The George Washington University
Institute for Management Science and Engineering
Program in Logistics

ERRATA FOR

OPTIMAL TREATMENT LEVELS OF A
STREAM POLLUTION ABATEMENT SYSTEM UNDER
THREE ENVIRONMENTAL CONTROL POLICIES
PART I: SOLUTION AND ANALYSIS OF CONVEX
EQUIVALENTS OF ECKER'S GP MODELS USING SUMT

Technical Paper Serial T-387
19 January 1979
by
Anthony V. Fiacco
Abolfazi Ghaemi

Page Number	Correction

iii | The page number for Figure 3 should be 8 (not 6).

7 | (i) In Equation (2) and in the second line following this equation, change e to E.
(ii) In the definition of L_b, change "at the bottom of" to "before entering."

9 | In the second line preceding and the first line following Equation (5), the small s_i should be a capital S_i.

10 | Replace the last sentence by "The variable t_{ij}, the fraction of BOD remaining in the process in Reach i after Process j, is a positive fraction, positivity being enforced by the model formulation; thus,"

11 | (i) Replace line one by: "$0 < t_{ij} < 1$ for all i, j.
(ii) In the inequality beginning with u_{21} (line 9), replace w_2, appearing over the first product sign, by w_1.

This document has been approved for public release and sale; its distribution is unlimited.
12
(i) In the third equation following Equation (1), the subscript \(r \) of \(R \) should be changed to \(v \).

(ii) In Equation (2), change \(e \) to \(E \).

(iii) Replace the parenthetical remark at the bottom of the page by: "For notational simplicity the subscript \(i \) indicating the reach number is suppressed, except for \(V_{0}, L_{0}, \) and \(D_{0} \), where the subscript zero indicates specified levels of the respective quantities just prior to entering Reach 1."

13
Replace this page by the attached Page 13.

14
Delete the parameters \(L_{0} \) and \(D_{0} \) and their definitions.

18
In Constraint (20), replace the subscript 2 by 6, throughout.

21
In the first line replace the coefficient 1.68 by 16.8.

35
(i) In the (fourth) equation for \(C_{31} \), replace the subscript capital \(S_{1} \) of \(K \) by small \(s_{1} \), and the subscript \(r_{1} \) of \(R \) by \(w_{1} \).

(ii) In the (fifth) equation for \(L_{1} \), replace \(e_{1} \) by \(E_{1} \).

(iii) In the (sixth) equation for \(e_{1} \), replace \(e_{1} \) by \(B_{1} \) and the subscript \(i \) of \(t \) by 1.

(iv) In the last two inequalities on the page, replace the subscript \(i \) of \(t \) by 1.

(v) In the last inequality on Page 35, the quantity multiplying \(C_{21} \) should be \(D_{0} \) rather than \(b_{0} \).

36
(i) In the first line, replace the subscript \(i \) of \(t \) by 1.

(ii) In the (fourth) equation for \(C_{32} \), replace the subscript capital \(S_{2} \) of \(K \) by small \(s_{2} \), and the subscript \(r_{2} \) of \(R \) by \(w_{2} \).
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>(iii) In the (fifth) equation for L_2, replace e_2 by E_2.</td>
</tr>
<tr>
<td></td>
<td>(iv) In the (sixth) equation for e_2, replace e_2 by E_2.</td>
</tr>
<tr>
<td></td>
<td>(v) In the (last) equation for L_1, replace the subscript i of t by l.</td>
</tr>
<tr>
<td>37</td>
<td>In the first equation, first replace the small c_{11} by capital C_{11}. Then, under the product sign, replace $j-1$ by $j=1$ and, following the product sign, replace the subscript i of t by l.</td>
</tr>
</tbody>
</table>
Parameters representing physical measurements involved in the dissolved oxygen deficit Equation (1):

- Flow rate of the river before entering Reach 1, in \(10^6\) gallons/day
- Initial BOD level of the stream before entering Reach 1, \(b_0\) in mg/l
- Initial oxygen deficit of the stream before entering Reach 1, \(d_0\) in mg/l
- Deoxygenation constant, in day\(^{-1}\)
- Reaeration constant, in day\(^{-1}\)
- Flow time along the reach, in days
- Fraction of river bottom covered with sludge
- A coefficient in the sludge term, determined empirically in day\(^{-1}\)
- Oxygen uptake rate per unit area of stream bottom surface, in gm/m\(^2\)/day
- Hydraulic radius of the river cross section, in meters
- Volume of the effluent released into the river, in \(10^6\) gallons/day
- BOD concentration of effluent, before treatment, in mg/l

Aside from the above parameters which are involved in the oxygen sag equation of each reach, the following parameters will also enter into the formulation of the model at various stages.

Parameters representing quantities determined by management decisions or feasibility considerations:

- Maximum allowable oxygen deficit, in mg/l
- Minimum required or feasible BOD removal by a specified sequence of treatment components in a given reach, a fraction
- Maximum possible or feasible BOD removal by a specified sequence of treatment components in a given reach, a fraction
- Minimum required or feasible BOD removal by a specified single treatment component in a given reach, a fraction
OPTIMAL TREATMENT LEVELS OF A STREAM POLLUTION ABATEMENT SYSTEM UNDER THREE ENVIRONMENTAL CONTROL POLICIES

PART I: SOLUTION AND ANALYSIS OF CONVEX EQUIVALENTS OF ECKER'S GP MODELS USING SUMT

by

Anthony V. Fiacco
Abolfazl Ghaemi

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

Program in Logistics
Contract N00014-75-C-0729
Project NR 347020
Office of Naval Research

This document has been approved for public sale and release; its distribution is unlimited.
OPTIMAL TREATMENT LEVELS OF A STREAM POLLUTION ABATEMENT SYSTEM UNDER THREE ENVIRONMENTAL CONTROL POLICIES

PART I: SOLUTION AND ANALYSIS OF CONVEX EQUIVALENTS OF ECKER'S GP MODELS USING SUMT

by

Anthony V. Fiacco
Abolfazl Ghaemi

The existing approaches to the mathematical modeling and optimization of a water pollution problem are briefly surveyed. A proposed geometric programming model of a water pollution and treatment system, which easily lends itself to the theory and application of nonlinear programming sensitivity analysis techniques, is studied in detail. As in previous work by the author of the model, the optimal waste treatment facilities along the Upper Hudson River are presented for three different environmental policies, leaving the sensitivity analysis study for a following report. Previous results were obtained using a geometric programming code, while the present study makes use of the SUMT code. It is shown that the policy of fixed dissolved oxygen requirement yields the minimum annual waste treatment cost, relative to two other policies. Moreover, it is shown that a variable dissolved oxygen policy yields relatively uniform treatment levels in the treatment plants at appreciably reduced cost compared to the costs involved in strict uniform treatment policy. The results of the present study are consistent with, but not identical to, the findings reported in previous work. The discrepancy in the coefficients involved in the dissolved oxygen constraints used by these two studies is the main reason for the differences observed. A listing of a computer program developed to calculate these coefficients is included.
The existing approaches to the mathematical modeling and optimization of a water pollution problem are briefly surveyed. A proposed geometric programming model of a water pollution and treatment system, which easily lends itself to the theory and application of nonlinear programming sensitivity analysis techniques, is studied in detail. As in previous work by the author of the model, the optimal waste treatment facilities along the Upper Hudson River are presented for three different environmental policies.
20. Abstract - continued

leaving the sensitivity analysis study for a following report. Previous results were obtained using a geometric programming code, while the present study makes use of the SUMT code. It is shown that the policy of fixed dissolved oxygen requirement yields the minimum annual waste treatment cost, relative to two other policies. Moreover, it is shown that a variable dissolved oxygen policy yields relatively uniform treatment levels in the treatment plants at appreciably reduced cost compared to the costs involved in strict uniform treatment policy. The results of the present study are consistent with, but not identical to, the findings reported in previous work. The discrepancy in the coefficients involved in the dissolved oxygen constraints used by these two studies is the main reason for the differences observed. A listing of a computer program developed to calculate these coefficients is included.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Model Description</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Background</td>
<td>4</td>
</tr>
<tr>
<td>2.2. The Model</td>
<td>8</td>
</tr>
<tr>
<td>2.3. Model Parameters</td>
<td>12</td>
</tr>
<tr>
<td>3. Formulation of the Models for the Upper Hudson River</td>
<td>14</td>
</tr>
<tr>
<td>4. Optimal Solutions of the Upper Hudson River Models</td>
<td>24</td>
</tr>
<tr>
<td>4.1. Problem P_1</td>
<td>24</td>
</tr>
<tr>
<td>4.2. Problem P_2</td>
<td>26</td>
</tr>
<tr>
<td>4.3. Problem P_3</td>
<td>28</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>31</td>
</tr>
</tbody>
</table>

