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NUMERICAL DETERMINATI ON OF THE
PARITY-CONDITION PARAMETER FOR
LANCHESTER-TYPE EQUATI ONS OF

MODERN WARFARES

JAMES G. TAYLORt and GERAu 0. BROWP4
Departments of Operations Research and Computer Science, Naval Postgraduate School, Monterey,

California

Sespe aid pmpsen—This paper presents new computational methods that facilitate digital-computer
analysis of some impa tint military operations research problems. Lanchester-type combat modelsf 13 are
deterministic differential-equation models of combat attrition in which the state variables are typically the
numbers of the different weapon-system types. Even though combat between two military forces is a
complex random process, such deterministic combat models are commonly used for computational reuons
in defense-planning studies, for example, to usess the relative importance of various weapon-system and
force-level parameters. A so-called attrition-rate coeffi cient in such . combat model represents the fire
effectiveness of a particular weapon-system type against a particular target type, and time-dependent
attrition-rate coefficients are used to model temporal variations in fire effectiveness when, for example, the
range between firers and targets changes appreciably during battle. For such a variable-coefficient
Laachester-type combat model that is a generalization of Lanchesler’s(23 classic “square-law” model, we
present a simple numerical procedure for determining the so-called parity-condition parameter, which is
“the enemy force equivalent of. friendly force of unit strength” and may be used to predict battle outcome
in specific ~~~~ its. These results allow one not only to predict battle outcome but also to tradeoff
quality vs quantity of two opposing weapon systems.

AIatrsc$—This paper presents a simple numerical procedure for determining the parity-condition parameter
for determiiiatic Lanchester-type combat between two homogeneous forces. Deterministic differential-
equation combat models are commonly used in parametric studies for computational reasons, since they
give essentially the same results for the mean course of combat as do corresponding stochastic attrition
models. The combat studied in this paper is modelled by Lanchester-type equations of modern warfare with
time-dependent attrition-rate coefficients Previous research has generslized Lanchester’s classic ’squsre
law” to such variable-coefficient combat. It has shown that the prediction of battle outcome (in particular,
force annihilation) without having to spend the time and effort of computing force-level trajectories
depends on a single parameter, the so-called parity-condition parameter, which is “the enemy force
equivalent of a friendly force of unit strength” and depends on only the attrition-rate coefficients.
Unfortunately, previous research did not show generally how to determine this parameter. We present
general theoretical considerations for its numerical noniterative determination. This genera] theory is
applied to an important d ais of attrition-rate coefficients (offset power-rate coefficients). Our results allow
one to study such variable-coefficient combat models almost as easily and thoroughly as Lanchester’s
classic constaat-coefficient model.

I. INTRODUCTION
As a consequence of pioneering work by F. W. Lanchester done about the time of World War I,
military analysts have used simplified deterministic differenti al-equation models to develop
insights into the dynamics of combat from about the end of World War II (see, for example,
(1 , 3— 111. Such deterministic models have been widely used because (among other reasons) tire

~
)
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corresponding stochastic formulations are for all practical purposes analytically intractable (see
Note I on p. 65 of [12]). The advent of the modern high-speed digital computer has made feasible
the development and use of quite complicated versions of such Lanchester-type 5 models as
practical defense planning tools [13]. Thus , today militarily realistic computer-based Lanchester-
type models of quite complex combat systems have been developed . Such models currently exist
for almost the entire spectrum of combat operations , from combat between battalion-sized (14J and
division-sized(151 units to theater-level operati ons[16, 171.

A simple combat model , however , may yield a clearer understanding of important inter-
relationships that are difficult to perceive in a more complex model , and such insights can
provide valuable guidance for more detailed computerized investigations (see [4, 11]). In this
paper we present a new important numerical procedure that facilitates parametric analy sis (in
particular , the parametric examination of force-annihilation prediction) of battle outcomes for
such simplified Lanchester-type models of combat between two homogeneous forces with
temporal variations in each side’s fire effectiveness. Previously, such battle-outcome in-
formation could only be readily obtained from constant-coefficient models, and S.
Bonder (3 , 18, 19] has emphasized the deficiencies of constant-coefficient models (see Section 3
below). These results are not only significant in their own right but are also useful in the
quantitative analysis of time-sequent ial combat strategies (see, for example , [20, 211).

It is important for the military operations analyst to have a clear understanding of how
force-level and weapon-system-performance parameters interact to determine a batt le’s
outcome . Such knowledge is particularly useful in weapon-system and force-level planning
activities for defense planning (especially since one frequently uses models that are so
complicated that trends are not directly discernible without extensive (and costly) computer
runs). S. Bonder ’s [3 , 4, 19] pioneering work on methodology for the evaluation of military
systems (particularly mobile systems such as tanks, mechanized infantry combat vehicles, etc.)
provides a motivation for interest in variable-coefficient , deterministic , Lanchester -type combat
models such as we consider in this paper. He has stressed (see pp. 30—31 of [4]) the importance
of analytic al solutions to such models for developing insights into the dynamics of combat by
portraying the relation between various factors in the combat attrition proces s and the surviving
numbers of forces and for facilitating sensitivity and other parametric analyses (see [22]).
Unfortunate ly, as work by Bonder and Farrell [4] and Taylor[ 12, 23] shows, the analytical (ic.
infinite series) solution to variable-coefficient equations generally by itself (i.e, without expli-
citly computing force-level trajectories) provides little information about battle outcome
because of its complexity. Therefore , one must seek new ways for developing insights.

