
r
_

__
_ _ _ _ _ _ _ _ _

A 0 *067 799 NAVAL SISFACE WEAPONS CENTER DAI&SREN LAS VA F/s 9~2
AN AUTOMATED SOFTWARE MAINTENANC E TOOL FOR LARS€ SCALE OPERATTPI .e(TC (u
DCC 7S A I. 21Mh Z

UNCLASSIFIED NIUC/0L Th 39M ML__p__
___Iwi________

6~~~9

/

0~

~uJ
i— J

C~3

I

_
l..

_
W —

UNCLASSIFIED
SECU~~1TY CLASSIFICATION OF THIS PAGE (ITh.n Date Entered)

REPORT DOCUMENTATION PAGE BEFORE FORM

~~~~~ 
REPORT NUMBER 2. GO VT ACCESSION NO. ~~. RECIPIENT S C A T A L O G  NUMBER( ft NSWC/DL-TR-~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 TITLE (an d Su b t i t l r )  ~~‘ ~ T Y P E  OF REPORT & PE RIOD COVERED

• 
) AN AUTOMATED SOFTWARE .MAINTENANCE TOOL FOR

/
I ~~J. J Final r~ ~ ., (

( ~ LARGE-SCALE OPERATING SYSTEMS , P t R ~~URMIN~~ ORG .~ RE~~ORT NUMBER

7. A UT NOR ( a )  8. C O N T R A CT OR G R A N T  NUMBER(a)

Alan L./Zirkle

9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS 10. PROGRA M ELEMENT . PRO J ECT , TAS,(

Naval Surface Weapons Center 
AREA & WORK UNIT NUMBERS

Dahigren Laboratory , K74 Computer Program Support

Dahlgren , VA 22448
II . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE _ . —( / 1 )  Dec~~~ -~~ ~~78 ;

Navy Industrial  Fund 
~~~~~~~~~~~~~~~~ P*GES Ft

___ 30
1 4 M O N I T O R I N G AGENCY NAME & ADDRESS (I(different from Controlling Office) IS. SECURITY CLASS. (of th i . repo rt)

~ \ -iT~ : UNCLASSIFIED
-‘) ~~~‘ c: i... ____________________________________

/ IS.. D E C L A S S I F I C A T I O N D O W N G R A D I N G
—- SCHEDULE

16. D ISTRIBUTION S T A T E M E N T (of thie Report) -
Approved for public release ; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the ab.fract entered in Block 20, If different from Report)

D D C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

19 KEY WORDS (Continue on rereree •id. if nece..aty id id.ntify by block numb.r)

P Operating, Systems Software Development Methodology
Programming Software Maintenance
Program Libraries Software Tools

• \ Programmer Efficiency Systems Programming

20 A~1~~T RA C T  (Contlnu. on ?*r•rea aid. if n.c....ry and id.ntlfy by bloc k numb.,)

A method for automating many of the tasks involved in maintaining a large
computer operating system (SCOPE 3.4 on the CDC 6700) is described. The

• method is embodied in several procedures , each of which aids in one phase of
operating system maintenance. These procedures are written in a manner that
promotes ~~se of modification or enhancement. This automated maintenance
too l can also be used in other programming applications where a large amount
of effort must be expended in noncreatjve~”~ousekeeping”~~tasks. ~~~

DD , 
~~~~~~ 

1473 EDITION oc t NOV 38 IS OBSOLE T E
.

~~;;• ~
• (/

S’N 0102- LF.O 14.6601 ~~~~ / ~~~
‘

~‘

-
SEC URITY CLASS ,r,Ca?I o ,è OF t~q. PAGE (.ab. ,it.,•d~

v - —

• —‘- w -
~~~~~~~~ 

- 
.

S E C U R I T Y  C L A S S I F I C A T I O N  OF THIS PAGE (Whan D.f. Entered)

SECURITY CLA SSI F ICATION OF THIS PAGEIWhC n D.t. Entered)

- —,—-..- -



NS~~ /DL TR- 3936
December 1978

AN ALJIOMATED SOFTWARE MAINTENANCE TOOL
FOR LAW E-SCALE OPERATING SYSTEMS

by

Alan L. Z i rk ie
Strategic Systems Department

I~

NAVAL SURFACE WEAPONS CENTER
DARLGREN LABORATORY

-I’Dahigren, Virginia 22448

~~~~~~~~~~~ STATEZ4EPJTA

Approved for public reLeu~
Distribution (Jaliiii t.d

-
~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ .


• —~
--•w - — - - . -

FOREWORD

This report describes a method for automating many of the tasks involved
in the complex process of maintaining a large computer ’s operating system.
The method was designed and implemented for use with the SOOPE 3.4 operating
system released by the Control Data Corporation for their 6000 series of
computers.

This automated maintenance tool was developed in the Programming Systems
Branch (K74) of the Computer Programming Division. This report was reviewed
by Mr. Hermon Thoinbs, Head of the Programming Systems Branch.

Released by:

RALPH A. NIEMANN, Head
Strategic Systems Depar tment

ACK~~WLEDGEMENTS

Developm~nt of this maintenance tool would not have been possible without
the inspiration of Burnie Meyer , of Control Data, or without the help of the
entire K74/CDC Systems Programming Group, who debugged the procedures and
suggested many valuable improvements.

I~~~
$_

~9it~~~tia Q

I UMJIf,8IJIIrfl 0 ‘

~~~~~~ ~ 1
i . — . • .

- -

~~ ~~*IL -
. 

