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SUMMARY

OBJECTIVE

In recent years high level languages for continuous system simulation have been de-
signed to execute on general purpose digital computers which have traditional von Neumann-
type architectures. This approach has produced varying results including a multiple layer of
system software required to implement and execute the simulation language. In most cases,
users have been constrained to perform noninteractive simulations at a high cost. In an
attempt to alleviate some of these problems, this study addressed the application of direct
execution computer architecture concepts using low-cost, large-scale-integration (LSI) to
continuous system simulation. This report summarizes work performed up to October 1978.

RESULTS

Basic architecture schemes for direct execution systems were investigated and
applied to a demonstration interactive simulation language. A dual processor direct execu-
tion system was designed and built using an LSI-11 microcomputer, a 16 K X 16 dual port
memory, a microprogrammed AMD 2900 bit-slice direct execution processor, and a 16 X 16
multiplier chip. The system features a distinct separation of interpretive/compiler software
and simulation run execution firmware linked via the dual port. The system is demonstrat-
ed via several sitaulation examples including realtime control, optimization, and torpedo
dynamics problems.

RECOMMENDATIONS

The study revealed several key points in applying direct execution architectures to
continuous system simulation. A direct execution system, similar to the one demonstrated,
can be used to replace analog computer-type functions in hybrid simulation systems, process
control and instrumentation, and simulation model development systems. Extensions to the
architecture can be made from miltiprocessor simulation systems. Scale-free floating point
direct execution system can be microprogrammed using the same hardware configuration.
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INTRODUCTION

Traditionally, high level languages (HLL) have been implemented on von Neumann
architecture computers which consist of a central processing unit, input/output bus, user
interfaces, and program/data memory. In particular, high level simulation languages for the
solution of dynamic continuous systems have been implemented on large mainframe and
minicomputer systems in batch and interactive modes (1, 2, 3). Simulation programs
written in high level languages have been first translated into compiler or assembler-based
languages, relocatable code produced, and linked with a simulation run-time library in
order to create a run module executable by the host processor. Figure 1 depicts this process
where the host processor also executes the editor, translator, compiler, assembler, linking
loader, and input/output operations. This report summarizes a different approach to the
design and use of high level simulation languages and represents the application of large-
scale-integration and advanced computer technology to continuous system simulation. The
resulis depict a digital system design which can directly execute a high level simulation

language.

RELOCATABLE
SUBROUTINE
LIBRARY

b

HLL > INPUT »| compILER > LINKING | o | EXECUTION > OUTPUT

—$ RESULTS

CODE DEVICE LoADER | »| PROCESSOR DEVICE
INTERNAL RELOCATABLE  ABSOLUTE INTERNAL
CODE CODE CODE CODE
COMPUTER SYSTEMS HLLs
PDP-11 FORTRAN
JBM 360, 370 ALGOL
UNIVAC 1108 CMS-2
NOTE: ONE PROCESSOR DOES IT ALL SPL/1

Figure 1. HLL in a traditional von Neumann architecture.

Several large-scale-integration technology characteristics contribute to the application
of direct execution to simulation. First, bipolar technology parts offer a high speed com-
putational capability. Microprogrammable bit-slice microprocessor parts can be used to
design a computer architecture optimized for continuous system simulation. Second, large-
scale-integration special purpose function units are commercially available which can be
used to compute highly repetitive operations and mathematical functions, such as multiply
and sine/cos, which frequently arise in simulation. A typical example is the 16-bit multiplier
chip from TRW (4). In addition, support systems for large-scale-integration devices are
available which enable the user to spend added time on system development rather than on

development tools.

Direct execution computer architectures represent a departure from the von Neumann
influenced relationship between computer and high level language. In a direct execution com-
puter architecture, the high level language is the machine language of the system (5). The high
level language constructs are directly executed in hardware without the need for separate
software parts such as compilers, assemblers, and linking loaders. Figure 2 depicts this process.
The language constructs may be executed on a symbol-by-symbol (or token-by-token),
statement-by-statement, or procedural section basis. The basic functional elements which are

used to perform direct execution of a high level language include (6):

re




input/output processor

text editor

lexical scan and syntax processor
control processor

arithmetic processor

data structure processor

processor intercommunication buses and memories

®  special function computation units
Large-scale-integration makes implementation of these functional parts feasible. For example,
interpreters of the 1960’s and early 1970’s required large memories and were slow in execution.
However, today’s advanced memory technology features 64K bit chips and sub-microsecond
cycle times (7).

SUBROUTINE LIBRARY
IN
INTERNAL CODE

l

| DIRECT EXECUTION
DEHLL __| INPUT OUTPUT
CODE DEVICE PROCESSOR —®»| Device [ RESULTS

SYSTEM

INTERNAL CODE INTERNAL CODE

Figure 2. HLL in a direct execution architecture computer system.

The content of this report expands on the points described above including a brief
overview of previous direct execution computer architecture work. The reasons for the
application of direct execution computer architecture concepts to simulation are discussed.
A specific high level simulation language is presented and used as a basis for the detailed LSI
design of a dual processor direct execution system. Finally, potential application areas for
direct execution computer architecture are explored and follow-on work proposed.

BRIEF HISTORY OF DIRECT EXECUTION COMPUTER ARCHITECTURE

Useful in this area as background material, the text edited by Chu (8) contains a com-
prehensive survey of the field. A reference list compiled by Carlson (9) summarizes the
history of direct execution computer architectures and their relationship to high level pro-
gramming languages. A few samples of work performed are briefly reviewed here.

Research in the relationship of high level programming languages to computer
architectures started as early as the 1950’s, however, the first computer system design with
the concept of direct execution computer architecture was the Burroughs BS500 in 1961.
The B5500 used the concept of a hardware stack to store executable statements expressed
in reverse Polish notation and served as a predecessor for many designs. An ALGOL 60
design described by Anderson (10) in 1961 was an extension of the B5500 architecture and
consisted of three stack memories and pointers. The three stacks were used to process control

(9]




states, arithmetic operators, and operands. The operator stack was used to resolve operator
precedence as arithmetic statements were interpreted. Another detailed ALGOL 60 design
was formulated by Chu in 1973 (11). The functional parts of Chu’s ALGOL computer are
shown in Figure 3. The partitioning of the architecture into functional elements performing
specific operations and control has led to Chu’s current implementation approach using
large-scale-integration (6).