Taylor and Comstock[7] have given results that allow one to predict battle outcome (in
particular , force anni bilationt ) in theory without having to spend the time and effort of
computing force-level trajectories. To be comput ationa ily practical , however , their results
require the determination of the so-called parity-condition parameter (“the enemy force
equivalent of a friendly force of unit strength”), which depends on only the model’s attrition-
rate coefficients. They analytically determine the parity-condition parameter for power attrit ion-
rate coefficients with “no offset ”, which allow one to model combat between two weapon
systems with the same minimum effective range but different range dependencies for each
system’s fire effectiveness (see also [6]). It is the purpose of this paper to show how to
determine the parity-condition parameter in other cases , in particular for power attrition-rate
coefficients with “positive offset ”, which allow one to model such combat between weapon
systems with different maximum effective ranges. Our results allow one to study in general such
variable-coefficient combat models almost as easily and thoroughly as Lanchester’s classic
constant-coefficient model.

The organizat ion of this paper is as follows. We first review Lanchester-type equations of
modern warfare , especially variable-coefficient formulations. Next we review force-anni-
hilation-prediction conditions for such models and show how to use knowledge about the

AJ so f req uently called duf terentlal models of cornball 15).
tBonder and HonlglSJ point out, however, that force annihilation may not always be the best &terles for evakatIg 4military operations. See pp. 192-242 of Bonder and Farrell (4) for a detailed Laacbuw-typs aneipul, of an attech acemolo

for which other “end of battle conditions” play the principal role. Nevertheless, it Is of cos.lMahl. hIau nt (5~~ r~~ p for
developing insights into the dynamics of combat) to be able to easily predict the occuansnoe of force lea.
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parity-condition parameter for one set of attrition-rate coefficients to numerically determine it
in related cases of interest. This general theory is then applied to the important case of offset
power attrition-rate coefficients , with detailed numerical examples being given.

2. LANCHESTER’S CLASSIC COMBAT FORM ULATION
F. W. Lanchester[2 1 (see also p. 45 of [12]) hypothesized in 1914 that combat between two

military forces could be modelled by

dxldt = — ay, dyjdf — — br, (1) j
with initial conditions

x(t = 0)— x0 , y( t —0 ) = y,, (2)

where t =0 denotes the time at which the battl e begins, x(t) and y(f) denote the numbers of X
and Y at time I, and (for a particular battle) a and b are nonnegative constants which are today
called L.anche ster attrition-rate coefficients and represent each side’s fire effectiveness. The
equations (1) are only valid for x,y >0. For example, the first becomes dx/dt =0 when x =0.

Because of Lanchester’s pioneeri ng work(21, we will refer to any differential-equa tion
model of combat attrition as a Lanchester -type combat model or as a system of Lanchester-
type differentia l equations (or sometimes simply as Lanchester-type equations). In particular ,
we will refer to (1) as (constaat-coet~cient) La.sckesser-:ype equ ations of modem warfare.
Other forms of Lanchester -type equat ions appear in the literalure[1, 231, but we will not
consider these here. Various sets of pb~sicsl circumstances have been hypothesized to yield
them: for example : (a) both sides use ainied fire and target acquisition times are consta ntflOl;
or (b) both sides use area fire and a constant density defense (see p. 345 of [1]).

From (1) Lanchester deduced his famous square law

— x2(t)) = a(y.2 — y2(t)) (3)

Consider now a battle terminated0 by either force level reaching a given “breakpoint ”: for
example, Y wins when x1 = x(t1) — X~p fx’~’x. but yj > y~ f~DPy0, where t~, x1, y~ denotefinal values and x~p denotes X’s breakpoint which is a given fraction Ix” of his initial strength.
It follows from (3) that

Y will win ifand onIy <~~(~~~~~”i,j.~~), (4)

which for a fight-to-the-finish (i.e. Ix” = f~,1P = 0) becomes the classic result

Y will win a fight-to-the-finish if an only if~~< ~,J(!) . (5) ‘1
Yo ~b,

Unfortunately, no relationship similar to (3) holds in general for variable attrition-rate
coefficients except when a(t)/b(t) = constant (see p. 48 of [12]). This paper, nevertheless, shows
bow (5) generalizes in these cases, but so far we have not been able to generalize (4). Recalling
thaz the time history of theXforce level is given by

x( t )—x ecosh V(ab) t— Ye .~j (~)sinh \/(ab)t, (6)

