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1. INTRODUCTION

The problem of determining the charge distribution on a
perfectly-conducting flat disc, and hence the capacitance of such
a disc, is a classical one. By dividing a square plate into square
subsections, Maxwell obtained a numerical solution of the integral
equation satisfied by the charge density. A similar method (i.e.
the method of square subareas) was used by Reitan and Higgins [2]
and Harrington [3] to determine the capacitance of rectangular plates.
A numerical solution using a variational approach has been considered
by Noble [4]. However, the method of square subareas is obviously
not ideal for plates of arbitrary shape. The present report de-
scribes a numerical procedure for solving the integral equation
satisfied by the charge density on an arbitrarily-shaped disc,
and hence for determining its capacitance.

The method employs a method of moments approach in which the
charge distribution on the disc is approximated by pulses defined
over quadrilateral subdomains. These subdomains are generated auto-

matically either by the use of the Zienkiewicz-Phillips isoparametric ;

coordinate procedure [5], or through the use of the transfinite

blending transformations of Gordon and Hall [6]. An advantage of the use
of quadrilateral subdomains is that fewer expansion functions are re-
quired, compared to a method of moments procedure based on triangular

subdomains. The method described is applied a variety of discs.
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2. THE INTEGRAL EQUATION AND ITS REDUCTION

The charge density 0(x,y) on the disc 2 satisfies the well-

known singular integral equation

1 ” o(x,y)d _ L

4ﬂ€° D .
Q
where V is the constant electric potential on the disc, eo the
permittivity of free space and D = D(x',y';x',y') the distance
between the source point (x,y) and the field point (x',y'), is
given by

Do lG' <9 &9 = M2

By dividing the disc @ into n quadrilateral subdomains

Qt s r=1,2,...,n, and defining n pulse expansion functions

fr(st) =1, (x,y) € Qr’ fr(x,Y) =0, (x,y)¢ Qrs

o g I SRR o8

the unknown charge distribution can be represented approximately
as

n

U(X,Y) o/ z AI' fr(xs}') ’ (2)
r=1

where the Ar are constants to be determined. If we now insert (2)
in (1) and apply a point-matching procedure to determine the
potentials at the n points (x; s y; ) € Qb’ s =1,2,...,n, we

obtain a system of n simultaneous equations:
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i A=V, 3)
r=1
8= 1.2, .ii.10,
where
o dxdy
Cor ™ Tme II D(x', ¥'; x,y) ° o
*a

Once the interaction matrix [csr] is determined, the constants
At are readily obtained by solving (3), so that the charge density
o(x,y) is found from (2).

In order to evaluate the integral in (4), the quadrilateral
Qr is subdivided into four triangles having the match-point
(x; s y;) € Qr as a common vertex, the integral being evaluated

plecewise so that

1 4
Car " 4me ! Csrk 2 (5a)
o k=1
where
e . dxdy
Cork JI D(x! , y. ; x,¥) o
Q s s

Thus the calculation of the couplings Csr depends ultimately on
(1) the choice of the subdomains Qr and (i1) the evaluation of
integrals of the type appearing in (5b).

If Ark is the area of triangle Qrk.then using (2), an esti-

mate of the capacitance of the disc is

L} i
v r=1 k=1 r rk

N

p

Py
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3. AUTOMATIC SUBDIVISION PROCEDURES

3.1. Introduction

In trying to subdivide a domain for a method of moments solu-
tion of an electromagnetic field problem, it is important that the
subdivision process should involve a minimum amount of data input
whilst incorporating at the same time a predetermined flexibility
both in the choice of the number of subdomains, as well as in the vari-
ation of the density of the match points. Although non-automatic
(or manual) subdivision procedures can be applied to any domain,
and in particular to simple domains such as the rectangle, the
circle, etc., and the parameters describing the domains so gener-
ated can then be input into the computer, in practice the amount of
labor rapidly becomes prohibitive as the number of the subdomains
increases. Besides, the manual method becomes, in effect, a trial-
and-error procedure for a domain of arbitrary shape. 1In order to
overcome these problems, the idea of the automatic generation of
nodes and subdomains has engaged the attention of many workers, notably
those interested in the use of finite element methods.

Research on automatic mesh generation has proceeded along three
main fronts. One of these is the technique introduced by Fukuda and
Suhara [7] in which the aim is to produce, by a search procedure, a
triangulation of the domain of interest in which the triangles are
'well-formed' (i.e. they do not possess angles that are very acute,

a triangle shape criteria being defined by a pre-set parameter). In

this method the interior nodes are initially generated randomly and

B T




their positions are later modified to exclude triangles which do not
meet the shape criterion. This method was later improved by
Cavendish [8], the aim being the construction of triangular'sub-
domains whose shapes departed as little as possible from the
equilateral. 1In a very recent improvement, Shaw and Pitchen [9]
have succeeded in obtaining a scheme which yields equilateral tri-
angles everywhere in the domain except for some of the triangles
which have two of their vertices on the domain boundary.

The second approach is that presented by Zienkiewicz and his
co-workers [5,10-13], which uses an isoparametric one-to-one trans-
formation to map a square onto a curvilinear quadrilateral. This method
has been extended by them to multiply-connected regions, curved surfaces
and three-dimensional domains by the use of zones.

Finally, there is the Gordom-Hall technique [6,14,15] in which
the unit square is mapped univalently (i.e. invertibly) onto a given
region (together with its boundary). This method, which like that of
Zienkiewicz and his school is essentially interpolatory, uses transfinite
blending functions so that in mapping the unit square onto the domain of
interest, the interpolatory function which extends to the interior of
the domain, the function defining the domain boundary, matches this
latter function at a non-countable number of points on the boundary. The
Gordon-Hall technique of generating curvilinear subdomains is, in this

sense, an extension of the Zienkiewicz method.

Apart from the above methods, there are others which use specially-

defined natural coordinates and iterative schemes [1€], or isoparametric
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blending transformations similar to those intruiuced by Zienkiewicz and
Phillips, and Gordon and Hall, but specialized to the generation of
three-dimensional meshes [17], as well as a search procedure which
aims at triangulating plane polygons [18].

For the computation of the capacitance of discs of arbitrary
shape, it is important to choose an automatic mesh generation pro-
cedure which incorporates parameters so as to satisfy the following
criteria:

(1) there should be a systematic method for identifying

and counting the subdomain and their vertices;

(ii) it should be possible to choose from the beginning the
number of points at which the charge density is computed,
since this choice determines the order of the interaction
matrix and can also be used to estimate the capacitance
resulting from the use of an infinite number of expansion
functions (i.e. the 'asymptotic capacitance');

(iii) allowance should be made as much as possible for the
variation of the charge density on the disc, such that
more nodes are available near edges (where the charge

density becomes infinite) than elsewhere.

Both the Gordon-Hall and Zienkiewicz-Phillips procedures provide
the simplest means (based on a Cartesian system) for meeting the first
two criteria. By incorporating in them certain modifications which
will be described later, automatic procedures satisfying criterion
(i11) are derived for dividing a disc of arbitrary shape into quadri-

lateral subdomains.
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3.2. The Zienkiewicz-Phillips Technique

A full treatment of the Zienkiewicz-Phillips mesh generation
method is available elsewhere [5,10-12]. We apply the technique here
to decompose an arbitrary simply-connected disc whose boundary is
determined by a finite number of points. The idea is to divide the
disc into a number of zones each of which is defined by eight vertices.
Each of these zones is then subdivided intc quadrilateral domains in
such a way that the zones are connected through those quadrilateral

vertices (or nodes) which lie on the inter-zone boundaries.

3.2.1. A Procedure for Subdividing a Single Zone

The square [-1, 1] X [-1, 1] in the £-n plane is mapped invertibly
onto the quadrilateral domain ABCD in the x-y plane bounded by four
parabolic areas on which eight points lie (Figure 1). These eight
points are the images of the points in the &-n plane with coordinates
(-1, 1, (0, -1), 1, -1, a, 0, 1, 1), (0, 1), (-1, 1) and (-1, 0),
in that order. The points 2, 4, 6, 8 in the x-y plane need not be the
midpoints of the sides on which they lie, but must lie within a certain
neighborhood of the midpoint [12]. In the mapping, functions Li(E,n),
i=1, 2,..., 8 are defined such that the position vector of any point P,
within or on the piecewise parabolic boundary ABCD can be expressed in
the form

8
r,(x,y) = 121 Ly (E,n) £, (x,5) ,

where gl(x,y) o 7 Ea(x,y) = Iy, etc.
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Fig. 1. The Zienkiewicz-Phillips domains.
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The image quadrilateral in the x~-y plane.
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The function Li(E,n) are such that Li(Ej, nj) = Gij’ L R

j=1,2,...,8; where 61 =1, i=j

3

0, i#j (i.e. the Kronecker delta).

