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ABSTRACT

This report describes a computerized method that will design tails for bodies
of revolution that satisfy the Stratford criterion for zero wall shear.
Stratford's original two-dimensional solution is extended to axisymmetric
flow in order to implement the procedure. The method involves simultaneous
solution of the extended Stratford equation and the necessary boundary
conditions through the use of an inverse potential flow program. Tails
designed with this procedure can be categorized as follows: 1) The entire
tail is at incipient separation (no skin friction); 2) The pressure recovery
is the most rapid possible; 3) The resultant tail is the shortest possible.
The final result is a unique geometry for given freestream conditions and
boundary layer transition point. By unique, it is meant that any deviation
from the "ideal" geometry will either cause extensive separation or the tail
must become longer and, hence, contribute to skin friction and reduced

volumetric efficiency.

The computer program can operate in one of two modes: 1) The forebody geometry
can be maintained (except for a very small region near the tail juncture) with
only the tail shape determined by the method; 2) The forebody velocity
distribution can be maintained up to the point of the pressure recovery. The
forebody geometry will then be altered for some distance upstream of the tail
juncture. A number of solutions are presented for both of the above modes.
Although the report emphasis is on bodies of revolution, the concept is also

applicable to two-dimensional flows.
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INTRODUCTION

The tail of any body that moves through a fluid is an appendage that is added
to "streamline" or to reduce the drag by permitting better pressure recovery.
It is not necessarily desirable otherwise. If overall length is fixed, part
of the volume of the main body must be sacrificed to provide the necessary
tail length. Or, if the tail is just added to a basic body, the body becomes
longer and hence is at some disadvantage from a logistics standpoint. In any
case, shortening the tail will increase the prismatic coefficient and, if done
properly, should reduce the drag slightly. The gains become relatively
greater if there is considerable laminar flow on the forebody because tail

designs properly made for this situation are even shorter.

Stratford flows (Reference 1) are limiting types of flows in the two-dimensional
case. By limiting, we mean that the flows provide the most rapid rise in
pressure along the body that is theoretically possible, subject to certain
simplifying assumptions. One fact of interest and of great importance is

that these flows have been demonstrated and have been found to be docile, that
is they do not separate at the slightest deviation from the ideal (References

2 and 3). Because of this verification by test, Stratford flows should

be studied further. Inverse solutions by more powerful methods, such

as the Cebeci-Smith method, are possible, but they do not have the backing of
direct test data to support their accuracy ana their off-design behavior.
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Stratford's solution applies only for two-dimensional flows and a way need be
sought for applying it to the axially symmetric problem. In boundary-layer
theory the Levy-Lees transformation reduces both the axially symmetric and

; two-dimensional flows to identical equati&ns (for instance, see Reference 4).
In view of this fact, the original plan of study for this project was to find
Stratford flows in the two-dimensional plane and transform them into the
Levy-Lees E-plane. Then, since this plane was valid for both cases, tails
for bodies of revolution would be designed by examining them in the £-plane.
However, between the time when this study was proposed and when it became
active, work was independently under way to extend Stratford's separation
criterion to bodies of revolution. The work was successful, resulting in
Reference 5. Subsequently, ways were seen whereby this extended criterion

could be applied with more finesse than by working in the £-plane.

Moreover, if o is the body radius at the start of the tail fairing and r

the radius at any point on the body, a ratio rO/r arises in the formula for
separation. In the extended Stratford analysis, it occurs to the first power.
In the Levy-Lees transformation, it occurs in the second power. If the
analysis of Reference 5 is correct, the Stratford relation should have a
constant value at the separation point. Figures ia, b and ¢ show the value for
all the experimental data that could be found. Figure 1a shows a straight-
forward application of the original two-dimensional formula to axially
symmetric flows. Earlier studies of two-dimensional flows had yielded a
constant equal to 0.5 as indicated by the arrow. It is seen from this figure
that for bodies of revolution, the constant at separation is variable,
appearing to be zero at rsep/ro
extended formula. Although the data has much scatter, there is no discernible

= 0. Figure 1b plots the constant for the




variation of the constant from its two-dimensional value. Figure 1c shows

the variation if (rO/r)2 was used as indicated by the Levy-Lees transformation.
Now there is a distinct upward trend of the constant as rsep/r0 approaches
zero. It is clear that, of the three, the data of Figure 1b are the nearest
to representing a universal constant suitable for both two-dimensional and
axially symmetric flows. Hence, for the reason that the extended Stratford
method could be applied with more finesse and seemed to agree better with

experiment, it was the method adopted.

Most bodies of revolution that are of practical use have a running propeller
at their rear. One might suspect that, with a very short tail, the propeller
might modify the flow so much that the present designs might be unduly
conservative. Fortunately, it does not seem to be the case. Reference 6

is an extensive investigation of the interaction problem. On page 43 the
authors make the following statement, "As shown in (their) Figures 12a and
12b, the suction of the propeller did not change the point of boundary-layer
separation on Afterbody 3 (a very blunt tail). The distance between the
propeller plane and the point of separation was 1.3 propeller diameters. The

propeller induced velocity at 1.3 D_ upstream of the propeller was not strong

enough to alter the characteristicspof the separation." The parentheses are
ours. In view of this statement, it seems reasonable to ignore the propeller
effects. A blunt tail may complicate the propeller design problem, but in these
days when the flow field can be calculated accurately and propellers are wake
adapted, no particular body modification seems necessary. So the bodies to

be presented are simple bodies of revolution, faired out to a point.




In the most exact boundary-layer theory, transverse curvature effect is
accounted for. This is the effect occurring when the boundary-layer is very
thick compared with the radius of the body at the same station. The Stratford
method makes no accounting of the effect and so may be in considerable error
when applied very near a slender, pointed tail. Experimental work is needed
as a guide to improve this deficiency. The work of Patel (Reference 7) and
Nakayama and Patel (Reference 8) deal with this problem but trying to combine

their methods with Stratford‘s approach is far beyond the scope of the present

study.

The shapes and some properties of a number of bodies have been calculated.

Many basic kinds of pressure distributions or shapes could be considered, but in
order to avoid excessive calculations, the studies were confined to two classes
of bodies: (1) bodies having constant velocity over much of their length -
modified Reichardt bodies, and (2) bodies having constant diameter over much

of their length as for conventional torpedoes.

As will be seen, the tail shapes that have been found are quite short and are

of a reflex type. D. M. Nelson (Reference 9) did work on this same tail

fairing problem and arrived at a similar tail design which was zonfirmed by wind-
tunnel tests. Nelson's approach was not as systematic as the present one and
also his method did not truly represent limiting flows as the present method
does. He worked out only one case. The present report is a presentation of

the true shortest tails for a variety of cases. Furthermore, in the case of
Reichardt type bodies, the tail and rest of the body shape are all integrated
together, that is, the tail is not just an appendage on a basic Reichardt body.
Nelson's work is the only work of which we are aware, that is parallel to the

present study.




