEASUREMENTS

IN

THE THREE-UNIT SCENARIO

Measurement Sigma

Bearing (1,3)* 1.5 deg
Bearing (2,3) 1.5 deg
Range (1,2) 0.5 nmi

Bearing (1,2) 2 deg

Course (1) 1 deg
Speed (1) 1  knot
Course (2) 1 deg
Speed (2) 1 knot

*
Be
fr

ORDER OF FIL

aring (1,3) is the bearing
om Unit 1 to Unit 3, etc.

Table 7

TERING THE MEASUREMENTS IN MURLOC

Order

Measurement Group

1

2

w

Bearing (2,3)
Range-and-bearing (1,2)
Bearing (1,3)
Course~and-speed (1)

Course~and-speed (2)
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| A Self-Optimizing Algorithm

The self-optimizing least-squares algorithm processed a
variable number of measurements at each time step. For example, at the
n-th time step, the algorithm first processed 16 measurements:

8 measurements from the current time, t = n, and 8 from the immediately
preceding time, t = n - 1, These 16 measurements were used to estimate
10 state parameters: 2 velocity components for Unit 1, 4 position and
velocity components for Unit 2, and 4 components for Unit 3, With a
state estimate based on 16 measurements, the algorithm then calculated
a test statistic and saved it., The process was repeated using 24
measurements from time steps t = n, n - 1, and n - 2, and again a test
statistic was calculated and saved. The calculations were repeated as
many times as it took to use up all of the measurements; thus at the n-th
time step, n - 1 state estimates and test statistics were calculated,
Finally, the measurement set that produced the minimum test statistic

was picked as the '"best'" set to use at time t = n.

The above optimization procedure was used because of the
maneuvering-target problem. If tracks were always straight lines, then
the ~alculation of state estimates would utilize as many measurements
as possible. But the chance of a maneuvering target required the
algorithm to decide what measurements to use, since measurements taken
before a maneuver cause large errors in estimating the state after the
maneuver., 'Ideally, the optimization procedure would process all
measurements from the time of the maneuver onward. However, in practice,
the test that is used to determine the measurement set necessarily
operates on random values and cannot always determine the truly best set

of measurements.

& Maneuver-Known Algorithm

The maneuver-known, least-squares algorithm was allowed to
process the truly best set of measurements each time step. For example,
at Time Step 9, the measurements at 9, 8, 7, 6, and 5 were used, but
measurements before Step 5 were not used because they occurred before the

target maneuver. The reason for defining the maneuver-known algorithm
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was to show the best possible use of the measurements. Since it was a
batch-processed least-squares methodology that is allowed to know the
time of target maneuver, the algorithm produced a lower bound on the
tracking error. It must be remembered, though, that MURLOC and the
self-optimizing least-squares algorithm were real trackers, whereas the
maneuver-known algorithm was not real, in the sense that it could not

calculate state estimates based solely on measurements,

C. Results

The position and velocity errors as a function of time were

averaged over 50 replications and used to determine tracking capability.

L Position Errors

"Position error'" is defined as the distance from the true
position of the target to the estimated position in a coordinate system
that is relative to Unit 1. Position error is thus relative position
error, and it is the magnitude of the vector difference of the estimated
position vector minus the true position vector, using Unit 1 as the

origin for the two vectors.

Figure 8 shows the average position error as a function of time
for MURLOC and the two least-squares algorithms. MURLOC performed very

well when compared to the lower bound.

The fact that MURLOC and the self-optimizing algorithm
performed about the same suggests that the optimizing procedure could be
improved for the least-squares tracker. The test statistic that was
used is related to the sum-of-squares of the residuals. Another test
statistic is suggested in the next chapter, but we did not have the
resources to investigate it or other alternative self-optimizing

procedures.

Figure 9 shows the percent of replications for which the posi-
tion error is less than the estimated CEP of Unit 3 relative to Unit 1,
For each replication and at each time step, CEP is estimated from the

covariance matrix. This single-parameter estimate of position error is

33




s T T T 1 T T l T
50 REPLICATIONS
— —
c
w
b >
£ 3 a —
L MURLOC F3
I <
=
o
o —
o
o
w
8
gt i
8
a
w —
Q
<
£
>
< 1 B! o
\ \ LEAST SQUARES:
k. SELF-OPTIMIZING
MANEUVER-KNOWN
a | | 1 ik | e ol s
0 20 40 60 80 100

TIME — min

FIGURE 8 AVERAGE POSITION ERROR COMPARISON OF MURLOC TO LEAST-SQUARES
ALGORITHMS

useful in making targeting decisions; however, CEP is a random variable
and may not represent the actual position errors. Figure 9 indicates
that, in both MURLOC and the self-optimizing least-squares algorithm,
the CEP values were smaller than they should have been. If CEP were
estimated better, approximately 50 percent of the replications would

result in position errors less than the CEP values.