USER HIGH-LEVEL
LANGUAGE PROGRAM

:

INPUT/OUTPUT
PROCESSOR
INTERACTIVE MONITOR AND I
TEXT EDITOR ROM
o LEXICAL ¢ - ASSOCIATIVE
STl PROCESSOR = MEMORY SAM
USER-TEXT-FILE RAM
AN
|
4l
EXECUTION
POINTER
TT
I

Ny v

CONTROL FLOW (: - ASSOCIATIVE
PROCESSOR MEMORY CAM

reN
i

BUFFER
RESULT

1 v

DATA FLOW c —; ASSOCIATIVE
PROCESSOR MEMORY DAM

17

W

DATA MEMGRY
RAM

Figure 3. Functional diagram of Chu’s ALGOL computer.
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Direct execution computer architecture work in the 1960’s involved several languages
including EULER, FORTRAN, and PL/1. A significant contribution reported in 1971 was
the design and construction of the SYMBOL computer system (12) under the direction of
R. Rice and W. R. Smith, both employed by Fairchild at the time. The SYMBOL architec-
ture consisted of several processors interconnected with a main bus and incorporated a
virtual memory allocated automatically by hardware. The main processing parts included:

o central processor
translator
interface processor
memory controller
memory relaimer
disk channel processor
[/O channel controller
° system supervisor

Figure 4 shows the SYMBOL processors, functions, and number of hardware modules per
processor. The SYMBOL high level language is a free format procedural language containing
the useful features of FORTRAN, ALGOL, and PL/1. Absent in the language are data type
and size declarations. SYMBOL was implemented using small-scale-integration (SSI) 12 X 17
inch single layer PC boards and represents a graphic example of late 1960 SSI technology.
SYMBOL was donated to lowa State University in 1971 and has been used as a research tool.
One of the criticisms of SYMBOL is that language and system extensions are difficult to
implement since the modules are hardwired. In addition, the SYMBOL system executes
only the SYMBOL language.

PROCESSING FUNCTIONS SERVICE FUNCTIONS
CENTRAL PROCESSOR MAIN MEMORY CONTROLLER
COMMUNICATION
Polish String Processing BUS Page Allocation
Variable-Length Numeric System Address Processing
Processing Data String Management
Variable-Length String Page Table Management
Processing
Data-Type Conversion 15 CARDS
Data Structuring
Structure Referencing MEMORY RECLAIMER
Variable Structure
Assignment Processing of Deleted Space
to Make Reusable
9 CARDS
e 2 CARDS
TRANSLATOR DISK CHANNEL PROCESSOR
Name Table Generation Page Transfer Control
Object String Generation Page Table Processing
Address Linking
Library Access and 3 CARDS
Linking
HANNEL i
15 CARDS C NEL CONTROLLER
Channel Sequencing
INTERFACE PROCESSOR Buffer Processing
1/0 Message Control
Buffer Processing
Information Transfer to 11 CARDS
and from Virtual Memory
Text Editing SYSTEM SUPERVISOR
8 CARDS Task Queue Processing
Interrupt Processing

Paging Control

Real-Time Processing

Software Communication
Control!

14 CARDS
Figure 4. SYMBOL block diagram.
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Several APL designs have appeared (13, 14, 15) and IBM currently offers the 5100
desk-top computer that executes APL or BASIC at the flick of a front panel switch. Other
direct execution computer architectures which have emerged are SNOBOL 4, HYDRA, PL/I,
and IPL processors (9). In 1967 Hawryszkiewycz reported on a microprogrammed system
which simulated analog computer problems (16). At least one interactive simulation language
based on an interpretive translator has appeared, however, the interpreter is written in mini-
computer assembly language and not microprogrammed (17). General Electric has developed
a set of hardware microprocessor modules to directly execute high level statements for
realtime signal processing (18).

The sampling of direct execution computer architecture designs reviewed here indi-
cates a demonstrated feasibility for directly executing a high level language in hardware
and/or firmware. The literature shows that direct execution computer architectures have
been applied to both general purpose and specific problem-orientated languages. It should
be noted that the more recent designs (post 1970) have used microprogramming as the method
of implementing the functional elements of a direct execution language. This approach is an
advantage to the designer to produce flexible firmware which can be easily modified during
development and extended when future language expansion is required. In addition, a direct
execution system and language eliminates the need for multiple system programs, such as
compilers, assemblers, and linking loaders. As a result, the user interfaces only with the high
level language and its execution and does not need to know the details of such system pro-
grams. The designs reviewed here were not economical to build in the technology of the
1960’s and carly 1970’s. However, current large-scale-integration, microprocessor, and memory
technology make implementation feasible and cost effective. These advantages and others
continue to emerge as research in direct execution architectures and directly executable high
level languages progresses.

DIRECT EXECUTION COMPUTER ARCHITECTURES FOR SIMULATION

The relationship between direct execution computer architecture concepts and con-
tinuous system simulation should be examined closely. In other words, why apply direct
execution to simulation and at what level should it be applied? It is a generally accepted
fact that direct execution systems improve the interface between user, programming language,
and application. Interactive model development and problem solution are particularly im-
portant in contis.aous system simulation since these factors eventually influence designer
efficiency and costs. A direct execution system allows a simulation language user to inter-
actively develop models since there is no need to wait for the output of chained system
programs. This environment means less software layers between the user and equipment.
Large-scale-integration implementation of a direct execution system provides a low-cost '
high-performance alternative to existing digital and analog-based simulation systems. A b
microprogrammed direct execution architecture using bipolar technology parts can be
optimized to perform specific functions required in continuous system simulation problems.
Such an optimized combination enables basic operation times as low as 200 nanoseconds to
be achieved and provides fast execution speeds for realtime simulation and control. The low
cost characteristics of large-scale-integration parts translates to low system costs and makes
possible the use of multiple direct execution systems in distributed simulation system
architectures. This would include the partitioning of large problems into sections executed
by a direct execution system and the application of parallel processing integration algo-
rithms (19, 20). Given that these potential advantages exist, the levels at which direct
execution concepts can be applied to continuous system simulation must be explored.




First, let us examine the different phases of interactive continuous system simulation.
Figure 5 shows the processes involved in simulating dynamic systems in an interactive environ-
ment. User interaction with the simulation system occurs at two distinct levels: (1) problem
preparation and documentation, and (2) model description and simulation. Each of these
fevels includes the several related functions listed here:
1. problem preparation and documentation
a. text editing modification and storage

b. report preparation

to

model description and simulation

. model dynami:s

=

b. initial conditions

¢. procedural and solution control sections
d. functions and subroutines

¢. run-time execution

f. run-time I/O and display

g. parameter modification

h. post-run display, plotting, and processing

SYSTEM

RESPONSE

DYNAMIC COMPUTER

PHYSICAL MATHEMATICAL :> SIMULATION _—r;'>
SYSTEM MODEL OF

MODEL

PARAMETERS

MODEL

MODIFY SYSTEM
PARAMETERS +<:_J
OR MODEL

Figure 5. Continuous system simulation process.

A third simulation level includes a realtime environment where the simulation system is
dedicated on-line with other computer equipment or actual system hardware. Although
user interaction is minimal, the direct execution architecture must account for this mode
of operation.

