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A program is described which computes Schwarz-Christoffel transformations
that map the unit disk conforinally onto the interior of a bounded or unbounded
polygon in the complex plane. The inverse map is also computed . The computa-
tional problem is approachcd by setting up a nonlinear system of equations whose
unknowns are essentially the ‘à~cesaory parametersh1~~. This system is then solved
with a packaged subroutine. ~~

New features of this ~vork include the evaluation of integrals within the disk
rather than along the boundary, making possible the treatment of unbounded
polygons; the usc of a compound form of Gauss-Jacobi quadrature to evaluate the
Schwarz-Christoffcl integral, making possible high accuracy at reasonable cost;
and the elim ination of constraints in the nonlinear system by a simple change of
variables.

Schwarz-Christoffcl transformations may be applied to solve the Laplace and
Poisson equations and related problems in two-dimensional domains with irregular
or wthoundcd (but not curvcd or multiply connected) gwmetries. Computational
examples arc presented. The time required to solve the mapping problem is roughly
proportiona l to ~, where N is the number of vertices of the polygon. A typical
sct. of colnputatio s to 8-place accuracy with N ~~ 1O takes I to 10 seconds on
an 1DM 370/168.
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Abstract

A program is described which computes Schwarz-Christofi~l transformations
that map the unit disk conformally onto the interior of a bounded or unbounded
polygon in the complex plane. The inverse map is also computed. The computa-
tional problem is approached by setting up a nonlinear system of equations whose
unknowns are essentially the “accessory parameters” k This system is then solved
with a packaged subroutine.

New features of this work include the evaluation of integral. within the disk
rather than along the boundary, making possible the treatment of unbounded
polygons; the use of a compound form of Gauss-Jacobi quadrature to evaluate the
Schwarz-Christoffd integral, making possible high accuracy at reasonable cost;
and the elimination of constraint. in the nonlinear system by a simple change of
variables.

Schwarz-Christoffel transformations may be applied to solve the Laplace and
Poisson equations and related problem. in two-dimensional domains with irregular
or unbounded (but not curved or mu!tiply connected) geometries. Computational
examples are presented. The time required to solve the mapping problem is roughly
proportional to N3, where N is the number of vertices of the polygon. A typical
set of computations to 8-place accuracy with N � 10 takes 1 to 10 seconds on
an IBM 370/168.
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I. INTRODUCTION

I. Conformal mapping and it. applications

One of the classical applications of complex analysis is conformal map-
ping: the mapping of one open region in the complex plane C onto another
by a function which is analytic and one-to-one and has a nonzero deriva-
tive everywhere. Such a map preserves angles between intersecting arcs in
the domain and image regions; hence the name conformal. The Riemann
Mapping Theorem asserts that any simply connected region in the plane
which is not all of C can be mapped in this way onto any other such
region . The theorem does not say what this mapping may look like, however,
and the determination of particular conformal maps for particular mapping
problems baa been an active problem since at least 1850.

H ~~~LI~The usefulness of conformal mapping for applied problems stems from
the fact that the Laplacian operator transforms in a simple way under a
conformal map. Let f: C —40 map a reg ion ~1, in the a-plane conformally
onto a region fl.~, in the w-plane, and let A, and A11 denote the L,aplacian
operators ~3+~~i and 

~~~~~~ 
respectively, where a ’— z+ s y  and

w = u + iv. Then we may easily show,

A,4(z) — j f(s)j 2A~4(f ’(w)) (1.1)

for 4.:fl, -sR suitably differentiable. A conformal map has If(~)I > 0 every-

- - - - —-— ~~-- --~~~~ - - -  ~~~~~~~
—-~~ -- ~~~~--—. ~- ‘-- -~~~~~~~~~ --
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where; thus from (1.1) it follows that if 4i(s) is the solution to the Laplace
equation 4~4’ = 0 in CI,, subject to Dirichiet boundary conditions cS(s) =
g(z) on the boundary r,, then ~i(w) = #(f ’(w)) is a solution to the Laplace
equation A,,~ = 0 in the image region CI,, = f( C),), subject to the image
boundary conditions ~ (w) = g(f~~(w)) on the boundary r~ f(1’~). (We
have assumed that / maps r. bijectively onto the boundary of CI,,. This is
not always true, but it is true if both regions are bounded by Jordan curves.
See [Henrici, 1974], Thm. 5.lOe.)

More generally, from (1.1) we can see that Poisson’s equation , A,4~(z) =
p( s) , transforms under a conformal transformation into a Poisson equation
in the tv-plane with altered right hand side:

= If(f_ 1(w))I_2 p (r’(w)) . (1.2)

Furthermore, more general boundary conditions than Dirichlet also trans-
form in a simple way. For example, the Neumann condition ~~#(z) = h(s) ,
where is a normal derivative in the s-plane, transforms to ä~~~’(w) =

—1 
~~ 

.If (f  (w)) I h(f (w)). We do not pursue such possibilities further here;
for a systematic treatment see chapter VI of [Kantorovich & Kry lov, 1958) .
Some computed examples are given in Section V.

Traditionally, conformal mapping has been applied most often in two
areas. One is plane electrostatics, where the elect rostatic potential ‘p satisfies
Laplace’s equation. The other is irrotational, nonviscous fluid flow in the
plane, which may be described in terms of a velocity potential co that also
satisfies Laplace’s equation.

2. The Schwar s.Chri.t offel transformation

The problem of mapping one complex region conformally onto another
is in general very difficult , but for the special case of polygonal regions it
can be greatly simplified. Suppose that we seek a conformal map from the
unit disk in the s-plane to the interior of a polygon P in the tv-plane whose
vertices are tv1, ..., WN, numbered in counterclockwise order. For each k,
denote by 8~,r the exterior angle of P at wk

2 
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For any polygon we have a simple relationship among the numbers ~k:

N

E~~~=2 .  (1.3)

If wk is a finite vertex, we have —1 � ~~ < 1. We need not require, however,
that P be bounded. It may have a number of vertices at complex infinity, and
the exterior angles corresponding to these may fall anywhere in the range
1 ~~ ~~ � 3. Such angles are defined to be equal to 2ir minus the external
angle formed in the plane by the intersection of the two sides involved, if
they are extended back away from infinity . The following example should
illustrate what is meant by various values of ~~ it is a polygon with five
vertices wk (in this case w~ = w4), with corresponding values (th, ..., ~s) =
(
~

, f , ~, ~,— 1):

p.,2 =

1

w5 

82 = 4/3

w3 w4 = w1

As always , (1.3) holds for this example.
Let us now pick at random N points k (“preverticea’) in counterciock-

wise order around the unit circle and two complex constants C and w~, and
consider the Scbwars-ChrIatoffel formula:

r w — f (s)  — ~~+ cj ’f i( 1 —! ~)~~~ds’. j (1.4)

3 
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The quantities (1 —~“z,~) alway s lie in the disk lw—l i  < 1 for Izl < 1.
Therefore, if we choose a branch of log(s) with a branch cut on the negative
real axis by means of which to define the powers in (1.4), w(s) defines an
analytic function of z in the disk Isi < 1, continuous on I~I � 1 except
possibly at the vertices z~.

The Schwarz-ChristofTe l formula is chosen so as to force the image of
the unit disk to have corners in it with the desired exterior angles $kw. It
is not hard to see from (1.4) that at each point 2k~ 

the image tv(s) must
turn a corner of precisely this angle. This is in keeping with our purpose of
mapping the disk onto the interior of P. What the map will in general fail
to do is to reproduce the lengths of sides of P correctly, and to be a one-
to-one correspondence. For a suitable choice of parameters {zk}, C, and w~,
the image under / of the unit disk might be, for example,

Only the angles are guaranteed to come out right.
The variables 

~1, ...,zN, C, and ~~ are the accessory parameter, of the
Schwarz-Christoffc l mapping problem. Our first problem—the parameter
problem—is to determine values of the accessory parameters so that the
lengths of sides of the imag e polygon do come out right. The centr al theorem
of Schwar z-Chr istoffc l transformations asserts that there always exists such
a set of accessory parameters:

Theorem 1. (Schwars.Chr i.tofYel transformation) . Let D be a simply
connected reg ion in the complex plane bounded by a polygon P with vertices

4 
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Z1, ...,z!.j and exterior ang les w/~k, where —1 � !5k < 1 ~f Zk is finite and
1 <~~ � 3 if Zk = oo. Then there exists an analytic function mapping the
uni t  disk in the complex plane con formally onto D, and every such function
may be written in the form (1.4).

Proof: [Henr ~ci , 1974], Thm. 5.12e.

In fact , for any given polygon there is not just one but infinitely many
such conformal mappings , To determine the map uniquely we m a y  fix ex-
actly three points 5k at will , or fix one point zk and also fix the complex
value w~, or (as in a standard proof of the Riemann mapping theorem) fix
u~ and the argument of the derivative f’(O).

The simplicity of the explicit formula (1.4) is attractive. But because
the problem of determining the accessory parameters is intracta Sle analyti-
cally, applications of it have almost always been restricted to ar~i~iems
simplified by having very few vertices or one or more axes of sy~nmetry .
General Schwarz-Christoffcl maps do not appear to have been used as a
computational tool, although experiments have been made in computing
them,

3. Numerical computation of the Schwarz-Christoffel Transformation

In the early days of computers , when a number of relatively pure
mathcmatician s were growing interested in computational mathematics ,
the numerical computation of conformal maps in general and Schwarz.
ChristolTel transformations in particular received a flurry of attention . As
carly as 1949, the National Bureau of Standards spon sored a symposium on
numerical conformal mapping. It was too early, however , for algorithms to
result from this period which we could now consider practical.

In more recent years interest in numerical conformal mapping has been
modest. Gaier [1984] produced a comprehensive work describing methods
for various problems in constructive conformal mapping. For the Schwarz-
ChristolTel problem , he proposed determining the accessory parameters z*
by setting up a constrained nonlinear system of N — 3 equations relating
(1.4) to the known distances Iwk u~,l, and solving it iteratively by Newton’s
method [Gaier , p. 171]. Such a procedure has been tried by at least three sets
of people: [Mcyer , 1979] , tHowe,1973] , and [Vecheslavov&Kokoulin , 1973) .

The present work follows Gaier and others in formulating the parameter
problem as a constrained nonlinear system of equations. We believe that
this is the fIrst fully practical program for computing Schwarz-Christoffel



• - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ _
~~~~~ - -

transformations, however, and the first which is capable of high accuracy
without exorbitant cost.

One innovation which makes accurate but cheap computations possible
here is the use of a compound form of Gauss-Jacobi quadrature to evaluate
the integral in (1.4). The evaluation of this integral is central in all Schwarz-
Christoffel computations, both in determining the accessory parameters and
in evaluating the map and its inverse once the accessory parameters are
known. We have found that a straightforward application of Gauss-Jacobi
quadrature , as some others have used , can achieve only very low accuracy
in realistic problems, and we have developed a compound form of Gauss-
Jacobi quadrature to get around this difficulty (see 11.3).

A second innovation here is that the computation may be performed
not just for bounded polygons, but for polygons with any number of vertices
at infinity. This is made possible by taking the unit disk as the model
domain rather than the upper half plane, which others have used , and
evaluating complex contour integrals within the disk rather than only along
the boundary. The ability to handle unbounded polygons is important for
applications , since one of the attractions of conformal mapping is that it
can reduce an unbounded problem domain to a bounded one.

