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ABSTRACT

This report describes a computerized method that will design tails for bodies

of revolution that satisfy the Stratford criterion for zero wall shear.

Stratford ’s origina l two—dimensional solution is extended to axisyninetric

flow in order to implement the procedure. The method involves simu ltaneous

solution of the extended Stratford equation and the necessary boundary

conditions through the use of an inverse potential flow program. Tails

designed wi th this procedure can be categorized as follows: 1) The entire

tail Is at Incipient separation (no skin friction); 2) The pressure recovery

is the most rapid possible; 3) The resultant tail is the shortest possible.

The final result is a unique geometry for given freestream condition s and

boundary layer transition point. By unique, it is meant that any deviation

from the “ideal” geometry will either cause extensive separation or the tai l

must become longer and, hence , contribute to skin friction and reduced

voli~netric efficiency .

The computer program can operate in one of two modes: 1) The forebody geometry

can be mainta ined (except for a very small region near the tall juncture) with

only the tall shape determined by the method; 2) The forebody velocity

distribution can be mainta ined up to the point of the pressure recovery. The

forebody geometry will then be altered for some distance upstream of the tail

juncture. A number of solutions are presented for both of the above modes.

Al though the report emphasis is on bodies of revolution, the concept Is also

appl icable to two-dimensional flows.
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INTRODUCTION

The tail of any body that moves through a fluid is an appendage that is added

to “streamline” or to reduce the drag by permitting better pressure recovery.

It is not necessarily desirable otherwise. If overall length is fixed , part

of the volume of the main body must be sacrificed to provide the necessary

tail length. Or, if the tail is just added to a basic body, the body becomes

longer and hence is at some disadvantage from a logistics standpoint. In any

case, shortening the tail will increase the prismatic coefficient and, if done

properly, should reduce the drag slightly. The gains become relatively

greater if there is considerable laminar flow on the forebody because tail

designs properly made for this situation are even shorter.

Stratford flows (Reference 1) are l imiting types of flows in the two-dimensional

case. By limiting, we mean that the flows provide the most rapid rise in

pressure along the body that is theoretically possibl e, subject to certain

simplifying assumptions. One fact of interest and of great importance is

that these flows have been demonstrated and have been found to be docile, that

is they do not separate at the slightest deviation from the ideal (References

2 and 3). Because of this verification by test, Stratford flows should

be studied further. Inverse solutions by more powerful methods, such

as the Cebeci-Smith method, are possible, but they do not have the backing of

direct test data to support their accuracy ann their off-design behavior.
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Stratford’s solution applies only for two-dimensional flows and a way need be

sought for applying it to the axially syninetric problem. In boundary-layer

theory the Levy—Lees transformation reduces both the axially syninetric and

two-dimensional flows to Identical equations (for instance, see Reference 4).

In view of this fact, the original plan of study for this project was to find

Stratford flows In the two-dimensional plane and transform them into the

Levy—Lees F—plane . Then, since this plane was valid for both cases, tails

for bodies of revolution would be designed by examining them In the E-plane.

However, between the time when this study was proposed and when it became

active, work was independently under way to extend Stratford’s separation

criterion to bodies of revolution. The work was successful, resulting in

Reference 5. Subsequently, ways were seen whereby this extended criterion

could be applied with more finesse than by working in the F -plane.

Moreover, if r0 Is the body radius at the start of the tail fairing and r

the radius at any point on the body, a ratio r0/r arises in the formula for

separation. In the extended Stratford analysis, It occurs to the first power.

In the Levy-lees transformation, it occurs in the second power. If the

analysis of Reference 5 is correct, the Stratford relation shoul d have a

constant value at the separation point. Figures la , b and c show the value for

all the experimental data that could be found. Figure la shows a straight-

forward application of the original two-dimensional formula to axially

s~inmetr1c flows. Earlier studies of two-dimensional flows had yielded a

constant equal to 0.5 as indicated by the arrow. It is seen from this figure

that for bodies of revolution, the constant at separation is variable,

appearing to be zero at rsep/ro 
• 0. Figure lb plots the constant for the

extended formula. Al though the data has much scatter, there is no discernibl e

2
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variation of the constant from its two-dimensional val ue. Figure lc shows

the variation if (r0/r)
2 was used as indicated by the Levy—Lees transformation.

Now there Is a distinct upward trend of the constant as rsep/ro approaches

zero. It is clear that, of the three, the data of Figure lb are the nearest

to representing a universal constant suitable for both two-dimensional and

axially syninetric flows. Hence, for the reason that the extended Stratford

method could be applied wi th more finesse and seemed to agree better with

experiment, it was the method adopted.

Most bodies of revolution that are of practica l use have a running propeller

at their rear. One might suspect that, with a very short tail , the propeller

might modify the flow so much that the present designs might be unduly

conservative. Fortunately, it does not seem to be the case. Reference 6

Is an extensive investigation of the interaction problem. On page 43 the

authors make the following statement, “As shown in (their) Figures l2a and

12b, the suction of the propeller did not change the point of boundary-layer

separation on Afterbody 3 (a very bl unt tail). The distance between the

propeller plane and the point of separation was 1.3 propel ler diameters. The

propeller Induced velocity at 1.3 D~ upstream of the propel ler was not strong

enough to alter the characteristics of the separation.” The parentheses are

ours. In view of this statement, it seems reasonable to ignore the propeller

effects. A blunt tall may complicate the propeller design problem, but in these

days when the flow field can be calculated accurately and propellers are wake

adapted, no particular body modification seems necessary. So the bodies to

be presented are simple bodies of revolution, faired out to a point.
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In the most exact boundary-layer theory, transverse curvature effect is

accounted for. This is the effect occurring when the boundary-layer is very

thick compared with the radius of the body at the same station. The Stratford

method makes no accounting of the effect and so may be in considerable error

when applied very near a slender, pointed tail. Experimental work is needed

as a guide to improve this deficiency. The work of Patel (Reference 7) and

Nakayama and Patel (Reference 8) deal with this problem but trying to combine

their methods with Stratford’s approach is far beyond the scope of the present

study.

The shapes and some properties of a number of bodies have been calculated.

Many basic kinds of pressure distributions or shapes could be considered, but in

order to avoid excessive calculations , the studies were confined to two classes

of bodies: (1) bodies having constant velocity over much of their length -

modif led Reichardt bodies, and (2) bodies having constant diameter over much

of their length as for conventional torpedoes.

As wi ll be seen, the tail shapes that have been found are quite short and are

of a reflex type. D. M. Nelson (Reference 9) did work on this same tail

fairing problem and arrived at a simi l ar tail design which was confirmed by wind-

tunnel tests. Nelson ’s approach was not as systematic as the present one and

also his method did not truly represent limiting flows as the present method

does. He worked out only one case. The present report is a presentation of

the true shortest tails for a variety of cases. Furthermore, In the case of

~~ Reichardt type bodies, the tall and rest of the body shape are all Integrated

together, that is, the tail is not just an appendage on a basic Reichardt body.