Figure 6 shows the various phases listed above partitioned into a direct execution
architecture where each section performs a specific function. The text editing, modification,
and storage operations are easily incorporated by a direct execution processor. Since user
response is slow during these phases, the processor can perform a lexical scan and syntax

6




PROGRAM DATA
STORAGE STORAGE

DISK DISK

| ~ < > | » LINE PRINTER
TEXT AND »|  HIGH SPEED INPUT/OUTPUT e
LANGUAGE K}_‘____ZD MULTIPORT <:> POST RUN p— =0
PROCESSOR | MEMORY PROCESSOR
& S P REALTIME

CONTROL/STATUS

RUN TIME
CRT USER | DIRECT EXECUTION G,;’A,,H',‘”Cs
TERMINAL s PROCESSOR it DISPLAY

Figure 6. Direct execution computer architecture for interactive continuous system simulation.

check on each line as entered by the user. The text and language processor can perform
the storage and retrieval of prepared text on a disk system. As the user enters statements
for model dynamics, initial conditions, procedural sections, functions, and subroutines,
the same processor sets up data structures, stacks, and control for the problem. (This
translation process is further discussed below.) These items are stored in multiport
memories accessible by other functional processors.

Run-time execution involves the solution of the dynamic system equations using
standard numerical integration techniques for differential equations. The problem state
variables are updated using the state derivatives and supporting equations as defined by the
user. This set of equations is translated into an executable form in the multiport memory.
A direct execution processor can perform the run-time solutions, retrieving and storing data
from the multiport memory. A separate 1/O and post-run processor can receive interrupts
from the direct execution processor at communication interval times (usually a subset of
the solution-point times) so that data can be displayed or stored during run-time. Realtime
data and control can be handled by the 1/O and post-run processor. Post-run display and
processing are also performed by this processor by retrieving the run-time stored data from
a high speed disk. The user-defined operations to be performed during this phase are also
stored in the multiport memory.

The translation process performs two main functions. First, an interpreter processes
all language statements for lexical and syntax correctness. The interpreter directly sets up

S ew—————
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initial conditions by assigning memory addresses and initializing these locations with data.
The interpreter can also process parameter modification statements after a run. Second,
model dynamics, procedural and solution control sections, functions, subroutines, and
post-run statements are processed by a mini-compiler. The compiler places an intermediate
code in the muitiport memory which is then executed by the direct execution processor.
A compilation process is used here (instead of an interpretive translation) since the entire
model dynamics section must be present to obtain a solution. Using this approach only the
initial condition section must be retranslated when making parameter modifications When
a model modification is made the entire problem must be reinterpreted and recompiled.
The initial conditions are most conveniently expressed by the user using an equation-
type format. The model dynamics can be expressed in terms of equation or block-diagram
oricnted language constructs. A typical second-order system can be expressed as follows:

1) Equation 2)  Block-Diagram
X' =-A*X-B*Y MULTIPLY S =X*A
Y' =X MULTIPLY Q=Y=*B
INVERT Z=-S

SUBTRACT P=7-Q
INTEGRATE X = [ P*G)
INTEGRATE Y = [ X*G2

The model dynamics format described here determines the type of processing that is used by
the compiler. For example, both formats can be casily translated into a reverse Polish notation.
Another approach is to use an intermediate threaded-code that links the current operation to
the next and passes parameter addresses and data through stacks and lists. In each case the
intermediate code is executed by the direct execution processor.

Figure 6 presents one partitioning scheme for a dircct execution architecture for
simulation. The various phases of interactive simulation presented in the paragraphs above
indicate that direct execution concepts can be applied to the problem preparation and docu-
mentation sections. The model description and translation phases can be performed by a
similar processor using interpretation and compilation techniques. Run-time execution and
1/O operations also can be performed by a direct execution processor. The following sections
describe the sample high level simulation language used in this study and a large-scale-integration
implementation of a direct execution system for simulation.

DEMONSTRATION VEHICLE: MICRODARE LANGUAGE

A high level simulation language, MICRODARE, developed by Korn (21) and Conley (22)
at the University of Arizona was chosen as the vehicle for demonstrating a direct execution
simulation system in this study. MICRODARE is the newest of a line of DARE simulation
languages developed under Korn (2). Appendix A summarizes the DARE languages which in-
clude both fixed-point (block-diagram) and floating-point (equation) systems that run on a
variety of large mainframe computers and minicomputers. Most of the DARE systems are
interactive and use translators, assemblers, compilers, and linking loaders to construct a
run-time object program.




MICRODARE uses system software derived from BASIC and does not require an
assembler, compiler, or loader. The language provides interactive program entry, editing,
file manipulation, and multi-run control. The two main sections of the MICRODARE
language include: (1) problem initialization and run-time control and (2) problem specifi-
cation via mathematical and realtime operators. Operators are implemented in efficient
assembly language reentrant threaded-code subprograms built into the MICRODARE
system software or in LSI-11 microcode. Appendix B shows the operators currently avail-
able. The user specifies the operators (in correct computational order) for problems in
dynamic system simulation, signal processing, process control, and laboratory instrumen-
tation.

MICRODARE uses three formats of data words: (1) 48-bit floating-point, 32-bit
mantissa; (2) 16-bit fixed-point fractions, and (3) 16-bit 2’s complement integers. The
floating-point data is a special format used in the BASIC-dialect portion of MICRODARE.
Run-time variables are converted to fractional fixed-point before a run and reconverted to
floating-point after the run. MICRODARE also provides for run-time display of problem
variables in time or phase-plane formats. Additional information on MICRODARE is
available from the references (2, 21, 22).

MICRODARE was chosen as a demonstration vehicle for direct execution for
simulation for several reasons. First, the system software was available and executing on
commercial PDP-11 and LSI-11 hardware and no system software development effort was
required. Second, MICRODARE executes on LSI-11 microcomputer systems and provides
a low-cost system (under $12K) with graphics and a capability for special purpose hardware
interfaces. Also, the LSI-11 bus is well documented and can be easily interfaced to custom
devices. Third, the MICRODARE language constructs are simple and implemented in modu-
lar system software that can be casily modified. Fourth, MICRODARE language constructs
allow operations in a realtime signal processing or simulation environment. In summary, the
MICRODARE language provided an excellent opportunity to investigate and demonstrate
the application of direct execution computer architectures without having to invest a large
amount of time and effort in starting from scratch to develop new language specifications.

The MICRODARE system software used in this project contains a modified BASIC
interpreter and mini-compiler that generate a threaded-code list of block operators and
argument addresses. This list is operated on the LSI-11 which executes preprogrammed
PDP-: 1 machine language instructions instructions for each operator. Figure 7 shows a simple
data acquisition and processing example and the threaded-code address list generated by the
MICRODARE mini-compiler. An index register pointer is used as a “‘virtual program counter”
and incremented after each memory reference. Each canned operator subprogram contains
a preindexed, indirect, and increment jump instruction which provides the linkage mechanism
to the next operator. In this way, fast executing subprograms are efficiently and simply linked
together.