The treatment of the constraints in the nonlinear system is a third
new feature in this work. We have employed a simple change of variables
to eliminate these constraints directly. This approach appears to be more
efficient than other techniques which have been tried (see [Howe,1973] and
[Vecheslavov&Kokoulin ,1973]), and eliminates the need for an initial guess
of the accessory parameters.

We have depended in several places on the use of a sophisticated library
of ‘black box” numerical routines. Library programs come into play here
for Gauss-Jacobi quadrature , for the solution of the nonlinear system , and
for the solution of an ordinary differential equation. Others have been used
in various experiments with applications. The Schwarz-Christoffel problem
is essentially a simple problem numerically once the machinery is in place,
but it is only in recent years that this kind of numerical machinery has
begun to be broadly available.

I
6
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II. DETERMINATION OF THE ACCESSORY PARAMETERS

1. Formulation as a constrained nonlinear system (subroutine SCFUN)

The first matter to be settled in formulating the parameter problem
numerically is, what parameters in the map (1.4) shall we fix at the outset
to determine the Schwarz-ChristofTel transformation uniquely? One choice
would be tofix threc of the boundary points z*: say, s~ — 1,a~ — ~,ZN —— 1.
This normalization has the advantage that the resulting nonlinear system
has size only (N — 3)—by—(N — 3), which for a typical problem with N=8
may lead to a solution in lees than half the time that a method involving
an (N — 1)—by—(N — 1) system requires. Nevertheless, we have chosen here
to normalize by the conditions:

Z N I  (2.1)

= arbitrary point within P

which lead to an (N — 1)—by—(N — 1) system. This choice is motivated
by considerations of numerical scaling: it allows the vertices to distribute
themselves more evenly around the unit circle than they might otherwise.
(An earlier version of the program mapped from the upper half plane instead
of the unit disk , but was rejected: once points 5k began appearing far from
the origin at x 1O~, scaling became a problem.) After a map has been
computed according to any normalization , it is of course an easy matter to
transform it analytically to a different domain or a different normalization
by a Möbius transformation.

Now the nonlinear system must be formulated . The final map must
satisfy N complex conditions,

= cf f i ( 1
_

~~j
”dI ~ 1 �k�N. (2.2)

j — i

These amount to 2N real conditions to be satisfied , but they are heavily over-
determined , for the form of the Schwarz-Christoflel formula (1.4) guarantees
th at the angles will be correct no matter what accessory parameters are
chosen. We must reduce the number of operative equations to N — 1. This7
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is a tricky matter when unbounded polygons are allowed, for one must be
careful that enough information about the polygon P is retained that no
degrees of freedom remain in the computed solution.

We proceed as follow.. First, we require that every connected corn-
ponent of P contain at least one vertex w~. Thus even an infinite straight
boundary must be considered to contain a (degenerate) vertex. This restric-
tion eliminates any translational degrees of freedom. Second, at least one
component of P must in fact contain two finite vertices, and t

~N and uj  will
be taken to be two such. This restriction eliminates rotational degrees of
freedom.

Now define

C = (wN — w ) /j ll(1 — (2.3)

where ~N 1 is fixed permanently by (2.1). Next, impose the complex
condition (real equations 1,2)

Wi — w,~ Cf  fl (i — !~j
”dI. (2.4a)

j—1

This amounts to two real equations to be satisfied.
Denote by r1, ..., r,,~ the distinct connected components of P, numbered

in counterclockwise order. For each 0 � 2, impose one more complex con-
dition: if x~ is the last vertex of r1 in the counterclockwise direction, then
(real equations 3,4,...,2m)

= cj ~~fj (1 _
~~)”dd. (2.4b)

~— 1

Finally, N — 2,n — 1 conditions of side length are imposed. For each
pair (5k, 5k+’) beginning at k = 1 and moving counterclockwise, where both
vertices are finite , we require (real equations 2m + 1,...,N 1)

• a+1 N —
~~~~

IWk+i — — IcL 11(1— !~) dill



until a total of N — 1 conditions have been imposed. If P contains at least
one vertex at infinity , then every bounded side will have been represented in
a condition of the form (2.4c) except for the aide (wN, Wi)~ which is already
taken care of by (2.1) and (2.4a) . If P is bounded, then the last two sides
in counterclockwise order—(wN__2, wN_1) and (WN_1, wN)—will not be so
represented.

We have not stated over what contours the integrals of eqs. (2.4) are
defined . This does not matter mathematically, as the integrand is analytic,
but it may matter numerically. In this work we have evaluated them always
over the straight line segment between the two endpoints, a procedure which
poses no domain problems since the unit disk is strictly convex . Figure 2.1
illustrates what contours are involved in computing the integrals in (2.3)
and (2.4), for a sample case with N = 10, m = 3.

The nonlinear system is now determined , and its unique solution will
give the unknown parameters C and z1, ..., ZN—i for the Schwarz-Christoffel
mapping. We must , however, take notice of two special cases in which the
solution is not completely determined by eqs. (2.4). It was remarked that
if P is bounded , then nowhere in eqs. (2.4) does the point wN—1 appear. If
13N—l ~~~ —i or 0, then this omission is of no consequence, for the geometry
of the problem forces 10N~~l to be correct. If fiN—i = 0 or—i , however, then
wN_.i is not determined a priori . The former case is of little consequence,
for since fiN—I = 0 the value taken for ZN—I has no effect on the computed
mapping, as may be seen in (1.4), nor is there any purpose in including tvN_ i
among the vertices of P in the first place. (Still , there may be problems
in solving the system (2.4) numerically, for it is now underdetermined.)
The latter case, fiN—i = —1, is more serious, and must be avoided in the
numbering of the vertices u~.

2. TransformatIon to an unconstrained system (subroutine YZTRAN)

The nonlinear system (2.4) ostensibly involves N—i  complex unknown
points z~, ...,ZN_1 on the unit circle. In dealing with such a system, we
naturally begin by considering not the points 5k themselves, but their argu-
ments 9k, given by

5 k ’ C~~~, O < Ok�2 T. (2.5)

Now the system depends on N — i  real unknowns, and the solution in terms
of the Ok is fully determined .

However, the system (2.4) as it stands must be subject to a set of strict

9
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Figure 2.1 — Contours of integration within the disk. A sample Schwara-
Christoffel problem is shown with N 10 vertices of which m — 3  vertices are
at infinity, illustrating what integrals are computed to evaluate the system (2.4):

• I radial integral along (0— Zio) defines C (eq. 2.3)

• I radial integral along (0— zi) determines two real equations to fix w~ (eq.
2.4a)

• 2 radial integrals along (0— 15) and (0 — 1’) determine four real equations
to flx u.~ and w~(eq. 2.4b)

• 3 chordal integral, along (33 —z~), (a~ — as), and (‘~—‘a~ 
determine three

real equation, to fix Iwi — W3J,J U~ — W41, and J w 1~ — w~4 (eq. 2.4c)

TOTAL:N— 1=9r eal equaticu.

10 
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inequality constraints,

O < O k < Ol,.~ l�k�N—1 , (2.6)

- 
which embody the fact that the vertices id must lie in ascending order coun-
terclockwise around the unit circle. To solve the system numerically, it is
desirable to eliminate these constraints somehow. We do this by transform-
ing eqs. (2.4) to a system in N — 1 variables ~ ... , IIN—1, defined by the
formula

1�k �N— 1 , (2.7)
•k+1 0k

where O~ and ON, two different names for the argument of ZN = 1, are taken
for convenience as 0 and 2w, respectively.

At each iterative step in the solution of the nonlinear system (2.4),
we begin by computing a set of angles {O,,) and then vertices {

~
} from

the current trial set 
~~~~~ 

This is easy to do, though not immediate since
the equations (2.7) are coupled . In this way the problem is reduced to one
of solving an unconstrained nonlinear system of equations in N — I real
variables.

3. Integration by compound Gauu4acobi quadrature (subroutine ZQUAD)

The central computation in solving the parameter problem, and indeed
in all Schwarz.ChrtstoffeL computations, is the numerical evaluation of the
Schwarz-Christoffel integ ral (1.4) along some path of integration. Typically
one or both endpoints of this path are prevertices z~ on the unit circle, and
in this case a singularity of the form (1 ~~z/ i~j $  is present in the integrand
at one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-
Jacobi quadrature (see [Davis & Rabinowita, 1975J , p. 75). A Gauss-Jacobi
quadrature formula is a sum E~.1’w~f(x~), where the weights u~ and
nodes x have been chosen in such a way that the formula computes the
in tegral f.~’ f ( r ) ( 1  — s)°(1 + x)~dx exactly for f ( s )  a polynomial of as
hi gh a degree as possible. Thus Gauss-Jacobi quadrature is a generalization

• of pure Gaussian quadrature to the case where singularities of the general
form (1 — x)°(1 + ~~ (a,$ > —1) are present. The required nodes and
weights can be computed numerically; we have used the program GAUSSQ
by Golub and Welsch IGolub & Welach,1969J for this purpose.

11 
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Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Chris-
toffel problcm, and at least two previous experimenters have used it or or
a closely related technique ([Howe,1973J, [Vecheslavov & Kokoulin ,1973]).
We began by doing the same, and got good results for many polygons with
a small number of vertices. In general, however, we found this method of
integration very inaccurate. For a typical sample problem with N = 12
and NPTS = 18, it produced integrals accurate to only about 10—2 , and
it does much worse if one chooses polygons designed to be troublesome.

What goes wrong is a matter of resolution. Consider a problem like the
one shown in Figure 2.2. We wish to compute the integral (1.4) along the
segment from z~ to some point p. (In the parameter problem p might be 0 or
z
~— i ; in later computations it might be any point in the disk.) Now direct

application of a Gauss-Jacobi formula will involve sampling the integrand
at only NPTS nodes between 5k and p. lI the singularity ~~~~ 

is so close to
the path of integration that the distance c = — zkI is comparable to
the distance between nodes, then obviously the Gauss-Jacobi formula will
yield a very poor result. It turns out that in Schwarz-Christoffel problems
the correct spacing of prevertices Zk around the unit circle is typically very
irregular , so the appearance of this problem of resolution is the rule , not
the exception. (See examples in V.)

To maintain high accuracy without giving up much speed, we have
switched to a kind of compound Gauss-Jacobi quadrature (see [Davis &
Rabinowitz , 1975], p. 56). We adopt , somewhat arbitrarily , the following
quadrature princi ple:

No singularity z~ shall lie closer to an interval of
integra tion than half the length of that interval.

To achieve this goal , the quadrature subroutine ZQUAD must be able to
dividc an interval of integration into shorter subintervals as necessary, work-
ing from the endpoints in. On the short subinterval adjacent to the endpoint
Gauss-Jacobi quadrature will be applied; on the longer interval (or intervals)
away from the endpoint pure Gaussian quadrature will be applied . The
effec t of this procedure is that number of int.egrand evaluations required to
achieve a given accuracy is reduced from O(~) to O(log2 

~
).

Figure 2.2 shows the intervals of integration that come into play in
compound Gauss-Jacobi quadrature. For a plot comparing the accuracy of
simple and compound Gauss-Jacobi quadrature in another typical problem,
see 1V.1.

I 
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0

+ 1

Figure 2.2 — Compound Gauss Jacobi quadrature. Division of an interval
of integration into subintcrvals to maintain desired resolution.