SOME THEORETICAL CONSIDERATIONS

The general kind of flow being analyzed is illustrated in Figure 2. A flow

begins to retard at some point s = s_. In the vicinity of this same point

0
the body begins to converge significantly from some initial radius o At
the start of the pressure recovery, the boundary layer has a momentum

thickness 60 and an edge velocity Uy In the analysis the notion of an
equivalent flat plate is introduced. It is of such a length, so.with velocity,

Uy» s to generate the same thickness, Byr S the real body. Pressures are
referenced to the velocity, Ug» at So° not to u_. In particular, the pressure
coefficient is defined as:
- PR R s
Cp 1-u /uo (1)
With this introduction to the notation and flow situation, we can write the

extended Stratford formula. It is:

1/2 -1/10

- _6 = i
cp [s (rO/r)(dfb/ds)] (107°R ) = 0.50, cp < 477 (2)

where R/ is a Reynolds number defined as uos/v. Separation is said to occur if the

L.H. side of (2) exceeds 0.50, which is the empirical constant discussed earlier.

In a two-dimensional flow, the ratio rO/r is replaced by unity. Then for
incipient separation along the body aft of So° equation (2) amounts to a
differential equation which can be integrated for Eb(s) once and for all to

show the most rapid allowable pressure rise as a function of R° and So°




In fact this has been done in references 1, 2 and 3 and the flows have been

tested as mentioned before, with good results.

For the axially symmetric case, however, f; is a function of r, the body shape.
Since we do not know the body shape a priori, we cannot obtain any simple
integrated relationship. Rather, an iterative method has been found that is
successful. It is:

a) Start with a full body shape having a tail that is as close to the final
one as we know how to specify. If the forward portion is to have constant
velocity, then the forward portion should initially be that of a Reichardt
body of the correct fineness ratio. A direct Neumann solution will then
indicate closely the correct level of velocity ratio needed to get the
final body with approximately the correct fineness ratio. Also, with the
initial tail shape, the Neumann calculation supplies an initial Eb (s)
relation.

b) Introduce the current tail shape into (2) so that integration may proceed.
Now both Cp (s) and fb (s) are available for the tail portion.

c) By an inverse method such as James's or Bristow's, calculate the new
body shape. The forward pressures have been established by the basic
body while the rear pressures are supplied by the intearation of (2).

A tail shape different from the starting shape will be found. In fact,
the forward portion will be slightly different also.

d) Repeat steps b) and c) until convergence is obtained.

It is well known that, for semi-infinite cones, the velocity along the cone
varies as s" where s is slant distance from the vertex. Then assuming that

this power relation still applies for very short tails (it is not certain that
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it does), and translating the origin so that the vertex of the tail is at

S = a we have:

= 2, 2 2 2m, 2

Cp = 1-u/ug =1 - ¢ (s-a)"/ug (3)
where c is a general constant.
M3zo, for cones with b as a constant:

r = -b(s-a) (4)

We wish to evaluate (2) at the very tail. Then from (3) compute dfb/ds.

dc /ds = -2mc? (s-a)zm']/us (5)

In (2), at the very tail, Eﬁ is unity, assuming that the semi-infinite cone
theory applies. Thus we may evaluate only the square root term of (2). We

have, since R0 is not singular,
1/2

Ea [b(so-a)]/[b(s—a)] 2mc? (s-a)zm']/UOZ] = constant (s-a)m‘] (6)

The quantity in (6) approaches infinity at s=a if m<1. The value m=1 corresponds

to a blunt tail, so any tail that is pointed will have a singularity. There-

fore it is seen that (2) is not exactly correct at the pointed end of a
conical tail in inviscid flow. Of course, due to boundary layer thickening
and subsequent modifications to the pressure distribution at the tail, such
a singularity does not exist in any real flow. Alternately, the tail could
terminate in a cusp and analytic singularities would be eliminated.

The next question is the behavior of fb

It is easily found by integrating (2). Assume that the origin of a new

at the start of the pressure rise.

distance measure, s', is at the point s . Then (2) can be re-written as
2

€, dC/ds' = 0.25 (r/ro)(lo‘6 Ro)‘/5/(s' +s,) (7)

7




In (7) near s' = 0, the term (s' + so) is finite, so is R0 and the term

(r/ro) is approximately equal to unity. Thus, we have, remembering that
E.p(so) = 0,

3

Cb = constant (s')

at the beginning of the pressure recovery. In other words, if a limiting
pressure rise is sought, fb will begin to increase as (s')]/3 at sy, an
infinite rate of pressure rise. This result for Stratford flows, whether
two-dimensional or axially symmetric, is surprising and quite interesting.
It tells us that, even if a pressure rise is small, it can be initially

extremely rapid. Tests seem to bear out this conclusion.

The Levy-Lees transformation transforms both the two-dimensional and axisymmetric
form of the boundary layer equation into one common form in the so-called £-plane.
Probably the simplest method of studying the problem is to transform the

extended Stratford equation into the £-plane. If the extended Stratford

equation is consistent with what is indicated by the £ transformation, all

r variation effects should cancel out. Start with equation (2). The term
involving R0 varies so slowly that for the present purposes it is satisfactory

to regard it as a constant. Also, fh remains unaffected by the transformation.
Hence, it is sufficient to consider only the square root term in (2). In

fact, when using (2) the only transformation involved is for the distance s.

For it, the Levy-Lees transformation is
de = 2
£ = peueue(r/ro) ds (8)

Then, to be more general in our study of the transformation, consider the

transformation of the term




n —
s(r/r) de/ds (9)

which is the same as the term under the square root in (2) except that rO/r
is assigned a general power.