‘,

-- - ~~~~~ -— ----- ~~—-------- .— 

— 
______t__ -“ 

~1 
-. •



• --
~.•
- w -

~
---

~~~ 
- — --

CONTENTS

FORE~~ RD

LIST OF ILLUSTRATIONS iii

INTRODUCTION 1

USING THE S~~TWARE MAINTENA~~E PACKAGE- INSTALLING
LOCAL MODIFICATIONS 2

EXPERIE~~E WITH THE MAINTENAt~ E PACKAGE 5

APPENDIXES
A--NSWC USER’S GUIDE FOR THE SOFTWARE

MAINTENANCE PACK AGE A-l
B--SYSTEM UTILITIES USED IN INSTALLING

A LOCAL MODIFICATION B—l

DISTRIBUTION

LIST OF ILLUSTRATIONS

Figure

1 Data Flow in Installing a Local Mod 2
2 Part of the Installation Deck for PFA 3
3 Part of the Installation Deck for RBTC 4
4 Logic Flow for the Decision to Mount the

EDITLB Device Set 6
B-l The UPDATE Process B-2
B—2 The Translation Process B—2
B—3 Conversion of Relocatable Programs

to Absolute Overlays B 3
B—4 EDITLIBing the Program into the System B—4 •

r

fr,

.

iii _______ --—-•.---•,——~~~~~———— —- —•- -

-~~~~~~~
._ _

~~~~~~~~~~
• ...

~~~~~~~~~


• —k- W ~~~~~~~~
-

INTRODUCTION

The Naval Surface Weapons Center (NSWC), Dahigren Laboratory, operates
two large general—purpose computers built by the Control Data Corporation: a
CYBER 70 model 74 system, and a 6700 multiprocessor system. Each of these
two computers operates under the control of the SCOPE 3.4 operating system.
SCOPE is a group of programs and subprograms that controls the input, canpila—
ti.on , loading , execution , and output of all programs submitted to the computers.
A knowledge of SCOPE 3.4, and of SCOPE systems programming methods, will be
helpful in understanding the material presented in this report.

Although the SCOPE 3.4 operating system is a Control Data product, its
implementation at NSWC contains numerous locally installed modifications,
known generically as “local mods.” A local mod is introduced into a program
to correct known errors in the program, to enhance its performance, or to
eliminate inefficiencies.

Generation of a local mod is an exacting task, requiring significant
amounts of expensive resources such as dedicated computer time and systems
programmer manpower . This report describes a method for automating many of
the tasks involved in creating and maintaining local mods, which results in
increased productivity. This automation tool is also applicable to other
Control Data operating systems (MOS and NOS/BE) and to programming tasks other
than operating systems maintenance.

No automated method can substitute for t’ie creativity of an experienced
programmer; many necessary programming tasks, however , are essentially
noncreative and repetitive in nature. An example of such a task is the
installation of a local mod after the mod has been designed. The installation
process (Figure 1) involves coding and executing an “installation deck”
(described in the next section). Errors in an installation deck can cause
substantial amounts of systems programmer manpower and computer time to be
wasted; in extreme cases, incorrect implementation of a mod can result.

Fortunately , the installation process, including the coding of the
installation deck, can be automated extensively. This is accomplished by
using BEGIN/REVERT,* a high-level command language facility. BEGIN/REVERT
allows conditional execution of control statements and provides for storing
“subroutines” of control statements on files known as “procedure files.”

The automated installation process, called the “COMPILE procedure,” is
actuaUy a mixture of BEGIN/REVERT procedures and FORTRAN programs. FORTRAN
is used because BEGIN/REVERT is limited in its ability to express complicated
logical expressions. Procedure files and data files are created by FORTRAN
programs and executed via the BEGIN/REVERT facility.

* Under NOS and NOS/BE, CYBER Command Language (CCL) is used. BEG IN/REVERT
was developed by the University of Washington, Seattle, Washington

.1

• _
L.

_
W ~~~~~~~~~

-

~~~ 
— •. - •

LOCAL
MOD

INSTALLATION
DE CK

BASELIN E M O D I F I E D
PERATIN OPERATING
SYSTEM SYSTEM

LOCAL MOD
IN STALLATI ON

PR OCESS

BA SE LINE MODIFIED
SOURCE SOURCE
L I B R A R Y  LIBRARY

Figure 1. Data Flow in Installing a Local Mod

USING THE SOFTWARE MAINTENA~~E PACKAGE--INSTALLING LOCAL MODIFICATIONS

The SCOPE 3.4 operating system consists of several hundred distinct
program modules. Each program module has unique characteristics that may
affect the implementation of changes to the program. Differences between
programs include the following types:

Structural differences. Programs can be peripheral processor programs
or central processor programs. They can be divided into multiple overlays.

Location differences. Programs can be on one of the program libraries
provided by Control Data, or on a locally originated source library.

Translation differences. Programs may be coded in assembly language
or FORTRAN (even SYMPL, COBOL, or PASCAL). One or more system text overlays
may be required for assembly.

Binding Differences.  Programs may be relocatable or absolute; link—
editing with other modules may be required.

The characteristics of a program are usually constant over the lifetime of
the program. The installation of a pr ogr am, as expressed in the contents of
the installation deck, is, of course, highly dependent on these characteristics.
For example, note the differences (and similarities) in the installation decks
of WA (Figure 2) and RBTC (Figure 3).

2



~
- -

~: wV— — — -

PAUSE. MOUNT E 3X TL B , FLSPA K.
NO UN TI, EOITLS .
ATTACH , LOC AL OL, SN :EO tILE .
UPD ATE, P=LO CAL PL, C$LCCAL ,(.&,~~ /.MO UN T I , PL SP AK.
AT T AC$ ,PL1B ,S N~ PL SP A K .
UP t 3A T € ,P=PLIt.. , I~LO CA L ,C~,X.
REO1J ES T ,8FFA ,~~PF , sN~ ECIT LE.
CuM PASS ,I ,S=IPT FX T ,S F P TEXT , SS ~ HTEX T ,8 RP FA .
CATA LOG ,B PF A , .
I T E M I  ZE ,SFFA ,E ,P4.

