AD=AO67 799 NAVAL SURFACE WEAPONS CENTER DAHLGREN LAB VA F/6 9/2
AN AgIWTEDzmARE MAINTENANCE TOOL FOR LARGE=SCALE OPERATIN==ETC(U)
AL

UNCLASSIFIED

END

DATE
ruu(Ll
78

o
EEREEEEEEREE
BeEnTa

Ad0d 3114 J00

!“

UNCLASSIFIED

SECUXITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

'

REPORT NUMBER = 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

NSWC/DL—TR— 3936 ‘

4

/dl\

ot g

}

TITLE (and Subtitle) /,. s‘ TYPE OF REPORT & PERIOD COVERED
/

AN AUTOMATED. SOFTWARE MAINTENANCE TOOL FOR , _///] Final ngel,

LARGE-SCALE OPERATING SYSTEMS , /

& PERFORMING ORG. REPORT NUMBER

y A

AUTHOR(Q) 8. CONTRACT OR GRANT NUMBER(s)

Alan L./Zitkle

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRgGNQAM ELEMENT, PROJECT, TASK
AREA R i
Naval Surface Weapons Center IR BT RUMSERS

Dahlgren Laboratory, K74
Dahlgren, VA 22448

Computer Program Support

. CONTROLLING OFFICE NAME AND ADDRESS > 12. REPORT DATE o

(_11;) De cember ¥978
i TINUMBER OF PAGES 7

Navy Industrial Fund

30
14. MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) 15. SECURITY CL ASS. (of thia report)
/ \ =) UNCLASSIFIED
p |
- ’ o 53
S 15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

DDC

‘ A0D OO0

SUPPLEMENTARY NOTES ATV AU

EMEU U 50

A

KEY WORDS (Continue on reverse aide if necessary and Identify by block number)

Operating Systems Software Development Methodology

Programming Software Maintenance
Program Libraries Software Tools
Programmer Efficiency Systems Programming

20

A\S\TRACT (Continue on reverse side If neceseary and identify by block number)

“ A method for automating many of the tasks involved in maintaining a large
computer operating system (SCOPE 3.4 on the CDC 6700) is described. The
method is embodied in several procedures, each of which aids in one phase of
operating system maintenance. These procedures are written in a manner that
promotes ease of modification or enhancement. This automated maintenance
tool can also be used in other programming applications where a large amount
of effort must be expended in noncreative ""housekeeping™ “tasks. &

DD 1 :2:“'73]473 EDITION OF 1 NOV 65 1S OBSOLETE s » \j /

S/N 0102-LF-014-6601 J £ “'

o~

SECURITY CLASIlFICATION OF THIS PAGE (When Da ntered)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

NSWC/DL TR-3936
December 1978

AN AUTOMATED SOFTWARE MAINTENANCE TOOL
FOR LARGE-SCALE OPERATING SYSTEMS

by

Alan L. Zirkle
Strategic Systems Department

NAVAL SURFACE WEAPONS CENTER
DAHLGREN LABORATORY

Dahlgren, Virginia 22448

" DISTRIBUCION STATEMENT A
Approved for public releasey

Distribution Unlimited

B

———

FOREWORD

This report describes a method for automating many of the tasks involved
in the complex process of maintaining a large computer's operating system.
The method was designed and implemented for use with the SCOPE 3.4 operating
system released by the Control Data Corporation for their 6000 series of
camputers.

This automated maintenance tool was developed in the Programming Systems
Branch (K74) of the Computer Programming Division. This report was reviewed
by Mr. Hermon Thombs, Head of the Programming Systems Branch.

Released by:

RALPH A. NIEMANN, Head
Strategic Systems Department

ACKNOWLEDGEMENTS

Development of this maintenance tool would not have been possible without

the inspiration of Burnie Meyer, of Control Data, or without the help of the
entire K74/CDC Systems Programming Group, who debugged the procedures and
suggested many valuable improvements.

W ESaE—. .
BI5THe IO AVAILABILITY G

i - ; "'..

Tult, AvAn @ d
LS

5

am Wi Sectin
URANNEURCED ajl

INSTHRICATION oo

re

o

CONTENTS
LIST OF ILLUSTRATIONS. + « « o o o o o o o o o o o

INTRODUCTION . «. ¢ ¢ « o« o o o o s o o o s o o o o

USING THE SOFTWARE MAINTENANCE PACKAGE-INSTALLING
LOCAL MODIFICATIONS . . ¢ &« « « « o o o o o o &

EXPERIENCE WITH THE MAINTENANCE PACKAGE.

APPENDIXES
A--NSWC USER'S GUIDE FOR THE SOFTWARE
MAINTENANCE PACKAGE. . . « « o« « ¢ « « o &
B--SYSTEM UTILITIES USED IN INSTALLING
A LOCAL MODIFICATION . . .« « ¢ ¢ o o o o &

DISTRIBUTION

LIST OF ILLUSTRATIONS

Figure

Data Flow in Installing a Local Mod
Part of the Installation Deck for PFA . . .
Part of the Installation Deck for RBTC. . .
Logic Flow for the Decision to Mount the
EDITLB Device Set. . « « « &« ¢ ¢ o o o &
B-1 The UPDATE ProCesSS. . « « « o s o o o o o &
B-2 The Translation Process . . « « « « o o o o«
B-3 Conversion of Relocatable Programs
to Absolute Overlays . . . + + &+ &+ &+ « &
B-4 EDITLIBing the Program into the System. . .

