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• Numerical Evaluation of Transonic

Equivalence Rule*

Summary

numerical investigation was conducted to explore the applic-

ability of the transonic equivalence rule. It is shown that for wings

of small leading edge sweep angle, departure from Whitcomb—Oswatitsch
area rule is significant. For sufficiently large or moderate leading

• edge sweep—angle, however , the agreement is satisfactory. Drag—rise and

outer flow field calculations are presented for a number of cases and
their equivalent bodies. Nonlinear lift corrections to the classical

area rule are examined. There seems to be a surprisingly good agreement

betv~.en calculated flows around equivalent wing—body combinations with

the same wing planform for cases with appreciable lift.~

*This work was supported b the U.S. Office of Naval Research under

Contract NOOO14—76—C—O88O.~ Partial Support of NASA Ames in terms of

computer time is also acknowledged and discussion with Professor H. K.

Cheng of the University of Southern California is appreciated.
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1. Introduction

It is well known that the linear ized potential equation breaks down
for transonic flows. In 1947 von Karman1 derived the nonlinear transonic
small—disturbance equation (TSDE) describing mixed flows and admitting

discontinuous solutions. Heuristically , TSDE can be obtained by replacing
the freestream Mach number appearing in the linearized potential equation

by the local Mach number. On the other hand, TSDE is an approximation

of the full potential equation (where the flow is assumed to be almost

parallel to the x—axis, see Table I). If the full potential equation and

the exact boundary condition are used, we are left with one single

parameter, namely the freestream Mach number M~
Many three—dimensional flows around practical configurations can be

categorized, however, according to geometrical parameters , thickness
ratio T , angle of attack a , and aspect ratio A

For example, when the aspect ratio approaches zero we have an axi—
symmetric flow while two—dimensional flows are obtained in the limit of

infinite aspect ratios. There are many interesting asymptotic theories

to bridge the gap between the full three—dimensional problem and the

* above two limits. Starting from the two—dimensional strip theory,

lifting line (and yawed lifting line) theories provide corrections for

the three—dimensional effects. On the other end, the area rule and the

equivalence rule are generally tied with the axisyminetric limit.

In this report, we will examine the validity of the area rule and
the equivalence rule and provide a numerical assessment of their range
of applicability. The transonic area rule of Whitcomb

2 
and Oswatitsch3

may be stated as follows: At transonic speed, the outer flow far from

the configuration is the same as that produced by an (equivalent) body
of revolution with the same axial distribution of cross—sectional area.

The area rule is based on the assumption of a flow model consisting of

two distinct regions, an inner region governed by a Laplace equation,

the same as that in the slender body theory, and an outer nonlinear

region which is axisymmetric. The above assumption maybe justified for

a 0(r) , A — 0(r) and 1 — M~ — 0(r2)
Spreiter and Stahara4 considered small lif t perturbations with the

same flow model; an inner region governed by a Laplace equation and an

S
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outer nonlinear axisymmetric region; the only difference is that the

inner region here admits a cross flow solution accounting for small lift

perturbation to wings of unit order aspect ratios. Hence a — 0(T)
A — 0(1) and 1 — M~ — 0(T2) .5 6Recently Cheng and Hafez , and also Barnwell modified the area

rule to account for appreciable lift effects for moderate aspect ratio

wings. The lift contributions proves to be essential in the operating

ranges of modern aircraft. In their model, the inner region is governed

by a second order equation in the velocity potential (cubic terms are
neglected), and cast into a Poisson’s form (see Table II) where succes-

sive approximations involve nonlinear corrections to the slender body

theory. The outer region is not axisynunetric and Is governed by the

three—dimensional classical nonlinear transonic small—disturbance

equation. The precise range of the outer region depends on the degree

of lift control. The outer flow field structure is determined prin-

cipally by a line ~ource End a line doublet. The line doublet distri-

bution is proportional to the local lift force (integrated over the wing

upstream of the x station) and maybe estimated using the linear theory.