ADC
SUM
MULT

Index )

X
P=X+B
Y=P*A"

ADC

*READ A-D CONVERTER

*ADD B TO X

*PERFORM MULTIPLICATION

X P
m sum MULT
—_— =

A

THREADED-CODE ADDRESS LIST

Register ’—-—> ADC

Pointer

Figure 8 shows an interactive problem simulating a servo mechanism and a mean-
square-crror computation. Appendix C contains additional and more complex MICRODARE
sample problems including a two-dimensional torpedo dynamics simulation.

X
SUM

Figure 7. MICRODARE data acquisition example,

. Address of ADC Handler

. Address of Data X

; Address of SUM Subroutine
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90

E =U-X (servo error)
dX
— =G1% * XD
dT
(servo state equations)
dXD
— =G2% (H+E - R«XD)
dT
T
i 2
P =G3% f EdT (Mean square error)
[6)
khkkhkk hhkhkkkkhkkkhkhkkkkkkkkkk A SIMPLE SERVO SIMULATION

CLEAR STACK

DT=0.005 : TM=0.9999 : ***** SIMULATION PARAMETERS
G1%=20 : G2%=40 : G3%=10 : *****INTEGRATOR GAINS

X=0 : XD=0 : P=0 : ***%* INITIAL VALUES OF STATE VARIABLES
H=0.375 : *****x A CONSTANT PARAMETER

U=0.8 : **x** INPUT STEP VALUE

PRINT "ENTER DAMPING PARAMETER R"

INPUT R ¢ *****x INPUT INTERACTIVELY REQUESTED FROM USER
T=0

DRUN : ***** DIFFERENTIAL-EQUATION-SOLVING RUN

END

Fkkkd dkkkkkkkkkkkkkkkkkkkx  BLOCK~-DIAGRAM PROGRAM FOLLOWS

20100 DIF E=U-X

20200 MULT RX=R*XD

20300 MULT HE=H*E

20400 DIF Y=HE-RX

20500 MULT ES=E*E

20550 *ExAw Rvkbakated RUN-TIME DISPLAY
20560 DISPT X

20570 DISPT E

20080 MrEEE wREREEAAARAX [NTEGRATORS ARE LAST!
20600 INTG XD(Y*G2%

20700 INTG X(XD*G1%

20800 INTG P(ES*G37% : ***%* MEAN-SQUARE ERROR

Figure 8. MICRODARE seivo mechanism example.




LSI IMPLEMENTATION OF DIRECT EXECUTION MICRODARE

A functional partitioning scheme of an interactive simulation system was briefly
depicted in-Figure 6. Depending on the function of each block, one can assign various
large-scale-integration devices and subsystem hardware, firmware, and software to perform
the specific tasks. Figure 9 shows the partitioning scheme as applied to the MICRODARE
simulation language. A key feature of the scheme used here was the separation of the
problem preparation and translation functions from the run-time execution of the problem.
The former requires moderate execution speed while the latter requires high speed.

FLOPPY HIGH SPEED
DISK DISK
SYSTEM SYSTEM
HIGH SPEED MULTIPORT MEMORY
ADDRESS DATA
LIST LIST
-3l abe X
X B : .
8 OR 16 BIT INPUT/OUTPUT | X X(t)
TEXT AND SUM P
NMOS POST RUN ADC
MICROCOMPUTER | LANGUAGE X A
PROCESSOR 8 & PROCESSOR
SYSTEM
B C/S
MULT —>
P
A
v BIT-SLICE OR
f 16 BIT SYSTEM
DIRECT EXECUTION RUN TIME
USER —> PROCESSOR - GRAPHICS
CRT DISPLAY
BIT-SLICE ARITHMETIC
AND CONTROL SECTIONS Y
ADC X T
SUM P=X+B8
MULT Y=A*P

Figure 9. Direct execution architecture for MICRODARE.

Low cost and commercially available large-scale-integration devices and subsystems
were considered and included three component types: (1) 8 and 16-bit microprocessors; (2)
microprogrammed bit-slice devices; and (3) high speed memory. The blocks in Figure 9 are
repeated here with the type of large-scale-integration devices applicable to each subsystem. »

1. Text and Language Processor

Eight or 16-bit n-channel metal-cxide-semiconductor microprocessor with local
program read-only-memory and data random-access memory. Interfaces to user terminal,
program storage floppy disk subsystem, and multiport memory. Moderate speed micro-
processor (200-300 kilo-operations-per-second) is required since user interface is typically at
human response times. This processor also performs the interpreter/compiler functions.
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2. Multi-Port Memory

High sbécd (50-200 nanosecond access time) memory configured with ports to the
text and language processor, direct execution processor, and input/output and post-run '
processor. The direct execution processor should have priority over the other two since it
will execute much faster. However, in a realtime environment, the input/output progcssor
might require a high priority for rapid data transfers. Memory size should be approximately
16-32K of i16-32 bit words.

3. Direct Execution Processor

Bipolar bit-slice components including register, arithmetic and logical units, micro-
program memory, microprogram sequencer unit, and miscellaneous circuitry. This processor
must have the capability to perform microprogrammed operations such as multiplication,
summation, and integration. Special functions components such as a multiplier unit and
sine/cosine read-only-memories could be used here.

4. Input/Output and Post-Run Processor

High speed 16-bit microprocessor or bipolar bit-slice components with architecture
featuring multiple input/output ports to memories, realtime devices, and high speed storage
and display peripherals. Post-run processor can be programmed via the multiport memory
with instructions supplied by user.

To fully implement the four major sections described above using a variety of large-
scale-integration devices represented a monumental task beyond the time and finances available
for this project. Therefore, a simplified architecture scheme was used that still demonstrated
direct execution concepts for simulation. The simplified architecture consists of a dual pro-
cessor system interconnected via a dual port memory as shown in Figure 10. The functions
of the text and language processor and the input/output processor were combined and imple-
mented on a LSI-11 microcomputer system. A dual double-density floppy disk subsystem
provides program and run-time storage. A Tektronix 4006 graphics terminal provides program
entry and run-time displays. The dual port memory (16K X 16) is part of the total (28K X 16)
LSI-1T memory. The MICRODARE system software is stored on the floppy disk system and
executes in the LSI-11 and dual port memory. In addition, a bit-slice microassembler is run
on the LSI-11 to develop microcode software for the direct execution processor (23).