At the start of the pressure rise, s has a value s The quantity s will

o
grow but only slowly with respect to its initial value So because of the
considerable run of boundary layer flow ahead of the tail region. In any
case, it only indirectly involves pressure gradients so it seems reasonable
to assign it the constant value So- The main activity is in the gradient

term dfﬁ/ds. Now

dﬁb/ds = (dCp/d&)(dg/ds) (10)

Then, using (8) we have:
. _ g
dtp/ds = peueue(r/ro) de/dg (1)

When (11) is introduced into (9) we have approximately
. 5o(ro/r)" Dgligle (r*/ro)2 dC/de

From (8) we can sec that, for the initial part of the flow, s, can be written
as 5o/°e”e”o because in the present incompressible problem Pe and uo are
constants. Then we have, after cancelling Pe and Moo tiie expression

6 (ro/M)" (r/rg)? ugtug £2E, (12)
For two-dimensional flow r/ro is replaced by unity, so the r-term does not
enter. For axisymmetric flow (12) should reduce to the same form. It will
only do so if the power n is equal to 2. However, in the original derivation
of the extended Stratford equation, the power n was found to be unity. The
plots in Figures la, 1b, and 1c show that the test results indicate the

originally derived n = 1 being a better approximation than n = 2, as given by

>y
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the Levy-Lees transformation. In (12), while there is approximation in the
value of £ by replacing it with Eo’ the rest of the transformation is exact.
In view of the conclusion that n = 1 is a better approximation and the fact
that the original extended Stratford equation, (2), is simpler in implementa-
L tion than the Levy-Lees transformation, the former is adopted in the present

study rather than the latter, as originally proposed. f

If (2) is squared for convenience and the substitution s z(s/so)so is made,

the following formula is obtained

=2 0.8 = 5 -6 1/5 i
Cp (s/so) (ro/r) de/[d(s/so)] = 0.25 (10 uoso/v) (13) .

which also can be written as )

0.8 3 £ -6 1/5
(s/so) (rO/r) dtp/[d(s/so)] = 0.75 (10 uosolv) (14)

In these forms it is seen that a significant constant is the Reynolds number of

T

the equivalent flow at the start of pressure rise, that is uoso/v. At the

start s/s0 and ro/r are unity and so, from (14), it is clear that fb can begin

e

to rise faster when the Reynolds number is higher. }

Also when solutions are plotted in s/so variables, for the two-dimensional case

(ro/r = 1) it is clear that the solutions are functions only of uoso/v, and this

quantity enters only weakly because of the 1/5th power exponent. If ro/r were
related uniquely to s/so, solutions would still be functions only of uoso/v.
In fact, r/r° is indeed roughly a function of s/so. Equations (13) or (14)

are useful because they show that if s0 is very small, a tail may be very

short; if so is larger, the tail must be longer.




IMPLEMENTATION OF THE EXTENDED STRATFORD EQUATION

When first considering the problem of how to find a Stratford tail shape, our
attention was given toward a direct approach of assuming a tail shape and then
evaluating the resultant K, the L. H. S. of equation (2), as a function of s
along the tail. Using the Douglas-Neumann potential flow program, numerous

tail shapes of the following family were investigated

r(x)/ry = (01-(/0)" /014 (x/L) "5 P (15)

This equation reflects a 5 parameter family of tails which intuitively has
the necessary qualifications for at least approximating a Stratford type of
flow. Although an invaluable degree of insight was obtained in examining
this family, the large number of parameters proved to be overbearing in
trying to develop a systematic approach for obtaining a reasonable approxima-
tion. In fact, any analytic expression for r(x) could, at best, lead only to
an approximation of the desired flow. This fact is especially evident when
it is realized that a few free parameters must exist to accommodate Reynolds

number, transitional effects, forebody effects, and so on.

As is pointed out in the preceding section, the extended Stratford equation,
(2), is a first order, non-linear differential equation if the relation
r(s)/ro is known. However, finding the relation for r(s)/ro is precisely
the end result sought. Hence, solving (2) by itself is somewhat enigmatic

in that a functional coefficient in the differential equation is unknown.




In addition, the solution, if found, must also obey the laws of low speed

fluid mechanics. Hence, it seemed that the appropriate course of action M
would be to couple the extended Stratford equation with a potential flow
solution.

]
In Tight of this, an investigation was conducted into the application of !

Bristow's (Reference 10) inverse axisymmetric potential flow method which is

an adaptation of the Douglas-Neumann potential flow program. Briefly stated,

Bristow's method uses linear elements (actually cone frustums) with constant
strength singularities to solve the potential flow problem directly. The
resultant pressure (or velocity) distribution is then compared to some
prescribed distribution and the body shape is systematically varied until

the computed pressure matches the desired value. Bristow's method may be

expressed functionally as
r=r [Cp(s)] (16)

Realizing that equation (2) is equivalent to

Cp = Cp [r(s)] (17)

then the iteration scheme reported earlier is immediately suggested. Of
course in an iteration such as this, convergence is by no means guaranteed.
Furthermore, it is not obvious from the above relations that all boundary
conditions and other constraints (e.g., tail closure) can be simultaneously
satisfied. Nevertheless, the first attempts at combining the equations (16)
and (17) into one concurrent iteration procedure led to very encouraging

g results. Many solutions for various forebody and flow conditions were

obtained, demonstrating that the overall concept is indeed a viable procedure.

12




» *l

In order to evaluate Stratford flows properly, it is necessary to incorporate
some sort of boundary layer calculation on the forebody to extract 90 and
thence So° which appears explicitly in the extended Stratford equation.

Since adapting or developing an advanced boundary layer computational
procedure was inconsistent with the approximate nature of the extended
Stratford equation, the simple but accurate momentum integral technique of

E. Truckenbrodt was employed. His method can be found in several references
(for instance, see Reference 11) and is repeated here for completeness.

Given an axisymmetric body defined by r(s), the fluid velocities, freestream

Reynolds number and transition station, Sg the Truckenbrodt method yields

0(s)/2 = [c) + (ch/z)"6 1()% 70w ) (r70)] (18)
where
ey =ley 1, 72)
et i |
s/%
I (s) = (/)" (r70)78 4 (s12)

sle
Sy/L 5 2
I = I (u/uy)” (r/2)° d (s/2)
0

1/2

Cpg = 1.328/(u_/v)
L

2.58
ch = 0.455/[10g,, (u 2/v)*" "]

Since So is an equivalent flat plate turbulent run in a freestream velocity

Uys @ simple flat plate momentum integral may be employed, i.e.,

i -1/5
8 0.036 So (uosolv)

or, rearranging,
s, = (8,/0.036)%% (u/v)!/4 (19)

13




No serious attempt has been made to calculate the drag of the bodies. On
the other hand, since 6 (s) has been evaluated along the entire length from

(18), the following Squire-Young formula (Reference 12)

¢, = (20,/A) (u/u,) M52, o = 20rg (20)
D A © A
is employed to estimate the growth of drag along the body.

In the present boundary layer integral approach, the form factor H = 6*/6

is not computed. However, incipient turbulent separation typically occurs at
a value of H = 2. Since incipient separation is the prime characteristic of
Stratford flows, H = 2 was assumed and applied over the entire body. A

consequence of this assumption is that the forebody drag distribution is

somewhat approximate because H is more like 1.3 for the forebody but the
distribution along the tail should be quite good. Furthermore, drag
distributions (i.e., cumulative drag as a function of length) are usually

only of academic interest except near the tail. The "thin boundary layer"

e o v ——

assumption breaks down near the tail end and sometimes an extrapolation of f

—

CD versus s is required to estimate total vehicle drag. As will be
demonstrated in the section discussing the results, the CD versus s curves

are surprisingly well behaved to the very tail extremity.