7- t ~— q
/ A O D F I L E
/ OEC K LOCAL
/CA LL SCt.6COI~i
/CAL L PFA

‘THE TEXT OF THE LCCAL M OO ~OLS $LPE

Figure 2. Part of the Installation Deck for PFA

PAUSE . NCU NT EOITLB.
MO UN TT ,EO ITLe .
A T T A C H ,LO CALFL ,SN~ E O I T ~B .
UPDATE, Pz~ OC~LPL , C”LOCAL ,Q ,~~ /.A T I A C H,PLIZ,SN EOITLB.
UP OATE ,P’FLIZ, IzLO~AL ,Q .
RE QUES T ,BRBTC, ~PF ,SN ”ED ITLb.
FTN , ~~~~~~~~~~~~~~~~~~~~~~~~~~
A ITACH, SYSL IB .
A TTACH , KP !LIB.
L I B R A FY ,SYSLIB ,KP SL IB.
LOSE T ,-PRE SET:ZER O.
t OA D, LGO.
NO~O ,P~ PTC.
C A I A L O G ,B~ 8IC, .ITE M IZ~ ,BRBTC ,E,N.

7— 8—9
~A O D F I LE
~O~ CK I.OCA L
/CALL PLIZC OM
/CALL RET C

THE TEXT OF THE LOCAL MOO GOES HERE’
. S C

Figure 3. Part of the Installation Deck for RBTC

3

L -~~ -- -- -- -~~~- 
_



• —-I.; w - -  - -  • -

Before the COMPILE procedure was implemented , the systems programmer
had to either (a) punch such an installation deck for each local mod, which
was discarded after the mod was processed, or (b) save a deck for each pro-
gram , using it every time the program was modified . Of course, option (a)
duplicated a lot of effort, but (b ) was just as bad since it led to filing
problems and error s when deck format changes were necessary.

Using the COMPILE procedure , the above two example decks are replaced by

(1) BEGIN,COMPILE,,PFA.
(2) BEGIN ,COMPILE, ,RBTC.

The COMPILE procedure then generates streams of control statements equivalent
to those in Figures 2 and 3. Notice that the systems programmer is relieved
of the responsibility of specifying any of the characteristics of the program
being modified. He is also relieved of the need- to do a lot of keypunching!

Replacing control statements with BEGIN/REVERT procedures, however , is not
an exciting breakthrough. The significant feature of the COMPILE procedure is
its ability to configure itself to process programs that have highly divergent
characteristics .

How does the COMPILE procedure know the characteristics of all the programs
in the operating system? The procedure contains a data base that describes
every significant characteristic of every program in SCOPE. The data base
is easily maintained because it is a card image file. Each card contains
the characteristics for one program in a shor thand notation. For example ,
the cards for the PFA and RBTC programs are

PFA BP O5PA
RBTC ZF TB LSK

which are read

“PFA is located on PL1B (B). It is a peripheral procensor
program (P). It has mult iple overlays, the last of which
is 5PA (O5PA).”

“RBTC is located on PL1Z (Z). It is a FORTRAN program (F).
It needs system text CPCTEXT for compliation (TB), and user
libraries SYSLIB and KPSLIB for loading (LSK) .”

Part of the data base is a glossary that explains the notations used in the
data base. The user of the COMPILE procedure can override any information in
the data base by specifying optional parameters on the BEGIN command (see
Appendix A , NSWC User ’s Guide for the Software Maintenance Package).

A FORTRAN program (also named COMPILE) within the COMPILE procedure creates •

the control card images which are ultimately executed to perform the installa-
tion. The COMPILE program finds out what SCOPE program is being installed (from
the first parameter on • the BEGIN command) and searches the data base for the

4

-- ~~~~~~~~~~~~~~~~~~ 
•



• --
‘ 

w- 
~~~~~

— - - — - -- - - — —

program’s entry. Any optional parameters on the BEGIN command are used to over-
ride configuration values fran the data base en t ry (using the rules explained
in the user ’s guide) , and the resulting values are used to bui ld a new ,
temporary procedure file named CTt.CDS, which is subsequently executed via
a nested BEGIN call.

The COMPILE program , which builds the card images, contains by necessity
logical equations of sane complexity . Figure 4, for example , shows the flow
of a minor part of the COMPILE program—— the decision whether or not to generate
a MOUNT command to mount the EDITLB device set. Maintainability of the COMPILE
program is po’skble ‘n spite of its complexity because the program is modular
and well-documented with in—line comments.

EXPERIENCE WITH THE MAINTENANCE PACKAGE

As of November 1978, the maintenance package has been in production use
for eight months. An informa l class was given to all users (the K74 and COC
Systems Progr amming Group) when the package was introduced . A user ’s guide
(Appendix A) was written and is revised periodically to reflect changes in the
package or to meet user requests for more information.

The package itself has been modified several times to add or change
features , following user ’s suggestions. The package has been enthusias’-ically
accepted by the users, and it appears to be contributing to a more productive
and stable environment of system rig difications .

Although the COMPILE procedure has been h igh l ighted in this report , the
maintenance package includes other procedures used by the Systems Prog r amming
Group. They are described in the user ’s guide (Appendix A) .

Appendix B discusses the SCOPE system u t i l i t y programs used in instal l ing
local mods.

5

• —
h-
- W

- —

S
S

YE S ~~~~~~~~~~~~~~~~~~~

NO ~~~~~~~~~~~~E~~~ IU~~ YES

OSY OR OMT
BEING INSTALLED YES

NO

IS
THE PROGRAM

ON PL 1Z NO

YES

~~~~~ IS IS
•_—~~ PL1Z ALREADY LOCAL PL DO NOT

~ %., ATTA CHED YES ALR EADY ATTA CHED 
YES EDITLIB PA C~

I ~~ MOuNT :HE I 
NO

EDITLIB
PACK

I
Figure 4. Logic Flow for the Decision to Mount the EDITLB Device Set

6

-— -—--~~~~~~~~ - - — — — --— - - --- -•, - - - - -  — —--•—- — .—



• • -

APPENDIX A

NSWC USER’S GUIDE

FOR THE SOFTWARE MAINTENANCE PACKAGE 
I

I.

I ..

