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Numerical Evaluation of Transonic

Equivalence Rule*

Summary

S\lA numerical investigation was conducted to explore the applic-
ability of the transonic equivalence rule. It is shown that for wings
of small leading edge sweep angle, departure from Whitcomb-Oswatitsch
area rule is significant. For sufficiently large or moderate leading
edge sweep-angle, however, the agreement is satisfactory. Drag-rise and
outer flow field calculations are presented for a number of cases and
their equivalent bodies. Nonlinear 1lift corrections to the classical
area rule are examined. There seems to be a surprisingly good agreement
betw2en calculated flows around equivalent wing-body combinations with

the same wing planform for cases with appreciable lift. _

*This work was supported Ey the U.S. Office of Naval Research under
Contract N00O14-7 6—C—0880%” Partial Support of NASA Ames in terms of

computer time is also acknowledged and discussion with Professor H. K.

Cheng of the University of Southern California is appreciated.
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1. Introduction

It is well known that the linearized potential equation breaks down
for transonic flows. In 1947 von Karman1 derived the nonlinear transonic
small-disturbance equation (TSDE) describing mixed flows and admitting
discontinuous solutions. Heuristically, TSDE can be obtained by replacing
the freestream Mach number appearing in the linearized potential equation
by the local Mach number. On the other hand, TSDE is an approximation
of the full potential equation (where the flow is assumed to be almost
parallel to the x-axis, see Table I). If the full potential equation and
the exact boundary condition are used, we are left with one single
parameter, namely the freestream Mach number M_ .

Many three-dimensional flows around practical configurations can be
categorized, however, according to geometrical parameters, thickness
ratio T , angle of attack o , and aspect ratio A .

For example, when the aspect ratio approaches zero we have an axi-
symmetric flow while two-dimensional flows are obtained in the limit of
infinite aspect ratios. There are many interesting asymptotic theories
to bridge the gap between the full three-dimensional problem and the
above two limits. Starting from the two-dimensional strip theory,
lifting line (and yawed lifting line) theories provide corrections for
the three~dimensional effects. On the other end, the area rule and the
equivalence rule are generally tied with the axisymmetric limit.

In this report, we will examine the validity of the area rule and
the equivalence rule and provide a numerical assessment of their range
of applicability. The transonic area rule of Whitcomb2 and Oswatitsch3
may be stated as follows: At transonic speed, the outer flow far from
the configuration is the same as that produced by an (equivalent) body
of revolution with the same axial distribution of cross-sectional area.
The area rule is based on the assumption of a flow model consisting of
two distinct regions, an inner region governed by a Laplace equation,
the same as that in the slender body theory, and an outer nonlinear
region which is axisymmetric. The above assumption maybe justified for
a=0(t), A=0() and 1-M =o0(c?) .

Spreiter and Staharab considered small 1lift perturbations with the

same flow model; an inner region governed by a Laplace equation and an
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outer nonlinear axisymmetric region; the only difference is that the

inner region here admits a cross flow solution accounting for small lift
perturbation to wings of unit order aspect ratios. Hence o = 0(T) ,
A=0(1) and 1-M =o(t) .

Recently Cheng and Hafezs, and also Barnwell6 modified the area
rule to account for appreciable lift effects for moderate aspect ratio
wings. The 1lift contributions proves to be essential in the operating
ranges of modern aircraft. In their model, the inner region is governed
by a second order equation in the velocity potential (cubic terms are
neglected), and cast into a Poisson's form (see Table II) where succes-
sive approximations involve ronlinear corrections to the slender body
theory. The outer region is rot axisymmetric and is governed by the
three-dimensional classical nonlinear transonic small-disturbance
equation. The precise range of the outer region depends on the degree
of 1ift control. The outer flow field structure is determined prin-
cipally by a line vource end a line doublet. The line doublet distri-
bution is proportional to the local 1lift force (integrated over the wing
upstream of the x station) and maybe estimated using the linear theory.
The line source strength corresponds to an equivalent body whose cross-
sectional area is always bigger than the geometrical cross-sectional
area distribution of the wing and the difference depends nonlinearly on
the 1ift distribution. This nonlinear 1ift contribution to the equi-
valent body results from the second crder corrections to the inner cross
flow solution (namely due to the nonhomogeneous terms in the Poisson's
equation as well as a second order correction to the inner boundary
condition in the cross flow plane) (see Table III). These second order
corrections produce accumulative effects of first order importance in
the outer flow; and they are not accounted for by the classical tran- ]
sonic small disturbance theory. Roughly the class of three-dimensional
transonic flows, where the equivalence rule described above, is appli-

cable, is

a=o0WtAYy , A=0), 1-M =0 or 1-¥ =00 . |
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A more precise statement of the equivalence rule and its range of validity
will be given in Section 2. In Section 3, the modified transonic small-
disturbance equation and the cecond order boundary condition is examined
as a model for numerical simulation cf transonic flows past thin wings
having swept leading edges with smooth lift and thickness distribution.
Also, the numerical method employed is briefly discussed. Our numerical
results are presented in Section 4.