Appendices

1. Dissolved Oxygen Deficit Constraints of Reaches 1 and 2 for Problem P_1 | 34 |
2. Program Listing to Calculate u_{ij} | 38 |
3. Input Data and Calculated u_{ij} for Problems P_1 and P_2 | 41 |
4. Input Data and Calculated u_{ij} for Problem P_3 | 43 |
LIST OF FIGURES

1. A Typical Waste Treatment Component Arrangement ... 5
2a. Dissolved Oxygen Profile Along Reach 1 ... 6
2b. Dissolved Oxygen Profile Along Reach 1 (An Alternative Profile) 6
3. Configuration of Design Treatment Components for Reach 1 6
4. Configuration of the Design Treatment Facilities Along the Upper Hudson River 15

LIST OF TABLES

1. Optimal Plant BOD Removal Levels and Costs for Problem P_1 25
2. Optimal Plant BOD Removal Levels and Costs for Problem P_2 27
3. Optimal Plant BOD Removal Levels and Costs for Problem P_3 29
1. Introduction

The present paper reports on the solution and analysis of a geometric programming water pollution control model [1] formulated by J. G. Ecker and applied by him to a problem involving data for the Upper Hudson River. A basic premise motivating the environmental pollution problem is that the pollutant level should not "significantly" diminish the "quality of life." Stated more simply and affirmatively in the context of an important criterion of stream water pollution, the dissolved oxygen of the stream should be kept above a certain level. The standard for an acceptable level of dissolved oxygen in a stream is usually set by the various environmental protection agencies. It is important to note that, other than dissolved oxygen (DO), there are many other possible measures of water quality, e.g., temperature, taste, color, odor, dissolved chloride, or turbidity. However, the dissolved oxygen appears to be the most common water quality measure. The reason for this, as Sobel [2] points out, may be paraphrased as follows:

Dissolved oxygen fluctuates in response to many of the phenomena reflected in the other measures; and it may serve
as a surrogate for them. DO improvement programs often have side benefits associated with the improvements in all the measures mentioned. The DO content of the water plays an important role in supporting aquatic life. Its control may be accomplished in a variety of ways that have motivated rather sophisticated problem formulations.

A major cause of the violation of dissolved oxygen standards in streams is the release of industrial wastes. Those wastes usually contain organic materials which, in the course of decomposition, consume and diminish the dissolved oxygen content of the water and endanger aquatic life and the quality of the surrounding environment.

A standard measure for organic waste quality is the level of Biochemical Oxygen Demand (BOD) concentration, defined as the quantity of dissolved oxygen in the stream required to stabilize the organic material in the discharge over a five-day period at 20°C.

In order to meet a specified dissolved oxygen level, the discharged waste volume and its BOD concentration must obviously be limited. Fortunately, the organic wastes released into the streams do not consume oxygen indefinitely. This is due to the fact that these materials eventually decompose and stabilize. Moreover, due to reaeration along the stream, the consumed oxygen is constantly replenished by absorption of oxygen from the air.

Using the dissolved oxygen content as a pollution criterion, numerous attempts have been made to model and control the quality of a stream, using mathematical programming. Such attempts have generally strived for one or both of the following goals:

i) Provide guidelines for allocation of treatment facilities at each discharge point.

ii) Determine the optimal waste treatment level at each discharge point.

These goals have to be met such that a certain dissolved oxygen standard is achieved with a minimal expenditure of resources.

It is clear that the DO profile equation along a stream and the waste treatment cost function play important roles in any water quality management model. The nonlinearity of the dissolved oxygen profile (oxygen sag)
Equation [3] and treatment cost function [4], [5], [6] render such models inherently nonlinear. However, in the early attempts by Deininger [7] and Deininger and Sobel [8], the problem was cast as a linear programming model. Deininger structured linear programming models which utilize various approximations of the differential equation used to describe the dissolved oxygen profile of the streams. Following such pioneering efforts, the problem was further investigated in the format of a linear programming model by Sobel [2], Kerri [9], Revelle, Loucks, and Lynn [10], [11], Graves and Hatfield [12], Arbabi and Elzinga [13] and others. As McNamara [14] pointed out, however, linear programming formulations unduly restrict the form of the functional relationships involved in the model.

A large number of nonlinear models were subsequently developed to optimize the abundant variations of the problems that arise in water quality management. Liebman and Lynn [15], Shih and Krishnan [16], Keegan and Leeds [17], Meier and Belghtler [18], [19] and Dysart [20] mainly applied dynamic programming to model the problem.

Ecker and McNamara [21], Ecker [1] and McNamara [14] were able to formulate an important class of pollution control and facility design problems as geometric programming models. In [21] they use the data provided in the dynamic programming approach of Shih and Krishnan [16] and obtain essentially the same optimal design. Among many appealing features of the Ecker models are that they readily lend themselves to the sensitivity analysis study approach motivated by the work of Fiacco and McCormick [22] and developed by Fiacco [23]. Ecker [1] points out that "the model is particularly useful for sensitivity analysis involving changes in the stream standards."

The present paper reports on the application of the above model for the optimal facility design and treatment level allocations along the Upper Hudson River, for three alternative pollution control policies. As noted, these problems have been solved by the author of the models using a geometric programming code, while the present study makes use of a general nonlinear programming formulation and code, SUMT [24]. A computer routine was developed to calculate the coefficients involved in the oxygen deficit constraints and the resulting data manipulations have yielded somewhat different (and apparently more accurate) coefficients than those used in the previous study.
The results of the present study show that for the Upper Hudson River the optimal annual pollution control cost is minimum under the fixed dissolved oxygen requirement policy and maximum under the uniform treatment requirement policy. The third policy, which allows a variable dissolved oxygen requirement, yields the same stream dissolved oxygen concentration as the uniform treatment policy, but under considerably reduced annual treatment costs. Moreover, this policy yields relatively uniform treatment levels that are easier to administer than the other policies. These results are consistent with, but not identical to, the findings reported in [1].

2. Model Description

2.1 Background. As mentioned earlier, in order to meet the dissolved oxygen standard set by environmental rules, the discharged waste volume and its BOD concentration into the streams must be limited. To maintain a tolerable release of BOD concentration, an industry must first process wastes in treatment plants. Figure 1 depicts a typical arrangement of the facilities in a treatment plant. As noted, the segment of the stream from one treatment plant to the next is called a "reach." (More generally, a reach is taken to be that portion of a stream along which there is not a sudden and significant change in the water quality and stream parameters.) This allows one to divide the stream under study into various segments (reaches) and use fixed parameters to define the oxygen profile along each segment. As indicated in Figure 1, the initial treatment process is called a "primary treatment," intermediate processes are called "secondary treatments" and the last process is called a "final" or "advanced treatment" process. Primary and secondary treatments taken together are, albeit somewhat ambiguously, referred to as "total secondary treatments."

Depending on the BOD discharge, length, and other characteristics of the reach, the minimum oxygen deficit may either occur at the end of each reach or within the reach, as shown in Figures 2a and 2b, respectively. In the formulation of the model under study it is assumed that the DO profile takes the form given in Figure 2a.

To meet environmental standards, the dissolved oxygen along the stream must at all times be above the minimum allowable dissolved oxygen level dictated. In terms of oxygen deficit, the oxygen deficit at any
Figure 1. A Typical Waste Treatment Component Arrangement.
Figure 2a. Dissolved Oxygen Profile Along Reach 1.

Figure 2b. Dissolved Oxygen Profile Along Reach 1. (An Alternative Profile)
time and at any point along the stream should not exceed the maximum allowable oxygen deficit dictated by the environmental standards.

The equation for the dissolved oxygen deficit D_t at time t along a particular reach is

$$D_t = c_1 L + c_2 D + c_3$$

where

L = BOD concentration of the stream at the top of the reach (after waste release)

D = Dissolved oxygen deficit at the top of the reach, and

c_1, c_2 and c_3 are coefficients which depend upon time and reach parameters to be discussed in the next section.

The BOD concentration L of the stream at the top of each reach can be calculated from the following simple mass balance equation

$$L = \frac{V_E}{V_{E+V_R}} e + \frac{V_R}{V_{E+V_R}} L_b$$

where

V_E = Volume of effluent per day into the stream

e = BOD concentration of effluent into the stream

V_R = Volume of stream per day before entering the reach

L_b = BOD concentration of stream at the bottom of the reach

The BOD concentration L_{b_i} at the bottom of Reach i can be calculated if the BOD concentration L_i at the top of Reach i is known, as follows

$$L_{b_i} = c_4 L_i$$

where c_4 is a coefficient which depends upon time and reach parameter.