1-

_ _  -- - - - -~ - - --_ _ _ _ __I  
~~



—
~: 

-w  ----- --- — — - - -

APPENDIX A

NSWC USER’S GUIDE FOR THE SOFTWARE MAINTEN ANC E PACKAG E

This appendix is an example of the NSWC user ’s guide for the COMPILE
procedure and other procedures in the maintenance package . This example has
been edited to delete proprietary and sensitive information (i.e., passwords).

The user ’s guide is meant to be an informal document , which can be easily
changed when features are added or when responses from the users indicate that
a feature should be explained more clearly.

A knowledge of SCOPE 3.4 operating system installation methods and of
NSWC ’s local modification process is necessary to fully understand the material
in the user ’s guide.

COMPILE PROCEDURE

The COMPILE procedure generates the control cards , UPDATE directives , and
EDITLIB directives necessary for modifying components of the SCOPE 3.4 operat-
ing system at NSWC/DL.

The Basic Calls

BEGIN ,COMPILE,,prog,OPT=A . (To get a listing only)
BEGIN ,COMPILE, ,prog ,cy.
BEGIN,COMPILE, ,prog,cy,ac.

where

prog —- the name of the program to be compiled. This is a required para-
meter.

cy -- the cycle number for cataloging the binary result. This number
is required when OPT=C is in effect (de fau l t  OPT is OPT=AC).

ac —— programmer name to be used for the binary  f i l e ’s account code .
This code is required when OPT~~ is in effect, except for Systems
Prog r amming Group members , for whom i t  is optional ( i t  is computed
f r o m  the job card if not speci f ied) .

General  In fo rma t ion

C COMPILE gets the information needed to UPDATE, assemble, load, and EDITLIB
the requested program from its data base , on the local file CDATA. Every pro—
gram on PL1A, Pr.,1B, PL12, PL1Z, and PL1T is represented on this data base. Any
data base information can be overridden by specifying one or more of the
optional parameters described below. If you have a local file CDATA , COMPILE
will use your file as its data base. Similarly , if you have local files named

A-l

• It



-
‘
- w — - • -

LOCALPL , PL1A , PL1B, PL12, PL1Z, or PL1T, COMPILE will UPDATE from your file
instead of from the standard program library of the same name.

In addition , COMPILE will do all mounting and dismounting of the correct
Device Sets. It will not mount a set until it is necessary, and will dismount
a set as soon as it is no longer needed.

If Sense Switch 1 is on, COMPILE will not pause to ask the operator to
mount the packs (this option is useful dur ing System Time). If Sense Switch
2 is on, output from UPDATE will be printed in all cases (output is normally
suppressed if L’PDATE completes successfully).

The Optional Parameters

OPT = x -— where x can be one of the following:

A —— assemble the program
AC —— assemble and catalog the binary (default)
AS —— assemble and EDITLIB the program
ACE -- assemble , catalog , and EDITLIB

PL = x -— the program library on which “prog” resides; x
must be PL1A , PL1B, PL1Z, PL1T, or PL12.

TXT = x —— specifies System Texts necessary for assembly.
Texts specified by this parameter are exclusive
or ’ed with the data base value, which is then
exclusive or ’ed with the default. This final
value is used in assembly. The defaults are
as followá:

PL1A PP programs: TXT = E
PL1A CP programs: TXT = G
PL1B programs : TXT = BCDEF 

-

PL12 programs: TXT = DEFH -

PL1Z PP programs: TXT = E
PL1Z CP programs: TXT = M

The Texts are as follows: ‘

A - ~4RTEX T H - STATEX T
B - CPCTEXT I - 0 (use no Texts)
C - CPUTEX T J - IOTEX T
D - IPTEX T K - LDRTEXT
E - PPTEXT L - PFMTEXT
F - SCHTEXT M - SYSTE~CT
G - SCPTEXT

A-2

• -.-— — —  ——-— — -I— — -  — —-



• — - i-- w ~~~~~~~~~~~~~~~ 
• -  • .

When I is in effect, it overrides all others;
i.e., TXT=ABIKL is treated as TXT=I.

If the job has a local file named BTEXTS, then
COMPILE will get the required texts from this
file .

LIB = x —— libraries necessary for loading relocatable CP
programs. These are exclusive or ’ed with the
data base values like the Texts are. The libraries
are as follows:

S - SYSLIB C — COBOL
K - KPSLIB R - RUN2P3
U - USERLIB I - SYSIO
D - OMS17 O M - SYSMISC
O - SYSOVL G - IGS27 4
F - FORTRAN

The user must attach KPSLIB when it is needed;
COMPILE will attach other requested user libraries ,
unless a local file of the same name already exists.

DEcK = x -- used when the LOCALPL deck name (or the SCOPE
PL deck name) is different from the program name.
An example is lZ2, which has a deck name of “1141.”
This parameter usually only appears in the data
base.

REL = R -- CP COMPASS programs are assumed to be absolute unless
REL=R is specified , which causes a LOAD/N000 to
be performed . Don’t use REL=R if the program must
remain relocatable (e.g., QUEDUMP, SYSEQ, CPC).

SP = x — —  an indicator that “prog ” needs special pro-
cessing in COMPILE because of nonstandard char-
acteristics in its method of installation.
This parameter usually only appears in the
data base. An example of such a special pro-
gram is lZ2, which needs a “*DEFINE CT71” card
in its UPDATE directives. To disable any SP
value in the data base , SP=NONE can be specified
on the BEGIN card for COMPILE.

VER = x —— program version indicator . See the section
below on “Special Programs” for use of this
parameter.

PS = x —— option for presetting core for CP programs that
undergo a LOAD/NOGO. Default is PS=ZERO. If
PS=NONE is specified, no presetting is done.