Nelson’s work Is the only work of which we are aware, that is parallel to the

present study.
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SOME THEORETICAL CONSIDERATIONS

The general kind of fl ow bei ng analyzed is illustrated in Figure 2~. A flow

begins to retard at some point s = s~. In the vicinity of this same point

the body begins to converge significantly from some initial radius r0. At

the start of the pressure recovery, the boundary layer has a momentum

thickness eo and an edge velocity u0. In the analysis the notion of an

equivalent flat plate is Introduced . It is of such a length , s0,with velocity ,

u0, as to generate the same thickness, e
~
, as the real body. Pressures are

referenced to the velocity , u0, at s0, not to u ,. In particula r, the pressure

coefficient is defined as:

= 1 - u~/u~ (1)

Wi th this introduction to the notation and fl ow situati on, we can wri te the

extended Stratford formula. It is:
1/2 -1/10

[s (r0/r)(d~~/ds)] (lO~
6R0) = 0.50, ~ 4/7 (2)

where R0 is a Reynolds number defined as u0s/v. Separation is said to occur if the

1.11. side of (2) exceeds 0.50, whi ch Is the empi rical constant di scussed earl ier.

In a two-dimensional flow, the ratio r0/r is replaced by unity . Then for

incipient separation along the body aft of s0, equation (2) amounts to a

differential equation which can be Integrated for ~~(s) once and for all to

show the most rapid allowable pressure rise as a function of R0 and ~~

S
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In fact this has been done in references 1 , 2 and 3 and the flows have been

tested as mentioned before, wi th good results.

For the axially synunetric case, however, is a function of r, the body shape.

Since we do not know the body shape a priori , we cannot obtain any simple

integrated relationship. Rather, an i terative method has been found that is

successful . It is:

a) Start wi th a ful l body shape having a tail that is as close to the fi nal

one as we know how to specify. If the forward portion is to have constant

velocity, then the forward portion should initially be that of a Reichardt

body of the correct fi neness ratio. A direct Neumann solution will then

indicate closely the correct level of velocity ratio needed to get the

fi nal body with approximately the correct fineness ratio. Also , with the

initial tail shape , the Neumann calculation supplies an initial (s)

relation.

b) Introduce the current tai l shape into (2) so that integration may proceed.

Now both C~ (s) and (s) are available for the tail portion.

c) By an inverse method suc h as James ’s or Br i stow ’s, calculate the new

body shape. The forward pressures have been established by the basic

body whi le the rear pressures are supplied by the integrati on of (2).

A tail shape different from the starting shape will be found. In fact,

the forward portion will be slightly different also .

d) Repeat steps b) and c) until convergence is obtained.

It is well known that, for semi-infinite cones, the velocity along the cone

varies as 5m where s is slant distance from the vertex. Then assuming that

this power relation still applies for very short tails (it is not certain that

S
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it does), and translating the origin so that the vertex of the tail is at

s = a we have :

= l-u 2/u~ = 1 - c2 (s_a)2m/u~ (3)

where c is a genera l constant.

/‘L.o, for cones wi th b as a constant:

r = —b(s—a) (4)

We wish to evaluate (2) at the very tail. Then from (3) compute dC~/ds.

d~~/ds = -2mc2 (s_ a)2m~~/u~ (5)

In (2), at the very tail , is unity , assuming that the semi-infinite cone

theory applies. Thus we may evaluate only the square root term of (2). We

have, since R0 is not singular ,

1/2

[_a [b(s0-aYl/[b(s-a)3 2mc2 (s_a)
2m_ h /u02] constant (s_a)

m_ l 
(6)

The quantity in (6) approaches infinity at s=a if m<l . The va l ue m=l corresponds

to a blunt tail , so any tail that is pointed will have a singularity . There-

fore it is seen that (2) is not exactly correct at the pointed end of a

conical tail in inviscid flow. Of course, due to boundary layer thickening

and subsequent modifications to the pressure distribution at the tail , such

a singularity does not exist in any real flow. Alternately, the tail could

terminate in a cusp and analytic singularities would be eliminated.

The next question is the behavior of at the start of the pressure rise.

It is easily found by integrating (2). Assume that the origin of a new

distance measure, s ’, is at the point s~. Then (2) can be re-written as
2

~~
, d~~/ds ’ = 0.25 (r/r0)(l0

6 R0)
1 ’~
5/(s’ + s0) (7)

1 
_ _  
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In (7) near s’ = 0, the term (s’ + s0) is finite , so is R0 and the term

(r/r0) is approximately equa l to unity . Thus , we have, remembering that

= 0,

3
= constant (s’)

at the beginning of the pressure recovery. In other words, if a limiting

pressure rise is sought, will begin to increase as (s ’)1”3 at s0, an

infinite rate of pressure rise. This resul t for Stratford flows , whether

two—dimensional or axially symmetric , is surprising and quite interesting .

It tells us that, even if a pressure rise is sma ll , it can be initially

extremely rapid. Tests seem to bear out this conclusion.

The Levy-Lees transformation transforms both the two-dimensional and axiSymmetric

form of the boundary layer equation into one comon form in the so-called c-plane .

Probably the simplest method of studying the problem is to transform the

extended Stratford equation into the E-plane. If the extended Stratford

equation is consistent with wha t is indicated by the ~ transformation , all

r variation effects should cancel out. Start with equation (2). The term

i nvolving R0 varies so slowly that for the present purposes it is satisfactory

to regard it as a constant. Also , remains unaffected by the transformation.

Hence, i t  is sufficient to consider only the squa re root term in (2). In

fact, when using (2) the only transformation i nvolved is for the distance s.

For it, the Levy-Lees transformation is

= PeMeue~~
/’ro)

2
~~ 

(8)

Then, to be more general in our study of the transformation , consider the

transformation of the term

8



s(r0/r)
n d~~/ds (9)

which is the same as the term under the square root in (2) except that r0/r

is assigned a general power.

At the start of the pressure rise , s has a val ue s~. The quantity s will

grow but only slowly with respect to its initial value s0 because of the

considerabl e run of boundary l ayer flow ahead of the tail region . In any

case, it only indirectly i nvolves pressure gradients so it seems reasonable

to assign it the constant va l ue S
0
. The main activity is in the gradient

term dC~/ds. Now

d~~/ds = (d~p/d~)(d~/ds) (10)

Then, using (8) we have:

d~~/ds = p
e~

ieue(r/ro)
2 

d~~~~~JdF ~ (11)

When (11) is introduced into (9) we have approximately

Pe~
1eL1e (r/r0)

