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1. INTRODUCTION

The problem of determining the charge distribution on a

perfectly—conducting flat disc , and hence the capacitance of such

a disc , is a classical one. By dividing a square plate into square

subsections, Maxwell obtained a numerical solution of the integral

equation satisfied by the charge density. A similar method (i.e.

the method of square subareas) was used by Reitan and Higgins [2]

and Harrington [3] to determine the capacitance of rectangular plates.

A numerical solution using a variational approach has been considered

by Noble [4]. However, the method of square subareas is obviously

not ideal for plates of arbitrary shape. The present report de-

scribes a numerical procedure for solving the integral equation

satisfied by the charge density on an arbitrarily—shaped disc ,

and hence for determining its capacitance.

The method employs a method of moments approach in which the

charge distribution on the disc is approximated by pulses defined

over quadrilateral subdomains. These subdomains are generated auto-

matically either by the use of the Zienkiewicz—Phillips isoparametric

coordinate procedure [5], or through the use of the tr~nsfinite

blending transformations of Gordon and Hall [6]. An advantage of the use

of quadrilateral subdomains is that fewer expansion functions are re— -: V

quired , compared to a method of moments procedure based on triangular

subdomains. The method described is applied a variety of discs.

7
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1 2. THE INTEGRAL EQUATION AND ITS REDUCTION

j The charge density a(x,y) on the disc ~ satisfies the well—

known singular integral equation 
V

I
1 (f a(x,y)d~ v (1’1 4irc J J  D ‘

I
where V is the constant electric potential on the disc , c the

I permittivity of free space and D D(x~ ,yI;x I ,y~) the distance

I between the source point (x,y) and the field point (x ’,y ’), is

- 

given by

I D~~ [(x ’ _ x)2 + (y’ _~~)
2
]
l/2

I By dividing the disc ~ into n quadrilateral subdoinains

r 1,2 ,... ,n , and defining n pulse expansion functions

f(x,y) 1, (x,y) c 
~r’ ~~~~~~ 

0, (x,y) 
~I r 1,2,... ,n,

:e 
unknown charge distribution can be represented approximately

II a(x,y) — 
~ 

Ar 
f
r(~

C
~~~ 

(2)
r—l

I where the A are constants to be determined . If we now insert (2) V

in (1) and apply a point—matching procedure to determine the 
V ,

I potentials at the n points (x~ , y~ ) C 
~~~~

, s — l,2,...,n, we

i obtain a system of n simultaneous equations:

I
I 

LL
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Ii
~ 

C A — V , (3)
r 1

s — 1,2,...

1 where

c = 
1 ff dxdy 

(4’1 or 4i~ JJ D(x’, y ’; x ,y)
I o c~r

Once the interaction matrix [C ] is determined , the constantsor
A
r 
are readily obtained by solving (3), so that the charge density

a(x,y) is found from (2).

In order to evaluate the integral in (4), the quadrilateral

is subdivided into four triangles having the match—point

I (x , y )  c as a common vertex, the integral being evaluated

piecewise so that

1~ C = 

~~~~~~~

— 

k=l 
C

k , (5a)

where

Cork if ff(~ y’ x,y) (Sb)

Thus the calculation of the couplings C
sr depends ultimately on

(i) the choice of the subdoniains 
~ 

and (ii) the evaluation of

integrals of the type appearing in (5b).

If 
~rk 

is the area of triangle then using (2), an ecU—

mate of the capacitance of the disc is

I n 4  V

C — ( 
~ ~ 

A s k) .
r— l k l

[ V

—V. -- -~ —
. ‘ __
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3. AUTOMATIC SUBDIVISION PROCEDURES

3.1. Introduction

In trying to subdivide a domain for a method of moments solu—

tion of an electromagnetic field problem , it is important that the

subdivision process should involve a minimum amount of data input

whilst incorporating at the same time a predetermined flexibility

both in the choice of the number of subdomains, as well as in the van —

ation of the density of the match points. Although non—automatic

(or manual) subdivision procedures can be applied to any domain,

and in particular to simple domains such as the rectangle, the

circle, etc., and the parameters describing the domains so gener—

ated can then be input into the computer, in practice the amount of

labor rapidly becomes prohibitive as the number of the subdomains

increases. Besides, the manual method becomes, in effect, a trial—

and—error procedure for a domain of arbitrary shape. In order to

overcome these problems, the idea of the automatic generation of 
V.

nodes and subdomains has engaged the attention of many workers, notably

those interested in the use of finite element methods.

Research on automatic mesh generation has proceeded along three

main fronts. One of these is the technique introduced by Fukuda and

Suhara [7] in which the aim is to produce, by a search procedure , a

triangulation of the domain of interest in which the triangles are

‘veil—formed ’ (i.e. they do not possess angles ‘hat are very acute,

a triangle shape criteria being defined by a pre—set parameter). In

this method the interior nodes are initially generated randomly and

I
[

. ‘I __

-~ - — - ----

, 

~~~~~~~~~~~
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their positions are later modified to exclude triangles which do not

[ meet the shape criterion. This method was later improved by

Cavendish [8], the aim being the construction of triangular sub—

domains whose shapes departed as little as possible from the

equilateral. In a very recent improvement, Shaw and Pitchen [9]

have succeeded in obtaining a scheme which yields equilateral t n —

J angles everywhere in the domain except for some of the triangles

which have two of their vertices on the domain boundary.

The second approach is that presented by Zienkiewicz and his

co—workers [5,10—13], which uses an isoparametric one—to—one trans-

formation to map a square onto a curvilinear quadrilateral. This method

has been extended by them to multiply—connected regions, curved surfaces

and three—dimensional domains by the use of zones.

Finally, there is the Gordon—Hall technique [6,14,15] in which

the unit square is mapped univalently (i.e. invertibly) onto a given

region (together with its boundary). This method , which like that of

Zienkiewlcz and his school is essentially interpolatory, uses transfinite

blending functions so that in mapping the unit square onto the domain of

interest, the interpolatory function which extends to the interior of

the domain, the function defining the domain boundary , matches this

latter function at a non—countable number of points on the boundary. The

Gordon—Hall technique of generating curvilinear subdotnains is, in this

sense, an extension of the Zienkiewicz method .

II Apart from the above methods, there are others which use specially—

defined natural coordinates and iterative schemes [163, or isoparametric
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J blending transformations similar to those intru~uced by Zienkiewicz and

Phillips, and Gordon and Hall, but specialized to the generation of

three—dimensional meshes [17], as well as a search procedure which

f aims at triangulating plane polygons [18].

For the computation of the capacitance of discs of arbitrary

shape, it is important to choose an automatic mesh generation pro—

- cedure which incorporates parameters so as to satisfy the following

criteria:

I (i) there should be a systematic method for identifying

and counting the subdomain and their vertices;

I (ii) it should be possible to choose from the beginning the

number of points at which the charge density is computed,

I. since this choice determines the order of the interaction

I matrix and can also be used to estimate the capacitance

resulting from the use of an infinite number of expansion

I T functions (i.e. the ‘asymptotic capacitance’);

(iii) allowance should be made as much as possible for the

IV variation of the charge density on the disc , such that

V F more nodes are available near edges (where the charge

- 
density becomes infinite) than elsewhere.

Both the Gordon—Hall and Zienkiewicz—Phillips procedures provide

the simplest means (based on a Cartesian system) for meeting the first

two criteria. By incorporating in them certain modifications which

I will be described later, automatic procedures satisfying criterion

(iii) are derived for dividing a disc of arbitrary shape into quadri—

I lateral subdomains.

- - V - -V
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3.2. The Zienkiewicz—Phillips Technique

A full treatment of the Zienkiewicz—Phillips mesh generation

method is available elsewhere [5,10—12]. We apply the technique here

to decompose an arbitrary simply—connected disc whose boundary is

V determined by a finite number of points. The idea is to divide the

disc into a number of zones each of which is defined by eight vertices.