> w N

Page

iii

INTRODUC TION

The Naval Surface Weapons Center (NSWC), Dahlgren Laboratory, operates
two large general-purpose computers built by the Control Data Corporation: a
CYBER 70 model 74 system, and a 6700 multiprocessor system. Each of these
two computers operates under the control of the SCOPE 3.4 operating system.
SQOPE is a group of programs and subprograms that controls the input, compila-
tion, loading, execution, and output of all programs submitted to the computers.
A knowledge of SCOPE 3.4, and of SCOPE systems programming methods, will be
helpful in understanding the material presented in this report.

Although the SCOPE 3.4 operating system is a Control Data product, its
implementation at NSWC contains numerous locally installed modifications,
known generically as "local mods." A local mod is introduced into a program
to correct known errors in the program, to enhance its performance, or to
eliminate inefficiencies.

Generation of a local mod is an exacting task, requiring significant
amounts of expensive resources such as dedicated camputer time and systems
programmer manpower. This report describes a method for automating many of
the tasks involved in creating and maintaining local mods, which results in
increased productivity. This automation tool is also applicable to other
Control Data operating systems (NOS and NOS/BE) and to programming tasks other
than operating systems maintenance.

No automated method can substitute for the creativity of an experienced
programmer; many necessary programming tasks, however, are essentially
noncreative and repetitive in nature. An example of such a task is the
installation of a local mod after the mod has been designed. The installation
process (Figure 1) involves coding and executing an "installation deck"
(described in the next section). Errors in an installation deck can cause
substantial amounts of systems programmer manpower and computer time to be
wasted; in extreme cases, incorrect implementation of a mod can result.

Fortunately, the installation process, including the coding of the
installation deck, can be automated extensively. This is accomplished by
using BEGIN/REVERT,* a high-level command language facility. BEGIN/REVERT
allows conditional execution of control statements and provides for storing
"subroutines" of control statements on files known as "procedure files."

The automated installation process, called the "COMPILE procedure," is
actually a mixture of BEGIN/REVERT procedures and FORTRAN programs. FORTRAN
is used because BEGIN/REVERT is limited in its ability to express complicated
logical expressions. Procedure files and data files are created by FORTRAN
programs and executed via the BEGIN/REVERT facility.

* Under NOS and NOS/BE, CYBER Command Language (CCL) is used. BEGIN/REVERT
was developed by the University of Washington, Seattle, Washington.

r—= -

0

INSTALLATION
DECK

BASELINE
OPERATING
SYSTEM

MODIFIED
OPERATING|
SYSTEM

LOCAL MOD
INSTALLATION
PROCESS

BASELINE
SOURCE
LIBRARY

MODIFIED
SOURCE
LIBRARY

Figure 1. Data Flow in Installing a Local Mod

USING THE SOFTWARE MAINTENANCE PACKAGE--INSTALLING LOCAL MODIFICATIONS

The SCOPE 3.4 operating system consists of several hundred distinct
program modules. Each program module has unique characteristics that may
affect the implementation of changes to the program. Differences between
programs include the following types:

Structural differences. Programs can be peripheral processor programs
or central processor programs. They can be divided into multiple overlays.

Location differences. Programs can be on one of the program libraries
provided by Control Data, or on a locally originated source library.

Translation differences. Programs may be coded in assembly language
or FORTRAN (even SYMPL, COBOL, or PASCAL). One or more system text overlays
may be required for assembly.

Binding Differences. Programs may be relocatable or absolute; link-
editing with other modules may be required.

The characteristics of a program are usually constant over the lifetime of
the program. The installation of a program, as expressed in the contents of
the installation deck, is, of course, highly dependent on these characteristics.
For example, note the differences (and similarities) in the installation decks
of PFA (Figure 2) and RBTC (Figure 3).

PAUSE. MOUNT EJITL3, PLSPAK.
MOUNTT,EDITLB.
ATTACH,LOCALPL,SN=ED ITLE.
UPDATEyP=LOCALPL, C=L CCALy Wy*=/.
MOUNT T, PLSPAK.
ATTACH,PL1B,SN=PLSPAK,

UPDATE ,P=FL1t, I=LOCAL, Qy X,
REQUEST,BFFA,*PF,SN=ECITLE,
CuMPASSy I,S=IPTEXT, SSFPTEXT, STSGHTEXT, @=APFA .,
CATALOG,8PFAy o o .
ITEMIZE,BFFA,EyNe

7-6-9
/ABDFILE
/DECK LOCAL
/CALL SCuECOM
/CALL PFA

<THE TEXT OF THE LCCAL MOD GOES HERE>

Figure 2. Part of the Installation Deck for PFA

PAUSE . MCUNT EDITLB.
MOUNTT,L,EDITLE,
ATTACH,LOCALFLySN=EDIT.B.
UPDATE 9 F=LOCALPLy C=L OCAL,Q,y*=/,
ATTACHyPL1ZySN=EDITLB.
UPDATE,P=FL1Z, I=LOCAL,Q.
REQUEST,BRBTC, *PF,SN=EDITLb.
FTNy I9R9PL=9999999)5=CPCTEXT,
ATTACH,SYSLIB.