2 dr~/d~

From (8) we can see that , for the initial part of the flow, s~ can be written

as 
~~~~~~~ 

because in the present i ncompressible problem ‘~e 
and are

constants. Then we have, after cancelling 
~ 

and Ue~ 
t1~e expression

~ 
(r0/r)~ (r/r0)

2 ue/uo (12)

For two-dimensiona l flow r/r0 is replaced by unity, so the r—term does not

enter. For axisynunetric flow (12) shoul d reduce to the same form. It will

only do so if the power n is equal to 2. However , in the original derivation

of the extended Stratford equation, the power n was found to be unity. The

plots in Figures la , ib , and ic show that the test resul ts indica te the

originally derived n = 1 being a better approximation than n = 2, as given by
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the Levy-Lees transformation. In (12), while there is approximation in the

val ue of ~ by replacing it wi th 
~~ 

the rest of the transformation is exact.

In view of the conclusion that n = 1 is a better approximation and the fact

that the origi nal extended Stratford equation , (2), is simpler in implementa-

tion than the Levy-Lees transformation , the former is adopted in the present f
study rather than the latter, as originally proposed.

If (2) is squared for convenience and the substitution s (s/s0)s0 is made,

the following formula is obtained

~2 (5/~~)O.8 (r0/r) d~~/[d(s/s0)] = 0.25 (lO~
6 u0s0/v)

1’5 (13)

which also can be written as

(s/s0)
08 (r0/r) d~~/[d(s/s0)] = 0.75 (10-6 u0s0/~,)

1”5 (14)

In these forms it is seen that a significant constant is the Reynolds number of

the equiva lent flow at the start of pressure rise, that is u0s0/v. At the

start s/s0 and r0/r are unity and so, from (14), it is clear that can begin

to rise faster when the Reynolds number is higher.

Al so when solutions are plotted in s/s0 variables, for the two—dimensional case

(r0/r = 1) it is clea r that the solutions are functions only of u0s0/v, and this

quanti ty enters only weakly because of the 1/5th power exponent. If r0/r were

related uniquely to s/s0, solutions would still be functions only of u0s0/v.

In fact, r/r0 is indeed roughly a function of s/s0. Equations (13) or (14)

are useful because they show that if 5 is very small , a tail may be very

~~ short; if S is larger, the tail must be l onger.

10



IMPLEMENTATION OF THE EXTENDED STRATFORD EQUATION

When first considering the problem of how to find a Stratford tail shape , our

attention was given toward a direct approach of assuming a tail shape and then

evaluating the resultant K, the L. H. S. of equation (2), as a function of s

along the tail. Using the Douglas-Neumann potential flow program, numerous

tail shapes of the followi ng family were investigated

r(x)/r0 = {[l_ (x/L)m)/[1+C(x/L)~]jI~ (15)

This equation reflects a 5 parameter family of tails which intuiti vely has

the necessary qualifications for at least approximating a Stratford type of

flow. Al though an invaluable degree of insight was obtained in examini ng

this family, the large number of parameters proved to be overbearing in

trying to develop a systematic approach for obtaining a reasonable approxima-

tion. In fact, any analytic expression for r(x) could, at best, lead only to

an approximation of the desi red flow. This fact is especial ly evident when

it is realized that a few free parameters must exist to acconunodate Reynolds

number, transitional effects, forebody effects, and so on.

As is pointed out in the preceding section, the extended Stratford equation,

(2), is a first order, non-linear differential equation if the relation

r(s)/r0 is known. However, findi ng the relation for r(s)/r0 is precisely

the end result sought. Hence, solving (2) by itself Is somewhat eni~ natIc

in that a functional coefficient in the differential equation is unknown.

11
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~1In addition, the solution, If found, must also obey the laws of low speed

fluid mechanics. Hence, it seemed that the appropriate course of action

would be to couple the extended Stratford equation wi th a potential flow

solution.

In light of this, an investigation was conducted Into the appl i cation of

Bristow’s (Reference 10) inverse axisymetric potential flow method which is

an adaptation of the Douglas-Neumann potential flow program. Briefly stated,

Bri stow’s method uses linear elements (actually cone frustums) wi th constant

strength singularities to solve the potential flow problem directly. The

resultant pressure (or velocity ) distribution is then compared to some

prescribed distribution and the body shape is systematically varied until

the computed pressure matches the desired value. Bri~tow ’s method may be

expressed functionally as

r = r [C
r
(s)] (16)

Realizing that equation (2) is equivalent to

C~ = C~ Er(s)] (17)

then the iteration scheme reported earlier is inunedlately suggested. Of

course in an iteration such as this, convergence Is by no means guaranteed.

Furthermore, it is not obvious from the above relations that all boundary

conditions and other constraints (e.g., tail closure) can be simul taneously

satisfied. Nevertheless, the first attempts at combining the equations (16)

and (17) into one concurrent iteration procedure led to very encouraging

results. Many solutions for various forebody and flow conditions were

obtained, demonstrating that the overall concept Is Indeed a viable procedure.

________ 
12
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In order to evaluate Stratford flows properly, It is necessary to incorporate

some sort of boundary layer calculation on the forebody to extract 6
~ 

and

thence se,, which appears explicitly in the extended Stratford equation.

Since adapting or developing an advanced boundary layer computational

procedure was inconsistent with the approximate nature of the extended

Stratford equation, the simple but accurate momentum integral technique of

E. Truckenbrodt was employed. His method can be found in several references

(for instance, see Reference 11) and Is repeated here for completeness.

Given an axisyimnetric body defined by r(s), the fl uid velocities, freestream

Reynolds number and transition station, s~, the Truckenbrodt method yields

= [c~ + (cf /2)7~
6 IT(s)

6”7/E(u/u,,)
3 (r/Q.)] (18)

where

* 
1/2 7/6c1 = (cf I

~ 
/2)

sit
1T (s) = J (u/u )10’t3 (n t) 7”6 d (s /t)

5T/t

5T/t  5 2
= 

J 

(u/u,,,) (n t) d (s/z)

Cf 
= l.328/(u,,~t/v)

1”2
L

C
f 

= o.45siElogio (u t/v)258)

Since ~ is an equivalent flat plate turbul ent run in a freestream velocity

u0, a simple flat plate momentum integral may be employed, i.e.,

= 0.036 5~ (u0s0/vY~~
5

or, rearranging ,

(0~/O.036)~”~ (u0/v)
1”4 (19)

13
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No serious attempt has been made to calculate the drag of the bodies. On

the other hand, since e (s) has been evaluated along the entire length from

(18), the following Squire-Young formula (Reference 12)

CD (26A/A) (u/u,,~)
5)
~
2, 0A = 2wrO (20)

is employed to estimate the growth of drag along the body.

*In the present boundary layer integral approach, the form factor H = c$ /0

is not computed. However, incipient turbulent separation typica l ly occurs at

a value of H = 2. Since Incipient separation Is the prime characteristic of

Stratford flows, H = 2 was assumed and applied over the entire body. A

consequence of this assumption is that the forebody drag distri bution is

somewhat approximate because H is more like 1.3 for the forebody but the

distribution along the tail should be quite good. Furthermore, drag

distri butions (I.e., cumulative drag as a function of length) are usually

only of academic interest except near the tail. The “thin boundary layer”

assumption breaks down near the tail end and sometimes an extrapolation of

CD versus s Is required to estimate total vehicle drag. As will be

demonstrated In the section discussing the results, the CD versus s curves

are surprisingly wel l behaved to the very tail extremity.

It should be noted that the s0 term as predicted by (19) Is an explicit term

in the extended Stratford equation, (2). Also , the quantiti es u0 and 00
used to compute s~, are greatly affected by the potential flow distribution.

Hence, the entire boundary layer computation scheme must be included within

the iteration loop to allow for updating S
0 

with each pass.

14



NUMER ICAL CONSIDERATiONS

Before embarking into the area of finding axially synunetnic Stratford tails,

It is necessary to establish certain procedures for presenting the initial

geometry data to the computer. The Bristow/Douglas—Neumann approach is to

approximate the body with a small but sufficient number of discrete frustum

elements of sources and sinks. Al though the zero-normal-veloc ity boundary

condition determines the strengths of the sources (sinks), it is up to the

user to decide upon both the required number and their position. Generally

speaking, it is desirable to have a large number of elements In regions of

large longi tudinal gradients. Since machine speed and capacity are large

factors in a computation of this type, a sparse distribution of points in

regions of small gradients is desirable. However, the element size shoul d

not change abruptly. A good rule of thumb is that neighboring elements

should not change in length by more than the ratio of the square—root of 2,

i.e.,

~~i+i 
= x 2l

~
’
~

wh eren=±2.

While this relation is only a guideline, it does indicate that some means of

clustering elements will usually be necessary, particularly for shapes of high

fineness ratios. As an example, consider the hemisphere-cylinder-tall confi g-

uration. Since the hemisphere and tall will require a large number of elements,

the above rule dictates that the elements at both ends of the cylinder be

IS
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fairly dense. In order to automate the clustering procedure, a “clustering

function ” for the cylinder was devised as follows:

H = C1 t + (1—C 1) (1-cos(7rt))/2

x x ~ + H ( x ~~-x~ )
o n 0

y = r0 
= constant

x = cylinder beginningc0

x = cylinder end

In this expression, t is uniformly spaced in the unit interval (~t=constant)

and the elements will be clustered near the cyl i nder endpoints . The degree