Hence, for a sequence of reaches, if we know the BOD concentration and oxygen deficit at the top of the first reach, we can readily obtain the oxygen deficit profile along the entire stream (for all reaches), provided
that reach parameters, stream volume, effluent volume, and waste discharged by each treatment plant are known.

2.2 The Model. The model under study is a geometric programming model developed for allocating treatment requirements along the stream so as to meet dissolved oxygen standards for each reach, while minimizing the total annual cost of all treatment activities.

The problem variable \(t_{ij} \) is defined as the fraction of BOD remaining in the effluent after it passes through the \(j \)th treatment process of Reach \(i \).

Figure 3 is a schematic depiction of the treatment facilities for Reach 1 of the Upper Hudson River.

Figure 3. Configuration of Design Treatment Components for Reach 1.
(See page 14 for abbreviations)
E_1 is the BOD concentration of the waste of volume v entering the waste treatment system 1, so $t_{11}E_1$ is the BOD concentration of the treated waste remaining after process 1 and entering process 2, $t_{11}t_{12}E_1$ leaves process 2 and enters process 3 and $t_{11}t_{12}t_{13}E_1$ leaves process 3 and enters the stream. As mentioned before in the formulation of the model, it is assumed that the maximum oxygen deficit within each reach will occur at the end of the reach.

It is stipulated that the yearly operating cost c_{ij} of process j in Reach i depends upon t_{ij} as follows

$$c_{ij} = c_{ij}t_{ij}^{-\alpha_{ij}}$$

where c_{ij} and α_{ij} are nonnegative constants that can be determined once the kind of treatment facility is specified. If there are n reaches and m_i processes in reach i then the total yearly operating cost F to be minimized is

$$F = \sum_{i=1}^{n} \sum_{j=1}^{m_i} c_{ij} t_{ij}^{-\alpha_{ij}}$$

which constitutes the objective function of the model.

There are four types of constraints involved in the formulation of the model:

a. Dissolved oxygen deficit constraint.

Dissolved oxygen deficit along Reach i must be less than maximum allowable oxygen deficit s_i along Reach i. This constraint, after appropriate manipulation, is

$$\sum_{m_1}^{u_{11}} \prod_{j=1}^{m_2} t_{1j} + \sum_{m_1}^{u_{12}} \prod_{j=1}^{m_2} t_{2j} + \cdots + \sum_{m_1}^{u_{1m_i}} \prod_{j=1}^{m_2} t_{ij} \leq 1$$

where the u_{ij}'s are positive constants depending on s_i and the specific parameters of Reach i and those
upstream of Reach i. For illustrative purposes, the dissolved oxygen deficit constraints of Problem P for reaches 1 and 2 and the calculation of the u_{ij} for these reaches are given in Appendix 1.

b. Combined treatment requirement.

The fraction of BOD removed by a sequence of treatment components in Reach i may be bounded from above or below by specified fractions \overline{P}_i or \underline{P}_i respectively, yielding constraints of the form

$$\left(1 - \prod_{j \in K_i} t_{ij} \right) \leq \overline{P}_i$$

or

$$\left(1 - \prod_{j \in K_i} t_{ij} \right) \geq \underline{P}_i$$

where K_i is the set of indices of the subject treatment components in Reach i.

c. Operating range constraint for components of treatment facilities in Reach i.

The fraction of BOD removed by component j in Reach i may be bounded from above or below by specified fractions \overline{PP}_{ij} or \underline{PP}_{ij} respectively, yielding constraints of the form

$$1 - t_{ij} \leq \overline{PP}_{ij}$$

or

$$1 - t_{ij} \geq \underline{PP}_{ij}$$

d. Natural constraints.

The variable t_{ij}, the fraction of BOD remaining in the process in Reach i after process j, is a nonnegative fraction, thus
After some simple algebraic manipulations, the given model for a stream involving n reaches, with Reach i containing m_i processing components, can be formulated as

\[
\text{minimize } F = \sum_{i=1}^{n} \sum_{j=1}^{m_i} c_{ij} t_{ij}^{-\alpha_{ij}}
\]

subject to

a. Dissolved oxygen deficit constraints (5)

\[
u_{1j}^{m_1} \prod_{j=1}^{m_1} t_{ij} \leq 1
\]

\[
u_{2j}^{m_2} \prod_{j=1}^{m_2} t_{ij} + u_{22} \prod_{j=1}^{m_2} t_{2j} \leq 1
\]

\[\vdots \]

\[
u_{nj}^{m_n} \prod_{j=1}^{m_n} t_{nj} + u_{n2} \prod_{j=1}^{m_n} t_{2j} + \cdots + u_{nn} \prod_{j=1}^{m_n} t_{nj} \leq 1
\]

b. Constraints on possible combinations of processes (6)

\[
(1-P_i) \prod_{j \in K_i} t_{ij}^{-1} \leq 1
\]

\[
(1-P_i)^{-1} \prod_{j \in K_i} t_{ij} \leq 1, \text{ for all } i
\]

c. Constraints on possible operating ranges (7)

\[
(1-PP_{ij}) t_{ij}^{-1} \leq 1
\]

\[
(1-PP_{ij})^{-1} t_{ij} \leq 1 \text{ for desired } i \text{ and } j
\]
2.3 Model Parameters. As indicated, the model describes a multistage activity, the stages or "reaches" essentially being contiguous sections of the stream. The activity begins at a given point along the stream at a given time, with organic wastes being first treated and subsequently deposited into the stream. The next deposit and treatment occurs at some point down stream that defines the end of the given stage and beginning of the next.

The parameters defining the model are mainly those involved in the oxygen profile (sag) equation. For a given reach at a given time \(t \) the dissolved oxygen deficit \(D_t \), given in the previous section, is

\[
D_t = c_1 L + c_2 D + c_3
\]

where

\[
c_1 = K(r-K)^{-1}(e^{-Kt} - e^{-rt})
\]
\[
c_2 = e^{-rt}
\]
\[
c_3 = QFK_s (1 - e^{-rt})/R_r \quad \text{(sludge term)}
\]

and the BOD concentration \(L \) of the stream at the top of the reach, as indicated in the last section, is

\[
L = \frac{V_E}{V_E + V_R} e + \frac{V_R}{V_E + V_R} L_b
\]

and BOD concentration \(L_{bi} \) at the bottom of Reach \(i \) is

\[
L_{bi} = c_4 L_i
\]

where \(c_4 = e^{-k_i t} \). The parameters involved in those equations are defined as follows. (For notational simplicity the subscript \(i \) indicating the reach number is suppressed.)
K - Deoxygenation constant, in day\(^{-1}\)

r - Reaeration constant, in day\(^{-1}\)

t - Flow time along the reach, in days

F - Fraction of river bottom covered with sludge

Q - A coefficient in the sludge term, determined empirically in day\(^{-1}\)

K_s - Oxygen uptake rate per unit area of stream bottom surface, in gm/m\(^2\)/day

R_r - Hydraulic radius of the river cross section, in meters

V_E - Volume of the effluent released into the river, in 10\(^6\) gallons/day

E - Concentration of effluent, before treatment, in mg/l

e - Concentration of effluent, after treatment, in mg/l

V_R - Flow rate of the river before entering the reach, in 10\(^6\) gallons/day

Aside from the above parameters which are involved in the oxygen sag equation of each reach the following parameters will also enter into the formulation of the model at various stages.

S - Maximum allowable oxygen deficit, in mg/l

P - Minimum required or feasible BOD removal by a specified sequence of treatment components in a given reach, a fraction

\(\bar{P}\) - Maximum possible or feasible BOD removal by a specified sequence of treatment components in a given reach, a fraction

PP - Minimum required or feasible BOD removal by a specified single treatment component in a given reach, a fraction
3. Formulation of the Models for the Upper Hudson River

The pictorial depiction of the design components for treatment facilities and corresponding annual operating cost data considered by the author of the model along the Upper Hudson River is given in Figure 4. A description of the treatment components, shown in the figure from left to right is as follows.

Reach 1 - Primary Clarifier (PC), Activated Sludge (AS), Coagulation/Sedimentation/Filteration (CSF)
Reach 2 - PC, Trickling Filter (TF), Activated Lagoon (AL), CSF
Reach 3 - PC, TF, AS, Carbon Absorption (CA)
Reach 4 - PC, AL, CSF
Reach 5 - PC, TF, AS, CSF
Reach 6 - PC, TF, AL, CSF

As in reference [1], under three different treatment policies, three problems, P_1, P_2, and P_3 are respectively formulated which involve the optimization of the total yearly operating cost of the above treatment system.