In the dual processor architecture depicted in Figure 10, the user inputs the MICRO-
DARE problem via the Tektronix 4006 terminal. The MICRODARE system software trans-
lates the problem into an intermediate threaded-code that consists of an operation and data
address list for the dynamics state variable computations and numerical integration. The
address list and corresponding data locations are stored in the dual port memory. Once the
dual port memory contains this threaded-code, the LSI-11 begins the simulation run. The
LSI-11 signals the direct execution processor to start its processing. The direct execution
processor fetches the operation opcodes and data operands, performs the operation, stores
the result, and links to the next operation. After the last operation is performed, the direct
execution processor returns control back to the LSI-11 which performs numerical integration
of the stated variables and displays the selected variables on the graphics terminal. The LSI-11
also performs simulation-study control and pre-run and post-run computations. Eventually,
the direct execution processor will perform all of the numerical integration and realtime in-
put/output. The following sections further describe the components and operation of the
dual port memory, direct execution processor, and writeable control store and their interaction
with the LSI-11 as shown in Figure 11.
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Figure 10. MICRODARE dual processor system.
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Figure 11. Dual processor operation for MICRODARE.




The dual port memory provides a path of communication between the LSI-11 and
the direct execution processor (DEP). As seen by the LSI-11, the dual port memory looks
like an ordinary LSI-11 16K memory circuit board. As seen by the DEP, the dual port
memory looks like an 8K word by 32-bit memory. The memory is electrically configured
as an array of 8K X 32-bit words with multiplexers to enable reading and writing 8-, 16-, or
32-bit words. This feature is required because the LSI-11 must have 8- or 16-bit rcad/write
capability while the DEP requires 16- or 32-bit read/write capability. The electrical speci-
fications governing the use of the LSI-11 port are identical to the normal “Q-BUS™ speci-
fications found in the LSI-11 technical manual (24). The DEP port, however, is not standard
and consists of the tfollowing:

L. 13 address lines (ADD)

2. 32 data lines (bidirectional)

3. A write (read not) command line (W)

4. A half (whole not) word command line (HW)

S. A memory request line (MR)

6. A memory acknowledge line (from memory) (RA)
7. A read data ready line (DR)

Note: The above lines are low true.
The operation ot the DEP port is as follows, and its timing diagram is shown in Figure 12.

1. Read Operation

- The DEP asserts the address (ADD) and negates the write (W) and half
work (HW) signals.

- Memory request (MR) is then asserted.

- The memory sends request acknowledge (RA) when the DEP port gains access.

- After the read access delay the data is placed on the lines.
- The true to false transition of data ready (DR) should be used to strobe
the data.
- The DEP then negates memory request (MR).
2. Write Operation
- The DEP asserts the address and write signal (W) and negates the half
word (HW) signal.
- Memory request (MR) is asserted.
- The memory sends request acknowledge (RA) when port access is granted.
- The DEP places write data on the data lines.
- After data has been stable on the lines for 10 nsec the write signal (W) is
negated (assertion can happen anytime).
Memory request (MR) is then negated.
Assertion of the half word command (HW) causes the above operation to be performed on a
half rather than whole word. When half word mode is selected, the least significant address
bit indicates which half of the word is to be used. This is also the convention followed in
byte mode using the LSI-11 port.
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Figure 12. Dual port memory timing diagram (DEP port).

The direct execution processor (DEP) functional block diagram is shown in Figure 13
and is implemented using the Advanced Micro Devices 2900 bit-slice family of parts (24). The
DEP consists of a data processing section and a microinstruction sequcncer section. These
sections include the following functional parts:

1. 32-bit data read/write interface io dual port memory.
2. 32-bit AMD 2903 register, arithmetic, and logical unit (RALU).

3. 16 X 16 TRW multiplier unit.
4. 16-bit AMD 2930 memory address controller.
5. AMD 2910 microsequence controller.

6. 1K X 64-bit writeable control store memory and pipeline register.

7. 10-bit operation code (instruction) register.

8. 32-bit memory data register with sclectdblc 16-bit upper and lower sections.
9. 16-bit memory address register to dual port memory.
10.  Status register and condition code multiplexer.
11.  Direct data paths from memory data register to memory address register.
12.  Data path from pipeline register to 32-bit RALU. '
13.  System clock circuitry, approximately 5 MHz.
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14. Control lines to dual port memory.
15. Microprograms for MICRODARE operations.
These parts are wire-wrapped on two quad-type boards similar to LSI-11 boards.

TO DUAL PORT MEMORY

A —
32 i
MEMORY DATA MEMORY ADDRESS
: s PEGISTER | REGISTER
10 i T
/ + ? -/
. 7
v 4%
INSTRUCTION o
R 16 fi6f 16f16f MEMORY ADDRESS
1 CONTROLLER
10 X
REG M Y DA Y
" STATUS | 2803
MICROSEQUENCE || conpImion |4  REGISTER AND
CONTROLLER CODE ARITHMETIC UNIT /
Y 10 MUX 4 16
1 1(;: 216
WRITEABLE CONTROL S
STORE MEMORY AND X
LSI-11 16 X 16
PIPELINE REGISTER [€—
MULTIPLIER
1K X 64 BUS
DEP AND DPM
CONTROL

Figure 13. Direct Execution Processor (DEP) functional block diagram.

The LSI-11 and direct execution processor communicate through an absolute “mailbox”
address virtual program counter (VPC) in the dual port memory. The direct execution pro-
cessor periodically examines the VPC location, commences its operation if the LSI-11 program
has set the word to a microcode address, and puts the LSI-11 in a wait mode. Figure 14 shows
the sequence for an ADD operation by the direct execution processor. For details, the reader
is referred to the internal architecture of the AMD 2903 and 2930 parts (25, 26). Notice that
the 32-bit interface to the dual port memory allows reading of (1) an operation code and data
address or (2) two data addresses from the threaded-code list. Data is read and stored in the
memory as 16-bit 2’s complement fixed-point fractions. All MICRODARE operations, except

" MULTIPLY, are performed by the 2903 RALU. When the operation is complete, the direct
execution processor stores the update virtual program counter in VPC and enters a wait loop.
The LSI-11 reads this address in VPC as a threaded-code address and continues with the display
operations. Further details and speed benchmarks will be documented in future reports.
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1. MAR <4— PC
2. MDR 44— DPM(MAR); PC 4— PC + 2
3. IR 4 MDRMSB; PUSH MDRLSB; MAR
4. MDR <4— DPM(MAR); PC4——PC + 2
5. MAR <4+ MDRMSB; PUSH MDRLSB
6. MDRMSB 44— DPM(MAR)
7. RAM(B) € MDR,c,. POP MAR
8l
8. MDRMSB <4 DPM(MAR)
9. RAM(A) @€— MDRMSB + RAM(B); POP MAR
10. DPM(MAR) €—— RAM(A)
MAR: Memory Address Register
MDR: Memory Data Register

IR: Instruction Register

DPM

Dual Port Memory

Figure 14. Sequence for ADD operation in Direct Execution Processor.