The reason for the overly optimistic estimate of the error is
not known, but since the maneuver-known algorithm approached the
theoretical curve better than the other two algorithms, optimum use of
the data may play an important part in correctly estimating error

variances.
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2 Velocity Errors

""Velocity error'" is the distance, in velocity space, from the
true velocity peint to the estimated velocity point of Unit 3. 1In othe:
words, velocity error is the magnitude of the vector difference of the

estimated velocity vector and the true velocity vector of the target.

Figure 10 shows the average velocity errors as a function of
time for the 3 tracking algorithms., Even at best, 10 knots error is not
too impressive, for MURLOC or the self-optimizing algorithm, but the
long-range geometry combined with the l.5-degree bearing sigmas make the
estimation of velocity most difficult. The maneuver-known algorithm
results are significantly lower, and show the improvement that might be

possible with an accurate maneuver detector.

Even though the maneuver is known to occur at t = 40 min, a

large velocity error is recorded for the maneuver-known algorithm
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because the velocity estimate was based on data from Time Steps 1
through 5. The target course estimate was close to 315 degrees, but the
program defined the target's course at Step 5 as 045 degrees, whereas
actually the course is both 315 and 045 degrees. Thus, a large velocity
error shown at the time of maneuver is a result of a programming defini-
tion, rather than a result of estimation difficulties. These comments

also apply to the two other algorithms.

Figure 11 shows the effect on the MURLOC results when the
bearing errors for both Bearing (l1,3) and Bearing (2,3) are drawn from
a normal distribution with a standard deviation of 1 degree instead of
1.5 degrees, The improvement indicates that the velocity errors are

significantly affected by the underlying error structure of the scenario.

Figure 12 shows the percent of replications that had velocity
errors less than the estimated velocity CEP., The results show that
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FIGURE 11 EFFECT OF SIGMA BEARING ON MURLOC VELOCITY ERROR

MURLOC and the self-optimizing algorithm were as overly optimistic in
velocity estimates as they were in position estimates, The maneuver-

known algorithm again approximates the theoretical.

3s Summary

The Monte Carlo results for the defined scenario show that
MURLOC can track a maneuvering target, that the target position errors
in relative coordinates will be close to the lower bound, and that the
target velocity errors will be reasonably small, as compared to a
self-optimizing least-squares method. MURLOC estimates its own errors
smaller than they really are, and therefore decisions based on error
estimates would have to take MURLOC's overly optimistic behavior into
account, An examination of other scenarios and other least-squares
optimization procedures would undoubtedly add to the knowledge of
MURLOC's tracking capability, but the above basic analysis does show

that MURLOC is a reasonably good tracking algorithm.
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IV THE COMPARISON ALGORITHM

The tracking capability of MURLOC was compared to the capability of
another tracking algorithm that employed a batch-processed self-optimizing,
least-squares methodology. Upon receiving measurements at the n-th time
step, the self-optimizing algorithm computed an estimate of the state
vector using measurements from time n and n - 1; then it computed another
state estimate using measurements from time n, n - 1, and n - 2; and so
on down to the first time step. The n - 1 state estimates were checked
to see which one produced the smallest value of a defined test statistic;
the chosen one was then used as the best state estimate at time step n,
State estimates were calculated by processing measurements in a nonlinear
weighted least-squares algorithm, The algorithm employed an iterative
method to find the best least-squares solution, The sections that follow

describe the comparison algorithm in detail.

A. Least-Squares Problem

At each time step, n, a state estimate, zpn (where p =1 ton - 1),
is computed such that a sum of weighted squares is minimized. The sum

of squares, Gpn’ is given by:

T T[]

for time-step summation indices k = p to n, and measurement indices

j =1 to 8, The actual state vector at time n is denoted z the
measurements at time k are denoted mi, and the measurement models at
j(zn); these three objects are defined below, The

k .
measurement variances at time k are denoted Mi; they are input parameters,

time k are denoted F

There are n - 1 state estimates, zpn’ at time step n, and one of

them is better than the others. The best one is found by computing a test
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statistic, Spn’ and choosing the state estimate that produces the smallest

value spn' The test statistic is defined in Section C of this chapter,

1L, State Vector

i At each time, n, where n ranges from 2 to N, an estimate of

position and velocity for each of 3 units is required. This estimate is

based on a contiguous time-sequence of measurements, Let
X g™ The x-coordinate of Unit i at time n
b ATy The y-coordinate of Unit i at time n
.ni = The velocity in the x-direction at time n
9ni = The velocity in the y-direction at time n

where i = 1,2,3 is the unit index. Position is expressed in nautical
miles and velocity is expressed in knots. The state vector has 10 com-

ponents and is defined as:

. ] L ] L] L] L) T
%5 ™ o Yoi %o Yan %00 Yoo g Yo Tua Yng) e

It is convenient to let znj denote the j-th component of z .

