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Mechanistic Aspects of 1,2-Dialkyldimolybdenum (M=M) Chemistry

Sir: : /ﬁ(’?m

; N := Both historically™ and commercially{la~alky1 complexes

b

have played a prominent role in the development of mononuclear
transition metal chemistry. The recent syntheses and
characterizations of 1,2-dialkyl-dimolybdenum®™* and -ditungsten®’
compounds JMEMTfafford the opportunity of studying the reactivity
patterns of élkyl groups bonded to the simplest of metal
clusters,g‘namely dimeEST”Eeneex§;\“Ye wish here to report the
results of labelling studies using th;YEFCHQCDg ligand and

furthermore to address ourselves to the mechanistic implications

of these results. \E::f’/ e

The reaction between Mo,Cl, (NMez), and LiCHz=CD; (2 equiv)

s e

proceeded smoothly to yield Mo, (CHoCDs)> (NMes),, according to

eq. 1. The 1,2-diethyldimolybdenun compound was purified by

1 MosCl, (NMe,), + 2 LiCHoCDs % Mo- (CH5CDs) - (NMes ) 4

+ 2 LicCl

sublimation at 80°C, 107° cm Hg. The low temperature limiting
'H nmr spectra of Mo (CHzCD3)> (NMez), and Mo- (CHoCHj3)» (NMez) 4
obtained at -60°C, 270 MHz in toluene-dg are shown in Figures
la and 1b, respectively. Both compounds exist in a mixture of
gauche and anti rotamers with the gauche being the predominant
rotamer. The most striking difference is in the ethyl
resonances. In the gauche rotamer, which lacks a plane of

symmetry, the methylene protons are diastereotopic and at
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2
270 MHz form part of an ABXs; spectrum. It is therefore obvious
from a comparison of the spectra in Figure 1 that the compound
Mo: (CH2CD;) > (NMe>), retains its “H label in the methyl position.
The methylene protons resemble an AB spin pattern since TJ‘H-"H
is very small compared to the geminal J‘H—‘H’

Addition of CO, to a hydrocarbon solution of Mo, (Et), (NMe,) 4
leads to the formation of Mo, (0oCNMes), (MEM) and equimolar
amounts of ethylene and ethane.? Reaction 2 was carried out in
an nmr tube. The fine yellow precipitate of Mo, (0OoCNMe,), was
centrifuged to the top of the nmr tube and the 2H spectrum of

the solution was recorded at 220 MHz. The spectrum is shown

2 Mo, (CHoCD:) (NMey), + COp —> Mo, (0oCNMe,), + CHo=CD, +

CH>DCD3

in Figure 2a. The 2H spectrum of CH,=CD, agreed well with that
which can be computed with a knowledge of all the 'H-'H couplings
in ethylene® and the relative gyromagnetic ratios of 'H and
ZH.IO

In order to compare the 2H spectrum of CH,DCD; obtained
in reaction 2 with that of an authentic sample, we reacted a
solid sample of LiCH,CD; with D20 in a vacuum manifold. The
gases were condensed into an nmr tube using benzene as solvent
and the 2H spectrum was recorded. This is shown in Figure 2b.
The 2H spectrum of the ethane is identical with that in
Figure 2a; furthermore, it is apparent that addition of D»0

to a solid sample of LiCH,CD, also induces the formation of
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CH,>=CD,.

In a third experiment a mixture of Mo, (CH-CH.), (NMe.),
and Mo, (CH>CDs;). (NMe;), was reacted with CO. in a sealed nmr
tube and the °H spectrumbwas recorded: this was identical
to that shown in Figure 2a.

The 'H spectra of all of the above were also recorded.
The 'H nmr spectrum of CH,=CD., is a complex (AA'XX') but
symmetrical spectrum since each proton is coupled to cis and
trans “H nuclei, I = 1, and alsc to its geminal proton:
gem—gJH_IH in ethylene is +2.5 Hz.° Significantly, however,

the 'H nmr spectrum of the ethylene obtained from the addition

of CO> to a mixture of Mo, (CH,CHs). (NMe,), and Mo, (CHoCD3) - (NMes) 4

was merely the superimposition of a single line slightly down-
field from the central portion of spectrum obtained for
CH,=CD, .!!

Previously we noted? that Mo,Me, (NMe.), and Mo, (Et). (NMe.,) ,
react with tert-butanol to give M02Me2(OBut)4 and MopEt(OBut)S,
respectively. 1In both reactions the replacement of NMe. by
oBu® groups with the formation of HNMe, is expected,!? but in
the latter reaction the additional substitution of one ethyl
group by OBut and the liberation of one equivalent of ethane
was puzzling to us. Consequently we carried out the reaction
of Mo, (CH2CD3): (NMe,), with excess Buton in a scaled nmr tube
and recorded the °H spectrum of the products. The reaction

proceeds according to equation 2. The ethane is CHyDCD; while

2 Moy (CHoCDs), (NMep), + Bu“OH —> Mo, (C.H4D,) (OBu®)s +
CH,DCD,

skaady 2y
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4
the o-ethyl group has a statistical distribution of deuteriums
on the @ and B carbons. The “H spectrum of the O-ethyl group
consists of two broad featureless signals at § = 2.90 and
1.72 ppm in the integral ratio 2:3%.

These observations allow the following conclusions.

(1) In Mo, (CHzCH;)> (NMep), B-hydrogen elimination is either
kinetically or thermodynamically not favorable. (2) Addition
of CO, to Mo, (CHoCH3)- (NMe-), (M=M) leads to the formation

Mo, (0.CNMe-), (M®M) by an intramolecular C-H reductive
elimination reaction which is preceded by an irreversible
B-hydrogen elimination reaction. (3) Addition of ButOH to

Mo. (CHoCH3;), (NMe, ), causes the elimination of ethane by a C-H
reductive elimination which is also promoted by an irreversible
B-hydrogen elimination reaction. The g-ethyl group subsequently
formed in reaction 3 is formed from CH-=CD, and a hydroxyl
hydrogen atom from ButOH (or possibly, but less likely the

amine hydrogen of HNMe,). fB-hydrogen elimination from the
O-ethyl ligand is then a reversible process with the equilibrium
favoring the o0-ethyl group.

These results raise many interesting mechanistic guestions
concerning factors favoring g-hydrogen elimination and reductive
elimination reactions in dinuclear chemistry. We resist the
temptation to speculate at this time but do note that our
observations have one parallel with mononuclear transition
metal chemistry. Reductive elimination involving C-H bond

formation is more facile than reductive elimination involving

g
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C-C bond formetion.
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Captions to Figures

Figure 1.

Figure 2.

Proton NMR spectra recorded at 270 MHz, -61°C in
toluene-dg of a) *-anti and gauche - Mo, (CH.CD-) .-
(NMez), and b) *-anti and gauche - Mo, (CH-CHg) .-
(NMez) ;. c¢) ** represents residual protonated toluene.

Deuterium NMR spectra recorded at 16°C and 220 MHz
of the gases formed in the reactions of a) CO. with
Mo (CH>CH3) > (NMez) 4, and b) D,0 with LiCHoCD,. Both
spectra were recorded in benzene.
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