
r
_

_

_

AD—AO67 UI NAVAL OCCAN SYSTEMS CENTER SAN DIEGO CA F/S 9/2 ‘

DIRECT EXECUTION LANGUAGE ARCHITECTURE FOR SIMULATIOt4.(U)
JAN fl N NA*TIIEZ

UNCLASSIFIED NOSC/TR 3t7 NI.

I

_ _
_

_

_

U L~MU~
/

b

p

LEVE~~~~~~

Technical Report 367

DIRECT EXECUTION LANGUAGE
ARCHITECTURE FOR SIMULATION

artinez
l5January 1979

Interim Report : October 1977 — September 1978

Prepared for
Chief of Naval Material

1>~.0.-

C-,

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152

LI

NAVAL OCEAN SYSTEMS CENTER . SAN DIEGO. CA 92152

A N A C T I V I T Y O F T H E N A V A L M A T E R I A L C O M M A N D

AR GAVAZZI , CAPT. USN HI BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

The work presented in this report was performed from October 1977 to September
1978. This study was funded under NOSC IR project number ZR64 .

Released by Under authori ty of
B. A. Bologna , Head D. A. Kun z , Head
Weapons Technology Division Fleet Engineering Department

ACKNOWLEDGEMENTS

The author wishes to grateful ly acknowledge the continued support of Drs. Eugene
P. Cooper and Ellen E. Kuhns , (‘ode 013 , at the Naval Ocean Systems Center. Thanks go to
Division Heads , Mr. Jim Gilbreath and Dr. Douglas Chabries for their support. The author
acknowledges the design work which was performed by Ron M. 1-lidinger (Code 6353),
Jack M. Zyphur (Code 9 13 1) . and Mark J. Perrin (Code 6353). A special thank s is due to
Dr. Granino A. Korn , Universi ty of Arizona , for his assistance with the interpreter / compiler
software.

- .

JJNCLASSIFIFF)
SECUR ITY CLASSIFICATION OF THIS PAGE (Wb.n Data Entered)

DED,’
~~~~ 

1 E T ~~~~i DA( ’ E READ IN STR UC Ti ONS
I’S r’%J I’I I uSJ%..um I~ l~~~~I ISJ1’~ I ~~~~ BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIP I’S C~~T Aç O G  N U M B E R

NOSC Technical Report 367 (TR 367) ____________________________

~~~~~~~~~~ ~“~~~‘—J’ _—‘

7 OF J~ PO R T

Direct Execution Language Architecture for Simulation %~
‘ Interi m~ Oct i f l 7 7 - SeplL . ~~~~~~~~

6. PERFORMING ORG. REPORT NUMBER

7 A uT HO R (~ . ~~~~~~~~~
, “ ‘ B. CONTRACT OR GRANT NUMBERI’.)-

~~~ ~I t~ ~J ” c / 1 -~
. (

~7\ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

9 PERFORMING ORGANIZAT ION NA ME AND ADDRESS 10. P~~OGR M ELEMENT. PROJECT . TASK
_________ IT NUMBERS

Naval Ocean Systems Center 61152 Zl~~~~~~/~RO l 40802/ZR64
San Diego , CA 92152 __ _.~~~~ —

IL .O NTR O LL ING OFFICE NAME AND ADDRESS .‘ -r

Naval Material Command ( /j  ~/ I S Jant.~~J~~t79

Washington , D.C. 20362 ~~~~~~~~ 4m’ nUMBER OF PA’~’!~
30

14 MONITORING AGENCY NAME & ADDRESSI’II different f ro m CpntrollIn~ Offi ce) 15. SECURITY CLASS. (of thia report)

~

, 

/~
- ~~~~~ /

~ ‘~ 1 ~~~ / UNCLASSIFIED
ISa . OEC LASS IFICATION / DOW NGRA DINGSCHEDULE

16. DISTRIBUTION STATEMENT (of rhl. R.port) — 
—

( j ’7 I ~~~~~~~~~~~ L I  
~~~~~~~

Approved for public release~ distribution unlimited. \,,,..,,~ 3 ,.
~~~~

... ~~ “ / ‘—~ ‘ /

17. DISTRIB UTION STA TEMENT (of She Chaired •nt .r.d In Block 20, ii different from Report)

It. SUPPLEMENTARY NOTES

IS. KEY WORO S (Continue on racer .. dd e  If n.cea$ary wd Identify by block number)

C
- -

20. ~~ STRA CT (Continua on c. ..,.. aid. II n.c.a..,y m~d identify by block number)

The study presented in this report addresses the application of direct execution computer architecture concepts
using low-cost , large-scale-integration (LSI) to Continuous system simulation. Basic architecture schemes for
direct execution systems were investigated and applied to a demonstration interactive simulation language . A p

dual processor direct execution system was designed and built using an LSI-l I microcomputer , a 16K X 16 dual
port memory, a microprogrammed AMD 2900 bit-slice direct execution processor , and a 16 X 16 multiplier chip.
The system features a distinct separation of interpretive/comp iler software and simulation run execution firmware
linked via the dual port . The system is demonstrated via several simulation examples including realtime control,
optimization, and torpedo dynamics problems.

DO 1 j AN 73 1473 
~~~~~ 0:6:~ 

is O.st~~ç~ E UNCLASSIFIED
S ECUR ITY CLASSI FICATI ON OF t HIS PAGE (~~,.n Data Int .rod)

~~ /~ ~
—

/1

— . 5

—i.-
- w — - . ‘ - ~~~~~~~ - — - - . 5 —

SUMMARY

OBJECTIVE

In recent years high level languages for continuous system simul at ion have been de-
signed to execute on general purpose digital computers which have tradit io nal von Neumann-
type archi tectures. This approach has produced varying results includ ing a mu lt ip le layer of
system software required to implement and execute the s imula t ion language . In most cases .
users have been constrained to perform nor t int eractive simulations at a high cost. In an
a t te m pt to a ll evi ate some of t h ese prob l ems. t his study addressed the application of ’ di rect
execution computer architecture concepts using low-cost , large-scale-integration (LS I) to
con t i nu Ous system simulat ion. This report summarizes work performed up to October 1978.

RESULTS

Basic archi tecture schemes for direct execution systems were investigated and
applied to a demonstrat ion in terac t ive s imula t ion language . A dual processor direct execu-
tion system was designed and bu il t using an LSI - l I microcomputer , a 1 6K X 16 dual port
memory , a microprogrammed AMD 2900 bit-slice direct execution processor , and a 16 X 16
mul t ip l i e r chip. The system feature s a d is t inct separation of interp ret ive/ compiler software
and s imulat ion run execution firmware l inked via the dual port. The system is demonstrat-
ed via several si i . i u lat i on examples including realtime control , optimization , and torpedo
dynamics problems .

RECOMMENDAT I ONS

The st u dy revea l ed seve ra l key poi n ts in app l yi n g d ir ec t ex ecu tio n a r chitect ur es to
continuous system s imula t ion . A direct execution system , similar to the one demonstrated .
ca n be used to replac e analog computer-type funct ions in hybrid simulat ion systems , process
colitrol and ins t rumenta t ion , and s imulat ion model development systems. Extensions to the
archi tecture can he made from miltiprocessor s imula t ion systems. Scale-free floating point
direct execution system can he microprogrammed using the same hardware configuration.

51* WW~ lattisu
uS W, 11 111 ~
uu*usuuc~ a
10111 lSAI~~

II ,..,.,._ ,_.,.

• •l$IIIIUTIU/U*IUJILITI ~~S

$~st AVAIL ui/U V~~~
”

H
_ _

- 5
,
~~~~ ‘4

_ . t_._ 
- — . — - --—-_____ ___



_&_
_ -

CONTENTS

INTRODUCTION. - . Page 1

BRIEF HISTORY OF DIRECT EXECUTIO N COMPUTER ARCHITECTURE. . - 2

DIRECT EXECUTION COMPUTER ARCHITECTUR ES FOR SIMULATION . . . 5

DEMONSTRATION VEHICLE: MICRODARE LANGUAGE. - - 8

LSI IMPLEMENTATION OF DIRECT EXECUTION MICRODARE. . - 12

APPLICATION AREAS FOR DIRECT EXECUTION ARCHITECTURES. . - 20

S U M M A R Y  AND CONCLUSIONS. . 2 l

R E F E R E N C E S . . .  23

APPENDIX A. DARE LANGUAGES SUMMARY . . .  25

APPE N DIX B. DARE BLOCK~~ PERATORS USED BY MICRODARE. . . 26

APPEN DI X C. M ICRO DAR E SAMPLE PROBLEMS. - . 27

ILLUSTRATIONS

I HLL in a t radit ional  von Neumann a chitecture . . . Page I
2 H 1,L in a direct execution architecture computer system. . . 2
3 Functional  diagram of (‘hu ’s ALGOL computer.  - . 3
4 SYMBOL block diagram. . . 4
S Continuous system simulat ion process. . . 6
6 Direct execution computer architecture for interactive continuous

system s imula t ion .  . . 7
7 MICRODARE data acquisition example.  . . 10
8 MICRODAR E servo mechanism example . . .  1 1
9 Direct execution architecture for M I C R O D A R E . . .  12

10 MICRODARE dual processor system. . . 14
I I  I)ual processor operation for MICRODARE. . . 14
12 Dual port memory timing diagram (DEP port). . . 16
13 Direct execution processor (DEP) functional block diagram. . . 17
14 Sequence for ADD operation in direct execution processor... 18
15 Writeab le control store block diagram. . . 18
16 Memory layout for MICRODAR I dual processor system. . .20

II

. 5  — -- —



- —-
‘
- w- - -—- --- - — -  - ‘

INTRODUCTION

Tradit ionally,  high level languages (HLL) have been implemented on von Neumann
architecture computer s which consist of a central processing unit , input / output  bus , user
i nterlaces , and program/ data memory . In particular , high level simulation languages for the
solution of dynamic continuous systems have been implemented on large mainframe and
minicomputer systems in batch and interactive modes ( 1 , 2 , 3). Simulation programs
written in high level languages have been first translated into compiler or assembler-based
languages , relocatable code produced , and linked with a simulation run-time library in
order to create a run module executable by the host processor. Fi gure I depicts this process
where the host processor also executes the editor , translator , compiler , assembler , linking
loader , and input / output  operations. This report summarizes a different approach to the
design and use of high level simulation languages and represents the application of large-
scale-integration and advanced computer technology to continuous system simulation.  The
results depict a digital system design which can directly execute a high level simulation
language.