F-qu——-wt S b s i i e ~ e . 4 ) ) RERE—

Vi Transonic Equivalence Rule

In the following, x , y and 2z denote Cartesian coordinates,
with the z-axis pointing in the lift direction. Alternately, cylindrical
polar coordinates (x, r and w) are also used. The length scales £
and b characterize the axial distribution of the thickness and the
half span respectively.

Four parameters A , T , O and M°° are used to characterize the
flow over a wing;

A=b/L ,

T =S /g

cmax
HE max/pc’ﬂ't']‘?ﬂ'bz ?
B.=U/a
The maximum cross-sectional area is denoted by S and the maximum

cmax

1lift is Fmax . To avoid multiple asymptotic limits, these parameters
are replaced by an alternative group of four, €, o, , K and T, ,
where

€= J(Y+1)Mi'r>\3 ’

2 a3
{ Op = (Y +1) M |Ing] oS

2
1 -

K= 2
(y +1) M_ TA
e 1

s Bl -

; The parameter € 1is the ratio of the transverse length scale of the
inner flow region b , to that of the outer region far from the wing.
Essential to the equivalence rule is the existence of a distinct inner
: region which is small compared with the outer region, thus the formu-
; lation is developed for fixed Oy » Iy, and K in the single limit
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€ >0 . When & approaches zero, the outer flow sees the body and its
vicinity as a line segment along the axis and the presence of the body
4 is felt mainly in the form of a line source and a line doublet.

Inner Region:
The inner flowfield is described basically by the solution of a

linear equation (as in the slender body theory),

by + 0, =0 L

and the successive approximations with nonlinear corrections as discussed

in the introduction of this report. This solution ceases to be valid

far from the x-axis. An examination of the non-uniformity of this

solution reveals the important parameters and proper scalings for the

outer region.

Outer Region:
The inner solution breaks down at a distance of the order b/t

from the axis, where the problem is reformulated with reduced variables:

x=x/%, n=e¢er/b, ¢-= ?%_E 5

The governing equation in the outer region is the familiar three-dimensional

1 transonic small-disturbance equation,

o =0 . (2)

(=) 0_+7 () + 13 8
X

XX

With the far field condition, $'* 0 as ;2 + nz + o ., In the outer
variables (x, N and w), the inner region shrinks to the vicinity of the axis

(n = 0(e)) where Equation (2) admits an expansion for n << 1 in the form:

sin W

% ~ D(x) —/—= + C (x) 1nn + C (x)

( ) (21n2n + cos 2w) + ee-° (3) é

X

p
x

T————
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Matching:

Equation (3) permits matching with the inner solution. Subsequently,
the doublet strength D(x) is identified with the lift and the source
strength Co(;) is identified with the rate of change of the geometrical
cross-sectional area distribution of the wing plus nonlinear lift effects.
The last term in Equation (3) arises from the nonlinear correction to
the slender body Equation (1) and is fixed once the lift distribution is
given. A part of the unknowns of the boundary value problem describing
the outer flow is Cl(x) . >

The lengthy analysis of Cheng and Hafez5 determines D(x) and
C,(x)

D@ = 3= o el T FGD)

i 1 O
Co(x) = Se x) . (4)

Where F(x) is a dimensionless lift at x and Se(;) is normalized

by the maximum geometrical cross-sectional area SC e s

F(x) = j? [;“ dy and F(l) =1 5

se&) = sc&) + Nonlinear Lift Contribution (See Table IV)

Notice, 6 is the potential jump normalized by oUb ; y and s
are normalized by b and it can be shown that the nonlinear lift con-

tribution to the equivalent body is always positive, i.e.,
>
Se(x) __Sc(x) .