With the use of compound Gauss-Jacobi quadrature , we now achieve
high accuracy in little more than the time that direct Gauss-Jacobi quad-
rature takes. This is possible because only a minority of integrals have a
singularity close enough that subdivision of the interval of integration is re- -

quired . In the 12-vertex example mentioned above, the switch to compound
Gauss-Jacobi integration decreased the error from 10 2 to 2 •

There remains one circumstance in which integration by compound
Gauss-Jacobi quadrature as described here is unsuccessful. This is the case
of an integration interval with one endpoint quite near to some prevertex
5k corresponding to a vertex wk = oo. We cannot evaluate such an integral
by considering an interval which begins at ~ , for the integral would then
be infinit e. The proper approach to this problem is probably the use of
integration by parts, which can reduce the singular integrand to one that
is not infinite. Depending on the angle fik, one to three applications of in-
tegration by parts will be needed to achieve this. We have not implemented
this procedure.

The subtlety of the integration problem in Schwarz-Christoffel corn-
putations is worth emphasizing. It is customary to dispatch the integration
problem as quickly as possible, in order to concentrate on the “difficult” ques-

13
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tions: computation of accessory parameters and inversion of the Scbwarz-
Christoffe l map. We believe, however, that the more primary problem of
computing Schwarz-Christoflel integrals—the “forward” problem—should
always remain a central concern. Any numerical approach to the parameter
problem or the inversion problem is likely to employ an iterative scheme
which depends at each step on an evaluation of the integral (1.4), and so
the results can only be as accurate as that evaluation.

4. Solution of system by packaged solver (subroutine SCSOLV)

The unconstrained nonlinear system is now in place and ready to be
solved. For this purpose we employ a library subroutine: NSO 1A , by M.J.D.
Powell ([Powell, 1908J), which uses a steepest descent search in early itera-
tions if necessary followed by a variant of Newton’s method later on. (The
routine does not use analytic derivatives.) It is assumed that a variety of
other routines wou ld have served comparably well.

We make no attempt to tailor the numerical solution procedure to the
particular Schwarz-Christo lTel problem under consideration. In particular ,
all iterations begin with the trivial initial estimate Yk = 0 (1 � k � N —
1). This corresponds to trial vertices spaced evenly around the unit circle.
The following input parameters to NSO1A have generally remained fixed :
DSTEP=l0~~ (step size used to estimate derivatives by finite differences) ,
DMAX = 10 (maximum step size) , MAXFUN = 15(N — 1) (maximu m
number of iterations). - -

A fourth parameter , EPS, defines the convergence criterion—how large
a function vector (square root of sum of squares of functions values) will
be considered to be satisfactorily close to zero. We have most often taken
1O~~ or 10—14 here. The choice of EPS is not very critical , however, as
convergence in NSOIA is generally quite fast in the later stages.

In the course of this work about a hundred Schwarz-Christoffel trans-
form ations have been computed , ranging in complexity from N = 3 to
N = 18. NSO1A has converged successfully to an accurate solution in all
of these trials. Section V.1 gives a series of plot, showing this convergence
graphically for a simple example.

A 
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III. COMPUTATION OF THE S.C MAP AND ITS INVERSE

Determining the accessory parameters is the most formidable task
in computing numerical Schwarz-Christoffel transformations. Once this is
done, evaluation of the map and of its inverse follow relatively easily. The
foundation of these computations continues to be compound Gauss-Jacobi
quadrature.

1. From disk to polygon: w = w(z) (subroutine WSC)

To evaluate the forward map w(z) for a given point z in the disk or on
the circle, we must compute the integral

= ~~+ cj ’
~’ñ(1 _

~ )~~
’dd (3.1)

~=1

with u~ = w(zo), where the endpoint zO may be any point in the closed disk
at which the image w(~ ) is known and not infinite. Three possible choices
for so suggest themselves—

(1) so = 0; hence u~~=

(2) so = ~ for some k; hence t~~ = u~, a vertex of P;

(3) so = some other point in the disk at which w has previously been
computed.

In cases (1) and (3), neither endpoint has a singularity, and an evaluation of
(3.1) by compound Gauss-Jacobi quadrature reduces to the use of compound
Gauss quadrature . In case (2) a singularity of the form (1 — z/ 5k) $ is
present at one of the endpoints and the other endpoint has no singularity.

- - 
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The best rule for computing w(z) is: if a is close to a singular point 5k
(but not one with wk = oo), use method (2); otherwise, use method (1). In
either case we employ compound Gauss-Jacobi quadrature , taking normally
the same number of nodes as was used in solving the parameter problem.
By this procedure we evaluate w(z) read ily to “full” accuracy—that is, the
accuracy to which the accessory parameters have been computed , which is
dircctly related to the number of points chosen for Gauss-Jacobi quadrature
(see IV.1). Quadrature nodes and weights need only be computed once, of
course.

We should emphasize that even in the vicinity of a singularity zk, the
evaluation of the map w = w(z) is inherently very accurate. This very
satisfactory treatment of singular vertices is a considerable attraction of
the Schwarz-Christ.ofTel approach for solving problems of Laplace type.
In particular , in a potential problem the Schwarz-Christoffel transforma-
tion “automatically” handles the singularities correctly at any number of
rccntrant corners.

2. From polygon to disk: a = z(w) (subroutine ZSC)

For computing the inverse mapping a = z(w) at least two possibilities
exist , both of them quite powerful. The most straightforward approach is
to view the formula w(z) = w as a nonlinear equation to be solved for a,
given some fixed value w. The solution may then be found iteratively by
Newton ’s method or a related device. w(z) should be evaluated at each step
of such a process by compound Gauss-Jacobi quadrature along a straight
line segment whose initial point remains fixed throughout the iteration.

An alternative approach is to invert the Schwarz-Christoffel formula ,

=

to yield the formula

= — (3.2)

This inversion is possible because w — w(z) is a conformal mapping, which
means Idw/dzI > 0 everywhere. (3.2) may now be thought of as an ordinary
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differential equation (o.d.e.),

— g (w,z ) ,  (3.3)

in one complex variable w. If a pair of values (so, t~~) is known and the new
value a = z(w) is sought, then a may be computed by applying a numerical
o.d.e. solver to the problem (3.3), taking as a path of integration any curve
from u~ to w which lies within the polygon P.

In our program we have chosen to combine these two methods, using the
second method to generate an initial estimate for use in the first. We begin
with the o.d.e. formulation , using the code ODE by Shampine and Gordon ,
and for convenience we integrate whenever possible along the straight line
segment from w~ to w. (ODE, like most o.d.e. codes, is written for problems
in real arithmetic , so that we must first express (3.2) as a system of first-
order o.d.e.’s in two real variables.) Since P may not be con vex, more than
one line segment step may be required to get from u~ to w in this way. It
will not do to take ~ = wk for some vertex u* without special care, because
(3.2) is singular at u~.

From ODE we get a rough estimate i of z(w), accurate to roughly 10_2 .
This estimate is now used as an initial guess in a Newton iteration to solve
the equation w(z) = w. This method is faster than the o.d.e. formulation for
getting a high-accuracy answer. More important , it is based on the central
Gauss-Jacobi quadrature routine , unlike the o.d.e. computation.

In summary , we compute the inverse map a = z(w) rapidly to full
accuracy by the following steps:

(1) Solve (3.2) to low accuracy with package ODE, integrating when-
ever possible along the line segment from u~ to w; call the result

(2) Solve the equation w(z) w for a by Newton’s method, using ~
as an initial guess.

17
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IV. ACCURACY AND SPEED

1. Accuracy

The central computational step is the evaluation of the Schwarz-Chris-
toffel integral , and the accuracy of this evaluation normally determines
the accuracy of the overall computation. As a consequence of the quadra-
ture princi ple adopted in 11.3—that no quadrature interval shall be longer
than twice the distance to the nearest singularity ak—the compound Gauss-
Jacobi formulation achieves essentially the full accuracy typical of Gaussian
quadrature rules operating upon smooth integrands. That is, the number of
digits of accuracy is closely proportional to NPTS, the number of quadrature
nodes per half-interval , with a very satisfactory porportionality constant in
practice of approximately 1.

It is important not only to be capable of hi gh accuracy, but to be
able to measure how much accuracy one has in fact achieved in a given
computation. To do this we employ a subroutine TEST, which is regularly
called immediatel y after the parameter problem is solved. Given a computed
set of accessory parameters C and {zk} , TEST computes the distances

— ~~ for each wk oo and the distances IWk_1 — wk+ 1I for each
oo, making use of the standard subroutine ZQUAD for compound

Gauss-Jacobi quadrature. The numbers obtained are compared with the
exact distances specified by the geometry of the polygon, and the maximum
error , RADEMX , is printed as an indication of the magnitude of errors in
the converged solution. It is now probable that subsequent computations of
w(z) or z(w) will have errors no greater than roughly RADEMX.

Most often we have chosen to use an 8-point quadrature formula. Since
each interval of integration is initially divided in half by subroutine ZQUAD,
this means in reality at least 16 nodes per integration. With this choice
RADEMX consistently has magnitude .-.‘10~~ for polygons on the scale of
unit y.

Figure 4.1 gives an indication of the relationship between number of
quadrature nodes and erro r RADEMX ; it shows RADEMX as a function of
NPTS for a 6-gon which is shown at the top of the next page. Two curves

18
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are shown: one for simple Gauss-Jacobi quadrature , and one for compound
Gauss-Jacobi quadrature. The exact quantities here should not be taken too
seriously; examples could easily have been devised to make the difference in
performance of the two quadrature methods much smaller or much greater.

- - 2. Speed

Any application of Schwarz-Christoffel transformations consists of a
sequence of steps:

INIT — set up problem
QINIT — compute quadrature nodes and weights
SCSOLV — solve parameter problem 

-

TEST — estimate accuracy of solution
ZSC, WSC, etc. — compute forward and inverse transformations in

various applications

Among these tasks INIT , QINIT , and TEST all take negligible amounts
of time relative to the other computations: typically less than 0.1 sec.. on
the IBM 370/168 for INIT and QINIT, and for TEST a variable time that

19
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Figure 4.1 — Quadrature accuracy as a function of number of nodes.
V The error estimate RADEMX is plotted as a function of NPTS for the

polygon shown on p. 19. The upper and lower curves correspond to
simple Gauss-Jacobi and compound Gau.s-Jacobi quadrature, reapec-
tively.
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• is usually less than 5% of the time required by SCSOLV. What remains are
three main time consumers: SCSOLV, ZSC, and WSC.

We begin with WSC, which performs the central evaluation of (1.4)
by compound Gauss-Jacobi quadrature. This evaluation takes time propor-
tional to NPTS (the number of quadrature nodes) and to N (the number of
vertices). The first proportionality is obvious, and the second results from
the fact that the integrand of (1.4) is an N-fold product. Very roughly, we
may estimate

time to solve w = w(z) : 0.25 NPTS . N msec. (4.la)

for double precision computations on the IBM 370/168. Taking a typical
value of NPTS—8, which normally leads to 8-digit accuracy, (4. Ia) may be
rewritten

tim e to solve w = w(z) : 2N msec. 
] 

(4.lb)

For the minority of cases in which the interval must be subdivided to
maintain the required resolution , these fi gures will be larger.