RELOCATABLE
SUBROUTINE

L I B R A R Y

CODE *~~~~~~~~~~~~~~~~cOMP ILER j—4~ ~
G ~~~~~ ~~~ ~~~~~~~ 

RESULTS

INTERNAL RELOCATABLE ABSOLUTE INTERNAL
CODE CODE CODE CODE

COMPUTER SYSTEMS HLLs
POP-li FORTRAN
IBM 360, 370 ALGOL
UNIVAC 1108 CMS-2

NOTE: ONE PROCESSOR DOES IT ALL SPL/ 1

Figu re I. FILL in a traditional von Neumann architecture .

Several large-scale-integration technology characteristics contribute to the application
of direct execution to simulation.  First , bipolar technology parts offe r a hig h speed com-
putational capability. Microprogrammable bit-slice microprocessor parts can be used to
design a computer architecture optimized for continuous system simulation. Second , large-
scale-integration special purpose function units are commercially available which can be
used to compute hi ghly repetitive operations and mathematical  functions , such as mul t ip ly
and sine/cos, which frequently arise in simulation.  A typical example is the 16-bit multiplier
chip from TRW (4). in addition , support systems for large-scale-integration devices are
available which enable the user to spend added time on system development rather than on
development tools.

Direct execution computer architectures represent a departure from the von Neumann
influenced relationship between computer and high level language. In a direct execution com-
puter architecture , the high level language is the machine language of the system (5). The high
level language constructs are directly executed in hardware without the need for separate
software parts such as compilers , assem b l ers, and linking loaders . Figure 2 depicts this process.
The language constructs may be executed on a symbol-by-symbol (or token-by-token),
statement-by-statement , or procedural section basis. The basic functional elements which are
used to perfo rm direct execution of a high level language include (6):



-5--- -‘

• input / ou tpu t  processor

• text editor

• lexical scan and syntax processor

• control processor

• arithmetic processor

• data structure processor

• processor intercommunication buses and memories

• special function computation units

Large-scale-integration makes implementation of these functional parts feasible. For example ,
interpreters of the 1960’s and early 1 970’s required large memories and were slow in execution.
However , today ’s advanced memory technology feature s 64K bit chips and sub-microsecond
cyc le times (7) .

S U B R O U T I N E  L I B R A R Y
IN

INTERNAL CODE

DEHLL _ .
~~IF_÷ DIR ~~~~~~~~~~~~~~~ 4~~J___~. RESULTS

INTERNAL CODE INTERNAL CODE

Figure 2 . HLL in a direct execution architecture computer system.

The content of this report expands on the points described above including a brief
overview of previous direct execution computer architecture work . The reasons for the
application of direct execution computer architecture concepts to simulation are discussed.
A speci tic high level simulation language is presented and used as a basis for the detailed LSI
design of a dual processor direct execution system. Finally, potential application areas for
direct execution computer architecture are explored and follow-on work proposed.

BRIEF HISTORY OF DIRECT EXECUTION COMPUTER ARCHITECTURE

Usefu l in this area as background material , the text edited by Chu (8) contains a corn-
prehensive survey of the field. A reference list compiled by Carlson (9) summarizes the
histo ry of direct execution computer architectures and their relationship to high level pro-
gramming languages. A ti~w samples of’ work perf ’ormed are briefly reviewed here.

Research in the relationship ot’ high level programming languages to computer
architecture s started as early as the 1950’s, however , the first computer system design with
the concept of direct execution computer architecture was the Burroughs B5500 in 1961.
The 85500 used the concept of’ a hardware stack to store executable statements expressed
in reverse Polish notation and served as a predecessor for many designs. An ALGOL 60
design described by Anderson ( 10 )  in 196 1 was an extension of the B5500 architecture and
consisted of three stack memories and pointers. The three stacks were used to process control

‘1

. 5



— - . .  — -5

states , arithmetic operators , and operands. The operator stack was used to resolve operator
precedence as arithmetic statements were interpreted. Another detailed ALGOL 60 design
was formulated by Chu in 1 973 ( 1 I) . The functional parts of Chu ’s ALGOL computer arc
shown in Figure 3. The partitioning of the architecture into functional elements performing
specitic operations and control has led to Chu ’s current implementation approach using
large-scale-integration (6).

I USER HIGH.LEVEL 1
LA NGUA GE PRO GRA M

INPUT/OUTPUT
PROCESSOR

INTERACTIVE MONITOR AND I
TEXT EDITOR ROM 

P R O C E S S O R } . . ” ~~~~ 
~~~~~~~~~~ 1USER.TEXT .FILE RAM J

I !

EXECUTION
POINTER

_
~~~~~~ ASSOCIATIVE

PROCESSOR — 7’J~ 
MEMORY CAM

I ’I I

I BUFFER

~~~~RESULT

I~~~s

_ _ _ _ _

DATAFLOW~~~~~~~~—~~~ ASSOCIATIVE
PROCESSOR

r’7i MEMORY DAM

DATA MEMORY
RAM

Figure 3 . Functional diagram of(’hu’s A LGOL computer .

3

—

1)irect execution computer architecture work in the 1 960’s involved several languages
including EULER , FORTRAN , and PL/ l . A significant contribution reported in 197 1 was
the design and construction of the SYMBOL computer system (1 2) under the direction of
R. Rice and W. R. Smith , both employed by Fairchild at the time. The SYMBOL architec-
ture consisted of several processors interconnected with a main bus and incorporated a
virtual memory allocated automatical ly by hardware . The main processing parts included :

• central processor
• translator
• interface processor
• memory controller
• memory relaimer
• disk channel processor
• I/O channel controller
• system supervisor

Figure 4 shows the SYMBOL processors, functions, and number of hardware modules per
processor. The SYMBOL high level language is a free format procedural language containing
the useful features of FORTRAN , ALGOL, and PL/ I. Absent in the language are data type
and size declarations. SYMBOL was implemented using small-scale-integration (SSI) 12 X 17
ilich single layer PC boards and represents a graphic example of late 1 960 SSI technology,
SYMBOL was donated to Iowa State University in l9’fl and has been used as a research tool.
One of the criticisms of SYMBOL is that language and system extensions are difficult to
implement since the modules are hardw ired. In addition , the SYMBOL system executes
only the SYMBOL language .

PROCESSING FUNCTIONS SERVICE FUNCTIONS

CENTRAL PROCESSOR MAIN I MEMORY CONTROLLER
CO M M U N I C A T I ON r

Polish String Processing BUS I Page Allocation
Var iab le.Lengt h Numeric I System Address Processing

Proce ssing I Data String Management
Variable-Length String I Page Table Management

Processing I—
Data-Type Conversion 15 CARDS
Data Structuring
Structure Referencing MEMORY RECLAIMER
Variable Structure

Assignment Processing of Deleted Space
to Make Reusable

39 CARDS
2 CARDS

TRANSLATOR DISK CHANNEL PROCESSOR

Name Table Generation Page Transfer Control
Object String Generation Page Table Processing
Addr ess Linking
Library Access and 3 CARDS

Linking

r~~~~~~~~~~~~~
O