V we see that the battle trajectories depend on the two weapon-system-performance parameters:
(I) the intensity of combat ~/ab, and (II) the relative firs electiveness aib. Only the relative fire
effectiveness, however, determines the battle’s outcome (see (4) and (5) above).

~~~ modeling of battle seemiaa*lo, Is a puotesm area I ~~~~~~iwy delouse p h g  studies (see pp. 524-525 of
(SD.
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3. VARIABLE ATTRITION-RATE COEFFICIENTS
Bonder [l81 has pointed out that in many cases (for example, in the case of mobile weapon

systems) the validit y of the assumption of constant attrition-rate coefficients is open to question
(see also [3, 4, 19]). Thus, we consider

d4d5 = — a(t)y, dyldt = — b(t)x, (7)

where a(s) and b(t) denote time-dependent attrition-rate coefficients. We assume that a(t) and
b(s) are defi ned , positive , and continuous for t~ < I m with t~ � 0. For convenience, we
introduce the notation that a(S) E ~~~~ T) means f~ a(t) ds exists (and is given by a finite
quant ity). From our assumptions about a(s) and b(t) , it follows that a(t) E L(50, T) implies that
J~ a( S) dt = + on, We also assume that a(S), b(s) E L(t0, T) for any finite T. We further take a(t)
and b(s) to be given in the form a(t) kj (t) ,  b(s) = k~h( t), where k~, k~ are positive constants
chosen so that a(t)lb(t ) = k,l~ when g(t) = h(s). Analogous to the constant-coefficient case
[see discussion after (6)], we have the two weapon-system-performance parameters : (1) the
intensity of combat , 1(t) = V(a(s)b(t)); and (II) the relative fire effectiveness , R(t) a(t)Ib(t).
We accordingly introduce the combat-intensity parameter A, and the relative-fire-effectiveness
parameter AR defined by

A, = \/ (k,,kb) and AR = k,Jka. (8)

Two s~gniflcant developments in the Lanchester theory of combat during the 1960s were the
development of methodology for (a) the prediction of Lanchester attrition-rate coefficients from
weapon-s ystem-p erformance data by S. Bonder (18, 24] and (b) the (maximum likelihood)
estimation of such coefficients from Monte Carlo simulation output by 0. Clark (25). Both these
developments and others (see (121 for further references) have generated interest in the model
(7) and facilitated its application (and that of its generalization to combat between hetero-
geneous forces [4) to defense planning studies.

A large class of tactical situations of interest can be modelled with the following general
power attrition -rate coefficients (4,7,12]

a(t )=k ,(t+Cr , and b(t) =~~(t+C+A)’, (9)

where A,C~~0. We will call A the offset parameter, since it allows us to model (with p,v�0)
battles between weapon systems with different maximum effective ranges. We will call C the
sea,f lag parameter, since it allows us to model (again with M’ v � 0) battles that begin within the
minimum of the maximum effective ranges of the two systems. For example , let us consider

• Bonder’s (3, 191 model of a constant-speed attack on a static defensive position (see also
(12,23)). Then we have

d.~dt — a(r)y, dyldt = —~ (r)x, (10)

where ‘U) - 1.-vt denotes the distance (range) between the two opposing forces, 1. denotes
the bsttle’s opemug range, v >0 denotes the constant attack speed,

_ J0 forr�R , 110(r) tas(l—1IR.Y’ for 0~~r sR ,, ( 
•

• ~ 0, and 1. denotes the maximum effective ran ge of Y’s weapon system. Similarly for $(r),
with exponent vzO. In (11) the paramet er ga allows us to model the range dependence of Y’s
~fre electiveness (see FIg. H. The offset and starting parameters are given by

A — (R,~ — 1.)!., and C — (R. — R.)lv, (12)

and the aim don A,C~~0 inglies that R,�R.. From considering (12) and Fig 2, the
reader should have no trouble understanding our terminology for A and C.
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F~ I . Dependence 4 the att rition-rate coefficient n(r) on the exponent ~ with maximum effective range
the weapon system and kill capability at zero range held constant. (Notes: (I) the maximum effective range
ol die system is denoted as R ~ 2000m;(2) n(r ~~0)—a —0.6X casualties/(unit time x number of Y units)
denotes the Y1orce weapon-system kill rate at zero force separation (denoted here as range); (3) the

opening range of battle is denoted as R0 1250 m and (as shown) R1 < R )

500 1000 1500 2000 2 500 3000 3500
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111,g. 2. Explanation ci offset parameter A and starting parameter C for power attrition-rate coefficients
medsilag constant-speed attack. INotes: (1) the maximum effective ranges of the two weapon systems are
ds.os.d an R and R ;  (2) the oi,eali, range of battle (i s. initial separation between farces) is denoted as
1, and, an shown, R,< Mininumi (R., R ) ;  (3) the offset parameter is gives by A ( R1 -RjIr; (4) the

starting parameter is given by C - (R. - RaJI v.1

The time history of the X force level, i.e. the solution x(t) to (7), is given by (12]

x(t) x.(Cy(0)C~(t) — Sy(0)Sx(t)) — ,,V(Aa)(Cx(0)Sx(t) — Sx(0)Cx(t)}, (13)

where the hyperbolic-like general Lanchester fw,ctlons (GLF) C~(t) and Sic(S) are linearly
independent solutions to the Xforce-tevel eqeatlon

d2x ( l d a ~ dx
(14)

with initial conditions

Cic(1 5,) 1,
ff1/a(s)) dC.rddt(t)}t.~r, 0, ff1/aft)) dS~j dt(t))~..~ — lIs/(A1), 

(15)

t ~~~~ — ~~~~~~~~~ — - 
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where t~ denotes the la.gest finite time at which a(t) or b(s) ceases to be defined , positive, or
continuous. More precisely, t0 — sup {s1~either a(S) or b(t) is not defined , positive, or continuous
fo~ some finite t � t5} — inf (t1~both a(t) and b(t) are defined , positive, and continuous for all
finite t > t~}. For example, t0 = - C for the general power attrition-rate coefficients (9). The time
history of the Y force level may be similarly obtained, with C~(t) and Sy(t) being analogously
defined for the corresponding Y force-level equation.

For the numerical determination of the parity-condition parameter, it is convenient to
introduce a new independent variable s defined by

s= KAI J g(o ) do , (16)

where the parameter K is to be chosen to simplify the form of i(s) given by (18). We denote
sft =0) as s0, and then s~~ 0 if and only if to�0. The substitution (16) transforms (14) into the
normal form

~~ —J(s)x— 0~ (17)

where

J(s)_~~~{~{~}~ 
(18)

and S = f(s). We also define the normal-form hyperbolic-like (JLF Cx(S) and Sic(S), which
satisfy (17) and the initial conditions

Cx(s O) 1, .5x(5~~O ) O ,
(19)

dcxlds(s = 0) = 0, ds,Jds(s = 0) = 1.

Ii follows that

Cic(S(t)) = Cx(t), and Sx(3(5)) — KS~(5). (20)

4. FO R C E- ANNIHILAT I ON-P R ED I CTION CONDITIONS
Recently, Taylor and Comstock[7] have generalized the constant-coefficient force-anni-

hilation-prediction condition (5) to baffles modelled with Lanchester-type equations of modern
warfare with time-dependent attrition-rate coefficients (7). In some sense their results generalize
Lanchester’s famous square law to variable-coefficient combat. Taylor and Comstock have
shown that for the modeL (7) force-annihilation prediction involves (besides the initial force
ratio x /yo and a relative-fire-effectiveness parameter A,) a single parameter, which they call the
pa rity-condition parameter, denoted here u Q .  Their main theoretical result is stated here for
the reader’s convenience as Theorem 1.

Theorem l
Taylor and Comstock(71, assume that either a(S) E L(0, + ce) or b(S) ffi L(0, + m) . Then the

Xfo, e Wbe asonihllated lit finite time mid only If

<~/(A 
~ 
f~~(0) — Q Sx(0)l (21)‘ tQ~c,4o) — Sy(0)J’

where the pa rity-condition paramet er Q Is w!~~~ and given by

in (flf~~ C1(t) Qs ’

— -.——---- — -~~ -.,—— — -k. ~ ____

en - — -~~~~~~ —
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Remark 1. The condition (21) means that neither force is annihilated (in other words , the
• forces are of “equal fighting strength”) if and only if

x0 _ fCx(0) Q°Sx(0)l 23— ~~~~~~~~ — Sy(0)J’ (

which when So = 0, simplifies to

xo ._ V(A,) 24( )

In other words, the above equation (23) is a condition under which two forces are “at parity”
with one another (hence , the term parity-condition parameter). Observing the special case (24),
we may consider the parity-condition parameter to be “the enemy force equivalent of a friendly
of unit str ength” (see also equation (17) of (71).

Remark 2. We also have lim,...+..(Sy(t)ICy(t)} = Q°.
Remark 3. When t0 =0 , (21) simplifies: X will be annihilated in finite time if and only if

xoIy 0 < V(A,)!Q°.
Remark 4. The result (22) suggests a numerical procedure for approximately determining

the parity-condition parameter Q :  we may approximate th~ parity-condition parameter Q5 by
= Itf{Sx(t)ICic(t)}, where t is a “suitably large” value of t. ~n other words , we may estimate

Q° simply by picking a large value for t (we denote this selected large value by t~, computing
Sx(I) and Cx(i), and then forming their ratio. Our estimate for ~ is then given by (~ =1l{Sx(t)ICx(t)}. The only problem is tha t we do not know how large to take t for “satisfactory”
estimation of Q°: There is an estimation error , E(t) — — ~(i), which depends monotonical ly
on t, and a p r iori we do not know how large this error is. The present paper develops a bound
on the magnitude of this error, and our new error estimate allows the goodness of ap-
proximation to be easily evaluated in many cases of interest.

We may also determine the parity-condition parameter with the normal-form hyperbolic-like
GLF , since lim,...+..(s~(s)Icx(s)} = iir — KIQ°, where Z. is called the modified par ity-
condition parameter. In fact , we will find it more convenient to do so. With this in mind , let us
introduce the Y-functions Cy(S) and Sy(S) (corresponding to Cic(S) and Sic(S)) defined by

dc,4ds — J(s)s~, dsSds — i(s)c~, (25)

with initial conditions