A- 3



- —
~~~ w ~~~~

-- -

If the parameter begins with an asterisk (*),
a PRESETA is performed instead of a PRESET.
See the Loader Manual for details. Examples:

PS = IOOB PS

ovi = x —- name of the first overlay in “prog.” Default
is the value of “prog.”

0V2 = x —— name of the last overlay in “prog.” Default is
the value of “OVl .”

FL = n —- f ield leng th for EDITLIBing CP programs. If not
specified, the current value will be unchanged.

The UPDATE Process

COMPILE does two UPDATES. The first is against the LOCALPL with the
file UPDIN as input , and LOCAL as the compile file. The second is against
the SCOPE PL, with LOCAL as input.

COMPILE builds the file UPDIN. Its structure is as follows:

/ACCF ILE
/OEC IK M.~ MCJECKS
/C 4LL

__ _
CO~1

cE~~1i~ E CON TE N TS OF FILE ‘ DEC KS ’ ’
iACCF IL~.
/OECK £1 ’OECK>
h f OLCK,cOECK ’,l
/CALL ‘DEC K>
h f —D ECK, <OE CK’,l
•CCPPI LE ‘DECK>

L N1l,~~ CONTE NT,~ OF FILE. ‘ICENt s’>

‘CCt’~TE.NTS OF NE~k 1 RECOR D CF 1UPUT FiLE ’ r

where “<DECK>” is the value of the DECK parameter (which defaults to “prog”).

C
The user can use the files DECKS and IDENTS to introduce UPDATE directives.

If this is done, and if the HEADER procedure is called, care must be taken
to never rewind these files, since HEADER also puts directives on these files.
If no cards are to be read from the INPUT file, an empty record must be included
(or, under INTERCOM, the file should be disconnected). The UPDATE listings
are normally not printed unless an UPDATE error occurs.

A-4

—I.. - W~
- — - - •

Ver i fy Mode

In Ver i fy Mode , the control cards created by COMPILE (on the file CTLC)S)
are listed, not executed. The UPDATE directives and EDITLIB directives on the
file UPDIN are also listed. Verify Mode is automatically entered when COMPILE
is executed from INTERCOM; it is entered from batch whenever a local file named
VERIFY exists (all the user needs to do is a “R~.JIND, VERIFY.” before calling
COMPILE).

Ass~ nbling Multiple Routines

If COMPILE is called with DECK=* specified , then the four UPDATE directives
flagged with asterisks above (under “The UPDATE Process”) are not included.

If the f i rst character in “prog” is an asterisk (for example, PI~ G~*PFDEcKS),
then COMPILE does two things —— it removes the asterisk from the PROC value
and sets DEcK=*. This option is used when it is desired to modify and catalog
multiple binarys on the same file. The PL parameter must be specified to name
the SCOPE PL on which the programs reside . Example :

N~I~~,P5,TO. A~ SEP1äLE PEM ~P PROGS
~9KK33,~ ~~.A T T A C H, FROFIL ,10 NV8.
~E~~IN,CC M FiLE ,,~~PFM, 123,PL PL1B.

7— 8—9

/CALL PF~
/CAL L PFC
COMFILE PFS

• (It- is necessary to include /CALLs or
• *cX~4pILEs for each deck to be included;
• the value of PROG is used only as a name

for the binary fi le , and DEcK=* is simulated .

Multiple COMPILE Execut ions

Muitiple BEGIN ,CCI4PILE” executions may be stacked within one job . It
is possible, for instance, to assenble the System Texts in one COMPILE step,
and use them in assembling another program in a following step.

A-5

— -•--— —- —,-----—--—-- — -—--.—--~ —-——— — — -S •_•~~~~~~~~~ —-

—i-- ~~~~
, —S - -S

Special Programs

CMRS -- If PROG=CMRS is specified , all four CMRs are assembled
(all on the file BcMRS). cu Rl and CMR3 are not listed.
The CMR date must be specified as VER=mmddyy.

~MRn —— If PROG=alRn (n=0 ,l,2,3), the corresponding C4R is assembled,
listed , and put on the file BCMRn. If the CMR date is
not specified, an assembly warning will occur , and the
cur ren t date will be used.

cMR -— If PROG=GIR, the default cMR (currently OMRO) is assembled
on the f i l e BCMR . An assembly warning will occur , noting
that the defaul t cMR was used.

TEXTS -- If PROG=TEXTS is specified , the System Texts CPCTEXT
through STATEXT are assembled on the f i l e BTEXTS.

OSY —- If PROG=OSY is specified, the 844 Buffer Controiware is
processed. The binary cards must be the input record ,
and the version must be specified via the VER parameter
(e.g., VER=A10).

The /LOCAL Pseudo—UPDATE Direct ive

The UPDATE directives necessary for iznp1emen~ting a local modification
resemble the following example:

/1uEM LS99PfO (~ A
/~~EFC~ E LECK i.3
/iE —uF~F,INSTALL C
•IUENT L~~99Pf.OGk 0
IP~~ERT I DRP~cOG H.6 E
• L999P~~Ci.,R .• . ‘NA ME’ •.. cL~ATE
S

• cCOMME~NTS

•••
• • •
(ThE ~.aI~~ECTiv€S FO f~ T HE MODIFICA TIUt~’

•CCMI ILE PRU(.~ F
•/ EN~ OF MOO L999PIQGR G
/ENCIF H
Ii E N D C F M OO (999P~~j GP I

A-6

rr. -- ~~~~~~~~~~•

- - 5 —

The /LOCAL card causes the COMPILE procedure to provide the cards labeled.
A through I, requiring the user to provide only the comments and directives
for the modification . The format of the /LOCAL card can be any of the following:

/LOCAL L9~~
/LOCAL L999f~~CGR
/LOCAL L999F~~CG~~,HDRPRuGH
/LOC AL L9~~~f~~CGk,L,ECKP
/LOCAL. L99 RCt,~~,H&RPkOGF4 ,CE CKR

The local mod number (as L999) must be provided . The letter can be D, G,
I, I., P, or Y. If the rest of the mod name (progr) is omitted , the value of
the “prog ” parameter (truncated to five characters) is used .

If the header mod name is omitted, the name is assumed to be HDR followed
by the value of the “prog ” parameter (truncated to six characters) .

If the COMDEcK name (deckr) is omitted , the value of the “deck” parameter
is used .

If the user provides the *COMPILE card , the procedure won ’t; if the pro-
cedure provides the card , it will use the value of the “prog” parameter. The
*COMPILE card must be the last card in the modification if the user provides
i t .

The first card after the /LOCAL card must be a comment card. COMPILE
will insert the local mod name into columns 3-11 of this card. Columns 12—20
will be cleared . If columns 21—30 are empty , the value of the AC parameter
will be inserted , and if columns 51—60 are empty, the current date will be in-
serted .

If the /LOCAL directive is used, all cards in the local mod will be
punched. Multiple local sods, each prefaced by /LOCAL, can be present. When-
ever /LOCAL is used, the listing from the LOCALPL UPDATE will be printed .

HEADER PROCEDURE

The HEADER procedure produces the UPDATE directives necessary when adding
the first local modification to a prog r am . A COMD~~K and a “header mod” are
produced .

A new COMDEcJC for the LOCALPL is created . This COMDE~K will be used to
contain all local modification code for the program , including code added in
the future. The format of the COMDE~K is

/CC P’OECK COMuK ’
5/ E~ bIN nO0~ IL,, ‘Pf~OG
‘I END OF MOOS TO PROG >

A—i

___________ - - S ~__ ,—~~~~~~—- ~~~~~~— — - — ~~~~~~~~~~~—- -— - — - -- - — — - - 5 - ---

• —b: w- ---- - -S- —S —
~~~~~~~~~ - -S - - -