/Address of Operator/Data Address/Pair

<4— PC/

/Address of Data Address Pair

/First Operand

/Second Operand

/Add Operands

/Store Result

RAM: 2903 RAM
PC: 2930 Program Counter
PUSH/POP: 2930 Stack

A/B: 2903 RAM Address

The direct execution processor contains a microinstruction sequencer section which con-
tains an AMD 2910 microsequence controller and a writeable control store memory which con-
tains microcode for MICRODARE operations. Details of the microsequencer are referred to
the AMD 2910 literature (25). The writeable control store board consists of the control store
memory, the system clock, and a parallel 1/O interface to the LSI-11. Figure 15 is a block diagram
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CONNECTORS TO LSI-11

‘ AINIT
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XTINSTADDR __| A/\ Gt iy
NX y yi ADDR VA ]
0TO 15
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0 . 16 B
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s # DIREG
1K X 64 64 I
WRITEEN
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NXTINST I o I
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REGISTER) MUX 12 T’
I A CSRO 4.-.*__
e 0: ADDR, 1: DATA
DEPCLK L DISABLE 0: READ, 1: WRITE nie
NEW DATA READY

MPSEQDIS —-—-I——’

Figure 15. Writeable control store block diagram.
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of the board. The control store consists of 1K X 64 bits of high speed RAM. Ten address
lines, NXTINSTADDR, from the backplane select the next microinstruction, NXTINST,
which is buffered onto the backplane. Access time of the RAM is 45 ns. Also supplied to
the backplane is the 5.0 MHz system clock and a disable signal, MPSEQDIS. When
MPSEQDIS is high, the writeable control store is being addressed by the LSI-i1 and
NXTINSTADDR should be disabled (high impedance state).

The LSI-11 can read or write the control store via a DRV-11 parallel interface. Control
store addresses and data are transmitted in successive 16-bit words, one word for the address
and four words for a complete microinstruction. The two control lines, CSRO and CSR1,
from the DRV-11 are used to direct the [/O. CSRO describes the contents of the data lines,
OUT 0TO15. CSRO low indicates control store address and initiates the read/write sequence:
high indicates control store data. The least significant 16 bits are transmitted first. Low CSR |
at the time the address is loaded (CSRO low) directs the logic to load the contents of the
control store into the output register, DOREG, for subsequent multiplexing onto the IN 0TO15
lines to the DRV-11. A high CSR1 indicates a write sequence which is initiated after the input
data register, DIREG, is loaded. REQB is used as an interrupt signal for interrupt driven 1/0O
by LSI-11. An interrupt is generated by the completion of write or read cycle. REQA provides
a ready signal for the LSI-11. It is reset during access to the control store. AINIT or BINIT
initializes the 1/0 logic. :

The LSI-11 microcomputer system shown in Figure 10 is an off-the-shelf system which
executes the MICRODARE system software. The LSI-11 has a 28K 16-bit word memory
space. 16K of which is the dual port memory. Other functional elements ot the LSI-11 system
include:

. LSI-1) microcomputer module with extended instruction set and floating
point chips.
2. 28K (16-bit) semiconductor memory, 16K dual port to DEP.
3. Dual double density floppy disk drive/controller with UNIBUS/LSI-11
converter interface.
4. Multi-slot backplane and power supply.
5. RT-11 floppy disk operating system and MICRODARE system software.
6. EIA RS-232 serial interface module to terminal.
Panel, clock, and terminator module.
8. Graphics terminal with keyboard entry.
9. Decwriter I line printer/terminal.
10. Parallel interface module to writeable control store memory.

The memory layout for the dual processor system is shown in Figure 16. Additional details
on the MICRODARE systems software can be found in the references (21, 22).

The RT-11 operating system resides on diskettes for a double density dual floppy
disk system. RT-11 includes a monitor, PIP utilities, text editor, microassembler, BASIC,
FORTRAN compiler, linking loader, and device handlers. The application programs used
here were MICRODARE simulation language and AMDASM microassembler. The MICRO-
DARE system is a stand-alone program that can be run by typing R MDTEK on the control
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Figure 16. Memory layout for MICRODARE dual processor system.

terminal. MICRODARE is a modified BASIC interpreter and has both file manipulation
and text editing capabilitics. Some minor modifications to this software have been made
(22). The MicroTec AMDASM microassembler program is used to develop microcode for
LSI bit-slice devices, such as the 2900 family (23). The program is written in FORTRAN
and requires a FORTRAN compiler in order to run on the LSI-11 microcomputer system.
The microassembler was installed as three stand-alone programs under RT-11 and can be
invoked by typing R AMDASM. AMDASM is used to develop microcode for the direct
execution processor. The input to AMDASM is a source file containing microprogram
field declarations, variables, and mnemonics. The AMDASM object output is stored on

a disk file and later transferred to the writeable control store memory.

APPLICATION AREAS FOR DIRECT EXECUTION ARCHITECTURES

Simulation of continuous systems is a prime example of an application area for direct
excecution computer architecture. In an interactive simulation environment, the user must
make model and parameter changes to the problem and quickly evaluate the results of the
new simulation. He cannot afford (nor his employer) to wait for lengthy compilations and
library linkages to produce an executable simulation run. Direct execution computer
architectures provide the close relationship between the user and the simulation equipment
required in this type of application problem. An additional advantage is increased compu-
tation speed since the architecture is optimized to numerically solve systems of differential
equations. This advantage becomes important in a realtime data-acquisition or simulation
problem where an analog computer is to be replaced. Once the model has been developed
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the problem state variables are computed via microprogrammed operations stored in read-
only-memory. Clearly such a simulation system has a limited bandwidth depending on the
problem time constants and complexity. However, techniques exist to partition systems
of differential equations into “slow” and “fast” portions by separation of state derivative
equations. In addition, algorithms for parallel solution of differential equations have been
investigated (20, 27) and can be adapted into direct execution architectures. in these types
of problems, the direct execution architecture described in this paper has extcn<ions to
multiprocessor simulation systems.

Direct execution architectures can be applied to problems that require a close user/
equipment interface. Laboratory process and instrumentation control is an example where

data acquisition, distribution, and signal processing can be performed with a direct execution

system. Interactive languages for graphics display systems which require a small amount of
data formatting and processing prior to displaying can utilize direct execution concepts.
Data base management systems that require information storage and retrieval functions are
applications areas of direct execution concepts (28). All of these application areas require
subsystem control and data inquiries which can be performed quickly and without recom-
piling when a model change is made.

The traditional application area for direct execution architectures has been general
purpose high level programming languages. Direct execution architectures are continuing
to emerge for languages such as BASIC and APL. A stack-oriented 16-bit microcomputer
chip set which interprets PASCAL intermediate P-code in hardware has been announced
by Western Digital (29). Other semiconductor vendors are reportedly working on similar
microcomputer architectures.