~~~ 

cy(s 0) 1, Sy(S 0) 0.

It follows that Cy(S) and sy(s) are linearly independent solutions to the modified Y equation

(26)

and

Cy(S(S)) — Cy(s), sy(s(t)) — (1/K)S1(t).

In terms of the new time variable s defined by (16), Theorem I reads as follows:

Theorem 2
Assume that either a(t)E L(O, +‘,) or b(t)E L(O, + as) . Then the X force will be annihilated

In f initetim. II and only if

~g< V(Aa)fcx(ss)ZSx(ss)~ (fl)
y, K (Z ’cy( a,) —sr (s.) J ’

— 
— —  — — ~~~~~- —

- en - — -~~~ - - -  — - -
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where the modified time variable s is given by (16), and Cic(S), Sic(S), Cy(S), and Sy( S)  denote the
normal-fonn hyperbolic-like GLF. The modified parity-condition parameter Z° is unique and
given by

lim~~~~~=-1- (28)
s-.~

H.CX(5) Z°~
We observe that

Q° KZ°, (29)

and lim,~~ _ {sy(s)Icy(s)}~— Z°. When (27) holds , the time to annihilate X, denoted as ta”, iS
determined by x(t0X) = 0. If we denote the quotient of the two normal-form hyperbolic-like
GLF Sx(X) and Cx(S) as ‘?x(S), then it follows from (13) that

x — 
(xoCy(5o) + y~ V(A,)/K)sx(so)}

lix(S(ta ~ — 
(X05y (So) + yo(~/(A,)/K)cx(so)}’ (30)

where

?lx(S) = sx(s)/cx(s). (31)

5. DETERMINATION OF THE PARITY-CONDITION PARA METER

We will now show how knowledge about the modified parity-condition parameter Z° for one
pair of attrition-rate coefficients , a(t) and b1(t), allows us to determine Z° for a related pair,
a(S) and b(t). With this in mind, let us denote Cic(S) corresponding to a(t) and b(t) as
Cx(5 a, b), and similarly for s~ and ~~~~ In other words , we will now write (31) corresponding to
the attrition-rate coefficients a(t) and b(t) as

1)x(s a, b) sx(s ; a, b)lcx(s; a, b). (32)

In this notation, we will write (28) as

him nx(s; a, b) — 1/Z°(a, b). (33)

We use the notation Z°(a, b) to show that the modified parity-condition parameter is a
functional (i.e. a function for which the independent variables themselves are functions), which
depends on only the attrition-rate coefficients a(t) and b(t). In other words, the attrition-rate
coefficients are functions defined for to ~ t < + as, and the parity-condition parameter depends
on these entire functions (and not merely particular values of them).