They are given by [10]:

L Em = - 3 a-pyam @y L En = 3 a-na-th;
1 1 2
L€, = = 7 (HE) (A=) (1-E4n); L, (E,n) = 3 (1+£) (1-n");
Ly(E,n) = = 3 (146) (1+n) (1-E-n); L (E,n) = 3 (1+n) (1-E%);
L(E,n) = = 3 (1-E) (+n) (14E-1)5  Lo(E,n) = 3 (1-E)(A-n") - (6a)
B S !
By writing Es =-1+ ™ s 8 1,2,...,2n1+1,
no= -1+ 5L e =12, (6b)

2

the square A' B' C' D' is effectively divided into 4n1 n, rectangular
subdomains such that the arcs AB and CD in the x-y plane are, respec-
tively, divided into 2n1 and 2n2 segments. The Z-P mapping guarahtees,
given the condition mentioned earlier, that the image of a point (s,t),
with coordinates (Es,nt), in the £-n plane is the unique point Pst with

coordinates

8
xEgr ) = 1 LGy oy

8
x(Egs n,) = 121 L€ n)yy -




3.2.2. Applications of the Z~P Procedure

(1) An Arbitrary Quadrilateral

For the polygon ABCD (Figure 2), taking the four other points
required in the Z-P procedure as the midpoints of the sides reduces
the parabolic segment of Figure 1 to straight lines segments, and
results, on applying (6), in the decomposition

4
Eae } BENE
e 4

where r. = r r r, =r r
= —A’ -3 =’ —4

T = iy W

e

(1+£) (1-n);

[
=

Ml(E. n) =+ (1-€)(1-n) ; MZ(E, n)

|
S

n
S

(1-8) (+n) ,

My(E, m) = 7 (1+5) (14n); M, (€, M)

and

Mi(gj’ ﬂj) Lo Gij’ﬂi,j = 1,2,3,4;

r

A Ll (gl’ nl) - E('l, 1), etc.

(i1) A General Polygon

Consider a general polygon with N vertices. If N is even then
the polygon can be divided into p zones, where p = %-(N-Z). If N is
odd, then by introducing an extra vertex at the midpoint of the
largest side of the polygon, the number of zones is~% (N-1). A

polygon with p zones then has n'vertices', where n=N for N even, and

10
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n = N+1 (N odd), and is represented in the £-n plane by an in-line
arrangement of p squares (Figure 3).

In the x-y plane, zone r has as vertices thepointsPr, Pr+1’

Pn—r’ r=1,2,..., p, where Lo is the image of the point P; in the

= ] ] (] ]
£-n plane. By dividing P 5 Pr+1 into 2n1 segments and Pr+1 Pn-l

into 2n2 segments, the entire polygon in the x-y plane is reduced
to an array of quadrilateral subdomains determined by (2nlp+1) X

(2n2+1) vertices as nodes.

3.3. The Gordon-Hall Procedure

The Gordon-Hall (or G-H) procedure can be applied to domains
whose boundaries consist of a finite number of analytically-defined
segments through the use of several blending functions [6,14,15].
Recently the blending function method of interpolation has been
extended to the semi infinite strip [0, 1] X [0, ©) [19]. In the
present work we restrict our application of the method to finite
simply-connected domains whose boundaries consist of at most four
analytically-defined arcs.

In the G-H procedure the unit square A' B' C' D' in the s-t
plane (i.e. in the domain S) is to be mapped univalently onto the
closed domain R in the x-y plane bounded by the closed curve ABCD
so that A, B, C, D are, respectively, the images of A', B', C',
and D'. The technique assumes the existence of a continuous vector-
valued function F(s,t) which maps the s-t plane onto the x-y plane

such that the boundary A' B' C' D' is mapped onto the curve passing

11
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Fig. 3. An in-line arrangement of p Zienkiewicz-Phillips squares.
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Fig. 4. The Gordon-Hall domains. !
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through A, B, C, D. A function U is then constructed which maps S
onto the closed region R in such a way that this function is identical
to F(s,t) on the boundary of the square. This is due by the introduc-

tion of four scalar blending functions

¢, (s), wj(t). i=0,1; j= 0,1, defined by

¢°(8) =1 -8, ¢1(s) w gl 0<s<1;

by =1-¢, Y (&)=t , D<it < 1.

In taking s o, 8 = 1 to = 0, to = 1, we have the relations

i,k = 0, 1;
¢i(sk) - 61k ’ lllj(tg) o ngs
I, 8 = 0, 1.

Next, projectors Ps’ Pt are defined as follows:

PS[F_] - ¢°(s) E(so,t) + ¢1(5) _Ii(sl. £)

PE] = v (£) E(s, £) + ¥, (t) E(s, t;)

The required function U(s,t) is then given, in terms of the Boolean

sum P @ P, of P and P_ by the relation
s t s t

U(s,t) = (p_ @ P) (E] = P_[F] + P [F] - PR[Fl, (D

where the product projection Pspt is defined by
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33
PP IE] = 120 jZO 0;(8) ¥, () Esy, £)) (8)

Whilst the right-hand side of (8) interpolates to F at the four vertices
of the square [0, 1] X [0, 1] in the s-t plane, the vector valued function
U(s,t) given by (7) interpolates to F at all points on the boundary of

the square. At the same time it maps the points with coordinates (s,t) in
the interior of the square onto the nodes with position vector U(s,t) in
the interior of R. If the parametric representations F(s,t) of the arcs
AB, BC, CD and DA in the x~-y plane are known, then (7) yields the re-

quired mapping of the square onto the region R in the form
U(s,t) = (1-8) F(0,t) + s F(L,t) + (1-t) F(s,0) + t F(s,1)

- (1-s)(1-t) F(0,0) - (1-s)t F(0,1) - s(1-t) F(1,0) - st F(1-1).
9

3.4. Mesh-Grading Features

3.4.1. The Gordon-Hall Square

In Figure 5 the solid lines divide the Gordon-Hall square into

4n rectangular subdomains with N1(= 2n1) and N2(-2n2) subdomains

172
along A'B' and A'D', respectively. The centers of these subdomains
lie on the dotted lines as shown.

Figure 6 shows a typical subdomain with its center Pij which has

coordinates (81’ tj), 0 5-51’ tj <1, i=1,2,..., Nl’ J®) 25600 N2.
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The subdomain has sides Zai, 2a3, Figure 6. Using the notation

= = L4 ' = ' = :
anl an1+1 Al, an2 an2+1 AZ’ we introduce section ratios [20]

k, and k, where a, = a_ = klAl; a!l =3' = sz in such a way that

1 2 1 N1 1 N2 2°
the following linear relations hold.
N N
ok e 2 . 8
a; = Al a(2 i), i 1,2,...,2 3
N N
= — ——]-— =—]; .
= Al B(i 3 1), % > + 1,...,N1,

where 0. and B are constants to be determined. Similar relations

hold for the a!. On expressing a and B in terms of the section

k|
ratio kl’ we find that

N
2(1 - kl)GE— = 1) Nl
ai=A1[1 - N1'2 1, 1=1,2,...,7
N1 (10)
21 - kl)(i . i 1) Nl
B A1 - gty I sde b 1,008
1
n, .
where the relation et immediately gives
i=1

1

A =
17T+ N,

When k1 =1 (i.e. for the case of a uniform subdivision along the s-axis),

we have A1 = 5%—, as expected. For the rth interval along the x-axis,

the left- and right-end points are, respectively, at
r-1

1r = 121 Zai and SZra S1

of this interval is at Sr =S

S & + 2ar, when a is given by (10). The center

S + a_. By applying a similar procedure
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to intervals along the t-axis it can be readily verified that we

obtain a subdivision of the square in the s-t plane such that:

(1) the coordinates (Si’ t.) of the center P', of the

E i ij
subdomains are given by
&y .
Si = ﬁz—:—f [21(N1k1 -24+1i- kli) - lel + 21, 1=1,2,.:, W
1 A1
= §-+ ETEI:ET [(21-N1)(3N1 - lel - ékl -21i - Zikl) + 4k1-2N1],
o
i= ?T-+ 1,...,N1 5 : (11a)

i.e.

Si = Si(Nl’ kl’ Al, i) , i= 1,2,...,N1, say, (11b)
and

tj - SJ(NZ, k2’ AZ, j) ’ j - 1,2,...,N2,
h
where i 1

a1+ kz)Nz

(ii1) the coordinates of the vertices of the subdomains are

(Ei. nj) where

2A1(1—1) N1
; 5y * _EI—:_E_ (le1 =2+4-ki), 1=12,...,5
1 A1(21 - N1 - 2)
= — - - - + $
' 2 + 2(N1 = 7) (3N1 lel 4k1 21 Zikl)
i Nl
1 —=+1,000s N. +1, (12a)
I 2 1
§ i.e.
- = “ov e 12b
l By =8y (N, kpy Ay 1), 4= 1,2,0.0,N) +1 (12b)
with
‘ nj - Ej (N2’ kzi Az' j)’ J e 1’2""’N2 + 1 2y (lzc)
— ‘,ﬁ e — e
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The points Pij and the vertices (Ei, nj) give rise to images in
the ..-y plane, under the mapping U, so that the boundary of the domain R
is approximated by a polygon R' whose vertices are the images of the
vertices (Ei, nj) which lies on the boundary of the square. This polygon
is then effectively divided into quadrilaterals by connecting the image

vertices so that the subdomain containing Pij has as vertices the images

of the vertices

Egr Nds Epps §) 5 Eppys Nyyy) and €y, ),

i= 1,2,...,N1; j=1,2,...,N2.