of clustering is governed by the input parameter, C1, where

O < C 1~~~l

For the elliptic or Reichardt shapes, the situati on is somewhat different.

Defining these bodies parametrically will automatically cluster in regions

of hi gh curvature. For example, the Reichardt shapes reported herein were

generated wi th the following equations :

x = b—b cos t

y = a s i n 2’
~ t

n = 0.42 (for Reichardt bodies)

The above equations will, in general , not place enough points at the aft end

where high resol ution is desired. Hence, a second parameter, 4~
, is Introduced

as 

t(~ ) ~ [(2-C 1) ~ + (C 1-1) ~2]

where, as before, * is evenly spaced over the Interval [0, 1] and C1 Is the

18
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clustering parameter. For

the poInts will be clustered near the base .

The next Inunedlate problem is to establish the tail portion of the geometry

before any iteration begins . In our present study , there are two classes of

solutions , the fixed fo rebody-geometry and fixed forebody-veloc ity types, and

therefore, two classes of tall guesses are required. If the forebody is to

remain essentially fi xed, It is desirable to guess a tail shape as close to

the final shape as possible. Subsequent iteration should then not

appreciably alter the forebody. Our experience in using (15) has shown that

a good Initial gues s for a tail on this class of bodies can be simplified to

r(x) / r0 = (1_ (x/ L) LS]/ [l+(x/L) I * S ] (21)

As will be presently demonstrated, the tail length parameter, 1, will always

be a free parameter and finding the proper value becomes part of the solution

process.

In the case of the fixed forebody-velocity shapes, a satisfactory initial

tail guess cannot be effected as this will greatly disturb the upstream

velocity. Instead, it is necessary to choose some point, 5r’ on the

unmodified shape and apply the extended Stratfo rd recovery from that point

aft. It is best to choose this point near the end but still in the constant

velocity region of the flow. Other than this criterion, the choice of the

point is completely arbitrary. However, that portion of the remaining arc

length will generally not result in a converged tail solution . Furthermore,

because of the clustering, the element spacing at the very trailing edge will

_________________________ _____ 
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be very dense and may lead to numerical difficulties . As a result, it was

found necessary to do two things to the tail portion of the constant velocity

family:

1) equally space the elements aft of S1., i.e.

= cons tant

for 10 < I ~ N

2) introduce a mul tiplicative stretching factor , M, such that

~s. = M~As. , I < I ~ N1new 1old 0

The above modification must be done after the vel ocity distribution has been

established. The stretching factor , M, is analogous to the tail length , L,

in (21) and finding its proper value is likewise part of the solution.

The results presented herein were obtained using the above-mentioned

procedures. They are indeed solutions to the combined potential f1ow problem

and the extended Stratford equation. Unfortunately, obtaining such solutions

is not exactly straightforward. There exists a very subtl e problem in the

nature of the solution , which thus far has not been satisfactorily resolved.

Consider the extended Stratford equation, (7), and what is known prior to its

integration. Since the geometry has been guessed (or inversely computed

for each iteration), n(s) is known as well as the required initial conditions

from the potential flow solution. Hence, (7) can he straightfonwaro,y

integrated. However, there exist certain additional requirements that

cannot be directly imposed. If the tail extremity is denoted by t.e., then

the requirement that rt.e. 
= 0 must be met. From (7) it is also noted that 4

(d
~p/d5) t e . = 0. It is well known from potential flow theory that for this to

happen at a non-zero velocity, (dn/ds) t e  
= 0 (i.e., the tail must be a pure

cusp). These requirements do not make the problem insoluble but do compli-

18
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cate it tremendously. The difficulty arises from tI~e fact that the location

of the tall extremity, where these requirements are imposed, is not known

a priori . Hence, the big remaini ng problem can be succinctly stated:

“Find the tail l€ngth that results in rte = 0”

Thus far in our investigation, no methodica l way of doing this has been

determi ned.

To put the problem in another way , the arc-length along the tail , St St.e. So~
is established at the outset by the initial guess. The odds that a realistic

solution will resul t are virtually nill. Particularly frustrating is the

fact that the computed geometry will usually gyrate wildly duri ng the

iteration process. Assume for a moment that a bad guess has been made on

After some 15 iterations or so , the geometry will be in total disorder and

there is absolutely no indication on whether the guessed 
~ 

resul ted in a

tail that is too long or too short. It has been our experience that there

exists a narrow band on s~ such that whether is too long or too short is

clearly evident. If the value of 5~ IS in this band , then the following

behavior is usually observed :

1) If Is coo short, the tail will start toward the axis, b’it then flair

out. It is smooth and resembles a rocket nozzle.

2) If St 
Is too long, the tail arc will touch the axis and leave it for a

short distance. It will be wrinkled near the end.

Our procedure has been to make a number of parallel computations in an effort

to establish the band where appropriate corrective actions can be recognized.

At this point it Is a straightforward but possibly lengthy procedure to adju~t

the tal l length unti l a meaningful solution results. For most of the cases

presented herein, a solution was attained In six to eight tries.

19 
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On the other hand, there may be obstinate situations where an inordinate

number of tries still result in failure . It is possible that solutions simply

do not exist for some cases . This could be the resul t of choosing s~ at a

bad location on the body as in the fixed forebody—vel ocity situation.

The above-mentioned probl ems have been discussed primarily for two reasons.

The first is to point out that the current solution procedure is not of a

production nature. It takes a considerable expenditure in time and effort

to obtain a single solution. The second reason is to indicate the

difficulties associated wi th attempts to define an algorithm which wil l

automatically converge on the tail length during the iteration procedure.

The proper tail length indicator is completely absent (or very wel l disguised )

in the mathematical problem. Al so , the erratic behavior of the geometry

and flowfield through the iterations defies any intuitive grasp of the

situation which might otherwi se suggest some automated procedure. Along these

lines is the associated problem that a so lution may not even exist and proof

of existence is all but impossible. If a solution does exist , it may not be

unique in the sense that slightly different tail lengths will still result

in a solution such that the Stratford criterion is satisfied . In this context ,

the concepts of “precise” tai l lengths and “optimizing procedures ” become
ambiguous .

In spite of the above complications , the “brute force ” iteration technique

whi ch was employed led to many solutions that are presented in this report.

The primary message is tha t the reported method usually will yield the

desired end result of an axisyimnetric Stratford tail , but with some difficulty .

20
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DISCUSSION OF RESULTS

Having successfully developed a design procedure for finding Stratford tail

shapes , some meaningful way of demonstrating the method was sought. Al though

the tai l is generally envisioned as an appendage to some forebody, it wil l

slightly alter forebody pressures through its upstream infl uence . In addition,

because this particular problem is solved wi th an inverse Neumann procedure ,

the entire forebody shape is slightly altered by the addition of a tail.

Also , because of the nature of the extended Stratford equation , the forebody

shape and its boundary layer characteristics have a strong influence on the

final tail shape . In conclusion , the tail design is not a problem separable 
-

from the forebody design. Thus, for purposes of demonstration , two distinct

families of solutions are identified. The two families can be loosely

categorized as follows:

1. A prescribed forebody shape wi th the tail geometry being wholly defined

by the Stratford recovery region.

2. A prescribed velocity distribution up to the point of the Stratford

recovery.

To be still more specific , these two families were further narrowed down to

two types. For the first family, a hemisphere-cylinder was chosen as this is

somewhat representative of “conventional” torpedo designs. Various cylinder

l engths are presented including a zero—length cylinder (i.e., a hemisphere-

tail). For the second family, a constant velocity solution from the Reichardt

—— 
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class of bodies was prescribed. Again , results are presented for various

slenderness ratios.

Tabl e 1 presents a sumary of all cases compi ted under the guidelines

established above. There are a tota l of 9 cases which were completed after

the calculational procedure had reached a fully operationa l status. By

“fully operational ,” it is m~ant that all new and necessary computational

procedures were checked out and verified (e.g., the boundary layer

computation , iteration procedures , etc.) and that a Stratford tail was

achieved and valida ted. Each particular case in Table 1 is identified by a

configuration code of the form CDX or RX. The CDX code signifies a constant-

diameter body (hemisphere—cylinder) wi th X representi ng the 1er~yth to

diameter ratio of the basic forebody. One exception to this convention is the

CD1 body (no cylinder section) which is simply called HEM I for hemisphere only.

The RX nomenclature is used for the constant velocity shape which is from the