The first policy, a fixed dissolved oxygen requirement policy, requires that a minimum stream dissolved oxygen concentration level of 6.2 mg/l be maintained along the entire stream. The second policy, a uniform BOD treatment policy, requires that each treatment plant, (i.e., the collection of treatment components at a given discharge point) remove at least 95 percent of the BOD concentration of its effluent. The third policy relaxes the
<table>
<thead>
<tr>
<th>Industries</th>
<th>Total Secondary Processes</th>
<th>Final Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Process</td>
<td>Secondary Processes</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>x₁₁</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>x₄₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>x₈₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>x₁₂₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>x₁₅₅</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>x₁₉₆</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PC</td>
</tr>
</tbody>
</table>

Yearly Operating Cost:
- t₁₁ = 19.4
- t₂₁ = 19.4
- t₃₁ = 19.4
- t₄₁ = 19.4
- t₅₁ = 19.4
- t₆₁ = 19.4

Note: t₁j is associated with xₖ via the transformation t₁j = e⁻ᵏxₖ.

Figure 4. Configuration of the Design Treatment Facilities Along the Upper Hudson River (For abbreviations see page 14)
requirement of the first two policies, but uses the levels of dissolved oxygen that resulted for a given reach under the second policy as the minimum required dissolved oxygen standard for that reach. This allows changes in both the oxygen deficit and treatment levels from reach to reach, while guaranteeing (with the data as given) that the oxygen standard required by the first policy is more than satisfied. The input data for the above problems were extracted from Reference [1] and supplemented in part by J. C. Ecker, the author of the model. The formulations of Problems P_1, P_2, and P_3 follow.

Problem P_1: Corresponding to a "fixed dissolved oxygen requirement policy" of 6.2 mg/l along the river.

(Dimensions: 22 variables, 42 constraints)

Minimize \(F = 19.4 t_{11}^{-1.47} + 86 t_{12}^{-0.38} + 152 t_{13}^{-0.27} + \)

\(19.4 t_{21}^{-1.47} + 16.8 t_{22}^{-1.66} + 27.4 t_{23}^{-0.63} + 179 t_{24}^{-0.37} + \)

\(19.4 t_{31}^{-1.47} + 16.8 t_{32}^{-1.66} + 91.5 t_{33}^{-0.30} + 120 t_{34}^{-0.33} + \)

\(19.4 t_{41}^{-1.47} + 45.9 t_{42}^{-0.45} + 179 t_{43}^{-0.37} + \)

\(19.4 t_{51}^{-1.47} + 16.8 t_{52}^{-1.66} + 91.5 t_{53}^{-0.3} + 152 t_{54}^{-0.27} + \)

\(19.4 t_{61}^{-1.47} + 16.8 t_{62}^{-1.66} + 27.4 t_{63}^{-0.63} + 179 t_{64}^{-0.37} \)

subject to:

a. Dissolved oxygen deficit constraint, i.e., dissolved oxygen deficit for all reaches \(\leq 2.18 \text{ mg/l} \). (Type (a), Section 2.2)
1. \(u_{11}^t t_{11} t_{12} t_{13} \leq 1 \)

2. \(u_{21} + u_{22} t_{21} t_{22} t_{23} t_{24} \leq 1 \)

3. \(u_{31} + u_{32} + u_{33} t_{31} t_{32} t_{33} t_{34} \leq 1 \)

4. \(u_{41} + u_{42} + u_{43} + u_{44} t_{41} t_{42} t_{43} \leq 1 \)

5. \(u_{51} + u_{52} + u_{53} + u_{54} + u_{55} t_{51} t_{52} t_{53} t_{54} \leq 1 \)

6. \(u_{61} + u_{62} + u_{63} + u_{64} + u_{65} + u_{66} t_{61} t_{62} t_{63} t_{64} \leq 1 \)

b. Constraints on combination of processes
 (Type (b), Section 2.2)

7. \(.1 t_{11}^{-1} t_{12}^{-1} \leq 1 \) at most 90 percent removal by total secondary treatment on reach 1

8. \(.15 t_{21}^{-1} t_{22}^{-1} t_{23}^{-1} \leq 1 \) at most 85 percent removal by total secondary treatment on reach 2

9. \(.15 t_{31}^{-1} t_{32}^{-1} t_{33}^{-1} \leq 1 \) at most 85 percent removal by total secondary treatment on reach 3

10. \(.15 t_{41}^{-1} t_{42}^{-1} \leq 1 \) at most 85 percent removal by total secondary treatment on reach 4

11. \(.15 t_{51}^{-1} t_{52}^{-1} t_{53}^{-1} \leq 1 \) at most 85 percent removal by total secondary treatment on reach 5

12. \(.15 t_{61}^{-1} t_{62}^{-1} t_{63}^{-1} \leq 1 \) at most 85 percent removal by total secondary treatment on reach 6

13. \(.4275 t_{61} t_{62} \leq 1 \) at least 30 percent removal by first two components in reach 6

c. Operating range constraint for components
 of treatment facilities (Type (c), Section 2.2)

14. \(1.25 t_{41} \leq 1 \) at least 20 percent removal by first component in reach 4
d. Redundant constraints (added to prevent numerical overflow)

15. $e^{-80} \ t_{11} \ t_{12} \ t_{13} \ t_{14} < 1$

16. $e^{-80} \ t_{21} \ t_{22} \ t_{23} \ t_{24} < 1$

17. $e^{-80} \ t_{31} \ t_{32} \ t_{33} \ t_{34} \ t_{35} < 1$

18. $e^{-80} \ t_{41} \ t_{42} \ t_{43} \ t_{44} < 1$

19. $e^{-80} \ t_{51} \ t_{52} \ t_{53} \ t_{54} \ t_{55} < 1$

20. $e^{-80} \ t_{61} \ t_{62} \ t_{63} \ t_{64} \ t_{65} < 1$

e. Natural constraints (Type (d), Section 2.2)

21 - 42. $0 < t_{ij} < 1 \quad i = 1, 6, \quad j = 1, m_i$

The coefficients u_{ij} in the oxygen deficit constraints (1-6) are complicated and lengthy functions of nearly all the problem parameters. To conduct a detailed sensitivity analysis (the subject of a follow-up report) with respect to the problem parameters it was necessary to delineate the functions defining these coefficients in terms of the problem parameters. Explicit derivation of these functions by hand proved extremely tedious and time consuming and evaluations were prone to computational errors. The task was virtually prohibitive for more than three reaches, since the equations for a given reach involve quantities that depend on results obtained in all previous reaches. To resolve this difficulty, the computer program listed in Appendix 2 was written to define and calculate the u_{ij} coefficients in terms of the problem parameters. The computed u_{ij} for Problem P_1, along with a listing of the parameter values are given in Appendix 2. Although the program was written to handle the problem involving six reaches and the
Upper Hudson River data base, it can readily be modified to handle other data and other likely variations that might appear in other models.

Problem P₂: Corresponding to a "uniform BOD treatment policy" of 95 percent removal for all reaches. (Dimensions: 22 variables, 48 constraints)

Minimize F (See Problem P₁)

Subject to:

a. Constraints 1-20 of Problem P₁
b. At least 95 percent treatment in all reaches, i.e.,

21. \(20 \ t_{11} \ t_{12} \ t_{13} \leq 1\)
22. \(20 \ t_{21} \ t_{22} \ t_{23} \ t_{24} \leq 1\)
23. \(20 \ t_{31} \ t_{32} \ t_{33} \ t_{34} \leq 1\)
24. \(20 \ t_{41} \ t_{42} \ t_{43} \leq 1\)
25. \(20 \ t_{51} \ t_{52} \ t_{53} \ t_{54} \leq 1\)
26. \(20 \ t_{61} \ t_{62} \ t_{63} \ t_{64} \leq 1\)

c. Nonnegativity constraints of Problem P₁

Based on the assumptions and results of this problem, the dissolved oxygen level (hence the oxygen deficit \(S_4\)) in each reach was calculated.

The oxygen deficit levels so obtained were used as the new oxygen deficit standards for Problem P₃ and new \(u_{ij}\) coefficients were calculated. Thus, Problem P₃ was formulated as follows.

- 19 -
Problem \(P_3 \): Corresponding to the policy of using the levels of dissolved oxygen that resulted for a given reach for Problem \(P_2 \) as the minimum required dissolved oxygen standard for that reach.

(Dimensions: 22 variables, 42 constraints)

Minimize \(F \) (See Problem \(P_1 \))

Subject to:

a. Constraints 1-6 of Problem \(P_1 \) with coefficients \(u_{ij} \) calculated using new \(S_i \)

b. Constraints 7-20 of Problem \(P_1 \)

c. Nonnegativity constraints.

The coefficients \(u_{ij} \) along with the required data for this calculation are listed in Appendix 4.