~~~~~~~~
ER

Buffer Processmg 

___[channel Se~uencun~

Information Transfer to i — .  11 CARDS
and from Vi rtual Memory

Text Editing SYSTEM SUPERVISOR

8 CARDS Task Queue Processing
Interrupt Processing
Paging Control
Real-Time Processing
Software Communication

Control

14 CARDS
Figure 4 . SYMBOL block diagram.

4

L ‘ , — — 
- ~~~~~~~~~~~~~ — Ii



—k- - W ~~~~

Several APL designs have appeared (13 , 14, 1 5)  and IBM currently offers the 5)00
desk-top computer that executes APL or BASIC at the flick of a front panel switch. Other
direct execution computer architectures which have emerged are SNOBOL 4 , 1-IYDRA , PL/ I ,
and IPL processors (9) . In 1967 Hawryszkiewyc z reported on a microprogrammed system
which simulated analog computer problems (16). At least one interactive s imulat ion language
based on an interpretive translator has appeared, however, the interpreter is written in mini-
computer assembly language and not microprogrammed (1 7). General Electric has developed
a set of hardware microprocessor modules to directly execute high level statements for
realtime signal processing (1 8).

Tile sampling of direct execution computer architecture designs reviewed here indi-
cates a demonstrated f~,asib ilit y for directly executing a high level language in hardware
and/or firmwar e .  The l i terature shows that direct execution computer architectures have
bee n applied to both general purpose and specific proble m-orientated languages. It should
be noted that the more recent designs (post 1970) have used microprogramming as tile method
of implementing the functional  elements of a direct execution language. This approach is an
advantage to the designer to produce flexible firmware which can be easily modified during
development and extended when future language expansion is required. In addition , a direct
execution system and language eliminates the need for multiple system programs , such as
compilers, assemblers, and linking loaders. As a result , the user interfaces only with tile high
level language and its execution and does not need to knuw the details of such system pro-
grams. The designs reviewed here were not economical to build in the technology of the
l 960’s and early 1 910’s. However , current  large-scale-integration , microprocessor , and memory
tec hnology make implementat ion feasible and cost e ffective. These advantages and others
cont inue to emerge as research in direct execut ion architectures and directly executable hi gh
level languages progresses.

I)IRECT EXECUTION COMPUTER ARCHITECTURES FOR SIMULATION

I he re l a t ionship between d irect ex ecut ion computer archite cture concepts and con-
t inuou s  sy st et i t  s imula t ion  should be examined closely . In other words , wily appl y d ir ect
execut io n to s imu la t i on  and at what  level should it be applied ? It is a generally accepted
fact that direct execution systems improve the interlace between user, programming language,
and appl icat ion.  In te rac t ive  model development and problem so lut i on are particularly im-
portant in cont ll Jous system simulat ion since these factors eventually influence designer
efficiency and costs. A direct execution system allows a simulation language user to inter-
activel~ develop models since there is no need to wait t’or the output of chained system
programs. I his envi ronment  means less software layers between the user and equipment .
Large-scale-integration implementation of a direct execution system provides a low-cost
high- p er formance al ternative to ex is t ing  digital and analog-based simulation systems. A
mic roprogrammed direct execut ion arch itec ture  using bipolar technology parts can be
optimized to perform speci f ic func t ions  required in cont inuous system simulation problems.

• Such an u;~thn ized combination enables basic operation times as low as 200 nanoseconds to
be achieved and provides fast execut ion speeds for realtime simulat ion and control. The low
cost character istics of large-scale-integration part s translates to low system costs and makes
possible the usc of mult iple  direct execution systems in distributed simulation system
architectures. This would include the par t i t ioning  of larg e problems into sections executed
by a direct execution system and the application of parallel processing integration algo-
r i thm s  ( 19 , 20). Given tha t  thes e potential advantages exist , the levels at which direct
execution concepts can be applied to continuous system simulation must be explored.

5



l :irst . let us examine  the different phases of interact ive  continuous system simulat ion.
Fi gure 5 shows the processes involved in s imula t ing  dyna m ic systems in an interactive environ-
ment .  User in te rac t ion  wi th  t i e  s imulat ion system occurs at two dist inct  levels: ( I )  problem
preparation and documenta t ion , and ( 2 )  model description and s imula t ion .  Each of these
levels includes the several related functions listed her e :

- problem preparation and documenta t ion
a. t ex t  ed i t ing  mod i f i ca t i on  a n d storage

b. report [)reparation

2. model description and simulation

a. model dyna i i i i ’ :s
h . in i t i a l  condit ions
c. procedural and solution control sections

d. t unc t i o f l s  and subrout ines

e. r u n - t i m e  execut ion

f. run- t ime l ( )  and display
g. paramet er  modif icat ion
ft .  post- run d isp lay  - p l o t t inp ,  a nd processing

I I I I COMPUTER RESPONSE

H M A T H E M A T I CA L SIMULAflON

A A
P A R A M E T E R S

M OD E L  MO DI F Y  S YSTEM
_______________________________________ PARA METER S

OR MODEL

Figure 5 . Continuous system simulation process.

A third s imula t io n  level includes a real t ime environment  where the s imulat ion system is
dedicated on-line wi th  other computer  equipment  or actual system hardware . Although
user interaction is min imal ,  the direct execution architecture must account for this mode
of operation.

Figure 6 shows the various phases listed above partitioned into a direct execution
architecture where each section perform s a specific funct ion.  The text editing, modification ,
and storage operations arc easily incorporated by a direct execution processor. Since user
response is slow during these phases , the processor can perfo rm a lexical scan and 

syntax6



— - .  -~

PROGRAM r DATA
STORAGE STORAGE

DISK DISK

_ _ _ _ _ _ _ _  ~5~!~_j’ r [ P~~~
ET 

~ 

:

______________ I ~~~ 

CO NTROL / STATUS

CA T USER U DIRECT EXECUT IOt ~~~L..j
T E R M I N A L  L PR OCE SSOR~~~~

,,J
~~~ DI SPLAY

Fi gure 6. Direct execution computer arch itecture for int eract ive cont inuous system simulat i on.

check on each l ine as en te red b y the user. The tex t and language processor can p er for m
the stor a ~!c and re t r ieval of prep ared t ex t on a disk system. As the user enters s t a tements
f o r model dynamics , i n i t i a l condi t ions , pro cedural sections. f u n c t i o n s , and subrout ines .
t h e same j irocessor sets up da ta s t r u c t u r e s , s t acks , and control for the problem. (Tills
t rans la t ion process is fu r the r discussed below .) These i tems are stored in n i u l t i por t
memor ies accessible by other Junct ion al processors.

Run- t ime execut ion involves the solution of ’ tile d y n a m i c system equat ions Il sing
sta ndard numerical integration techniques fo r d i f f e ren t i a l equations. The problem state
va riables are updated using th e state der ivat ives and supporting equat ions as de f ined by t h e
use r. This set i i i equat io ns ts translated into an executable form in the mul t ipor t memory .
A direct execut ion processor cull p e r f o r m the Fuj i - t ime solut ions , retr ieving and storing data
from the m u l t i port memory . A separate I/O and post-run processor can receive in t e r rup t s
from the d i r e c t execut ion processor at communicat ion in terva l t imes (usually a subse t of
the so lu t ion-poin t t ime ’) so tha t data can he displayed or stored dur ing r u n — t i m e . Real t ime
data and control can be handled by the I/ O and 1)ost -run processor. Post-run display and

• processing are also performed by th i s processor by re t r i ev ing tile run- t ime stored data from
a hIgh speed disk. The user-defined opcra t iuns to be performed during this phase are also
stored in the mult ipo rt memory.

File t rans la t ion process p e r fo r m s two main t’unctions. F i rs t , an interpreter p rocesses
all language s ta tements for lexical am i d syntax correctness. Tile interpreter directly sets up

7

-

—
‘-
- w -—-- - - - —

~~
- - —~~~- --~~~

initial conditions by assigning memory addresses and initializing these locations with data.
The interp reter can also process parameter modi fication statements after a run. Second ,
model dynamics , procedural and solution control sections , functions , subroutines , and
post-run statements arc processed by a mini-compiler . The compiler places an intermediate
code in the muitiport memory which is then executed by the direct execution processor.
A compilation process is used here (instead of an interpretive translation) since the entire
model dynamics section must be pre sent to obtain a solution. Using this approach only the
ini t ia l condition section must be retranslated when making parameter modifications When
a model modificat ion is made the entire problem must Fe reinterpreted and recompiled.

The init ial conditions are most conveniently expressed by the user using an equation-
type format , The model dynamics can be expressed in terms of equation or block-diagram
oriented language constructs. A typical second-order system can be expressed as follows:

I) Equation 2) Block-Diagra m
X’ =~A*X.~B*Y MULTIPLY S = X *A
Y’ = X MULTIPLY Q = Y *B

INVERT Z= .-S
SUBTRACT P=Z -Q
INTEGRATE X = f p*G I
INTEGRATE Y = f X*G2

The model dynamics format described here determines the type of processing that is used by
the compiler . For example , both formats can be easily trans lated into a reverse Polish notation.
Another approach is to use an intermediate threaded-code that links the current operation to
the next and passes parameter addresses and data through stacks and lists. In each case the
in term ediate code is executed by the direct execution processor.

Figure 6 pre .:ents one part i t ioning scheme for a direct execution architecture for
si mulat ion. The. various phases of ’ interactive simulation presented in the para~~aphs above
indicate that direct execution concepts can be applied to the problem preparation and docu-
mentat ion sectIon s. The model description and translation phases can be performed by a
similar processor using interpretation and compilation techn iques. Run-t ime execut ion and
I/O operations also can be performed by a direct execution processor. The following sections
describe the sample h igh level simulation language used in this study and a large-scale-integration
implementat ion of a direct executio n system for simulation.

DEMON STRATION VEHICLE : M I CRODARE LANGUAGE

A high level simulatio n language , MICRO DARE , developed by Korn (2 1) and Conley (2 2)
at the University of Arizona was chosen as the vehicle for demonstrating a direct execution
simulation system in thi s s tudy. MICRODARE is the newest of a line of DARE simulation
languages developed under Korn (2) . Appendix A summarizes the DARE language s which in-
clude both fixed-point (block-diagram) and floating-point (equation) systems that run on a
variety of large mainfra me computers and minicompu ters. Most of the DAR E systems are
interactive and use trans lators , assem blers , compilers , and l inking loaders to construct a
run-time object program.

8

—- . -— -- --

~

..

~

-~~~~~~~~~~~~~
—

~~~~~
—

~~~~~~~~
-.—.- -

~~~~~~~~~~~~~~~~~~ 
— - .—-.



—-i.: w-

M I CRODARE uses system software derived from BASIC and does not require an
assembler , compiler , or loader. The language provides interacti ve program entry,  editing,
file manipulation , and multi-run control. The Iwo main sections of the MICRODARE
language include: ( I )  problem initialization and run-time control and ( 2 )  problem specifi-
cation via mathematical and realtim e operators. Operators are implemented in eff icient
assembly language reentrant threaded-code subprograms buil t  into the MIC RODAR E
system software or in LSI-J I microcode. Appendix B shows the operators current ly avail-
able. The user specifies the operators (in correct computational order> for problems in
dynamic system simulation , signal processing, process control , and laboratory instrumen-
tati on.

MICRODARE uses three formats of data words: ( I )  48-bit floating-point , 32-bit
mantissa : ( 2 )  1 6-hit fixed-po iti t fractions , and (3) 1 6-bit 2’s complement integers. The
floating-point data is a special format used in the BASIC-dialect portion of’ MICRO DAR E .
Run-time variables are converted to fractional fixed-point before a run and reconverted to
floating-point after the run. M ICRODARE also provides for run-time display of problem
variables in t ime or phase-plane formats. Additional information on MICRODAR E is
available from the references (2 , 21 , 22).

MICRODARE was chosen as a demonstration vehicle for direct execution for
simulation for several reasons. Firs t , the system software was available and executing on
commercial PDP-J I and LSI-l I hardware and no system software development effort was
required. Second , MICRODARE executes on LSI-l I microcon ll)uter systems and provides
a low-cost system (under S 1 2K) with grapilics and a capability for special purpose hardware
interfaces. Also , the LSI-I 1 bus is well documented amid can be easily interfaced to custom
devices. Third , the M I CRODARE language constructs are simple and implemented in modu-
lar system software that  can be easily modified. Fourth , MICRODARE language constructs
allow operations in a realtime signal processing or simulation environment. in summary , the
MICRODARE language provided an excellent opportuni ty  to investigate amid demonstrate
the application of direct eXec ution computer arclli tectures wi thout  having to invest a large
amount  of t ime and effort iii starting froni scratch to develop iiew language specifications.

The M 1CRODARE system software used in this project contains a modified BASIC
interpreter and mini-compiler that  generate a threaded-code list of block operators and
argr ment addresses. This list is operated on the LSI- l I which executes preprogrammed
PDP - 1 I machine language instructions instructions for each operator. Figure 7 shows a simple

- data acquisition and processing example and the threaded-code address list generated b y t u e
M I CRODARE mini-compiler. An index register pointer is used as a “virtual progra m counter ”
ati d incremented after each memory refe rence. Each canned operator subprogram contains
a preindexed , indirect , and increment jump instruction which provides the linkage mechanism
to the next  operator. in this way,  fast executing subprogra m s are et’ficiently and simpl y linked
together .

9

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _  
I



ADC X : *READADCONV ERTER
SUM P=X + B  : *ADDBTO X
MULT Y = P A -  : •PERFORM MULTIPLICATION

H~~~~~~~~~~~~~~~
SU

~~~~~~~~~~~~~~~~~~~~ UL±~~~~~~~

THREADED-C ODE ADDRESS LIST

Index
Re gister

~~
—

~
—

~~
- ADC ; Address of ADC Handler

Poin ter I
X Addresso f Data X
SUM ; Address of SUM Subroutine
x
B
P DATA LIST
MU LT X
P B
A P
Y A

V

f’i gurc 7. MICROD ARE da ma acquis ili on example .

