DYNAMIC ANALYSES OF HOMALITE-100 AND POLYCARBONATE
MODIFIED COMPACT-TENSION SPECIMENS

by

A.S. Kobayashi, K. Seo, J.Y. Jou and Y. Urabe

March 1979

The research reported in this technical report was made possible through support extended to the Department of Mechanical Engineering, University of Washington, by the Office of Naval Research under Contract N00014-76-C-0060 NR 064-478. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Department of Mechanical Engineering
College of Engineering
University of Washington

This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

The fracture dynamic and crack arrest responses of modified compact tension specimen (M-CT) machined from Homalite-100 and polycarbonate sheets were studied by dynamic photoelasticity, dynamic finite element analysis and streaking photography. In contrast to the results of a previous study involving a mild steel M-CT specimen, substantial dynamic effects were observed during crack propagation in the Homalite-100 and polycarbonate M-CT specimens. Although the crack arrest toughnesses, K_{IA}, were within 10 percent of the corresponding static stress intensity factor at crack arrest, their values were about 80 percent and 50 percent of the corresponding fracture toughness, K_{IC}, of Homalite-100 and polycarbonate, respectively.

INTRODUCTION

In a recent paper, two of the authors used a dynamic finite element code to compute the dynamic fracture toughness of a fracturing transverse wedge-loaded, modified compact tension (M-CT) specimen machined from AISI 1018 steel [1]. The dynamic finite element code, HONDO [2], was used in its "generation phase" [3] where the crack was driven by the experimentally determined crack motion and the associated dynamic fracture toughness, K_{ID}, was calculated. This singular result involving a very ductile material with a notched brittle weld starter crack [4], lead to the conclusion that little difference between the dynamic and static stress intensity factors existed in the particular M-CT specimen analyzed. This result was not only in disagreement with all previously obtained results for different specimen geometries [5] but also contradicted the analytical-experimental results obtained by Hahn et al. [6] for a similar M-CT specimens but with different crack starter. Although a valid plane strain fracture toughness, K_{IC}, for the mild steel M-CT specimen analyzed in Reference [2] was not available, the
calculated crack arrest stress intensity factor, K_{IA}, of approximately 88 MPa\sqrt{m} (80 ksi \sqrt{in}) would have been considerably lower than such fracture toughness and was not consistent with the photoelastic results obtained for Homalite-100 M-CT specimens by T. Kobayashi et al. [7] where K_{IA} was nearly equal to the $K_{IC} = 445$ KPa\sqrt{m} (405 psi \sqrt{in}).

Since similar differences between K_{IC} and K_{IA} were observed in dynamic tear (DT) specimens machined from the relatively brittle Homalite-100 and the ductile polycarbonate plates [8,9], it is thought that the influence of ductility could be delineated if comparative fracture dynamic studies were conducted on M-CT specimens machined from Homalite-100 and polycarbonate plates. As a result, a combined experimental-numerical analyses of M-CT specimens machined from Homalite-100 and polycarbonate were conducted and reported in this paper.

The M-CT specimens, as shown in the legend of Figure 1, are full-size models of the dynamic fracture specimen being investigated in a current ASTM E24.03.04 Subcommittee on Dynamic Testing, Dynamic Initiation-Crack Arrest Task Group [10]. The experimental and numerical procedures used in this study were the now popular dynamic photoelasticity [7,8,9] and the dynamic finite element method [8,9] used in its generation phase [3], respectively. In three experiments, crack velocity measurements, which were in the past obtained by discrete crack length measurements and the timing marks from a Lite-Mike, were also obtained from continuous crack length recording using a streaking camera.

EXPERIMENTAL PROCEDURES
Dynamic Photoelasticity

The 16-spark gap Cranz-Schardin camera and the associated dynamic photoelasticity system, which was originally developed by Riley and Daily [11], has
been discussed in many previous publications and thus will not be repeated here. Figure 2 shows two typical dynamic photoelastic patterns surrounding a running crack tip in a polycarbonate M-CT specimen. The two polycarbonate M-CT specimens of 6.4 mm (1/4 in.) thickness, which were analyzed by dynamic photoelasticity, were annealed at 160°C overnight to eliminate residual stresses. A starter crack of approximately 2.5 mm (1/4 in.) length was sawed and chiseled from the tip of the machined notch. The blunt starter crack initiated crack propagation at a relatively high crack initiation fracture toughness, K_{IC}, and thus propagated the crack nearly through the entire width of the specimen. The average mechanical and optical properties used in photoelastic data reduction as well as in dynamic finite element analyses are identical to those listed in Reference [9].