Cheng7 calculated the equivalent body cross-sectional area for different
lifting surface arrangements and the nonlinear lift corrections were

found to be significant. In summary, the outer region is not axisymmetric,
but it is governed by the three-dimensional transonic small-disturbance

equation and controlled by a line doublet; its strength proportional to

SR TER R i e ke PRV
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the 1ift distribution and a line source corresponding to an increased
cross-sectional area distribution depending nonlinearly on the lift.
The flow field structure is described in Figure 1. The present formu-
lation complements the classical three-dimensional wing formulation (to
11/3A is kept
fixed and not small) and reduces to the axisymmetric limit if A = 0(71)

which transonic equivalence rule does not apply eince

as seen from Table V.

Drag:

The previous formulation shows that the structure of the outer
nonlinear flows around different geometries at a specified transonic
parameter K , including the shock and sonic boundaries, is the same,
as long as the distributions Sé(x) and D(x) remain unchanged.
Associated with the outer pressure field, is the wave drag D which

W
can be correlated as

2 2.2 2
D,/p U, b7T" M_ = £(K) (5)

=]

from the entropy increase behind shocks where

£ = - 1= ff [[$;J] 3 rdan

Equation 5 may also readily be inferred from the form of pressure
drag based on the inner solution. For drag rise correlation*, it is
assumed that the contribution of the inner region to the shock loss is
negligible. For moderate sweep wings, the locally supersonic flow
component may support spanwise-running shocks and hence a drag far
greater than Dw . If, however, the local flow component remains shock
free (e.g., supercritical wing sections), the present theory may be
applied to the control of Dw in the outer region.

The total inviscid drag consists of two parts, the wave drag and

the induced drag. The induced drag has the same form for transonic as

*Berndtg pointed out that for a nonlifting configuration the drag will
be the same as that associated with an equivalent body of revolution
provided the configuration ends in a circular constant cylinder or a
circular pointed rear body otherwise the correlation involves a term
proportional to Sé(l) s

et e b
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for linearized supersonic or subsonic flow and hence, it would be advan-
tageous to have an elliptical spanwise 1lift distribution provided that
the wave drag is not unduly increased (see Colea).

Recently, the validity of transonic similarity rule and transonic
area rule for wing-body combinations with fairly thick moderately swept
tapered wings of intermediate aspect ratios has been experimentally
explored at FFAIO. The motivation was that wings with supercritical
airfoils designed by computational methods for two-dimensional flow has
been wind tunnel tested, but the improvement in drag characteristics
demonstrated in two-dimensional tests, did not come out in three-dimensional
tests. It was obvious that more detailed insight had to be gained about
three-dimensional transonic flow field structure around swept wings of
moderate aspect ratios. The most important aerodynamic concept in this
regard is, perhaps, the transonic area rule. In short, to control the
drag in the neighborhood of the wing, a good design of the wing section
is necessary, at the same time, to control the drag due to shocks extending
in the outer and far field, the three-dimensional assembly cf these wing
sections plays a critical role; the equivalence rule provides the tools
to control these three-dimensional aspects of the problem namely through
the equivalent line source and line doublet distributions. Of interest
here is their experimental results for the transonic similitude. According

to the present theory, the general correlation of drag rise, given by:

AC
Dw _ 1/3, a
5/3 b f(K, 15 >\s "I.') ’
T
reduces to
AC
Dw _ .2 /3
;§7§ M, "AER)

where ACDw is based on the wing area.

We used the FFA experimental data for three affinely related wings
to examine our drag rise correlation formula. Their results are plotted
in Figure 3 where indeed f(K) versus K relationship reduces to a

single curve for the three wings.
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3. Numerical Models and Numerical Methods

In this section, the complete three-dimensional flow simulation |

. model will be examined. Also, flow simulation around equivalent source
and equivalent doublet distributions will be considered.
As discussed before, second order corrections to the transonic ‘
. small-disturbance equation and to the wing boundary condition produces

first order effects in the outer flow which are not accounted for by the
classical theory. The modified boundary value problem is described in

Figure 2. The numerical solution is needed to assess the present asymp-

totic theory and to verify the flow field structure described earlier in
I : Figure 1. The complete three-dimensional problem involves two length
scales (the inner and the outer regions), and in addition, all the
details of the shape of the wing must be considered. On the other hand,
the equivalent system completely avoids the geometrical complexity and
describes only the outer region. For small 1ift perturbation, the
equivalent system can be further simplified to an axisymmetric flow
around a line source plus a lift perturbation governed by an axisymmetric
equation. Of interest is the perturbation of the shock as discussed in

Reference 11. For cases with appreciable 1ift the second order nonlinear

effects are important and these effects appear in the feedback term as

well as in the strength of the equivalent line source.