The line source strength corresponds to an equivalent body whose cross—

sectional area is always bigger than the geometrical cross—sectional

area distribution of the wing and the difference depends nonlinearly on

the lift distribution. This nonlinear lift contribution to the equi-

valent body results from the second crder corrections to the inner cross
flow solution (namely due to the nonhomogeneous terms in the Poisson’s

equation as well as a second order correction to the inner boundary
condition in the cross flow plane) (see Table III). These second order

corrections produce e.ccuinulative effects of first order importance in

the outer flow; and they are not accounted for by the classical tran—

sonic small disturbance theory. Roughly the class of three—dimensional

transonic flows , where the equivalence rule descr ibed above, is appli—
cable, is

a = O(J~r/A~) , A — 0(1) , 1 - N2 - 0(rA) or 1 - M2 — O(ct2A4)

______________________ ________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A more precise statement of the equivalence rule and its range of validity

will be given in Section 2. In Section 3, the modified transonic small—

disturbance equation and the E.econd order boundary condition is examined

as a model for numerical simulation cf transonic flows past thin wings

having swept leading edges with smooth lift and thickness distribution.

Also, the numerical method employed is briefly discussed. Our numerical

results are presented in Section 4.

1.

S



~

2. Transonic Equivalence Rule

In the following, x , y and z denote Cartesian coordinates,

with the z—axis pointing in the lift direction. Alternately , cylindrical

polar coordinates (x, r and w) are also used. The length scales L

and b characterize the axial distribution of the thickness and the

half span respectively.

Four parameters A , T , a and M are used to characterize the

flow over a wing;

A = b / 9 .

T S  /bR.cmax

a — F  /pU
2
b
2 

,max

M0, = Uja~

The maximum cross—sectional area is denoted by S and the maximumcmax
lift is Fm . To avoid multiple asymptotic limits, these parameters

are replaced by an alternative group of four, C , , K and r~
where

C = 
~
T + l)M~ TX

3

= J(i + 1) M~ I lnc I 
a2A 3

1 - M~,
2(y + 1) M~ TA

8 1
* 

— 
‘y’ + 1 l inc I A2

• The parameter c is the ratio of the transverse length scale of the

inner flow region b , to that of the outer region far from the wing.

Essential to the equivalenc~ rule is the existence of a distinct inner

region which is small compared with the outer region, thus the formu—
lation is developed for fixed a

* , 
F~ and K in the single limit
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c -
~~ 0 . When c approaches zero, the outer flow sees the body and its

vicinity as a line segment along the axis and the presence of the body

P is felt mainly in the form of a line source and a line doublet.

Inner Region:

The inner flowfield is described basically by the solution of a

linear equation (as in the slender body theory),

‘ 
(1)

and the successive approximations with nonlinear corrections as discussed

in the introduction of this report. This solution ceases to be valid

far from the x—axis. An examination of the non—uniformity of this

solution reveals the important parameters and proper scalings for the

outer region.

Outer Region:

The inner solution breaks down at a distance of the order b/c

from the axis, where the problem is reformulated with reduced variables:

x = x/S?.. , fl = Cr/b TU~b

The governing equation in the outer region is the familiar three—dimensional

transonic small—disturbance equation,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. (2)

x xx

With the far field condition, ~ -~ o as 2 + ~2 -~~ ~ . In the outer

variables (
~~, 

r~ and ta) , the inner region shrinks to the vicinity of the axis(n = 0(C)) where Equation (2) admits an expansion for T1 << 1 in the form:

D(x) sin ~ + C0(x) inn + C1
(x)