To estimate the time required to solve the parameter problem , we com-
bine (4.1) with an estimate of how many integrals must be computed in the
cnn rsr~ of solving this probicin. To begin with , at each iteration about N
integrals arc required by NSOIA (the exact number depends on the number
of vertices at infinit y). On top of this, it is a fair estimate to say that 4N
iterations will be required by NSO IA to achieve a high-accuracy solution.
We arc therefore led to the estimate

time to solve parameter problem: NPTS . N 3 msec. (4.2a)

or , taking again NPTS=8,

time to solve parameter problem: 8N3 mscc. j (4.2b)

These estimates correspond fairly well with observed computation times
for the parameter problem: two problems with N = 5 and N = 18 may

V be expected to take about 1 and 50 seconds, respectively. It is clear that
computing a Schwarz-Christoffel transformation becomes quite a sizeable
problem for polygons with more than ten vertices. In particular , such corn-
putations are much too time-consuming for it to be practical to approximate
a curved domain by a polygon with a large number of vertices.

21

_ _ _ _  _ _  - - - - _ _



— 
. P~~-~~ ‘~~- -- .. :5 r ’7Vr ~VV__ ~V_V ~~~~~~~~~~~~~~~~~~~ — - V —5 -

— — — — — ~~~~~~~~~~~~~~~~~~~~ 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Finally, we must consider the time taken by subroutine ZSC to invert
the Schwarz.Christoffel map. This too is proportional to NPTS, and quite
problem dependent. We estimate very roughly:

time to solve a = z(w) : NPTS N macc. (4.3a)

or, with NPTS=8,

time to solve a = a (w): 8N macc. 
1 

(4.3b)

Note that inverting the Schwarz-Christo ffe l map is only about four
times as time-consuming as computing it in the forward direction.

In practice, computational applications will vary considerably in the
use they make of a Schwarz-Christo ffel transformation once the parameter
problem is solved. If only a few dozen applications of ZSC or WSC are
required , then the computational time for solving the parameter problem
will dominate. If thousands of such computations are needed , on the other
hand , then the parameter problem may become relatively insignificant. The
latter situation is most likely to hold when plotting is being done, or when
a hi gh-accuracy solution in the model domain is to be computed by means
of finite differences.

In summary, high accuracy is cheap in Schwarz-Christoffe l transfor-
mations; what consumes time is solving problems involving a large number
of vertices.

22
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V. CO~~~UTED EXAMPLES AND APPLICATIONS

I. Iterative process for a single example

Figure 5.1 shows graphically the process of convergence from the m i -
tial estimate in an example involving a 4-gon. Routine NSOIA begins by
evaluating the function vector (2.4) at the initial guess, then at each of
N — 1 input vectors determined by perturbing the initial guess by the small
quantity DSTEP in each component. As a result , the first N pictures always
look almost alike, which is why the series shown begins at NEVAL=4 rather
than NEVAL=1. Each plot shows the current image polygon together with
the images of concentric circles in the unit disk (which appea r as “contours”)
and the images of radii leading from the center of the disk to the current
prevertices zk.

These pictures have a beautiful bonus feature about them: they may
be interpreted as showing not only the image polygon but simultaneously
the domain disk , including the prevertices z~ along the unit circle. To see
this , look at one of the inner “contour” curves, one which is apparently
circular , and the radii within it. Since w = w(z) is a conformal map within
the interior of the disk , the radii visible in this circle must intersect at the
same ang les as their preimages in the domain disk. Thus the inner part of
any one of these image plots is a faithful representation on a small scale of
the circular domain. We see in Figure 5.1 that the prevertices are equally
spaced around the unit circle initially (NEVAL = 4), but move rapidly to
a very uneven distribution. This behavior, which is typical, indicates why
the use of a compound form of Gauss-Jacobi quadrature is so important (see
11.3).

The sum-of-squares error in solving the nonlinear system is plotted as
a function of iteration number in Figure 5.2, for the same 4-vertex example.
Convergence is more or less quadratic , as one would expect for Newton’s
method . The irregularity at iteration 19 is caused by the finite difference V

step size of 10~~ used to estimate derivatives, and would have been repeated
at each alternate step thereafter if the iteration had not terminated.
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Figure 5.1 — Convergence to a solution of the parameter problem. Plots
V show the current image polygon at each step as the accessory parameters
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and C are dete~~ined iterativ~y, for a preblem ~~th N 4.
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Figure 5.2 - Rate of convergence. Sum-of-squares error in the nonlinear
system (2.4) u a function of iteration number, for the same problem
as in Figure 5.1.
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2. Sample Schwars-ChrigtofteI map.

Figures 5.3 and 5.4 show plots of computed Schwarz-Christoffel maps
for representative problems. The polygons of Figure 5.3 are bounded and
those of Figure 5.4 are unbounded . Observe that contour lines bend tightly
around reentrant corners, revealing the large gradients there, while avoiding
the backwater regions near outward-directed corners and vertices at infinity.
Like the plots of Figure 5.1, these may be viewed as showing simultaneously
the image polygon and the domain disk.

Figure 5.5 shows similar plots in which streamlines rather than con-
tour lines have been plotted , so that the configuration may be thought of
as portraying ideal irrotational fluid flow through a two-dimensional chan-
nel. To plot these streamlines an analytic transformation of the disk to an
infinite channel with straight parallel sides was used in conjunction with the
Scbwarz-Christoffel transformation from the disk to the problem domain.

3. Laplace’s equation

Conformal maps do not solve problems, but they may reduce hard
problems to easier ones. How much work must be done to solve the easier
problem will vary considerably with the application.

(1) In the best of circumstances, the original problem may be reduced
to a model problem whose solution is known exactly. This is the
case in the fluid flow problems of Figure 5.5, in which a crooked
channel may be mapped to an infinite straight channel of constant
width.

(2) II a problem of Laplace’s equation with pure Dirichiet or Neumann
boundary conditions can be mapped conformally to a disk, then
Poisson ’s formula or Dini’s formula (Kantorovich & Krylov, 1958)
provide integral representations of the solution at each interior
point. Such integrals may be evaluated readily on the computer
to yield high accuracy solutions. The primary disadvantage of
this approach is that a new integral must be evaluated for each
point at which the solution is desired .

(3) If the solution will be required at many points in the domain ,
thcn it is probably more efficient to solve Laplace’s equation by

P a trigonometric expansion of the form O~ + E~ .1 r”(aa sin lcD + V
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Figure 5.3 — Sample Schwarz-Christoffel transformations (bounded
polygons). Contour, within the polygons are images of concentric circles
at radii .03, .2, .4, .6, .8, .97 in the unit disk, and of radii from the
center of the disk to the prevertices x~.
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Figure 5.4 — Sample Schwarz-Chri stcffel transformations (unbounded
polygons). Contours are as in Figure 5.3. -
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Figure 5.5 - Sample Schwars-Ch ristoffel transformations. Contours
V show streamlines for ideal irrota tional, nonviscous fluid flow within each

channel .
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b, cc. kO); coefficients ck and b~ arc selected so as to fit the boundary
conditions closely. A disadvantage of this method is that conver-
gence of the expansion may be slow if the boundary conditions
are not smooth.

(4) Finaily, if simpler methods fail , a solution in the model domain
may be found by a finite-difference or finite-element technique.
For problems of Poisson’s equation or more complicated equations
this will probably normally be necessary.

Figure 5.6 presents an example of type (1). We are given an infinite
region bounded by one straight boundary fixed at potential ~p 0 and one
jagged boundary fixed at ç = 2. We may think of this as an electrostatics
problem. The central question to be answered computationally will be: what
are the voltage ç and the electric field E —V~ at a given point , either
within the field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-
Christoffe l transformation , then analytically onto an infinite straight chan- . 

-

nd (as in the examples of Figure 5.5). In the straight channel ~o and E are
known trivially, and this information may be transferred to the problem
domain through a knowledge of the conformal map that connects them and
of its (complex) derivative. We omit the details, which are straightforward.

Figure 5.6b shows IEI as a function of z on the upper and lower bound-
aries of the region. To see more of the behavior of the solution field near
a reentrant corner , we also compute the field at three points near 3+ 1.5i.
These results are given in Figure 5.flc.

4. Poisson’. equation

Consider the 7-sided region shown in Figure 5.Ta. We wish to solve
Poisson’s equation

~ 4~(x, y) sin 2x( 1 — 2(y + 1)2)

on this region subject to Dirichiet condItions

#(x,v) i... p(x,v )_j ~ sin2x(v +1)2

on the boundary. We proceed by mapping the domain to the disk and
solving a transformed problem in the disk in polar coordinates by means of

V 30
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Imw~~0
(a) Problem domain: region between two

conducting sheets

2.0 ‘ 

~R ’  ‘ I ’  ‘ 
-

::, . T T. .  . . .

(b) Field strength along the top boundary
(solid line) and bottom boundary (broken
line)

w 
_ _ _ _ _  III argE/,r

3.1 +1.4 1 1.7564 1.3082 — .3823
3.01 +1.49 1 1.9486 2.4403 — .2833
3.001+1.4991 1.9889 5.2137 — .2572
3.000+1.5001 2.0000 — .2500

Cc) Computed potential and field strength at
three points near 3+1.51

Figure 5.6—Laplace equation example: electric
potential and field between two infinite sheets.
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a second-order fast finite difference solver (PWSPLR, by P. Swarztrauber
and fl. Sweet). p(z , y) is the correct solution in the interior as well as on the
boundary , so we can determine the accuracy of the numerical solution.

This is not as satisfactory a procedure as was available for Laplace
equation problems. According to (1.2), the model problem here is Poisson’s
equation in the disk with an altered ri ght hand side containing the factor
If’(z)12, where f  is the composite map from the disk to the 7-gon. Two
difliclutics arise. The first is that to set up the transformed equation in the
disk , p(w,2) must be computed for every w,~ = w(z~1) which is an image of
a grid point in the disk. This is time consuming, one hundred times more
so in this experiment than the fast solution of Poisson’s equation once it
is set up. Second, If’(z)12 is singular (unbounded , in this example) at each
prevertex Zk, and this appears to interfere with the second-order accuracy
which we would like to observe. The table in Figure 5.7b attests to both of
these problems.

5. Elgenfrequenclu of the Laplace operator

Petter Bjørstad (Computer Science Dept., Stanford University) has V

recently combined the present Schwarz-Christoffel computation with a fast
finite-difference scheme to successfully compute elgenvalues and eigenvec-
tars of the Laplacian operator on polygonal regions. These results may be
interpreted as giving the normal modes and frequencies of a thin membrane
in two dimensions , or of a three-dimensional waveguide with constant cross-
section. This work will be reported elsewhere.
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(a) 7-sided problem domain, including image of 16X32
finite-difference arid in the unit disk

Transformation
Crid and setup Past Poisson
( r X R )  time ~o1ver t ime Max. error RMS error

4x8 1.3 secs. < .01 secs. 0.132 0.0309

8x16 2 secs. .01 secs. 0.055 0.0085

16x32 5 secs. .03 secs. 0.031 0.0037

32x64 16 secs. .15 secs. 0.026 0.0012

(b) Computed results for four different grids. Time
estimates are for an ThM 370/168.