By the usual transformation, i.e., letting

\[
x_k = -\ln t_{ij} \quad (i=1,6, \quad j=1, \ldots, m_i \quad \text{and} \quad k=1, \ldots, \sum_{i=1}^{6} m_i),
\]

as labelled in Figure 4, the geometric programming problems \(P_1 \), \(P_2 \), and \(P_3 \) were converted to convex programming problems. The resulting equivalent problems, labelled \(C_1 \), \(C_2 \), and \(C_3 \), respectively, follow.

Problem \(C_1 \): Convex Equivalents of Problem \(P_1 \).

(Dimensions: 22 variables, 42 constraints)

\[
\text{Minimize } F = 19.4e x_1 + 86e x_2 + 152e x_3 \\
+ 1.47x_4 + 1.66x_5 + 63x_6 + 179e x_7
\]
subject to:

a. Dissolved oxygen deficit constraint, i.e., the dissolved oxygen deficit for all reaches \(\leq 2.18 \text{ mg/l} \).

\[(\text{Type (a), Section 2.2})\]

\[-(x_1 + x_2 + x_3) + 1 \geq 0 \]

\[-u_{11} - (x_1 + x_2 + x_3 + x_4) + 1 \geq 0 \]

\[-u_{21} - u_{22} (x_5 + x_6 + x_7) + 1 \geq 0 \]

\[-u_{31} - u_{32} - u_{33} (x_8 + x_9 + x_{10} + x_{11}) + 1 \geq 0 \]

\[-u_{41} - u_{42} - u_{43} - u_{44} (x_12 + x_13 + x_14) + 1 \geq 0 \]

\[-u_{51} - u_{52} - u_{53} - u_{54} - u_{55} (x_15 + x_16 + x_17 + x_18) + 1 \geq 0 \]

\[-u_{61} - u_{62} - u_{63} - u_{64} - u_{65} - u_{66} (x_19 + x_20 + x_21 + x_22) \geq 0 \]

b. Constraints on combination of processes

\[(\text{Type (b), Section 2.2})\]

\[-(x_1 + x_2) + \ln 10 \geq 0 \]

(At most 90 percent removal by total secondary treatments in Reach 1.)
8. \[-(x_4 + x_5 + x_6) + 2n \frac{1}{15} \geq 0\]

9. \[-(x_8 + x_9 + x_{10}) + 2n \frac{1}{15} \geq 0\]

10. \[-(x_{12} + x_{13}) + 2n \frac{1}{15} \geq 0\]

11. \[-(x_{15} + x_{16} + x_{17}) + 2n \frac{1}{15} \geq 0\]

12. \[-(x_{19} + x_{20} + x_{21}) + 2n \frac{1}{15} \geq 0\]

13. \[x_{19} + x_{20} + 2n .7 \geq 0\] (At least 30 percent removal by first two components in Reach 6.)

c. Operating range constraint for components of treatment facilities
(Type (c), Section 2.2)

14. \[x_{12} + 2n .8 \geq 0\] (At least 20 percent removal by first component in Reach 4.)

d. Redundant constraints added to prevent numerical overflow.

15. \[-(x_1 + x_2 + x_3) + 80 \geq 0\]

16. \[-(x_4 + x_5 + x_6 + x_7) + 80 \geq 0\]

17. \[-(x_8 + x_9 + x_{10} + x_{11}) + 80 \geq 0\]

18. \[-(x_{12} + x_{13} + x_{14}) + 80 \geq 0\]

19. \[-(x_{15} + x_{16} + x_{17} + x_{18}) + 80 \geq 0\]

20. \[-(x_{19} + x_{20} + x_{21} + x_{22}) + 80 \geq 0\]

e. Natural constraints (Type (d), Section 2.2)

\[x_i \geq 0 \quad i = 1,22\]
Problem C2: Convex Equivalent of Problem P2
(Dimensions: 22 variables, 48 constraints)
Minimize F (See Problem C1)
subject to:
 a. Constraints 1-20 of Problem C1
 b. At least 95 percent treatment in all reaches, i.e.,

21. \(x_1 + x_2 + x_3 + \ln .05 \geq 0 \)
22. \(x_4 + x_5 + x_6 + x_7 + \ln .05 \geq 0 \)
23. \(x_8 + x_9 + x_{10} + x_{11} + \ln .05 \geq 0 \)
24. \(x_{12} + x_{13} + x_{14} + \ln .05 \geq 0 \)
25. \(x_{15} + x_{16} + x_{17} + x_{18} + \ln .05 > 0 \)
26. \(x_{19} + x_{20} + x_{21} + x_{22} + \ln .05 \geq 0 \)

 c. Nonnegativity constraints

Problem C3: Convex Equivalent of Problem P3
(Dimensions: 22 variables, 42 constraints)
Maximize F (See Problem C2)
subject to:
 a. Constraints 1-6 of Problem C1 with coefficients \(u_{ij} \) of Problem P3
 b. Constraints 7-20 of Problem C1
 c. Nonnegativity constraints
4. Optimal Solutions of the Upper Hudson River Models

The convex programming problems \(C_1 \), \(C_2 \), and \(C_3 \) developed in the previous section were solved with SUMT for the optimum treatment levels and the annual waste treatment cost. The approximate resulting optimal solutions obtained for the respectively equivalent problems, \(P_1 \), \(P_2 \), and \(P_3 \) are as follows.

4.1 Problem \(P_1 \)

<table>
<thead>
<tr>
<th>(\mathbf{t}_{ij})</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i=1)</td>
<td>.7236</td>
<td>.4095</td>
<td>.6617</td>
<td>--</td>
</tr>
<tr>
<td>(i=2)</td>
<td>.7729</td>
<td>.7854</td>
<td>.2471</td>
<td>.4343</td>
</tr>
<tr>
<td>(i=3)</td>
<td>.8640</td>
<td>.8668</td>
<td>.4303</td>
<td>1.</td>
</tr>
<tr>
<td>(i=4)</td>
<td>.8000</td>
<td>.3229</td>
<td>1.</td>
<td>--</td>
</tr>
<tr>
<td>(i=5)</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>(i=6)</td>
<td>.7729</td>
<td>.7854</td>
<td>.2471</td>
<td>.9551</td>
</tr>
</tbody>
</table>

- Optimal treatment levels (using a fixed dissolved oxygen standard of 6.2 mg/l along the entire stream)

- Annual waste treatment cost = $1,837,851
- Binding constraints: \((6,8,12 \text{ and } 14)\)

The fact that a given component \(t_{ij} \) is equal to unity at the optimal solution indicates that the corresponding treatment facility need not be included (if this is operationally feasible) in the plant design, since that component contributes nothing to the treatment process when it is operated optimally. The calculated annual waste treatment cost should then be reduced accordingly. In the above table, these components were not removed in calculating the total costs. Suppose, however, that we conclude that the last treatment facilities in Reaches 3 and 4 and all facilities in Reach 5 are not needed. Making this adjustment, the optimal waste treatment cost as shown in Table 1 is $1,253,140 per year.
Table 1

OPTIMAL PLANT BOD REMOVAL LEVELS
AND COSTS FOR PROBLEM P1
(Using a fixed dissolved oxygen standard
of 6.2 mg/l along the entire stream)

<table>
<thead>
<tr>
<th>Reach No.</th>
<th>Total BOD Removal (%)</th>
<th>Cost $/Year</th>
<th>Redundant Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80.39</td>
<td>321,870</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>93.48</td>
<td>363,230</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>67.77</td>
<td>163,190</td>
<td>CA</td>
</tr>
<tr>
<td>4</td>
<td>74.17</td>
<td>103,260</td>
<td>CSF</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>--</td>
<td>All Components</td>
</tr>
<tr>
<td>6</td>
<td>85.67</td>
<td>301,590</td>
<td>None</td>
</tr>
</tbody>
</table>

Total $1,253,140

If we exclude the last component in Reach 6, as is done in [1], the cost would further decrease to $1,253,140 - $182,060 = $1,071,070 per year. (The solution obtained in [1] was $1,106,000 per year.) However, based on our results we do not see the justification for the given exclusion.