The state vector does not contain the x and y positions of
Unit 1 because only the relative positions need to be estimated, In
effect, the x,y-coordinate system is redefined at each time step rela-

tive to the position of Unit 1,

2. Measurement Vector

The measurement vector at time n is defined as:

where the mi (j =1 to 8) are defined in Table 8, We assume that m is
a random vector distributed as a multivariate normal deviate and that
the components of m are uncorrelated. We call Mn the covariance matrix .

of m and use Mi to denote the j-th diagonal term of Mn'
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Table 8

DEFINITION OF MEASUREMENTS FOR THE COMPARISON ALGORITHM

Symbol Meaning

mi Bearing (1,2)"
2

m Bearing (1,3)
3

mk Course (1)
4

m Range (1,2)
5

m Speed (1)
6

™ Bearing (2,3)
7

m Course (2)
8

m Speed (2)

*Bearing (1,2) is the bearing from
Unit 1 to Unit 2 at time step k.

3. Measurement Model

A model of the measurements m at time k can be constructed
from the state vector and the position of Unit 1 at time n ., First

define the relative x-position by:

nk . )
xij (xnj - xni) + (k=-=n)rT (xnj - xni)

where T is the time-step duration, and i and j are unit indices. Define
a similar equation for yi? Then components of the measurement model can

be written; for example, the components corresponding to mk and mk are:
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1 -1 nk /nk
B (2,) = tam (a1 12>
*
8 " Ll 2 . 2
Fk(zn) = ((an) * (ynZ) ) i

We say that
1 8 ¥
F(z)) = (F(zp) ... Fk(zn)>

is the measurement model at time k,

B. Nonlinear Least-Squares Algorithm

References that surveyed literature directly addressing the
solution of nonlinear-least squares problems were examined; see Bard,2
Broyden,3 Draper and Smith,4 Fletcher,® and Powell.® The examination
revealed that all algorithms that solve nonlinear least-squares problems
are iterative, They calculate a sequence of points Vl’ Vz, sisis g that
should converge to a V¥, which solves the nonlinear least-squares
problem, These algorithms frequently substitute linear approximations

evaluated at V, for the nonlinear functions, and these linear approxima-

k

tions are then used to calculate V A conclusion of this review of

relevant literature was that the Gtzzs-Newton method, and variants of

it, were the best algorithms with which to minimize the sum of squares,
Gpn' The particular variant of the Gauss-Newton method that we used in
the optimized, iterative, least-squares tracking algorithm makes use of
a technique to ensure that Gpn strictly decreases for each point of the

sequence generated,

In the following sections, Gpn is denoted G(z); in other words,
the p and n subscripts are suppressed and the functional dependence

on the state vector z = z is emphasized.
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L. Gauss-Newton Method

3 Algorithm (a) in Bard® was used as the variant of the Gauss-
Newton method for handling the nonlinear problem, For the first itera-
tion, the algorithm was provided an initial estimate of the state., To
reduce the chance of a nonconverging solution, we used the true state

values to start the Gauss-Newton algorithm,

At time step n and iteration i , Fi(z) is approximated by

the linear function:

HORSHEIOIEDENONEREIO)

where the state summation index is s 1 to 10, the measurement index is

j=1to 8, the time step index is k = p to n, and:

j
j I BFk(zn)
Jks(i) T dz 5
ns z =2 (1)
n n

The values fi(z) are used to approximate G(z) by the sum of squares:

2
8@ =X Llny - @) /m
k j
The vector d(i), which minimizes g(z), is then determined.