ATTACH, kPSLIB.

LIBRAKY ,SYSLIByKPSLIB.
LOSET ,PRE SET=ZERO,

LOAD, LGO.

NOGO, ERRTC.

CATALOGJBRBTCy o« o o
ITEMIZE,BRBTCyEyN.

7-8-9

/ADDF ILE
/DECK LOCAL
/CALL PL12COM
/CALL RETC

<THE TEXT OF THE LOCAL MOD GOES HERE>

Figure 3. Part of the Installation Deck for RBTC

Before the COMPILE procedure was implemented, the systems programmer
had to either (a) punch such an installation deck for each local mod, which
was discarded after the mod was processed, or (p) save a deck for each pro-
gram, using it every time the program was modified. Of course, option (a)
duplicated a lot of effort, but (p) was just as bad since it led to filing
problems and errors when deck format changes were necessary.

Using the COMPILE procedure, the above two example decks are replaced by

(1) BEGIN,COMPILE,,PFA.
(2) BEGIN,COMPILE,,RBTC,

The COMPILE procedure then generates streams of control statements equivalent
to those in Figures 2 and 3. Notice that the systems programmer is relieved
of the responsibility of specifying any of the characteristics of the program
being modified. He is also relieved of the need.- to do a lot of keypunching!

Replacing control statements with BEGIN/REVERT procedures, however, is not
an exciting breakthrough. The significant feature of the COMPILE procedure is
its ability to configure itself to process programs that have highly divergent
characteristics.

How does the COMPILE procedure know the characteristics of all the programs
in the operating system? The procedure contains a data base that describes
every significant characteristic of every program in SCOPE. The data base
is easily maintained because it is a card image file. Each card contains
the characteristics for one program in a shorthand notation. For example,
the cards for the PFA and RBTC programs are

PFA BP O5PA
RBTC ZF TB LSK

which are read

"PFA is located on PL1B (B). It is a peripheral processor
program (P). It has multiple overlays, the last of which
is 5PA (O5PA)."

"RBTC is located on PL1Z (2Z). It is a FORTRAN program (F).
It needs system text CPCTEXT for compliation (TB), and user
libraries SYSLIB and KPSLIB for loading (LSK)."

Part of the data base is a glossary that explains the notations used in the
data base. The user of the COMPILE procedure can override any information in
the data base by specifying optional parameters on the BEGIN command (see
Appendix A, NSWC User's Guide for the Software Maintenance Package).

A FORTRAN program (also named COMPILE) within the COMPILE procedure creates
the control card images which are ultimately executed to perform the installa-
tion. The COMPILE program finds out what SCOPE program is being installed (from
the first parameter on’the BEGIN command) and searches the data base for the

- —— T

e e

program's entry. Any optional parameters on the BEGIN command are used to over-
ride configuration values from the data base entry (using the rules explained
in the user's guide), and the resulting values are used to build a new,
temporary procedure file named CTLCDS, which is subsequently executed via

a nested BEGIN call.

The COMPILE program, which builds the card images, contains by necessity
logical equations of some complexity. Figure 4, for example, shows the flow
of a minor part of the COMPILE program--the decision whether or not to generate
a MOUNT command to mount the EDITLB device set. Maintainability of the COMPILE
program is pocsible in spite of its complexity because the program is modular
and well-documented with in-line comments.

EXPERIENCE WITH THE MAINTENANCE PACKAGE

As of November 1978, the maintenance package has been in production use
for eight months. An informal class was given to all users (the K74 and CDC
Systems Programming Group) when the package was introduced. A user's guide
(Appendix A) was written and is revised periodically to reflect changes in the
package or to meet user requests for more information.

The package itself has been modified several times to add or change
features, following user's suggestions. The package has been enthusiastically
accepted by the users, and it appears to be contributing to a more productive
and stable environment of system nodifications.

Although the COMPILE procedure has been highlighted in this report, the
maintenance package includes other procedures used by the Systems Programming
Group. They are described in the user's guide (Appendix A).

Appendix B discusses the SCOPE system utility programs used in installing
local mods.

°
°
°
Is s
NO THE EDITLIB YES
OPTION C
— kil SET ALREAD]V MOUNTED
?
NO
1S
OSY OR OMT .L
BEING INSTALLED YES
?
NO
Is
THE PROGRAM
ON PL1Z NO
?
YES
s IS
(PL1Z ALREADY LOCAL PL MSSN':"T',.E
ATTACHED ALREADY ATT.
x YES D : ACHED YES EDITLIB PACK
NO NO
MOUNT THE
EDITLIB ft Y
PACK

'

Figure 4.

29 0 Hf—

Logic Flow for the Decision to Mount the EDITLB Device Set

A

4

APPENDIX A

NSWC USER'S GUIDE

FOR THE SOFTWARE MAINTENANCE PACKAGE

-y

e —

APPENDIX A
NSWC USER'S GUIDE FOR THE SOFTWARE MAINTENANCE PACKAGE

This appendix is an example of the NSWC user's guide for the COMPILE
procedure and other procedures in the maintenance package. This example has
been edited to delete proprietary and sensitive information (i.e., passwords).