Figure 5.7— Poisson equation example. Problem is
transplanted conformally to the unit disk and solved
by finite differences.
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VI. CONCLUSION

A program has been described which computes accurate Schwarz-Chris-
toffel transformations from the unit disk to the interior of a simp ly connected
polygon in the complex plane, which may be unbounded . Key features of
the computation have been:

(1) Choice of the unit disk rather than the upper half plane as the
model domain , for better numerical scaling (11.1)

(2) Use of complex contour integrals interior to the model domain
rather than along the boundary, making possible the treatment
of unbounded polygons (11.1)

(3) Usc of compound Gauss-Jacobi quadrature in complex arithmetic
to evaluate the Schwarz.Christoffel integral accurately (11.3,UL1)

(4) Formulation of the parameter problem as a constrained nonlinear
system in N — 1 variables (11.1)

(5) Elimination of constraints in the nonlinear system by a simp le
variable transformation (11.2)

(6) Solution of the system by a packaged nonlinear systems solver;
no initial estimate required (11.4)

(7) Computation of a reliable estimate of the accuracy of further
computations , once the parameter problem has been solved (IV.1)

(8) Accurate evaluation of the inverse mapping in two steps by means
of a packaged o.d.e. solver and a packaged complex rootfinder
(ffl.2)

Previous efforts at computing Schwarz-Christo ffe l transformations nu-
merically include [Cherednichenko & Zhelankina , 1975], [Hopkins & Rob-
erts, 1978], [Howe, 1973] , [Meyer, 1979] , and [Vecheslavov & Kokoulin ,
1973]. The present work differs from these in that it deals directly with
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complex arithmetic throughout , taking the unit disk rather than the upper
half plane as the model domain and evaluating complex contour integrals.
This makes possible the computation of transformations involving general
unbounded polygons. (Cherednichenko & Zhelankina [1975] also treat un-
bounded polygons, by a different method.) Two other important differences
are the use of compound Gauss-Jacobi quadrature , and the application of
a change of variables to eliminate constraints in the nonlinear system ( (5),
above). We believe that our program computes Schwarz-Christoffel trans-
formations faster, more accurately, and for a wider range of problems than
previous attempts.

A variety of directions for further work suggest themselves. Here are
some of them:

(1) More attention should be paid to the problem of inverting the
Schwarz-ChristolTcl map. The two-step method described in ffl.2
is only one of many possibilities.

(2) The program could easily be extended to construct maps onto the
exterior of a polygon—that is, the interior of a polygon whose
interior includes the point at infinity. This extension would be

• necessary for applications to airfoil problems.

(3) It should not be too great a step to raise the present program to the
level of “software” by packaging it flexibly, portably , and robustly
enough that naive users could apply it to physical problems.

(4) The program might be extended to handle the rounding of corners
in Schwarz-Christo flel transformat ions [Henrici , 19741. What about
mapping doubly or multi ply connected polygonal regions, per-
haps by means of an iterative technique which computes an S-C
transformation at each step? What about applying S-C transfor-
mations to eliminate corners in the conformal mapping of curved
domains?

Most important, further work is needed in the direction of application.
to Laplace’s equation , Poisson’s equation , and related problems. Irregular
or unbounded domains are generally troublesome to deal with by standard

V techni ques, particularly when singularities in the form of reentrant corners
arc present. Schwarz-ChristolTcl transformations offer a means of getting
around such difficulties in a natural way . Much more experience is needed
here.
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APPENDIX: PROGRAM LISTING

V 

The boundaries of this program are not sharply defined , for the configu-
ration changes according to what applications are being treated . The present
listing includes only the core routines used to solve the parameter problem
and to evaluate the Schwarz-ChristofTe ! function and its inverse.

An experimental copy of the package may be obtained in machine-
readable form from the author.

Control program:
SC

Set-up:
INIT initializes variables and reads input data
QINIT computes qua drature nodes and weights

Solution of parameter problem;
SCSOLV controls solution of parameter problem

YZTRAN transforms to an unconstrained system
SCFUN sets up the nonlinear system to be solved
SCOUTP pr in ts out put f rom SCSOLV

TEST estimates accuracy of computed solution
Compound Gauss-Jacobi quadrature:

ZQUAD divides the integ ral into two halves
ZQUAD1 evaluates the half-integral (compound)
DIST finds the distance to the nearest singularity
ZQSUM sums a Gauss-Jacobi quadrature rule

Forward and inverse S-C map:
WSC evaluates map from disk to polygon 

V

ZSC evaluates map from polygon to disk V

ZFODE computes initial estimate
ZNEWT inverts map by Newton’s method

V Miscellaneous routines:
ZPROD evaluates N-fold Schwarz.Christoffel integrand
FINITE returns “tru e” if the argument Is finite
ENTER begins timing of the current subroutine
EXIT concludes timing of the current subroutine
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- Library routines not listed:
GAUSSQ (Golub&Welsch) computes Gauss-Jacobi nodes and wte

(called by QINIT)

NSOIA (Powell) solves the nonlinear system
(called by SCSOLV)

ODE (Shampine & Gordon) solves the inverse mapping problem
(called by ZSC)
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2 S2 M A I N  PHOG RIM •~

P~~~~PA ~ Sc — “S~..WdAR Z—CHEIST ( ’FF!L

TH: 3 PV ’ C.!Ii.l  )!~P U r E S 1 H E  3CHUAI Z—CNNIB TO P?EL ?IAl3? OI BATI OU
r~~ ~~HDS THE UNI T DISK TO THE IN?!RIOP 3? TI! EC LYG O P

W ( I ) , . . .~~W ( N ) .  THIS M APP ING IS O? TM! POIN :

Z N
2 ~ — dC • C $ IN?  PROD ( I— Z/ Z ( K ) ) * * B E T & I IE) 82 . (1)

0 K—I

TC’ SOLV E THS P R V .)8L!E WE BEGIN BY FINDING TB! ACCE SSORY PARAM E TERS
—— V !RT’C?S 1(11 ) AN D CONSTA NT C —— POE TB! M AP OP (I). THIS IS DONE

C BY SUER fUTIME SCSOLV.

C TB ! 1520! POLYGON M AY BE UNBOU NDED; PUBITTED ANGLES LI! IN TIE
V C PANG! —3.t!.SETAI(K) .L!.1. 1 (N) AND PCI) MUST BE FINITE .

2 Vt R ?A LIZ I  BY THE COWD ITICN S: 
V

Z (N) • 1 (2.1)
2 w(O .r) • IC (A POINT IN THE IITEBIOR OP TN! POLYGON) (2 .2)

C

V 1(K) — V!R~~EI H ~F THE IMAGE POLYGON
7(K) — P~ IN~ ON T H A  ‘ J I l T  DISK MAPPED TO 1(K)

2 51 1*5 (K) — SEGA2SV! IF !ZTEPIOR ANGLE AT E (K) D IVID ED BY P1
2 N — H!75!EB OF VE R TICE S N (K)
- VS — ‘—I — SOM B E R 3? UNKNOWN POINTS: Z(1)i~~...~ Z(N— 1)
2 N PT SQ — l U M B E R  0? P O I N T S  F OR GAUSS—JACO B I QU ADRATU RE
C z~~NP — C C M P L E X  I N F I N I T Y

V L2 ’ L  ~~ U ! C N ! S :

V — ~V A S N  P RJGRAM
C — I S I T I A L I Z E S  C O N S T A I T S  A N D  D E F I N E S  PRO BLE M
C Q V I T  — OMPUTE S Q U A D R A T U R E  NODES AND W EIGHTS
C S SOLV — COV SPUTES ~CCES S3BY P A R A M E T E R S  POE S—C MAP (I)
C YZ PAN — TP&NS !3RNS U N K N O W N S  FROM Y (K) TO 1(K)
C 5CF UN — N IN L IN EA R SYSTEM OP YQ UAT ION S TO BE SCLV!D BY SCSO L V
I SC~~UTP — PRINTS OUTPUT FROM SCSOLV

— C SPUT!S 1(1)
I Z S C  — CcM PUT! S 1(1)
C PLTCON — D E A N S PLOTS CF IMA GE POLYGON PITH CONTOU R S
C ZPF OD — O M P U T E S  N — F ~~Lfl P R O D U C T  II ( 1 )

ZOOA D — SUMS TO !V~ tUA TE INT EGR A L BY GAUSS—JACOBI QUAD RA TU R E
C ?~~l I t  — R E T U I N S  T R U E  I? A R G U M E N T  IS F I N I T E

C LI F A P Y  r’ur:ues REQU IRED: P5012 , GAU SSQ . 00! ,

L. W . T”?~~~NEN J A N U A R Y . 1978
- 

!17 . 121 t  R ! A L S M ( A — B .D — H , 3—V , 2— Y ) , C O M P L ! I $ 1 6 (C . U .2)
~~V ) 5  / 5 2/  W C , W ( 2 0 ) . B E T A P ( 2 0 ) .C , 2 ( 2 0 ) , N , Nfl , p F

CC~~~V 1N /C NS1S/  PI,TWOPI .ZERO,ZINF, EPS
P E E L e R  2 0 *8 5

2 SE’  U P  P R C B L E I :
EPS - I.D— 8

— 
CA LL  T il l

C~~MPUT! NODES AI D WEI GHTS FOE PARAM E TER P R O B L E M :
N P _ S Q - 8

V CALL O I 1 I T I I P T S Q )

C SCL VE P A R R V L T H I  P R O B L E M :
I P P N — I V

C E L l .  S SO LV ( I M . I P R I P T )
V C

2 TEST A C CUP A C T IF SOLUTION:
CELL TEST

D R A W CV’ P~ OUR PL3 T 0? SOLU Ti ON :
CA L L  PLTCOP 

V

101 CN ~? tRRi
STOP I
E N D

//l3 .SiS !N DO •
7 P

. 0  . 3
2. 0. 99.

V 2. 8. — .5
1. ‘J7~3 1. 870 — 1 .

— . 2  — 2 .  — .5
— . 2 — 1 .  99.
.7 —2.5 93.
.8 — 2 . 7
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C Se$ee*$e$e *e ss$eesSs$$sssesssss*~~~$es eese.$.$$a$.........s...e..e..
C$ IN!? P11921! S U BR OU TINE $1 

V

C S e*$ $ e $ e e*~~ $$$$$* SS *S S S*S $ e $$*$ ~~~~$$*Se S S$$$S*,$$*.es .eE$$$..*. .p . .  V

C 
V

SU S N O U T I P! lilT
C
C I I I T I A L I Z Z S  CONSTANTS IN /CONS?S/ AND PIOBLII DEFINITION
C P A&2M E ?EN$ IN ~SC/. DATA FOR TEE G E C N I Y R Y  OP TM! PROBLEM
C IS READ II PEON UNIT S.
C

IMPLICIT Rt A L ~ S l&—1, D—M ,c — V , I—Y)  • COPPLE ES 16(C. W ,Z)
LOG ICAL FINITE
IGP P L!Z ’I6  DCEP U
CONRON /SC/ WC .V (20).BITAI(30),C,E(30).p ,NI ,Np 

V

001131 /COISTS/ Pt.TIOPZ,Z$IO,SIIF.ERS
0018.31 /GEOI/ 1FIl(20),UAT (20).PcOuI
DA TA 3RD!! /‘INIT’/

r CALL E N TE R (ENNUI )
C
C SRI )NSTANTS:

Pt — 3 .1*159 26535 89793 23 DO
TW OPT • Pt $ 2.80
Z E R O  $ (O.D0,O .DO~
l IN T  — (l.D70 ,1.D70)

C
C lEAD INPUT PARA METERS:

R E A D  (5.201) N
NM — i—I
UP — I~~I
1(N) — (I.DO ,O .DO)
R E AD (3 ,202) NC
IMAD (5 ,203) (N (K) ,IETAI(K ) ,K—I ,N)