3.4.2. The Zienkiewicz-Phillips Square

Here, since the Gordon-Hall square [0, 1] X [0, 1] is replaced

by the square [-1, 1] X [-1, 1], which is also subdivided into rec-
tangu}ar domains of the type shown in Figure 6, we have in place

of (11) and (12):

(1) The Coordinates (si, tj) of Pij

A o
S1 = -1+ EI:E [zi(lel -2 +4+1i-~ kli) - lel + 2], i=1’2’°"’7T
A]
= Ezﬁzjiy [(21 - Nl)(3N1—N1k1-4k1—21 + Zikl) + 4k1 - 2N1],
=
i-= TT.+ Lyare s Nl (13a)
where
A 2

1 (l+k1)N1

e —
PP
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i.e.
s; = si(Nl’ kl, Al’ 1) 3 (13b)
tj - sj(NZ’ kzy AZ) J) (14)
where P 2
2 1+ k2)N2
(ii) The Coordinates (£,, n,) of the Vertices of the Subdomains
< o
2A1(i-1) Nl
€i=_l+——ﬁ1-_"T(lel-2+i-kli)’ i=1,2,...,‘2—
A1(21 - Nl - 2)
= 2(N1 —) (3N1 - lel - bkl - 2i+ Zikl) s
(15a)
N
i= —2—+ Lsiee vy NoAL,
or
Ei — Ei(Nl’ kl’ Al’ a ) A (15b)

By setting k. and k2 to values less than 1, the boundary quadri-

1
lateral subdomains can be made much smaller than those near the center
of the domain R', so that the charge density can be computed at points

very close to the boundary, without the need for the very large values

of N1 and N2 which would be required with uniform subdivisions.
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Applications of the Automatic Procedures

3.5.1.

The Quadrilateral

Consider the quadrilateral ABCD shown in Figure 7. Now

U(s,t) = x(s,t)i + y(s,t)j

x(s,t)
y(s,t) |,

where i and j are unit vectors. The four sections of the boundary

can be expressed in parameteric form, as indicated in Figure 7,

such that we have

B:

F(s,t)

x(s,0)

E(S,t)

x(1,t)

xl(l-t) S x,t [~ xz(l-t) + x3tq

U(s,t) = (1-s) + s
y (1-t) +y,t | ¥, (1-t) + y,t |
xl(l—s) + X,8 ( xa(l-s) + x3s'

+ (1-t) + t
yl(l-s) + ¥,8 ! yé(l—s) + Y48 |

= F(s,0) = x(s,0)i + y(s,0)],

b B s(x2 - xl); y(s,0) = y, t+ S(y2 =¥y

P(1,t) = x(1,t)1 + y(2,t)],

x2 5 t(x3 o xz); y(lyt) = y2 + t(Y3 o~ yZ)r

with similar expressions for the line segments CD and DA. On

applying (9) we have

X

¥ P o e o 3 5 .
- (1-8) (1-t) [yl] 1 s)t[ya] s(1-t) [yz} St[y3]

T

S &

O R T TR e
LR S y v .
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e

Y&

(X, %)

b

Fig. T

An image quadrilateral in the x-y plane.
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This gives

x(s,t) = (1-s)(1-t)x; + s(l—t)x2 + stx, + c(l-s)x4

3
(17)

y(s,t) = (l—s)(l—t)y1 + s(l—t)y2 + sty3 + t(l—s)y4 &

If the quadrilateral is a rectangle with sides AB = a, BC = b,
and with its vertices at A(0,0), B(a,0), C(a,b), D(0,b), then (17)

becomes
x(s,t) = sa, y(s,t) = tb ,

so that the Gordon-Hall mapping reduces to a two-way stretch of the

square [0, 1] x [0, 1] parallel to the x- and y-axes.

3.5.2. The triangle

Figure 8 shows a triangle with vertices A(xl,yl), B(xz,yz),

C(x ), such that BC is the longest side. Taking ABC as a

3*Y3

' '
degeperate quadrilateral A1 B1 C1 D1 with vertices Al(xl’ yl),

B, (x5, ¥5)s C;(x3, ¥3)5 D, (x;, y,), where

LT R R SO E TR

1 X

l’
Y =Y., Y, =y yl=t gy, vy, =y
1 3> %2 g 7y 4 Ve 378 2y 3

by introducing a fourth vertex C, at the midpoint of BC, (17) gives the

1
required mapping from [0, 1] X [0, 1] onto ABC as

it AR R4 A

ke oston B




Fig. 8. An image triangle in the x-y plane.

Y4 /t =
\ DI
— .
t=3/4
C
/‘~
te1/2 S
1:7/'4 " B,
.  “8=3/4
tag’s=0 “s=174 5*V
|
X

Fig. 9. A subdivision of the triangle in
Figure 8.
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x(s,t) = (1-8) (1-)x, +% s(2-0)x, + 3 t(2-9)x,

y(s,t) = (1-8) (1-t)y, + 3 8(2-0)y, + 3 t(2-8)y, .

An obvious simplification results if A is taken as the origin. In (18)
we observe that the parametric lines s = constant and t = constant are

mapped onto straight lines in the triangle ABC (Figure 9).

3.5.3. The Ellipse

The points A(a,0), B(0,b), C(-a,0) and D(0,-b), which are the

extremities of the axes of the ellipse bzx2 + a2y2 = azb2 (Figure 10),

are chosen as the images of the vertices of the Gordon-Hall square.

Parametrically, the equation of the ellipse is, for 0 < s, t < 1:

Along AB: F(s,t) = F(s,r),

X = a cos Ll 5 y = b sin ?r-;

Along

|u=
(¢}
~

(o3

+

[
~
<

[}

X = a cos b sin % (e+1);

Along CD

X = a cos (s+l), y = - b sin % (s+l);

4

Along DA " e

X = a cos i 4 Sy - b sin 32

Using (9) we find

24

(18)
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Fig. 10. An ellipse in the x-y plane (showing the parametric v
description of the boundary). |

Fig. 11. A sector of an ellipse in the x-y plane.

PR —




P———————

I 2

a cos %} a cos g~(t+1) a cos %;
U(s,t) = (1-s) +s + (1-t)
-b sin "Tt b sin 5 (t-1) b sin 51
a cos % (s+1) a 0] 0
+t - (1-9)(-0)| |- a-9)e| |- sa-v)
-b sin 5 (s+1) 0 -bJ b
-a
- st ’
b
giving
X Tt mt s e
- (s,t) (1-s) cos > s sin 2 + (1-t) cos e t sin 5 + s+t-1
(19)
L Yy - Tt (1= mt - 18 s s
b (s,t) = s cos 5 (1-s) sin s * (1-t) sin 5 t cos 5=+ t-s

Here the parametric lines in the s-t plane are mapped, in general, onto

curved lines in the x-y plane, unlike for the quadrilateral.

3.5.4. The Ellipse Sector

If the angle of the sector of an ellipse is 2a, we introduce a
fourth vertex at the front C(a cos a, b sin a), where 2a, 2b are the
axes of the.ellipae. By defining the parameters s and t for the seg-
ments AB, BC, CD and DA of the boundary as shown (Figure 11), and
observing that the vector valued function F(s,t) assumes the following

forms:
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‘as a cos (ta)
AB: F(s,0) = ; BC: FQl,x) =
0 b sin (ta)
a cos(2-s)a at cos 2a
: F(s,1) = , DA = F(0,t) = :
b sin(2-s)u bt sin 2a
we obtain
% (s,t) = s cos (ta) + t cos(2-s)a - st cos O »
(20)

%-(s,t) = s sin (ta) + t sin(2-s)a - st cos o .