The user's guide is meant to be an informal document, which can be easily

changed when features are added or when responses from the users indicate that
a feature should be explained more clearly.

A knowledge of SCOPE 3.4 operating system installation methods and of
NSWC's local modification process is necessary to fully understand the material
in the user's gquide.

COMPILE PROCEDURE
The COMPILE procedure generates the control cards, UPDATE directives, and

EDITLIB directives necessary for modifying components of the SCOPE 3.4 operat-
ing system at NSWC/DL.

The Basic Calls

BEGIN,COMPILE, ,prog,OPT=A. (To get a listing only)
BEGIN,COMPILE, ,prog,cy.
BEGIN,COMPILE, ,prog,cy,ac.

where
prog -- the name of the program to be compiled. This is a required para-
meter.
cy -- the cycle number for cataloging the binary result. This number
is required when OPT=C is in effect (default OPT is OPT=AC).
ac -~ programmer name to be used for the binary file's account code.

This code is required when OPT=C is in effect, except for Systems
Programming Group members, for whom it is optional (it is computed
from the job card if not specified).

General Information

i
COMPILE gets the information needed to UPDATE, assemble, load, and EDITLIB {
the requested program from its data base, on the local file CDATA. Every pro-
gram on PL1A, PL1B, PL12, PL1Z, and PL1T is represented on this data base. Any
data base information can be overridden by specifying one or more of the)
optional parameters described below. If you have a local file CDATA, COMPILE {
will use your file as its data base. Similarly, if you have local files named

LOCALPL, PL1A, PL1B, PL12, PL1Z, or PL1T, COMPILE will UPDATE from your file
instead of from the standard program library of the same name.

In addition, COMPILE will do all mounting and dismounting of the correct
Device Sets. It will not mount a set until it is necessary, and will dismount
a set as soon as it is no longer needed.

If Sense Switch 1 is on, COMPILE will not pause to ask the operator to
mount the packs (this option is useful during System Time). If Sense Switch
2 is on, output from UPDATE will be printed in all cases (output is normally
suppressed if UPDATE completes successfully).

The Optional Parameters

OPT = x =-- where x can be one of the following:

A -- assemble the program

AC -- assemble and catalog the binary (default)

AE -- assemble and EDITLIB the program

ACE -- assemble, catalog, and EDITLIB
PL = x -- the program library on which "prog" resides; x

must be PL1A, PL1B, PL1Z, PL1T, or PL1l2. !
TXT = X -- specifies System Texts necessary for assembly.

Texts specified by this parameter are exclusive
or'ed with the data base value, which is then
exclusive or'ed with the default. This final
value is used in assembly. The defaults are

as follows:

PL1A PP programs: TXT = E

PL1A CP programs: TXT = G

PL1B programs: TXT = BCDEF

PL12 programs: TXT = DEFH

PL1Z PP programs: TXT = E

PL1Z CP programs: TXT = M

The Texts are as follows: 1 3
b

A - CMRTEXT H - STATEXT |

B - CPCTEXT I - 0 (use no Texts) !

C - CPUTEXT J - IOTEXT

D - IPTEXT K - LDRTEXT

E - PPTEXT L - PFMTEXT . M

F - SCHTEXT M - SYSTEXT

G - SCPTEXT

When I is in effect, it overrides all others;
i.e., TXT=ABIKL is treated as TXT=I.

If the job has a local file named BTEXTS, then

COMPILE will get the required texts from this
file.

LIB = x -- libraries necessary for loading relocatable CP
programs. These are exclusive or'ed with the
data base values like the Texts are. The libraries
are as follows:

S ~ SYSLIB C - OCOBOL

K ~ KPSLIB R - RUN2P3
U ~ USERLIB I - SYSIO

D -~ DMS170 M - SYSMISC
O ~ SYSOVL G - IGS274
F ~ FORTRAN

The user must attach KPSLIB when it is needed;

COMPILE will attach other requested user libraries,
unless a local file of the same name already exists.

DECK = x -- used when the LOCALPL deck name (or the SCOPE
PL deck name) is different from the program name.
An example is 1722, which has a deck name of "1Ml."
This parameter usually only appears in the data
base. 3

REL = R -- CP COMPASS programs are assumed to be absolute unless !
REL=R is specified, which causes a LOAD/NOGO to
be performed. Don't use REL=R if the program must
remain relocatable (e.g., QUEDUMP, SYSEQ, CPC).

SP = x -- an indicator that "prog" needs special pro-
cessing in COMPILE because of nonstandard char-
acteristics in its method of installation.
This parameter usually only appears in the
data base. An example of such a special pro-
gram is 122, which needs a "*DEFINE CT71" card
in its UPDATE directives. To disable any SP =8
value in the data base, SP=NONE can be specified b
on the BEGIN card for COMPILE. :

VER = x =-- program version indicator. See the section }
below on "Special Programs" for use of this i
parameter. “

PS = x =-- option for presetting core for CP programs that

undergo a LOAD/NOGO. Default is PS=ZERO. 1If
PS=NONE is specified, no presetting is done.

A-3

If the parameter begins with an asterisk (*),
a PRESETA is performed instead of a PRESET.
See the Loader Manual for details. Examples:

PS = 100B PS = *INDEF

OVl = x -- name of the first overlay in "prog." Default
is the value of "prog."