SUMMARY AND CONCLUSIONS

The concepts of direct execution computer architecture for continuous system
simulation investigated under this project fall into two categories: (1) interactive develop-
ment mode and (2) realtime computation mode. The first category involves the high level
language issues and the interface to the direct execution hardware. The second category
relates to the direct execution architecture and its capability to perform high speed com-
putations.

User requirements in the interactive development mode clearly indicate the ad-
vantages of an interpreter-based language over a compiler-based language. The interpreter
instantaneously reports back errors to the user as he enters language statements. In the
case of MICRODARE, a combination of interpreter and compiler is suitable since the
numerical solution of differential equations involves repeated computation of the problem
state derivatives. The MICRODARE mini-compiler sets up a threaded-code list for the
simulation run which is executed by the microprogrammed direct execution processor.
Language extensions to MICRODARE, such as the addition of special purpose mathematical
functions, can be made by adding the appropriate microcode or hardware units. Although
the MICRODARE interpreter is derived from BASIC, it is coded in PDP-11 assembly
language and executes fairly rapidly on a minicomputer (less than 2 seconds for most
problems). The MICRODARE interpreter/compiler would exccute still faster if some of
the assembly language subroutines and functions could be microcoded. The new LSI-11
module with writcable control store memory can provide this feature. Assembly language
modifications were made to the interpreter software in this project to accommodate trans-
ferring parameters through the dual port memory to the direct execution processor.
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The realtime computation mode is necessary if the direct execution system is to be
used to solve systems of differential equations on-line. Replacement of analog computer
functions in a hybrid simulation system is such an example. In this project, high speed bit-
slice devices provided the means of demonstrating the direct execution architecture. The
flexibility of these parts enable an optimized design to retrieve, compute, and store simu-
lation variables in the dual port memory. The partitioning scheme used enforced the
need for special purpose LSI units, such as multiport memories, multipliers, sine/cosine
ROM, memory address controllers, and floating point processors. The units provide high
speed processing which would normally be performed by the LSI-11 or in direct execution
processor microcode. Additional units to speed up the language interpreter sections could
be used if available. The partitioning scheme also pointed out the advantages of independent
parailel data and address processing sections in the design. The data processing section in
this project used 16-bit fixed point fractional arithmetic. This approach requires the user
to scale the simulation problems as in the analog computer style. A floating point architec-
ture would negate this requirement.

Investigations in this project indicated potential future work areas in direct execution
architectures for simulation. These areas are summarized here:

1. Multiport Memory LSI Chips  high speed devices to develop low cost memories
for interprocessor communication.

2. Floating Point Direct Execution System  enables scale-free simulation
problems; separate data and program memories.

3. High Speed LSI Floating Point Processor — multi-chip bipolar or SOS
processor to complement floating point system; existing NMOS processor is too slow.

4.  Optimized Interpreter for Simulation - translation phase of simulation
described carlier in report and is optimized to process simulation statement constructs.

5. Input/Output Interfaces for Direct Execution Process — design with capability
to interface to other direct execution processors to handle large simulations.

6. Direct Execution Multiprocessor System Software - system software to handle
multiprocessor simulation possibly based on concurrent PASCAL concepts.

7. Special Function LSI Units — high speed function table look-up units,
sine/cosine ROMs, exponential and transcendental functions, string processing operators,
and memory stacks are examples of these.
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APPENDIX A
Table Al. DARE languages summary.
DARE
System DARE-I DARE-II DARE-IIIB DARE P DARE/ELEVEN | MICRODARE
1969 1970 1971 1973 1974 1977
Feature
Computer DEC PDP-9 DEC PDP-9 CDC 6400/ | CDC 6400, | PDP-11 Family PDP-11
System DEC PDP9 | IBM 360, Family and
UNIVAC LSI-11
1110, etc.
Problem Equation Block Equation Equation Equation & Block
Representation Block
Data Type 48-Bit 18-Bit 48 & 60-Bit 36-60 Bit 32-Bit 16-Bit
Floating Point | Fixed Point Floating Floating Floating Point Fixed Point
Point Point & 16-Bit Fixed
Point
Mode of Interactive Interactive Interactive Batch Interactive Interactive
Operation Batch
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APPENDIX B

DARE BLOCK-OPERATORS USED BY MICRODARE

SUMZ=X+Y
DIFZ=X-Y
MULTZ=X*Y
ABSV Z(X

LIM Z(X

COMP Z(X-Y, PL, M1

SMULT Z(X, CT

TRIGG Z(X, Z0
FUNCT Z = Y(X

INTG Z(X * G%
SHOLD Z(CT, X
UDELAY Z (Z0, CT, X
SWEEP Z

SAW Z(#n

PULSE Z (CT, #n, TD
NOISE Z(#n, CT, #m

STORE AA =X
STOGET AA =X

GET X = AA
TERM X <Y
DISPT X

DISPXY X, Y

PROB Z(X, RS, WR, CT

DIV Z = X/Y
* IMULTZ =X * #n
* NEG Z(X Z=-X

Z=1X]|

Z = max (X, 0) ‘ PL(X-Y =0)
7=

I Ml (X-Y <0)

‘ -X (CT<0)
7=
' X (CT =0)

Schmitt-trigger transfer characteristic
table-iookup and interpolation in array Y
intergrator with integer gain G%

sample hold; Z tracks X if CT > 0

unit delay between Z0 and Z; Z0 tracks X if CT >0
sweep waveform (-1 to 1)

sawtooth sweep, frequency n

CT > 0 generates n pulses TD units apart
shift-register pseudo-random noise generator
stores time history of X

in array AA

produces time history X from array AA
terminates DRUN when X <Y

displays X versus T

displays Y versus X

amplitude-distribution analyzer

*Microcode currently developed for Direct Execution Processor.
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APPENDIX C. MICRONDARE SAMPLE PROGRAMS
C.1 Two-Dimensional Torpedo L . nemics Example: by R. H. Hidinger NOSC 6353
LIST

19 CLEAR STRCK

11 NP = 200: kA3x¥ NUMBER OF PGINTS

1= 0In GKCNP],OY[NP],QU[NP]-DP[NPJ E

23 07T = @.9009S Xxk¥X TIME IHCP TIME SCALE 1980(0T=0 865)

72 T = @.99 o k¥xry MRX TIME, TIME SCALE 168 (TMAX = (06 )
35 Cl% = TH7CHPRDT)

43 kErE¥ RUM COHSTANTS z

57 U0 = .25 : ¥3¥ex REL. 70 S0

A6 OIM RTE1291: #3&4% FUDDER rnNHQNU TABLE, F5. = 22 DEG.