3.5.5. The Circle with Two Tangents ('The Circle-With-Tangents')

Figure 12 illustrates a disc bounded partly by a circle of radius a
and by the two tangents drawn to it from a point A, the tangents being
inclined at an angle o to the x-axis. These tangents meet the circle at
B and D, and we take as the 'corner' nodes the points A(a cosec a, 0),
B(a sin a, a cos o), C(-a,0), D(a sin o, = a cos a). The parametric

forms of the various segments of the boundary are easily seen to be

[(cosec a + s(sin o - cosec @)
AB: F(s,0) = a

L s cos o

[ cos {(g -0) + ¢t (% + a)}
BC: F(1,t) = a » %

Lsm {(-2— —a) +t G+ a)}

cos {(z - a) +8 G+ )}
CD: F(s,1) = a

-sin {(g -0) +s (g + o)}

cosec o + t(sin o - cosec a)
DA: F(0,t) = a

t cos O

S SV
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C
Fig. 12. The 'circle-with-tangents'.
(o
v
t=|
s=|
D
/7
/7
7/
4 30
F " AR I
(0,0) A r R,,0) x
' (R,,0) t=0 St

Fig. 13. A sector of an annulus.
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From these descriptions, the image U(s,t) of the point (s,t)

is given by

(1-st) cosec a + (s+t-2st)(sin o - cosec a)

X (s,t)
a

+ s cos {(g'- a) + t(g-+ o)} + t cos {(g>— o) + s(g»+ a)}

(s+t-2st) sin a + st;

% (s,t) = s sin {(g-- a) + t(g +a)} -t sin{a(g -a) + s(g + a)l
+ (s-t) cos a. (21)

3.5.6. The Annulus Sector

A sector of an annulus is considered here as an example of a
non-convex planar domain. Such a sector is shown in Figure 13, the
radii being R1 and R2 (R1 < Rz). The parametric equations of the
boundary can be written down immediately in the form
{Rl(l-s) + s R2} cos at
F(s,t) = (22)
{Rl(l-s) + s RZ} cos at | ,
where o is the sector angle.

On applying (7) to (22) we find that

Ps(g) = F(s,t), whilst Pt(g) - PsPt(E) £0
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Thus U(s,t) is identical to F(s,t). The required image in the x-y plane is,

therefore, given by

x(s,t) = {Rl(l-s) + s RZ} cos ot

(23)

y(s,t) = {Rl(l-s) + s R2} sin at .

Gordon and Hall's result for the quarter annulus [6] is easily seen
to be a particular case of (23).
Figures 14(i), to 14(vii) show typical subdivision arrangements

for the case in which the G-H square is divided uniformly.

3.5.7. Contours Defined by a Set of Points

The application of the Z-P method to a contour defined by four
points was given in detail in Sections 3.2.1 and 3.2.2.1. For contours
with more than four defining points, which must, therefore, be divided
initially into zones (Section 3.2.2.2), the final decomposition is ob-
tained for the first zone by applying the procedure for a single zone.
For zone r(r > 1) the process is the same except that in using the

four vertices P;, P' N defining this zone (Figure 3) the

L} L
Prel Poe1’ Freie
parameters (Es, nt) given by (6b) are required only for s-2,3,...,2n1+1,

+1, since the inter-zone nodes corresponding to s=1 have

»

t-1,2,...,2n2

already been accounted for as those corresponding to s = 2n1+1 in zone r-1.

Since all the squares are in line, general 'coordinates' (i1,j) can be

T —

L*‘H"_... RSII———
ks
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|




Fig. 14(1i).

A subdivision scheme for a triangle.

Fig. 14(ii).

A subdivision scheme for a circle.
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Fig. 14(iii). A subdivision scheme for a semicircle.

£
oy

Fig. 14(iv). A subdivision scheme for the 'circle-with-

tangents'.
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Fig. 14(v).

Fig. l4(vi).

A subdivision scheme for a sector of an

annulus.

A.sector of an annulus: a subdivision
scheme with some matchpoints lying out-~

side their subdomains.

33
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amo

scheme

Fig. 14(vii). A subdivision
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scheme

Fig. 14(viii). A subdivision
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adopted to identify the vertices for the p zones, where 1=1,2,...2n1p+1,
j=1,2,...,2n2+1.

The layout of the nodes and subdomains generated in a regular
hexagon, for N1 =6 = N2 and kl = 1.0 = k2, are shown in Figure 14(viii).

4. THE INTERACTION MATRIX AND THE POTENTIAL INTEGRAL

4.1. Integration over Triangular and Quadrilateral Domains

The rectangle shown in Figure 6 will be mapped onto a curvilinear
quadrilateral subdomain of the disc in the x-y plane (Figure 15) so that

1j ij

the centre P', of the rectangle is mapped onto a point P,, within the |
|
quadrilateral. This quadrilateral has as vertices the points Qij,

Qij, Qij’ Qij' which are, respectively the images of the points in' the

original square with coordinates (£ ., nj), Cipps nj+1), (P nj+1) ;

and (61, n.). For integration purposes the four points in the x-y plane

3

are taken as the vertices of a polygon, so that the disc is ultimately
replaced by a collection of such quadrilaterals (Figure 14).

Using the notation of Section 3, Figure 15 may be taken as
illustrating the rth subdomain Qr of the disc. The four triangular
_p k=1,2,...,4, are those obtained by joining Pij to each
of the vertices of the quadrilateral, so that Qrk has as vertices the

points Q:j, Qtjl, Pij’ where Qij = Qij. It has been shown that the

subdomains §

piecewise integration over Qr indicated in (5a) depends on integral !
expressions of the form Csrk' These expressions are best evaluated by

the use of the area (or barycentric ) coordinates of the triangle Qrk'

T T T T T R




Fig. 15.

A quadrilateral subdomain in the x-y plane divided

into four triangles.

Fig. 16. Area coordinates for the triangle ABC.
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The use of these coordinates is a standard procedure in the literature [22-25].
These coordinates are usually denoted by £, n, §, 0 <&, n, £ <1, and are

defined, for any point P(£,n,Z) in the triangle ABC (Figure 16), by

where AABC is the area of triangle ABC, etc. Thus £ + n+ T = 1, and the
equations of the sides AB, BC and CA can be expressed, respectively, in

the forms: £ = 0, £ = 0, n = O.

For any function f(x,y) which is integrable over triangle ABC,

1 1-n

JI £(x,y)dxdy = 2 4, [ I £ {x(g,n), y(&,n)} d&dn, (24a)

QABC
where QABC denotes the domain of the triangle.
The transformation &' = T§ﬁ , N' = n converts (24a) to
L 1

II f(x,y)dxdy = f f (E-ri"y £{E(E", n*)s n'} &E'an' (24b)

QABC 0 0

This transformation effectively maps the triangle bounded by £ = 0, n = 0,
E +n+l = 0 in the £-n plane onto the square [0, 1] X [0, 1] in the £'-n'
plane.

It is easily shown that if the vertices of the triangle are

< .

T T LT T

Q—-—-—-——-—_-'&
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X X, x, X, £
y - Yl YZ y3 n
1 1 1 1 4 ’
-
i.e. X = alg + bln + c;
(25)
y = a2£ + b2n + c,
where,a1 =X, - X4 b1 =Yy T Y3 C T Xgs etc.
The inverse relation is
& Fa T ¥y Xy TRy Ry - 3k iy
1
L 7 e TR R T T B ’ £a6)
E i Yy K TRy By v YK i

where 2A = (x1 - x3)(y2 = y3) - (x2 - x3)(y1 - Y3), and |A| 1is

the area of the triangle.

Equation (26) can be expressed in the form

£ =A%+ Bly + c1 s, N= A

1

g™l =& =N

where A Bl’ Cl’ etc. are constants.

1’

2

x + Bzy 0. 5

For quadrilaterals of the type shown in Figure 15, uniqueness of

the area coordinate representation of points in the various triangles can

be ensured across the four interior boundaries by arranging that such

lines should correspond to either £ = 0 or n = 0 in each of the two

TR R Y T




triangles in which it belongs. If the coordinates of a typical point

Q', can be

13 "1j

has the representation

in the triangle Qrk are Ek’ nk, Ck’ then the lines P

Q2

represented as nl =0 = n4, whilst P 1

ij
El =0 = 52, etc., as in Figure 17.

4.2. The Potential Due to a Uniform Charge Distribution

over a Triangular Domain

The potential at a point (x;, y;) in the plane of the triangle
-1
Qrk’ due to a unit charge density on this triangle is (Aweo) Csrk’

where C is given by (5b). On applying the transformation leading

srk
to (24b), and dropping the primes on £ and n, we have (appendix,

Section A2.1.1.)

¥ 1
~ (1-n) df " " gt
Cork = 22k J i I p{x}, yi; x(&,n), y(E,m} 2B J Bikge Tyinim,
0 0 0

where Ark is the area of Qrk’ and g(x;, y;;n) is given by

L s(x;. 3N
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(27)

= log {a+bn-+1/(a+bn)2 + (c+dn)2} - log {a'+b'n + \/(a'+b'n)2(c+dn)2}

=z 2 2 . = ] Y. 2 P=]e
where ark alrk‘+ s 2 : 1+ R(xs, ys), b = P-1;

c = S(s;, y;); d=Q; a'= R(x;. y;); b' = P;

P=0etPrex * %2k 2rk)/“ s (@) by kT %pk 1rk)/“

v ' ' 2
R(xs' y;) o {alrk(clrk ' xs) + a2rk(c2rk 9 ys)}/ark i

] A ] 2
S(x2, o e {alrk(CZrk =¥ = S ley, - xs))/ark ;

(28)

S —

o s et

|
|
|
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Fig. 17. A quadrilateral subdomain in the x-y plane, with area
coordinate representation of interior and exterior
boundary lines.