C
C C !PU E A N G L E S  AS R E Q U I R E D  ( W H E R E  V A L U E  I N P U T  IS 09 .0 )

0-3 I I  P —
IF  (3t7A8 (K).N!.99.DO) GCTO 10
K M  • MOD (K ~~N—2 ,P),1
K P  — M )D( K .N).l
J~ TA1 ( K )  — DIMA G(CD LO G ( (V (KN )—W (K)) / (W (KR) —W (K)))) /81 — 1.00
I F  ( B E T A P  ( K )  . L!. — I .  DO ) B E T A M I K )  — BE TAM (K) • 2.DO

10 CO N T I N U E
C
C CH ECK FOP V A R I O U S  I N P U T  E P R O N S :

109 - 0.00
DO I K — 1 , N

1 SUM — SU M •
IF ( D A B S ( SU 5 . 2 . D O )  .LT.!PS) GITO 2

• lilT ! (6,301)
SlO P 2

2 1? ( F I N I T E ( V ( l ) ) )  0070 3
W R I T !  (6 , 302 )
STO P 2

3 IF  (F I I I 1 !(i ( P ) ) )  GO TO I
PRI?! (6, 303)
STO P 2S IF (5 21 A M (NM) . N! .O .  DO) GCTO S
W R I T E  (6 , 30*)

S IF (UTAH (NM) • N!. 1.00) GCTO 20
WRIT! (6 .303)
STOP 2

r
1 ) 7 V R M T N E  N U M B E R  O F BO U N D A R Y  C O M P O N E N T S .  ETC. :
C P A S S  I :  O N E F I N E D  POINT PO E LIC E I U F I I I T I  V E R T E X :

20 NCOMP — 0
DO 2 1 N — 2 , N M

1? ( P I N I T E ( V ( X 3 fl GOTO 2~
N C ONP — NC CI P • I
IFIX (UCOMPI — H — I

V I? (ICOHP .RQ . l) KPI! ( ,CONn — I
21  CONT I N U E

I? ( I C 3 M P . G T . 0 )  GO TO 22
V ECOMP • 1

K P I I ( N C O N P )  • 1
C PAS S 2: CUE RATIO FOR 12CR LIU SLOE!!?:

22 CONTZIOR
V P R O — 2~IC3MP

00 2 3 K .  1 .11
I? UQ.!Q.U) GO?O 30
IF (.NOY.FZNXTE(l(1) ).0I..i0t.PIitYt(l(NeI))) GOTO 23
P19 • PlO • I

• B R A T (NEQ ) — K
23 CONTINUE

C
30 CALL R UT

JE TUI N
CV 2 3 1  F O u l? (13)

232  PORE A T (2 ? S.GI
V 203 FORMAT ( 2 8$ . O . P 8 . 0)

33 1 PuPPET (/‘ •S~ t RIOS IN IN!?: 2101.1* DO NOT ADD UP TO l’fl
302 F O R M A T  (/ ••‘ ERR O R IN IN!?: V I I )  IN ST NE P Z NITR’ / )
103 FORMA T (I’ ••• FPPOR II INIT: 1(1) BU ST RI PINI ?R’fl
33$ FORMAT (/ ••‘ N A R N I P S  Ii III?: 1 (1—I) NO? DR?IRIINRD’/)
305 P011*? (/‘ •SS th OR IN h ITs N (S—I) NO? DRT!RIINED’ /)

RU ,
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C~~e ’s s se$se .eeess •e Ias*eea sse•e•e..eses.ss.es....e........e.au.s... V

C~ Q IN IT  ~P !MA IY SUBROUTINE CS
C~~$SSS~~C S***S$ sSS$S*S*sSS*$se$S•es.$S*CSS*essaess*es.ses*s.as.s. .e. .

sUB!OUTLN ! OIl!? (IRT S) V

C
:JMPO?Z3 NODES AND VE IGITS FOR GAU SS—JA COR I QUADIA TURE

C
IMPLICIT P!*L*8(*—B ,D—N ,O— V ,X—T), COM PL I!~ 16(C ,V,$)LO GICAL FI NITE
C OMMO N /SC/ VC,V(2O) .BE?A8(20) .C.Z(20) .$.NI .NP
COBION /QUID/ QNODIS (32,21) ,QIT!(32 ,21),NP?S Q
DIEINSIOI QNSCR (2) , QSCS(32)
DATA SSN *HE /‘QINI?’/
CE LL ERT!I (S BIANE~
WRITE (6~ 20 1) NPTS V

C
IPTSQ - NP T S

C
C TIE BACH FINITE TEl?!! NIB), COEPUT! NODES AND NEIGITS FOR
C O N E — S I D E D  GAUSS—JACOBI QUADRATURE A L ONG * C U R V E  BIGI NN ING 4? 1( K) :

DO I K — 1 , N
1 IF ( F I M I T ! ( N ( K ) ) )  C ALL GA US SQ(5 , E P T SQ,0 .D O ,BZTA$ ( K ) , O ,

S QESCE ,QSCR.QNODES (I.K),QWT S(l ,K))

— C ;F . P U ? E  lOOT S A I D  H E I G H T S  FOR POR E G A U S S I A N  Q U A D R A T U R E :
CE LL G A U S S Q ( S .PP TSQ. O.DO . O.D0 .0 ,QES CN, QSC R , Q N O D S S ( I , NP) , V

S QW? S (1,N P ))
C

CALL EXIT

— 
RE TUEN

2)) FORMAT (‘ KP?S ‘,IS)
EUD . -

$..$.,....Ss..e,S . 5 5 5 $ S*S 5 $ $ $*S S 5 $ e S $, e $ , e $ $ $ $ S $ . $ , . 5 . Se S $ $eS e $ $Se S

C’ 1!ST P R I M A R Y  SU BROUTINE *‘
CS.eea* .a. .$. .P.a. .$S*SSSS*eS$SSS .SS$S$S ISS* S*S*$S* SS* 5$$$5S5* *$* *S
C

S U P I J O T I N E  TEST
C
C YEsE S TB! COMPUTED M AP FOR I CC OI A CT.
C

IM P L I C I t  E 1 A L S R ( A — R , D—N , O — V .I—!)  • CO BPLEI *l6 ( C , i,I)
l!*L 58 CD *I S
LOGICAL FIJI? !

OMNOP /SC/ WC. i (20)  ,RETII(20) ,C,I(20) ,N ,PI ,N P
COMMO N /CON $I S/ P I , TNOP I , ZE IO , Z I U P , I E 3
DEI A SINAI! / ‘T !ST’/
C A LL lIT ER (SBNA N!)

C
C TE ST UNOT M OP RADII :

RI DE S ! $ 0.80
DO 10 K • 2, 1
IF (PI N I T UV I B ) ) )  lADE — CDII! (NC — ISC (Z I RO , Z (I) , N ( K ) ,E) )
IF (.POT .FINIT! (I(1))) PAD ! $

$ COA lS (lse (( .  I D O, .  I D O ) ,! (1—1) , I ( K — I )  .1—I)
$ — NSC((.IDO ,.IDO),i(K.I),P(E.1),I.I ))

JA DED • DIkI1( IADU E ,IADI )
10 CONTINUE

III?! (6,20 1) R A D L I E
C

CAL l. I I I?
I T E U N I

C
201 POI R AT (/‘ NADE N! : ’ , D 12 . I )

!ND

40
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• C $ S S S $ S S S S . $S• S 5 0 0 5 $ S S S Ce***5 $ $ $*S S . S $SS SS. $ S. S. . S .S SS I*$ S S S*S S $*S S S
C$ SCS OLV P R I M ARY SU BR ON?II!
C SS$ . . S S S SU SS I S S S $ S*S SS*SS$ *SSS**SS.S .$SSI .$SSSSS.*S$ .SSSSSSS*SSSS•S

SUBI O OTII !  SCSOLV (NI , IPR I NT)
C
C Ills SU BR OUTINE COMPUTES TEE AC~~3SOIY P A R A M E T E R S  C AND 2 ( K ) .
C T HE PR O BL E M IS SOLVED 3! FIND I NG TE E
C SJ LU ?ICN TO A SY STEE OF N — I  N O N L I N E A R  EQU A TIONS IN TN! N — I
C U N K N O W NS T ( 1 ) , . . . , Y ( N — I ) , 111CM A R E  RELATED TO THE POINTS
1 1 ( k )  I T T I E  FOR M ULA :
C
C Y (E) — LOG ( ( T N ( K ) —TE ( N — I ) ) / ( T l ( K . 1 ) — T B ( & ) ) )  ( 1)
C
C W HERE THIN) DE NOTES TI! A R GU U EI?  OP 2 ( K ) .V C S U B R O U T I N E  SCPUU DEFINES TEI S SYSTE M OP EQUATIONS .V 
C THE O R I G I N A L  PROBLEB IS SUBJECT TO TI! C O N FRA INTS ?B (I )  ( TM ( K . I ) ,
C 301 T HES E VANIS I IN TM! TIANSFO RHAT ICU PRO! 2 TO T.

C 5!! NAI l PROG RA M FOP FUR TIER C OEEIIT S.
C

:!P L ICI T R ! A L S B ( A — 3 , O — H .O —T , X — Y ) , CO M P L !15 16(C , N , !)
C O M M O N  /CONSIS/ PI .TWOPI, ZE BO, E I N P , !ES
DIN EN SIOP AJ IN!(20.20), SCR (900). PVAL (19) , T (19)
E X T E I N A L  S CF UN
DATA SEN AM! / ‘SCSOLT’/
CALL ENTER (SBNAP!)

C
- INITIAL U!SS (VERTICES 1QUA LLT SPACED AROUND CIRCLE)

DO 3 K — 1 ,UN

— 
3 1 (K) • 0.00

C ISO1 A CONTRO L PAR AP ET! I S:
OSTEP — 1 .0— S

• DMA! — I.D I
ICC • EP S
S A X FTJN • PM • 15

C
C S)LV! NO ILINE A P SYSTEN PITH 13011:

CA L l. N S O I A ( N H , Y , F VA L. A J I N V .DST!P . D M A X . ACC . M A X F UN . I P R I N T . SCI , SCF UP )
CALL Y Z T R A N  Ii)

C PR I N T  R E SU L TS:

— 
C A L L  SCOUTP

C A L L  E X I T
R !TUIN

- 
LID

C S. S S . . S S S S S S SS$ S. *C C S S S S Se S $S S C S S S . S. S S $ . S S $ $S *$ . S S S*$ S S S S $ $ S $ $ S S S
C Y ZTRIN SUB CNU! NA T! (SCSOLR) SUB ROU TI NN

. S S S S .* S S S S S S . S S SS S SS SS * S $ S S $ S* S S . SS$ C S S . SS . $ SSS S* S SSS S S S S S S* S$ $ S SS

SUBNJUTINE TZTRAP (T)

C W A N S F O R ! S  Y ( K )  TO E l K ) . SEN COMMENTS IN S U B R O U T I N N  SC SOLV .