S .

It should be noted that the s  term as predicted by (19) is an explicit term

in the extended Stratford equation, (2). Also, the quantities u_ and eo

0
used to compute s, are greatly affected by the potential flow di;tribution.

Hence, the entire boundary layer computation scheme must be included within

the iteration loop to allow for updating So with each pass.

14 }




NUMERICAL CONSIDERATIONS

H Before embarking into the area of finding axially symmetric Stratford tails,
it is necessary to establish certain procedures for presenting the initial
geometry data to the computer. The Bristow/Douglas-Neumann approach is to
approximate the body with a small but sufficient number of discrete frustum
elements of sources and sinks. Although the zero-normal-velocity boundary
condition determines the strengths of the sources (sinks), it is up to the
user to decide upon both the required number and their position. Generally
speaking, it is desirable to have a large number of elements in regions of
large longitudinal gradients. Since machine speed and capacity are large
factors in a computation of this type, a sparse distribution of points in
regions of small gradients is desirable. However, the element size should
not change abruptly. A good rule of thumb is that neighboring elements
should not change in length by more than the ratio of the square-root of 2,

p [

pr 1/n
Asi+] = Asi X 2

where n = ¥ 2,

While this relation is only a guideline, it does indicate that some means of
clustering elements will usually be necessary, particularly for shapes of high
fineness ratios. As an example, consider the hemisphere-cylinder-tail config-

{ uration. Since the hemisphere and tail will require a large number of elements,

the above rule dictates that the elements at both ends of the cylinder be

16




fairly dense. In order to automate the clustering procedure, a "clustering

function" for the cylinder was devised as follows:

x
]

C, t+ (I—C]) [V-cos(mt)]/2

)

= + -
X = X H (xc X

C C

0 n 0o

-y constant

x_ = cylinder beginning
X . = cylinder end

In this expression, t is uniformly spaced in the unit interval (At=constant)
and the elements will be clustered near the cylinder endpoints. The degree

of clustering is governed by the input parameter, Cl. where

0 < c] <9

For the elliptic or Reichardt shapes, the situation is somewhat different.
Defining these bodies parametrically will automatically cluster in regions
of high curvature. For example, the Reichardt shapes reported herein were
generated with the following equations:

X =b-bcost

y=a sinZ" t

n = 0.42 (for Reichardt bodies)
The above equations will, in general, not place enough points at the aft end

where high resolution is desired. Hence, a second parameter, y, is introduced

as
tv) = 7 [(2€;) v + (C;-1) ¥]
where, as before, ¢ is evenly spaced over the interval [0, 1] and G is the

16
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clustering parameter. For

1< C] < ®

the points will be clustered near the base.

The next immediate problem is to establish the tail portion of the geometry
before any iteration begins. In our present study, there are two classes of
solutions, the fixed forebody-geometry and fixed forebody-velocity types, and

therefore, two classes of tail guesses are required. If the forebody is to g

remain essentially fixed, it is desirable to guess a tail shape as close to
the final shape as possible. Subsequent iteration should then not §
appreciably alter the forebody. Our experience in using (15) has shown that |

a good initial guess for a tail on this class of bodies can be simplified to

r(x)/ry = [1-(/0) 210 0L) -5 (21)

As will be presently demonstrated, the tail length parameter, L, will always
be a free parameter and finding the proper value becomes part of the solution

process.

In the case of the fixed forebody-velocity shapes, a satisfactory initial
tail guess cannot be effected as this will greatly disturb the upstream
velocity. Instead, it is necessary to choose some point, s ., on the
unmodified shape and apply the extended Stratford recovery from that point

aft. It is best to choose this point near the end but still in the constant
velocity region of the flow. Other than this criterion, the choice of the

point is complete’y arbitrary. However, that portion of the remaining arc
length will generally not result in a converged tail solution. Furthermore,

because of the clustering, the element spacing at the very trailing edge will

”




be very dense and may lead to numerical difficulties. As a result, it was
found necessary to do two things to the tail portion of the constant velocity
family:

1) equally space the elements aft of Se» 1.e.

Asi = constant

for io <i<N
2) introduce a multiplicative stretching factor, M, such that

As . = M-As. o <i<N
Thew Toud ©

The above modification must be done after the velocity distribution has been
established. The stretching factor, M, is analogous to the tail length, L,

in (21) and finding its proper value is likewise part of the solution.

The results presented herein were obtained using the above-mentioned
procedures. They are indeed solutions to the combined potential flow problem
and the extended Stratford equation. Unfortunately, obtaining such solutions
is not exactly straightforward. There exists a very subtle problem in the
nature of the solution, which thus far has not been satisfactorily resolved.
Consider the extended Stratford equation, (7), and what is known prior to its
integration. Since the geometry has been guessed (or inversely computed

for each iteration), r(s) is known as well as the required initial conditions
from the potential flow solution. Hence, (7) can be straightferwaray
integrated. However, there exist certain additional requirements that
cannot be directly imposed. If the tail extremity is denoted by t.e., then

the requirement that r = 0 must be met. From (7) it is also noted that

tce.
(df'p/ds)t Ao 0. It is well known from potential flow theory that for this to
happen at a non-zero velocity, (dr/ds)t o 0 (i.e., the tail must be a pure

cusp). These requirements do not make the problem insoluble but do compli-
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cate it tremendously. The difficulty arises from the fact that the location
of the tail extremity, where these requirements are imposed, is not known
a priori. Hence, the big remaining problem can be succinctly stated:

"Find the tail length that results in r = 0"

t.e.
Thus far in our investigation, no methodical way of doing this has been

determined.

To put the problem in another way, the arc-length along the tail, $t™5¢ 6. S0?
is established at the outset by the initial guess. The odds that a realistic
solution will result are virtually nill. Particularly frustrating is the
fact that the computed geometry will usually gyrate wildly during the
iteration process. Assume for a moment that a bad guess has been made on Sy
After some 15 iterations or so, the geometry will be in total disorder and
there is absolutely no indication on whether the guessed St resulted in a
tail that is too long or too short. It has been our experience that there
exists a narrow band on St such that whether St is too long or too short is
clearly evident. If the value of St is in this band, then the following
behavior is usually observed:
1 1t Sy is too short, the tail will start toward the axis, but then flair
out. It is smooth and resembles a rocket nozzle.

2) If St is too long, the tail arc will touch the axis and leave it for a

short distance. It will be wrinkled near the end.

Our procedure has been to make a number of parallel computations in an effort
to establish the band where appropriate corrective actions can be recognized.
At this point it is a straightforward but possibly lengthy procedure to adjuct
the tail length until a meaningful solution results. For most of the cases

prezented herein, a solution was attained in six to eight tries.