Errors in K_{ID} Determination

When dynamic photoelasticity is used for fracture dynamic analysis, the transient dynamic isochromatic lobes surrounding the running crack tip must be related to an instantaneous dynamic stress intensity factor. Following the original suggestion by Irwin [12], normally this conversion is made by using either one, two [13,14] or multiple terms [15,16] in the static crack-tip stresses of Williams eigenfunction [17].

Errors involved in using the above static near-field state of stress were later assessed by Kobayashi and Mall [18] who used the dynamic counterpart [19] of Williams stress function to show that overestimations of 10 percent or more in dynamic stress intensity factor were possible at a relative slow crack velocity, \dot{a}, of 15 percent of the dilatational wave velocity, i.e. $0.15c_1$, and that such error increased with the use of larger dynamic isochromatic lobes. Reference [18] also showed that stress waves propagating in the vicinity of the crack tip could distort the dynamic isochromatic lobes and could induce additional errors in
dynamic stress intensity factor determination. Such stress waves could be a visible rectangular pulse as recorded photoelastically by Wade and Kobayashi [20] or an innocuous ramp pulse which is about to impact the propagating crack tip.

As a result of possible compounded errors involved in the use of static stress field to characterize a dynamic phenomena and from the not-so-apparent stress wave interactions with the propagating crack tip, the authors have used the smallest visible isochromatic lobe, preferably within 2.5 mm (0.1 in.) distance from the moving crack tip, to extract the dynamic stress intensity factor at higher crack velocities. Such size restriction on the permissible isochromatic lobe unfortunately taxes the experimental accuracies in determining the size of the isochromatic lobe as well as the instantaneous location of the crack tip. This limited resolution in K_{ID} determination via dynamic photoelasticity, which is estimated to be at the best ±5 percent, is akin to the corresponding limitation in dynamic finite element analysis when used for dynamic fracture analysis.

Crack Velocity Measurements

In a previous paper [18], the authors discussed the experimental errors involved in measuring the crack tip motion and the need to smooth the raw data to confine the experimental scatter in the K_{ID} versus a relation of Reference [21]. Recent numerical experimentation [22] using an upgraded fracture mechanics subroutine in a dynamic finite element code showed that slight perturbations in the crack tip motion, which resulted in mild oscillations in the crack tip velocities, could generate significant oscillations in the calculated K_{ID}.

In order to determine the existence or lack of existence of crack velocity variation during dynamic crack propagation, crack velocities were measured in two Homalite-100 (thickness 9.5 mm) and one polycarbonate M-CT specimens (thickness 6.4 mm) using a Beckman Whitely Model 318 streaking camera.
Figure 3 shows schematically the experimental setup as well as a typical streaking photograph of a fracturing polycarbonate M-CT specimen. Simultaneous dynamic photoelastic recording was not possible because the stray light from the light source for the streaking camera interfered with the Crane-Shardin camera system. The apparent high initial crack velocity from the streaking photograph of Figure 3 is due to the lack of an adequate pre-triggering system for the light source. The estimated crack velocity at the onset of rapid crack propagation was thus extrapolated from the steady state crack velocity as marked in the streaking photography of Figure 3.

Figures 4 and 5 show typical crack velocity relations generated from the crack position versus time relations obtained by the streaking photographs. The crack velocities in the two Homalite-100 and one polycarbonate M-CT specimens exhibited little change during much of the crack propagation.

DYNAMIC FINITE ELEMENT ANALYSIS

The dynamic finite element code which was initially [2] introduced for dynamic fracture analysis in the "generation mode" has undergone substantial changes in the past four years. An improved crack tip release mechanism for rapid crack propagation has been developed and an updated plane stress algorithm for computing dissipation energy at the crack tip has been incorporated. After many numerical experimentations, a linearly varying crack tip nodal release force was found to adequately simulate a more gradual transition of the crack tip movement to its adjacent node [23]. An additional improvement made for this study is an iteration algorithm during each built-in time increment of HONDO [2] to match the applied nodal force with the nodal force calculated from the incremental change in nodal velocity in this explicit dynamic finite element code. Typically, satisfactory convergence of this iteration scheme, as shown
in Figure 6, is obtained on the average within three iterations and thus the computational efficiency of HONDO is still preserved with the added ability to prescribe known nodal force at each time increment.