OV2 = x -- name of the last overlay in "prog." Default is
the value of "OV1."

FL =n -- field length for EDITLIBing CP programs. If not
specified, the current value will be unchanged.

The UPDATE Process

COMPILE does two UPDATEs. The first is against the LOCALPL with the

file UPDIN as input, and LOCAL as the compile file. The second is against
the SCOPE PL, with LOCAL as input.

COMPILE builds the file UPDIN. 1Its structure is as follows:

/ACCFILE
/UECK HLOMOECKS
/7CALL ____COM

<ENTIKE CONTENTS OF FILE °‘DECKS'>

/ACCF ILE

/0ECK BH<OECK>

/1F DECKy<DECK>41
/CALL <DECK>

/1F =DECKy<DECK»>,1
*COMPILE <DECK>

¢« & & &

<ENTIRE CONTENTS OF FILE °*IOENTS'>

<CCNTENTS OF NEXT RECORD GF INPUT FILE>

where "<DECK>" is the value of the DECK parameter (which defaults to "prog").

The user can use the files DECKS and IDENTS to introduce UPDATE directives.

If this is done, and if the HEADER procedure is called, care must be taken

to never rewind these files, since HEADER also puts directives on these files.
I1f no cards are to be read from the INPUT file, an empty record must be included
(or, under INTERCOM, the file should be disconnected). The UPDATE listings

are normally not printed unless an UPDATE error occurs.

A-4

Verify Mode

In Verify Mode, the control cards created by COMPILE (on the file CTLCDS)
are listed, not executed. The UPDATE directives and EDITLIB directives on the
file UPDIN are also listed. Verify Mode is automatically entered when COMPILE
is executed from INTERCOM; it is entered from batch whenever a local file named
VERIFY exists (all the user needs to do is a "REWIND, VERIFY." before calling
CQMPILE) .

Assembling Multiple Routines

If COMPILE is called with DECK=* specified, then the four UPDATE directives
flagged with asterisks above (under "The UPDATE Process") are not included.

If the first character in "prog" is an asterisk (for example, PROG=*PFDECKS),
then COMPILE does two things -- it removes the asterisk from the PROG value
and sets DECK=*, This option is used when it is desired to modify and catalog
multiple binarys on the same file. The PL parameter must be specified to name
the SCOPE PL on which the programs reside. Example:

NVoeP5yT0e ASSEMJLE PFM PF PROGS
IIKK339F boe

ATTACHyFROGFIL,IO=NVEB
BEGINyCOMFILE 99 *PFMy1234PL=PL18B.

7-8-9

/CALL PFA

/CALL PFC

*COMFILE PFS

o (It- is necessary to include /CALLs or
*COMPILEs for each deck to be included;

o the value of PROG is used only as a name

for the binary file, and DECK=* is simulated.

Multiple COMPILE Executions

Muitiple "BEGIN,COMPILE" executions may be stacked within one job. It
is possible, for instance, to assemble the System Texts in one COMPILE step,
and use them in assembling another program in a following step.

A-5

Special Programs

CMRS ~- If PROG=CMRS is specified, all four CMRs are assembled
(all on the file BCMRS). CMR1l and CMR3 are not listed.
The CMR date must be specified as VER=mmddyy.

CMRn -- If PROG=CMRn (n=0,1,2,3), the corresponding CMR is assembled,
listed, and put on the file BCMRn. If the CMR date is
not specified, an assembly warning will occur, and the
current date will be used.

CMR -- If PROG=CMR, the default CMR (currently CMRO) is assembled
on the file BCMR. An assembly warning will occur, noting
that the default CMR was used.

TEXTS -- If PROG=TEXTS is specified, the System Texts CPCTEXT
through STATEXT are assembled on the file BTEXTS.

0sy -- If PROG=0SY is specified, the 844 Buffer Controlware is
processed. The binary cards must be the input record,
and the version must be specified via the VER parameter
(e.g., VER=AlO).

The /LOCAL Pseudo-UPDATE Directive

The UPDATE directives necessary for implementing a local modification
resemble the following example:

/IVENT LS9SPKOGK

/BEFCrE (ECKke3

/1IF =UEF 4INSTALL

#IDENT LCS99PFOGK
- ®INSERT FORFROGHe6

* L993PRCGR see SNAME> L4 <DATE>
L

- <COMMENTS»>

mooOa»

L N

<THE UIRECTIVES FOR THE MODIFICATIUN>
LN)

*CLMFILE PKRUG

*/ ENu OF MOD L999PFUGR

/ENGIF

//7 ENO CF MOO L9SIPKUGR

~MIeom

The /LOCAL card causes the COMPILE procedure to provide the cards labeled.
A through I, requiring the user to provide only the comments and directives
for the modification. The format of the /LOCAL card can be any of the following:

/LOCAL L999

/LUCAL L999FRCGR

/LOCAL L999FKkCGKyHOKRPRUGH
/LOCAL L999FRCGKyUECKFK

/LOCAL L999FRCGLFRyHORPROGH, CECKR

The local mod number (as L999) must be provided. The letter can be D, G,
I, L, P, or Y. If the rest of the mod name (progr) is omitted, the value of
the "prog" parameter (truncated to five characters) is used.