As mentioned previously, we have traced back the discrepancy of our solution with that obtained in [1] to the differences in the values of the coefficients u_{ij} used to calculate the oxygen deficit constraints. Our calculated u_{ij}, along with the list of required input data, are included in the Appendix.
4.2 Problem P_2

- Optimal treatment levels (using 95% uniform treatment for all reaches)

<table>
<thead>
<tr>
<th></th>
<th>t^*_i</th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
<th>j=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>.6338</td>
<td>.2452</td>
<td>.3216</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>i=2</td>
<td>.7729</td>
<td>.7854</td>
<td>.2471</td>
<td>.3333</td>
<td></td>
</tr>
<tr>
<td>i=3</td>
<td>.7720</td>
<td>.7845</td>
<td>.2477</td>
<td>.3333</td>
<td></td>
</tr>
<tr>
<td>i=4</td>
<td>.7792</td>
<td>.2057</td>
<td>.3333</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>i=5</td>
<td>.7720</td>
<td>.7845</td>
<td>.2477</td>
<td>.3333</td>
<td></td>
</tr>
<tr>
<td>i=6</td>
<td>.7730</td>
<td>.7854</td>
<td>.2471</td>
<td>.3333</td>
<td></td>
</tr>
</tbody>
</table>

- Optimal annual waste treatment cost = $2,330,279

- Binding constraints: (8,9,10,11,12,21,22,23,24,25,26)

Unlike the results obtained for Problem P_1, none of the components of the solution matrix are unity. Thus, we cannot exclude any treatment component with this policy. As shown in Table 2, if we exclude the treatment facilities of Reach 5, as is done in Reference [1], then the optimal annual waste treatment cost would reduce to $2,330,279 - $397,080 = $1,933,199, which is in close agreement with the result, $1,926,000 per year, given in Reference [1]. (In fact, if we use our Table 2 calculation, we get $2,322,580 - $391,080 = $1,925,900, which agrees almost exactly with [1].)
Table 2
OPTIMAL PLANT BOD REMOVAL LEVELS AND COSTS FOR PROBLEM P₂
(Using a 95% uniform treatment for each reach)

<table>
<thead>
<tr>
<th>Reach No.</th>
<th>Total BOD Removal (%)</th>
<th>Cost $/Year</th>
<th>Redundant Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>391,120</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>388,300</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>365,030</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>393,150</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>397,080</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>95</td>
<td>388,300</td>
<td>"</td>
</tr>
<tr>
<td>Total</td>
<td>$2,322,980*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This value is about $7,300 less than that found by direct solution. This discrepancy is attributed to the translation errors involved in hand calculation of the costs on the above table.

All of the uniform treatment constraints, i.e., constraints 21-26, are binding. On the other hand, the dissolved oxygen constraints 1-6 are more than satisfied. As in [1], this suggests using the dissolved oxygen levels resulting under the uniform treatment policy as the minimum standard for each reach, thus, allowing the levels of treatment to vary from reach to reach. Under such conditions one would hope that the optimal cost would be lower than that obtained under the policy of uniform treatment while yielding an optimal treatment schedule that would be nearly uniform. (Uniform policies are apparently easier to administer.) The following optimal solution of problem P₃ confirms these expectations.
4.3 Problem P_3

<table>
<thead>
<tr>
<th>t_{ij}</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
<th>$j=4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$</td>
<td>0.6336</td>
<td>0.2449</td>
<td>0.3210</td>
<td>--</td>
</tr>
<tr>
<td>$i=2$</td>
<td>0.7729</td>
<td>0.7854</td>
<td>0.2471</td>
<td>0.1782</td>
</tr>
<tr>
<td>$i=3$</td>
<td>0.7722</td>
<td>0.7847</td>
<td>0.2480</td>
<td>0.7720</td>
</tr>
<tr>
<td>$i=4$</td>
<td>0.7290</td>
<td>0.2057</td>
<td>0.9322</td>
<td>--</td>
</tr>
<tr>
<td>$i=5$</td>
<td>0.9814</td>
<td>0.9727</td>
<td>0.8271</td>
<td>1.0000</td>
</tr>
<tr>
<td>$i=6$</td>
<td>0.7729</td>
<td>0.7854</td>
<td>0.2471</td>
<td>0.3920</td>
</tr>
</tbody>
</table>

- Annual waste treatment cost = $2,147,336
- Binding constraints (1, 6, 8, 9, 10, 12, 14)

As it is seen, the last component in reach 5 is redundant since $t_{5,4} = 1$. Thus the optimal waste treatment cost = $2,147,336 - $152,000 = $1,995,336 per year. The solution obtained in Reference [1] was $1,460,000 per year. Here again, the discrepancy between our solution and that of Reference [1] is partly due to the differences in the values used as the coefficients u_{ij} of the dissolved oxygen constraints, and partly due to the fact that, for reasons explained in Section 4.1, we have not excluded the treatment facilities in Reach 5 in our calculations.
Table 3

OPTIMAL PLANT BOD REMOVAL LEVELS
AND COSTS FOR PROBLEM P₃

<table>
<thead>
<tr>
<th>Reach No.</th>
<th>Total BOD Removal (%)</th>
<th>Cost $/Year</th>
<th>Redundant Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95.02</td>
<td>391,300</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>97.33</td>
<td>458,380</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>88.40</td>
<td>323,210</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>86.02</td>
<td>308,090</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>21.04</td>
<td>134,390</td>
<td>CSF</td>
</tr>
<tr>
<td>6</td>
<td>94.12</td>
<td>372,650</td>
<td>None</td>
</tr>
</tbody>
</table>

Total $1,988,020*

*This value is about $7,316 less than that found by direct solution. This discrepancy is attributed to the truncation errors involved in hand calculation of the costs in the above table.

As it is seen in Table 3, the treatment levels for all reaches except Reach 5, which contributes a moderate level of pollutant to the stream, are nearly uniform. Also the optimal treatment cost is $1,995,336 per year compared to that for uniform treatment of $2,330,279 per year. Therefore, under the stream standards (dictated by the solution of P₂) we may achieve a relatively uniform treatment policy and at the same time save $2,330,279 - $1,995,336 = $334,943 per year.

A comparison of the above results shows that the minimum annual waste treatment cost is obtainable under the fixed dissolved oxygen policy of 6.2 mg/l. The cost incurred under the 95 percent uniform treatment policy is by far the highest, although this policy is the easiest to monitor and administer. The same stream standards achieved under uniform treatment level policy can be met under an almost uniform treatment level policy, with appreciable savings in treatment cost. The annual saving under such a policy
for the model under study is of the order of $335,000, amounting to a 14.4 percent savings in annual treatment cost.

5. Conclusions

Based on the previous results and discussions, the following conclusions are immediate.

- Among the three different policies studied for optimal water pollution control and treatment facility allocation, the policy requiring a fixed dissolved oxygen of 6.2 mg/l along the stream yields the least annual waste treatment cost, $1,253,140.

- The requirement of a 95 percent uniform waste treatment level in all reaches, a policy easier to monitor and administer, requires an additional annual cost of $1,077,140 when this requirement is added to the fixed oxygen level standard.

- The same dissolved oxygen standards achieved under 95 percent uniform treatment level policy can be met under a near-uniform treatment level policy, with savings of about $335,000 per year, amounting to a 14.4 percent saving in the annual treatment cost obtained by a uniform treatment policy.

- The above findings are consistent with, but not identical to, the findings reported in [1]. The reason for discrepancies in the optimal solution is attributed to the discrepancy between u_{ij}, the coefficients appearing in the dissolved oxygen constraints, used by these two studies.

- The computer routine SUMT solved these geometric programming convex equivalent models without difficulty. The efficiency, however, compared to that of a special purpose GP code for solving the original problem, has yet to be determined. Apart from this, the given model can now be appreciably modified to include much more general functions (than those required by the G. P. model), since SUMT assumes no such special structure.
REFERENCES

Appendix 1

DISSOLVED OXYGEN DEFICIT CONSTRAINTS OF REACHES 1 AND 2 FOR PROBLEM P1
APPENDIX 1

Dissolved Oxygen Deficit Constraint for Reach 1 in Problem P1.

The oxygen deficit D_{b1} at the bottom of Reach 1 is calculated from Equation (1) (Section 2.3) as follows

$$D_{b1} = C_{11} L_1 + C_{21} D_{b0} + C_{31}$$

where

$$C_{11} = K_1 (r_1 - K_1)^{-1} \left(e^{-K_1 t_1} - e^{-r_1 t_1} \right)$$

$$C_{21} = e^{-r_1 t_1}$$

$$C_{31} = Q_1 F_1 K_{s1} \left(1 - e^{-r_1 t_1} \right)/R_1$$

$$L_1 = \frac{1}{V_{E1} + V_{R0}} \left(V_{E1} e_1 + V_{R0} L_{b0} \right)$$ (using Equation 2, Section 2.3)

and

$$e_1 = E_1 \sum_{j=1}^{3} t_{ij}.$$

Imposing the dissolved oxygen deficit constraint at the bottom of Reach 1, i.e., $D_{b1} \leq S_1$, yields

$$\frac{1}{V_{E1} + V_{R0}} \left(V_{E1} E_1 \sum_{j=1}^{3} t_{ij} + V_{R0} L_{b0} \right) + C_{21} D_{b0} + C_{31} \leq S_1.$$