I I P L Z C I T  R E A L S N ( A — B . D — R , O — V ,Z— Y ) .  C O U P L ! I 5 1 6 ( C , W ,2)
CO M P L!2 S 16 O C HP L X
COMMON /SC/ NC ,N (20) ,BE EAM (20 ) ,C ,2 (20) .I , NN , NP
COMIO N /CGNSTS/ PI.?UOPI,2!BO,UPF,ERS
DIMENSION Y (1)

C
DTN - 1.00
15)509 — DTB
DO I K • l , PH

DY! — DT B / D E I P ( T ( K ) )
I T H S U M  — 195DM • D E N

C
DIN — INOP I / TB SOM
7555DM — DTM
2 ( 1 )  - DC M P LX (DC OS (DT M) ,D S I N ( D T I ) )
DO 2 K • 2,PM

DY! — DTM / DEX P (t (K—1) ) 
V

T N S U M — TN SU M • OTI
V 

- — 
2 2 ( N )  — D C !P L X ( D CO S (FEEDS ) ,D 3 t l ( T M S D M ) )

- 
RETURN
RID

4] .  
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C ’SSSS S S S S $ S e $ S S $ S S . $ $ S S* *S S S S S S~~~~S**S’SS.$S**S$S.S.$..S....SS.S.S.

~ SC F O N SOB O R D I N A T E (SCS O LV ) SUBROUTINE •S

S U B R ) U T I N R  SCPUN (I DX B. Y. F VAL)
C.
C ISIS IS TH E FUNCTION 11051 ZERO MO ST B! FOUND IN SCSOL V.
C

IMPLIC I T REALCI (A—B. 0—1,0—V ,I—Y ) • C OMP L EI S 16 (C . W , I)
REALSI CDABS
L O GICAL Fl u TE
DIIRPSI)N PVAL (NDXN) ,Y(IDIM)
CONN ON /SC/ IC,N (201 ,RETAN (20) ,C,Z(20) ,N .II,IP
109101 /CCNSTS/ PI,?NOPI,ZI~~ ,ZIIP,!f3CONEJI  /GEO I /  K?IX(20)  .KP*?(20) ,1CONP

C
C T R A N S F O R !  T ( K )  70 2(1) :

— 
C ALL T 2 E R A N ( Y )

C SET UP: COMPUTE INTEGRAL FlOE 0 TO 2 (N) :
W D !N OI — Z QU AD( Z E R O ,O , Z ( U ) . U)
C • (1(P)—IC) / I DE P O M

C
C CASE 1: 1(1)  AND W ( K . I )  F INITE:
C (CCNPUTI INTEGRAL ALONG CRORD g ( E ) — Z ( & . 1 5 5 :

‘SF1131 • 2’NCORP • 1
IF  (N?7IST.Gr.NP.) GOTO Ii
DO ID lE O — N FIP ST, NM

KL N PAT(I !Q)
KR — KL .1
211? - ZQUAD( !(NL) ,XL,Z(KR).KR )
FV AL (N !Q) — CDABS (U (KR) —W I K L ) )  — CD AIS (C SZ I NT)

13 C O N T I N U E
C
C C I SE  2: d(K.1) INFINITE:
C ( ; J I PUT! CCNT OUR IN I ! G R A I .  ALGUG R A D I U S  0 — 2 ( K ) ) :

ii DO 2) NyU ? • I,NC O N P
KR — NF l! (EVER?)
l INT • ZQUAD (ZERO ,0,Z(KE),KP)
lUlL • 1(11) — NC — C•ZI IT
FVA L ( 2 • N V ! R ? — I )  • D R E A L  ( Z P V I L )  ‘ 

V
F V A L ( R S U V U P T )  — D I M A G ( Z F V A L )

20 C O N T I N U E
R S T U P N

C
E N D

C . .S. .S$ . . .S .SS .SSSS*SSSSS. .S . .SS*S$$SS•SSSSSS* e*SSSSSS$ SSSSS$SSSS

~ ~~_ V ) U ? P  3 OI O R D T N A T ! (SC SO L V) SU SR O O T II!  •‘
C $ S SS . .* $ S S S S SS S * S. S S . S S SS S S S S* S S S*$ 5 5 5 S $*5 5 **$5*e*55$SSSSSS*$SSSSC

C
S U B R O U T T I !  SCOUT P

C
C I A I N T S  R E S U L T S  ( V A R I A B L E S  II CO~~ C N BLOCK /SC/)

IM PLICIT PL A i C e  ( A — B . 0— M , 0 — V  .X — Y ) ,  COM PL !1’16 (C , !.Z)
LOGICA L PIN!?!
C O M !J N /SC / VC , N ( 2 0 ) ,$!F A M ( 2 0 ) , C , 2 ( 2 0 ) , P , P M , N P  —

C O M I J I  /CO I STS/ PI , T N O PI, EE IO , Z I P P . I F S
C

11111 (6, 102)
DO I N — 1,1
TN DP I — DIIAG (CD L OG(2 (K ) ) )  # II

V IF ( T M D P I . L E . 0 . D O )  TNDP I — TUB?! • 2.00
I? ( P I N X T S ( U  ( 1 ) ) )  VRITE (6 , ~~3) 1,1(1) .TN DP I , IIT AM (1) .2(1)

I I? N 3?. F IP I?I ( l ( K ) ) )  Np IT! (6 ,  10$) *, TID P I , BITI N fI )  .2(1)
W R I T E  (6. 105) 10, 0
NE TOR N

C
102 FORIIT (//‘ USDLTS : ’//

I • I . , IOl , .l ( l )I ,13 !, S T N ( N ) /P I’ , 1II . ’SE ?E R (N ) ’ .

~~~~~~ S 1SX, E (N)’/
V - S • _... I ,9~~,I_ ..__ I ,~~3~~,~ _.._ ...__ 1 ,1IE,

I_ __ _ 
•

103 F0RN&T (!3.’ (~~,P $.3,’,’.P6.3.’)’.P20. 1I.P1*.5.

1 ~~~~ (‘ , FlS.  12,.’,FIS.12.’) )
10$ !oIMA ! (13 ,’ INFINITY ‘,P20. I*,P1I.S.

6 3!, ’ (‘ • P 1 5 . 1 2 , ’ • ‘ , P I S . 1 2 ,  )
lOS F O R M A T  (// ‘  10 • ( , , D 2 2 . I S , , ,D22. 1s , 1 ) /

$ ‘ c — ( ‘ ,uI. 1S. ’, ’ ,D22. I5, ’) ’ /)
V END

42
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C S S S Ss S S S S S S ,SS e 5 5 5 5•SS 5 5 5 S 5 5 SSIS~~~~S e5 S*5 5 5 S•5 S S 5•S S S S S S S 5 S 5 S S S S 5*5 S
CS I Q U I D  SE CON D A R Y  SORI O CT I NI

.., . . .SSSSSSS SSS SS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS ,SSCSSSSSE SSSSS

FUNCTION Z Q O A D ( 2 1 . N A .2R, 1R)

C . J N P U T * S  T N! CO MP LEX L I N t  I I T IG RAL OP ZP P OD LI ON IA TO II ALONG I
V C S ? $ & I O N T  LI I !  SEGN R NT I I TU I N F IR UN !? D I S K .  P U N C TI ON IQUE DI  IS

C CAL L1 D T UIC E,  ONCE FOR EACI H A L P  OP THIS IN T! GPA L .
C

I MPLICIT  R ! A L S S ( 1 — S . D — I . O — ! ,X— Y) , COI ) P L !X 5I 6 ( C , $ ,$)
C

ZMIO — (IA • 25) / 2.00
ZQUAD • ZQUADI(ZA , ZM!D,K&) — !QOAD1 (ZB,ZSID,KI )
P !T O RN

V END
Ce” . .,S., ,SS.,,S,SSSSSSSSSSSSSS~~~SSSSSSSSSSS,SSSS.I••S•SS•..SSSSIS
C~ E QU AD 1 SONOPDIN*TI(ZQU&O) SURSOUTIN! “C•’•’ •”5•5••’ ”~••.’’• ~~~S*S..SeSSe.S.,..S......s.e....s.e

C
FUN C TION Z Q O A D I ( 2 A , Z N . 1l)

C
C COIPUTES T U E COMPLEX LINE INT EGRA L OP Z PR OD P101 24 TO ZN ALOE G &
C S T R A I G H T  L I I I  SE GMENT I I TI I N TM! UNIT DII I .  COMPOUND ONE—SIDED
C GlU TS—JACOBI Q U A D R A T U R E  IS USE D. US ING POICTION DI!? TO DETERMINE
C TM ! DISTANCE TO TIN NEAREST S!N~~~L AI I ? Y 2(1) .
- 

IMPLICIT  R !IL SS ( &—N, D — I , O —V . X — Y ) ,  CCR P L !!SI6 (C . V .$)
C O E MO I /CON S?S/ P I ,? I O PI . ZERO , ! IE F ,E F S
P E A L S I  I D A B S
DATA R E S P R I  /2 .00/

C
C Cud FOR ZENO L!NGTI !N TR G E &I D :

IF (COABS ( I A — Z R )  .GT.O.DO) GOTO 1
Z Q O A D I  • 2150

— 
I X T O R U

C S T E P  1: O N E — S I D E D  01055 —JACOBI ~U &D R ATU12 TO P LEFT E N D P O I N T :
1 S — DIII1 (1 .D0.DIST (ZA ,KA)’ R !SPRM /CCA B S (ZA— ZB))

Z A k  — 21 • PS ( Z R — I A)
ZQUA D I — ZQSUI(IA. IIA , IA)

C
C STEP 2: &DJ0TR INTERVALS OF PUl l  01021111 QU AD SI T UIR IF I EC I SSE E ?:

10 IF ( R . I Q . 1 . D O )  P E T U P I
P • 3 I I I N I I I . 0 O , D I S I ( 2 A A , O ) ’ I E B P R N / C E & R S ( Z A I — Z I ) )
IR E — 244 • N* (2B—EAA )
Z O D A D I  — IQUID I • EO SUI ( Z A A . Z N R , O )
141 - 255
0070 10

• END
C S. S . I S S S S S S S ,*S S SSS S S*Ss S S SeS S S S•a S SSS S SSSSS S S*S S S S S S S . s S S , .*I S *S S S
C5 01 3? S0!OPDINA?! (EQUAD) SU$ROOTIN I •‘
C U S S ’ S  . ,SS,S.SSS.S,SSS., . , , .S..I*S*SSSSSSSSSSSSSSSSSSSSSSS*$SS*SSSC$

C
F U N C T I O N  D I S T ( 2 2 . N3)

C DITEP SIR IS TN ! DI STANCE FROM 22 TO TIE U!AP!ST SINGULARITY 2(K)
~ ) T V E N  T H A N  211$) .
- 

I M P L I C I T  P!AL SI  (A—N , D—ft ,O — V , I — T )  , C O N P L R X * 1 6  (C . W ,l~
V COP M)U /SC/ IC.lf20 ) ,BTYAM (20 ) .C,!(20) .W ,PN ,NP

— 
P E AL ’S  CDI!!

- 
DIET — 99 .D0
~O 1 N — 1 , R
I? (1 . tQ . *S )  0010 1
D IET — D I Z N I ( D ! S ? , CDA RS ( 2 8 — I ( N ) ) )

1 COlT LIDS
N ITO II
R ID

CSSSS ..SSSS,.,,*S...SSS*.SS..,,,5 5,.,*SSSSSS*S.SSSS*e,SS,,SSS,,S*S
C’ 20111 SURORD !N A T E(SQI AP )  SUBI O NTI RE ‘S
CSSS*SSSSSSS .S.SS.SSS$S$SSSS,S,*S~~~ ,,,$.S,S*SS.*SSS$$*,.,S*eS$SSSSSS
C

F UNCTION ZQEUI (!*,ZI, I A )
C
C C O M P U T E S  I I I  UT EGSA L OF ZP RO D PRO M 2* 10 ZR U A P P L Y I N G  A
C 012—h OlD 0O&S $— .3100$I FOR M UL A 12?! POSSIBLE SIESOLA )IT! AT 21.
C

IM PL IC IT REAL ’S ( A — N ,  0—1 .0— V .1—!) • CO IP LR ES 16(0 , 1,1)
O!ICN /50/ IC ,l (20) SIT AR (20 ) .0 ,2 (20) ,N , N I , N P

COMMO N /C ONITI / P!, ? I O P I , 1 E 2 0 . Z X N P , l P $  V

V C OMIDI /QNID/ 010811 (672) .Q W R (672) ,EITIQ
R I AL ’S C DIRS

Cp U • E NRO
III — (2$—I A )  ,‘ 2.D0
IC • (11.1)) / 2.80
l a N A
1? (1. R Q.O) I • NP
x i  • 32’ (l l) S I
1 2 . 1 1 . PP? I Q —  I

V 80 1 t • :1 ,22
1 11 • ZR • QflI (I ) ’SPSOD (I C •U ’Q N ODN$ (2 )  11)

t. 20 1DM • lislE
U (CDAIS (ZN).ll.0.D0.ARD.K.RI,NP)

— I 20109 • SQSUN ’CDA I$ (SN)” S!?AU(I)
S1~~~IRRI D 43
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C S 5~~~55  5 ,  55 5 • •  I a S S I ~ 5 ,  ~ ~ ~ 5 ~ ~ I S S S • • • • 5 5  5 5 5 • I I S • • ~ • 5••~ 5• • • • 5 5 • • 5• • I  • • 5
CI •5C ~~~~~~~ V~~ J~~~~~~ IJ T :~.L ••
C S ~~~~’S I S S~~~~~~~~ • • •  S • I  • 5  I S t I S S I S I S I I S  5 . 5 .  I • 5 S . I I  • S I S ~~~ I . S .  ~~~~~

C
~~~~C t : e N  ~~~~~~~~~~~~~~~~~~~~~