Brk

(X2¢ksY2rk)

£=0

(Xirks Yirk)

c'h / A'.
(Xgexs Y3rk) n*0

Fig. 18. A triangular subdomain Qrk'
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!
Here, on referring to Figure 18:
i
8% " Pk T Tkt Pk T vk T Fsek Ciek T ek
ek ™ Y1rk ~ Yark® Park T Y2rk T Y3k’ S2rk ~ Yirk i
|
The evaluation of the n-integral (Section A2.1.2) gives l
%rk = = =
- ' L _ !
Gr ) €, = EQ) +E'(O) - EO - B,
rk
where E(n) = E(a,b;n), E'(n) = E(a', b';n) , [
?
and E(a,b3n) = E_E_Qﬂ log {atbn + ‘\/(a+bn)2 + (c+dn)2} i
_ad - bc 1og d{a+bn+"J(a+bn)2+(c+dn)2}- (c+dn) (b+ b2+d2)
L af a+brt V (atbn) 2+ (crdm) 2} - (c+dn) (b- Vbiea?)
An alternative expression for csrk’ which is less susceptible to
round-off errors is (Section A2.1.2)
%k = = = =
= A - - L
(ZA ) Csrk F(1) + F'(0) F(0) A 11 (29)
rk
where F(n) = F(a,b;n), F'(n) = F(a',b";n) ,
_and F(a,b;n) = c:dn log {a+bn + \/ka+b )2 + (c+dn)2}
s2obe 500 1n2ad)n + abted + VI b2+ nrabrcd)} 4+ (ad-be)2]
b2+d2

For an arbitrary field point with coordinates (x;,y;,z;), which
need not lie in the plane of the triangle, the distance function D in

(27) is replaced by
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1231/2

B {x}, vl 2 x(Em), yEMY = (Gx)? + G-yD? + 2! |

In place of (28) we now have (Section A2.2.1)

' ' ",
ark g(xs, ys; ZS,T])

= log {a+bn + ‘\[(a+bn)2+(c+dn)2+e2} - log{a'+b'nt+ '/(a'+b'n)2+c+dn)2+e2},

where e = z;/ark, and the ot;her constants are as for (28). On evaluating
the n-integral (Section A2.2.2) we find that \ '
. {

1
%RJ g(xl» yi» zlmdn = G(1) + G'(0) - G(0) - 6'(1),
0

where G(n) = G(a,b;n), G'(n) = G(a',b';n),

and G(a,b;n) = c:dn log {a+bn + J(aﬂm)2 + (c+dl'|)2 + ez}
434 - b o0 [(b24d?)N + abkcd+ ¥ { (b2+d2)Habred o4 (ad-be) e (b2+d2) |

v b2+d?

2 2 2
+ & gin~l deW/(a+bn) + (cHdn)” + e A

&
V{(c+dn)2+e2} {ad-bc)2+e2(b2+d2)}

Thus the potential at an arbitrary point in space, due to a unit charge

density on the triangle th is (lmeo)csrk, where
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o
(—zzk Y . G(1) + G'(0) - G(0) - G(1) . (30)
rk

This expression for csrk reduces, as expected, to (29) when e = 0.
Expressions of the form log [X +V X2 + Y2] occur in both (29)
and (30). If X is negative such expressions are best computed by using

the alternative form

5. RESULTS AND OBSERVATIONS

5.1. Charge Distribution

The charge density on an ellipse with semiaxes a and b is [21]

2 2
. M A N T
i e Sl , 313
a b
where (x,y) are the coordinates of a typical point in the ellipse,
and Q is the total charge, If an elliptical disc is maintained at
unit potential, then observing that the charge accumulates on both

sides of the disc, (31) gives the charge distribution O on the disc as

g3
SR Xy =1f2 :
7o Lt ek A )

(o]

where C is the capacitance of the disc as given in the appendix

(Section A.1.).

T e——
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The exact charge distribution (32) has been compared with the
computed values for a circle of radius/cm (Figure 19), and for an
ellipse with a = 5 cm, b = 1 cm (Figure 20). The results show that
for a given number of subdivisions of the ellipse or circle (i.e. for
fixed values of N, and N, as defined for the Gordon-Hall square) the

1 2

use of non-uniform section ratios kl and k, gives a charge distribution

2
which is more accurate than for uniform section ratios. As expected, a
non-uniform section ratio allows charge densities to be computed very
near the edges, and the approach to the square root singularity at the
edges is more clearly brought out. For N1 =8 = N2 for example, at
comparable points in a circular disc, working with uniform section
ratios (i.e. kl = 1.0 = kz) results in error margins of 247 near the

edges and 1.7% near the center, whereas for kl = 0.1 = k2 the error
margins are 47 and 0.7%. For an elliptical disc with a = 5 cm,
b =1 cm, the figures are 527 and 1.47% for unity section ratios, and
47 and 0.8% for section ratios of 0.1.

The distribution for unity section ratios for a square of edge
2 cm (Figure 21) égfees with Harrington's result [3] to within 1%
everywhere except at the node nearest to the edge where the difference
is 1.7% (Figure 21). The beneficial effect of non-uniform section
ratios is again evident. In Figure 22, drawn for a regular hexagon of
side 1 cm, the distribution shows the expected symmetry and the rise
in the charge density as one approaches the edges.

Figure 23 compares the computed charge distribution over a

semicircle with that for a full circle. A similar figure (Fig. 24)

b o xmomemas
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Fig. 19. The circle:

radius = 1 cm.
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O EXACT
o k,=0.1 =k
X k= 1.0 kg

| | 1 1 i)

Fig. 20. The ellipse: a =5 cm, b =

2 -l
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DISTANCE d ALONG THE MAJOR AXIS (CM)

1 ecm. Charge distribution.
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[0] 0.2
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has been drawn for a square and a triangular half of this square.

5.2. Capacitance

51

It is shown in the appendix that the capacitance of an elliptical

disc with semi-major axis a is

C = 4mae /K(e) ,
)

where K is the complete elliptic integral of the first kind and the
modulus e is the eccentricity of the ellipse. A computer program
(PROGAE) computes C from this expression, using the Hastings approxi-

mation [17,28] for K(k) in the form

_2r 3 Loy "
K(k) = -2{ ] bk '] log k + €(k),

r=0 ¥ r=0

Il
+¥]
=

where
le)]| < 2x107%, #2 =1 -k%, and

a, = 1.38629436112 by = 0.5
a, = 0.09666344259 b, = 0.12498593597
a, = 0.03590092383 b, = 0.06880248576
ay = 0.03742563713 bs = 0.03328355346
a, = 0.01451196212 b, = 0.00441787012

For a circle of radius a we use the well-known result C = 8aeo,
which, as shown in Section A.1l, is a particular case of (33).
Convergence curves which show the variation of C with (NlNz)-1

for the circle and the square (Figure 25) indicate that section ratios

(33)
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of 0.1 give a more accurate value for the capacitance than unity
section ratios. The greater accuracy obtained with section ratios
less than unity, which was observed for the charge density, is also
reflected in all the capacitance computations. This improvement in
accuracy agrees with similar observations made in the investigation
of current distribution effects in perfectly-conducting cylinders [20].

To estimate the capacitance for an infinite number of sub-
divisions (i.e. the asymptotic capacitance) we use a power series pro-
cedure which gives C as

© C

c- ] —— (34)
i=0 (NINZ)

If there are m sets of computed data in the form {le, N, s Cs}’

s =1,2,...,m, then by truncating (34) in the form

m-1 Ci

C= e
=0 (NN,

the following matrix equation

1 1=1(c] ,

[Cr-l g

r-1
(NISNZS)
bW Ll ey My 8 Lot oy My

is then solved to give C° as an estimate of the asymptotic capacitance.

For the circle, the asymptotic capacitance computed for various

sets of data corresponding to Figure 25 are given in Table 1. The




deviations of the values for section ratios of 1.0 and 0.1 are,
respectively, within 0.9% and 0.27% of the exact value. The capaci-
tance for N1 =10 = N2 (i.e. for the largest values of N and N2

used) is found to differ from the exact value by 0.37%, whereas for

N, = 8 = N, 'and for the same section ratios, the error is slightly

1 2
less (0.31%). This gives an indication of the effect of the increase
of round-off with the number of subareas.

Since an inscribed polygon underestimates the area of any
convex domain, one would expect the computed capacitance for such
domains to be lower than the exact value. This is found to be the
case for the circle and for the other convex domains investigated.
Tables 2, 9 and 12 list the computed values of capacitance for the
ellipse, the semicircle and the bircle-with-tangents'and also
give the percentage deviation of the area of the inscribed polygon
(computed by adding the areas of all the triangular subdomains) from the
area of the original domain.