Our main result is Theorem 5, which gives an error estimate for the approximation that we
propose for Z°. The theoretical basis for Theorem 5 is given by Theorem 4, which (in turn) is a •

consequence of Theorem 3. The proof of Theorem 3 follows along the lines of well-known
arguments (see p. 225 of (26)).

Theorem 3
Comparison Theorem: Let x(t) and x1(t) satisfy

~~ 
{—~~~~~~-} — b(t)x — 0, 

~ {~~~~
‘
~~
1}— bi(t)x1 —0 ,

with Initial condltio,u

x(t ts) a,
1[1/a(t)J dx/dt(fl}5_,, — fi , {(Ila(tfl dx1ldt(t)},.~, =8,

where a(t),0 and b1(1)<b(t) for allt>t,  Then xi(t)<x(t) for al l t>t .  as long as x(C)>0 .
The basic theoretical result i~ on which our numerical determination of Z° is based is:

en 

- 

- ~~~- - 

- -
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Theorem 4.
Assume that b1(t) < b(s) for all t > S0. Then

lpx (s; a, b) < 1(Z°[a , bJ < ‘lx(s; a, b) + {(IIZ°(a, b1J) — ‘lx(S; a, o~)}. (34)

Proof. We observe that (71 ejx(s; a, b) satisfies the differential equation

di,x/ds(s;a, b)= 1/{cx(s;a, b)}2, (35)

with ‘Ix(s = 0; a, b) = 0, and similarly for ‘lx(s; a, b1). Theorem 3 (the comparison theorem)
yields that c~(s;a,b)>cx(s;a,b1) for all s>0. Thus, for all s> 0

dsp,Sds(s; a, b) < dspxlds(s; a, b1),

whence integration between 0 and s yields the desired result. Q.E.D.
Similar to the observations made in Remark 4 above, we observe that (33) suggests that we

est imate Z°[a, bJ with 2 defined by

2(1;a , b)= l/I7x(i,a,b), (36)

where I denotes a suitably chosen value for s. Moreo ver , from (35) we see that ‘qx(s ; a, b) is a
strictly increasing function of s so that the lar ger we take Sin (36), the better our approximation
becomes. The only problem (see Remark 4) is that a pnori we do not know how large to take I
for “satisfactory ” estimation of Z°. Theorem 5, however , tells us exactly how large to take .1.

Theorem 5
Error Estimate for Approximation: Assume that b1(t) < b(s) for all t >  to. Let f5U) denote 

—

the fractional error made in the estimation of Z°[a, b) by 2(1; a, b), ac

~ 
_ t(I; a,b)—Z’[a,b] 37Z [a,b) ‘ ‘ )

m en

0< fe(S) <{(1IZ°(a, b,)) — 

~~(I; a
, b1)}. 2(1; a, b). (38)

Proof. The theorem follows by simple algebraic manipulation after setting s = I in (34) and
using (37). Q.E.D.

Thus, we have presented a method for numerically determining Z°[ a, b]. We simply pick a
large value for s (we denote the selected value as 1), compute Sic(S) and c~(1), and then
compute the estimate 2(1; a, b) according to (36). Theorem 5 allows us to know the accurac y of
our approximation , which can be improved by taking 1 larger. Thus , we can numerically
determine Zia, bl to any specified degree of accuracy once Z°Ia , b1] is known. In the next
section we apply this theory to the analys is of battles modelled with offset power attrition-rate
coefficients .

6 APPLICATION OF THEORY TO OFFSET POWER ATTRITION-RATE COEFFICIENTS
In the applicat ion of Theorems 4 and 5, two pairs of attrition-rate coefficients are involved:

one pair for which the modified parity-condition parameter is known (denoted as a(t) and b1(t)), ‘
-~
‘
• -

and one for which it isto be determined (denotedasa(t) and b(t)]. Acccwdingly, we rewrite (9) .~~ 
-

with A >0 as
a(t) — k ( t  + C~ , and b(t) — k,(t + C + A)’, (39) - -

where (as before) C � 0. We will refer to these coefficients (39) for which A >0 as power
attrition-rate coefficients with “positive olset”. If we choose

(40)

en
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it follows from (16) that the modified time variable s is given by

s(t) = IA,/(M + I)J ~ (t + Cy~ , (41)

and the invariant J(s) of the normal form (17) simplifies to

J(s;a, b) J(s; 
~‘,ij , v) s’(i+-7), (42)

whe r ep =(~~+ I)/1, a 1/(~ + 1),~~~ (v—5L)I(5s+l), y A-[Aj(j&+l)f”,and~~~M+v+2 .
Here we have denoted the invariant corresponding to the attrition-rate coefficients a(t) and b(t)
as J(s; y, g~, v), since we may take ~#, ~~, and i’ as a basis for generating the four parameters a, $,
~y and is that explicitly appear in the right-hand side of (42). Furthermore, we will denote the
normal-form hyperbolic-like GLF that correspond to J(s; y, g~, is) as cx(5; y, ~, is) and
sx(s; y, gL, is).

The known results [71 that we use in the Theorems 4 and 5 are for the case of power
attrition-rate coefficients with no offset (i.e. set A = 0 in (9)]

a(S) = kd(t + Cr, and b1(t) = k~(t + CT, (43)

where C � 0, We observe that b1(t) < b(s) for all S > — C. It follows that J(s; a, b1) = 5’ and[7]

Z°(a, b1] = p°’~”F(1 — p) I F (p) . (44)

Thus , for the bound on Z°[a, b] = Z°(y, ~i, is) given in Theorem 4 and the error estimate for our
ap~~oximafion (36) given in Theorem 5, we have 16)

vgx(s; a, b1) — p1t 2’~Tq(S), (45)

where S = 2ps ~~~~~~ q = I — p. and T~ denotes a Lanchester-Clifford—Schififli (LCS) function ,
which is analogous to the hyperbolic tangent (see Table 1). These functions were introduced in
[12) and redefined for reasons of force-annihilation prediction in [6). In fact,

i~(s; a, b1) = tanh s, when g~ — is. (46)

This result is one of our reasons for introducing the normal form (7)