Reichardt class of bodies. Again , X represents the slenderness ratio of the

basic Reichardt body. Al so presented in Table 1 are the pertinent fl ow

conditions , such as the freestream Reynolds number based on body length and

the state of the boundary layer on the forebody (laminar or turbulent), and

the pertinent results.

As is pointed out in the preced i ng section , the final tail l ength is not

known a priori as it is a function of Reynolds number , boundary layer state ,

and forebody geometry . Hence , for purposes of being consistent , the length

parameter is a length referenced to some non-varying geometrical dimension of

the body . For the CD class of bodies , the reference length was chosen as the

distance from the nose to the end of the cylinder . In the case of the HEMI

body, this reduces to the hemisphere radius. For the R class of bodies , the

22
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reference length is that of the unmodified Reichardt geometry (fore and aft

syninetry). Al ternately, for CDX und RX bodies , the reference length is

simply X diameters.

Si nce the boundary layer momentum thickness plays such an important role in

the dete rmination of the final tai l shape , a test case was prepared from

case no. 1 and checked using the more exact Cebeci-Smi th boundary layer method

(Reference 4) as implemented in the TAPS computer code (Reference 13) . The

resul ts of this test case are presented in Figure 3. As can be seen , the momentum

thicknesses as computed by the two methods are in remarkably good agreement.

The most crucial value for 0 is 00 which determines S0 by (19). The O
~~ 

point

in Figure 3 occurs exactly ~t the minimum j ust aft of s/r l6. Here, the two

computer programs are in such good agreement that the result seems almost

fortuitous. Judging from the overall trends in the two curves, the

Bristow /Truckenbrodt method appears to be more than adequate for serious

design applicati ons.

For comparati ve purpoces , a similar momentum thickness distribution for the

R8 body is presented in Figure 4. The significant message to be gained from

Figure 4 is the manner of boundary layer growth as compared to the constant

diameter CD8 body. As a consequence of the conservation of mass in axi-

syninetri c flows [r(x) effect), the boundary layer growth on Reichardt shapes

is inhibi ted everywhere forward of the maximum diameter point. Aft of this

point , the thickness begins to increase more rapidly, such that by the time

the Stratford recovery begins, the boundary layer is quite thick relative to

a constant diameter body. In contrast, the bounda ry layer development on

constant diameter bodies has a more or less flat plate behavior unti l the

23
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flow begins to accelerate near the tail juncture. From (18) it can be seen

that locally (for small variations in s), 0 varies inversely as (ue/u,~,,)
3.

Since (ue/uj is not constrained in the constant diameter solutions , 0 wIll

minimi ze at tne tail juncture where, by defini tion , 00 and s~ are determined .

This localized thinning effect has a very interesting feedback i nfluence on

the tail length for the constant diameter bodies. The reduction in 00
promotes smaller values of s0 as seen by (19). Due to the nature of the

extended Stratford equation as discussed previously, smaller s~ values tend

to drive the tail length still shorter. The shorter tail l engths in turn

produce still higher corner velocities and smaller values of 00. Thus,

we have the pl easantly surprising resul t that the combi ned effects of the

extended Stratford equation , the potential flow relations and boundary layer

equations have a built-in “fo rcing function ” that resul ts in extremely short

tails. This forcing function is even more pronounced in the case where the

forebody is lami nar since the momentum thickness is much smaller.

Two converged solutions that graphically indicate these effects are depicted

in Figure 5. The two solutions are from cases 1 and 2 which are for the CD8

body at a Reynolds number of l0~. The only difference is that case l i s for a

fully turbulent forebody while case 2is laminar up to the tail juncture. As

can be seen, the boattails for both cases are quite short and the pressure

recovery exhibits a typica l Stratford behavior. In taking a cursory look at

the laminar flow body, the tail is so short that it i ntuiti vely invites

disbelief. Its shortness is directly attribut~~1e to the combined effects of

small 00, the resultant small s0, and the deep pressure spike leading into

the pressure recovery. All of these parameters are presented in Table 1 for

24
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a case to case comparison. In either case, it is doubtful that these shapes,

which satisfy the extended Stratford criterion, would be conceived and arrived

at through experimenta l or trial-and-error numerical procedures.

To further validate the reported procedure of finding Stratford tail shapes,

two other cases of fixed forebody geometries a’e presented in Figures 6 and 7.

Figure 6 is a constant diameter L/D = 4 body. ~n this example, the forebody

is lami nar and the Reynolds number is 106. For\this case, the tail length

came out somewhat longer (in terms of maximum bo~y radius) than the CD8 body.

This result is directly attributable to the reduc’~d Reynolds number of the

flow. Referring to Table 1, the computed value for s~ on the CD4 body at

R = 106 is 0.906 R, whereas on the longer CD8 body at R = l0~, s iseL eL o
0.448 R. The larger value for s~, when coupl ed with the extended Stratford

eq’iation, requires a longer tail.

Figure 7 is a hemisphere followed imediately by a Stratford recovery tail.

This case was computed at a relatively low Reynolds number, 106, with a fully

turbul ent forebody. This resul ts in probably the longest tail necessary.

That is, higher Reynolds numbers and/or some forebody laminari zation could

operate wi th a still shorter tai l using the extended Stratford guidelines.

Even for thi s case , however, the true L/D of this body is only 1.1.

Furthermore, the solution was obtained wi th relative ease whi ch indicates

that still blunter forebodies (e.g., oblate spheroids) could be closed using

the Stratford recovery method.

25
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Thus far, all the cases discussed are of the “prescribed forebody” type.

As was evident in the figures, this approach will almost Invariably lead to

deep, negative, pressure spikes at the tail juncture. In high speed under-

water regimes, such low pressure areas may be intolerable from a cavitation

standpoint. To a1ieviate this problem, the present method allows for con-

straini ng the forebody .eloclty up tu the beginni ng of the pressure rise. One

of the classical high speed underwater shapes is the Reichardt body. This

geometry has a surface velocity that is nearly constant and nowhere exceeds

the freestream vel ocity by 5 to 10 percent or so. Thus, it was felt that the

Reichardt shapes would be good candidate bodies for applying the Stratford

recovery method for tail design.

Figure 8 presents the resui~s of applying the present method to Reichardt

bodi es of an initial L/D of 8. Two cases (3 and 4 in Table 1) are included

in the figure. The only initial conditions that are different is that case 3

has a fully turbul ent forebody while case 4 is lamina r up to the start of the

pressure rise . As is evident in the figure, the present method of coupl ing

the extended Stratford equation with an i nverse Neumann solution allows for

maintaining the constant vel ocity up to the point of the Stratford recovery.

When appl ied in this mode, however, the geometry of the foreboc~y wil l be

noticeably modified for several diameters forward of the point where the

pressure rise begins. This is because of the elliptic nature of the potential-

flow equation and will always occur when a velocity change over a limi ted

region is required.
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Al so evident in Figure 8 is that the start of the pressure rise does not

occur at exactly the same station for the two cases. The reason is twofold.

First, where the pressure recovery starts In a constant velocity region is

an arbitrary choice. Second, the length of the tail may infl uence the required

density of source/sink elements on the tail such that sufficient definition

of the flow is attained . This latter effect has to do with the numerics of

the problem as iscussed in the preceding section.

Some of the impo ant output parameters from the two cases are summarized in

Table 1. For exa4le, the computed values of s~ for the R8 configurations

(cases 3 and 4) are considerably larger than their counterparts on the CD8

bodies (cases 1 and 2). As discussed earlier , this is due to the extensive

thickening of the boundary l ayer on the aft end of Reichardt shapes. In

addition , the lack of high velociti es that are permitted in cases of fixed

forebody geometries is a contributor. These effects are reflected in the

tabulated values of 00, C~~jn 
and u0s0/v.

In order to assess the impact of Reynolds number on tail design , the Reynolds

number of in case 3 is complemented by cases 5 and 6 which are at

Reynolds numbers of 106 and 108 respectively. The afterbody shapes and

pressure distributions from these cases are presented in Figure 9. The

significant conclusion to be made from this example is that tail shapes in

fully turbulent flows are not appreciably affected over a wide range of

Reynolds numbers. Thus, a tall that is optimally designed for the lower end

of the anticipated Reynolds number spectrum should not degrade in performance

with increasing Reynolds number. A lternately, if the design process has some
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built-In conservatism , e.g., a reduced val ue of K in equation (2), then

Reynolds number should not play an important role in tai l design. Of course,

all of these statements are predicated on the assumption that the forebody

will remain turbul ent. If the forebocly should become laminat - , the tail will

simply be off-design, but conservati ve and wi l l not have separated flow.

Figure 10 is a plot of the computed values of 0
~
, 