Review of Existing Numerical Models for Three-Dimensional Transonic

Flows
At present, approximate transonic flow calculations can be performed

for arbitrary lifting wings and moderately complicated wing-fuselage

combinations using relaxation type-dependent finite difference techniques.
Most methods are based on transonic small perturbation theory, but
different wodel equations are used.

The classical von Karman-Cole equation is derived with the assumptions:

@

/3

o = o(r?3y ,

1 - S 2/3
| I—Mm-O(T

)
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/3) , Wwhere T 1is the thickness ratio.

and y,z are scaled to (T1
Different forms of transonic small-disturbance equations are given in
Table VI.

A deficiency in the treatment of wings with moderate to large sweep
angles leads Lomax, Bailey & Ballhaus12 to appeal to higher order terms
in order to obtain better approximation of the full potential equation
in regions of the flow field that are essentially two-dimensional in a
plane normal to the sweep direction. Hence, a modified equation (including
two extra terms in order to satisfy two-dimensional sweep theory) is
introduced.

Newman & Klunker13 modified the classical equation in another way.

An extra term is added for a better approximation of the critical speed
where the equation changes type, from elliptic to hyperbolic.

Recently, van der Vooren et al.14 introduced another modified
equation. In their work, other models are criticized for not being a
proper small perturbation of the mass conservation law. Starting from
the full potential equation in conservative form, a new transonic small
perturbation equation is derived. They rederived the Lomax-Bailey-
Ballhaus equation along this line. The resulting equation is different
from Lomax's equation (written in conservative form) only by third order
terms for smooth flow. Their shock relations, however, differ significantly.

Other authors resort to the empirical formula of the transonic
similarity parameter and pressure coefficient to obtain good results.

The different models of the modified transonic small-disturbance
equation are given in Table VII.

Present Model

The existing models are not adequate for the equivalence rule calcu-
lations since the (¢§)x term is neglected. For the class of configuration
of interest here, (¢§)x term is of the same order as (¢§)x .

In the present analysis, the oblique shock is avoided by using, for
example, supercritical wing sections. Nevertheless the second order
terms are retained to allow for their accumulative effects in the outer

region.

et et s et A AR i o
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The complete formal second order equation is obtained first. The

governing equation is written in the conservation form:
(0 (1 +0)), + (PO + (po,), =0 (6)

where p 1s a unique function of the velocity. Different expressions

for p are used namely,

(I) The full potential equation:
1

i T
o= (1-15E e o, + P +el 4l -n) . )

(II) The second order modified small-disturbance equation:
I . 2 2
P =1 =g M, (8 + 20, + 6+ ¢7)
2 -y .4 .2 3. 2=% e 6.3
PETN UL 8D - St B - 2y . (8)

(I1I) The transonic small-disturbance equation:

p-l-%ni(2¢x+¢i)+£;—lui¢i . 9
The shock relations in each case are consistent with the perturbation
of the Rankine-Hugoniot relation since the corresponding governing
equation is a proper perturbation of the mass conservation.
Following Schmidtls. mass should also be conserved across the bound-
aries. The consistent boundary conditions for the above cases are given

as follows:

(I) Exact boundary condition:

p(l + ¢x) Bx + p¢yBy + p(¢z + a) Bz =0

on B(x,y,z) =0 . (10)




-]12-

(1I) Second order boundary conditiomn:

pla+¢)| = [pwz +a) - (p9,), z]

o

€

-Um1+gn§+<my%+zmu+¢gk

+ z(o¢y)y] -

-[ea+e) - w + oo - 0y v (1)

where 2z = W(x,y) describes the wing geometry.

(III) Conservative boundary conditjion for the transonic small-disturbance

equation:

p(o + ¢z) = p(1 + ¢x) Wx on z=0 . (12)

1
Equation 12 was used by Schmidt15 in two-dimensional calculations instead

of the linearized boundary condition:

¢

=W -a
z X

Where he obtained better agreement with the full potential solution.

Numerical Treatment of Modified Second Order Equation

Ballhaus and Baily and also van der Vooren et al.lé used the rotated

difference scheme (originally developed by Jameson for the full potential |
equationl6). Southzo discussed some of the difficulties encountered in
the solution of three-dimensional modified small-disturbance equations
(diagonal dominance versus conservative forms).