We have thus shown that the following theorem holds.

Table I. Lancbester-Clifiord-ScbIUi f~~~~ s

- (~t2)~~~
+ I)

7~(x) — H,_.(x)IF (x)

R.te~o., to no,nnd-fonn 0LF

C~(I)~~ F4(S) sx(s)— p~ RoH,(S) 
-~~~

Cy(S) F,,(S) 5,(,) ,~b- )g (5)

w t e r e q — I — p a n d

S(s). 2ps~~~

NO Per~i— , ’~we hsve
(I) cx(s) cy(s) P1n(t) coás,

(II) sj~(s) — Sy(I) H,gt(i) — ~~~~
(Ill) itr(:) — i~~(i)— T111(s)— ~~~~~~&
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Theorem 6
Assume that either ~& > — 1 or is> — 1. Then for a battle modelled with the offset power

attrition-rate coefficients (39), bounds on the modified parity-condition parameter Z°(1, ~, is)
are given for y >0 by

‘lx(s; -~‘ ~~ is) < Z’(y, p., is) 
< ‘lx(s; ~‘, ii, is) + pa-P — Ta( S)) , (47)

where q = 1— p, S = 2ps *1(2,) , and ‘px(s; y, ~i, is) denotes the quotient of two normal-form
hyperbolic-like GLF for the attrition-rate coefficients (39), i.e. lgx(s; y, p., is) = sx(s; 1’ ~, is)!
cx(s; y, p., is).

It follows from Theorem 6 (or , equivalently, Theorem 4) that if we approximate Z°(-,’, p., is)
with 2(1; y, ,.e, is) defined by 

-Z(I; y, p., is) = lI ’~x( I ;  y, p ., is), (48)

then bounds on the fractional error made in this estimat e are given by

0<fE(s)<p 0 P {
14~~_ Ta( S)}e ix (I; -y,p ., is), (49)

where f~(I) denotes the fractional error and is defined by (37).
The right-hand inequality in (49) [equivalently, (47)) tells us exactly how large to take I for

the estimation of Z’( y >0, p., is) by Z(1;7, p., is) to any specified degree of accuracy. The LCS
function Tq is involved in the bound on the fractional error fe(S) in this estimate when p. � is.
As (46) and Table I show, Tq(S) — tanh s when p. is. Thus, the LCS functions as redefined by
Taylor and Brown [6) yield valuable information about battles modelled with not only the power
attrition-rate coefficients with no offset (43) but also the offset power attrition-rate coefficients
(39). Availability of tabulations of these LCS functions is discussed in [6).

7. NUMERICAL RESULTS
In this section we will examine several numerical examples to show how the modified

parity-condition parameter Z’ may be numerically determined and to show some important
insights into the dynamics of combat that may be consequently obtained. In order to numeric-
ally determine the modified parity-condition parameter for the offset power attrition-rate
coefficients (39), we must use knowledge about how quickly the limiting value (i.e. Z°[ a, b1~) of
a hyperbolic-tangent-like function of a related pair of power attrition-rate coefficients with “no
offset” (43) is reached as its argument is increased (recall Theorem 6 and (49)). In Fig. 3 we see

1.6

_  H

1.0 2.0 5.0 10.0
$

Fig. 3. Rapid ity with which u niting ~niue 01 hypIlbu&4a1 Ut-ldii LCS f c*Ios T (S) Is reachsd as
S-’+.. Note: T.(S)-t s t r a a - Jl2, ,blcb conwp,adi Io p~~,m(43).
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100.0 -
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Modi fi .d Offset Paramete r , 7 
d

F~ 4. Dependence of the modified panty-condJtion parameter Z on the modified offset parameter y for
the offset power attrition-rate coefficients The modified offset parameter is given by y A -  [Aj(16 +

where A is the offaet parameter and!-~~+r+2.

that this limiting value, denoted as Z°(p., is) = Z°[a, b1), is quite quickly reached: if one takes
1= 10.0, then Z°(p., is) is approximated to better than six decimal places by 2(1; p., is) =
lhpx(S; p., is), where ,~~ is given by (45). Experimental computing for various values of p. and is
and comparison with the known value (44) for Z°(p., is) bears out this degree of accuracy [i.e.
speed of convergence of 2(1; p., is) to Z*J for essential ly all allowable values of p. and Thus,
Z(1; p., is) for the coefficients (43) has essentially converged to Z°(j&, is) when 1 = 10.0, and by
Theorem 6 or (49) we know that the same is true for 2(1; i, p., is) for the coefficients (39).

We have accordingly generated by this procedure the results shown in Fig. 4. For computing
= sx!cx, we have used the series solutions shown in Tables 2 and 3. (In Tables 2 and 3 we

have for convenience denoted , for example , sx(s; y, p., is) simply as sx(s ; p., is), i.e. sx(S; p., is)
denotes 5x corresp onding to the general power attrition-rate coefficients (9) with exponents p.
and is.) The series were obtained by solving (17) by the method of successive approxim ations
(see (23)). We used these series instead of developing approximate solutions by finite-difference
methods because we did not have any error bounds for the latter. ‘

Let us now give an intuitive interpretation of the curves shown in Fig. 4 of the modified
parity -condition parameter 2° plotted vs the modified offset parameter ~ In Taylor and
Comstock (7] it is shown that 2° may be considered to be the initial Y force level that leads to a

V . .Table 2. Normal-form offset linear Lanchester functions

a ~~~~~~~~~~~~~~~~~~~~~~

where the 01W coejlciiati are given by*

IA.’ I, aad foc k a l

=
(4k ) ( 4 k 2 f l

144t
~~I +A