If the header mod name is omitted, the name is assumed to be HDR followed
by the value of the "prog" parameter (truncated to six characters).

If the COMDECK name (deckr) is omitted, the value of the "deck" parameter
is used.

If the user provides the *COMPILE card, the procedure won't; if the pro-
cedure provides the card, it will use the value of the "prog" parameter. The

*COMPILE card must be the last card in the modification if the user provides
it.

The first card after the /LOCAL card must be a comment card. COMPILE
will insert the local mod name into columns 3-11 of this card. Columns 12-20
will be cleared. If columns 21-30 are empty, the value of the AC parameter
will be inserted, and if columns 51-60 are empty, the current date will be in-
serted.

If the /LOCAL directive is used, all cards in the local mod will be
punched. Multiple local mods, each prefaced by /LOCAL, can be present. When-
ever /LOCAL is used, the listing from the LOCALPL UPDATE will be printed.

HEADER PROCEDURE

The HEADER procedure produces the UPDATE directives necessary when adding

the first local modification to a program. A COMDECK and a "header mod" are
produced.

A new COMDECK for the LOCALPL is created. This COMDECK will be used to
contain all local modification code for the program, including code added in
the future. The format of the COMDECK is

/CCFMOECK <COMUK>
®/ EEGIN MODS TL <PROG>
*/ END OF MODS TO <PROG>

The var.iable parameters "comdk" and "prog" are explained below. The
COMDECK is never produced when we are introducing a modification to a SCOPE
common deck; all local code for SCOPE common decks goes into one of the LOCALPL
COMDECKS named SC4ACOM, SC4BCOM, IN4COM, or PL12COM, which already exist.

The "header mod" is a set of comment cards that is added near the be-
ginning of every locally-modified program. It serves as a notice that the pro-
gram is-in fact locally modified. Every subsequent local modification will add
its own set of comments after the header mod, so that a concise summary exists

of all the local changes to the program. The format of the header mod cards
is shown below:

/ICENT HOKR<TPRGL>
/oEFOKE <CCOMOK>,2
*ILENT HUR<TP~CLG>
SINSERT <IDENT>, <SEQNO>

I R R R R R R R RS R RS R RS R R RS L R R X R R X 2

» *
po -=-LOCAL MOOIFICATICONS-- *
» @

IEEREERRI R R R R RRRRRY R R R R R R R R R R R L N N Y
»

*CCFPILE <PRUG>

*/ END UF MOU Huk<TFRQG»>

7/ END UF MCU HUR<TPROG>

The variable parameter "tprog" is "prog" truncated to six characters.

The HEADER procedure puts the COMDECK on the file DECKS, and the header
mod is put on the file IDENTS. The COMPILE procedure processes these files,
merging their contents into the set of- UPDATE directives it builds. Two
separate files are used in order to keep everything in scquence in case HEADER
is called more than once; the files are not rewound, so that their contents
are cumulative. '

The COMDECK and the header mod are also written to the PUNCH file for
subsequent punching. This can be disabled by including a "ROUTE,PUNCH,DC=SC."
card as a final control card.

HEADER is executed as follows:

BEGIN, HEADER, ,prog,comdk ,ident, segno.

The "prog" parameter is required; the others are optional. Each of the para-
meters are listed below:

prog -- the name of the program being modified. 1In cases where
the binary deck name is different from the UPDATE PL
deck name, the latter should be used.

A-8

e

comdk -- the name for the COMDECK. If omitted, "prog" is used as the
COMDECK name. If the program being modified is a SCOPE common
deck, one of the following must be specified as "comdk:"
SC4ACOM, SC4BCOM, IN4COM, or PL1ZCOM.

ident, -- these parameters describe the location in the program where
segno the header mod is to be inserted. If "ident" is omitted, the
value of "prog" is used; if "segno" is omitted, "6" is used.
The user must usually examine a listing of the program to
be modified, in order to intelligently specify values for these
parameters.

Examples

BEGIN, HEADER, , 1AJ.

A header mod is inserted at 1AJ.6 and LOCALPL COMDECK "1AJ" is
created.

BEGIN,HEADER, ,1AJ, IDENT=SC41926, SEQNO=134.

A header mod is inserted at SC41926.134, which must be a card within
1AJ. The LOCALPL COMDECK "1lAJ" is created.

BEGIN, HEADER, , INIT, SC4BCOM.

A header mod is inserted at INIT.6. Since INIT is a SCOPE common
deck on PL1B, SC4BCOM must be specified as the COMDECK name. No
new LOCALPL COMDECK is created.

DSBUILD PROCEDURE

The DSBUILD procedure builds a deadstart tape from the runnirg system.
If any permanent files containing transfer records are attached, the transfer
records on those files will be used; otherwise, the transfer records will be
taken from the running system. If necessary, additional EDITLIB directives
are taken from input cards.

DSBUILD is executed as follows:
BEGIN,DSBUILD, , tape,option.
Both parameters are required. They are:
tape -- for production of deadstart tapes, the number of the tape
(102, etc.); for test tapes, any 1-5 character name. The 1lfn

and VSN of the created deadstart tape will be "A" followed by
this parameter.

|

option -- must be SYSTEM to create a production tape, or TEST to create »?
a test deadstart tape. When SYSTEM is specified, the DSCOMPARE 1
procedure is automatically called and the ITEMIZE of the tape
is cataloged on the EDITLB pack. Never use SYSTEM when build-
ing a test tape.