Figure 8 shows an interactive problem simulat ing a servo mechanism and a mean-
P square-error computation , Appendix C contains addition al and more complex MICRODAREsample probl ems including a two-dimens ional torpedo dynamics simulation.

10

— - -a ~

• —h: w- -
~~~~~~~ 

-

E = U - X (servo error)

dX
— = G 1% * XD
dT

(servo state equations)
dXD
— = G2% ( He E- R*XD )
dT

P = G3% f  E~ dT (Mean square error)

10 ***** ~~~~~~~~~~~~~~~~~~~~~~~ A SIMPLE SERVO SIMULATION
15 CLEAR STACK
20 DT=O.005 : TM=O.9999 ~~~~~~ SIMULATION PARAMETERS
30 G1%=20 : G2%=4O : G3%=1O : ***** IMTEGRATOR GAINS
40 X O  : X D O  : P~O : ~~~~ INITIAL VALUES OF STATE VARIABLES
45 H=O.375 : ~~~~~~~~ A CONSTANT PARAMETER
50 U=0.8 : ~~~~~~~~~~~ INPUT STEP VALUE
55 PRINT ‘ ENTER DAMPING PARAMETER R”
60 INPUT R : ~~~~ INPUT INTERACTIVELY REQUESTED FROM USER
65 T=O
70 DRUN : ***** DIFFERENTIAL -EQUATION-SOLVING RUN
80 END
90 ***** ~~~~~~~~~~~~~~~~ BLOCK-DIAGRAM PROGRAM FOLLOWS
20100 DIF E=U-X -

20200 MULT RX=R*XD
20300 MULT HE=Fi*E
20400 DIF Y=HE-RX
20500 MULT ES=E*E
20550 ~~~~~~ ~~~~~~~~ RUN-TIME DISPLAY
20560 DISPT X
20570 DISPT E
20580 ***** ~~~~~~~~ INTEGRATORS ARE LAST!
20600 INTG XD(Y*G2%
20700 INTG X(XD*G1%
20800 INTG P(ES*G3~ : ***** MEAN-SQUARE ERROR

Figure M . MICRODARE servo mechanism example.

. I I

— , •.— — -•-—-—- . - —— . .----• — —~



—
‘
- w -~ - .  —

LSI IMPLEMENTAT ION OF DIRECT EXECUTI ON MI CRODARE

A functional  parti t ioning scheme of an interactive simulation system was briefly
depicted in Figure 6. Depending on the function of each block , one can assign various
large-scale-integration devices amid subsystem hardwar e , firmware , and software to perform
the specific tasks. Figure 9 shows the parti t ioni ng scheme as applied to the MI CRODARE
simulation language. A key feature of the scheme used here was the separation of the
problem preparation and translatiom i functions from the run-time execution of’ the problem.
The former requires moderate execution speed while the lat ter  requires high speed.

FLOPPY HIGH SPEED
I DISK I I DISK I

SYSTEM SYSTEM

~~~~~~~~~~~~~~~~~~~~~~~~~~~ HIGH SPEED MULTIPORT MEMORY

ADDRESS DATA
LIST LIST
A D C x

8 OR 16 BIT TEXT A ND SUM p INPUT/OUTPUT X X(t)

MICROCOMPUTER LANGUAGE X A POST RUN A D C

SYSTEM PROCESSOR 8 y PROCESSOR
P C/S

MU LT
P
A

BIT-SLICE OR

~

I6 BITSY STEM

DIRECT EXECUTION RUN TIME
USER PROCESSOR GRAPHICS
CRT DISPLA Y

BIT-SLICE ARITHMETIC
AND CONTROL SECTIONS y

A D C X T
SUM P~~X + B
MULl Y~~A P

Figure 9 . Direct execution a~ch ite ctu r e for MICRODARE.

I
Low cost and commercially available large-scale-integration devices and subsystems

were considered and included three component types: (I) 8 and 1 6-bit microprocessors ; (2)
microprogrammed bit-slice devices ; and (3) high speed memory . The blocks in Figure 9 are

4 repeated here wi th the type of large-scale-integration devices applicable to each subsystem.

I . Text and Language Processor

Eigh t or 1 6-bit n-channel meta l-cxide -semi conductor microprocessor with local
program read-only-memory and data random-access memory . Interfaces to use r terminal ,
program storage floppy disk subsystem , and mult ipor t memory . Moderate speed micro-
processor (200—300 kilo-operations-per-second) is required since user interface is typically at
human response times. This processor also perf ’orms the interpreter / compiler functions.

12

— •~~~~- — •
.--~~~ —-

• __
~~~~

_ w- ____ - 
~~~~

- - — - - - - - -

2. Multi-Port Memory

High speed (50—200 nanosecond access time) memory configured wi th ports to the
text and language processor , direct executi on processor , and input / output and post-run
processor. The direct executi on processor should have priority over the other two since it
will execute much t’aster. However , in a realtime environment , the input/ ou tput processor
mni ght require a high priority t’or rapid data transfers. Memory size should be approximatel y
16—32K of ~6— 32 bit words .

3. Direct Execution Processor

Bipolar bit-slice components including register , ar i thmetic and logical uni ts , micro-
program memory , microprogram sequencer uni t , and miscellaneous circuitry. This processor
must have the capabili ty to perform microprogrammed operations such as mul t ip l ica t ion ,
summation , and integration. Special funct ions components such as a mult ipl ier un i t and
sine/cosine read-only-memories could be used here .

4. Input /Output and Post-Run Processor

Hig h spee d I 6-bit microprocessor or bipol ar bit-slice components with architecture
featuring mult iple input / ol l tput p Grts to memories , realtime devices , and high speed storage
and display peripherals. Post-run processor can be programmed via the mul t ipor t memory
with instructions supplied by user.

To fully iniplement the four major sections described above using a variety of large-
scale-integration devmces represented a monumental task beyond the time and finances available
for this proj ect. There fore , a simplified architecture scheme was used that still demonstrated
direct exec ution concepts l’or simulation. The simplified architecture consists of a dual pro-
cessor sys tem interconnected via a dual port memory as sh own in Figure 10. The fumic tions
of the text and language processor and the input / ou tpu t processor were combined and imple-
mented on a LSI- I I microc omputer system. A dual double-density floppy disk subsystem
provides progra m and run- t ime storage . A Tektronix 4006 graphics ter minal provides program
entry and run-t ime displays. The dual port memory (16K X 16) is part of the total (28K X 16)
LSI -l I memory. The MICROD ARE system sot’tware is stored on ti le flOppy disk system and
executes in the LSI- l I and dual port memory . In addit ion , a bit-slice microassembler is run
on the LSI- I I to develop microcode software t’or the direct execution processor (2 3) .

In the dual processor architecture depicted in Figure 10 , the lmscr i np u t s the MICR O-
DARL problem via the Tektronix 4006 terminal. The MICRODARL system sot’t ware trails-
lates t he problem into am ~ intermediate threaded- code that consists of an operatio n and data
address list for tile dynamm ~s state variable computations and numerical integra tion. The
address list and corresponding data locations are stored in the dual port memory. 011cc the
dual port memory contains this threaded-code , the LSI-l I begins the simulation run. Tile
LSI-l I signals the direct execution processor to start its processing. The direct executi on

4
- processor fetches the operation opeodes and data operands , performs the oper ation , stores

the result , and links to the next operation. Af ’ter the last operation is performed , the direct
execution processor returns control back to the LSI- l I which performs numerical integration• of the stated variables and displays the selected variables on the graphics ter minal. The LSI-l I P
also performs simulation-stu dy control and pre-run and post-run computations. Event ual ly ,
the direct execution processor will perf ’orm all of the numerical integration and realtime in-
put / output . Tile following sections further describe the components and operation of the
dual port memory, direct execution processor , and writeable control store and their interaction
with the LSI- 1 1 as shown in Figure I I .

13

I _ _ _ _ _ _ _ _ •.
_ . .

-• - -

LSI •l 1 CPU 1 1
~~~~i~AL FLOPP~~~

1 I CRT/GRAP HICS
AND I I DISK AND I AND KEYBOARD I I 8K

j  
4K MEMORY CONTROLLER J TERMINAL j 

MEMORY

It
LSI-l 1 BUS

16K x 16 .

DUAL PORT REAL-TIME I STORE MEMOR

I 
EWAITEAB LE CONTROL1

MEMORY 
~~

______ 
DIRE C 

2900 

I

f
~~

32

_ _

T EXECUTION
PROCESSOR

Figure tO. MICRODARE duat processor system.

CR1/GRAPHICS I
TERMINAL

CONTROLj ~ DISPLAY
______________ DATA 

______________ ______________

ADDRESS I DATA 2900 I
DUAL PORT DIRECTSOURCE

F~~~~ICR ODATE 

~~~~ LS I-l 1 SYSTEM _________ _______

ON
MICRODARE

~~X 16 MEMORY

1~~~~ROCESSOR I__________ _______
EXECUTIONPROGRAM

_________ _______

I
ON DISKETTES _________________

DISPLAY AND . ADDRESS
CONTR OLSOURCE PROGRAM

~ REAL .TIME I/O
A D C X ADDRESS LIST DATA LIST
SUM Y = X + A A D C X
MUL A - Z C1 x v

SUM

MUL

•
. MICRODARE INTERPRETER Cl DIRECT EXECUTION

SETS UP THREADED COD E Z PROCESSOR PERFORMS
LIST AND DAT A ARRA Y A NUMERICAL INTEGRATION

OF DIFFERENTIAL EQUATIONS

Figure I I . Dual processor operation for MICRODARE.