~~~’J for O~ Jsk

and for *~~I

for O~~l~~k

We have adopted the convestlon taM At’, 11-0 for 1<0 cr 1> 8

-~~~ - — -- - -4--

-



—
~~~~

- w —
~ 

-

—

Lanchester-type equations 239

Table 3. Olact power Lanchester functions for M — P and i’ — 2
, ‘. 2*

— (~_ s)~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2
sx (s ; l ,2) 

~~~~~~~ ~~~~~~
where the offset coe~cie,sts are given by’

f
~..

0 _ i . and for k�l

lt ~~(5t -.IX5k_2_ i) 24~~~~ h1 for 0~~j~~2k

Iao° =1 , and for k �l

~ 
58(58 +2) —2 —s• 

18* 
~~~~~~~~~~~~~~~~~~~~~~~~ 

for O~~j s 2 k

‘We have adopted the convention that Ad, 8*’ 0 for 1<0 or 1>28

draw s (i.e. parity between the forces) in the battle against an X force of “unit strength”

dx l ds — —y with x (s— 0)= 1,
(50)

dylds — —J(s)x with y(s = 0)= Z°,

o where i(s) denotes the invariant of the normal form (17). Thus , we may consider 2° to be “the
Y equivalent of an X force of unit strength” for the modified battle (50). Now let us consider
the general power attrition-rate coefficients (9) with exponents p. and is. As we did in Tables 2
and 3, we will denote the corresponding J as J(s; p., is) and Z°(p., is) to stress the dependence
on p. and is (but suppressing that on y). We then have from (42) that J(s; I , 1)=I+v lV(s) and
J(s;1,2) — V(sXl+v!V(s))2. From (44) we find that Z°(1, 1)- 1.000 and Z’(1, 2) = 0.806 for
y 0. Observing that for 7>1 we have J (z; 1, 1) < J(s; 1, 2) for all s � 0, it is intuitatively clear
from (SO) and the interpretation of 2° as a force equivalent that we must have Z°(l, l)<
Z°(1, 2) for all 7>1 because X always has seater fire effectiveness against Y when p. -1 and
v 2 than when p. — 1  and is =1. However, tor y near zero, the situation is reversed and
Z°(1, 2) must lie below Z°(1, ) for y near zero. Thus, we have given an intuitive explanation of
why Z°(1, 2) lies below Z°(1, 1) for 

~‘ 
near zero but above it for 7>1 as Fig. 4 shows.

Next, we will consider numerical results for a particular battle to show some of the
k important insights that may be gained into the dynamIcs of combat from our new resul~s. As ,n
W [6, 12,23) we Consider S. Bonder’s(3, 19) model (10) for the cons*ant-spàed attack of mobile

forces against a static defensive position. We will focus on the new results given in this paper
(in par*icuular, the prediction of baffle outcome from initial conditions without explicitly
computing the force-level trajectories). Input data and computed parameter values are shown in
Table 4. We will now consider two cases: (I) R~~ ISOOm; and (II) R0 1250m.

When R0- 1500 m, we have C-0 and s,-0. The maximum time that the battle can last is
- 11.18 min, since at this time the advancing attackers overrun the defensive position. In

this cau Z°(~ p.,v)- Z’(O.3ZL1)-1.381, so that Tbeorem2tells u, that X can be annihj~ated
< -  - > x~j y .  < 0.264. By (30) the X-force annihilation time is given by ~~ (,(f~X)) 2.739x.ly..
For z.—1 0 and ye SO, we have tpx(s/’)=O.54772 so that by the technique. introduced in (6) Pwe find sj~ - 0.771. These computations for determining s,~ involve the gineratlon of a table
01 $x, ~~, and ~Px for y — 0.32, p. a’ 1 (see (6)). Hence, (36) yields t X — 10.25 miii and
,,X 125.7 m. FUrther results are given in Table 5.

• Whea R,— 1250 m (see Ftg. Sot (12fl, we have C= 1.SU min, so= 0.O2SS and t., — 9.32 m1n.

l~ othsr wo~ s, x(:)and y(s)>Of or aIP s€ l0,+.)bst ~~~~~z(i) 0-hrn ..... ,7($).

-
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Table 4. Particulars for the numerical examples Tat,le 5. Annihilati on of the X force as a function
o( the initial force ratio for R.- l500 m

I. Input data
= — I (x.Iy,) t.X (min) r X (m)

00 0.06X casualtieslminl Y unit
— 0.6Y casualtieslminlX unit 0.250 14.09 —e

R,.= lSOO m, R,= 2000 m 0.200 10.25 125.7
v — S  mileslhr 0.167 8.80 319.4

2. Parameter valises ‘t ,,, 11.18 mm and x1 — x(r — 0) — 2.48.
5.364 x 10 3X casualtiealminj Y unit

~~— 4.O23 x I0 ’Y casualties!min/X unit
112

A 3.728 mm , y = 0.320 (casualtiesJmin)”2

Table 6. Annihilation of the X force as a function
of the initial force ratio for 1250 m

(xoI,o) t.
X (min) r.X(m)

I
0.250 10.87 —

,

0.200 8.17 154.4
0.167 • 6.93 320.4

= 9.32 mm and x1 — x(r —0) 1.74.

In this case X can be annihilated <=  = > xjy,< 0.281 with the X-force annihilation time given
by i,x(sj’) = (l.001u0 + O.009)/(O.l27u0 + 0.366), where a0 = x~J yo. Numerical results are given in
Table 6. Finally, these parametric results should be contrasted to those previously possible (e.g.
compare them with , for example, the single force-level trajectory for R8 = 2000 m shown in Fig.
501 1121.

8. DISCUSSION

S. Bonder(3, 18, 19) has emphasized the shortcomings of constant-coefficient Lanchester-
type combat models. Work by Bonder l3, 18) , Clark [25J , and others [4) on the prediction of
Lanchester attrition-rate coefficients (see Taylor and Brown(12) for further discussion and
references) has generated interest in variable-coefficient models. Moreover , there is not only
intrinsic interest (see [3, 191) in the model (7) but also interest for obtaining insights into the
beba~ior of complex Lanchester-type system models (for example , the Bonder-IUA model (see
(4,5, l4D) that have been enriched in military detail see (4, 5, 14—171). The attrition-rate
coefficients in (7) represent the fire effectiveness of the combatants and allow us to model
temporal variations in fire electiveness on the battlefield. Interest in the general power
attrition-rats coefficients (9) is provided by S. Bonder’s(3, 5, 19) constant-speed attack model° j
(10), (II ) and his examination of the ran ge dependence of attrition-rate coefficients for various
weapon systems (sos pp. 196-200 01(41).

We have given results that allow one to study the variable-coefficient model (7) (especially
with the general power attrition-rate coefficients (9)) almost as easily and thoroughly as
Lanchester’s classic constant-coefficient model (1). Taylor and Comstock [7] (see Theorems 1
and 2 above) have shown how to predict force annihilation without having to spend the time
and effort of explicitly computing force-level trajectories. Using their theoretical results , we
gave results in a previous paper 16) that made combat modelled by power attrition-rate
coefficients with no offsett (Le. A -0 in (9)) almost as easy to analyze as the constant-
coefficient case. The results of the paper at hand allow one to analyze combat modelled by
power attrition-rate coefficients with positive offset* [i.e. A >0 in (9)] just as conveniently.

Thebrem I (see also Theorem 2) is the generalization of the classic constant-coefficient
result (S) to cases of time-dependent attrition-rate coefficients. However, one needs to know the

Thua, the tense between fret and tarpet chen ss dwlnp the enpepement.
tModslIi~ . for exanspie, combat between two weapon systems with the same maximum effective rai~~.
$ModeIIle~. for example, combat beLw1.e. two weapon systems with d~ .rsst maximum effective ran ss.