The dynamic finite element code with the updated fracture mechanic package was used in its generation mode to calculate the dynamic fracture toughness, K_{ID}. Figure 1 shows a typical finite element breakdown of a M-CT specimen used in this study. The prescribed crack tip motions used in these series of generation calculations were obtained either from the streaking photographs of two Homalite-100 and one polycarbonate M-CT specimens or from the discrete crack tip recordings from the sixteen photographs of two polycarbonate M-CT specimens. Also the past practice [8,9] of using dynamic elastic modulus in stress wave propagation was discarded and the static elastic modulus was used throughout all static and dynamic numerical analyses. This procedure follows the conclusion of Schirrer [24] who concluded that the variations in elastic modulus did not affect the stress distribution appreciably but did change the strain distribution around the propagating crack tip. Static mechanical properties of Homalite-100 and polycarbonate specimens were obtained from References [8,9], respectively.

RESULTS

The dynamic fracture toughness, K_{ID}, during crack propagation and arrest in one Homalite-100 and one polycarbonate M-CT specimen are shown in Figures 4 and 5, respectively. K_{ID} results in these figures were generated numerically from the crack tip motion obtained from streaking photography. Also shown in these two figures are the corresponding static stress intensity factors obtained by static finite element analysis. The static K_I results differ with those reported in Reference [1], due to difference in modelling the
applied load in the M-CT specimen, and is in agreement with the corresponding results obtained from compliance calibration [10]. K_{ID} in Homalite-100 and polycarbonate M-CT specimens, both precipitously drop and continue to remain at nearly constant K_{ID} thereafter. The higher static K_I with respect to the dynamic K_{ID} is an indication that much of the released energy during crack propagation in these specimens is dissipated through kinetic energy without being returned to the crack tip for dissipation through fracture energy.

The results of the Homalite-100 M-CT specimen in Figure 4 is in qualitative agreement with the dynamic photoelastic results obtained for a slightly larger Homalite-100 M-CT specimen (of 12.7 mm thickness) in Reference [21]. The low crack arrest toughness, $K_{IA} \approx 0.25 \text{ MPa}\sqrt{\text{m}}$ (227 psi\(\sqrt{\text{in}}\)) was approximately equal to the minimum dynamic fracture toughness K_{IM} in Figure 13 of Reference [8] and is 55 percent of the fracture toughness, $K_{IC} \approx 0.42 \text{ MPa}\sqrt{\text{m}}$ (380 psi\(\sqrt{\text{in}}\)). The crack arrest stress intensity factor of $K_{IA} \approx 1.65 \text{ MPa}\sqrt{\text{m}}$ (1500 ksi\(\sqrt{\text{in}}\)) for the polycarbonate M-CT specimen in Figure 5 is nearly one half of the pop-in fracture toughness of $K_{IC} = 3.4 \text{ MPa}\sqrt{\text{m}}$ (3.1 ksi\(\sqrt{\text{in}}\)).

Figures 7 and 8 show the K_{ID} versus a relations obtained by dynamic photoelasticity for two polycarbonate M-CT specimens. Also shown are the K_{ID} generated numerically using the measured crack velocities shown in Figure 9. As discussed in Reference [22], slight irregularities in crack velocity variations with crack extension contributed to the modest differences in computed and experimentally determined dynamic fracture toughness. Considering the idealized elasto-dynamic model used in the dynamic finite element analysis, the agreements between the experimental and numerical results are good.
DISCUSSIONS

The differences between the static and the dynamic stress intensity factors, as shown in Figures 4, 5, 7 and 8 are substantial and do not exhibit the quasi-static response observed in the AISI 1018 M-CT specimen of Reference [1]. The Homalite-100 M-CT specimens in Reference [7] and in this paper, the polycarbonate M-CT specimens of this paper and A533B M-CT specimens of Reference [6] all exhibit a characteristic decrease in \(K_{ID} \) followed by a relatively stationary \(K_{ID} \) for almost 3/4 of the crack extension prior to crack arrest. The \(K_{ID} \) in the mild steel specimen of Reference [1], on the other hand decreased nearly monotonically and closely followed the corresponding static stress intensity factor. This discrepancy between the bulk \(K_{ID} \) data and the singular data of Reference [1] could be attributed in part to the highly localized brittle weld starter crack used in the latter. The artificially low \(K_{IQ} \), possibly lower than the \(K_{IC} \) of mild steel, of brittle weld crack starter initiated crack propagation under unrealistic low static fracture toughness and was followed by a quasi-static crack propagation. Since the purpose of developing this M-CT specimen is for dynamic testing [10], it can be concluded that the AISI-1018 M-CT specimen with a brittle weld starter crack did not fulfill its intended use.