14

___ _______________ I.

—-
~
- - w

Tile dual port memory provides a path of communication betweeii the LSI- I I and
tile direct executi on proc essor (DEP) . As seen by the LSI-l I , the dual port memory looks
like an ordinary LSI-l 1 16K memory circuit board. As seemi by the DEP , the dtma l port
memory looks like an 8K word by 32-bit memory. The memory is electrically conl’igured
as an array of 8K X 32-bit words with multip l exers to enable reading and writ ing 8-, 16- , or
32-bit words. Tilis feature is required because the LSI -l I must have 8- or 1 6-bit read / write
capability while the DEP requires 16- or 32-bit read /write capability. Tile electrical speci-
li catio ns governin g tile u se of ’ ti le LSI-l I port are identical to the normal “Q-BUS” specI-
fications f’ound iii tile LSI-l I technical manual (24) . The DEP por t , however , is not standard
and consists of the t o llowing:

I . 13 address lines (ADD)
2. 32 data lines (b idirectional)
3. A write (read not) command line (W)
4. A half (whole not) word command line (HW)
5. A memory request h u e (M R)
6. A memory acknowledge line (from meniory) (R A)
7. A read data ready line (DR)
Note : The above lines are low true.

The operation 01 the DEP port is as follows , and its t iming diagra m is shown in Figure 1 2.

I . Read Operation
- Tile DEP asserts the address (ADD) and negate s th e write (W) and hail ’

work HW) signals.
- Memory request (M R) I s then asserted.
- The memory sends request acknowledge (R A) when tile DEP port gains access.
- After the read access delay the data is placed oii ti le lines.
- Tile true to false t ransi t ion of data ready (D R) should be used to strobe

tile data.
- The DEP t llen mlegates memory request (M R) .

2. Write Operation
- The DEP asserts t h e address and write signal (W) and negates tile half

word (11W) signal.

- Memory reque st (M R) is asserted.
- The memory sends request acknowledge (R A) when port access is granted.
- File 1)EP p laces wri t e data on the data lines.
- After data ilas been stable oii tile lines lor 10 nsec tile write signal (W) is

4 negated (a sscrtiOll can happen any t ime) . r
- Memory requ es t (M R) is then negated.

As sertion of tile half word command (11W) causes tile above operation to be per lormed on a •

hal t ra ther than whole wor d . Wllen half word mode is selected , the least signit ’icant address
h it indicates winch half ol tile word is to be used. This is also tile collVCnt ion followed in
byte mode using the LSI- l 1 Port.

15

-

W R ITE READ

_ _ _ _I’_ _ _ _ _ _ _A_ _ _ _

• I ”~ ______________

ADDRESS (ADD)
~XX~~ X~Y X X YYXXX XXX ~~X~~L~~~ ~.IXXXA X XX XXXXXXX1XXX

I I I

_ _ _ _ _ _ _ _ ~XXX)O(~XX)—
MIN 1

~~ ~~~~~~~~~
180 i.-

~
I-•~- OMIN 50 -“ -i ~

_______ 0 MIN ~~~~ I-..- 100 M IN I M IN

MEM REQ t MR) MIN

I I
~~~~ I P’~ \

_ _

I I \ I
WRITE/READ XXXX A I I AAA~ /1 I I \A\~X

I I I I~

WRITE /STORE IWS) 

~
_o 

~~~~~~~~~~~~~ 
180 MIN

~~~ J I IMIN / i
WH OLE/ HALF 

____  ~~~~~~~~~~~If I I I I  
ll I _______________

READ DA T A R E A D Y  ( 1

RE Q ACK (RA ) I 1~t ~ __________________

Figure 12 . Dual por t memory timing diagra m (DEP port).

The direct execution processor (DEP ) functional block diagram is shown in Figure 13
and is implemented using tile Advau iced Micro Devices 2900 bit-slice family of parts (24). The
DEP consists of a data processing section and a microinstruction sequ. ricer section. These
sectioui s inc lude the following functional parts:

I .  32-hit data read /write interf ’ace ~o dual port memory.
2 . 32-bit AMD 2903 register , ari thmetic , and logical uni t  (RALU ).

3. 16 X 16 TRW mult ip l ier  U ni t .

4. 16-bit AMD 2930 memory address com itroller.
5. AMD 2910 mi~rosequence controller.
6. 1K X 64-bit writeab le control store memory and pipeline register.
7. 10-bit operation code (instruction ) register.
8. 32-bit memory data register with selectable 16-bit upper and lower sections.
9 . 16-hit memory address register to dual port memory.

10. Status register and condition code multiplexer.
I I .  Direct data paths f’rom memory data register to memory address register.
12. Data path from pipeline register to 32-bit RALU.
13. System clock circuit ry,  approximately 5 M H z .

16



• —
i..

- w —
~~ 

-

14. Comitrol lines to dual port niemory .
IS.  Microprograms for M I CRODARE operations.

These parts are wire-wrapped on two quad-type boa rd s similar to LSI -l I boards.

TO DUAL PORT MEMORY
_ _  

-
~~~

32

____$____

I MEMORY DATA I MEMORY ADDRESS

LMSB REGISTER

~~
REGISTER

10 i6
~~~~~~~~Jt

_ _
_ _ _ _ _ _ _  

_ _ _ _  —

I INSTRUCTION 0 2930
L REGISTER 16 16 ‘ 16 16 MEMORY ADDRESS

CONTROLLER
10

1-

E:4Co; IoN ;G
~

TER AND
1

10 

~~~~J L~~~~~~J 16

WRIT EA BLE CONTR OL FAE MEMORY A~~~~~~~~~~~ L~~
0

~ ~~~~~~ X~~~~~~

J

_

DEP AND
CONTROL

Figure 13. Direct Execution Processo r (DEP) ’ funct ional block diagram .

The LSI- l I and direct execution processor communicate through an absolut e “mailbox ”
address vir tual program counter (VPC) in the dual port memory. The direct execution pro-
cessor peri odically examines the VPC location , commences its operation if the LSI-l i progra ill
ilas set the word to a microcode address , and puts the LSI -l I in a wait mode. Figure 14 shows
the sequence for I ADD operation by the direct execution processor. For details , the reader
is refe rred to the intermial architecture of ’ the AMD 2903 and 2930 parts (25 , 26) Notice t i lat

the 32-bit interface to the dual port memory allows reading o f (l) an operation code ari d data
address or (2) two data addresses fromn the threaded-code list . Data is read and stored in the
memory as 1 6-bit 2’s complement fixed-point fractions. All MI C RO DARE operations , except
MULTIPLY , are performed by the 2903 RALU. When the operation is complete , the direct
execution processor store s the update virtual program counter iii VPC amid enters a wait 1oop.
The LSI-l I reads this address in VPC as a threaded-code address and continues with the disp lay
operations. Further details and speed benchmarks will be documented in f’u ture reports.

17

-• •-r — — ~~~~~~~~~~~~~~~‘

—
k

-
W

- - ‘ -
~~~~~~

1 MAR 4— PC /Address of Operator/Data Address/Pair

2. MUIR 4— DPMtMA R) ;PC 4—- P C + 2

3. IR 4— MDR~~~~; PUSH MDR LSB ; MAR 4— PC/

4 . MUIR 4-—-- DPM(MAR); PC 4—PC + 2 iAddress of Data Addres s Pair

5. MAR 4~~- MDR
~~s~ . PUSH MDR LSB

6. MDR MSB 4 - -  DPM(MAR) /F i rs t Operand

7. RAM IB) 4— MDR~~58 ; POP MAR

8. MDR MSB 
4_ _  DPM~MAR) /Second Operand

9. RAM(A ) 4—~ MDR~~~~ + RAM(B ) ; POP MAR /Add Operands

10. DPM(MARI 4- RAM t A ) IStore Result

MAR: Memory Address Register RA M: 2903 RAM

MUIR: Memory Data Register PC: 2930 Program Counter

IR. Insti uc t io n Reqister PUSH/POP: 2930 Stac k

DPM Dual Port Memory A/B: 2903 RAM Address

Figure 14 . Sequence b r  ADD operation in Direct Execution Processor.

‘File direct executio n processor contains a niicroinstruction sequencer section which con-
tains an AMD 2910 nl icroseq uence controller and a writeab le control store memory which con-
ta in s m ic rocode f ’or MI CRODARE operations. Details of the microsequencer are referred to
the AM I) 29 10 l i tera ture  (25 ) .  [he writeabie contro l store board consists of the control store
memory. the system clock , and a parail e l I/O interface to the LSI-l I .  Figure 15 is a block diagram

BACKPLA NE TO DEP CONNECTORS TO LSI-1 1

I ‘
~~

‘4— B INIT
ADDREN

~a ~. R EQA

~~. RE Q B
NXT INSTAODR 

10 10 
_____  

16 
10~~

T 0 TO 15

_ _ _ _  

4’ LEEJ~—WRITEEN

I

~~~~ 
_ _

_

64

NXT INST I
(TO PIPEL I NE DOREG

~~~ 

4:1 / ~~ INOTO 15

DEPCLK 
~~~~~~~~~~~~~~~ DISAB LE A I WRITE ~~~~~~~~

I NEW DATA REAOY +~
MPSEQDIS — P DATA TRANS 4

Fi gure 15 . Wri t eable control store bloc k diagran l .

18

-~~ —

—‘-- w ---
~~

-

of the board . Tile control store consists of 1K X 64 hits of llig il sl)eed RAM. Ten address
lines . NXTINSTADDR , b rom tile backplamie select the miext microinstruction . NXTINST ,
which is buffered onto the backplane. Access t im e of the RAM is 45 ns. Also supp li ed to
the backplane is tile 5.0 MHz system clock and a disable signal , MPSEQDIS. Wil en
MPS EQDI S is high , the write able control store is being addressed by the LSI-i I and
NXTINSTADDR silould be disabled (high impedance state).