Recently, a new method was developed for the numerical solution of
the full potential equation. Using an artificial density (with extra
terms due to the artificial viscosity), standard discretization tech-

niques (centered differencing everywhere) and standard iterative procedures
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(SOR, ADI, Explicit Method) are shown to be epplicable to the ronlinear
full potential equation written in conservation form. The mixed type
equation is treated as if it were elliptic with the density evaluated
from previous iteration. Two-dimensional results are reported in
Reference 17. This method is btriefly described in Figure 4.

The artificial compressibility wethod is adopted here. A code is
developed to solve the three-dimensional problem using cylindrical polar
coordinates. With the same code, the full potential equation, the
modified second order equation or the transonic small-disturbance
equation is solved depending on the expression for the density in terms
of the velocity. The equation is always in conservation form. Con-
sistent boundary conditions conserving mass are implemented in a straight
forward manner. The results obtained in this report are based cn a
standard successive cver-relaxation procedure applied to the modified
second order equation. The outer boundary condition can be chosen
according to a far field formula (similar to Klunker's) or simply ¢

vanishes or ¢r vanishes (solid wall tunnel).
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4. Numerical Results

We calculated three-dimensional flows around trapezoidal wings with
NACA four digit sections, mounted on a cylinder for zero- and 2°-angle
of attack at Mach number ranges (0.94 to 0.97). The leading edge sweep
angles are 30°, 45° and 60°. The trailing edge seeep angle is always 15°.
The numerical details will not be discussed here. Only preliminary
results in terms of the drag rise and the flow field pressure signature
will be reported.

Transonic Area Rule at Zero Lift

The wave drag of different wings at zero 1lift and their equivalent
body of revolutions are calculated. The results are plotted in Figure 5-a.
For a 60°-swept wing, the difference in the drag of the wing and its
equivalent body of revolution is 2 percent, while for a 45°-wing the
difference is 12 percent and for a 30°-wing, the difference is 46 percent.
In all these cases, there is only one shock on the wing.

In Figure 5-b, the drag rise characteristics for the 30°-w1ng and
its equivalent body are shown. The significant deviation from the area
rule may be attributed to the different behavior of the shock in the
inner region. The wing carries a stronger shock than the body of revo-
lution and the contributions of the inner regions to the drag are neither
negligible nor the same. The outer flow fields correlation is shown

in Figures 5-c and 5-d.

Lifting Area Rule

In an attempt to simplify the equivalence rule formulation, Barnwell18

restricted the lift effect to the equivalent source strength and calculated
an axisymmetric flow around a body of revolution.* Comparisons of wing-
plane results for lifting and equivalent axisymmetric flow indicate the
applicability of this engineering approach. Sedinlg presented similar
calculations of the transonic drag-rise due to 1lift only and showed good

quantitative agreement with experimental data.

*Barnwell also allowed for full three-dimensional effects, where an
approximation for the deviation from the axisymmetric flow is evalu-
ated analytically and a two-variable problem is computed for each
azimuthal plane.
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Obviously, this is a partial account for the lift effects. The
line doublet which is linearly proportional to the 1lift distribution.as
well as the nonlinear lift contribution to the feedback term will intro-
duce asymmetry to the outer region. As pointed out by Cheng and Hafezs,
however, the equivalent line source is asymptotically stronger than the
line doublet as well as the feedback term by a factor of 1 1ln ¢ 11/2,
hence the outer flow becomes axisymmetric in the strict asymptotic limit
even for a wing without thickness (o, » ).

Equivalent body cross-sectional areas of Mach 0.98 design with four
alternative lifting-surface arrangements were studied by Cheng7. Here
axisymmetric flows around these equivalent bodies are calculated. The

sonic line and wave drag for each case are shown in Figure 6.

Transonic Equivalence Rule

Here the asymmetrical effects due to 1lift will be considered.
Three-dimensional flows around a wing of 30°-sweep leading edge at
2°-ang1e of attack and different Mach numbers are calculated. The
equivalent system is another complete three-dimensional flow around a
wing-body combination; the wing has zero thickness, but the same plane
form and the body has the same cross-sectional area distribution as the
original wing.