The variable parameters “comdk” and “prog ” are explained below. The
COMDECK is never produced when we are introducing a modification to a SCOPE
common deck; all local code for SCOPE common decks goes into one of the LOCALPL
COMDECKS named SC4ACOM , SC4BCOM , IN4COM , or PL1ZCOM, which already exist.

The “header mod” is a set of comment cards that is added near the be-
ginning of every locally—modified program. It serves as a notice that the pro—
gram is- in fact locally modified . Every subsequent local modification will add
its own set of comments after the header mod, so that a concise summary exists
of all the local changes to the program. The format of the header mod cards
is shown below:

/ICE NT HO TP~~JL,
)

/oEf(.D<L ‘COMOK’.!
ILE NT t-~u P < T P - L ( , >

•IP~~tJT  ( iD INT > . ‘SEO~1O’
4 4 4  44  5 5 4 5 4 5* 4  4 4 4 4 4 4 5 4 5 5 5 4 5  4 4 4• 4 5  5 5 4 4 4

• S

• ——LOCAL MOUI FICATIC~ S—— 5

• S

. 4 4  •. ..• .,

S

CCI’PILf ‘PFU~,’
4/  £N Q uF MO [ H~ ’~~Tf-~~O~~’ - .

1/ END uF MCLi Hi~~< T P ~~OG’

The var iable  p arameter  “ tprog ” is “prog ” t runca ted  to six cha rac t e r s .

The HEADER procedure puts the COMDECK on the file DECKS, and the header
mod is put on the file lDE~TS. The COMPILE procedure processes these files ,
merging their contents into the set of- UPDATE directives it builds . Two
separate files are used in order to keep everything in -. :quence in case HEADER
is called more than once ; the f i les  are not rewound , so that their contents
are cumulative .

The COMDECK and the header mod are also written to the PUNCH file for
subsequent punching . This can be disabled by inc lud ing  a “ROUTE,PUNCH ,DC=SC.”
card as a final control card.

HEADER is executed as follows:

BEGIN ,HEADER , ,prog,ccmdk ,ident,seqno.

The “prog ” parameter is required; the others are optional. Each of the para-
meters are listed below:

prog -- the name of the program being modified . In cases where
the binary deck name is different from the UPDATE PL
deck name , the latter should be used.