——




On the other hand, there may be obstinate situations where an inordinate

number of tries still result in failure. It is possible that solutions simply
do not exist for some cases. This could be the result of choosing So at a

bad location on the body as in the fixed forebody-velocity situation.

The above-mentioned problems have been discussed primarily for two reasons.
The first is to point out that the current solution procedure is not of a
production nature. It takes a considerable expenditure in time and effort

to obtain a single solution. The second reason is to indicate the
difficulties associated with attempts to define an algorithm which will
automatically converge on the tail length during the iteration procedure.

The proper tail length indicator is completely absent (or very well disguised)
in the mathematical problem. Also, the erratic behavior of the geometry

and flowfield through the iterations defies any intuitive grasp of the
situation which might otherwise suggest some automated procedure. Along these
lines is the associated problem that a solution may not even exist and proof
of existence is all but impossible. If a solution does exist, it may not be
unique in the sense that slightly different tail lengths will still result

in a solution such that the Stratford criterion is satisfied. In this context,

the concepts of "precise" tail lengths and "optimizing procedures" become

ambiguous.

In spite of the above complications, the "brute force" iteration technique
which was employed led to many solutions that are presented in this report.
The primary message is that the reported method usually will yield the

desired end result of an axisymmetric Stratford tail, but with some difficulty.
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DISCUSSION OF RESULTS

Having successfully developed a design procedure for finding Stratford tail
shapes, some meaningful way of demonstrating the method was sought. Although
the tail is generally envisioned as an appendage to some forebody, it will
slightly alter forebody pressures through its upstream influence. In addition,
because this particular problem is solved with an inverse Neumann procedure,
the entire forebody shape is slightly altered by the addition of a tail.
Also, because of the nature of the extended Stratford equation, the forebody
shape and its boundary layer characteristics have a strong influence on the
final tail shape. In conclusion, the tail design is not a problem separable
from the forebody design. Thus, for purposes of demonstration, two distinct
families of solutions are identified. The two families can be loosely
categorized as follows:
1. A prescribed forebody shape with the tail geometry being wholly defined
by the Stratford recovery region. |
2. A prescribed velocity distribution up to the point of the Stratford
recovery.
To be still more specific, these two families were further narrowed down to
two types. For the first family, a hemisphere-cylinder was chosen as this is
somewhat representative of "conventional" torpedo designs. Various cylinder
lengths are presented including a zero-length cylinder (i.e., a hemisphere-

tail). For the second family, a constant velocity solution from the Reichardt
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class of bodies was prescribed. Again, results are presented for various

slenderness ratios.

Table 1 presents a summary of all cases comnuted under the guidelines
established above. There are a total of 9 cases which were completed after
the calculational procedure had reached a fully operational status. By

"fully operational," it is meant that all new and necessary computational
procedures were checked out and verified (e.g., the boundary layer
computation, iteration procedures, etc.) and that a Stratford tail was
achieved and validated. Each particular case in Table 1 is identified by a
configuration code of the form CDX or RX. The CDX code signifies a constant-
diameter body (hemisphere-cylinder) with X representing the length to

diameter ratio of the basic forebody. One exception to this convention is the
CD1 body (no cylinder section) which is simply called HEMI for hemisphere only.
The RX nomenclature is used for the constant velocity shape which is from the
Reichardt class of bodies. Again, X represents the slenderness ratio of the
basic Reichardt body. Also presented in Table 1 are the pertinent flow
conditions, such as the freestream Reynolds number based on body length and
the state of the boundary layer on the forebody (laminar or turbulent), and

the pertinent results.

As is pointed out in the preceding section, the final tail length is not
known a priori as it is a function of Reynolds number, boundary layer state,
and forebody geometry. Hence, for purposes of being consistent, the length
parameter is a length referenced to some non-varying geometrical dimension of
the body. For the CD class of bodies, the reference length was chosen as the
distance from the nose to the end of the cylinder. In the case of the HEMI

body, this reduces to the hemisphere radius. For the R class of bodies, the
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reference length is that of the unmodified Reichardt geometry (fore and aft
symmetry). Alternately, for CDX and RX bodies, the reference length is

simply X diameters.

Since the boundary layer momentum thickness plays such an important role in
the determination of the final tail shape, a test case was prepared from
case no. 1 and checked using the more exact Cebeci-Smith boundary layer method

(Reference 4) as implemented in the TAPS computer code (Reference 13). The

results of this test case are presented in Figure 3. As can be seen, the momentum

thicknesses as computed by the two methods are in remarkably good agreement.
The most crucial value for 6 is eo which determines S0 by (19). The 90 point
in Figure 3 occurs exactly at the minimum just aft of s/r=16. Here, the two
computer programs are in such good agreement that the result seems almost
fortuitous. Judging from the overall trends in the two curves, the
Bristow/Truckenbrodt method appears to be more than adequate for serious

design applications.

For comparative purposes, a similar momentum thickness distribution for the
R8 body is presented in Figure 4. The significant message to be gained from
Figure 4 is the manner of boundary layer growth as compared to the constant
diameter CD8 body. As a consequence of the conservation of mass in axi-
symmetric flows [r(x) effect], the boundary layer growth on Reichardt shapes
is inhibited everywhere forward of the maximum diameter point. Aft of this
point, the thickness begins to increase more rapidly, such that by the time
the Stratford recovery begins, the boundary layer is quite thick relative to
a constant diameter body. In contrast, the boundary layer development on

constant diameter bodies has a more or less flat plate behavior until the
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flow begins to accelerate near the tail juncture. From (18) it can be seen

that locally (for small variations in s), 6 varies inversely as (ue/uw)3.

Since (ue/um) is not constrained in the constant diameter solutions, 6 will

minimize at the tail juncture where, by definition, eo and s, are determined.

This localized thinning effect has a very interesting feedback influence on

the tail length for the constant diameter bodies. The reduction in eo
promotes smaller values of s, as seen by (19). Due to the nature of the
extended Stratford equation as discussed previously, smaller So values tend
to drive the tail length still shorter. The shorter tail lengths in turn
produce still higher corner velocities and smaller values of eo. Thus,

we have the pleasantly surprising result that the combined effects of the
extended Stratford equation, the potential flow relations and boundary layer
equations have a built-in "forcing function" that results in extremely short
tails. This forcing function is even more pronounced in the case where the

forebody is laminar since the momentum thickness is much smalier.

Two converged solutions that graphically indicate these effects are depicted
in Figure 5. The two solutions are from cases 1 and 2 which are for the CD8
body at a Reynolds number of 107. The only difference is that case 1is for a
fully turbulent forebody while case 2is laminar up to the tail juncture. As
can be seen, the boattails for both cases are quite short and the pressure
recovery exhibits a typical Stratford behavior. In taking a cursory look at
the laminar flow body, the tail is so short that it intuitively invites
disbelief. Its shortness is directly attributakle to the combined effects of

small eo’ the resultant small s_, and the deep pressure spike leading into

0
the pressure recovery. All of these parameters are presented in Table 1 for
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a case to case comparison. In either case, it is doubtful that these shapes,
which satisfy the extended Stratford criterion, would be conceived and arrived

at through experimental or trial-and-error numerical procedures.