The estimate of state at iteration i is denoted 2z(i). A new
estimate z(i+l) is found using the formula:

z(i+1) = z(i) + r d(i)

where d(i) is the solution of least-squares problem at time n and

iteration i, and r 1is a scalar chosen so that:

Gl z(i+1)] < Gl z(1)] .
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The iterations at time n continue until any one of the following four

termination criteria is satisfied:

¢ The number of interpolations (defined below) reaches its
maximum allowed value (10 were allowed) and

Glz(i) + r d(i)] 2 G[z(1)] .
e The iteration counter, i, reaches its maximum allowed

value (5 iterations were allowed).

e All absolute components \r d(i)\ are less than 0,0001
times the corresponding absolute components Iz(i)l + 0.001;
see Bar:d,‘2 page 168.

e Glz(i)] - 0.001 < g[z(i+l)] < G[z(i)] .
The scalar r at iteration i 1is calculated by the following steps:

(1) Use the value of the interpolation index q from
iteration i - 1 (if i = 1 set q = 0).

(2) Divide q by 2 and retain the integral part,
(3) set r =279,

4y 1f Glz(i) + r d(i)] < Glz(i)], use z(i+l) = z(i) +
r d(i) as the new estimate of state., Otherwise
perform Steps 5 through 8.

(5) Construct as a function of s the polynomial of
degree 2 that equals G[z(i) + s d(i)] for the two
points s = 0 and s = r, and for which the slope
equals h  Vh at s =0, The vector h and
the matrix V are defined in the next section,

{6) Compute the value s at which the first deriva-
tive of the polynomial is zero and call this
value s+ Let

s, = max [0.25r, min (0.75 r, 81)] s

An execution of Step 6 is called an "interpolation,'
(7) Increase q by one,

(8) Replace r with ) and return to Step 4,

8 Least-Squares Solution

Several algorithms were available to compute d(i), (see
Lawson and Hanson).7 Since the covariance matrix of d(i) was desired,

an algorithm was selected that provides the covariance matrix as a
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byproduct of the computation of d(i). Execution time and programming
ease were also considered, Consequently, the normal equations of the
linear weighted least-squares problem were derived, the Cholesky (or
square-root) method was applied to the matrix determined by the normal
equations, the upper triangular Cholesky factor was inverted, and the
d(i) that solved the linear weighted least-squares problem and its

covariance matrix was then computed,

Below we show the form of the normal equations for the linear least-
squares problem. Let p and n be integers such that p =1 ton - 1,
Let the 8-by-10 matrix, Jk(i), contain the (j,s)-th component,

Jis(i) for k = p to n., Define the matrixes:

T
L T
J = (Jn(l) dlee Jp(i)]
M 0
n
M- .. .
0 M
P
Define the vector:
mo- Fn[z(i)]
D’ : .
-Flz@d
mp 5 (1)]

The normal equations at time n and iteration i are then given by:

Fulsapy="Tuls |

g
Now J° M~ J is symmetric and positive definite; thus Cholesky's
method (see Lawson and Hanson’ or Forsythe and Molere) is used to find

an upper triangular matrix U such that:

Hovedyly
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and U is invertible by using formulas from Lawson and Hanson,” The
covariance matrix of the solution of the linear weighted least-squares

problem, V, is computed from the formula:

vert grht

The vector h is:

and the solution of the linear weighted least-squares problem, d(i),

is calculated by:

d(i) =V h .

C. Test Statistic

Two test statistics are presented below; the first was used in the
self-optimizing least-squares algorithm presented in Chapter III. The
second statistic is suggested as a possible candidate for the optimiza-
tion process, but no experimentation was performed to see if it would

work better than the first statistic.

1, Residual Mean Square

The residual mean square, S, was the test statistic minimized
by the self-optimizing algorithm, For each time step n, the statistic
Spn (where p = 1 to n - 1) was computed and the estimate of state, zpn,
which produced the smallest Spn was chosen as the best estimate of
state at time n, The statistic was calculated by:

8 ® G(zpn)/TS(n -p+1) - 10
where the sum of squares, Gpn’ was evaluated at each of the state

estimates, z_ .
pn
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2 Multiple Correlation Coefficient

The square of the multiple correlation coefficient, Rz, is a
statistic that is frequently computed for multiple regression analysis
(see Draper and Smith‘). R2 is a measure of how well the regression
explains the data: R2 is between 0 and 1, and the larger it is, the
better the regression, R2 is offered here as a candidate test statistic
to determine the best of the n - 1 state estimates, zpn. Suppose zpn
was obtained on Iteration i; then the test statistic is given by:

Rfm-(hTVh - /o'l - a

where

2
a-[EijD%]/8(n-p+l)

for time-step indices k = p to n and measurement indices j = 1 to 8.
The state estimate that is associated with the largest value of Rin
(where p = 1 to n - 1) would then be chosen as the best estimate at

time n,
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Appendix A

MURLOC COMPUTER PROGRAM

PROGRAM MURLOC( INPUT,OUTPUT, TAPES=INPUT, TAPE6=0OUTPUT)

xx KEY
xx
xxX
xx
xx
xX

GEOGRAPHICAL POSITION DATA

RANGE AND BEARING DATA

BEARING-ONLY DATA

COURSE AND SPEED DATA

OUTPUT

xx NEW RUN

xx END

xx K UNIT NUMBER

xx KO OBSERVER NUMBER

xx TM UPDATE TIME (MIN)

xx RNG RANGE (NMI)

xx BRG TRUE BEARING (DEG)

xx RSIG RANGE STANDARD DEVIATION (NMI)

xx BSIG BEARING STANDARD DEVIATION (NMI)
xx XE EAST COORDINATE (NMI)

xx YE NORTH COORDINATE (NMI)

xx R1 X-ROTATED PRINCIPLE STANDARD DEVIATION (NMI)
xx R2 Y-ROTATED PRINCIPLE STANDARD DEVIATION (NMI)
xx ANG ANGLE OF ROTATION FROM NORTH (DEG)
xx CRS COURSE (DEG)

xx SPD SPEED (KT)

NOLWON -~

xx TO LAST TIME OF UPDATE (MIN)

xx E(1) STATE VECTOR (X1,Y1,VX1,VY1, X2,Y2,VvX2,VY2, ETC.)
xx V(1,J) COVARIANCE MATRIX

xx H(I1,J) STATE-TO-DATA TRANSFORMATION MATRIX

xx D(N) DIFFERENCE OF DATA AND PREDICTED DATA

xx W(l,J) DATA COVARIANCE MATRIX

(e X N e N N N e N s N N e N NeNeNeRoNeNeNeNoNoNeReNoNeReNoNeNeNel

COMMON/A/ KEY,TM, TO,KO,K, KM, IMAX, UB, TDO

COMMON/B/ D(2),W(2,2),H(2,36)

COMMON/C/ E(36),EE(36),V(36,36),VV(36,36),A(36, 36)
COMMON/E/ RNG,BRG,RS1G,BSIG, XE, YE

DIMENSION X(S)

P1=3.1415926536

TP1=2.xPl
UB=P1/180. ’
S WRITE(6,450) £
READ(S,620) TP,TD,KEY,KO,K,X -
TM=TP 3

: LL=1

| IF(KEY-6)110,20, 150

~ C xx INITIALIZE i
| 20 CONTINUE

I TPS=TP $TDS=TD 4
| TO=TD $TDO=0. '
i KM=KO

IMAX=4%xKM v
[M36=36x% [ MAX r
; DO 22 1=1,1M36 ,
1 AC1)=0. .
22 v(1)=0. |
DO 24 1=1,1MAX
E(1)=0.

ACL,1)=1,
’ 24 V(1,1)=2%5.E4
G0 TO 8




c

xx
30

33

xx
40

xx
44

S2

zX
110

GEOGRAPHICAL DATA

CONTINUE

IF(TM.GT.TO) CALL UPDATE(1)
XE=X(1) SYE=X(2)

R1=X(3) $SR2=X(4) $SANG=X(S)
12=Kx4-2 $11=12~1
D(1)=XE-E(I11)

D(2)=YE-E(12)

IM2=2x | MAX

DO 33 1=1,1M2

H(1)=0.

HC1,11)=1., SH(2,12)=1.
B=ANGxUB

CALL ROTATE(R1,R2,B,W(1,1),W(1,2),W(2,2))
W(2,1)=W(1,2)

CALL KALMAN(2,F)

LL=2 S$TM=TP $GO TO 110

RANGE AND BEARING DATA
CONTINUE

RNG=X(1) S$SRSIG=X(3)
BRG=X(2) $BSIG=X(4)

CALL REPORT

CALL KALMAN(2,F)

LL=2 S$TM=TP $60 TO 110

BEARING ONLY DATA
CONT I NUE

BRG=X(1)

BSI1G=X(2)

CALL REPORT

CALL KALMAN(2,F)

LL=2 S$TM=TP $60 TO 110

VELOCITY DATA

CONTINUE

CRS=X(1) $SPD=X(2)

S1=X(3) $S2=X(4)
IF(TM.GT.TO) CALL UPDATE(1)
B=CRSxUB

14=Kx4 $13=14-1
D(1)=SPDxSIN(B)-E(I3)
D(2)=SPDxCOS(B)-E(14)
IM2=2x I MAX

DO S2 1=1,1M2

H(1)=0.