For polygonal discs on the other hand, the mesh generation
procedures ensure that the inscribed polygon is the same as the
original domain, Figs. 14(i), 1l4(vii) and 14(viii), so that the area
of the inscribed polygon as computed agrees with the area of the
original domain up to the fifth significant figure at least (see
Tables 4-7 for the regular hexagon, the diamond, the rectangle and
the triangle). Computations for the square of edge 2 cm (Figure 25
and Table 3) show that the capacitance for N, = 10 = N2 and section

1
ratios of 0.1 (i.e. 0.8102 up F) is within 0.43% of the asymptotic

e —— v
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value (0.8137 pp F). The asymptotic value obtained by Table 4 is
0.34 e.s.u. which is 0.8156 uu F. For the diamond (Table 5a) and
the rectangle with dimensions 3.3 cm X 1.4 cm (Table 6), the capacitance
computed for N. = 8 = N, and 0.1 section ratios are, respectively,

1 2
0.6510 up F and 0.9029 pp F. De Meulenaere and Van Bladel [29] give

0.661 pu F and 0.897 uu F.

The results for the sector of an annulus (the only non-convex
domain investigated here) indicate that care must be taken in approxi-
mating domains by polygons. It is important to ensure that the match
point generated lies not only within the curvilinear quadrilateral
corresponding to it, but also within the final quadrilateral obtained
when the curved sides are replaced by straight lines. When the sector
angle is 180° and the section ratios are unity, this condition holds
when N1 =8 = N2, but it is violated when N1 =4 = N2 (Figure 14 (vi)).
A low section ratio can also give a match point lying outside its
quadrilateral. Thus, for example, for 6 = 180° and N1 =8 = N2
(Table 10) a section ratio of 0.1 produces this anomaly, as also
happens when 6 = 120° and N1.= 4 = N2. Match points are, however,
properly situated in the latter case when the section ratios are unity.

Generally a violation of the match point condition at éettain
points leads to a distortion of the charge distribution, including
the existence of negative charge distributions at some of these points.
It also gives for the approximating polygon an area which is larger

than that of the original domain mainly because of the resulting

s (AT a
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duplication of triangular subdomains as the area is computed. As a
guide, well-positioned match points can be ensured by choosing Nl

and N2 in proportion to the lengths of the corresponding arcs of the
domain boundary.

The effect of the distortion in the shapes of the quadrilaterals,
when the match point condition is met, has been investigated by comput-
ing the percentage errors in the values obtained for the area and the
capacitance for ellipseswith aspect ratios (i.e. minor axis/major axis)
from 1 to 0.2 (Table 11). The results show, for the coarse subdivision
used (N1 =4 = N2), that the area is in error by 2.6% in all cases. The
corresponding figure for the capacitance varies from 5.4% for an aspect
ratio of 1 to 4.97 when this ratio is 0.2. These errors are thus due
more to the coarseness of the subdivision than to the shapes of the
quadrilateral subdomains.

The computations also show that the capacitance of half of a disc

is greater than half the capacitance of the complete disc.

6. CONCLUSION

A method of moments technique of solving the singular integral
equation satisfied by the charge distribution on perfectly-conducting
flat plates of arbitrary shape, which uses automatic mesh generation
techniques, has been presented. The method relies on the use of graded
quadrilateral subdomains and has been applied to a variety of disc shapes,
including the rectangle for which the quadrilateral subdomains reduce to

rectangles. The procedure yields charge distributions and values of

P
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capacitance which are in excellent agreement with the‘exact values
for the circle and the ellipse, as well as with published numerical
results for the rectangle obtained by other methods of computation.
The results indicate that with a moderate number of subdomains it is
possible to obtain values of capacitance which are accurate to within

0.5%.
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Table 1:
The Circle

Radius = 1 cm: Capacitance
Exact Value of Capacitance: 0.70800 upF
Asymptotic Capacitance
Nl = N2 = N kl = k2 =k Computed Value (LUF) % Error
6, 8, 10 1.0 0.7017 0.89
6, 8, 10 0.1 0.7035 0.65
6, 8 0.1 0.7065 0.21
Table 2:
The Ellipse
Semi Axes: 5 cm, 1 cm: Capacitance
Area Capacitance
N k Computed'xlo-%g % Error Computed Value (upF) % Error|
4 1.0 0.15307 2.6 1.753 4.9
4 0.1 0.15450 1.6 1.817 1.5
8 1.0 0.15607 0.64 1.802 2:3
8 0.1 0.15495 1.4 1.838 0.29
) Asymptotic Capacitance
I
; y
k Computed Value (UUF) % Error
' . 1.0 1.818 1.4
s 0.1 1.846 0.11
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Tab. J3: .
The Square ;1
Edge = 2 cm 1
]
k Asymptotic Capacitance (uyF)
4, 6 1.0 0.7988 ‘
4, 6 10 1.0 0.8037
4, 6 0.1 0.8126
4, 6 10 0.1 0.8137
Table 4:
The Regular Hexagon
Edge = 1 cm |
Exact Area: 0.25980 x 10-3m2
-3 2 ;
N k Area (x 10 "m") Capacitance (ppF) |
4 1.0 0.25980 0.6120 ;
4 0.1 0.25980 0.6345 }
6 1.0 0.25980 0.6234 {
6 0.1 0.25980 0.6415 |
|
|
Asymptotic Capacitance i
N k Computed Value (ppF) i
; 1.0 0.6325 I
, 0.1 0.6471 %
X
| ;ﬁ
i E
S
! 3
|k
)
I
E
A s - e
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Table 5:
The Diamond

(a) Semi Axes: a = 1.65 cm, b = 0.7 cm

Exact Area: 0.231 x 10-3m2

-3 2
N k Area (x 10 3m ) Capacitance (UUF)
4 1.0 0.23100 0.6063
4 0.1 0.23100 0.6380
8 1.0 0.23100 0.6305
8 0.1 0.23100 0.6510
(b) Semi Axes: a =2 cm, b =1 cm
Exact Area: 0.10000 x 10 °m?
-3 2. ]
N k Area (x 10 "m") | Capacitance (pyF)
4 1.0 0.10100 : 0.3914
4 0.1 0.10000 0.4117
Table 6:
The Rectangle: 3.3 cm x 1.4 cm
Exact Area: 0.46200 x 10-3m2
N k Area (x 10_3m2) Capacitance (uuF)
1.0 0.46200 0.8755
0.1 0.46200 0.9029
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Table 7
The Triangle
Adjacent Sides: 2 cm, 1 cm; Included Angle: 90°

Exact Area: 0.20000 x 10" m°

N k Area (x 10-3m2) Capacitance (upF)
4 1.0 0.20000 0.5648
4 0.1 0.200060 0.5958
6 1.0 0.20000 0.5800
6 0.1 0.20000 0.6050
8 |[.1.0 0.20000 0.5879
8] 0.1 0.20000 0.6077
!
| 4
Asymptotic Capacitance i
N k Computed Value (LUF) f
4, 6, 8 120 0.6001 !
<
4, 6, 8 0.1 0.6109
Table 8
The Semicircle: Radius = 1 cm
Exact Areat 0.15708 % 10 “m°
-3 2
N k Area (x 10 "m") Capacitance (UWF)
4 1.0 0.15307 0.4855
4 0.1 0.15616 0.5105
8 1.0 0.15607 0.5041
8 | 0.1 0.15537 0.5186




i o ——
Table 9
The Quadrant
Radius = 1 cm
Exact Area: 0.78540 x 10 'm’
N k Area (x 10-4m2) Capacitance (UUF)
1.0 0.78413 0.3507
0.1 0.78273 0.3612
Table 10
The Sector of an Annulus: Radii: R1 =1 cm, R2 = 2 cm
(a) Sector Angle: 180°
Exact Area:
Area
N k Computed (x 10-3m2) % Error Capacitance (UUF)
1.0 0.45922 2.6 0.9456
0.8 0.45897 2.6 0.9502
0.1 0.53833 14.2 0.9399

(b) N=4, k=1.0

Area
Sector 32 33
Angle Computed (x 10 “m") Exact (x 10 "m") % Error Capacitance (UUF)
180° 0.44534 0.47124 i 0.90000
120° 0.30000 0.31416 45 0.7113
90° 0.22961 0.23562 2.6 0.5994
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The Ellipse:

Table 11
Semi-Axes: a,

b

N=4, k=1.0, b =1 cm

Variation of Capacitance with a/b

- Area (x 10—352) Capacitance (HUF)
(cm) Computed Exact % Error Computed Exact % Error
1.0 0.30615 | 0.31416 2.6 0.6695 0.70800 5.4
132 0.36737 | 0.37699 2.6 0.7350 0.77719 5.4
1.4 0.42860 | 0.43982 . 0.7980 0.84365 5.4
1.5 0.45922 | 0.47124 . 0.8288 0.87604 5.4
1.6 0.48983 | 0.50265 0.8591 0.90794 5.4
1.8 0.55106 | 0.56549 0.9185 0.9703 5.3
2.0 0.61229 | 0.62832 . 0.9766 1.0314 5.4
5.0 1.5307 1.5708 2. 1.753 1.8436 4.9
Table 12
The Circle-with-Tangents: Tangent Angle (a) = 30°
Area (x 10-3m?)
Radius (cm) N k Computed Exact Capacitance @QuF)
1 4 1.0 0.37320 | 0.38264 0.7509
4 0.1 0.38202 | 0.38264 0.7869
8 1.0 1.5210 1.5306 1.553
8 0.1 1.5144 1.5306 1.593
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APPENDIX