Each of these zones is then subdivided into quadrilateral domains in

such a way that the zones are connected through those quadrilateral

vertices (or nodes) which lie on the inter—zone boundaries.

3.2.1. A Procedure for Subdividing a Single Zone

- The square [—1 , 1] X [—1, 1] in the c—fl plane is mapped invertibly

onto the quadrilateral domain ABCD in the x—y plane bounded by four

parabolic areas on which eight points lie (Figure 1). These eight

points are the images of the points in the ~—r~ plane with coordinates

- 
(-1, 1), (0, -1), (1, -1), (1, 0), (1, 1), (0, 1), (-1, 1) and (-1 , 0),

in that order. The points 2, 4, 6, 8 in the x—y plane need not be the

- midpoints of the sides on which they lie, but must lie within a certain

- neighborhood of the midpoint [12]. In the mapping, functions L1
(~ ,n),

i — 1, 2,..., 8 are defined such that the position vector of any point P,

within or on the piecewise parabolic boundary ABCD can be expressed in

the form
8

r~ (x,y) ~ L~ (F~ ri) r1(x,y) ,

i—i

where r1(x ,y) rA~ 
r 3 (x ,y) = 

~~~~~ , etc.

‘ I
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The function L~~(~~~T)) are such that L1
(~~~ n~) = ô~~, i’4,2,. ..,8;

j—l,2,. . . ,8; where = 1, 1j

= 0, i~&j (i.e. the Kronecker delta).

L They are given by [10]:

F L
1
(~ ,n) 

- - (l-~)(l-n)(l+~+n); L
2
(~ ,~) = 4 (l-n) (l-~

2
) ;

J L
3

(E ,~) — — (l+E) ( l—n ) (l— ~+T1) ; L4 (~ ,~ ) = 4 (l+~) (l_n 2
) ;

L5 (~ ,n) = — (l-I-~) (l+n) (l—~—n ) ; L6 (~ ,~ ) = 4 (l+r~)(l— ~2) ;

L
7
(~ ,fl) = — (l— ~)(l+n)(l+~—n); L

8
(~,ri) 

= 4 (1— ~)(l—T12) . (6a)

By ~~iting 
~ 

=—l + , s =

I- n
~ 

= — 1 + , t = 1,2,... ,2n2+l; (6b)

- 

the square A’ B’ C’ D’ is effectively divided into 4n
1 
n
2 
rectangular

subdomains such that the arcs AB and CD in the x—y plane are, respec-

tively, divided into 2n
1 
and 2n2 segments. The Z—P mapping guarantees,

given the condition mentioned earlier, that the image of a point (s,t),

with coordinates in the ~—n plane is the unique point P~~ with
coordinates

8
= 

~ ~~~~~ fl
~

)x
i ~

i—i 
•

8
x( f

5
, 

~~~~ 
— ~ ~~~~~ ~~~~i—i

I -
I • -

-

• 
- 

— — V . —  ~__~— - •, -- V.~~-•----~~~~~~~~~ -~~~~~~~ - •
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I
3.2.2. Applications of the Z—P Procedure

(i) An Arbitrary Quadrilateral

I For the polygon ABCD (Figure 2) ,  taking the four other points

required in the Z—P procedure as the midpoints of the sides reduces

the parabolic segment of Figure 1 to straight lines segments, and

I results, on applying (6), in the decomposition

~ 
Mi(~

,n)
~~~ 

,
i—i

I where = -iA’ ~2 ~B’ r
3 

= !~~‘ ~~~ 
= ~~~~, with

M1(~ , n) = -
~~~ (1— ~)(l—ri) ; ~~~~ n) -

~~
- (l+~)( l— n ) ; -

M3(~ , n) = (l+~) (l+r i ) ;  M
4
(~ , n) = (l— ~)( 1+~) ,

and

~~~~~ n~ ) = c51~, i,j = 1,2 ,3,4;

~~
- ~~l’ ~~ = r(-1, 1), etc.

(ii) A General Polygon

Consider a general polygon with N vertices. If N is even then

the polygon can be divided into p zones, where p — 4 (N—2 ) .  If N is

odd , then by introducing an extra vertex at the midpoint of the

largest side of the polygon , the number of zones is 4 01—1). A

polygon with p zones then has n ’vertlces ’, where n—N for N even, and

I ’

- - .
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n — N+l (N odd),  and is represented in the ~—n plane by an in—line
arrangement of p squares (Figure 3).

In the x—y plane, zone r has as vertices the points P ,

I “n—r’ 
r — 1,2,..., p, where is the image of the point P~ in the

V ~—q plane. By dividing l”r 
I’
i~+l into 2n1 segments and ~~~

into 2n
2 

segments, the entire polygon in the x—y plane is reduced

to an array of quadrilateral subdomains determined by (2n
1p+1) 

x

(2n2+1) vertices as nodes.

I _________________3.3. The Gordon—Hall Procedure

I. The Gordon—Hall (or C—H) procedure can be applied to domains

whose boundaries consist of a finite number of analytically—defined

• segments through the use of several blending functions [6,14,15].

I Recently the blending function method of interpolation has been

extended to the semi infinite strip [0, 1] x [o, ~
) [19]. In the

present work we restrict our application of the method to finite

simply—connected domains whose boundaries consist of at most four

analytically—defined arcs.

[ In the C—H procedure the unit square A’ B’ C’ D’ in the s—t

plane (i.e. in the domain S) is to be mapped univalently onto the

closed domain R In the x—y plane bounded by the closed curve ABCD

- so tha t A, B, C, D are, respectively, the images of A’, B’, C’, -
~ fr

I and D’ . The technique assumes the existence of a continuous vector— I r
I valued function F(a ,t) which maps the s—t plane onto the x—y plane

such that the boundary A’ B’ C’ D’ is mapped onto the curve passing

V V. -•
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a ii-, a . I— p

I:—
I ZONE I ZONE 2 ZONE r ZONE p

I —
I
I Fig. 3. An In—line arrangement of p Zienklewicz—Phillips squares.

t
0’ C’ y

(0,1) (I I I) BI
I $ 

_ _ _ _ _ _ _ _ _ _ _ _ _  ) 
~(O,O)~~~. - 

s-t PLANE
- D 

~
_ y P L A N E

Fig. 4. The Cordon—Hall domains.
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I
through A, B, C, D. A function U is then constructed which maps S

onto the closed region R in such a way that this function is identical

to Y(s ,t) on the boundary of the square. This Is due by the introduc-

tion of four scalar blend ing functions

•1(s), ~P~(t)~ 
i — 0,1; j — 0, 1 , defined by

• ( s ) — l — s , ~ i
(5) 5 0 < s < l ;

~~(t ) — l — t , ~p1( t ) = t , O < t < 1 .

In taking s~, ~ °l 
= 1, t 0, t

0 
1, we have the relations

I (i ,k 0 , l; •

— 61k ~ ~P~ (t~) = o~~, ~
- ~ j ,  ~~= O , l.

Next , projectors P5 , l~ are defined as follows :

— 

I p5EF] = 
~~

(s) F(s ,t) + 
~~~~ ~~~l ’ t)

P
~

[F] = ~~~(t) F(s , t )  + ~j,1(t) F(s , t1) .
The required function U(s,t) is then given , in terms of the Boolean

sum P I P of P and P by the relation
4 

5 t 5 t

U(s,t) — (P 0 
~~~ 

[F] — P5[fl + — ~5~~[!J ’

I where the product projection P5
P~ is def ined by

IL
I

— ___

~~~\
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I 1 1
— ~ 4~~(s) ~ (t) F(s1, t ) . (8)

i—o j—O j j

Whilst the right—hand side of (8) interpolates to F at the four vertices

of the square [0 , 1] X [0 , 1] in the s—t plane , the vector valued function

U(s ,t) given by (7) interpolates to F at all points on the boundary of

the square. At the same time it maps the points with coordinates (s,t) in

) the interior of the square onto the nodes with position vector U(s,t) in

the interior of R. If the parametric representations F(s,t) of the arcs

I AB, BC , CD and DA in the x—y plane are known, then (7) yields the re-

quired mapping of the square onto the region R in the form

U(s ,t) = (1—S) F(0 ,t) + s F (l ,t) + (l—t) F(s ,O) + t F(s ,l)

— (l—s) (l—t) F(0 ,O) — (l—s)t F(0,l) — s(1—t) F(1,0) — St F( l—l ) .