The LSI-l I can read or write the control store via a DRV- l I parallel in te r f ’ace. (‘ontrol
sto re addresses and data are transmitted in successive 16-bit words , one word for th e address
and b’our words t’or a complete microimistructiom i . The two control lines. CSRO and CSR I ,
from the DRy -I I are used to direct the I / O . CSR O describes the com itents of the data lines .
OUT 0T015. CSRO low imidicates control store address and ini t ia tes the r ead/ write sequem lce:
high u mid m c a tes contro l store data. The least significant 16 bits are t ra nsmit ted first. Low (‘SR I
at the t ime the address is loaded (CSRO low) directs the logic to load tile contents of t u e
control store in to t he ou tp u t register , DOREG , for subsequent mul t ip l ex ing <into the IN 01015
iim l es to the DRy - I I . A high CSR I indicates a write sequence whi ch is in i t ia ted af ter the input
data reg ister , I)IREG , is loaded. REQB is used as an in terrupt signal l’or in ter rupt driven l ()
h~ LSI-l I . An in ter rupt is generated by the completion of write or read cycle . RI QA Provides
a rcad~ signal for t h e LSI -l 1. It is reset during access to tIle com ltro l store. AIN I T or BIN IT
in i t i a liz es t u e I/O logic.

The LSI -l I microcomputer system shown in Figure 10 is an off-the-shelf system which
exec u t e s the M 1(’ROI)ARE system software. The LSI-l I has a 28K 16-bit word memory
space . 16K of ’ which is the dual port memory. Other functiomial elements 01 the LSI- I I s~ s te I n

l m l c l Ud e

1. LSI - l I microcomputer module with extended instruction set and floating
F fo im l t ch ips.

2. 28K (16-b i t) semiconductor memory, 16K dual port to DEP .
3. Dual double density floppy disk drive/control ler wi th UN I BUS / LS I - l I

converter interface.
4. M u it ~-sIot bac kp lan e and power supp ly.
S. RI- I I f loppy disk op erati mig system aml d MI CRODAR E system sof tware .
6 . EIA RS-232 serial in ter b ’ace module to t erm~ina I .
7. Panel , clock , and terminator module .
8. Gr at ilics terminal with keyboard entry .
9 . Decwriter III l ine pr inter / terminal .

10. Paralle l interface mnodu le to writeable control store memory .

The memory layout b r the dual processor system is silown in Figure 16. Additiomial details
Ofl tile M l(’R Ol)A R I~ syste ms sof’tware can be found in the re ferences (2 1 , 22).

the R I - I l opera t ing system reside s on disket tes f ’or a double densi ty dual floppy
disk system. RT-1 I includes a monitor , PIP ut i l i t ies , te x t edito r , microa ssenlhier , BASI(’,
FORTRAN compiler , l i nk ing loader , and device handlers. Tile appli cation programs used
iierc were M lCR ODA R i~ simulat ion language and AMI)ASM microassembler. The MICRO-
l) AR 1 , system is a st and ’alon e program that can he run by typ ing R MI)TEK on the com ltro l

19

— .
~.‘

- w — - -•

28K 28K

AT- i l OPERATING SYSTEM

16K X 16 DAT A M I CR OD A R E
D U A L PORT M E M O R Y STACKS PROGRAM AND DATA 81< X 32

(L S I-1 1) M E M O R Y (DEP)

THREADED.CODE
LISTS

_ _ ± _ _— _ _

12K — 12K
MJCRODARE

8 K X 1 6 SO ACEMEMORY MODULE
PROGRAMS

M I C R OD A R E
SY STEM PROGRAMS

41< , — — — — —4 K

4K X 16
LS I-l 1 MODULE LSI-11 VECTORS AND STACK

0 0

Figure 16. Memory layout for MICRODARE dual processor system.

te rmina l . MIC R ODAR I - . is a modif ied BASIC interpreter and has both file manipulat ion
and text ed i t ing capabil i t ie s . SonIc minor modifi cations to this software have been niade
(2 2) [he MicroT ee AM I)A SM m lllcn) asse mnhle r program ms used to develop microcode for
LSI hIt- s l ice devices . suc h as the 2900 t’am il y (23) . The prograni is wri t ten in FORTRAN
and requires a FORTR AN conlpikr im i order to run on tile LS I- l I microcompu ter system.
I he nllcr oassembler was installed as three stand-alone programs under RT-I I and can be
invoked by typ ing R AMDASM . AMDASM is used to develop microcode for the direct
execut i on pruccs- ,or . ‘Fhe input to AMDASM is a source f ’ile containing microprog ram
field declarations , variables , and fl l flemom l ies . Tile AMDASM object output is stored on
a disk t’ile and later transferred to the wri te able control store memory.

APPLICATION AREAS FOR DIRECT EXECUTION ARCHITECTURES

Simulat ion oh ’ continuous systems is a prime example ot’ an application are a for direct
execution computer architecture. In an interactive simulation environ ment , the user must
make model and parameter changes to the problem and quickly evalu ate the resu lts of the r
new simulat ion. He cannot afford (nor his employer) to wait f’or lengthy compilations and
library linkages to produce an executable s imulat ion run. Direct execution computer
architecture s provide the close relationship between the user and the simtm lation equipment
required in this type of ’ application problem. An additional advantage is incre ased compu-
tation speed since the architecture is optimized to numerical ly solve systems of differential
equations. This advantage becomes important in a realtime data-acquisition or simulation
problem where an analog computer Is to be replaced. Once the model has been developed

20

-

• —
‘.

- _
w —•

~~
-
~~~~~~~~

‘ —

the probl em state variables are computed via microprogrammed operatiom ls stored in read-
only- m emory . Clear ly such a simu l at iom l system ilas a l imited bandwidth depending on tIle
probl em ti m e cons ta nts  and complexi ty .  However , tech niques exist to partition systems
of d i f f e r e n t i a l  equations in to  “slow ” and “last ” portions by separation of state der i va t ive
equations. hi addi t io n , algoriti lms for parallel solution of di f fere nt ia l  equat ions have been
investigated ( 20 , 27) ami d can be adapted into direct execut ion architectu ’es. in these types
of problems , the direct execut i om l  archi tecture described in this  paper has ex~~n~ions to
multiprocessor s imulat ion sy stems.

Direct execution arch i tectures  can be applied to problems t h at require a close user!
equ ipment  in ter face .  Laboratory process and ins t rumenta t ion  control is an examp le where
data acquisi t ion , d i s t r ibu t ion , amid signal processing can be pert ’ormed wi th  a direct execut ion
system. ln t e r a c t i ~ e h am lguagc s f ’or graphics display systems whli ch requ ire a small  amoun t  of
data t’ormat t ing amid processin g prior to displaying caii u t i l i t c  direct  exc c l l t io m l  comicep t s .
Data base managemem lt  s~ ste ms that  require informat ion storage and re t r ic~ ah funct ions  are
applicatio ns areas of direct execut ion concepts (28 ). All of the se appl ic at ion areas require
subsystem contr ol and data inquiries which can be per l’or med quick ly amid without  recom-
pi ling when a model change is made.

The tradi t ional  ap pl icat ion are a for direct execution archi tectu res  has been general
purpose high level programmin g languages. Direct execution architect ures are cont inuing
to em erge t’or lamlguag c s such as BASIC amid APL. A stack-oriented 16-bit microcomputer
chip set which interp rets  PASCAL inter m ediate P-code in I lardware has been anmiounced
by Western Dig ital  ( 2 9 ) .  Other semiconductor vendors are reported ly work im l g oml s imilar
microcomputer  architec tures.

SUMMARY AND CONCLUS IONS

The concepts of ’ direct exec ution computer  arci l i tectur e for  cont inuous system
si mulat ion investigated under  this project fall in to  two categories: ( I )  im lteract i Ve develop-
ment mode am I d ( 2 )  realtime computat ion mode. Tile f mrs t  category imi volv e s the high level
lang uage Issues am i d the inter lace to the direct execut iom i hardware . Time second category
m ela te s  to tile direc t execution ar cl l i t ec ture and its capabi l i ty to p~r f o rm Il ig il speed corn-
p utat i ons .

User requirements im l the in te rac t ive  development mode clearly indicate the ad-
va ntages of an interpreter-based language over a compiler-based language . Tile interpreter
insta ntaneously reports back errors to tIle user as he enters  language statemen ts.  Iii  tile
case of MI CRODAR L . a combination of interpreter  amid compiler is suitable since the
numerical  solution of differential  equat ions  involves repeated computat iom i of tIle proble m
state de rivatives . The MI CRODARL mini-com piler  sets up a threaded-code list for  tile
simu lation run which Is executed by the micr oprogrammed direct execution processor.
Language extensions to M l(’RO I)ARL . sucil as the addition of special purpose mathemat ica l
f unctions , ca n be made by adding the appro priate microcode or hardware unIts. Altho u gh
the MICRO D AR E inter preter  is derived f rom BASIC , it is coded in PDP - l I assembly
language and executes fair ly ra pidly on a minicomputer  (less th am l 2 seconds for most
problems ) . Tile MIC ROE ) AR F interprete r / compiler would execute sti l l  faster  If some of
the asse m bl y la nguage subrout ines  amid t’unct io n s could be microcod ed. The new LSI- 1 I
module with writcab le control store memory can provide t i l l s  l’eatur e . A~semilh iy langu age
modifications were made to the iml te I l ) reter software in this project to accommodate trai ls-
fe rri mlg paramete r s through the dual Port memory to the direct execution processor.

21



~~~~~ L

The realtime computation mod e is necessary it ’ the direct execution system is to be
used to solve systems of di f ’kr em ltia l equations on-line. Replacement of analog computer
func t ions in a hy bri d simulat ion system is such an example. In ti l is project . high speed bit-
slice devices provided the means of demonstrat ing the direct execution architecture. The
flexibi l i ty of these parts enable an optimized design to retrieve , compute , and store simu-
lation variables in the dual port memory . Tile partit ioning scheme used enforced the
need for special purpose LSI uni t s , such as mul t ipo r t memories , mu ltipli ers , sine/cosine
ROM . memory address controllers , and floating point processors . T!ie units provide high
speed processim lg wilich would normally be perfo rmed by tile LSI -I I or in direct execution
processor microcode. Addit ionai uni ts to speed up tIle language interpreter sections could
be used if available. The par t i t ioning sciiemc also pointed out the advantages of independent
parallel data and address processing sections in the design. The data processing section in
this project used 1 6-bit fixed point fractional ari thmetic. This approach requires tile use r
to scale the simulation problems as in the analog computer style . A floating point architec-
ture would negate this requirement.

lnves t igati onls in this l)rOiect indicated potential future work areas in direc t execution
arc hitectures f ’or s imula t ion . These areas are summarized here :

I . Mul t ipor t Memory LSI Chips hi gh speed devices to develop low cost melnories
for interprocessor communicat ion.