C
C : ‘ V r ~~V~ .A T ~~ , F , -’ zo ro i ’ Z  ~~ . ~ P- ! ~ h ~~~~~ co~ ~~~ t ~ T Z z
C

P P L C I A L ~~~~( A — R ,~ ’ - I~ . O — V , X — Y ) . co~~p L . E x ’ ~~ t ( c , h , 7 >
CO~ ! MO N / S C/  •C .~~(2O) ,R~~TA M(2~)),C , Z (2 O ) ,h ,,~l .P.P

C

— ~.SC • .3 • C ZL)AD (ZO ,K Z O ,ZZ ,O )

S Liii iS N
~ ND

C . S SS.SS SSS SS S S S S SSSSS*S*SSSSS**$PS*SS..SSSS*,e*,SSSSSS*.SS.*.SS..S.
C’ LSC P RI MARY SUBROUTINE a’
C a . SS . SSS S US .S S S SS S *S S S, *S a SS, S ..~~~~Ss . . , Se,Sa S S.,S. . ., .*Se. ,SeSSS...

F U N C T I O N  ZSC (WV , Z0 .V0, IZ O )
C
C ) M P U T ! S  Z ( IN) . FIRST ODE IS C A1 .L!D TO GE? AN I N I T I A L  EST II AT I;
C THEN lIEN? IS CALLED TO GET TEE F I N A L  £ U S I U .
- 

I M P L I C IT N!AL•S ( A — B , D —N ,O — V ,X — T )  • C O M P LEX ’ 16 (C , W . Z)
D I M E N S I O N  SC R ( 1 1 2 ) . X S C I ( S )
U1!RNAL ZPODE
CCPI ) ) I  /SC/ W C . V ( 20) , B!T A N ( 2 0 ) , C , Z ( 2 0 ) , N , NM ,N P
COF.NJN /CCNSTS/ PI.TVOP!.Z!RO.ZX IF.!IS
C OMM ON /ZSCCOP/ CDND ?

;~~~ :Nz 7 : A L  OU !SS 2 1 V I A  OD E :
TI • 22*0
I — 1.00
I F LA G - — l
P U L L ER • O.DO

—
Color - (NV —W C) /C
CALL OD!IZFODE,2,Z1 ,T,1.DO,RHL !Rp,APS!R N ,IF L A G.SCR ,ISCR)
IF (IFLAG.N !.2) WRIT! (6,201) IFLAG

C
C R EF INE ANS W ER VIA ZN !~~~:C A L L  L N ! N T ( Z 1 , N W .!PS , KZ O )

— 
ZSC - 21

231 PORHAT (‘/ ‘~S N O P S A N D A N D  R E T U R N  F P O N OD N IN ZSC: I F L A G  — ‘ . 12/)
R E T U P N
END

C S SS SS SS ’ S S S S S SS S S SS SS S SS S .’ S S S S S . SS S SS S, • S SS S S .• S S S, .S S S S, S S, S S SS S.

C• ZF)DE SUROPCINAT! (2SC) SUBSOUTIN! •~:.., , , .a .e a , . . , Se. .a . s s., S , . s s , S , S .e . .S a , . S S S S S , .e, S., S . , , , s ,e a,.S ,.

SU E R ) U T X N !  ZF OD!(7 . Z Z ,Z D 2 D T )

C )I P ’JT E S T HE F U N C T I O N  2 DZD T N E E D E D  ST 00! IN ZIC.

I M P L I C  IT R E A L ’ S  ( A — I . 0— 1 . 0 — V  ,X — T )  • C O M P L E X ~ 56 (C . N , 2)
0!N0u /Z SCC 5)/ CD ID T

C
Z DZ D? - CDWDT / ZPPOD (21.0)

- 
RETURN
END

:• L I E N? SU N O P D I R I T ! (ZSC) S U B R O U T I N E  5*
S S s S , sS e a S S s . S S S S e s . ,*e S a e . , S S s S~~~~aS,S .S .asssSSsSS•S*SSs•Ssse•SeeSS

C
SUSNOUTIN ! INEW T (2ROO?,IU ,IPS.N20)

C
C INPL!!!ITS NEWTON’S I!TEOD TO SOLVE IRE EQUATION
C 4(ZROO?) a WI FOR EPOOT.
C

IMPLICIT NEA LSS (A—S ,D—ff ,O— V ,1—T ), C O M E L I X S I 6 ( C , l ,$)
COPM)N /SC/ WC.V(20),N!TAN (20).C,2(20),N,NN,NP

C
DO I I T N R  — 1 , 10
210070 • 2100?

IF (120.20.0) ZFNR ? • V U  — NSC(2NOOTO ,(0.D0 ,0.DO ),IC.0I
IF (KIO.Il.0) ZFIU — UI — ISC IIIOOTO,2(KZO),I(1$G).E%01

2500? • ZROOT O • Z P N U I , ( C ’Z Ø OD ( Z R O O T O ,0) )
I? ( DA SS (ZFRIT) • iT. !PS) RE TURN

I COITINUI
N RZT E (6 . 201)
R R T U R I

C
201 FORM AT ( /‘  5 5 5  th oR I N IRENE : NC CCN~ 1SGEICR II 10 ITERATIONS’)

S.D

— - - 
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C’SSS” SS S * S S S’U S S S S S S” 5 5 S • S S S S S S S’S S SS S SS S S S 5*S S SS S ,S S*S S S S . S . S
-
~

5 EPIJO ~!CONDA1Y SUBROUT INE 5*
SSS•SSSSSISSSSSUSSS5**SSSSSSU*SSSISSSS555SS5*S55SSsass.s,sss~~~~s555•

C
F’JICTICU 2PPOD (22 .N3 )

C
C ~JPPUT!S THE IUT !GRAND

C N
C P1db (I—Z2/Z(K) )*aS!TAM (K)

1•)

C CAN ING AR GU ME N T ONLY (NOT N000LDS) FOP T E R M  K — 15.
C

IM P L I C I T  R Z A L S S ( A — I , D—N, O —V ,X — t ) ,  COMPLEX’ IS (C ,I,Z)
M!ALSS COA lS
C O M M O N  /SC/ I C , I ( 2 O )  .B N T A I (2 0 ) , C , 2 (2 0 )  ,N ,N I , N p

C
21DM — (O.DO ,O.DO)
DO 1 K • 1 . 1

ZTMP — (1.00,0.00) — 21/2 (1)
IF (N. EQ. IS) 2TM P - ZTE P / CDASS (lIMP)

1 2~ DM 2501 • B TFAM (K) ‘CD L Q G (E T E P)
ZPIOD — CDETP(2SUR)

V 117011
END

SISSSSSSSSI SSSSS,SSSSSSSS•S*SSS5S*S555S5555*S5S5S5S55555555555555•S

C• F I N I T E  S!C OID *N Y SDUO0?INI  ‘5
C

‘UNC I ) I  ? I I I T E I Z )

V 
~~~C ’ J R I S  TR UE I F aND OILT IF I IS  NOT I N F I N I T E

C
I ’ S P L I C ! T  P E A L ’ R ( A — D , D — R . O — V ,X — T ) ,  C CMP L!I ’ 16(C , V .Z )
LOGICAL FINITE
OPM)N /COPSTS/ PI .TN OPI.ZE~~ ,Z1N P ,!PS

- 
FIN ITE • D P ! A L ( Z ) . N E . D R E A L  ( T I N T )
N ITO RN
LID

...,a.,s,, Ss,,•.a,55,5S,,SSSSSSS,SSS SSSS**5***SS****I********* S5*5*

:• E~~T !R ! ! C O N D A R T  SU B I O U T I I E
. . . . .S SS S SU S S S S SS , SS * 5 5 5* S S S ’ S S S S S* S S S S SS * S SS S S SS S * S S S S• S SS S S SS S US S

- 
SURROU TIN E ENTER ISUNAME)

C
i CAR ~~, T . I X N G  m l !  SPENT IN S0R~~0TXNE W IT H N A M E  S B N A M E .

- 
I M PLI C IT R E A L S I ( A — I , D —I ,0 V , K — Y ) ,  C O I P L E I ’ 16 (C, N .Z )
C)Mfl 1 /TI’Sl/ TEI?ER

C
CALL L I F T I A ( T E I T R I )
WIl T! (6,201) SR N A MN
RETURN

- 
201 F O R M A T  ( //11 , S0 ( E ’ ) , ’ I N T E R I N O  ‘ ,&S )

END
C’••’ ,..,.,,,..,,,,,...S...,.,SS.~~~~..,,,.,S..5 S . . . . S . .S,S. S 5 5S SSe S’ *

C’ ~X I T  SE C O N D A R Y  SUBROOTIU •‘
C

SO N N O U T I N !  N!!?
C£ C PRINTS TIME SPEN T IN SUSROUTIUR.
- 

I M P L I C I T  I!ALSS(A—N ,D—I,0—V ,Z—Y ) , COMPLEI ’I6(C.U,I)
V CO IMON ,‘t!MI/ TIN?IR

C
CALL LEF?I* (TEII?)
T I M E  • TINT ER — Ti!!?
WI!?! (6 ,2 01)  TIM!
ISTURN

C
& 20) P)RPA? ~~1, iO (’!),’ TIll ILA PSND: ’,P7. 3,’ EICS.’/)

END
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