I (9)

3.4. Mesh—Grading Features

Ii 3.4.1. The Cordon—Hall Square

In Figure 5 the solid lines divide the Gordon—Hall square into

- 4n
1n2 

rectangular subdomains with N1
( 2n

1
) and N2(—2n2) subdomains

along A’B’ and A’D’, respectively. The centers of these subdomains

lie on the dotted lines as shown.

Figure 6 shows a typical subdomain with its center Pj~ which has

coordina tes (s~~ t
3
) ,  0 < 

~~ 
t~ < 1, i—l ,2,..., N1

, j—l ,2,..., N2
.

H

I
- V 

V 

-
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D’ (0,1) 
__________________ _____________ _________ 

(1,1)
_ _ _ _  ~~~~~~~~~~~~~ C,

I I I

I I I I I
I _ _ _ _  — I _ _

I I I I I
I I I

I I I I

$ 1 I I

i I I I
‘— ~~~~~~~

— -  ~~~~~~~ I

I I I I
I I I I

- I

1 I I I
t - i - . - - - 1- -- - V- - i - - -  

_
~

_ i
I I I _ I 

! .,.
5 —.- ( 1 ,0 ) 8 ’

Fig. 5. The pulse version of mesh—grading applied to the

Cordon—Hall square.

I t 2j I
at I

t1 - — — — 4 - — --- .— -

01 Oj 
—

I 21

I Fig. 6. A typical rectangular subdomain in Figure 5.
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I The subdomain has sides 2a
i~ 

2a~ , Figure 6. Using the notation

a = a
+1 

= 

~l’ 
a’ — a’ +1 = 

~2’ we introduce section tatios [20]

and k
2 where a1 

— a
N 

= k
1
A
1; a~ 

= a~ = k
2~2 , in such a way that

the following linear relations hold .

N N
a~~ .. s~1

_ ct(—~ - _ i ) ,  i = i ,2 , . . . ,-~
! ;

- N N

where a and 8 are constants to be determined . Similar relations

hold for the a~. On expressing a and 8 in terms of the section

ratio k
1
, we find that

I N
V. 

2(l—k)(-~~ —i) N
ai 

= A1[l - 

N1-2 j, i 1 ,2,...,

N (10)
• 2 ( l — k 1) ( i — - ~~~— l) N1 = 

~i
[1 - 

N
1 

- 2 ~ = + 1, . . . ,N ,

- where the relation 

~ 

ai 
= 

~~
- immedia t ely gives

I 
_ _ _

1 ( l + k ~ )N~
V 

When k
1 

— 1 (i.e. for the case of a uniform subdivision along the s—axis), I’
we have = ~~~~~

—
, as expected . For the rth interval along the x—axis,

1
the left— and right—end points are, respectively, at

I r— l
S — ~ 2a and S — S + 2a , when a is given by (10). The centerlr i 2r lr r ri—l - :

I of this interval is at S
r 

— Sir + ar. By applying a similar procedure
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to intervals along the t—axis it can be readily verified that we

obtain a subdivision of the square in the s—t plane such that :

(i) the coordinates 
~~~ 

t~ ) of the center P~~ of the

subdomains are given by

______ 

N
1Sj =

N
’
2 

[2 i(N
1
k
1
— 2 + i — k

1
1 ) —N

1
k
1 +2 J , i—1,2,..,j--

= 4 + 2:12) [(2i-N1
) (3N

1 
- N

1
k
1 

— 4k1 - 2i  - 2ik
1

) + 4k
1
-2N

1J ,

i = -~~~+ l , . . . ,N1 , (h a)

i.e.

S1 s1(N
1, k1, 

~~~
, i) , i = 1,2 ,. ..,N1, say, (lib)

and 
= s~ (N2~ k2 , 

~2 ’ ~ ‘ i = 1,2 ,.. ., N2 ,

where
= (1 + k2)N

2 ~

(ii) the coordinates of the vertices of the subdomains are

(E~ , ti~
) where

2t~ (i—i) N1

~~ 

N1
— 2  

(N
1
k
1
— 2 + i — k

11), 1 1 2

1 ~1(2i - N
1 

- 2)
— + 2(N

1 
— 2) (3N

1 
N
1
k
1 

— 4k1 
— 2i + 2ik 1),

i - -
~~~~ + 1, . . . ,  N1 + 1, (12a)

i .e.

1’ 
— 

~~ 
(N
1
, k

1
, 
~l

’ i), i — 1,2,...,N
1 

+ 1 , (l2b)

with
— ç~ 

(N2 ,  k2 , 
~2 ’ ~~ — 1,2 ,... ,N2 + 1 . (12c)

V--V - -~ — 
V -
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The points P~~ and the vertices (
~~, n~) give rise to images in

the ~.—y plane, under the mapping U, so that the boundary of the domain R

is approximated by a polygon V whose vertices are the images of the

vertices (
~~, fl~

) which lies on the boundary of the square. This polygon

is then effectively divided into quadrilaterals by connecting the image

vertices so that the subdomain containing P1~ 
has as vertices the images

of the vertices

~~~~~~~~ 
~~~~~~~~‘ 

~~~~+~~
‘ ~~~~ 

~ ~~ +l~ ~~~~ 
and 

~~~

i = 1,2,...,N1
; j=l,2,. ..,N2

.

3.4.2. The Zienkiewicz—Phihlips Square

I Here, since the Cordon—Hall square 10, 1) X [o, lJ is replaced

by the square [—1, 1] X [—1, 1], which is also subdivided into rec-

tangular domains of the type shown in Figure 6, we have in place

of (11) and (12):

(1) The Coordinates (s~~ t
1) 

of

S1 
- - ~~~ ~~~2 [2

1
(N
1
k
1 

- 2 + i - k1i) - N1k1 + 2 ] ,  1=1,2 , . . .  ,~~ 

—

— 2(N
1
—2) 

[(21 — N
1

) (3N
1
—N
1
k
1
—4k

1
—2i + 21k1) + 4k1 — 2N

11,

N ~
- - -

j  = _
~~ - +  1, . . . ,  N1 (13a)

where
2 (“

V

A1 
— ( l+k1)N

1

I
— V V. —~~ — —
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I i .e .

= s~ (N1, k1, A1, 1) ; (13b)

— s~~(N 2 , k2 , A2 ,  j )  (14)

where A — 2

f 2 1 + k 2 N2

I (ii) The Coordinates (~~~jj)~~ of the Vertices of the Subdomains

2A1
(i—l) N1I ~~~~~~~~~ N1
- 2  

(N
1
k
1
- 2 + i - k

1
i), 1=”2 ’ • • • ’ T

I A (2i—N —2)
- 

= 
1 

2(N _ l2) (3N1 
— N1k1 

— 4k1 
— 2i + 21k1)

(l5a)
I N

i = -~L + 1, . . . ,  N1+1,

I or

1 
= E~~(N 1, k1, A1, 1) ; (l5b)

I
- = ~~ (N 2 . k2 , A2 , j )  (16)

By setting k1 and k2 to values less than 1, the boundary quadri—

I lateral subdomains can be made much smaller than those near the center

of the domain R’, so that the charge density can be computed at points

very close to the boundary, without the need for the very large values

[ of N
1 

and N
2 
which would be required with uniform subdivisions.

I-
I
I

— . •I
- -~~ -V
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3.5. Applications of the Automatic Procedures

3.5.1. The Quadrilateral

- Consider the quadrilateral ABCD shown in Figure 7. Now

- U(s , t )  — x(s ,t)i +

[x(s~t)~

L y(s ,t)j ,

where I and j are unit vectors. The four sections of the boundary

can be expressed in parameteric form, as indicated in Figure 7,

such tha t we hav e

I - AB: F ( s,t) = F(s,O) = x(s ,O)i + y(s,0)j,

V 

x(s ,O) = x
1 

+ s(x
2 

— x
1

) ;  y(s,O) = y
1 

+ s(y
2 

— y1
) ;

BC: F(s , t) = P(1 ,t)  = x( l ,t)I + y(l,t)j,

F x(1,t) x
2 

+ t (x
3 

- x2
) ;  y( 1,t) = y2 + t(y

3 
- y2),

I with similar expressions for the line segments CD and DA. On

applying (9) we have

!I
- 

x1
(1-t) + x

4
t [x 2(l-t) + x

3
t

U(s ,t) = (l—s) 

— 
+ s L —y1(l t) + y4t 