Figure 10 shows the \(K_{ID} \) versus \(\dot{\alpha} \) relation obtained from the results of Figures 5, 7 and 8. Superposed on this figure is the averaged \(K_{ID} \) versus \(\dot{\alpha} \) relation obtained from polycarbonate dynamic tear (DT) specimens [9]. Not only did the \(K_{ID} \) versus \(\dot{\alpha} \) relation for the M-CT specimen shift slightly towards the lower \(\dot{\alpha} \) but appears to reach a lower maximum crack velocity. The latter result is consistent with the corresponding results for Homalite-100 specimens
[5]. On the other hand, the K_{ID} versus α relation, which was obtained from Figure 4 for the Homalite-100 M-CT specimen, coincided with that for Homalite-100 DT specimens [8]. The slight difference in K_{ID} versus α relations in polycarbonate fracture specimens is in agreement with the results of Kalthoff et al. [25], which are also verified numerically by Hodulak et al. [26].

Figures 11 and 12 show the computed energy partition in a fracturing Homalite-100 and polycarbonate M-CT specimens, respectively. The substantial kinetic energy term in the polycarbonate M-CT specimen in contrast to that in the Homalite-100 specimen and is probably due to the blunt starter crack used in the former. The computed energy for these specimens in Figures 11 and 12 as well as other specimens balance to within 5 percent of total input energy as an indication of the numerical accuracy which can be expected in these analyses.

CONCLUSIONS

1. The K_{ID} variations with crack propagation in the limited number of Homalite-100 and polycarbonate M-CT specimens analyzed are consistent with similar findings by others [6-9].

2. The significant difference in dynamic responses between the mild-steel M-CT specimen with brittle weld starter crack and the Homalite-100 and polycarbonate M-CT specimens requires further investigation.

3. The shift between the K_{ID} versus α relations between Homalite-100 M-CT specimens and DT specimens as well as in polycarbonate specimens could be another indication of the geometry and size dependence of the K_{ID} versus α relation.

ACKNOWLEDGEMENT

The results of this investigation were obtained in a research contract funded by the Office of Naval Research under contract N00014-76-C0060.
NR 064-478. The authors wish to acknowledge gratefully the continuous support and encouragement of Dr. N. R. Perrone of ONR.
REFERENCES

FIGURE 1. TYPICALFINITE ELEMENT BREAKDOWN OF M-CT SPECIMEN.
FIGURE 2. TYPICAL DYNAMIC PHOTOELASTIC FRINGES IN A FRACTURING POLYCARBONATE M-CT SPECIMEN, J280678.
FIGURE 3. STREAKING PHOTOGRAPH OF A PROPAGATING CRACK TIP IN A POLYCARBONATE M-CT SPECIMEN (THICKNESS 6.4mm).
FIGURE 4. CRACK VELOCITY AND STRESS INTENSITY FACTORS OF A FRACTURING HOMALITE-100 M-CT SPECIMEN. S100277 (PRECRAKED)
$K_{1Q} = 2.53 \text{ MPa} \sqrt{\text{m}}$

Figure 5. Dynamic fracture toughness and crack velocity of a fracturing polycarbonate M-CT specimen. S100377 (precracked).
FIGURE 6. TYPICAL COMPUTED NODAL FORCE RELEASED.

HOMALITE - 100 M-CT SPECIMEN S100277

POLYCARBONATE M-CT SPECIMEN J020878
Stress Intensity Factor, MPa√m

Crack Extension Δa, mm

Figure 7. Stress Intensity Factors of a Fracturing Poly-carbonate M-CT Specimen, J-280678.
Figure 8. Stress intensity factors of a fracturing poly-carbonate M-CT specimen, J-020878.
FIGURE 9. CRACK VELOCITIES IN TWO FRACTURING POLYCARBONITE M-CT SPECIMENS.
FIGURE 10. DYNAMIC FRACTURE TOUGHNESS VERSUS CRACK VELOCITY RELATION FOR POLYCARBONATE SPECIMEN.
FIGURE II. ENERGY OF A FRACTURING HOMALITE - 100 M - CT SPECIMEN, S100277.
FIGURE 12. ENERGY OF A FRACTURING POLYCARBONATE M-CT SPECIMEN, J-020878.
Universities

Dr. J. Tinsley Oden
University of Texas at Austin
355 Engineering Science Building
Austin, TX 78712