To further validate the reported procedure of finding Stratford tail shapes,
two other cases of fixed forebody geometries are presented in Figures 6 and 7.
Figure 6 is a constant diameter L/D = 4 body. |n this example, the forebody
is laminar and the Reynolds number is 106. For \this case, the tail length
came out somewhat longer (in terms of maximum body radius) than the CD8 body.
This result is directly attributable to the reduced Reynolds number of the
flow. Referring to Table 1, the computed value for S, On the CD4 body at

R = 106 is 0.906 R, whereas on the longer CD8 body at Re = 107, s_is

e 0
L \ L
0.448 R. The larger value for So° when coupled with the extended Stratford

equation, requires a longer tail.

Figure 7 is a hemisphere followed immediately by a Stratford recovery tail.
This case was computed at a relatively low Reynolds number, 106, with a fully
turbulent forebody. This results in probably the longest tail necessary.
That is, higher Reynolds numbers and/or some forebody laminarization could
operate with a still shorter tail using the extended Stratford guidelines.
Even for this case, however, the true L/D of this body is only 1.1.
Furthermore, the solution was obtained with relative ease which indicates
that still blunter forebodies (e.g., oblate spheroids) could be closed using

the Stratford recovery method.
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Thus far, all the cases discussed are of the "prescribed forebody" type.
As was evident in the figures, this approach will almost invariably lead to
deep, negative, pressure spikes at the tail juncture. In high speed under-

water regimes, such low pressure areas may be intolerable from a cavitation

\ standpoint. To alieviate this problem, the present method allows for con-
straining the forebody velocity up to the beginning of the pressure rise. One
of the classical high speed underwater shapes is the Reichardt body. This
geometry has a surface velocity that is nearly constant and nowhere exceeds
the freestream velocity by 5 to 10 percent or so. Thus, it was felt that the
Reichardt shapes would be good candidate bodies for applying the Stratford

recovery method for tail design.

Figure 8 presents the resuits of applying the present method to Reichardt
bodies of an initial L/D of 8. Two cases (3 and 4 in Table 1) are included
in the figure. The only initial conditions that are different is that case 3
has a fully turbulent forebody while case 4 is laminar up to the start of the
pressure rise. As is evident in the figure, the present method of coupling
the extended Stratford equation with an inverse Neumann solution allows for

maintaining the constant velocity up to the point of the Stratford recovery.

When applied in this mode, however, the geometry of the forebody will be /
noticeably modified for several diameters forward of the point where the
pressure rise begins. This is because of the elliptic nature of the potential-
flow equation and will always occur when a velocity change over a limited

region is required.

.I .i o II »""iﬁ““ﬁ.Mw.u-ﬂ-mmn-




L
]
§

Also evident in Figure 8 is that the start of the pressure rise does not

occur at exactly the same station for the two cases. The reason is twofold.
First, where the pressure recovery starts in a constant velocity region is

an arbitrary choice. Second, the length of the tail may influence the required
density of source/sink elements on the tail such that sufficient definition

of the flow is attained. This latter effect has to do with the numerics of

the problem as discussed in the preceding section.

Some of the important output parameters from the two cases are summarized in
Table 1. For exa .le, the computed values of So for the R8 configurations
(cases 3 and 4) are considerably larger than their counterparts on the CD8
bodies (cases 1 and 2). As discussed earlier, this is due to the extensive
thickening of the boundary layer on the aft end of Reichardt shapes. In
addition, the lack of high velocities that are permitted in cases of fixed
forebody geometries is a contributor. These effects are reflected in the

tabulated values of eo, C and uoso/v.

pmin

In order to assess the impact of Reynolds number on tail design, the Reynolds

number of 107

in case 3 is complemented by cases 5 and 6 which are at
Reynolds numbers of 106 and 108 respectively. The afterbody shapes and
pressure distributions from these cases are presented in Figure 9. The
significant conclusion to be made from this example is that tail shapes in
fully turbulent flows are not appreciably affected over a wide range of
Reynolds numbers. Thus, a tail that is optimally designed for the lower end
of the anticipated Reynolds number spectrum should not degrade in performance

with increasing Reynolds number. Alternately, if the design process has some
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built-in conservatism, e.g., a reduced value of K in equation (2), then
Reynolds number should not play an important role in tail design. Of course,
all of these statements are predicated on the assumption that the forebody
will remain turbulent. If the forebody should become laminar, the tail will

simply be off-design, but conservative and will not have separated flow.

Figure 10 is a plot of the computed values of eo. So° and CD versus Reynolds
number for the three cases just discussed. One interesting result in this
figure is that S, comes out nearly double the total body length. This is a
characteristic of Reichardt shapes as discussed several times previously. The
drag coefficient for these and all other cases is given in the form CDA/R2

for ease in extracting CD for various reference areas. For example, to

obtain CD referenced to frontal area, divide CDA/R2 by m. To obtain CD
referenced to the two-thirds power of the volume, divide CDA/R2 by V2/3/R2

which is tabulated for all cases in Table 1.

In a report by Hess and James (Reference 14) entitled "On the Problem of
Shaping an Axisymmetric Body to Obtain Low Drag at Large Reynolds Numbers",
there are several conclusions which we would like to quote verbatim.
a. A shape having the lowest drag at one Reynolds number has the lowest
drag at all Reynolds numbers.
b. Shapes with fineness ratios in the range of 3 to 4 have the lowest
drag coefficients based on the two-thirds power of the volume.
c. Drag coefficient is insensitive to shape and no shape has been found
with significantly lower drag than a boattailed prolate spheroid. A
more accurate drag calculation might modify these conclusions

slightly, but would probably not drastically revise them.
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In all, some 50 bodies were investigated by Hess and James ahd some of these
bodies were of the constant velocity type described herein. Moreover, the
boattails were merely streamlined to prevent separation and no optimization
procedures were employed. Figure 11, which is taken directly from their

report, is one example from which their conclusions were based. This figure

H is chosen for inclusion in our report since it portrays the drag behavior of
modified Reichardt shapes (constant velocity shapes with a streamlined tail).
One data point from our results is suitable for inclusion on this figure and

has been added. It is for the R8 body of case 3 and indicates that a drag
reduction is obtainable through proper tail optimizing procedures. The reduction
is substantial and needs to be verified. However, tails on all the other bodies
in the figure were conventional. This one, being mostly concave, may indeed

demonstrate the drag reduction that has been calculated.