~~~~ 
t) + y3t

I x
1
(l-s) + x

2
s x

4
(1-s) + x

3
s

+ (l—t) + t  - 1.
+ y2s y4 (l-s) + y3s

I l x i  l x i  lx l x i— (1—s)(l—t) L 1

] 
— (l—s)t 

~ 

— s(l—t) 2 
— st [ 3J

- 

~~~~ y1 

- 

• 

y3 ~~~~

. .
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I-
I 

s 0

A
(x1 PY I ) -V-V

.1 (x3y3)

B sn i

I (x 2 ,Y 2 )

I X

Fig. 7. An image quadrilatcral in the x—y plane .

1 _

F

~1

i_t
I 

- - ~~~~~~
‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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f This gives

I x(s , t) = (l—s)(l—t)x 1 + s(l—t)x2 
+ stx

3 
+ t(l—s)x

4
(17)

I y(s ,t) = (1-s)(l-t)y
1 
÷ s(1-t)y

2 
+ sty

3 
+ t(l—s)y

4

If the quadrilateral is a rectangle with sides AB = a, BC =

and with its vertices at A(O,0), B(a 0), C(a ,b),  D(O ,b), then (17)

becomes

x(s ,t) = sa, y( s,t) — tb

I so that the Gordon—Hall mapping reduces to a two—way stretch of the

square [0, 1] X [0 , 1] parallel to the x— and y—axes.

3.5.2. The triangle

I Figure 8 shows a triangle with vertices A(x1,y1
) ,  B(x2,y2) ,

C(x 3 ,y 3) ,  such that BC is the longest side. Taking ABC as a

degenerate quadrilateral A
1 
B
1 
C
1 
D
1 
with vertices A

1
(x~. y~ ) ,

B1
(x~ , y~ ) ,  C

1
(x , y ) ,  D

1
(x ,, y~) ,  where

xj — x1, x~ — x2, x; = 4 (x2 + x
3
), x~ = x

3; 
L

y
1
, ‘ = y2 , 

~ 
= 4 (y

2 
+ y

3
), y~ = y3,

by introducing a fourth vertex C1 
at the midpoint of BC , (17) gives the

I required mapping from [0, 1] )C [0 , 1) onto ABC as 
V

Ii
F

_ IL
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~

I V\
\ss.

%C
_ t s I

f N ~
N

Fig. 8. An image triangle in the x—y plane.

-1

I ,—,‘-.--I t~3/4 f~-... \‘\\,~

I~~~~~Nd1
t~ I/2/

I tIIE~
III
~~t~~~(/4 

““I / 2  ~

I 
- —

Fig. 9. A subdivision of the triangle in 
V

I Figure 8.

1• 1 :
V. -V ~~~ - -V I. J
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- 

x(s ,t) = (1—s)(l—t)x
1 + 4 s(2—t)x2 + 4 t(2—s)x~ 

(18)

- 

y(s,t) = (1—s)( l—t )y 1 + -~- s(2—t)y
2 
+ -

~~
- t(2—s)y

3 
.

I 
An obvious simplification results if A is taken as the origin. In (18)

we observe that the parametric lines s — constant and t constant are

mapped onto straight lines in the triangle ABC (Figure 9).

3.5.3. The Ellipse

The points A(a,0), B(0,b), C(—a,O) and D(0 ,—b), which are the

I extremities of the axes of the ellipse b2x
2 + a2y

2 
= a2b

2 
(Figure 10),

are chosen as the images of the vertices of the Gordon—Hall square.

Parametrically, the equation of the ellipse is, for 0 < s, t < 1:

I Along AB: F(s,t) = F(s,r ) ,

x acos j-, y = b s i n —~— ;

Along BC:
x acos~~~(t+1), y = b s i n ~~~(t+1);

Along CD:

I x = a c o s -~- (s+1), y = — b s in -~~(s+1);

- 
Along DA:

I V x — a c o s -~— , . y = _ b s i n -1- .

Using (9) we find

1 -

- a
. - -V~~~~~~-V~~~~~~~- V V . - V~~~~~~~~~~~ II
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I
sc I~~~~~~~~~~~~~~~~~~~~~~~~~ ~~o

_ _ _ _ _ _ _  
-

C 0 A x

I t~~I D

I Fig. 10. An ellipse in the x—y plane (showing the parametric

description of the boundary).

- 

- 

_ _

- H

(0,0) t=O (9,0) x
A

I Fig. 21. A sector of an ellipse in the x—y plane.

I - I
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I a cos ~~~~~
- a cos ~ (t+l) a cos

IJ(s ,t) — (1—s) +s + (1—t)

I —b sin b sin (t—1) b sin

I a cos~~~(s+l) a 0 0

+ t — (1—s) (l—t) — (l—s) t — s(1—t)

—b sin (s+l) 0 —b b

—a

I st[

]

I giving

~ (s,t) — (l—s) cos — s sin + (1—t) cos — t sin V~i~~ L + s+t—1

j  (19)

i (s ,t) = 8 cos ~~~~~
- — (l—s) sin + (l—t) sin — t cos + t—s

Here the parametric lines in the s—t plane are mapped , in general , onto

1 curved lines in the x—y plane, unlike for the quadrilateral.

1. - 3.5.4. The Ellipse Sector

V If the angle of the sector of an ellipse is 2ct, we introduce a

fourth vertex at the front C(a cos a, b sin a), where 2a, 2b are the

~ I - -

I axes of the ellipse. By defining the parameters s and t for the seg—

4 ments AS, BC , CD and DA of the boundary as shown (Figure 11), and

1. observing that the vector valued function F(s,t) assumes the following

I~ form s:
I-.

‘ 1~
• 

IV

I
- 

• 

- - 

a 

—
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I fasi ra cos (tct)1
AB: F (s,O) = I I ; BC : F( 1 ,t )  = f I

L0J Lb sin (tcO J

fa cos(2—s)ai at cos 2a1

~~ : F( s,l) = I I , DA = F( 0,t) =1 I ,
— 

Lb sin (2—s)aJ 
— 

[bt sin 2aJ j

we obtain

-
~~~ (s,t) = s cos (tct) + t cos(2—s)a — st cos a

- (20)