H(1,13)=1. SH(2,14)=1.

CALL ROTATE(S1,82,B,W(1,1),W(1,2),W(2,2))
W(2,1)=W(1,2)

CALL KALMAN(2,F)

LL=2 $TM=TP $60 TO 110

OUTPUT

CONTINUE

KOZ=KO $KZ=K

IF(TP.EQ. TPS.AND.LL.EQ.1) GO TG 130
WRITE(6,680)

WRITE(6,530) TO

WRITE(6,535) T™M

WRITE(6,700)

CALL UPDATE(O)

IF(KM.EQ.1) GO TO 120
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c
C wx

12

C "X
120

121
122

128

130

OUTPUT UNIT LOCATION RELATIVE TO OBSERVER
WRITE(6,840)

KMM=KM- 1

0O 118 KO=1,6KMM

J2=KO*x4-2 $J1=J2-1

KK=KO+1

DO 118 K=KK,KM

12=Kxd4-2 $11=]12-1

EX=EE(11)-EE(J1)

EY=EE(12)-EE(J2)

RNG=0. $BRG=0.

IF(EX.EQ.O0. .AND.EY.EQ.0.)G80 TO 112
RNG=SQRT(EX*EX+EY=EY)

BROG=ATAN2(EX,EY)
IF(BRA.LT.0.)BROG=TP| +BRG

BRG=BRG/UB

VIiteVVOIT, 11)-2.0VV(T1,J1)4VV(J1,01)
V22=VV(12,12)-2.xVVW(12,J2)+VV(J2,J2)
Vi2=VV(11,12)-VV(11,02)-VV(J1, 12)+VW (I ,J2)
CALL ELLIPSE(V11,V12,V22,R1,R2,AA)
ANG=AA/UB

CEP=FCEP(R!,R2)

WRITE(6,550) KO,K,RNG,BRG,R1,R2, ANO, CEP
WRITE(6, 700)

OUTPUT UNIT STATE

CONTINUE

WRITE(6,548)

DO 128 K=1,KM

14=K*4 $13=14-1 $12=13-1 $]1=12-1
Vit=vv(lr, i)

Vi2=VV(I11,12)

v22=VvVv(l12,12)

CALL ELLIPSE(V11,V12,V22,R1,R2,AA)
ANG=AA/UB

CEP=FCEP(R!,R2)
IF(EE(I3).EQ.0..AND.EE(14) . EQ.0.)00 TO 121
C=ATAN2(EE(13) ,EE(14))
IF(C.LT.0.)C=TPI+C

C=C/UB

G0 TO 122

C=0.

S=SART(EE(I1J)wx2+EE(14)xx2)
V33=VV(13,13)

V34=VV(1i3,14)

V44=VV(l4, 14q)

CALL ELLIPSE(V33,V34,V44,A1,A2,AA)
AAA=AA/UB

VEP=FCEP(A1,6A2)

WRITE(6,888) K,EE(11),EE(12),R1,R2,ANOG, CEP,
+ C,S,A1,A2, AAA, VEP

CONT I NUE

IF(LL.EQ.2) GO TO B

KO=KOZ $K=K2Z

TPS=TP $TM=TD

IF(TD.GT.TDS) TDO=(TD-TO)/60.
TDS=TD

WRITE(6,680)

WRITE(6,890)

WRITE(6,600)TP, TD,KEY,KO,K, X
G0 TO (30,40,44,80,8) KEY




480 FORMAT(1H1)

650
700
590

600
620
530
538
840
580
545
555

150

10

20

30

70

FORMAT(1H /1H )
FORMAT(1H )
FORMAT(x DATA TP x,

+ x TD KEY KO K X1 X2 X3 X4

FORMAT(6X,2F6.1,13,14,12, SF6.1)
FORMAT(2F10.0,11,14,12,3X,5F10.0)

FORMAT(x TIME OF LAST DATA =x,F6.1)
FORMAT(x TIME OF PREDICTION =x,F6.1)
FORMAT(x OBSR UNIT RNG BRG SI01 8IG2
FORMAT(1S5,16,F7.1,6F6.1)

FORMAT ( x UNIT X Y Si161 Sle2
+ a9, xCRS SPD SIG1 S8IG2
FORMAT(I11,1X,6F6.1,6X,6F6.1)

CONTINUE

END

SUBROGUTINE UPDATE(L)
COMMON/A/ KEY, TM, TO,KO, K, KM, 1MAX, UB, TDO

X8 x)
ANG CEPx)
ANG CEPx,
ANG CEPx)

COMMON/C/ E(36),EE(36),V(36,36),VV(36,36),A(36, 36)

T=(TM-TO)/60.
IMM3=1MAX-3

DO 10 I=1,1MM3,4
ACl,142)=T
ACl+1,1+43)sT

DO 20 I=1, IMAX
EE(1)=0.