k-8

- - ___a. - 
-



-
~~~ 

-w- —

comdk -— the name for the CCMDEXi(. If omitted, “prog ” is used as the
COMDECK name. If the progr am being modified is a SCOPE common
deck , one r~f the following must be specified as “comdk :”
SC4ACOM, SC4BCOM, IN4COM, or PL1ZCOM.

ident , —— these parameters describe the location in the program where
seqno the header mod is to be inserted. If “ident” is omitted , the

value of “prog” is used; if “seqno” is omitted, “6” is used.
The user must usually examine a listing of the program to
be modified , in order to intelligently specify values for these
parameters.

Examples -

BEGIN ,HEADER , , 1AJ .

A header nod is inserted at 1AJ.6 and LOCALPL COMD ECK “ IAJ ” is
created.

BEGIN ,READER , , lAJ ,ID~~ T=SC4l926,SEQNO=l34.

A header mod is inserted at SC41926.l34, which must be a card within
1AJ . The LOCALPL COMDE~K “ lAJ” is created .

BEGIN ,HEADER , ,INIT,SC4BCOM.

A header mod is inserted at INIT.6. Since INIT is a SCOPE common
deck on PL1B, SC4BCOM must be specified as the COMDECK name. No
new WCALPL COMDECK is created. -

DSBLJ I LD PROCEDURE

The DSBUILD procedure builds a deadstart tape from the runlkir’g system.
If any permanent files containing transfer records are attached, the transfer
records on those files will be used; otherwise, the transfer records will be
taken from the running system. If necessary, additional EDITLIB directives
are taken from input cards.

DSBUILD is executed as follows:

BEGIN ,DSBUILD, ,tape,option.

Both parameters are required. They are :

tape —— for production of deadstart tapes , the numbe r of the tape
(102 , e tc .) ; for test tapes , any 1—5 character name . The lfn
and VSN of the created deadstart tape will be “A” followed by
this parameter.

L. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-‘. w- - —-- — — -5- - - --5-— - -—5-~~~

option -- must be SYSTEM to create a production tape, or TEST to create
a test deadstart tape. When SYSTEM is specified, the DSCOMPARE
procedure is automatically called and the ITEMIZE of the tape
is cataloged on the EDITLB pack. Never use SYSTEM when build-
ing a test tape.

When invoked, the DSBUILD procedure pauses, waiting for- an entry of n.YES;
when this is entered , an EDITLIB,RESET is performed and then the operator is
asked to run the daily EDITLIBs in order to ensure that the running system
contains the correct EDITLIBs . The EDITLIB job should be killed or dropped
when it displays “TURN SEC ,EDITLIB ,~~~F. ”

By entering n.NO, the EDITLIB,RESET and EDITLIB insertions can be bypassed.
This should not be done when building a production tape.

When building a test tape, you can do a compare against the current
production tape by executing

BEGIN ,DSCOMPARE, ,tape.

The EDITLB pack is mounted by DSCOMPARE. DSCOMPARE is automatically called
when building a production tape.

As an example, suppose it was necessary to build production Deadstart
Tape 106 , with changes to MTR , IRC P, and the O4Rs. Something unusual is also
being introduced: a new PP routine ALZ and a new CP routine SNXLP are being
added. They cannot be EDITLIBed in because they will not run without a Q’1R
change. They are both on the file BSNXLPALZ. The deck to build this tape
would look something like this:

N X X Y V , S I T 1 , T O .
‘~ UZ~~9, FwU.

~IN ,MOL~~T ,vSN= uITL~~.
AT TA CM ,óMT~~,
ATTAC H,8I-?CP, ...
~TTAC H,dU1s~S,
AT TA CM ,dSNXLFALZ, ii.

jc tjlN ,DStUILC 44 i06iSYSTEI~.
t .* 1T. •
E X i T . 1’

~UE~ T,A i0€,~~IN (~,VSN A106.
7— 8 - 9
AU btALL ,cSI~XLPA ,ML 0)
LI.~~AP’V (NUCLt.US,OLO

)

~J u I ~ NXL~~,c5F~XL fA,AL 1,FL !O00O,FLCaO)
FINISH.

Note that a dununy REQUEST card is necessary to satisfy tape staging.

- — — - - — —- —— -__~4—-~
-

- -

Both the DSBUILD and the DSCOMPARE procedures have a verify mode, as
described in the COMPILE procedure user ’s guide .

The SCOPE transfer records are listed below:

CEA — CES Deadstart I n i t i a l i za t i on
PCi - xxx C.E. Diagnostics
CED - DTS CONTROL
a4RO - cMR3 G4Rs
COM - P CONTROL
OSY 844 Buffer Controlware
STL PP Resident
I~~~P Deadstart CP Routine
MTh Monitor
DSD System Display (only the main overlay

is a transfer record; DSBUILD correctly
puts the remaining overlays into
PPLIB)

4

A-li

-S ‘-

-
~~~~¼ --

APPENDIX B

SYSTEM uTrLrrIEs USED

IN INSTALLING A WCAL MODIFICATION

~ 
-



‘L W -

APPEND IX B

SYSTEM UTILITIES USED IN INSTALLING A LOCAL MODIFICAT ION

A local mod is w r i t t e n  as a source language cor rec t ion  set tha t , th rough
several steps , becomes implemented as a change to the r u n n i n g  opera t ing  system.
The SCOPE u t i l i t y  p r ograms  used in th i s  process are discussed on the fo l lowing
pages ; the u t i l i t i e s  are

UPDAT E

Language Translator s

- WADER

EDITLIB

UPDATE - SOURCE LI BRAR Y MAI NTENAN C E U TI LI TY

The UPDATE program is used to m a i n t a i n  f i l es  conta ining source programs .
These Prog r am L i b r a r y  f i les , or PLS , are implemented in a random—access compressed
card image fo rmat  which allows quick access and e f f i c i e n t  s torage u t i l i z a t i o n.
An UPDATE PL contains three types of in fo rma t ion :  DECK s, COMD ECK s , and IDENTs .

A DECK is ~ source program module. Each DECK has a name , and each card
w i t h i n  a DECK has a un ique  numbe r , which is i n v a r i a n t .  A co r rec t ion  set may
delete cards f r o m  a DECK , but  these cards remain  on the PL so that  it can
a lways  be restored to a previous  s ta te .

A COMDECK is a group of source s ta tements  which may be repeated in several
prog r am modules . UPDATE allows these s tatements  to be entered once Onto the
PL as a COMDEC K , which is re ferenced  by each DECK that  r e q u i r e s  the common
code . Each COMDECK has a unique maine, and the cards are assigned numbers.

IDENT5 are sets of modifications to DECKs or COMDECKs. An IDENT may
delete cards from or add cards to a DEcK , COMDEX K , or another IDENT. Cards
tha t are added a re ident i fied by the unique IDEN T name and a sequence number
within the IDENT. IDENTs are also called “correction sets.”

An UPDATE run (Figure B—i) is controlled by control card parameters on
the UPDATE command and by input directives . Usually, only DECKs named on an
input directive (and COMDECK5 called by these DECKs) are output to the source

• language file (the “COMPILE” file). The COMPILE t ile is usually used as input
to a language translator .