(s,t) = s sin (ta) + t sin(2—s)a — st cos a -

3.5.5. The Circle with Two T~~~ents (‘The Circle—With—Tangents
’)

I Figure 12 illustrates a disc bounded partly by a circle of radius a

and by the two tangents drawn to it from a point A , the tangents being

inclined at an angle a to the x—axis. These tangents meet the circle at

- B and D , and we take as the ‘corner ’ nodes the points A(a cosec a, 0),

- B(a sin a, a cos a),  C(—a,O),  D(a sin a, — a cos a). The parametric

I forms of the various segments of the boundary are easily seen to be

[(cosec a + s(sin a —  cosec ct)1
AB: -F(s,0) = a I

• [ 
s cos a 

] -

- Icos {(! — a) + t (1L + a))
BC: F(l ,t) = a 2 2

— 
Lsin ( (i- - a) + t (

~ + a) )  V

I cos { (~~
- — a-) + s (~ + a) }1

CD: F (s ,l) a1 II. L—5i~ {(! - a) + s (~ + a)}]

rcosec a + t(sin a — cosec a)1
I DA: F (O ,t ) a
I L
I

k j
—V.—- — 

V 
— 

~~~~~ 

V _V. -_

~ 

_V -V--V 
___ 

_—_-V_- __~ VV 
— .
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1
I /I / /I / II 0 ’I /

I /( / I a AI — I
CI~ a x

1
\ /
\ \ /

I \ 0 \ /\ /

I D

Fig. 12. The ‘circle—with—tangents ’.

I 
- 

c -

- y

t~ I

/
- \ -

‘\/ \ r
/

,
/ s.0

B
(0,0) 

(R1,0) (R210) x

Fig. 13. A sector of an annulus.

I
I 
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I From these descriptions , the image U(s,t) of the point (s,t)

is given by

I
- ~~ (s,t) = (1—st) cosec a + (s+t—2st)(sin a — cosec a)

F + s cos {(~ 
- a) + t (~~ + a)) + t cos f(~ - a) + s(

~~+ a) }

— (s+t—2st) sin a + st;

I - (s,t) = s sin ((-~ — a) + t (~ - + a)) — t sin{a(~- — a) + s(~- + a) )

I. + (s—t) cos a. (21)

( 3.5.6. The Annulus Sector -

A sectoc of an annulus is considered here as an example of a

non—convex planar domain . Such a sector is shown in Figure 13, the

radii being R~ and R2 (R
1 

< R
2). The parametric equations of the 

-

boundary can be written down immediately in the form
I [ CR 1(1-s) + s R

2
} cos at

F(s,t) = (22) a

[{R1
(l_s) + s R

2
} cos at

where a is the sector angle.

-- 
On applying (7) to (22) we find that ‘

- 

P (F) — F( s,t), whilst P
~
(F) — PP(F) 0.

~II

- -~~ V -V - V - V ~~~~ - -V--V
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F Thus U(s ,t) is identical to F(s,t). The required image in the x—y plane is,

- therefore , given by

x(s , t) = {R
1
(l—s) + s R

2
} cos at

I (23)

I y(s ,t) — {R
1
(l—s) + s R

2
} sin at

I Gordon and Hall’ s result for the quarter annulus [6] is easily seen

to be a particular case of (23).

Figures 14(1) ,  to 14(vii) show typical subdivision arrangements

- for the case in which the C—H square is divided uniformly.

3.5.7. Contours Defined by a Set of Points

The application of the Z—P method to a contour defined by four

I points was given in detail in Sections 3.2.1 and 3.2.2.1. For contours

- with more than four defining points, which must, therefore, be divided

initially into zones (Section 3.2.2.2), the final decomposition is ob—

tam ed for the first zone by applying the procedure for a single zone.

For zone r(r > 1) the process is the same except that in using the

four vertices ~~ ~~~~~ 
~
‘
~~~
—
~~~‘ ~~~~~ 

defining this zone (Figure 3) the

- parameters (
~~, ri~ ) given by (6b) are requ ired only for s 2 ,3,...,2n

1
+1,

- t—1,2,.. . ,2n
2
+1, since the inter—zone nodes corresponding to e l  have

I already been accounted for as those corresponding to a — 2n
1
+1 in zone r—l .

Since all the-squares are in line, general ‘coordinates’ (i,j) can be

F1~ 

__

~ 

- V .  S —- ~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~
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I D

I . C

/A B

Fig. 14(i). A subdivision scheme for a triangle.

B

. .

_ 
• V L

A

•

. I —

I - 0

Fig . 14(u ). A subdivision scheme for a circle.

- •
. -- 

~~~~~~~~~~~
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Fig . l4(iii) .  A subdivision scheme for a semicircle.

I V
~

F H

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I V. Fig. 14(iv). A subdivision scheme for the ‘circle-with—
I tangents’.
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\

- 

-

. - -



V 

~~~

I H
1
I ~~~~
- 

C~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I 9’120° 

A B

Fig. 14(v). A subdivision scheme for a sector of an

annulus.

I I

I -
!

I- -

F

~~ \ \ \ \~ \I \ \ \  \ \ O \ \
I \\ •\ \ \ \ \I ! \ \ \  \ \ \~

F
F Fig. 14(vl). A sector of an annulus: a subdivision

scheme with some matchpoints lying out—

Ii 
side their subdotnains. j ~

it 
- - --\ 

_ _ _ _ _ _ _ _ _ _
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I Fig. 14(vii). A subdivision scheme for a diamond .

Fig . 14 (vii i) .  A subdivision scheme for a regular

hexagon .
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adopted to identify the vertices for the p zones, where 11 ,2,.. .2n1
p+l,

j 1 ,2,. ..,2n2+1.

The layout of the nodes and subdomains generated in a regular

I hexagon, for N
1 = 6 = N2 and k

1 = 1.0 = k2 , are shown in Figure 14(viii).

4. THE INTERACTION MATRIX AND THE POTENTIAL INTEGRAL

I 4.1. Integration over Triangular and Quadrilateral Domains

I The rectangle shown in Figure 6 will be mapped onto a curvilinear

quadrilateral subdomain of the disc in the x—y plane (Figure 15) so that

I the centre P~~ of the rectangle is mapped onto a point within the

quadrilateral. This quadrilateral has. as vertices the points Q~1
,

Q~~ , Q~~, Q~~ , which are, respectively the images of the, points in• the

I’ original square with coordinates 
~~i+l’ 

-~~~~~‘ 
~~~~~~~~~ ~~÷])‘ ~~~~~

‘ 1
~+~~

and (
~~, ni). For integration purposes the four points in the x—y plane

I are taken as the vertices of a polygon, so that the disc is ultimately

replaced by a collection of such quadrilaterals (Figure 14).

Using the notation of Section 3, Figure 15 may be taken as

illustrating the rth subdoniain 
~ 

of the disc. The four triangular

subdomains ark’ k=l,2,. . . ,4, are those obtained by joining P~~ to each
of the vertices of the quadrilateral , so that 

~
2rk has as vertices the

• 
points Q~1

, Q~~
1, F

li
, where Q

~~ 
= Q~~. It has been shown that the

piecewise integration over ~ ind ica t ed in ( 5a) depends on integral

1 expressions of the f orm C rk~ 
These expressions are best evaluated by

the use of the area (or barycentric ) coordinates of the triangle 
~
1rk •

I
- V ~~~~~~~~~~~~
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I
3

2Qil
I \~\\~T/

- \ i c~r3~~~~’L \I

I - \ / ~ -V-— --.—.——-
-.—-- 

~~~

~~~~~

I Fig. 15. A quadrilateral subdomain in the x—y plane div id~-d

into four triangles.

A

I 
B~~~~~~~~~

I
~~~~~~~

/
N 

\

ç

l7sO

• 

‘
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—

~~~~~~~~

I’ Fig. 16. Area coordinates for the triangle ABC.
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The use of the:e coordinates is a standard procedure in the literature [22—251.