A-1. The Capacitance of an Ellipsoid

The capacitance C of an ellipsoid with semiaxes a, b, c is given

by Smyt:he21 as

©o

C = BTTEO/J = o (A1)
0 ‘J(x + a2)(x + b2)(x + cz)

In order to evaluate the integral in (1) we use the following result

given by Jahnke, Emde and Losch26: A ,

de = 2 F 0,00, (A2) '

x\[(bz + tjz)(c2 + t2) ,

where cot ¢ = x/c, k=%~' e -, 0<ck<1l, r
¢ L

and F(¢,k) = J du = !
|

0 )/1 - k2 sinfvu

the incomplete elliptic integral of the first kind. Under the trans-

formation tz = x + c2, the integral in (Al) becomes

dt
I-2r ’

c }[(?+ az - cz)(t7+ b2 - c2)

Using (2), and assuming that a > b > ¢, we obtain immediately

s g

1= ——2_- F[cot-l £ ’ 8; -% ]o ?"
& Bags LI 8 W &
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The capacitance of the ellipsoid can, therefore, be expressed in the

form

2.1)/2 2.-1/2
b c

2)1/2 )

C = ans:o(a2 -c /F[sin-l(l - czanz),llz(a2 -b) (82 -

This expression corrects the result given by Smythe.21

The Ellipse
When c = 0, because F(T/2,k) = K(k) (i.e., the complete elliptic

integral of the first kind with modulus k), (A3) becomes

C = 4wa€o/K(e), (A4)

where a is the semi-major axis of the ellipse and e the eccent

For a circle of radius a, putting a = b in (A4) gives immed

C = 8a£o,

a well-known result,

A.2 The Potential due to a Uniform Charge Distribution
Over a Triangle. ‘

We present here a summary of the procedures adopted in deriving

the relations (27) and (30) for the potential due to a uniform charge
distribution over a triangle., The motation adhered to is that used in

Section 4.2, unless otherwise indicated.

(A3)




P T

A.2.1 Field points in the plane of the triangle.

A.2.1.1 The £-Integral.

We have
1

TR o = (1 - n)dg
S(XS.YS,H) J D{x' - (E ) (E )}
0 S’ys’x sN),y(&,Nn

where

D!yt sx(E,myEm} = Y xEm - 2+ rEm -y

x(E)n) = x; - AIE + Bli y(E,n) -y = Azg ot BZ;

- x'

Ay e, 0-m, BB Ntet ek ™ “nek " %

Ay = 89, (1 ~n), By = by n+ oy Copp = Copk = Ygr

We then have
Dz{x;,Yé,X(E.n).Y(E,H)} = (Ai + Ag){(i + p')z + qz}

where
2 ] c c H
gL = MP" = n€ay 1By + BnPord) * S1Ciek * 22rkC2rk

) +

2 i .
a (1 -naq =na; by = 2P ¥ 21rkS2rk = 220kC1rk’

These relations give

dg ’
0 Jf& * p')2 + qz

v 1
;n) = [cosh.-l L‘;—L ]

i 3 -
arkg(xs’ys’n)

' '

0

which 1s the same as (28).

)
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A.2.1.2. The n-Integrals

In order to obtain (29) we require a primitive for

f(n) = log{a+bn+ 'yr(a+bn)2 + (c+dn)2} - log{a'+b'n +}/(a'+b'n).2+ (c+dn)2}

It is easy to see that such a primitive has an algebraic form which does

not depend on the eign of (c + dn). Thus, provided - c/d ¢ [0,1], we may

consider, instead, a primitive for the function
2 2 -
a + bn a+bn a'+b'n a'+b'n
£'() = logl(Co—an) + VGran> *+ 1} - loa{ Gy +-J( e U |

However, it can be shown that even when - ¢/d € [0,1], the improper |
1

1 .
integral I f'(n) dn converges. It is, therefore, sufficient to obtain |

0
a primitive El(a,b;n) for ) |

:
- e a + bn a + bn,2
f(a,bsn) = log{G——0) + 1’( v m *1k l

for the case ¢ + dn > 0.

On writing a + bn = (¢ + dn)sh 6, we find that

- ad - bc 6 dé_
I £a,bim) dn = = [5me % - J dsho - b)

and it is easily shown that

[ [ L RN 1 log
dsh® - b jpemees

d(sho + cosh 6) - (b + V b2 + d2)

d(sh® + cosh 8) - (b - b2 + dz)

so that

E,(a,b,n) = E(a,b3n) + 5—%-93 log (c + dn).

E,(a',b'sn) = E(a',b'sn) + <590 1og (c + dn)

i

- {

A primitive for f(a',b';n) is |
|

-4

£=
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Thus the required primitive for f(n) is
E(n) = E(a,b;n) - E(a',b';n). . (A6)

This primitive yields the first expression for Csrk given in Section 4.2,

Alternative Expressions

We now consider alternative methods of simplifying the expression

ld{a + by + V(@a+bn)>+ (c+dn)>} - (c+dn) (b +Vb> +d2)
d{(a+bn) + ‘\/(a+bn)r+ (c+dn)T} - (c+dn)(-VYb°  +4d )

H(a,b3;n) = log

(1) Direct reduction

Now 2 2
H(a,bsn) = log d(cosh 6 + sh 6) - (b + Yb" + d°) 1
d(cosh 6 + sh 8) - (b - b2 + d2
Let
Xl = d cosh 6 +1’b +d, Y1 = d cosh 6 - b2 +d ,
o = d sh6+b, 81 =d sh 6 - b,

Then lel = “181'

Y, + B1 - al)(Y1 + Bl)

1
Thus, H(a,b;n) = log|o——5|= log - "
G| *1 +,Bl (Y1 al)(X1 + Bl)
i.e. H(a,b;n) = - log 8 ‘ i ) o ey O S
1

On substituting for X, and 81 and ignoring constants in the primitive

from now on, we find that

d + b sh 6 + cosh 0 Jbz + a2 l a7

dsh6 -b

H(a,bjn) = - log

Since (c + dn)(dsh® - b) = ad - bc, a constant, we find, on simplifying

the right-hand side of (A7) that

s R

YT
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—

H(a,i);n) = - log[(b2+d2)n + ab + cd + -\/[(b2+d2)n+ab+cd}2+ (ad-bc)zl

f (A8)
' . 1
(11) The use of subsidiary integrals.
We obtain here two primitives hl(n) and hz(n) for the function J
b 1
Z 2 i
h(a,bsn) = y(a + bn)” + (c + dn)”, (49) |
| 4
where
h(n)=f(¢+dn)\[(a—tﬂ)2+ld ?
1 j c +dn i '
and 2 2. s ]
+ {
hy(n) = /bf o di J % a12> cg} + {az + c2 " (a12> + cg)z} & |
b =d b +d b +d%) ? i
. |
| For hl(n), putting a + bn = (c + dn)sh 6, as before, gives i
‘ h, (n) = -—21—-2—- {®? + dz)n + ab + cd} \/(a + )% + (c + cln)2 ;
3 2(b” +d) : '}
! B (ad-bc)2 108 df{a + bn + (a+bn)2+(C+dn)2} - (c+dn)(b+\/b2+d2
2(b2+d) 72 2 2 o
- l d{a + bn +‘1/(a+bn) +(c+dn)"} - (c+dn)(® -y b +d J

When the integral for h, (n) is calculated, however, we have '

hy(n) = —t—s { % + a®)n + ab + ca} y/(a + b1 + (e + an)?
206° + d%)

i

2
+ {88 = bel logl?+a¥)n+ab+cd+ {67 +a)n+abred) + (ad-be)’]
2(b° +4%)3

equivalence already implied by (A7) and (A8).

T N e e
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3 |
A.2.2 Arbitrary field points b g
| o
A.2,2.1 The E-Integral 1

Here, instead of (A5), we have 3

1
= 1 - d
B(xl,yl,zlm) = | = 0 -n 8 ! 4
D{x',y',z';x(&,n),y(E,n)}

g 88 -

where, on proceeding as in Section A.2.1.1 we find ’
1 | |
= et ] v, — dg i W

arkg(xs’ys’zs’n) (I . — -

’tﬁﬁ +p') +4 :

2

- 2 i
where q2 = qz + __e__z’ and arkez = z'z' | i

(1 Y ﬂ) 2 5 |

; |
Thus, B3
| 4
- 2 2 2 E

a1 8(x2,y5,225n) = log{a + bn + \/(a +bn)° + (c+dn)” + e} ‘
{

-log{a' + b'n +-¢(a'-+b'n)2-+(c-+dn)2 + ez}, ;

i

with a, b, a', b', ¢, d, being defined as in Section A.2.1.1 .