-
~~~~~~ -~ — - - ~~~~~~~~ • -  . • . --
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value of the so-called panty-condition parameter QS in order to predict force annihilation in
specific instances. In this paper we have presented theoretical considerations (see Section 5
above) for the noniterativ e numerical determination of the parity-condition parameter. We
applied our general theory to the specific case of general power attrition-rate coefficients (9)
(see Section 6) and illustrated these theoretical results by considering some numerical examples
(see Section 7).

Curves of the modified parity-condition parameter Z’ plotted against the modified offset
parameter y such as those shown in Fig. 4 allow one to analyze parametrically “modern”
combat modelled with the general power attrition-rate coefficients (9). For example, we can now
parametrically (for example , varying the maximum effective range of the defender ’s weapons)
determine whether the defender will be overrun in Bonder ’s[3, 5, 19) constant-speed-attack
model (10) with attrition-r ate coefficients (11) without having to compute the entire force-level
trajectories. We have illustrated this analysis capability with some numerical examples, which
show that the defender ’s annihilation (i.e. saturation of his defensive position with offensive
fire) depends on the initial force ratio (of defender to attacker) being below a certain threshold
value. Our new results allow one nOt.only to determine easily such force-ratio thresholds of
survivability but also to study their dependence on ~eapon-system-capability parameters.

Our new results let us conveniently obtain much valuable information about the model (7).
The classic ordinary differential equation theori es (see, for example, Ince(26] were inadequate
to answer many important questions (for examp le, “who will win? Be annihilated?”) about such
combat models. Previously one was limited to only computing force-level trajectories , but now
we can predict battle outcome (in particu lar , force annihilation) without explicitly computing
force-level trajectories. Moreover , these new results facilitate para metric analysis of such
combat situations. S. Bonder[22] has suggested that an increased emphasis be place on
parametric analyses in systems analysis studies (see pp. 21—22 of [fl)). In particular , Theorems
1 and 2 explicitly exhibit a tradeoff between quality (as quantified by the relative-fire-
effectiveness parameter AR and the parity-condition parameter Q’) and quantity (as quantified
by the initial force ratio xdy0) of two weapon systems in combat against each other. In other
words , one can use an expression like (21) to develop quanti tative insights into how the quality
of a weap on system may be substituted for sheer numbers. Moreover , an unanswered
theoretical question is to determin e how the parity-condition parameter Q depends on the
combat-intensity parameter A, and the relative-fi re-effectiveness parameter Ais. Finally, our
results here are signposts as to the difficulty of analytically extracti ng information (particularly
parametric information without excessive computations) from variable-coefficient Lanchester-
type models such as (7).
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