€5 - FOR I =1 TO 12% : RT = @.0 HNEAT I til&! ZEPD TABLE )
THORTLFYY = 9.25: RTE7F3Y = 0.25: PTL?3] = 9 25 RTL3@] =0 25 44444 CIRCL
=

72 RTLAS] = -8 .25: RTESMAY = ©.25: RTC95] = -0.29: RPTL1N0]Y = 9 CS
T3 RTL163] = -9.25: RTC1163 = A, 25 X444k SHAKE

Y6 RTCL12] = -0 125 $4%%X% ATTACK

G tixs¥ OU/CT COHSTANTS

i9a Wi = 08,8155

110 ¥z = 8 2155

1290 UT = XL1$UCKUC

122 tikkif DUV/DT CONSTANTS

140 71 = -0.38122

150 Yz = -2 04561

10 72 = 0 12501

170 4%¥¥3% DR/DT COHSTAHTSE

1€8 H1 = -8 967A3

129 N2 = -0 44266

230 HZ = -3 77652

214

Do

élltl PGTﬁTION SCALE
IEEEE ] SIN AND COSINE TABLES
IH ,CSL1025]
5?%? Jltlt MAZ. BEARING, P
Z

~

RN

-

DN—DD
o
—
-~
-
=
~n
w
bl

IEQ o= 2¥FNCIAZYF]- rPnnth 1 4): xxex% -PM<=ps=PN
258 2ICI3 = SINCA»: CSCIY = A

278 NEXT 1

233 kEEXy IHTEGRATION CONSTANTS

TEC O kiktk TIME SCHLE = 180

210 GU% = 196

228 GSU% = |fe8

220 GRY% = 16090

246 CF5 = 25

259 Ghh% = 19

3G LYV o= 10

40%  $32%%4 INITIGAL CONDITICONS

410 U =09

424 Y =09

430 P =989

448 B = 2. 0Q

453 X =@ 9

460 7 = @.0

1665 $3x0% CO)

:"1‘ ORUN

e SRR P EPSFPR RSSO RES S SRS B P

2 2% & 20 COMSTANT COEFFICIENT TORFEDOD

2202 KXREE SARERRNEAARRRNRARRLRRKARREL KX

ZR:213  A¥¥Ry STATE UARIABLES

Z0ZI1 %4443 U FOPWGRD VELOCITY IN TORPEDU FRAME, <S8n/s
29212 reaxx ) CROSS UELOCITY IN TORPEDD FRAME, < S56M/S
CRZ12  xrxrx R ANGULAR PATE AROUND TORP 2 AXIS5. <Pl RWD-S
20214 Fresx P. BEAPING IH JHERTIAL FRAME, <4P1 RAD

SOZ1T  vArkt XY FOSITION IN INERTIAL FRAME, <1009
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sUW"FD =RTCT
MULT U2=LxU
FYExy DUADT
MULT US=X2¥%0U2
SUg DU“‘T-H“
LSS S RNl
HULT uy=uxu
MILT RU=R¥U
MULT Tli=RDAU2
Frixy OUDT
NELT T1=Y1400
MULT TZ=Y24RrU
HUL7 T2=Y3%TU
SHUR Td=T1+T2
CUN LUusTq+132
tx:3x DR/OT
MULT TS5=H1¥UY
MULT TR=M2xPI
ULt T’ N)IT”

£ CRO25 PRODUCTS

DW= RS GO S i P == DN
RN TLDTODITDHADRADTED

Two-Dimensiona!l

AEAEL RERRCARR R RR P KRR S KRR RN RN AR RN TR R KRR KRR R SR KT S

TB=1{A
MOCT TEsiEp
MULT tD=vCiRs
St DY=YB+YD
KXeeg **!i INTEGRAT [N
INTG Uy DUIGU%

INTG W DUSGUZ
INTL RCORAGR%
INTG FORAGPY
INTG ACDXAGRY
IHTG Y(DVEGYX
13¥%%

QIspy %,

Torsedo Example

~
[T HERsIS F
i
L
1HE Qo T
-+
-1»
- 3 oot . 4 4. g
T 1 T L T g ) |
Circle Turn
4
Cnake Search
Straicht Pun 3 i
-+
=
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C.2 Parameter Optimization Problem: by G. A. Korn, University of Arizona

S@ CLERR STRCK
F=.4

£3 DIM FFL3RD
£5 FR Ju=1 10

&7 FFL171=0.9
2 FOR Ju=
162 07=0 .91
z8a THM=.93

I GhUu=-~6
4R GYY%=-g
450 G%=|

4£0  GL%k=2

SN0 K= 7

€09  0X=.3

7R QY= 2
12fe  v=9 2
130 W%=0.939
1406  YvY=,923
1523 T=0 9%
1642 TY= 0S5
1768 AK=93 1
1222 wHY=6.1
1505 N%=169
13i2 FOR I%=1
1220 A=0%
1439 Y=0Q
1240  n#4= 2939
1858 V= 3939
1900 U2=0 @
2108 uV=0.9
2289 UY=R .0
2258 W7 =0.0

2360 1=0 0
2409 PPlNT 1%
10006  OURUK

OURUN
11909  AX=AX+GL% kUL
12000  RY=A(T+GG7HUY
15: FFLJ%I=-P: NEXT X20A8 TA=Ti-GGZAUX
¢ FFL133=P-2 14000 TY=TY-GGxAVY
15000 HEXT 1%

;=12 TO 33: FFLJ%I=P: NHEXT [£789% PRINT 14,9 5,77,8 StA

13109 END

20184 MULT YO=Y4n
202‘38 HULT / .’t\'T
2nlag  MuLTY VE=TTATY
20490  5UN ?—A*(
20410 MULY ZAT=VA%A2
2429 MULT VT=~(3Q(
2@s586  SUM S5=UTH(T
29600 SUE EE=5-33

205560 FUNC E=FF.EE
29760 MULT HK1=E¥X)
2a71a  MULT Y1=EN¥(Y
207290 MULT Ra=A14A4
20730 MULT Y2=414iuY
20740 MULT %3=K2%T
29730 MULT Y3=YZiT
1 22098  INTG ACN3GA%

TO W% 23908  INTG YCYVDAGYZ
24900 [HTG ANCASER-12
29000 INTG Y'/(YSx#-12
26008 INTG UXCK1XGY
279808 INTG UXCX3%G%
28990 INTG U'Y(Y1%G~%
29809 INTG UYC(Y3¥G%
23908 DISPT 5
39180 DISPT S3

C.3 Second Order Differential Equation/Multiple Runs: by R. Martinez, NOSC Code 6353

T HORIZ VERSUS
X, XD VERT

?TOP AT LINE 808

=2 LEAR STRCK
128 Th=3 2233
2¢8 0T=TM/109
288 GL=10p

i5n Si%=-i0
79 R= 2

T4 FOR 1%=1 10 3
402 X=9.9

Sa5 #0=93 @

599 T=0

o ORU

WG FYIEE FRRR Y TREE 8

201 MULT P=XDER
CRZAE  SUK O=74P

2400 [HTG XOC04GI%
ZSHG  INTG ACRDIGY
'7H»-"|"l CISFT XK

2avag  LISPT XD

<+
S

.......
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