The last geometry to be reported is from case no. 8. This is the R4

configuration at a Reynolds number of ]06

with a laminar forebody. Although
this particular case was primarily included as a further substantiation of

the reported method, it does have some interesting attributes. For example,
CD based on the two-thirds power of the volume is only 0.0098. Although some
of the longer shapes have smaller CD values, it is because laminar flow was
assumed to exist at a Reynolds number of ]07. A long laminar run at this
Reynolds number would be very difficult to maintain. Hence, for practical
application, the R4 laminar flow body is a good candidate configuration where
drag is of primary concern. In fact, the tail optimization procedure could be

exercised for a variety of forebody shapes in an attempt to minimize overall

i drag. Furthermore, the method is not restricted to an underwater regime and
k the concept is equally applicable to two-dimensional flows as well.
2
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Thus far, we have presented what we consider to be the most fruitful results
of our study. From what we can perceive, the extended Stratford equation and
associated ‘.americal procedures do indeed lead to a very short tail with
incipient separation being sustained from the start of the pressure rise to
the trailing edge. Verification of all these results by using more exact
methods of computation is desirable, but is not within the level of the
present effort. Perhaps even more importantly, the only real proof of the
existence of these types of flows lies in experimental validation. In the
hope that we have stirred some interest in this area, computer generated
tables of geometries for the 9 cases are included in Tables 2 through 10.
Perhaps some interested readers will consider using these results in their

own fields of endeavor.
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Table 2 Table 3

Case 1 Case 2

7

CD8, TURB., Re, = 107 COB, LAM., Re, = 10
3 X/R r/R I X /R r /R
1l J.0332 3.9349 1 11,3334 n.299°
2 22193 -1566 2 ~A189 1567
3 12426 3187 3 L9419 31,1
4 .A999 .4561 4 .0939 .4562
5 1797 5912 5 T1784 15916
5 2793 17129 6 12783 7126
7 23977 .8156 7 3967 18154
3 533 .8994 8 5285 9274
9 .6746 .9613 9 .07206 .9625
13 .82556 9999 19 18247  1.9714
11 9329  1.J133 11 9329  1.4155
12 1.2397 1.0167 12 1.2377 1.2189
13 1.8332  1.2272 13 1.6312  1.4228
14 2.1585  1.7244 14 2.1565  1.8277
15  2.3272  1.8289 15  2.8751  1.8332
16  3.5679  1.8335 16  3.5658  1.938%
17 4,4266 1.2376 17 4.4245 1.0426
18 5.3567 1.941" 18 5.3546 1.0480a
19  6.3696  1.7433 19 6.3676  1.8%14
22 7.4154  1.8447 23 7.4133 1.4531
21 8.4823  1.2433 21 8.4373  1.0534
22 9.5593 1.0491 22 9.5482 1.8512
23 10.5951  1.71355 23 104.5940  1.9472
24 11.5992  1.m28" 24 11.5979 1.04%4
25  12.5391  1.7194 25 12.5377  1.7323
26 13.3977  1.8474 26  13.3956  1.0204
27 14.1583 .998%85 27 14.1563 1.0277
28 14.8763 29795 28 14.8747 29912
29 15.3319 .9656 29 15.3298 .9745
32 15.7257 9462 37 15.7227 29519
31 15.9314 19336 31 15.9784 9294
32 16.1325 .8925 32 16.9343 .3938
33 16.2782 8266 33 16.7821 .3376
34 16.4333 7784 31 16.1439 .7847
35 16.5871 "7207 35 16.2779 ©7275
356 16.7439 6679 35 16.2631 .6692
37 16.9317 6127 37 16.3266 6192
38 17.9585 5596 33 16.3912 .5515
39 17.2163 .5766 39 16.4556 “2940
49 17.3743 -1559 19 16.5227 -4389
41 17.5322 T4nes 81 16.5393 .3341
42 17.6399 .3556 12 16.6564 31326
43 17.8474 .3781 43 16.7240 .2838
44 18.0747 12623 44 16.7918 12377
45 18.1613 .2182 45  16.8599 1945
} 46  18.3188 1760 45  16.9283 11542
47  18.4756 .1358 47 16.99638 11169
48 18.6323 6978 18 17.7654 L0827
49  18.7897 0624 49 17.1344 2518
57 18.9459 0298 5¢  17.2235 “0242
51  19.1732 7122 51 17.2736 24
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Table 4
Case 3

RS, TURB., Re, = 107

X/R

n,83an
.9223
.3947
.2131
.3761
.5813
.8277
1.1115
1.4397
1.7824
2.164°7
2.5727
3.8755
3.4595
3.9319
4.4198
4.9272
5.4325
5.9473
5.4695
6.9937
7.516%
8.0359
3.5577
9.0551]
9.5563
10.7434
12.5176
10.9774
11.4214
11.8483
12.257¢7
12.6462
13.9153
13.3632
13.6892
13.9924
14.2712
14.4768
14.5365
14.6725
14.8769
14.9432
15.2793
15.2164
15.3537
15.4918
15.6372
15.7692
15.978%
16.0492

r/R

3.229¢
.1443
.2435
.32914
.4772
.47842
.5434
.6%37
.6593
.71%4
1572
7937
.3380
L8722
.9723
.9233
.95%4
.9685
.9823
.9932
9998
1.9727
1.9219
«9975
.9895
.2789
.9639
.9445
.9226
.3972
.3684
.8359
.7999
.7596
«7152
.6652
.6093
.5426
.49566
.4367
.3913
.3417
.2978
2534
.2119

4
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Table 5
Case 4
RS, LAM., Re, = 10’

X/ r/
a.03072 A.6122
.7139 .1222
.26571 .2971
.1281 .2815
.2472 . 3496
.3870 .4129
+ 5569 .4723
.7561 .5231
.9840 .5878
1.2395% .6313
1.521¢% .0769
1.3298 .17225
2.1621 .7612
2.5173 .7992
2.8942 .8337
3.2912 .8655
3.7963 18942
4.1394 .9197
4,5872 .9421
5.2484 .9613
5.5213 .9771
6.9739 .9896
6.4944 .9988
6.99%93 1.0043
7.4912 1.2765%
7.9935 1.3249
8.4958 .9998
8.9961 .997%6
9.4924 .978"
9.9827 .9678
17.4559 .9403
1¢.9375 .9144
11.3932 .8854
11.8451 .8495%
12.2767 .8111
12.69%6 .7631
13.0857 . 1127
13.45814 .6470
13.8739 5774
14,1273 .4744
14.2185 .4277
14.2994 S3647
14.3395 23159
14.3783 ©2658
14.57@6 .2220
14.6532 .1769
14.7571 1359
14.8521 "n966
14.9484 0514
15.0457 10292
15.1447 ~0025