When invoked, the DSBUILD procedure pauses, waiting for an entry of n.YES;
when this is entered, an EDITLIB,RESET is performed and then the operator is
asked to run the daily EDITLIBs in order to ensure that the running system
contains the correct EDITLIBs. The EDITLIB job should be killed or dropped
when it displays "TURN SEC,EDITLIB,OFF."

By entering n.NO, the EDITLIB,RESET and EDITLIB insertions can be bypassed.
This should not be done when building a production tape.

When building a test tape, you can do a compare against the current
production tape by executing

BEGIN,DSCOMPARE, , tape.

The EDITLB pack is mounted by DSCOMPARE. DSCOMPARE is automatically called
when building a production tape.

As an example, suppose it was necessary to build production Deadstart
Tape 106, with changes to MTR, IRCP, and the CMRs. Something unusual is also
being introduced: a new PP routine ALZ and a new CP routine SNXLP are being
added. They cannot be EDITLIBed in because they will not run without a CMR
change. They are both on the file BSNXLPALZ. The deck to build this tape
would look something like this:

NXXYY o MT1,T0s

992299 FHU

SEGINyMOUNT y VSN=t GITLB

ATTACHyoMTRy eoe

ATTACHsBIXCPy see

ATTACHyd(lMRSy see

ATTACHsOSNXLFALZy oo

ATTACHPRCFILyID=NVE,

SELUINgOSEUILLy91064SYSTEM.

eX1Te =
EXLIT, B
#EWUEST yA10€E sk ING9yVSN=A106, p
7-8-9 !
AQU (ALZycSNXLPAGAL=0)

LIORARY (NUCLEUS,0LD) e
AJUISNXLFscSMXLFAJAL=1,FL=20000,FLC=0) ¥
FINISH.
6=7=5=5G

Note that a dummy REQUEST card is necessary to satisfy tape staging.

I

T ——

Both the DSBUILD and the DSCOMPARE procedures have a verify mode, as
described in the COMPILE procedure user's guide.

The SCOPE transfer records are listed below:

CEA
PCl
CED
CMRO
coM
0sy
STL
IRCP
MTR
DSD

- CES

- CMR3

XXX
DTS

B

Deadstart Initialization

C.E. Diagnostics

CONTROL

CMRs

CONTROL

844 Buffer Controlware

PP Resident

Deadstart CP Routine

Monitor

System Display (only the main overlay
is a transfer record; DSBUILD correctly
puts the remaining overlays into
PPLIB)

A-11

S

APPENDIX B

SYSTEM UTILITIES USED

IN INSTALLING A LOCAL MODIFICATION

APPENDIX B

SYSTEM UTILITIES USED IN INSTALLING A LOCAL MODIFICATION

A local mod is written as a source language correction set that, through
several steps, becomes implemented as a change to the running operating system.

The SCOPE utility programs used in this process are discussed on the following
pages; the utilities are

* UPDATE
* Language Translators
* LOADER

s EDITEEE

UPDATE - SOURCE LIBRARY MAINTENANCE UTILITY

The UPDATE program is used to maintain files containing source programs.
These Program Library files, or PLs, are implemented in a random-access compressed
card image format which allows quick access and efficient storage utilization.

An UPDATE PL contains three types of information: DECKs, COMDECKs, and IDENTs.

A DECK is a source program module. Each DECK has a name, and each card
within a DECK has a unique number, which is invariant. A correction set may
delete cards from a DECK, but these cards remain on the PL so that it can
always be restored to a previous state.

A COMDECK is a group of source statements which may be repeated in several
program modules. UPDATE allows these statements to be entered once onto the
PL as a COMDECK, which is referenced by each DECK that requires the common
code. Each COMDECK has a unique name, and the cards are assigned numbers.

IDENTs are sets of modifications to DECKs or COMDECKs. An IDENT may
delete cards from or add cards to a DECK, COMDECK, or another IDENT. Cards
that are added are identified by the unique IDENT name and a sequence number
within the IDENT. IDENTs are also called "correction sets."

An UPDATE run (Figure B-1l) is controlled by control card parameters on
the UPDATE command and by input directives. Usually, only DECKs named on an
input directive (and COMDECKs called by these DECKs) are output to the source
language file (the "COMPILE" file). The COMPILE file is usually used as input
to a language translator.

T

CONTROL CARD
PARAMETERS

oLD NEW
PROGRAM PROGRAM
LIBRARY LIBRARY

UPDATE

INPUT ™ SOURCE
CORRECTION LANGUAGE

SETS OuUTPUT

UPDATE
DIRECTIVES

Figure B-1. The UPDATE Process

LANGUAGE TRANSLATORS - FIN AND COMPASS

The SCOPE 3.4 operating system is written in CDC Extended FORTRAN (FTN)
and in assembly language (COMPASS). The FTN compiler accepts intermixed
COMPASS subprograms. The translation process (Figure B-2) converts a group
of source subprograms (from cards or from an UPDATE COMPILE file) into a file
containing the relocatable binary object code of the subprograms. The object
file is processed further by the LOADER. Translation is controlled by control
card parameters on the FTN or COMPASS command. Auxiliary source input to
COMPASS programs from systems text overlays is often required.