DO 20 M=1, IMAX
EE(1)=EE(I)+A(I ,M)xE(M)
DO 30 1=1, IMAX
DO 30 J=1, IMAX
VV(l,J)=0.

DO 30 M=1, IMAX
DO 30 N=1, IMAX
VV(I1,J)=VV(l,J)+A(1,M)xV(M,N)*A(J,N)
VW(J,1)avv(l,bJ)
IF(L.EQ.O)RETURN
DO 70 1=1,1MAX
E(1)=EE(1])

DO 70 J=1, IMAX
vil,J)=vwi(l,J)
TO=TM

RETURN

END
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SUBROUTINE REPORT
COMMON/A/ KEY, TM, TO,KO,K, KM, IMAX, UB, TDO
COMMON/B/ D(2),W(2,2),H(2,36)
COMMON/C/ E(36),EE(36),V(36,36),VV(36,36),A(36, 36)
COMMON/E/ RNG,BRG,RS106,BS16,XE,YE
IF(TM.GT.TO) CALL UPDATE(1)
12=Kx4-2 $11=12-1
J2=K0x4-2 $J1=J2-1
B=BRG*UB
IF(KEY.EQ.2) GO TO 18
XD=E(11)-E(J1)
YD=E(12)-E(J2)
Vili=s V(OI1,11)~2.x V(11,J1)+ V(J1,J1)
V2= V(12,12)-2.x V(12,J2)+ V(J2,J2)
Vi2= V(I11,12)~- V(11,J2)- V(J1,12) +V(J1,J2)
CALL ELLIPSE(V11,V12,V22,R1,R2,AA)
CAA=COS(AA)
SAA=SIN(AA)
XC=XDxCAA-YDxSAA
YC=YDxCAA+XDxSAA
BA=B-AA
SBA=SIN(BA)
CBA=COS(BA)
IF(ABS(SBA).LT..0001) GO TO 10
IF(ABS(CBA).LT..0001) GO TO 11
TBA=SBA/CBA
R=(R1/R2) SRR=RxR
Y= (RRxYC+TBAXXC)/(TBAxTBA+RR)
X=TBAxY
RNG=SQRT(XxX+YxY) $G6O0 TO 12
10 RNG=ABS(YC) $G6GO TO 12
11 RNG=ABS(XC)
12 CONTINUE
RS1G=RNG
18 CONTINUE
R1=RNOG*BS16xUB
R2=RS]0G
XE=E(J1)+RNGxSIN(B)
YE=E(J2)+RNGxCOS(B)
D(1)=XE-E(11)
D(2)=YE-E(12)
IM2=2x IMAX
DO 28 I=1,[IM2
25 H(1)=0.
HC1,11)=1, SH(2,12)=1.
H(1,J1)=-1, SH(2,J2)=-1.
CALL ROTATE(R1,R2,B,W(1,1),W(1,2),W(2,2))
W(2,1)=W(1,2)
RETURN
END

— i i i s




SUBROUTINE KALMAN(KA,F)

xx FILTER EQUATIONS, JAZWINSKI P.270
xx B = ViH x (HxViH + W)xx-1

xx E = E + GxD

xx V = (]1-GxH)xVx(]-GxH) + OxWx0G

000000

COMMON/A/ KEY, TM, TO,KO,K, KM, IMAX, UB, TDO

COMMON/B/ D(2),W(2,2),H(2,36)

COMMON/C/ E(36),EE(36),V(36,36),VV(36,36),A(36,36)
DIMENSION VH(36,2),06(36,2),P(36,36),VS(36,36),U(2,2)