After simplification, we obtain

$$\left(\frac{V_{E1}}{V_{E1} + V_{R0}} \right) \left(S_1 - C_{21} b_0 - C_{31} - C_{11} \frac{V_{R0} L_{b0}}{V_{E1} + V_{R0}} \right)^{-1} \sum_{j=1}^{3} t_{ij} \leq 1.$$
using the data provided in Appendix 3. The coefficient of \(\prod_{j=1}^{3} t_{ij} \) in the above constraint (which is labelled \(u_{11} \) in the model) was calculated to be 0.7756. Thus, the oxygen deficit constraint for Reach 1 becomes simply

\[0.7756 t_{11} t_{12} t_{13} < 1 \]

Dissolved Oxygen Deficit Constraint for Reach 2 in Problem P₁

The oxygen deficit \(D_{b_2} \) at the bottom of Reach 2 is calculated from Equation 1 (Section 2.3) as follows:

\[
D_{b_2} = C_{12} L_2 + C_{22} D_{b_1} + C_{32}
\]

where

\[
C_{12} = K_2 (r_2 - K_2)^{-1} \left(e^{-r_2 t_2} - e^{-r_2 t_2} \right)
\]

\[
C_{22} = e^{-r_2 t_2}
\]

\[
C_{32} = Q_2 F_2 K_2 \left(1 - e^{-r_2 t_2} \right) / r_2
\]

\[
L_2 = \frac{1}{V_{E_2} + V_{R_1}} \left(V_{E_2} e_2 + V_{R_1} L_{b_1} \right) \text{ (using Equation 2, Section 2.3)}
\]

and

\[
e_2 = E_2 \prod_{j=1}^{4} t_{2j}
\]

\[
V_{R_1} = V_{R_0} + V_{E_1}
\]

\[
L_{b_1} = e^{-K_1 t_1} L_1 \quad \text{(using Equation 3, Section 2.3)}
\]

\[
L_1 = \frac{1}{V_{E_1} + V_{R_0}} \left(V_{E_1} E_{i} \prod_{j=1}^{3} t_{ij} + V_{R_0} L_{b_0} \right)
\]
with

\[
D_{b1} = c_{11} \frac{1}{V_{E1} + V_{R0}} \left(\sum_{j=1}^{3} \frac{V_{E1}}{i_j} + V_{R0} L_{b0} \right) + c_{21} D_{b0} + c_{31}
\]

as shown for Reach 1.

Imposing the dissolved oxygen deficit constraint at the bottom of Reach 2, i.e., \(D_{b2} \leq S_2\), and using the data provided in Appendix 3, the above constraint reduces to

\[
\prod_{j=1}^{3} u_{21} t_{1j} + \prod_{j=1}^{4} u_{22} t_{2j} \leq 1,
\]

where \(u_{21}\) and \(u_{22}\) are calculated to be .8544 and .9172, respectively. Thus, the oxygen deficit constraint for Reach 2 becomes

\[
.8544 t_{11} t_{12} t_{13} + .9172 t_{21} t_{22} t_{23} t_{24} \leq 1.
\]
Appendix 2

PROGRAM LISTING TO CALCULATE u_{ij}
C CALCULATION OF U(I,J) FOR EACH NUMBER SIX

70 FORMAT(10), 'LIST OF INPUT DATA', /59X,' ' -----------------------------------'/
60 FORMAT(9.2F6), 'REACH=1',TX, 'REACH=2',TX, 'REACH=3',TX, 'REACH=4',TX,
100 WRITE(6,100) X(1),I(1),S(1),F(1)
110 WRITE(6,110) X(2),I(2),S(2),F(2)
120 WRITE(6,120) X(3),I(3),S(3),F(3)
130 WRITE(6,130) X(4),I(4),S(4),F(4)
140 WRITE(6,140) X(5),I(5),S(5),F(5)
150 WRITE(6,150) X(6),I(6),S(6),F(6)
160 WRITE(6,160) X(7),I(7),S(7),F(7)
170 WRITE(6,170) X(8),I(8),S(8),F(8)
180 WRITE(6,180) X(9),I(9),S(9),F(9)
190 WRITE(6,190) X(10),I(10),S(10),F(10)
200 WRITE(6,200) X(11),I(11),S(11),F(11)
210 WRITE(6,210) X(12),I(12),S(12),F(12)
220 WRITE(6,220) X(13),I(13),S(13),F(13)
230 WRITE(6,230) X(14),I(14),S(14),F(14)
240 WRITE(6,240) X(15),I(15),S(15),F(15)
250 WRITE(6,250) X(16),I(16),S(16),F(16)
260 WRITE(6,260) X(17),I(17),S(17),F(17)
270 WRITE(6,270) X(18),I(18),S(18),F(18)
280 WRITE(6,280) X(19),I(19),S(19),F(19)
290 WRITE(6,290) X(20),I(20),S(20),F(20)
300 WRITE(6,300) X(21),I(21),S(21),F(21)
310 WRITE(6,310) X(22),I(22),S(22),F(22)
320 WRITE(6,320) X(23),I(23),S(23),F(23)
330 WRITE(6,330) X(24),I(24),S(24),F(24)
340 WRITE(6,340) X(25),I(25),S(25),F(25)
350 WRITE(6,350) X(26),I(26),S(26),F(26)
360 WRITE(6,360) X(27),I(27),S(27),F(27)
370 WRITE(6,370) X(28),I(28),S(28),F(28)
380 WRITE(6,380) X(29),I(29),S(29),F(29)
390 WRITE(6,390) X(30),I(30),S(30),F(30)
400 WRITE(6,400) X(31),I(31),S(31),F(31)
410 WRITE(6,410) X(32),I(32),S(32),F(32)
420 WRITE(6,420) X(33),I(33),S(33),F(33)
430 WRITE(6,430) X(34),I(34),S(34),F(34)
440 WRITE(6,440) X(35),I(35),S(35),F(35)
450 WRITE(6,450) X(36),I(36),S(36),F(36)
460 WRITE(6,460) X(37),I(37),S(37),F(37)
470 WRITE(6,470) X(38),I(38),S(38),F(38)
480 WRITE(6,480) X(39),I(39),S(39),F(39)
490 WRITE(6,490) X(40),I(40),S(40),F(40)
500 WRITE(6,500) X(41),I(41),S(41),F(41)
510 WRITE(6,510) X(42),I(42),S(42),F(42)
520 WRITE(6,520) X(43),I(43),S(43),F(43)
530 WRITE(6,530) X(44),I(44),S(44),F(44)
540 WRITE(6,540) X(45),I(45),S(45),F(45)
550 WRITE(6,550) X(46),I(46),S(46),F(46)
560 WRITE(6,560) X(47),I(47),S(47),F(47)
570 WRITE(6,570) X(48),I(48),S(48),F(48)
580 WRITE(6,580) X(49),I(49),S(49),F(49)
590 WRITE(6,590) X(50),I(50),S(50),F(50)
600 WRITE(6,600) X(51),I(51),S(51),F(51)
610 WRITE(6,610) X(52),I(52),S(52),F(52)
620 WRITE(6,620) X(53),I(53),S(53),F(53)
630 WRITE(6,630) X(54),I(54),S(54),F(54)
640 WRITE(6,640) X(55),I(55),S(55),F(55)
650 WRITE(6,650) X(56),I(56),S(56),F(56)
660 WRITE(6,660) X(57),I(57),S(57),F(57)
670 WRITE(6,670) X(58),I(58),S(58),F(58)
680 WRITE(6,680) X(59),I(59),S(59),F(59)
690 WRITE(6,690) X(60),I(60),S(60),F(60)
700 DO 100 I=1,60
710 DO 100 J=1,60
720 WRITE(6,720) X(I),Y(J),C(I,J),U(I,J)
730 END
Appendix 3