Table 6
Case 5
RS, TURB., Re, = 108
I X/R r/R
1 a.0%1a A.9297
2 L3229 .1443
b 3 .7947 .2435
4 .2132 .3295
5 .3761 4771
6 .5817 .4782
7 .8276 .5437
8 1.1114 .6742
9 1.4305 L6671
1¢ 1.7822 .7114
11 2.1638 .7584
12 2.5724 .8712
13 3.0052 .3398
14 3.4592 .8743
15 3.9316 .97248
16 4.4194 .9312
17 4,9198 .9536
18 5.4301 .9722
19 5.9473 .9868
23 6.4699 .99756
21 6.9926 1.0746
22 7.5155 1.7778
23 8.4355 1.2%74
24 8.5572 1.72332
25 9.0577 .9958
26 9.5559 .9847
27 10,3439 .9701
23 17,5172 .9527
23 17.9771 .91375
39 11.4211 .9157
31 11.8487 .8773
32 12.2567 .8455
33 12.6461 .8132
34 13.2152 .7798
35 13.3532 e b &
34 13.6895 .6797
37 13.9929 .6244
33 14.2726 .5517
39 14.4233 .5133
42 14.5688 .4511
41 14.7222 .4749
\ 42 14.8787 .3537
43 15.1216 .1083
44 15.1732 .2621
15.3253 .2192
15.4779 «1 771
15.6311 .1374
15.7847 .2994
15.9399 .7638
16.7938 2309
16.2494 .0222

Table 7
Case 6

R8, TURB., ReL =

X/R

2.07332
.02238
.1945
.2123
«31758
.53814
.8273

1.1111

1.4371

1.7819

2.1635

2 2.5721

13 3.0748

14 3.45)

15 3.8312

16 4.4191

17 4.9195

18 5.4237

19 5.9479
2 6.4687

21 6.9923

22 7.5152

23 83,3352

24 2.5499

25 9.9574

26 9.5556

27 16,2426

28 17.5168

23 12,9766

32 11.42%6

31 11.8474

32 12,2559

33 12,6451

34 13.0133

35 13,3516

36 13.6871

37 13,9898

38 14.2672

—
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33 14.3368
49 14.5711
i1 14.6214
42 14,7403
43 14.3612

44 14.9%17
45 15.1933
16 15,2253
47 15.348)
48 15,4712
49 15.5951
57 15.7195
51 15.845"7

108

r/R

7.3992
.1444
.2435
.3296
.4972
.4784
.544¢
.5746
.6625
.7119
75972
.3218
.8405
.8759
.9254
.9317
.9542
9723
.9357
.9372

1.7239

1.8%67

1.0258

1.3212
<9329
.9812
. 9656
.9464
.9239
.8376
.8678
.8340
« 79567
«7545
.7784
.6555
<5967
5246
.4787
.4208
.3766
.32389
.2859
.2432
.2727
.1636
1266
.0914
.0587
7282
.8123
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Table 8
Case 7

CD4, LAM., Re, = 108

X/R

0.3227%
9272
.9383
.0939
.1724
.2716
.3883
«5229
.6649
.8167
<3132

1.1695

1.47856

1.6887

2.27272

2.3695

2.7443

3.1534

3.5822

4.7242

4.4729

4.9217

5.3537

5.7924

65.2715

5.5852

6.9384

7.2567

7.5366

7.7752

7.9713

8.1676

8:1515

8.2493

8.346"

8.4467

3.5468

8.6487

8.7513

8.8543

8.9575

9.3509

9.1643

9.2676

9.371n7

9.4742

9.5774

9.6875

3.7838

9.3372

9.9912

r/R

7.2932
.1568
.3106
.4573
+5932
.7148
.3191
.9737
.9663

1.08257

1.2291

1.0237

1.2253

1.02817

1.71374

1.0326

1.9343

1.0355

1.2361

1.2355

1.0344

1.7317

1.7282

1.2237

1.9171

1.072931

1.2239
.9398
.9791
.9543
.95%3
.9156
.3434
. 7956
7357
.0775
.6189
.5613
«5%519
.45%4
«3976
.3469
.2985
«2523
.2334
.1669
1278
.3912
.0574
9258
.2019

o
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Table 9
Case 8

R4, LAM., Re

X/R

2.0"22
.3951
3267
.9647
.1186
.1832
«21725
.3718
.4854
.6123
.7533
.92175

1.2734

1.2523

1.4392

1.6375

1.8453

2.7516

2.2354

2.5169

2.7524%

2.9337

3.2389

3.48172

3.7373

393885

4.2397

4.439¢6

4.7279

4.9329

5.2247

5.4611

5.6901

5.9133

6.1285

6.3347

6.5311

6.71562

65.8887

7.2157

7.1225

7.2442

7.3639

7.4867

7.6103

7.7357

7.8522

7.9974

8.1207

8.25119

8.3842

r/R

3.8979
. 1222
.2270
.23814
.34°21
.4125
.4717
.5273
.57938
6292
.6756
« 7191
.75938
«1915
.8324
.8643
«8932
.9191
9422
.9617
.9783
L9913

1.3927

1.6239

1,9125

1.0128

1.9296

1.0037
.9929
.9791
.9518
.9426
.9157
.38566
.3535
.3154
7728
. 7235
.6674
.6137
.5285
.4652
.3989
.3368
2773
.2215
.16133
1197
.0744
« 1339
2979

Py




Table 10
Case 9

HEMI., TURB., Re

1 X/R
1 f.223¢
2 .£7285
3 2349
4 .M115
5 A23%
o .3386
7 .9582
8 .%817
9 L1791
1¢ .1491
11 .17456
12 .2124
13 «2235
14 .2975
15 .3443
16 .3938
17 .4455%
18 .49935
19 «5556
27 .6133
21 .6726
2 « 1339
23 .7946
24 .8557
25 .9194
o .9823

217 1.0299
23 1.9585
29 1.1161
31 1.1623
31 1.2123
32 1.2576
33 1.37%43
34 1.3517
35 1.3984
36 1.4447
37 1.4979
33 1.5371
39 1.5334
49 1.56298
41 1.6766
42 1.7239
43 1.7716
44 1.82912

45 1.8569"
45 1.9187
47 1.9691
48 2.92772
49 2.0712
52 2.1228
51 2.1746

< 106
L =10

r/R

A, 0382
.J628
+1255
.1879
.2497
«31485
<3722
.4235
.4859
«5397
«5922
.6423
.68993
7347
.77566
.8153
.8508
.8829
.9113
9362
.9570
.9742
.9868
.9959
.9995

1.02302
+9833
.943"
9076
.8649
.8245
.7736
. 7252
.6757
.6256
«5755
.5258
.4767
.4286
.3819
33566
.2931
«2515
.2122
.1748
.1497
.1076
3776
.7497
.1249
1904
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