~~~~
‘ and CD versus Reynolds

number for the three cases just discussed. One interesting result in this

figure is that s0 comes out nearly double the total body length. This Is a

characteristic of Reichardt shapes as discussed several times previously. The

drag coefficient for these and all other cases is given In the form C0A/R
2

for ease In extracting CD for various reference areas. For exampl e, to

obtain CD referenced to frontal area, divide C0A/R
2 by it. To obtain CD

referenced to the two-thirds power of the volume, divide C0A/R
2 by V2’3/R2

which is tabulated for all cases In Table 1.

In a report by Hess and James (Reference 14) enti tl ed “On the Problem of

Shaping an Axisyninetric Body to Obtain Low Drag at Large Reynolds Numbers”.,

there are several conclusions which we would like to quote verbatim.

a. A shape having the lowest drag at one Reynolds number has the lowest

drag at all Reynolds numbers.

b. Shapes with fineness ratios In the range of 3 to 4 have the lowest

drag coefficients based on the two-thirds power of the volume.

c. Drag coefficient is Insensitive to shape and no shape has been found

j with significantly lower drag than a boattailed prolate spheroid. A

j more accurate drag calculation might modify these conclusions

~~ slightly, but would probably not drastically revise them.
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In all, some 50 bodies were investigated by Hess and James and some of these

bodies were of the constant velocity type described herein. Moreover, the

boattails were merely streamlined to prevent separation and no optimization

procedures were employed. Figure 11 , which is taken directly from their

report, is one example from which their conclusions were based. This figure

is chosen for inclusion in our report since it portrays the drag behavior of

modified Reichardt shapes (constant velocity shapes with a streamlined tail).

One data point from our results is suItable for inclusion on this figure and

has been added. It is for the R8 body of case 3 and indicates that a drag

reduction is obtainable through proper tail optimizing procedures. The reduction

is substantial and needs to be verified. However, tails on all the other bodies

in the figure were conventional. This one, being mostly concave, may indeed

demonstrate the drag reduction that has been calculated.

The last geometry to be reported is from case no. 8. This is the R4

configuration at a Reynolds number of 106 with a laminar forebody. Although

this particular case was primarily included as a further substantiation of

the reported method, it does have some interesting attributes. For example,

CD based on the two-thirds power of the volume is only 0.0098. Although some

of the longer shapes have smaller CD values , it is because laminar flow was

assumed to exist at a Reynolds number of lO t. A l ong lamina r run at this

Reynolds number would be very difficult to maintain. Hence, for practical

application , the R4 laminar flow body is a good candidate configuration where

drag is of primary concern. In fact, the tail optimization procedure could be

exercised for a variety of forebody shapes in an attempt to minimize overall

drag. Furthermore, the method is not restricted to an underwater regime and

the concept Is equally applicable to two-dimensional flows as well.

29



Thus far, we have presented what we consider to be the most fruitful resul ts

of our study. From what we can perceive, the extended Stratford equation and

associated ~anerica l procedures do indeed lead to a very short tail wi th

incipient separation being sustained from the start of the pressure rise to

the trailing edge. Verification of all these results by using more exact

methods of computation is desirable, but is not within the level of the

present effort. Perhaps even more importantly, the only real proof of the

existence of these types of flows lies in experimental val idation. In the

hope that we have stirred some Interest in this area, computer generated

tabl es of geometries for the 9 cases are included in Tables 2 through 10.

Perhaps some interested readers will consider using these results in their

own fields of endeavor.