+ -
~~~~

- (D2) (21n2~ + cos 2w) + ... (3)

— ‘ ~••.

-_L~~~~~~~~~~~~~~~~~ ---~~~-~~~~
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Matching:

Equation (3) permits matching with the inner solution. Subsequently ,

the doublet strength D(x) is identified with the lift and the source

strength C
0
(x) is identified with the rate of change of the geometrical

cross—sectional area distribution of the wing plus nonlinear lift effects.

The last term in Equation (3) arises from the nonlinear correction to

the slender body Equation (1) and is fixed once the lift distribution is

given. A part of the unknowns of the boundary value problem describing

the outer flow is C
1
(x) . 

-

The lengthy analysis of Cheng and Hafez5 determines D(x) and

C (x)

D(x) = ~~ G*IlnCI
½ F(x)

C ( ~) = S’ (x) . (4)

Where F(x) is a dimensionless lift at x and S (x) is normalized

by the maximum geometrical cross—sectional area Sc max

F (x) = f ~41j dy and F (1) = I

S (x) = S (x) + Nonlinear Lift Contribution (See Table IV)

Notice, ~ is the potential jump normalized by aUb ; y and s

are normalized by b and it can be shown that the nonlinear lift con-

tribution to the equivalent body is always positive, i.e.,

> S (x)

Cheng7 calculated the equivalent body cross—sectional area for different

lifting surface arrangements and the nonlinear lift corrections were

found to be significant. In summary, the outer region is not axisyinmetric ,

but it is governed by the three—dimensional transonic small—disturbance

equation and controlled by a line doublet; its strength proportional to

— • — n-- r ~~~~~~~~~~~~~~~~~~ r __ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~
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the lift distribution and a line source corresponding to an increased

cross—sectional area distribution depending nonlinearly on the lift.

The flow field structure is described in Figure 1. The present formu-

lation complements the classical three—dimensional wing formulation (to

which transonic equivalenct rule does not apply since r”3A is kept

fixed and not small) and reduces to the axisytnmetric limit if A — 0(r)
as seen from Table V.

Drag :
The previous formulation shows that the structure of the outer

nonlinear flows around di f ferent  geometries at a specified transonic

parameter K , including the shock and sonic boundaries , is the same ,

as long as the distributions S’(x) and D(x) remain unchanged.

Associated with the outer pressure field, is the wave drag D
~ 

which

can be correlated as

Dw/ p u 2 
b
2
T
7 N

2 = f(K) (5)

from the entropy increase behind shocks where

f(K)  = - f~- ff E[~JI ~ fldwdfl
Equation 5 may also readily be inferred from the form of pressure

drag based on the inner solution. For thag rise correlation*, it is

assumed that the contribution of the inner region to the shock loss is

negligible. For moderate sweep wings, the locally supersonic flow

component may support spanwise—running shocks and hence a drag far

greater than D
W 

. If , however, the local flow component remains shock
free (e.g., supercritical wing sections), the present theory may be

applied to the control of D
w in the outer region.

The total inviscid drag consists of two parts, the wave drag and

the induced drag . The induced drag has the same form for transonic as

* 9Berndt pointed out that for a nonlifting configuration the drag will
be the same as that associated with an equivalent body of revolution
provided the configuration ends in a circular constant cylinder or a
circular pointed rear body otherwise the correlation involves a term
proportional to S’(R.)

p
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for linearized supersonic or subsonic flow and hence, it would be advan-

tageous to have an elliptical spanwise lift distribution provided that

the wave drag is not unduly increased (see Cole8).

Recently , the validity of transonic similarity rule and transonic

area rule for wing—body combinations with fairly thick moderately swept

tapered wings of intermediate aspect ratios I-.as been experimentally

explored at FFA
10. The motivation was that wings with supercritical

airfoils designed by computational methods for two—dimensional flow has

been wind tunnel tested, but the imi~rove1nent in drag characteristics

demonstrated In two—dimensional tests, did not come out in three—dimensional

tests. It was obvious that more detailed insight had to be gained about

three—dimensional transonic flow field structure around swept wings of

moderate aspect ratios. The most important aerodynamic concept in this

regard is, perhaps, the transonic area rule. In short, to control the

drag in the neighborhood of the wing, a good design of the wing section

is necessary, at the same time, to control the drag due to shocks extending

in the outer and far field, the three—dimensional assembly of these wing

sections plays a critical role; the equivalence rule provides the tools

to control these three—dimensional aspects of the problem namely through

the equivalent line source and line doublet distributions. Of interest