Professor Julius M. K. Kostowetz
California Institute of Technology
Division of Engineering and Applied Sciences
Pasadena, CA 91109

Dr. Harold Liebman, Dean
School of Engineering and Applied Sciences
George Washington University

Professor E. T. Starnberg
California Institute of Technology
Division of Engineering and Applied Sciences
Pasadena, CA 91109

Professor J. W. H. Hedin
University of California
Department of Mechanical Engineering
Berkeley, CA 94720

Professor J. Kemmer
Polytechnic Institute of New York
Department of Aeronautical Engineering and Applied Mechanics
331 Jay Street
Brooklyn, NY 11201

Professor J. C. Kloos
Polytechnic Institute of New York
Department of Aeronautical Engineering and Applied Mechanics
331 Jay Street
Brooklyn, NY 11201

Professor R. A. Schapery
Texas A&M University
Department of Civil Engineering
College Station, TX 77843

Professor Walter D. Pilkey
University of Virginia
Research Laboratories for the Engineering Sciences
School of Engineering and Applied Science
Charlottesville, VA 22901

Professor R. L. Willard
Clarkson University
Department of Mechanical Engineering
Potsdam, NY 13676

Dr. Walter E. Hauser
Texas A&M University
Department of Aerospace Engineering
College Station, TX 77843

Dr. H. F. . Waller
University of Georgia
Department of Mechanical Engineering
Tuscaloosa, AL 35487

Dr. S. J. Feeney
Carnegie-Mellon University
Department of Civil Engineering
Schenley Park
Pittsburgh, PA 15213

Dr. Samuel B. Redford
University of California
School of Engineering and Applied Science
Los Angeles, CA 90024

Professor Isaac Fried
Boston University
Department of Mathematics
Boston, MA 02215

Professor Michael Pappas
New Jersey Institute of Technology
Newark College of Engineering
332 High Street
Newark, NJ 07102

Professor E. Crone
Rensselaer Polytechnic Institute
Division of Engineering
Mechanical Engineering
Troy, NY 12181

Dr. Jack R. Vison
University of Delaware
Department of Mechanical and Aerospace Engineering and the Center for Composite Materials
Newark, DE 19711

Dr. Dennis A. Nagy
Princeton University
School of Engineering and Applied Science
Department of Civil Engineering
Princeton, NJ 08540

Dr. J. D. Duffy
Brown University
Division of Engineering
Providence, RI 02912

Dr. J. L. Swanson
Carnegie-Mellon University
Department of Mechanical Engineering
Pittsburgh, PA 15213

Dr. V. R. Vardhan
Ohio State University Research Foundation
Department of Engineering Mechanics
Columbus, OH 43210

Dr. Ronald L. Hudson
Department of Engineering Analysis
University of Cincinnati
Cincinnati, OH 45221

Professor G. C. M. Sih
Lehigh University
Institute of Fracture and Solid Mechanics
Bethlehem, PA 18015

Professor Albert S. Kobayashi
University of Washington
Department of Mechanical Engineering
Seattle, WA 98105

Professor Daniel Frederick
Virginia Polytechnic Institute and State University
Department of Engineering Mechanics
Blacksburg, VA 24061

Professor A. C. Ermolun
Princeton University
Department of Aerospace and Mechanical Sciences
Princeton, NJ 08540

Professor E. H. van Tyne
Stanford University
Division of Engineering Mechanics
Stanford, CA 94305

Professor Albert L. King
Wayne State University
Biomechanics Research Center
Detroit, MI 48202

Dr. Y. M. Hwang
Wayne State University
School of Medicine
Detroit, MI 48202

Dean B. A. Boley
Northwestern University
Department of Civil Engineering
Evanston, IL 60201

Dr. Z. Hashin
University of Pennsylvania
Department of Metallurgy and Materials Science
College of Engineering and Applied Science
Philadelphia, PA 19104

Dr. Jackson C. S. Yang
University of Maryland
Department of Mechanical Engineering
College Park, MD 20742

Professor T. Y. Chiang
University of Akron
Department of Civil Engineering
Akron, OH 44325

Professor Charles W. Hart
University of Oklahoma
School of Aerospace, Mechanical, and Nuclear Engineering
Norman, OK 73019

Professor Satya N. Atluri
Georgia Institute of Technology
School of Engineering Science and Mechanics
Atlanta, GA 30332

Industry and Research Institutes

Dr. Graham F. Carey
University of Texas at Austin
Department of Aerospace Engineering and Engineering Mechanics
Austin, TX 78712