2. Floating Point Direct Execution System enables scale-fre e simulation
problems ; separate data and progr am memories.

3. High Speed LSI Floating Point Processor multi-chip bipolar or SOS
processor to complem ent floating p oint system ;exist ing NMOS processor is too slow.

4. Optimized Im iterpreter f’or Simulation - translation phase of simulat ion
described earlier in report and is optimized to process simulat ion statement constructs.

5. Im ip u t / Outp u t Interfaces f’or Direct Execution Process -— design with capability
to interface to otiler direct execution processors to ilan ldle large simulations.

6. Direct Execution Multiprocessor System Software system software to handle
multiprocessor s imulat ion possibly based on concurrent PASCAL concepts.

7. Special Funct ion LSI Units - high speed function table look-up units ,
sine/cosine ROMs . exponential and transcendental f ’unctions , string processing operators .
a nd memory stacks are examples of’ t hese.

•

—- ———-- - -— - — -—— --—-. —--.----——-——-.-- . —-- — . ‘~~~~~‘r -.- •~~~~~~~~ L. - .4, , .4~-. % .

- w -
~~~~

-— — - -. — -- -.—

REFERENCES

I .  M. L. Mit chell , “PHYSBE in the Raytheon Scientifi c Simulation Language (RSSL), ”
SIMULATION , March 1974 , pp. 8 1—86.

2. (.~ . A. Korn and J - V. Wait , Digital Conhinuous-St ’stem Si,nulat ion . Prentice—Hall ,
Englewood Cliffs , N. J., 1977.

3. Mitchell ami d Gauthier Associates , Inc., .4GSL, Advanced C’o,ztintwus Sirnulaiio, i
Language , User Guide/Refr r ~’,u-e Manual , Concord , MA , 1975.

4. W. Kora l and L. Schirm , “LSI Circuits for Digital Simulation ,” Proceedings of the
1978 Summer Computer Simulation Conference , Newport Reach , CA , pp. 85— 87.

5. Y. Chu . “Dire ct-~ x ecution Computer Architecture ,” 1 977 I F I P Congress Proceedings ,
PP . 7— 13.

6. Y. CIiu . “An LSI Modular Direct-Execution Computer Organization ,” COMPUTE R ,
July 1978 , pp. 69—76.

7 . E. Block and D. Galage , “Component Progress: Its Effect on High-Speed Computer
Architecture and Machine Organization ,” COMPUTER , April 1978 , pp. 64—76.

8. Y. Chu , Editor , High-Lei ’el Language ComputerArchirect ur e . Academic Press ,
New York , 1 975.

9. C. R. Carlson , “A Survey of High-Level Language Computer Architecture .” II ig/ m-Len ’el
Language C’ornp uterAr chi tec ’ture . Academic Press , New York , 1975 , P1’- 31 —6 2.

10. J . P. Anderson , “A Computer for Direct Execution of Algorithmic Languages ,”
Proceedings EJCC , 196 1 , pp. 1 84— 193.

I I .  Y. Chu , “Introducing the High-Level Language Computer Architecture ,” Technical
Repomt TR-227 . University of Maryland , Computer Science Center , 1973.

12. R. Rice and W. R. Smith , “SYMBOL — A Major Departure From Classic Software
Dominated von Neumann Computing Systems ,” Proceedings SJCC , 1971 , pP . 575—587 .

13. R. Zaks , “Microprogrammed APL ,” Proceedings [EEL Internat ional  Computimig
Society Conference , 197 1 , pp. 1 93—194.

14. S. M. Nissen and S. J. Wallach , “An APL Microprogra mnming Structure ,” Proceedings
Symposium on High-Level-Language Computer Arcllitecture . Univers ity of Maryland .
1973 , pp. 43—5 I.

1 5. Micro Computer Machines , Inc., MC’M— 70 Brochure . Wil lowale , Ontario. I 974.
16. I . T. Hawryszkiewycz , “Microprogrammed Control in Problem-Oriented Languages ,”

IEEE Transactions on Electronic Computers , Vol. EC-l6 , No. 5, October 1967 ,
pp. 652—658.

17. R. D. Benham , “Interactive Simulation Language — 8 ,” SIMULATION , Vol. 16 ,
No. 3 , March l9 ’7 I , p .  116.

I 8. General Electric / Ordnance Systems , h ard ware Micro-Processor S.m ’siem Guidelines ,
Pittsfield , MA , 1975.

19. G. A. Korn , “Back to Parallel Computation : Proposal For a Completely New On-Line
Simulation Using Standard Minicomputers For Low-Cost Multiprocess ing, ” SIMULATION ,
August 1972 , pp. 37-45.

23

—



— -‘.- w- — — - —

20 . M. A. Franklin , “Parallel Solutions of Ordinary Diffe rential  Equations. ” IEEE
Transactions on Computers , Vol. (‘—27 , No. 5, May 1978 , pp. 4 13—420.

2 1. G. A. Korn , “MICRODARE: A Fast , Direct-Executing High-Level-Language System for
Small Computers ,” Technical Report , University of Arizona , Electrical Engineering
Department , Jun e 1 978.

22. 5. W. (‘onley, “Software Design f ’or Simulation and Instrumentation ,” Ph. D Thesis ,
University of Arizona , Electrical Engineering Department , 1979 .

23 . Microtec , Meta Assembler Manual f o r  AMD 2900 Microprocessor, Sunnyvale , CA , 1978.
24. DIGITAL Equipment Corporation , Mi~ ’oco~nputer Handbook , Maynard , MA. 1977.
25. Advanced Micro Devices , Am 2903 Four-Bit Slice and Am 29/ 0  Goniro ller,

Sunnyvale , CA. 1978.
26. Advanced Micro Devices , Am 2930 Memor; ’ Address Controller , Sunnyvale , CA , 1977.
27. W. L. Mirank er and W. Liniger , “Pa rallel Methods for the Numerical Integration of

Ordinary Differential Equations .” Mathematical Computing, Vol. 21 , 1967 , pp. 303—320.
28 , D. L. Small and D. 0. Christy, “Command Center Info rmation System ,” NELC TD 498 ,

San Diego , CA , November 1976.
29 . J. G. Posa , “Microcompu ter Made for PASCAL ,” Electronics , 12 October 1978 , p. 155.

.-  

~~~~ .:: 
I


~~~ 1~ W 
-. ..- - -

APPENDIX A

Table A l .  DA R E languages summary .

DARE

~N.~System DARE-I DARE- I l DARE-I l IB DARE P DARE /ELEVEN MICRODARE

Feature ~~~~~ 1969 1970 1971 1973 l974 1977

Computer DEC PDP .9 DEC PDP-9 COC 6400/ C IX’ 6400 , PDP - 1 I Family PDP.l I
System DEC PDP-9 I BM 360, Family and

UNIVAC LS I - lI
1110 , etc.

Problem Equation Block Equation Equation Equation & Block
Representation Block

Data Type 48-Bit 18-Bit 48& 60-Bit 36-60 Bit 32-Bit 16-Bit
Floating Point Fixed Point Floating Floating Floating Point Fixed Point

Point Point & 16-Bit Fixed
Point

Mode of Interactive Interactive interactive Batch In t eractive Interactive
Operation Batch

25



L W

APPENDIX B
DARE B LOCK-OPERATORS USED BY M I CRODAR E

* SU M Z X ÷ y  D I V Z = X / Y
* DlF Z~~ X - Y  * I MULTZ X * # n
* M U L T Z = X * Y  * NEG Z(X Z= -X
* ABSV Z(X Z = I X I
* L IM Z(X Z = max (X , 0) PL (X-Y ~ 0)

COMP Z(X-Y , PL , Ml  Z =
M l (X-Y < 0)

( -X ((’T < O)
SMULT Z (X . CT Z =

X (CT~~~0)

TRI(;G Z (X , ZO Schmitt-trigger transfe r characteristic
* FUNCT Z = Y(X  table- lookup and interpolation in array Y
* INTG Z(X * (~~ intergrator with integer gain G%

SHOLD Z(CT , X sample hold ; Z tracks X if CT > 0
UDE LAY Z (ZO , (‘1, X unit  delay between ZO and Z ; ZO tracks X if CT >0
SWEEP Z sweep waveform (-I  to I )
SAW Z(#n sawtooth sweep , frequency n
PULSE Z (CT. #n , ID CT > 0 generates n pulses TD units apart
NOISE Z(#n . (‘T. #m shift-register pseudo-random noise generator
STORE AA = X stores t ime history of X
SlOG FT AA X ~ in array AA
GET X AA produces t ime history X from array AA
TERM X < Y  terminates DRUN when X < Y
I)ISPT X displays X versus T
DISPXY X , Y displays Y versus X
PROB Z(X , RS , WR . CT amplitude-distribution analyzer

*Microcode currently developed f’or Direct Execution Processor.

~ f.
26



-
~: w- -—- -

APPENDIX C. MICRO1 ’~AP E SAMPLE PROGRAMS
C.1 Two.Oimensional Torpedo I.. :~~rn~cs Exam ple: by R. H. Hidinger NOSC 6353

L I S T

1~i CLEAR sr~cr
11 ~1P = 200 U**1 IIUMI3ER OF PO I NTS
1 Z ~I ,M OX(P1P], 0Y( 1IP) ,  QIJ ( t IP] . OP[N P]
. .3 Em! = 0.000 05 4**~~ TIME 111CR TIt lE SC, LE 100(01=0 ‘30 5)
:3 1!i = 0 .99 t~~~~~** fft ~’/ TI N E , TitlE £C~ LE 100 ( TM ~~ = 108 5

5 CI~ = Ttl ( tlPtDT ,~.t~3 i ~t~~t F.IJt-l CO NS T ANTS
50 iC = 0 .25  mt* REL . 10 50 II’S

• ~ c1 OIM P1(129] *~ -t.t~ RU DDER CO MM A ND TAB L ES FS . �0 DEC .
E S -  FOR 1 = 1 TO 129 P1 :  0 .0  IIE?. T I **~~ * ZERO TAB L E

0 PT E?~’] = 0.25 RT(78] 0 25 - P 1(73] = 8 ~s -  RItOB] =0 25 ~ $ l 4 t  ~ i~ . ’ :L

72 Ri(S5] = —0 25 P1 (90] = 0 .25 P1(95] —0 . 25 P1(108] 0 25
‘.3 PT(1t33] = _ 0 .2 5 :  RILIIA] 0.25  .**4t ~ SHAI( E