14=Kx4 $13=14-1 $12=13-1 $11=]12-1
L=0

1 DO 10 I=1, IMAX
DO 10 J=1,2
SUM=0.
DO S5 N=1, IMAX
S SUM=SUM+V(1,N)xH(J,N)
10 VH(1,J)=SUM

DO 20 1=1,2
DO 20 J=1,2
SUM=W(I,J)
DO 15 N=1, IMAX
15 SUM=SUM+H(I,N)xVH(N, J)
20 U(l1,J)=SUuM

DET=U(1,1)*U(2,2)-U(1,2)xU(2,1)
uli=u(1,1)

u(1,1)=U(2,2)/DET
u(1,2)=-U(1,2)/DET

u2,1)=u(1,2)

u(2,2)=U11/DET
IF(L.EQ.1.0R.TDO.EQ.0.) GO TO 24

R=0.
DO 21 M=1,2
DO 21 N=1,2

21 R=R+D(M)xU(M,N)xD(N)
F=EXP(-R/2.) $FF=1,-F
IF(KA.EQ. 1) RETURN

GO0 TO (22, 22,22,23) KEY

22 V(I11,11)=V(I11,11) + D(1)xD(1)xFF
v(i2,12)=v(12,12) + D(2)xD(2)xFF
VE11,12)=V(11,12) + D(1)xD(2)xFF
vz, t1)y=vai,12)
D3=D(1)/TDO
D4=D(2)/TDC

V(13,13)=V(13,13) + D3*D3xFF
V(14,14)=V(14,14) + D4xD4xFF
V(13,14)=V(13,14) + D3IxD4xFF
V(14,13)=V(13,14)
V(I1,13)=V(I11,13) + D(1)xD3xFF
V(l11,14)=V(11,14) + D(1)xD4xFF
vV(12,13)=V(12,13) + D(2)xD3xFF
V(12,14)=V(12,14) + D(2)xD4xFF
vViI3,11)=V(I11,13)
v(ld4,11)=V(I1,14)
V(i3,12)=V(i2,13)
v(l4,12)=Vv(12,14)
L=1 $G0 TO 1
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23

24

2%
30

33
40

435

S0
8S

60
63

V(13,13)2V(13,13) + D(1)xD(1)xFF
V(14,14)=v(14,14) + D(2)=D(2)xFF
V(I3,14)=V(I3,14) + D(1)xD(2)xFF
V(14,13)=2V(13,14)

L=) 8GO TO 1

DO 30 1=1, IMAX

DO 30 J=1,2

SUM=0.

DO 23 N=1,2
SUM=SUM+VH(1,N)xU(N, J)
G(1,J)=SUM

DO 40 1=1, IMAX

DO 40 J=), IMAX

SUM=0.
IF(1.EQ.J)SUM=1.

DO 35 N=1,2
SUM=SUM-G(1,N)x*H(N, J)
P(1,J)=SUM

DO S8 1=1, IMAX

DO SS J=1, IMAX

SUM=0.

DO 435 N=1, IMAX

DO 45 M=1, IMAX
SUM=SUM+P (1 ,N)xV(N,M)xP(J, M)
DO SO0 N=1,2

DO S0 M=1,2
SUM=SUM+G (1, N)xW(N,M)xG(J,M)
VS(1,J)=VS(J,1)aSUM

DO 65 1=1, IMAX

DO 60 N=1,2
E(1)SE(]1)+8(1,N)xD(N)
DO 63 J=1, IMAX
V(1,J)=V(J,1)=VS8(1,J)
RETURN

END
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SUBROUTINE ELLIPSE(V11,V12,V22,R1,R2,A)
IF(V12.EQ.0.) GO TO 10
A=, SxATAN2(2.xV12,V22-V11)
SINA=SIN(A)
COSA=COS(A)
SSIN=SINAxSINA
SCOS=SINAxCOSA
CCOS=COSAxCOSA
RR1=CCOSxV11-2,.xSCOSxV12+SS|INxV22
RR2=SSINxV11+2. xSCOSxV12+CCOSxV22
R1=SQRT(RR1)
R2=SQRT(RR2)
RETURN
10 R1=8SQRT(V11)
R2=8SQRT(V22)
A=0.
IF(R2.GE.R1) RETURN
R=R1 SR1=R2 $R2=R $A=3.141592683%59/2.
RETURN
END

SUBROUTINE ROTATE(R1,R2,A,V11,V12,V22)
SINA=SIN(A)
COSA=COS(A)
SSIN=SINAxSINA
SCOS=SINAxCOSA
CCOS=COSAxCOSA
RR1=R1xR1

RR2=R2xR2
V11=CCOSxRR1+SSINxRR2
V12=8COSx (RR2-RR1)
V22=SSINx*RR1+CCOSxRR2
RETURN

END

FUNCTION FCEP(R1,R2) ]
CEP=.562%R2+.618xR1

IF(R1.LT..3%R2) CEP=R2x(.675+.79444%(R1/R2)*xx2)
FCEP=CEP : ~
RETURN '
END :




Appendix B

EXAMPLE OUTPUT
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