B-i

. _ . .  - — - - - — - - --—-- - - - - -  - - -~~~~~~~~ _~~~.- _ _  —



- -_~~~~~ w -——---
~~~~~~~~ 

- - -

C T A R D

UPDAT E
D IREC TIVES

F i g u r e B-i . The UPDATE Process

LANGUAGE TRANSLAIDRS - FTh AND COMPASS

The SCOPE 3.4 operating system is written in CDC Extended FORTRAN (FTh)
and in assembly language (COMPASS). The FTh compiler accepts in t e rmixed
COMPASS subprog r ams. The t r a n s l a t i o n process (F i g u re B— 2) converts a group
of source subprograms (f r o m cards or f r o m an UPDATE COMPILE f i l e) in to a f i l e
con ta in ing the relocatable b i n a r y object code of the subprog r ams . The object
f i l e is processed f u r t h e r by the WADER . Transla t ion is controlled by control
card parame ters ~-‘n the FTN or COMPASS command . Auxiliary source input to
COMPASS programs from systems text overlays is often required.

CON TRO L CARD
PARAMETCRS

SOURCE
LANGUAGE

INPUT

FTN RELOCATABLE
OR BINARY

COMPASS OUTPUT

SYSTEM
TEXTS -

F i g u r e B-2 . The Trans la t ion Process

B-2

- 5--
h
- W - — - — —

THE WAD ER UTILITY

The local mod in s t a l l a t i o n process uses the CYBER WAD ER to convert the
r~’locatable b i n a r y object pr og r ams , produced by the language t r a n sla t o rs , in to
l in k ag e — e d i t e d absolute over lays . E x t e r n a l references are resolved by incl uding
-~uhprog r ams from object l i b r a r y s where necessary. M u l t i p l e —o v e r l a y p r ogram
buij’-ling is controlled by input directives ; the entire absolutization process
(Figure 8—3) is controlled by control card parameters on LIBRARY, MAP, LDSET ,
LOAD , and NOGO commands. The absolu te ove r lay f i le is used as inp u t to the
EDITLIB program.

C ON TR 0 1 CAR D

LOADER 1L DIRECTIVES]
F i g u r e B—3 . Conversion of Relocatable Programs to Absol i te Overlays

8-3

- - -
~~~~~~~~~~ --- -5 - ~~~~~~~~-•~~_



w- --—- ---- - -  -5- -5 - -  5 -  -5

EDITLIB - OPERATING SYSTEM MODIFICATION UTILITY

The System EDITLIB program integrates changes into the SCOPE 3.4 operating
system. Two modes of operation are featured —- modification of the running
system and creation of a modified deadstart tape. Changes to the running
system are temporary, lasting only until the first subsequent deadstart.

Creation of a deadstart tape containing a local modification makes the
mod a permanent part of the operating system, and is one of the final steps
in the installation of a local mod.

Execution of the EDITLIB program (Figure B—4) is controlled by control
card parameters on the RDITLIB command , by input directives , and by console
interaction with the computer operator .

CONTROL CARD
PARAMETERS

BINARY
PROGRAM

INPUT -

NEW NEW

OLD 

OR DEADSTART

R U N N IN G
SYSTEM

EDITLIB OPERATOR
DIRECTIVES GO

Figure B—4. EDITLIBing the Program into the System

8-4

______________________________________________ 
__________________________________________________________________________________________________ 

i-
~ S — — .- —-5—— _J~_ .L.5’ -



- —-I,.-. W5 - -  —

D I STR I BU TION

Commanding Of f i c e r
NAVAL COASTAL SYSTEMS CENTER
Panama City , FL 32407
ATTN : J .D. Brown (Code 732 )

Di rec to r
NAVAL RESEARCH L.ABORA ’IY)RY
Washington , DC 20375
ATTN : Code 1721

Commanding O f f i c e r
NAVAL AIR DEVE LO PMENT CENTER
W a r m i n s t e r , PA 18976
ATTN : Code 50

Code 85

Commanding O f f i c e r
FLEET NUMERICAL WEATHER CENTRAL
Mon ter ey , CA 93955
ATTN : Code 006

O f f i c e r  in Charge
NAVAL UNDE1a~1AT ER SY STEMS CENTER
New London , CT 06320
ATTN : Richard  W h i t t a k e r  (Code 4421)

Commander
NAVAL OCEAN SYSTEM S CENTER
San Diego , CA 92152
ATTN : Ken Medin (Code 9121)

Commander
DAVID W. TAYLOR NAVAL SHIP RESEARCH

AND DEVELOPM ENT CENTER
Bethesda , MD 20084
ATTN: Lorraine Minor (Code 1892.3)

Commander
NAVAL WEA PONS CENTER
China Lake , CA 93555
ATTN: Code 5132

Commanding General
AIR FORCE WEAPONS LABORA~IDRY (ADP)
K i r t l a n d  AFB
Albuquerque , NM 87117
ATTN: Software Section



DISTRIBUTION (Continued)

Commanding General
EGLIN AIR FORCE BASE, FL 32542
ATTN: Mr. Eddie Blackweil (Code ADTC/ADDSS)

University of Arizona
UNIVERSITY COMPUTER CENTER
Tucson, AZ 85721
ATTN: Steve Jay

FLUOR CORPORATION
3333 Michelson Drive
Irvine , CA 92730
ATTN: Mr. Thomas N. Burt

Mr. Frank Vince
CONTROL DATA CORPORATION
P. 0. Box 0-HQS1OD
Minneapolis, MN 55440

Burnie  Meyer
CONTROL DATA CORPORATION
6003 Executive Blvd.
Rockviile, MD 20852

Thomas L. Hank
CONTROL DATA CORPORATION
4201 Lexington Ave.  N.
Arden Hills, MN 55112

- SYSTEMS AND DEVELOPMENT GROUP
CONTROL DATA CORPORATION
4201 Lexington Ave . N.
Arden Hills, MN 55112

Edward 0. Minasian
2051 28th Avenue
San Francisco , CA 94116

Mr. Art Hartley
CONTROL DATA CORPORATION
4201 Lexington Ave. N.
Arden Hills, MN 55112

Mr. John L. Wardell
CONT~~)L DATA CORPORATION - 

-

4201 Lexington Ave. N.
Arden Hills, MN 55112

- -5—— —- —- . --——— -— — —~~~~~~~~ -—-—.-— —5
’- - - — - — S — -—---—-- —- - - - - - — - ----- -~--- —- - ,- . -



- - -

DISTRIBUTION (Continued)

Mr. James Whitlock
Off ice  of Computer Services
STATE UN IVERSIT Y OF NEW YORK
AT BUFFALO

4250 Ridge Lea Road
Buffa lo , NY 14226

DEFENSE DOCUMENTATION CENTER
Cameron Station
Alexandria , VA 223 14 (12)

LIBPARY OF CONGRESS
Wash ington , DC 20 540
ATTN : Gif t  and Exchange Division (4)

Local :

E4 1
Fl 0
K
K50
K60
K70
K74
K74 (Zi rk ie)  (40)
N20
V
X2 l0 ( 2 )
X2 101 (GIDEP) ( 2)

-— —-  —5--.-- - t