These coordina tes are usually denoted by ~, Ti, ~, 0 < ~~, 11, ~ < 1, and are

def ined , for any point P(F ,r~,~) in the triangle ABC (Figure 16), by

ABPC ~APC AAPB

SAC ABC ACB

where 
~ABC is the area of triangle ABC, etc. Thus ~ + r~ + 1 = 1, and the

equations of the sides AS, BC and CA can be expressed , respectively, in

the fo rms : r = 0, ~ = 0, r~ = 0.

For any function f(x,y) which is integrable over triangle ABC,

1 l—r~JJ f(x ,y)dxdy = 2 
~ABC I J {x(~ ,r~) ,  y(~ ,ri)} ~~~~ (24a) -

~ABC 0 0

where 
~ABC 

denotes the domain of the triangle.

The transformatio: ~~‘ = , i’ = 
~ converts (24a) to

f(x ,y)dxdy = f f (1—n ’) f{~(~ ’, n’), ri ’} d~ ’dn ’ (24b)

This transformation effectively maps the triangle bounded by ~ — 0, ii — 0

~ +71+1 0 in the ~—r~ plane onto the square [0, 1] X (0 , 1] in the ~‘—fl’

plane.

It is easily shown that if the vertices of the triangle are

A(x 1, y
1
), B(x 2, y

2
), C(x 3, y

3
) then

I-
I l

-S
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J x x
1 

x
2 x

3 ~

y — ‘l y
2 

y
3 ~

- 1 1 1 1 C

- i .e. x = a
1~~+ b

1
r 1 +c

1
(25)

y — a 2~~
+ b

2~~
+c

2

where a1 
= x

1 
— x3, b

1 
= y

1 
— y3, c

1 
= x3, etc.

The inverse rela tion is

y2 - ~~~~ 

x
3 

- x
2 

x
2y3 

- y2x31 x1
71 -

~~~ 
y
3 

- y1 x~ 
— x

3 
x
3
y1 

— x
1
y
3 

y (26)

I C y1 y2 
x
2 

- x
3 

x1
y2 - y1x2 1

I where 21~ — (x
1 — x3) (y

2 
— y

3
) — (x

2 
— x

3
) (y

1 
— y

3
), and ~I is

- • 
the area of the triangle.

Equation (26) can be expressed in the form

( - ~~= A 1
x + B

1
y + C

1 
, 71 A2x + B 2

y + C
2 ,

C l ~~~~~~~
fl ,

where A , B , C , etc. are constants.1 1 1
For quadrilaterals of the type shown in Figure 15, uniqueness of

• the area coordinate representation of points in the various triangles can

be ensured across the four interior boundaries by arranging that such

lines should correspond to either ~ — 0 or ~i — 0 in each of the two

Ii
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I triangles in which it belongs. If the coordinates of a typical point

in the triangle 
~rk are ~k’ ~k’ 

Ck~ 
then the lines P

1~ Q~1 
can be

I represented as ri.~ 0 — 714 , whilst ‘
~ 1 

~~ 
has the representation

- 
~l 

~ — 

~2’ etc., as in Figure 17.

1 4.2. The Potential Due to a Uniform Charge Distribution
I over a Triangular Domain

The potential at a point (x~ , y’) in the plane of the triangle

I - ark’ due to a unit charge density on this triangle is (4irc )~~ Csrk~
where Csrk is given by (5b). On applying the transformation leading

I to (24b), and dropping the primes on ~ and 71, we have (appendix ,

- Section A2.l.l.)

1. 1 1

i 
Csrk — 2

~rk J dii J D{x’, ~~F~~~}
= 2

~~k J g(x’, y’;ri)dn, (27)

I where 
~rk is the area of 

~~k’ and g (x ’, y ’;ri) is given by
I :

I ark g(~~ , y~ ;fl)

I — log {a+bfl + 1(a+b~)
2 
+ (c+d ri)

2} — log {a’+b’fl + [(a~+bt fl )2(c+dfl)2}
(28)

where ark — alrk + a~rk ; a 1 + R(x ’, y ’); b — P—i;

c — S(s~ , y ’); d — Q; a’ — R(x ’, y’); b’ — P;

P _ (alrk blrk + a2 k b2 k )/a k
; Q — (al k b2 k  - a2 k bl k )/a k

R(x~ , y~) — (a lrk (c lrk — x ’) + a2rk (c2rk — ~~))/cL~~

I S(x~, y~) - {alrk(c2rk - - a2rk (clrk - x~)) /a
~k 

.

- -
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Fig. 17. A quadrilateral subdomain in the x—y plane , with area
coordinate representation of interior and exterior

- boundary lines.
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Fig. 18. A triangular subdomain
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I Here , on referring to Figure 18:

I airk 
= Xirk 

— X3 k ~ 
blrk = X2 k  

— X3 k ,  Cl k  = x3rk ;

I 
a2 k  = 

~
‘1rk 

— 

~
‘3rk’ b2rk = 

~2rk 
— 

~
‘3rk’ c2~k 

= 

~
‘3rk

The evaluation of the n—integral (Section A2. 1.2)  gives

- 
J ~

2 k~ 
C

k 
= ~ (1) + ~‘( 0) - 

~(0) - ~‘( 1) ,

- where E (T1) = E(a,b;T)), E ’( f l )  = E( a’, b’ ;ri)

and E(a,b;n) = 
C + dii log ~a+b~ + 1/ (a+bfl)

2 
+ (c-I-dfl) 2 }

- 
ad - bc log 

d{a+b~~~~(a+bfl)
2+(c+d fl) 2}_ (c+dn) (b+~~b2

~~
2)

I. 4b
2 + d2 d{ a+b~~~~(a+bfl)

2
+(c+dfl)

2} * (c+dn)(b_ ~~b
2
~~

2
)

I An alternative expression for C rk~ 
which is less susceptible to

round—off errors is (Section A2.l.2)

(
rk) 

C
srk 

= P(l) + ~ ‘ (O) - ~(0) - 
~‘(l) , (29)

rk

where F (ri ) = F( a,b;ri), ~‘( n) = F(a’,b’ ;n) ,

I 
- and F(a ,b;~) = log fa+b~ + ~~(a+b )2 + (c~~fl)

2}

+ 
ad - bc log t(b

2+d2)n + ab+cd + \I((b2+d2)ii+ab+cd}2+(ad_bc)2]

I d~(~b
2+d

I :  For an arbitrary field point with coordinates (x ’ ,y ’ ,z ’) ,  which

need not lie in the plane of the triangle, the distance function D in

1 (27) is repla ced by

_ i
-V V -V -- -- V
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~ {x~, y~
, z’; x(~ ,fl) , y(~~~)} = {(x_x~)

2 
+ (y-y ’)2 + z~

2}~
/2 

.

In place of (28) we now have (Section A2.2.l)

I ark g(x~
, y~ ,

F — log {a+bii + 1(a+bfl)
2
+(C+dfl)

2
+e
2} - log{a’+b ’r,+ V(a’+b’n)

2
+c+dn)

2+e2},

I where e — z
~
/a k, and the other constants are as for (28). On evaluating

the n—integral (Section A2.2.2) we find that

I- 1 
-

aTk J g(x~, y~, z’;n)drl = ~(1) + ~‘(0) — 
~(0) 

— 
~‘(1),

1 0 •

I where ~ (fl) = G(a,b;n), ~‘(n) = G(a’,b’;n),

and G(a,b;n) — 
c+dfl log {a+b~ + ~ (a+bfl)

2 
+ (c+dfl)2 + e2}

+ 
ad — be log [(b 2+d

2 )fl + ab+cd+1f{(b2+d2)Y1+ab+cd}2+(ad_bc)2+e2(b2+d2)]

d4b
2+d2

+ ~ sin
_1[ de~~(~~b71)2 + (c~~n)

2 
+ e

2 1 .- d 
LV
’
~~c+~j~~

2+e21 {ad_bC)2+e2(b2+d2)}J

Thu. the potential at an arbitrary point in space, due to a unit charge k
density on the triangle 

~rk 
is (4-rr c )C k’ where

I .
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I
1

~
2 k~ 

Csrk = ~(1) + ~‘(O) 
- 
~(O) - ~

‘(l) . (30)

This expression for Csrk reduces, as expected, to (29) when e — 0.

I Expressions of the form log [X +ilx
2 + Y2] occur in both (29)

and (30). If X is negative such expressions are best computed by using

the alternative form

- I  r~~~2
logi _______

L X + ~~
h/X2 + Y 2

5. RESULTS AND OBSERVATIONS -

5.1. Charge Distribution

I. The charge density on an ellipse with semiaxes a and b is [211

I ‘ a = 
4irab 

(1 — 
X 

— L_)~~~
1/2 

, (31)

where (x,y) are the coordinates of a typical point in the ellipse,

and Q Is the total charge, If an elliptical disc is maintained at

unit potential, then observing that the charge accumulates on both

V 

sides of the disc, (31) gives the charge stiThujtbom a on the disc as

a — 2-~~b (1 - — ~i)
u12 (32)

a b

where C is the capacitance of the disc as given in the appendix V
(Sec t ion A. l . ) .  . 

~~ 

-

F V
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I The exact charge distribution (32) has been compared with the

computed values for a circle of radius/cm (Figure 19), and for an

- ellipse with a — 5 cm, b = 1 cm (Figure 20). The results show that

for a given number of subdivisions of the ellipse or circle (i.e. for

fixed values of N
1 
and N

2 
as defined for the Gordon—Hall square) the

I use of non—uniform section ratios k1 
and k

2 
gives a charge distribution

which is more accurate than for uniform section ratios. As expected , a

non—uniform section ratio allows charge densities to be computed very

near the edges, and the approach to the square root singularity at the

edges is more clearly brought out. For N
1 

= 8 = N2 for example, at

comparable points in a circular disc , working with uniform section

ratios (i.e. k
1 

= 1.0 = k
2
) results in error margins of 24% near the

edges and 1.7% near the center, whereas for k1 
= 0.1 = k2 the error

margins are 4% and 0 .7% .  For an elliptical disc with a = 5 cm ,

b = 1 cm , the figures are 52% and 1.4% for uni ty section ratios , and

1’ 4% and 0.8% for section ratios of 0.1.

The distribution for unity section ratios for a square of edge

2 cm (Figure 21) agrees with Harrington ’s result [3] to within 1%

everywhere except at the node nearest to the edge where the difference

- 

is 1.7% (Figure 21). The beneficial effect of non—uniform section

I 
- ratios is again evident . In Figure 22 , drawn for a regular hexagon of

side 1 cm, the distribution shows the expected syuznetry and the rise

V 
in the charge density as one approaches the edges.

I Figure 23 compares the computed char ge di str ibut ion over a

semicircle with that for a full circle. A similar figure (Fig . 24)

I

_ _  .~~j
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N
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0
U
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- d (C M )  -:

Fig. 19. The circle: radius = 1 cm. Charge distribution.
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0 E X A C T

o k . O . I • k 2
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x k~.I.O sk ~

I DISTANCE d A L O N G  THE MAJOR A X I S  (CM)

- 

Fig. 20. The ellipse: a = 5 cm, b = 1 cm. Charge distribution.
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2
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0
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1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~DISTANCE (CM) FROM THE CENTER OF THE SQUAREI i s

Fig. 21. The square: 2 cm X 2 cm. Charge distribution .

I •

H
Ii

5- - -~~ 
V 

-S -V. V — 
I ___