Industry and Research Institutes

Dr. Robert T. Yang
Advanced Technology and Research, Inc.
10006 Green Forest Drive
Atlanta, GA 30173

Dr. Norman Hemb
Kaman Aerospace
Division of Kaman Sciences Corp.
Burlington, MA 01803

Dr. P. L. Hilder, Jr.
University of Minnesota
Department of Aerospace Engineering and Mechanics
Minneapolis, MN 55454

Dr. D. C. Drake
University of Illinois
Department of Engineering Mechanics
Urbana, IL 61801

Professor R. L. Newmark
University of Illinois
Department of Civil Engineering
Urbana, IL 61801

Professor J. J. Heitman
University of California, San Diego
Department of Applied Mechanics
La Jolla, CA 92037

Professor William A. Bush
University of Massachusetts
Department of Mechanical and Aerospace Engineering
Amherst, MA 01002

Professor G. Heumann
Stanford University
Department of Applied Mechanics
Stanford, CA 94305

Professor J. L. Ackerman
University of California
Department of Civil Engineering
Evans, IL 60071

Professor S. B. Dine
University of California
Department of Mechanics
Los Angeles, CA 90024

Professor Burt Davis
University of Pennsylvania
Towe School of Civil and Environmental Engineering
Philadelphia, PA 19104

Argonne National Laboratory
Library Services Department
9700 South Cass Avenue
Argonne, IL 60439

Dr. H. C. Juniper
Cambridge Academical Associates
1033 Massachusetts Avenue
Cambridge, MA 02138

Dr. V. Godino
General Electric Corporation
Electric Boat Division
Groton, CT 06340

Dr. J. J. Greenberg
J. H. Engineering Research Associates
8081 Menlo Drive
Baltimore, MD 21215

Dr. K. R. Park
Lockheed Missile and Space Company
3251 Hanover Street
Palo Alto, CA 94304

Newport News Shipbuilding and Dry Dock Company
Newport News, VA 23607

Dr. W. F. Botch
Mcdonnell Douglas Corporation
5301 Bolsa Avenue
Huntington Beach, CA 92647

Dr. H. M. Abramson
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78284

Dr. R. C. Dyer
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78284

Dr. L. L. Baron
Weidlinger Associates
110 East 59th Street
New York, NY 10022
Industry and Research Institutes (Cont.)

Dr. T. L. Geers
Lockheed Missiles and Space Company
3251 Hanover Street
Palo Alto, CA 94304

Mr. William Capwood
Applied Physics Laboratory
Johns Hopkins Road
Laurel, MD 20810

Dr. Robert E. Michel
Pacific Technology
P. O. Box 148
Uel Mar, CA 92014

Dr. W. F. Kammerm
Ball Aerospace Laboratories
505 King Avenue
Columbus, OH 43201

Dr. O. T. Hahn
Ball Aerospace Laboratories
505 King Avenue
Columbus, OH 43201

Dr. A. A. Huchrein
Deedleman Associates, Inc.
Springle Research Center
15710 Frederick Road
Woodbine, MD 21797

Mr. Richard T. Dow
National Academy of Sciences
7101 Constitution Avenue
Washington, DC 20418

Mr. R. L. Kington
Science Research Company
of Arizona
P. O. Box 2122
111 South 14th Street
Phoenix, AZ 85010

Dr. R. H. Rice
Systems Science and Software
P. O. Box 1620
La Jolla, CA 92037
Dynamic Analyses of Homalite-100 and Polycarbonate Modified Compact-Tension Specimens

Authors: A.S. Kobayashi, K. Seo, J.Y. Jou, Y. Urabe

Performing Organization:
Dept. of Mechanical Engineering, FU-10 University of Washington Seattle, Washington 98195

Office of Naval Research:
Office of Naval Research Arlington, Virginia 22217

Abstract:

The fracture dynamic and crack arrest responses of modified compact tension specimen (M-CT) machined from Homalite-100 and polycarbonate sheets were studied by dynamic photoelasticity, dynamic finite element analysis and streaking photography. In contrast to the results of a previous study involving a mild steel M-CT specimen, substantial dynamic effects were observed during crack propagation in the Homalite-100 and polycarbonate M-CT specimens. Although the crack arrest toughnesses, \(K_i \), were within...
10 percent of the corresponding static stress intensity factor at crack arrest, their values were about 80 percent and 50 percent of the corresponding fracture toughness, K_{IC}, of Homalite-100 and polycarbonate, respectively.