INPUT DATA AND CALCULATED u_{ij}
FOR PROBLEMS P_1 AND P_2
<table>
<thead>
<tr>
<th>T(I)</th>
<th>REACH 1</th>
<th>REACH 2</th>
<th>REACH 3</th>
<th>REACH 4</th>
<th>REACH 5</th>
<th>REACH 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.05000</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.02000</td>
</tr>
<tr>
<td>R(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.03000</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.02000</td>
<td>0.02000</td>
</tr>
<tr>
<td>AK(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1260</td>
<td>0.1260</td>
<td>0.1260</td>
<td>0.1260</td>
<td>0.1260</td>
<td>0.1260</td>
<td>0.1260</td>
</tr>
<tr>
<td>VE(I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0000</td>
<td>32.5000</td>
<td>4.0000</td>
<td>41.5000</td>
<td>48.5000</td>
<td>56.0000</td>
<td>66.0000</td>
</tr>
<tr>
<td>E(I)</td>
<td>148.0000</td>
<td>456.0000</td>
<td>179.0000</td>
<td>36.0000</td>
<td>4.0300</td>
<td>0.0300</td>
</tr>
<tr>
<td>P(I)</td>
<td>0.7000</td>
<td>0.7000</td>
<td>0.7000</td>
<td>0.7000</td>
<td>0.7000</td>
<td>0.7000</td>
</tr>
<tr>
<td>RR(I)</td>
<td>0.8000</td>
<td>2.4000</td>
<td>3.1000</td>
<td>3.8000</td>
<td>3.8000</td>
<td>3.8000</td>
</tr>
<tr>
<td>S(I)</td>
<td>2.1000</td>
<td>2.1000</td>
<td>2.1000</td>
<td>2.1000</td>
<td>2.1000</td>
<td>2.1000</td>
</tr>
<tr>
<td>K(I)</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
<td>2.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vR0</th>
<th>11.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REACH-1</th>
<th>REACH-2</th>
<th>REACH-3</th>
<th>REACH-4</th>
<th>REACH-5</th>
<th>REACH-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7750</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.8544</td>
<td>0.0172</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.8804</td>
<td>0.0082</td>
<td>0.1029</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0540</td>
<td>0.3310</td>
<td>0.3305</td>
<td>0.4010</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0433</td>
<td>0.0959</td>
<td>0.3476</td>
<td>0.4337</td>
<td>0.0120</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0162</td>
<td>0.0280</td>
<td>0.3827</td>
<td>0.5003</td>
<td>0.0379</td>
<td>1.6400</td>
</tr>
</tbody>
</table>
Appendix 4

INPUT DATA AND CALCULATED u_{ij}

FOR PROBLEM P_3
List of Input Data

<table>
<thead>
<tr>
<th>T(1)</th>
<th>R(1)</th>
<th>AK(1)</th>
<th>VE(1)</th>
<th>E(1)</th>
<th>F(1)</th>
<th>VR(1)</th>
<th>Q(1)</th>
<th>S(1)</th>
<th>KS(1)</th>
<th>(V_R_0)</th>
<th>(L_b_0)</th>
<th>(D_b_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.000</td>
<td>0.800</td>
<td>0.125</td>
<td>16.000</td>
<td>146.000</td>
<td>0.7000</td>
<td>4.8800</td>
<td>3.2800</td>
<td>1.3471</td>
<td>2.0000</td>
<td>1162</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REACH-1</th>
<th>REACH-2</th>
<th>REACH-3</th>
<th>REACH-4</th>
<th>REACH-5</th>
<th>REACH-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0711</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9.6622</td>
<td>10.3734</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5.8928</td>
<td>13.4407</td>
<td>0.4398</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.8878</td>
<td>14.6457</td>
<td>1.1178</td>
<td>1.3589</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.7205</td>
<td>14.6442</td>
<td>1.1338</td>
<td>1.4147</td>
<td>0.0593</td>
<td>0.0</td>
</tr>
<tr>
<td>1.9804</td>
<td>11.7645</td>
<td>0.9323</td>
<td>1.2159</td>
<td>0.0923</td>
<td>3.9955</td>
</tr>
</tbody>
</table>

Calculated \(u(i,j) \)

<table>
<thead>
<tr>
<th>REACH-1</th>
<th>REACH-2</th>
<th>REACH-3</th>
<th>REACH-4</th>
<th>REACH-5</th>
<th>REACH-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0711</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebenwitz
Dean Henry Solomon

ONR
Chief of Naval Research
(Codes 230, 434)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept Library
NavyDATA Automation Cnd
OP-964

Naval Aviation Integrated Log Support
NARDA Tech Library
Navel Electronics Lab Library
Navel Facilities Eng Cnd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Stn Cnd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Ship Eng Center
Washington, DC

Naval Ship Res & Dev Center

Naval Sea Systems Command
PHS 30611
Tech Library
Code 073

Naval Supply Systems Command
Library
Operations and Inventory Analysis

Naval War College Library
Newport

NUPERS Tech Library

PHSD

Integrated Sea Lift Study

USN Ammo Depot Earle

USN Postgrad School Monterey
Library
Dr Jack R. Berating
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Cnd
Logistics Officer
Commanding Officer
UNS Francis Marion (LPA-249)

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cnd & Gen Staff College

Army Logistic Rs Cnd Center
Fort Lee

Commanding Officer, USALCACA
New Cumberland Army Depot

Army Inventory Rs Cnd
Philadelphia

Air Force Headquarters
AFADS-1
LEXY
SAF/ALG

Griffiss Air Force Base
Reliability Analysis Center

Gunter Air Force Base
AFMAC/HR

Maxwell Air Force Base Library

Wright-Patterson Air Force Base
Log Command
Research Sch Log
AFALD/HR

Defense Documentation Center

National Academy of Sciences
Maritime Transportation Res Board Library

National Bureau of Standards
Dr B. H. Colvin
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

Weapon Systems Evaluation Group

British Navy Staff

National Defense Fdtrst, Ottawa
Logistics, OR Analysis Establishment

American Power Jet Co
George Chernowitz

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole

Library

Logistics Management Institute
Dr Murray A. Geisler

MATHTSC
Dr Eliot Feldman

Rand Corporation

Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof R. V. Deane
Prof M. Masarovic
Prof S. Zacka

Cornell University
Prof K. E. Beckhofer
Prof R. W. Conway
Prof Andrew Schultz, Jr.

Cowtan Foundation for Research in Economics
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof K. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. C. Cochran
Prof Arthur Schlesier, Jr.

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson
Purdue University
Prof. S. Gupta
Prof. M. Rubin
Prof. Andrew Whinston

Stanford University
Prof. T. W. Anderson
Prof. G. B. Dantzig
Prof. F. S. Hillier
Prof. D. L. Iglehart
Prof. Samuel Karlin
Prof. G. J. Lieberman
Prof. Herbert Solomon
Prof. A. F. Veinott, Jr.

University of California, Berkeley
Prof. R. A. Barlow
Prof. D. Gale
Prof. Jack Kiefer
Prof. Naamadh Sitgreaves

University of California, Los Angeles
Prof. J. K. Jackson
Prof. R. R. O'Neill

University of North Carolina
Prof. W. L. Smith
Prof. R. K. Leadbetter

University of Pennsylvania
Prof. Russell Ackoff
Prof. Thomas L. Saaty

University of Texas
Prof. A. Charnes

Yale University
Prof. F. J. Anscombe
Prof. I. M. Savage
Prof. J. V. Birnbaum
University of Washington

Prof. R. K. Bissinger
The Pennsylvania State University

Prof. Seth Borden
University of Wisconsin

Dr. Jerome Brackett
Institute for Defense Analyses

Prof. H. Chernoff
Mass. Institute of Technology

Prof. Arthur Cohen
Rutgers - The State University

Mr. Wallace H. Cohen
US General Accounting Office

Prof. C. Derman
Columbia University

Prof. Masao Fukuizumi
Kyoto University

Prof. Saul I. Gass
University of Maryland

Dr. Donald F. Caver
Carmel, California

Prof. Anil L. Goel
Syracuse University

Prof. J. F. Hanson
Michigan State University

Prof. H. O. Hartley
Texas A & M Foundation

Mr. Gerald F. Heim
M&H, Lewis Research Center

Prof. W. M. Hirsch
Courant Institute

Dr. Alan F. Hoffman
IBM, Yorktown Heights

Prof. John T. Lash
State University of New York, Amherst

Dr. J. L. Jain
University of Delhi

Prof. J. H. K. Lao
Polytechnic Institute of New York

Prof. W. Kruskal
University of Chicago

Mr. S. Kumar
University of Madras

Prof. C. E. Lemke
Rensselaer Polytechnic Institute

Prof. Loyola
University of Sheffield, England

Prof. Steven Nahmias
University of Pittsburgh

Prof. D. B. Owen
Southern Methodist University

Prof. E. Parzen
Texas A & M University

Prof. H. O. Posten
University of Connecticut

Prof. R. Rannage, Jr.
University of Delaware

Prof. Hans Ringdahl
University of Bern

Dr. Fred Rigsby
Texas Tech College

Mr. David Rosenblatt
Washington, D. C.

Prof. M. Rosenblatt
University of California, San Diego

Prof. Alan J. Rowe
University of Southern California

Prof. A. H. Rubenstein
Northwestern University

Dr. H. E. Salveson
West Los Angeles

Prof. Edward A. Silver
University of Waterloo, Canada

Prof. M. J. Sobel
Georgia Inst. of Technology

Prof. R. N. Thrall
Rice University

Dr. S. Vajda
University of Sussex, England

Prof. T. M. Whitin
Wesleyan University

Prof. Jacob Wolfowitz
University of South Florida

Prof. Max A. Woodbury
Duke University

December 1978
To cope with the expanding technology, our society must be assured of a continuing supply of rigorously trained and educated engineers. The School of Engineering and Applied Science is completely committed to this objective.