- 
~~~~~~~~~ W ~~~~~~~~ -V V. V. V. ~~V. V. ----V - - — -V

48

I
I

7 . / l i / / A
/ • / / \

/ ~~~~~~~~~~~~~~~~~~~~~~~ /\
L4.oe/ • / I T - 7L~~J3.36/ \
/~~—.JI.93 I 

• / / / I\ / A
/ p5-5- — “169~~~~~~ 

1 I ~~~ I • I\

,4~ / . 7~ j&j~4; / . / )K~ o2/ \
/ )(~~83/ • / /~~-.4J~.45/ / V~io/ \
A3-93/ ~-/~.57/ . / y ~ -~(I.45/ /\ / X
/ ~V~ 83 / ~~Q.4I/ • 

I 
/ N’~.47 / ‘c3.31/ \

V .  ~~.69/ 7< / / I / ~
-
~ A.4I / 7~&~/ V

~
/ .  ~4~/ Y~ (3;V . / ~*~/ .  )~Y
\3.31/ \/, / )‘....~ /I.33 / • / i~’-~:°~i /
\ / )~~~~“/ / 7 ~~~~~~ / . / ~~~ .93/• I \ / • / / r—. / / / 5--..- /\ -  / ~~I.45/ .7 / 7~

—..-Ji.83/ . 7
\ I / \  I I • I / ~~~~~~~~~~~~~~~~~~

“(so~/ 
‘

>
L:

~~~IL~~
7 

~ 344’~~ I. ,
75-5-

~=
7

f

\L3.36/3.02/3 Io/ 3.3~J 36~T4s~j

[COULOMBS X IO~
9/ M 2]

Fig. 22. The regular hexagon: side 1 cm , N
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= 6 = N2, k1 = 1.0 = k
2
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Fig. 23. The circle and semicircle: radius = 1 cm.
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Fig. 24. The triangle and the square : side of square 2 cm.
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I has been drawn for a square and a triangular half of this square.

5.2. Capacitance

It is shown in th~ appendix that the capacitance of an elliptical

disc with semi—major axis a is

C = 4ITaE /K(e) , (33)

where K is the complete e l l ipt ic  integral of the f i r s t  kind and the

modulus e is the eccentricity of the ellipse. A computer program

I (PROGAE) computes C from this expression , using the Hastings approxi—

I - 
mation [17,28) for in the fo:m

K(k) = 
~ 

a k ~’ — 2[ ~ b j~2r 1 log k + £(k),
V 

, r 0  r 0  r

whereI Ic(k)I < 2 x lO
_8

, j~
2 

= 1 — k2 , and

I a0 = 1.38629436112 b
0 

= 0.5

a1 
= 0.09666344259 - b

1 
= 0.12498593597

I a
2 — 0.03590092383 b

2 = 0.06880248576
I - 83 — 0.03742563713 b

3 
= 0.03328355346

a4 — 0.01451196212 b
4 = 0.00441787012

For a circle of radius a we use the well—known result C = 8ac ,

I ‘ 
which , as shown in Section A. l , is a particular case of (33).

Convergence curves which show the variation of C with (N 1N 2
) 1

I for the circle and the square (Figure 25) indicate that section ratios

Ii
-
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I Fig . 25. Capacitance vs. l/N1N2. The circle (R 1 cm), the

square (2 cm X 2 cm). -I ,
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of 0.1 give a more accurate value for the capacitance than unity

I section ratios. The greater accuracy obtained with section ratios

less than unity, which was observed for the charge density, is also

reflected in all the capacitance computations. This improvement in

I accuracy agrees with similar observations made in the investigation

of current distribution effects in perfectly—conduc ting cylinders [20].

I To estimate the capacitance for an infinite number of sub-

divisions (i.e. the asymptotic capacitance) we use a power series pro-

cedure which gives C as

I C —  ~ i (34)
- 

i=0 (N
1
N
2)

I If there are m sets of computed data in the form ~N1 ,  N2
; C ) ,

s — 1,2,.. .,m , then by truncating (34) in the form

i=0 (NN)
.1 2

I the following matrix equation

I [ (NN )r_l] 
~~r...1

1 = [C] ,

r = 1,2 , . . . ,  m; s = 1,2,..., m ,

I 
is then solved to give 

~~ 
as an estimate of the asymptotic capacitance.

For the circle, the asymptotic capacitance computed for various

sets of data corresponding to Figure 25 are given in Table 1. The

II
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deviations of the values for section ratios of 1.0 and 0.1 are ,
respectively, within 0.9% and 0.2% of the exact value. The capaci-

tance for N
1 

= 10 — N2 (i.e. for the largest values of N1 and N2

used) is found to differ from the exact value by 0.37%, whereas for

N
1 — 8 = N

2
and for the same section ratios, the error is slightly

less (0.31%). This gives an indication of the effect of the increase

of round—off with the number of subareas.

Since an inscribed polygon underestimates the area of any

convex domain, one would expect the computed capacitance for such

domains to be lower than the exact value. This is found to be the

case for the circle and for the other convex domains investigated.

Tables 2 , 9 and 12 list the computed values of capacitance for the

ellipse, the semicircle and the ‘circle—with—tangents’ and also

give the percentage deviation of the area of the inscr ibed pol ygon

(computed by adding the areas of all the triangular subdomains) from the

area of the original domain.

For polygonal discs on the other hand , the mesh generation

procedures ensure that the inscribed polygon is the same as the

original domain, Figs. 14(i), 14(vii) and l4(viii), so that the area

of the inscribed polygon as computed agrees with the area of the

I - 
original domain up to the fifth significant figure at least (see

Tables 4—7 for the regular hexagon, the diamond , the rectangle and

the triangle). Computations for the square of edge 2 cm (Figure 25

and Table 3) show that the capacitance for N
1 

= 10 — N
2 
and section

ratios of 0.1 (i.e. 0.8102 pp F) is within 0.43% of the asymptotic

Si 
-

1.:
5- V. - ~~‘-

‘

V — 

5~~~ 

—
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value (0.8137 pp F). The asymptotic value obtained by Table 4 is

0.34 e.s.u. which is 0.8156 pp F. For the diamond (Table 5a) and