L 
_ _
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Table 2 Table 3
Case 1 Case 2

CD8, TURB., ReL = CD8, LAM., Re1 = lO~
I X/R r/R I
1 ~~~~~~~~~ fl?  1
2 .2’393 .1565 2 •~~199 .1567
3 .~ 426 .31 3 .0419 .31’l
4 .~ 999 .4561 4 .~ 939 .4563
5 .1797 .5912 5 .1784 .5916
6 .2793 .7l2~ 6 .2783 .7126
7 .3977 .8155 7 .33G’ .3164
9 .53~’3 .8994 8 .5285
9 .6746 .9613 9 .6126 .9625

10 .8266 .9999 1~ .8247  ~~~~~11 .9829 1.~ 139 11 .9319 1.1155
12 1.2397 1.0167 17 1.2377 1.1189
13 1.6332 1.02~ 2 13 1.6312
14 2.1585 1.1244 14 2.1565 1.#

~277
15 2.3~ 72 1.s~289 15 2 .8’~5l 1. :333 1
16 3.5679 1.3335 16 3.5559
17 4.4266 1.0376 17 4.4245 1.0436
19 5.3567 1. 41’ 18 5.3516
19 6.3696 1.2433 19 6.3676 1.1514
23 7.4154 1,C~44~’ fl 7.4133 1.’1531
21 8.4828 1.3433 21 9~49l9 1.0534
22 9.5513 1.0401 22 9.5482 1.~ 512
23 1~ .5961 1.1355 23 1(1.5940 1.~ 472
24 11.599~ 1.028C’ 24 11.597’~ 1.04~425 12.5391 1.~ 194 25 12.5371 1.~532~26 13.3977 1.3~14 26 13.3955 1.0204
27 14.1593 .9955 27 14.1563 1.l’77
28 14.8368 .9795 28 14.8’47 .9912
29 15.3319 .9656 29 15.3299 .9715
3~ 15.7251 .9462 3”~ 15.7227 .9519
31 15.9314 .9336 31 15.978 1 .9294
32 16.1325 .8925 32 16 .0343 .8939
33 16.2782 .8266 33 16.”821 .3376
34 16.4333 .7784 34 16.1439 .7847
35 1.6.5971 .7207 35 16.2”9 .7275
36 16.7439 .6679 36 16.2631 .6692
37 16.9~17 .6127 37 16.3266 .61~238 17.0585 .5596 39 16.3912 .5515
39 17.2163 .5866 39 16.4565 .4 9 4~’40 17.3743 •455q 40 16.5227 .438~41 17.5322 .4”45 41 16.5993 .3941
42 17.6999 .3556 42 16.6564 .3326
43 17.8474 .3091 43 16.724n .2838
44 18.0’~47 .2623 44 16.7918 .2377
45 18.1613 .2182 45 16.8599 .1945
46 18.3188 .176n 46 16.9283 .1542
47 18.4755 .1359 47 16.9969 .1169
48 18.6323 .0978 48 17.0654 .0827
49 18.789’s .0624 49 17.1344 .0518
51 18.9459 .0298 5~ 17.2~’35 .0242
51 19.1132 .~~22 51 17.2736 .1024

_ _ _ _ _  - 

- - - -
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Tabl e 4 Tabl e 5

Case 3 Case 4

RB, TURB. , Re1 1O7 RB, LAM., 
~ L

I ~./R ~ /R I

• I ~~~~ 1. c) .o1~~1

2 .0229 .1443 2 .0139 .1222
3 .0947 .2435 3 .05C’1 .2171
4 .2111 .32 94  4 .1391 .2815
5 . 3 7 61 .  4 f ~7f! 5 .2472 .3496
6 .5818 .478~ 

6 .3871 .4129
7 .8277 .5434 7 .5569 .4723

1.1115 .6”37 3 .7561 .5281
-

• 

9 1.4317 .6593 9 .9940
11 1.7824 . 7114  11 1.2396 .6313
ii 2.164’ .7572 11 1.5219 .6769
12 2.5727 .7997 12 1.3293 .7205
13 3 .0 ’~55 .338~ 

13 2.162~ .7612
14 3.4595 .8722 14 2.5173 .7991
15 3. 9319 .9 123 15 2.8942 .8337
16 4.4199 .9283 16 3.2912 .8655
17 4.92m2 •9514 17 3.7163 .8942
18 5 4305 9595 18 4.1394 .9197
19 5.9478 .9928 19 4.5972 .9421
21 6.4695 .9932 2~ 5.0484 .9613
21 6.9933 .9999 21 5.5213 .9771
22 7.5160 1.0127 22 6.0139 .9896
23 8 .0 359  1.03 19 23 6.4944 .9998
24 355~7 .9975 24 6.99~9 1.0143
25 9~~5~ J 9395 25 7.4912 1.0165
26 9.5563 .9789 26 7.9935 1.0149
27 10.’1434 .9630 27 8.4958 .9998
23 11.5176 .9445 28 8.9961 .99’6
29 11 .9774 .9226 2 9.4924 .978”
33 11.4214 ~972 31 9.9821 .9618
31 11.8493 .3684 31 11.4651 .9403
32 l2.257~ .8359 32 10.9375 .9144
33 12.646’ .7999 33 11.3932 .8854
34 13.0153 .7596 34 11.8451 .8496
35 13.3632 .7152 35 12.2767 .8111
35 13.6992 .6552 35 12.5906 .7631
37 13.9924 .6093 37 13.0857 .7127
39 14.2712 .5426  33 13 .4 5 8 4  .6170
39 14.4169 .4966 39 13.8~ R9 .5774
4~ 1 4 . 5 36 5  .43 50  40 14 .1273  .4 7 4 4
41 14.67 25 .59 13 41 14.2185 .4277
42 14.8169 .3417 42 14.2994 .3647
43 1 4 .9 4 3 2  .2978 43 14 . 3 9 9 5  .3 159
44 15.0793 .2534  44 14 .478 9  .265 8
45 15.2164 .2119 45 14.5706 .2200
46 15 .3537  .1714 46 14.6532 .1760
47 15.4918 .1332 47 14 .7571  .1351
48 15.63’2  .0966 43 14.8521  .~~966

• 49 15.7692 .1623 49 1 4 . 9 4 8 4  .05 14
— 50 15.9088 1393 50 15. 1457 .0292
• 51 16 . 0492  .0123 5 1 15 .1447 .0126

47
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Tabl e 6 Table 7

Case 5 Case 6

R8, TURB., Re1 106 R8, TURB. , Re1 = io
8

I X/R r/R I X/R

1 ~~~~~~~~~~~~~~~~ 
1 0.0310 1.0900 -

2 .3229 .1443 2 .022 8 .1444
3 .0947 .2435 3 .0945 .2435
4 .213-3 .3295 4 .2123 .3296
5 .376 1 .4’ll 5 .3759 .4072
6 .59 1.7 .4782 6 .5914 .4784
7 .8276 .5437 7 .8273 .544~
8 1.1114 .6942 8 1.1111 .6346

1.43~’5 .661 1 9 1.4311 .6605
1~’ 1.7822 .7114 10 1.7819 .7119
11 2.1638 .7594 11 7.1635 .7593
12 2.5724 .8~12 

12 2.5721. .8318
13 3.0052 .8398 13 3.0148 .8405
14 3.4592 .8743 14 3 4 5 C  

~ .8750
15 3.9316 .9348 15 3.9312 .9354
16 4.4191 .9312 16 4.4191 .9317
17 4 .9198 .9536 17 4.9195 .95 10
18 5.4311 .9722 18 5.4297 .9723
19 5.9473 .9868 19 5.9473 .9367
25 6.4690 .9976 2~ 6.4687 .9972
21 6.9926 1.0~ 46 21 6.9923 1.1139
22 7.5155 ~~~~~ 22 7.5152
23 9. 1355 1.1174 23 8..3352 1.0158
24 8.5512 1.’~’3’1 