• here is their experimental results for the transonic similitude. According

to the present theory, the general correlation of drag rise, given by:

• ____ = f(K , ~~~~ ~~~
•)

reduces to

— M~ T1~’~ A f(K) ,

where ~~~~ is based on the wing area.

We used the FFA experimental data for three affinely related wings

to examine our drag rise correlation formula. Their results are plotted

in Figure 3 where indeed f(K) versus K relationship reduces to a

single curve for the three wings.

• • • • • - • •r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • 
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3. Numerical Models and Numerical Methods

In this section, the complete three—dimensional flow simulation

model will be examined. Also, flow simulation around equivalent source

and equivalent doublet distributions will be considered.

As discussed before , second order corrections to the transonic

small—disturbance equation and to the wing boundary condition produces

f i rs t  order e f fec t s  in the outer flow which are not accounted for by the

classical theory. The modified boundary value problem is described in

Figure 2. The numerical solution Is needed to assess the present asymp-

totic theory and to verify the flow field structure described earlier in

Figure 1. The complete three—dimensional problem involves two length

scales (the inner and the outer regions), and in addition , all the
details of the shape of the wing must be considered. On the other hand,

the equivalent system completely avoids the geometrical complexity and

descrJl’:s only the outer region. For small lift perturbation, the

equivalent system c.an be further simplified to e.a axisymmetric flow

around a line source plus a lift perturbation governed by an axisymmetric

equation. Of interest is the perturbation of the shock as discussed in

Reference 11. For cases with appreciable lift the second order nonlinear

effects are important and these effects appear in the feedback term as

well as in the strength of the equivalent line source.

Review of Existing Numerical Models for Three—Dimensional Transonic

Flows

At çresent, approximate transonic flow calculations can be performed

for arbitrary lifting wings and moderately complicated wing—fuselage

combinations using relaxation type—dependent finite difference techniques.

Most methods are based on transonic email perturbation theory, but

different zodel equations are used.

The classical von Karman—Cole equation is derived with the assumptions :

• = 0(T~
’
~
3)

1 — M~ = O(T2”3)

_ _ _ _ _
_ _  • • .  - - • •
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and y , z are scaled to (T~~
3
) , where T is the thickness ratio.

Different forms of transonic small—disturbance equations are given in

Table VI.

A deficiency in the treatment of wings with moderate to large sweep

angles leads Lomax, Bailey & Eallhaus’2 to appeal to higher order terms
in order to obtain better approximation of the full potential equation

in regions of the flow field that are essentially two—dimensional in a

plane normal to the sweep direction. Hence, a modified equation (including

two extra terms in order to satisfy two—dimensional sweep theory) is

introduced .

Newman & Klunker ’3 modified the classical equation in another way .

An extra term is added for a better approximation of the critical speed

where the equation changes type, from elliptic to hyperbolic.

Recently, van der Vooren et al.’4 introduced another modified

equation. In their work, other models are criticized for not being a

proper small perturbation of the mass conservation law. Starting from

the full potential equation in conservative form, a new transonic small

perturbation equation is derived. They rederived the Lomax—Bailey—

Balihaus equation along this line. The resulting equation is different

from Lomax’s equation (written in conservative form) only by third order
terms for smooth flow. Their shock relations, however , differ significantly .

Other authors resort to the empirical formula of the transonic

similarity parameter and pressure coefficient to obtain good results.

The different models of the modified transonic small—disturbance

equation are given in Table VII.

Present Model

The existing models are not adequate for the equivalence rule calcu-

lations since the (4
2)x term is neglected. For the class of configuration

of interest here, (4
~~~~
) term is of the same order as (4

~~~~)

In the present analysis, the oblique shock is avoided by using, for

example, supercritical wing sections. Nevertheless the second order

terms are retained to allow for their accumulative effects in the outer

region. 
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The complete formal second order equation is obtained first. The

governing equation is written in the conservation form:

(~ (1 + + (PGy)y + — 0 (6)

where p is a unique function of the velocity. Different expressions

for p are used namely,

(I) The full potential equation:
1

— 1 2  2 2 2

~ — (i— 1 M
00 ((4~~

+1) +4
~y
+4

~z
_ 1 )) . (7)

(II) The second order modified small—disturbance equation:

~~~~~~~~~~~~~~~~~~~~~~~~~~

(8)

(III) The transonic small—disturbance equation:

p _ i _ f M 2 
(24 +$

2) + 2
;~~~M

4
$
2 

. (9)

t. The shock relations in each case are consistent with the perturbation

of the Rankine—Hugoniot relation since the corresponding governing

equation is a proper perturbation of the mass conservation.

Following Schmidt’5, mass should also be conserved across the bound-

aries. The consistent boundary conditions for the above cases are given

as follows:

(I) Exact boundary condition:

P ( l + $ x
) B

x +P$yBy + P(
~z

+ U) B
z

_ O

on B(x y , z) — 0 . (10)
$

1’  

- 

_ _ _  

_ _ _ _  - .
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(II) Second order boundary condition:

p( ct + •z)I — 
[
P(s

~ 
+ a) — (pq ) z] 

~

= + 
~x~~~x 

+ (P~y )W
y 
+ z(p(1 +

+ z(~.~)~
] ~

— [~~(i + • + (p
~ 

W)~,] ~ 
(11)

where z — W(x y) describes the wing geometry.

(III) Conservative boundary condition for the transonic small—disturbance

equation:

p (ct + • )  ~~ + 4
~x~ 

W
x 

on z 0 . (12)

EquatIon 12 was used by Schmidt15 in two—dimensional calculations instead
of the linearized boundary condition:

Where he obtained better agreement with the full potential solution.

Numerical Treatment of Modified Second Order Equation
Ballhaus and Baily and also van der Vooren et al.14 used the rotated

difference scheme (originally developed by Jameson for the full potential
equation’6). South2° discussed some of the diff iculties encountered in
the solution of three—dimensional modified small—disturbance equations

(diagonal dominance versus conservative forms).

Recently, a new method was developed for the numerical solution of
the full potential equation. Using an artificial density (with extra

terms due to the artificial viscosity), standard discretization tech-
niques (centered differencing everywhere) and standard iterative procedures



Se;ternber 1978 
~~

(SOR, ADI, Explicit Method) are shown to be epplicable to the nonlinear
full potential equation written in conservation form. The mixed type

equation is treated as if it were elliptic with the density evaluated

from previous iteration. Two—dimensional results are reported in

Reference 17. This method is briefly described in Figure 4.

The artificial compressibility method is adopted here. A code is

developed to solve the three—dimensional problem using cylindrical polar

coordinates. With the came code, the full potential equation, the

modified second order equation or the transonic small—disturbance

equation is solved depending on the expression for the density in terms

of the velocity. The equation is always in conservation form. Con-

sistent boundary conditions conserving mass are implemented in a straight

forward manner. The results obtained in this report are based en a

standard successive ever—relaxation çrocedure applied to the modified

second order equation. The outer boundary condition can be chosen

according to a far field formula (similar to Kiunker’s) or simply ~
vanishes or 

~ 
vanishes (solid ~call tunnel).