CONTROL CARD
PARAMETCERS

SOURCE

FTN
OR
COMPASS

Figure B-2. The Translation Process

T E————— >

>

THE LOADER UTILITY

The local mod installation process uses the CYBER LOADER to convert the
relocatable binary object programs, produced by the language translators, into
linkage-edited absolute overlays. External references are resolved by including
subprograms from object librarys where necessary. Multiple-overlay program
building is controlled by input directives; the entire absolutization process
(Figure B-3) is controlled by control card parameters on LIBRARY, MAP, LDSET,
LOAD, and NOGO commands. The absolute overlay file is used as input to the
EDITLIB program.

CONTROL CARD
PARAMETERS

RELOCATABLE
BINARY
INPUT

ABSOLUTE
BINARY
OouTPUT

LOADER

OBJECT
LIBRARIES

LOADER
DIRECTIVES

Figure B-3. Conversion of Relocatable Programs to Absolute Overlays

.

imacs

EDITLIB - OPERATING SYSTEM MODIFICATION UTILITY

The System EDITLIB program integrates changes into the SCOPE 3.4 operating

system. Two modes of operation are featured -- modification of the running
system and creation of a modified deadstart tape. Changes to the running
system are temporary, lasting only until the first subsequent deadstart.

Creation of a deadstart tape containing a local modification makes the
mod a permanent part of the operating system, and is one of the final steps
in the installation of a local mod.

Execution of the EDITLIB program (Figure B-4) is controlled by control
card parameters on the EDITLIB command, by input directives, and by console
interaction with the computer operator.

CONTROL CARD
PARAMETERS

BINARY
PROGRAM
INPUT

NEW
DEADSTART
TAPE

SYSTEM
EDITLIB b

oLD
RUNNING
SYSTEM

EDITLIB
DIRECTIVES

OPERATOR
GO

EDITLIBing the Program into the System

Figure B-4.

DISTRIBUTION

Commanding Officer

NAVAL COASTAL SYSTEMS CENTER
Panama City, FL 32407

ATTN: J.D. Brown (Code 732)

Director

NAVAL RESEARCH LABORATORY
Washington, DC 20375
ATTN: Code 1721

Commanding Officer
NAVAL AIR DEVELOPMENT CENTER
Warminster, PA 18976
ATTN: Code 50
Code 85

Cammanding Officer

FLEET NUMERICAL WEATHER CENTRAL
Montzrey, CA 93955

ATTN: Code 006

Of ficer in Charge
NAVAL UNDERWATER SYSTEMS CENTER

New London, CT 06320
ATTN: Richard Whittaker (Code 4421)

Commander

NAVAL OCEAN SYSTEMS CENTER
San Diego, CA 92152

ATTN: Ken Medin (Code 9121)

Commander

DAVID W. TAYLOR NAVAL SHIP RESEARCH
AND DEVELOPMENT CENTER

Bethesda, MD 20084

ATTN: Lorraine Minor (Code 1892.3)

Commander

NAVAL WEAPONS CENTER
China Lake, CA 93555
ATTN: Code 5132

Commanding General

AIR FORCE WEAPONS LABORATORY (ADP)
Kirtland AFB

Albuquerque, NM 87117

ATTN: Software Section

.

DISTRIBUTION (Continued)

Commanding General
EGLIN AIR FORCE BASE, FL 32542
ATTN: Mr. Eddie Blackwell (Code ADTC/ADDSS)

University of Arizona
UNIVERSITY COMPUTER CENTER
Tucson, AZ 85721

ATTN: Steve Jay

FLUOR CORPORATION

3333 Michelson Drive
Irvine, CA 92730

ATTN: Mr. Thomas N. Burt

Mr. Frank Vince

CONTROL DATA CORPORATION
P. O. Box 0-HQS10D
Minneapolis, MN 55440

Burnie Meyer

CONTROL DATA CORPORATION
6003 Executive Blvd.
Rockville, MD 20852

Thomas L. Hank

CONTROL DATA CORPORATION
4201 Lexington Ave. N.
Arden Hills, MN 55112

- SYSTEMS AND DEVELOPMENT GROUP

CONTROL DATA CORPORATION
4201 Lexington Ave. N.
Arden Hills, MN 55112

Edward O. Minasian
2051 28th Avenue
San Francisco, CA 94116

Mr. Art Hartley

CONTROL DATA CORPORATION
4201 Lexington Ave. N.
Arden Hills, MN 55112

Mr. John L. Wardell
CONTROL DATA CORPORATION
4201 Lexington Ave. N.
Arden Hills, MN 55112

T

DISTRIBUTION (Continued)

Mr. James Whitlock

Office of Computer Services

STATE UNIVERSITY OF NEW YORK
AT BUFFALO

4250 Ridge Lea Road

Buffalo, NY 14226

DEFENSE DOCUMENTATION CENTER
Cameron Station
Alexandria, VA 22314 (12)

LIBFARY OF CONGRESS
Washington, DC 20540
ATTN: Gift and Exchange Division (4)

Local:

E41

F10

K

K50

K60

K70

K74

K74 (Zirkle) (40)
N20

v

X210 (2)
%2101 (GIDEP) (2)