~~~~ RT(112] = —0 125 ~~~~~ MTT AC K
90 t :$ *~~* OIJ / OT COUST~ f4T ~10 0 < 1 = 0 8155
1111 ~2 9.8 155
120 UT X1.$.UCIIJ C
1 !O t*~ &* D’ (/D T CONSTA N TS
140 11 —8 .98129
150 “2 —8 045~ 1
160 Y.3 0 12501
170 4U1* DR’DT CO NST AN T S
180 lii —8 96703
t90 112 — O 44866
200 -8 77652
?I’) ~**~~ ROTAT I ON SCA L E

ci s
? N 3 ~4 $ U ~ Il1 A lit ’ CO~.IHE TAB l ES
2 3 1 0111 51L 102 5] .CS(102 5]
235 P11 4~ !. 14 15927- ~$&4* P1Ai~. BEARING , P
240 FOR 1 1 TO 1025

2 tP I i - 1024 t1— P?1+~~tPM 1 0 2 4 > ***.t * —PM< =4- : =P r I
2’~’) ~i E1] = SIH (A~’ CS(I] = C . O S’A)

NE~i I
U 1* 4 INTE GRA T IO n CO N STANTS

00 t $ t 1~ TIM E SCA LE 100
? 1 O CY~; 100
?2 i~ c l I ’ . 1600

cF’~ 10000
?4~~ CF~. = 25
~s- :’ o . 10
!,;0 . “. = 10
.;ij~ **4.U INITIA L CONDITIO NS
41~’ U = 0 0
4~~

, LJ = O.0
P = 8 ‘344 0 F’ = 0 0

450 X 0 0
4E~ 0 .0
i c .o ~ i~~*i t t t ~:010 0F:~lH
2~~T(’ END
~C~~A~) ‘4~ t 4t.t ~ $4 * :t t* ;4~ **fl~~~ *$*~ *fl

• 20100 UI** t 20 CO NSTAN T COEFFICIENT TOF:PEDO
• 20200 * *4 * t **~~ **4 * * * * * *t t * t * * ** t * * * **~ *2 0 . 1~ *7 *$t STATE ‘JARIAB LES

20211 **-~ ** U FORWARD VE LOCITY IN TORPEDO FRAME. <5011/S
202 12 * *1* * ‘I C ROSS V ELOCIT Y IN TORPEDO FRAME . (50M’S

• 2821.! S.T*t* P ANGULAR PATE AROU ND TORP 2 AX iS , <P1 PAD/S
2A~ 14 :r t * * P BEARI NG Ill INERTIAL FRAME. <4P 1 PA D

t 4 t $ - $ -‘ v f’MS t 11011 IN INERTIAL FRAME . <1800

27

— .-~- . -. -

- -—.-- — - —

L0290 U~~~$ * *t *t * ** ~ ***4: ~* *****t * 4 * * * *t * * * *44 * * * ** * *S ** *Z *
~~~~~ FU NC RD :R T~ I
~ i~29~ l $ - t * t
.~0!0I) ‘lULl U2 IJ*lJ

‘ -4 00 t 1 t t ~ DU~DT
.:~~~V ’ . NULT US X2IU2 23950 MULl ‘<tm:~<CWS
~~~~~ 

.
~~~~~~ DU=UT- IJS :4009 cUB DX XB—~<D

~r~3 t t 4 * l  SOME CROSS PF:ODUCTS 24019 ~ULT ‘iA=U*SP
:C: . c’O iI.ILT )J 1Lt U 24015 MULl YB YAIRS
~c’~ io  t1~JLT FI J = Ri 1I 240.~0 MIJLT vc = m, I c, p

-, ~~~ :UL T T l .i=POIU2 :24025 IIIJLT YD =Y C$ P. S
4 4  .t O’)~ L’T 24830 .SUiI OY=YB+ Y D

j:: ’ ~L~ T T 1 , ’IU,h IJ 24100 1*1 ~t **X* INTEGR A T ION
~~ (lULl T 2 ” .’24FU 24208 11110 li’ OUFGU~

~0O MI Ll T3 =V ~~ TU 24390 I N T O  UC DV*GU~
~‘ .‘ F• ( T4 = f l fT~ 24400 INTO P(O R*GR~;swi ~~=T4+ 13 24~ 10 11410 F (R*GP~:c ~~~ .t*~ t * DR ’OT 2442 0 IN T O ~< D ~<*CX~.. MU L l  T5 141 * ‘J U 24430 INTO Y(D’t~CY~.~~~~ ( lU L l  T6=112*PU 24500 IItU
IJL T T’ 1134111 .4~~ d oicp ‘

~UM 15=15+16
I 0 ~!jl~ DR= 1 2+T ’

2 . . : f O  4 1 1 * 4  SIPl ~ F ’AND C.OS~P
~f c c’ ~~~~ S P=SI ( F

~u”c C P ” C S~ P
11 * 14 INERTIAL STATE EQ1IS DX/DT,DY/DT

- : . ‘.r . I~ULI ZA~ IJ*CP
‘ ‘ t1~JLT :~Br :~A * PS

11 . 1 ,:(,=tJ * ~(‘

Tw o—D en~’ .ona ‘
~~ ‘ ~

.

• ‘ ~ :‘~~

I 
Circ le T urn

nake Search

‘,tr ~ ‘.~~t Pun 

—

28



-‘. w - -—‘-- - —

C.2 Parameter Optimization Problem: by G. A . Korn , Univer s ity of Arizona

2’300 T = 0  8
2400 PRI N T I S’.50 CLEAR STA CK 18000 DR!JN

55 P= 4 118 00 AX : AX + GG ~~$U X
E’.) DIM FF(33] 12080 MY =A’ t’4GG~’.*U’/
E5 Fi3~’ J~ =1 TO 15 FF(J~ ]:—P NEXT X-2080 T X T ~i—GG/.*U.<
.~~ F~(~~]=—~~’~ FF(1:3 ]=P,2 14000 TY= T Y-GC ~ *VY
£7 FFEI7]=O .0 1.5000 NEXT I?~FOP J~ =j 3 10 33 FFCJ’J=P’ NEXT ~ 2800 PR INT T~ . 0 5 .T ? .0  5* M
100 01=9 81 19108 EnD
200 TM: 9 201’3~ tl’JLT YD=Y4A
200 G:~ :=-6 20200 MULT :‘.S=X i~*T>.400 Gr-;~ — 6 20300 MULl ~5=~/y~~450 G~.=I 20400 SUM 5:~ +’(
460 GG~ =2 20410 MULT >~T=/: -~*A ; :
500 A: 7 20420 MIJLT YT =r’ r’*A ’
£00 OX= .3 20500 SUM SS=~’T+~’1
~‘00 QY 2 28600 SUE EE=S-S ~200 ‘ Y O  .3 20650 Ft .JNC E FF: EE

3OA ;~~=8.999 28700 MO LT 1= E 1X ~i
400 V’= .999 2 87 10 MIJLT Y1=E*~

’(
509 T~ =0 05 2072 8 MULT x2 1tA :~I ~U0 T ’~’~~ 05 207-30 MULl Y 2 ’ i’1 4uY

1700 A>~ 0 1 20740 M OLT X 3~ < 2 tT
300 AY =0. 1 28750 MULl ‘3 =V ã *T

1805 W~=160 22088 INTO XG’~*G>i~’.1810 FOR I~ = 1 TO t4~ 23008 11110 Y ’ - D* GY~.820 X :OX 24000 INT O XX ( X S * S— 12
830 Y=13 ’( 25000 INTO Y? (YS**—1 2
040 >:x~ 99~9 26000 INTO UX~X 1*G~.I~~ 0 ‘(‘ i’ : 9949 27000 INTO VX ’ X 3*G~1900 t l/=0 8 280130 INTO U’((Y1 tG~

~t00 li”~0 .0 29009 INTO UY( Y3*G~2288 UY =8 0 30000 O I S P T  S
2258 U/ z O O 38106 D IS PT 53

C.3 Second Order Differential Equation/Multiple Runs: by R. Martine z , NOSC Code 6353

I HORIZ UERSU$
X .XO VERT

STOP AT L I N E 880 ‘s
> ‘ I

‘ ‘~‘ CLEA R STAC1~ ~.

I 00 111=0 9999
:00 OT=TM’100 •:
200 ~ .= 1O . ....

~S.3 ~2~ =-l0 .:. ..
. ...

‘

~~‘.3 P = 9  .‘.  ‘
FOP I~~~1 TO 3 ..~ .

~4 ’~t? ~=O ~~ .
.
. 

. 
..

. 
.

50O zo=0 0 . 
, . .. .‘

. .‘... 
.
. 

550 1=0 . . . . . . .‘ . . . .~~~~

~~~ R~R-ø 
I I I 1 1

~
720 NEXT 11 . ‘

~~~ 
I ..‘:‘  

. . . .  

- .‘

000 El-ID I .  “.: ...

~ io **i** ft4U:i -*-4 *~ I . :~; ..‘ ‘ ..
..

20 100 MOL T F = X t ’- L R  ~. ~~
“ . 

‘.. .
~~
..  ‘..

20200 SUM 0:;~:+P :. .‘ .:. .~

28400 IN T O XD’~ O 4 G l ~ ::. ..~ 
.
~ 
.‘. . .

20500 I N T O >~ ~ti4 C” ~~~~~~ 
.• •

2~IEO0 DISF’ T ~~ 
.“ .. ..

.. .‘ 
..... 

~
- ‘ . -

20700 t I S P I  XC ~., .
.
.

29 -