i 

I I

~~~~~~~~~— -_•
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4. Numerical Results

We calculated three—dimensional flows around trapezoidal wings with

NACA four digit sections, mounted on a cylinder for zero— and 2°—angle

of attack at Mach number ranges (0.94 to 0.97). The leading edge sweep

angles are 30°, 450 and 60°. The trailing edge seeep angle is always 150.

The numerical details will not be discussed here. Only preliminary

results in terms of the drag rise and the flow field pressure signature

will be reported.

Transonic Area Rule at Zero Lif t
The wave drag of different wings at zero lift and their equivalent

body of revolutions are calculated. The results are plotted in Figure 5—a.

For a 60°—swept wing, the difference in the drag of the wing and its

equivalent body of revolution is 2 percent, while for a 45°—wing the
difference is 12 percent and for a 30°—wing, the difference is 46 percent.

In all these cases, there is only one shock on the wing.

In Figure 5—b, the drag rise characteristics for the 30°—wing and

its equivalent body are shown. The significant deviation from the area

rule may be attributed to the different behavior of the shock in the

inner region. The wing carries a stronger shock than the body of revo-

lution and the contributions of the inner regions to the drag are neither

negligible nor the same. The outer flow fields correlation is shown

in Figures 5—c and 5—d.

Lif ting Area Rule
In an attempt to simplify the equivalence rule formulation, Barnwell 18

restricted the l i f t  effect  to the equivalent source strength and calculated
an axisymmetric flow around a body of revolution.* Comparisons of wing—

plane results for lifting and equivalent axisyminetric flow indicate the

applicability of this engineering approach. Sedin19 
presented similar

calculations of the transonic drag—rise due to lift only and showed good

quantitative agreement with experimental data.

*Barnwell also allowed for full three—dimensional effects, where an
approximation for the deviation from the axisyimnetric flow is evalu—
ated analytically and a two—variable problem is computed for each
azimuthal plane.

- -—- • - •~~~~~
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Obviously, this is a partial account for the lift effects. The

line doublet which is linearly proportional to the lift distribution as

well as the nonlinear lift contribution to the feedback term will intro-

duce asymmetry to the outer region. As pointed out by Cheng and Hafez5,

however, the equivalent line source is asymptotically stronger than the

line doublet as well as the feedback term by a fac tor of 1 in ~
hence the outer flow becomes axisymmetric in the strict asymptotic limit

even for a wing without thickness (cY
~ 

+ co) .

Equivalent body cross—sectional areas of Mach 0.98 design with four

alternative lifting—surface arrangements were studied by Cheng7. Here

axisymmetric flows around these equivalent bodies are calculated. The

sonic line and wave drag for each case are shown in Figure 6.

Transonic Equivalence Rule

Here the asymmetrical effects due to lift will be considered.

Three—dimensional flows around a wing of 30°—sweep leading edge at

2°—angle of attack and different Mach numbers are calculated. The

equivalent system is another complete three—dimensional flow around a

wing—body combination; the wing has zero thickness, but the same plane

form and the body has the same cross—sectional area distribution as the

original wing.

Although the inner regions are different for the two configurations,

their outer limit is the samL, i.e., the equivalent source and the

equivalent dc’mblet are the same for the wing and the wing body combination.

Hence, according to the present theory the drag rise characteristics are

the same. The results of the calculations are plotted in Figure 7—a and

show good agreement between the two cases. The pressure signature in

the inner— and outer flow fields are presented in Figure 7—b. Needless

to say , this single example checks only the concept, but not the formu-
lation. More numerical results are needed to support the theory.

• - ~~~~— - • ~__ -_i~~~ ••~~~~~~~~ 
• - - 

~~~~~~~~~
- •

~
=

~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —.--~
-
~~t ~~~~~~~~~~~~



________ 
________________________________________

—16—

S. Conclusions
The transonic area rule and the necessary modifications due to lift

are examined. The numerical results indicate good agreement of drag

rise characteristics for large swept wings and their equivalent bodies

of revolution. The departure is significant for wings of small leading

edge sweep angle. The flow field far from the wing is axisymmetric and

correlates with that around the equivalent body of revolution, the shock

losses in regions near the wing and rear the tody are different and not

negligible.

The increase in the cross—sectional area distribution of the

equivalent body of revolution due to r,onlinear lift effects leads to

significantly different wave drag. The modified area rule can be Indeed

a useful tool to examine the three—dimensional aspects of different

designs at least qualitatively. Quantitive agreements, however, are
shown for calculated flows around different wing body combinations with

the same wing plan form and the same total geometrical cross—sectional

area distribution for cases with lift. More examples are needed to

support both the concept and the formulation of the present theory.
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Second Order Potential Perturbation Equation:

(1 _~~2 ~ 
~~~ + 4  = M ~ (~p

2 +~~
2)xx yy zz y z x

+ cubic terms

where
1 - M 2

~~~ 1 - M ~. + ( y + 1 ) M2
4

Laplace Equation in the Cross Flow Plane : j

~ 
+~~ = 0  .yy zz

Poisson ’s Equation in the Cross Flow Plane:

~ + 
~ 

= (M2 — 1)q:~ + N2(~
2 

+ ~
2)yy zz ,oc y z x

Table II. Governing Equation in Inner Region of
Transonic Equivalence Rule Formulation.
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Exact Boundary Condition (Im perm eability Requirement):

= (1 + ~~)W + ~y
W
y 

on z = W( x ,y)

Linearized Boundary Condition:

~ = W  oil z 0z x

Second Order Boundary Condition:

Using Taylor Series Expansion or analytic continuation of the flow from

the wing surface to z = 0 plane:

@Z
)
O 

= — zct
~~ 

+

((1 + + ~yWy + z( 1 — M~)4~~ + 
~~~~~~

Table III. Inner Boundary Condition for Inner Region of

Transonic Equivalence Rule Formulation.
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Nonlinear L i f t  r 2 1 —

Contribution to o~ (1 + f line I 1)F + ~ ~lnc~ 
1 T(x ) + ~ 

r~E(~)
Equivalent Source L x

where

T(x) = ~ a1
2 

f (x ,s)~ ~ ~[~
(x ,y)~ ~ 

in 
~ sj 

ds dy

a2 a2

E(x) = f I ft~(x~s)1J ~ lf~(x,y)JI in 1 ds dy

a1 , a2 
are the spanwise ordinates (divided by half span b )

Table IV. Nonlinear Lift Contribtuion to the Equivalent Body .
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-4

•— ..i a) a) a)
S

-~~ ‘-4
w c ‘~-~ ‘i-i ‘i-i 0
E 0

‘-4 ‘-4 II
o i~ m
I CC -.a) 0
a) 5 t-~
~ S O 1 - ~

b .~~ $-~ Z X ..-4 ~ 4
E-~ o CC 0 I )4

-
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CC N II .4 1 1 5  II ~~ 8 u
-l II II II II 0 0 ~~ .4

C’1 I N 0. 8IX  I~~~IN -0- ~ ~ ~ I4- ~~ -0-+ L) a.

r~~~~~~~~~ 1

. 

~~~~ 

I

,-4 () ~~~O
‘-4 

_ CC.I  O~~~ I X  —~~— ~-4~~~ Q C )  jG -
IJ ~~ 

4~~~ -~ ~~ C’4
C) 

— + II

S — . $-~ ~~ CC 0
I- -0- 0 

Ii ~~ 8
II II II II .,.4 

~4 0 0 0. ~~Ix lid 0 a.
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((1 - M~) + 1’~~ )~ + $ + ,zz =

von Karman r k I + 1

Spreiter = (y + 1)M~

Hayes = (y + 1)M~

Murman & Krupp = (y + 1)M~~
2

- 

Baily & Balihaus rBB = ~ +

(2y+ 1)M~-s-1
Sirovich & Huo rSH = 2

Table VI. Different Forms of Transonic Small Disturbance Equations. 
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Far Field:

+ + ~ (1 + ~ )Dc0 + 
w f (D(x) - Dc0)dx

Outer Region:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x xx

Inner Region:

S’ (x)
intl + D(x) 

sin w 
+ -~~~ (D_)~ (2ln2ri + cos 2w) + C1(x)

Far Field Terms:

Sc0 2 — 2  2E Three—dimensional Source , R — mr + Kil

Ex -
= Three—dimensional Doublet

4irR

SIlI CA) 
(1 + ~ )D + ~ f (D(x) — D )  dx E horse shoe vortex

Inner Limit Terms:

5’ (x)
1n~ E Two—dimensional Source in Cross Flow Plane

D(x) sin CA) 
E Two—dimensional Doublet in Cross Flow Plane

+ Feedback Terms Due to Nonlinear Corrections.

Figure . 1 Transon lc Flow Field Structure.
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S

2 2
$- ‘ O as y +z -~~~c0

(1 - M
2 + ( y+1)  

~~~~~~~~~~~~~~~~~~ 
M~ y~~~~~Z~x

~z f 0  
- 

~~~~~ ~zz~w 
— (1 + +

at z—W(x y).

- -

Figure 2. Three-Dimension al Flow Simulation Model With the
Second Order Corre ctions.
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Figure 3. Drag Rise Correlations According to Transonic Equivalence
Rule Formulation Based on FFA Exper imenta l Data.
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Figure 4-a. Artificial Compr essibility Equation.
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Figure 5-c. Correlation of Pressur e Signatures for Wing and its Equivalent Body.
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Figure 5-c. Correlation of Pressure Signatures for Wing and its Equivalent Body (Cont ).
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Figure 7-b. Correlation of Pressure Signatures for Wing and Its
Equivalent System.
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Figure 7-b. Correlation of Pressure Signatures for Wing and Its
Equivalent System (Coin.).
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Figure 7-b. Correlation of Pressure Signatures for Wing and Its
Equivalent System (Cant).
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Figure 7-b. Correlation of Pressure Signatures for Wing and Its
Equivalent System (Coin.).
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