E
A.2.2.2 The n-Integral ; 4

!
(i) The p-n transformation and applications b

We define a new variable p as follows: {

2 { o

p= 1/(c+dn)2+e .
This allows us to proceed as in Section A.2.1.2, so that we need only j

consider the primitive of the function

|
ey (S A e AR ey
e rwm e @y e o,

The relation

e -
L . o

—

a+bn=pshdo
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1
gives [ <
pdsh¢=k+b\/p§—e§, k = ad - bc, '
so that p satisfies the x-quadratic
{
2
X (dzsh2 ¢ - b2) - 2xdksh ¢ + b2e2 + k2 = 0,
1
We choose the root p given by
up = dk sh ¢ + bV k2 - e2u, (A-10) l
22 2 . %
where u = d'sh” ¢ - b", since this expression for p reduces to c + dn
for field points which lie in the plane of the triangle (i.e. for e = 0). ' #
The primitive for f'(a,b;n) is thus :
!
e
G(a,b;n) = ¢n - Jn' dé. 2
| 1
Since bn = -a + p sh ¢, we have i
. k 1
* S = ( - 3
G(a,b;n) T 6, I
where !
2
Epadheits Cl=%+b7f"2“"2i'( Nt |
dsh ¢-b i
. {
2 !
and sh¢1’k = e2u | J
G, = d¢
2 u t
Let ' g

x=dsh¢+Vb2+d2, Y=dsh¢—\/b +diy |

a=dshd¢ +b, B=dsh¢ ~b (A11) 4
Then XY = af, and we find that on writing %
2 i

FPRNRL Jrae M. b
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2 ‘
c. =& du _kZJ du .
S £ 2d

Ve - *orm’ 4d° +u) Y - e u)®° +4* +u)

It can be readily verified that

du _e -1 b2+d2 +u
= g sin [e i

i
Vo - oo +d+w K +e”(b"+d")

du ot 1 lag k Vb +d2+u+Vb +d /k -eu

e -y +ai+w Wb+ a lkVbiediau - o2+ 2 - et

n s

S Ap—— -

YT —————v—

(A12)
These results ultimately show that
.y = Lo F dn)d k Y+a Y+8
G(a,b;n) = 3 + —— [log | g5 | - log T('TB]
2d b +d
+§_ sin_l [ ed cosh ¢ ]
)[k—z + e2(b2 + dz)
DL A
+ k 1og kd cosh ¢ +/lr+d )/k -e u : (A13)
2d\b2 + d2 ki cosh § ~Fbe s 4 T - &
2 2 2
viere § = Jog [E2 4 (atbn) * (ctdn) T e
'/(c + dn)2 + e2
ps— —T—_ i< T S S — e e e e
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; (i1) Alternative expressions
| The expression L = Ll - L2 + L3 occurs in (Al3), where
, i
Y +a
i s i 3 bl (A14)
- Y + 8
L, = SoglgTw) i
and
2 2 2 2
+ =
L3 = on kd cosh ¢ Jb + d Jk e u (A-16)
kd cosh ¢ - 'Jbz + d2 'sz - ezu
We give here a simplified form of L which is similar to the expression
H(a,b;n) defined by (A8). :
(a) Direct reduction
Let y = 'J(a + b )2 + (¢ +d )27+ e2.
T It is easy to write (Al6) in the alternative form
L3 = L31 + L32, (A17)
where
L Youl 2 Jbz 4 (b cosh gﬂ/bz . sh¢) - kdl
31 s
P b2 + d2 (b cosh ¢ - Yb~ + d” sh¢) + kd
and
_J 2 2
b +d sh ¢ - b cosh ¢
L., = log .
32 3 7

b~ +d” sh ¢ + b cosh ¢
'H'“\L\&\Mmhg _reduction gives
o & 2
L31 = p(a,b;n) - log {kz + e2(b + d7)},

where P(s,bin) = 2 log [(% + d2In + ab + ed + yYb° + ¢°, (A18)
Ry 2
and yyb +d nJG(bZ + dz)n + ab + cd}2 + (ad - bc)2 + ez(b -+d2)

SRECHEE: S555 SR ARSI A SRS S A — - S
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Using the relations (All) it is easy to show that
i3 XB - Ya
Lyy = log f o] (A19)
L. +L. = 1o X-" (A20
S Bixpyi )
Vbz + d 2b
and that L. - L_ + L = log , a constant.
1 2 32
vb +d + 2b
We thus have immediately
L. -L, +L,=P(a,b;n) + constant, (A21)

1 2 3

so that the function L1 - L2 + L,, being a component of the primitive

3)
G(a,b;n) given by (Al3), is equivalent to P(a,b;n). The function

P(a,b;n) is very similar to H(a,b;n), and reduces to it when e = 0.

L, and L

Reduced expressions for Ll’ 2 3

The relations (A17) - (A21) imply that, to within arbitrary

constants,

2 2
g =Y

X2 ) B2

2 2
Q=Y

=

14 1
L, = 2 log 4 L2 =5 log ,, and

1

k2 '
L3 - P(a,b;n) 2 log Jb + d sh (z) - b cosh Q

Z
Jb + d2 sh¢d + b cosh ¢

On substituting for X, Y, a, £, ¢ and P, the following explicit reduced

forms result:

b(a + bn) - d J(c + dn)2 + e2 +Ay‘Vb2 + d2

d(a +5n) + bV (c + dn)* + o

L, = log (A22a)

e et -

PRS-
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, A,
d(a + bn) - bV(c+dn) +e : (A22b)
b(a+bn) + dV(c+dn)  +e + vy Vb +d

L3 =2 1og[(b2 + d2) + ab + cd + y'\/b2 + dZ]

bz{(c + dn)2 + e2} - d2(a + bn)2

L2 = log

and

+ log

(A22¢)

(b) Auxiliary integrals

In line with the procedure based on the function h(a,b;n) defined

by (A9), we consider here two primitives for the function

J@a,bsn) = f @@+ bm? 4 (e +am? + e,

where the primitives Jl(ﬂ) and Jz(n) are given by

2
3y m = J p\/@—*}ﬂ) +1 dn;

2 .2 2 e
J,(n) =afb? +d* I\ﬁ] +_____a1;+cg} + {"’ZJ'C2 - (ag+°‘;)2 + ]
b® +d b +d (b™+d") b™ +d

With the expression for p given by (Al0), we find that

a + ) 2 2
Jl(ﬂ)"iz—b“lm )/(a+bn) + (c+cn) +e

do
2

. G2 - b%ed) 6 i
7 gy
d o 5

2b 8}:2 8 - b2
2

du du

‘ -—
kL |
o? Yo% +6® +w) (& - e%w)

Nl
e =

u ‘;[(b:Z + d2 +u) (k2 - ezu)

(2b2+d2) (a+br))2 + b2{(c+dn)2+e2} + 2b(a+bn)be +d

|

b
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It is easy to show that
a
f 2 - A G L S <
I E = e g K u(b” +4°)
(k 2 2-d2e2) Yo H/;f+d2+u +“\[1:2+d2}/k2—e2_l;
3/2
"o + oD b2 +a% +u - b2+ Vi?
I . . dicesms . .
2 ’
W el Ay By
J 46 _  _dcoshe o
GROEER B R o 57

These relations, together with (Al2), give the primitive

{(c+dn)(b +d)+kb}ﬁ+bn) P 2 G2
2b(b +d)

Jl(n)

{k + e (b + d )} [Ly - L, + L3].

4(b2 Fy d2)3/2 2

However, on evaluating the integral for Jz(n), we find

Jz(“) {(c+dn)(b2+d)+kb)}r+bn) $ e 4 +e2
2b(b +d)

2 2
{k + e (b ;/g )} Bla bin)s
4(b +d)

Thus Ll - L2 + L3 is equivalent to P(a,b;n), as before.

.

TWM‘”‘M('M’“ B
.
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A.2.2.3 Planar Interactions

The primitive G(a,b;n) given by (Al13) can be written in the form

6(a,bsn) = (c +ddn)¢ + %—sin—l [ ed cosh ¢

2
sz + ez(b + d2)
k

e [Ll - L2 + L3].

2dVb” +d

For planar interactions, e = 0, so that X = Xl, Y=Y,0a= aj, B = 81

and ¢ = 6. Also,

X X * 8
L3 = log 7| and Ll + L3 = log Y. ko so that
1 1 1
Ll - L2 -t L3 = -2L2, a relation which can also be established using the

explicit forms given by (A22).

Thus, G(a,b;3n) = El(a,b;n), showing that when the field point lies
in the plane of the uniformly charged triangle, we recover the primitive

for planar interactions given by (A6).