24 9.5499 1.3’12
25 9.”577 .9959 25 9.3574 .9929
26 9.5559 .9847 26 9.5556 .9811
27 10.043-3 .9701 27 10.0426 .9656
28 19 .5172 .952~ 

28 1~~.5169 .9464
29 15.9771 9315 2 9 1~ .9766 .9239
3-1 11.4211 .9157 3~ 11.4216 .8976
31 11.8481 .8773 31 11.8474 .8678
32 12.2567 .8455 32 12.2559 .8340
33 12.6461 ~~~ 

33 12.6451 .7957
34 13.0152 .7709 34 13.0139 .7545
35 13.3632 .72 72 35 13.3616
35 13.6895 .6791 36 13.6871 .6555
37 13.9929 .6244 ~ 13.9399 .5967
33 14.2726 .5517 38 14.2672 .5246
39 14.4233 .5133 39 14.3868 .4787
40 14.5683 .4511 40 14.5111 .4298
41 14.7202 4049 41 14.6214 .3766
42 14.8701 .3537 42 14.7403 .3289
43 15. 1216 .3983  43 14.9611 .2859
44 15 .1733 .2621 44 14.9817 .7.431
45 15.3253 .2192 45 15.1133 .2127
46 15.4779 .1771 46 15.2253 .1636
47 15.6311 .1374 47 15.3480 .1265
49 15.7847 .0994 48 15.4712 .0914
49 15.939 0 .1639 49 15 .5951 .0587
50 16. 9938 91399 51 15 .7195  .9282
51 16 .2494  .0122 4S 51 1 5 . 8 4 5 1  .0923

— 
_ _ _ _ _
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Table 8 Table 9
Case 7 Case 8

CD4, LAM., ReL = io6 R4 , LAM., ReL = i06

I X/R 1. X/R r/R

1 0.3301 0 .0031 1 O.0”33 1.0111
2 .0072 .1569 2 .3151 .1222
3 .0383 .311~6 3 .0267 .2~’704 .0939 .4573 4 .0547 .23 1 4
5 .1721 .5932 5 .1186 .3494
6 .2716 .7148 6 .1839 .4 1 25
7 .3983 .3 191 7 .2725 .4717
8 .5219  .9137 8 .3718 .5273
9 .6619 .9663 9 .4854 .5798
1’ .8167 1.1~ 57 11 .612 9 .0292
11 .973” 1.0211 11 .7533 .6756
12 1.1695 1.0230 12 .9’75 .719 1
13 1.4’86 1.0253 13 1.0734 .7593
14 1.6387 1.0281 14 1.253~ .7975
15 2.0’72 l.’3’4 15 1.4392 .8324
16 2.3605 1.1326 16 1.637~ .b543
17 2.7443 1.0343 17 1.8453 .8932
18 3.1534 1.J355 18 2.1

~ 16 .919].
19 3.5322 1.1361 19 2.2354 .94 ?’
23 4.1242 1.0356 23 2.5161 .9517
21 4.4729 1.~ 344 21 2 . 7 52 1  .9783
22 4.9217 1.0317 22 2 .993 7
23 5.3~ 37 1.~ 282 73 3.2399 1.31 21
24 5.7924 1.-~239 24 3.4972
25 6.2’15 1.3171 25 3.7373 1.’125
26 6.5852 1.119 1 26 3.9995 1.0128
27 6.93 94 1.33 ’9 27 4 .2 3 9 7
28 7 .25 6 7 .9398 23 4 .4 39 C 1.~’13’
29 7.5366 .9791 29 4.7379 .9929
31 7.7752 .9343 3’ 4.9329 .979 1
31 7.9713 •9513 31 5.2241 .9619
32 8. 1676 .9156 32 5 • 4 5 1 1  .94 ’S
33 3.1515 .8484 33 5.6901 .9157
34 3 .2493  .795 6 31 5.9133
35 8.346’ .7357 35 6.1285 .3535
35 9~ 446’3 .6775 35 6.3347 .3154
31 8.5469 .6109 37 6.5311 .7728
38 9.6487 .5613 38 6.7162 .7235
39 8.7513 .5151 39 6.8887 .6674
40 8 .8543  .45’4 41 7.0151 .6137
4 1 8 .9 575  .397 3  41 7 .1225  .52 9 5
12 9.0509 .3469 42 7.2442 .4652
43 9 . 1643 .2985 43 7 .3639 .3931
44 9.2676 .2523 44 7.4967 .3349
45 9.3711 .2094 45 7.6103 .2773

9 .4742  .1669 46 7 .7357 .2215
47 9.5774 .1278 47 7.6323 .1699
43 9.68’S .3912 48 7•9914 .1.197
49 9.7839 • 0 5 7 4  49 8.1291 .0 744

9.8872 .0269 51 8.2511 .‘33 9
51 9.9912 .9019 51 8.3942
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Table 10

Case 9

HEM!., TURB. , Re1 = 106

I X/R

1. 9 .013 ’
2 .C’05 .0528
3 .‘~~41 .1255
4 .0115 .1879
5 •1~ 3’ .2497
6 .0336 •3j#* 5
7 .0592 .3712
8 .9817 .428 5
9 .1’91 .4951

.1411 .5397
11 .174~ .5922
12 .2124 .6423
13 .2535 .6899
14 .2975 .7347
15 .3443  .775

• 16 .393 9 .8153
17 .4456 8508
18 .4995 .382~

)
19 .5556 .9113
2! .6133 .9361
21 .5726 .957C’
22 .7331 .9742
23 .7946 .9869
24 .8551 .9959
2i .9194 .9996

.9323 1.011?
27 1.9299 .3933
23 1.0585 .943’
29 1.1161
31 1.1623 .6 649
31 1.21’3 .8205
32 1.2576 .773 6
33 1.3148 .7252
34 1.3517 .6757
35 1.3984 .6256
36 1.4447 .5755
37 1.4919 .5258
33 1.5371 .4767
3) 1.5934 .4286
41 1.6298 .3919
41 1.6766 .3366
42 1.7239 .2931
43 1.7716 .2515
44 1.8293 .212(1
45 1 .859 ’  . 1748
45 1.9187 .141”

- 47 1.9691 .1176
48 2. 0 211 .1776
49 2.0712 •0497
53 2 .1028 .‘24”
51 2.1746 .9004 W
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Tails designed with this procedure can be categorized as follows: 1) The —
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enti re tail is at incipient separation (no skin friction); 2) The pressure
~‘ecovery is the most rapid possible; 3) The resultant tail is the shortest
possible. The final result is a unique geometry for given freestream
~onditions and boundary layer transition point. By unique , it is meant
l\hat any deviation from the “ideal” geometry will either cause extensive
s~eparation or the tail must become longer and , hence , con t r ibu te  to sk in
f~-iction and reduced volumetric efficiency. ~~
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The computer program can operate in one of two modes : 1) The forebody geometry
can be maintained (except for a very small region near the tail juncture)
wi th only the tail shape determined by the method; 2) The forebody velocity
distribution can be maintained up to the point of the pressure recovery .
The forebody geometry will then be altered for some distance upstream of the
tail juncture . A number of solutions are presented for both of the above
modes . Although the report emphasis is on bodies of revolution , the
concept is also applicable to two-dimensional flows .
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