Although the inner regions are different for the two configuratioms,
their outer limit is the same, i.e., the equivalent source and the
equivalent dcoublet are the same for the wing and the wing body combination.
Hence, according to the present theory the drag rise characteristics are
the same. The results of the calculations are plotted in Figure 7-a and
show good agreement between the two cases. The pressure signature in
the inner- and outer flow fields are presented in Figure 7-b. Needless
to say, this single example checks only the concept, but not the formu-

lation. More numerical results are needed to support the theory.

e b i o
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LR Conclusions

The transonic area rule and the necessary modifications due to 1lift
are examined. The numerical results indicate good agreement of drag
rise characteristics for large swept wings and their equivalent bodies
cf revolution. The departure is significant for wings of small leading
edge sweep angle. The flow field far from the wing is axisymmetric and
correlates with that around the equivalent body of revolution, the shock
losses in regions near the wing and rear the tody are different and not
negligible.

The increase in the cross-sectional area distribution of the
equivalent body of revolution due to ronlinear 1lift effects leads to
significantly different wave drag. The modified area rule can be indeed
a useful tool to examine the three-dimensional aspects of different
designs at least qualitatively. Quantitive agreements, however, are
shown for calculated flows around different wing body combinations with
the same wing plan form and the same total geometrical cross-sectional
area distribution for cases with 1ift. More examples are needed to

support both the concept and the formulation of the present theory.
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Second Order Potential Perturbation Equation:

2 2 2 2
(1= 0, + 0, +6,, =M, O +0¢,)
+ cubic terms

where

2 2 2
=M =1~ + (x+1) ®o

Laplace Equation in the Cross Flow Plane:

¢yy + ¢zz =0 .

Poisson's Equation in the Cross Flow Plane:

e by 22 g
byy ¥ 0y = O = 1O+ M0 + 0,),

Table II. Governing Equation in Inner Region of

Transonic Equivalence Rule Formulation.

st
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Exact Boundary Condition (Impermeability Requirement):

¢z = (1+ ¢x)wx + ¢ywy on z = W(x,y) .

Linearized Boundary Condition:

Second Order Boundary Condition:

Using Taylor Series Expansion or analytic continuation of the flow from

the wing surface to z = 0 plane:

(0, = (8, - 20, + ==*)

= L+ g + oM + 21 - M0 + 20 ),

Table III. Inner Boundary Condition for Inner Region of

Transonic Equivalence Rule Formulation.




Nonlinear Lift
Contribution to =

o2 [(1 +% |1ne|"1HyF2 +% l1ne|™! () + % r*z&’)]

Equivalent Source X

where

a, a
@i | : fz fseo] , [fen] 10 5ty os &
b B

G
i@ -5 [ [ o], [en], mgiare e
i

a are the spanwise ordinates (divided by half span b )

1 %%

Table IV. Nonlinear Lift Contribtuion to the Equivalent Body.
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(1= M) + TO )b + 0 +6, =0

zz

von Karman ka = v+ 1
Spreiter = (y + l)M2
s ©
Hayes I, = (y + l)M4
H )
Murman & Krupp = (y + 1)M3/2
MK 3
1y 10558
Baily & Ballhaus FBB = (y + L)M°°
(2y+1)M2+1
Sirovich & Huo T nkaEnS s

Table VI.

Different Forms of Transonic Small Disturbance Equations.
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Far Field:
S = x
— . " Ex sin w X Kn sin w
¢ = i + (1 =) DI e D(x) - D )dx .
4TR 4‘nR3 2n R e 2R3 { ( °°)
Outer Region:
L2 20 .

(x-$;)$ +o B+ 5T,

Inner Region:
S' (%)

9 = ; 1nn + D(x) &l 3 (D E_(Zln n + cos 2w) + C x) .
b'q
gf”———' L e
Far Field Terms:
S
o _ 2 =2 2
7R - Three-dimensional Source , R™ = ¥~ + Kn o
B oo
5 Three-dimensional Doublet ,
4TR
X
sin @ (1 + )D + KH—E%BJ£ j. (D(x) - Dm) dx = horse shoe vortex .
2R

o

Inner Limit Terms:

S;(x)

o 1nn = Two-dimensional Source in Cross Flow Plane

ELEzﬁgig_g = Two-dimensional Doublet in Cross Flow Plane

+ Feedback Terms Due to Nonlinear Corrections.

Figure.1 Transonic Flow Field Structure.
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Figure 2. Three-Dimensional Flow Simulation Model With the
Second Order Corrections.
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Figure 3. Drag Rise Correlations According to Transonic Equivalence

Rule Formulation Based on FFA Experimental Data.
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Figure 4-a. Artificial Compressibility Equation.
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Figure 6-b. Sonic Lines of Axisymmetric Flows Around Equivalent Bodies.
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Figure 6-b. Sonic Lines of Axisymmetric Flows Around Equivalent Bodies (Cont.).
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