the rectangle with dimensions 3.3 cm X 1.4 cm (Table 6), the capacitance

computed for N1 
= 8 = N

2 
and 0.1 section ratios are, respectively,

0.6510 ~4i F and 0.9029 PU F. De Meu Lenaere and Van Bladel [29) give

0.661 pp F and 0.897 pp F.

The results for the sector of an annulus (the only non—convex

domain investigated here) indicate that care must be taken in approxi—

mating domains by polygons. It is important to ensure that the match

point generated lies not only within the curvilinear quadrilateral

corresponding to it, but also within the final quadrilateral obtained

when the curved sides are replaced by straight lines. When the sector

angle is 1800 and the section ratios are unity, this condition holds

when N1 — 8 — N2 , but it is violated when N
1 

= 4 = N
2 
(Figure l4(vi)).

A low section ratio can also give a match point lying outside its

quadrilateral. Thus, for example, for 0 = 1800 and N1 = 8 = N2

(Table 10) a section ratio of 0.1 produces this anomaly, as also

happens when 0 = 120° and N
1 

= 4 = N
2
. Match points are, however,

properly situated in the latter case when the section ratios are unity.

Generally a violation of the match point condition at certain

points leads to a distortion of the charge distribution , including

the exis tence of negative charge distributions at some of these points.

It also gives for the approximating polygon an area which is larger

than tha t of the original doma in mainly because of the resulting

F
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I
duplication of triangular subdomains as the area is computed . As a

guide, well-positioned match points can be ensured by choosing N
1

and N2 
in proportion to the lengths of the corresponding arcs of the

domain boundary.

I 
The effect of the distortion in the shapes of the quadrilaterals ,

when the match point condition is met , has been investigated by comput—

ing the percentage errors in the values obtained for the area and the

capacitance for ellipses with aspect ratios (i.e. minor axis/major axis)

from 1 to 0.2 (Table 11). The results show, for the coarse subdivision

I used (N
1 = 4 = N2), that the area is in error by 2.6% in all cases. The

corresponding figure for the capacitance varies from 5.4% for an aspect

I ratio of 1 to 4.9% when this ratio is 0.2. These errors are thus due

more to the coarseness of the subdivision than to the shapes of the

quadrilateral subdomains.

I 
The computations also show that the capacitance of half of a disc

is greater than half the capacitance of the complete disc .

6. CONCLUSION

A method of moments technique of solving the singular integral

equation satisfied by the charge distribution on perfectly—conducting

flat plates of arbitrary shape, which uses automatic mesh generation

techniques, has been presented. The method relies on the use of graded

quadrilateral subdomains and has been applied to a variety of disc shapes,

including the rectangle for which the quadrilateral subdomains reduce to

- rectangles. The procedure yields charge distributions and values of

‘ V .  

V

- - V
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I
capacitance which are in excellent agreement with the exact values

for the circle and the ellipse , as well as with published numerical

results for the rectangle obtained by other methods of computation.

I The results indicate that with a moderate number of subdomains it is

possible to obtain values of capacitance which are accurate to within

1. . 0.5%.
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Table 1:

- 
The Circle

1 Radius = 1 cm: Capacitance
- Exact Value of Capacitance: 0.70800 ;jjjF

________________________ ___________________________________ ______________________________________________________

Asymptotic C~pacitance

I 
N1 — N2 — N — k2 = k Computed Value (~iuF) ¼ Error

6, 8, 10 1.0 0.7017 0.89

I 6, 8, 10 0.1 0.7035 0.65

6, 8 0.1 O.lrj6S 0.21

Table 2:
The Ellipse

Semi Axes: 5 cm, 1 cm: Capacitance

Area 
__________ 

Capacitance 
—

N k Computed xl0~~n
2 

¼ Error Computed Value (ppF) ¼ Error

4 1.0 0.15307 2.6 1.753 4.9

4 0.1 0.15450 1.6 1.817 1.5

8 1.0 0.15607 0.64 1.802 2.3

8 0.1 0.15495 1.4 1.838 0.29

Asymptotic Capacitance

- N k Computed Value (ppF) ¼ Error

4, 8 1.0 1.818 1.4 - :-
~ 

-

4, 8 0.1 1.846 0.11
_________________________________________ _________________________ — l ’ s-

- I -

- - -I - -
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The Square
Edge 2 c m

1 N k 
— 

Asymptotic Capacitance (ppF)

4, 6, 8 1.0 0.7988

I 4, 6, 8, 10 1.0 0.8037

4, 6, 8 0.1 0.8126

I 4, 6, 8, 10 0.1 0.8137

I Table 4 :
The Regular Hexagon

Edge 1cm

I Exact Area: 0.25980 x 10 3
m
2

N k Area (x 10 3m 2)_
— 

Capacitance (pp F)

1 4 1.0 0.25980 0.6120

/ 4 0.1 0.25980 0.6345

6 1.0 0.25980 0.6234

I 6 0.1 0.25980 0.6415

Asymptotic Capacitance

I - N k Computed Value (ppF) V

4, 6 1.0 0.6325

4, 6 0.1 0.6471

I 
V

F 
V.

-
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I 
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- Table 5:

- 
The Diamond

I (a) Semi Axes: a 1.65 cm. b = 0.7 cm

Exact Area: 0.231 x l0 3
m
2

I N k Area (x 10 3m
2
) Capacitance (1 1PF)

4 1.0 0.23100 0.6063

4 0.1 0.23100 0.6380

8 1.0 0.23100 0.6305

8 0.1 0.23100 0.6510

(b) Semi Axes: a = 2 cm, b = 1 cm

I Exact Area: 0.10000 x 10 3m2

- 
N k Area (x 1O 3

m
2
~~J~~apacitance (ppF)

4 1.0 O.10’)OO - 
0.3914

- 

4 0.1 0.10000 0.4117

I Table 6.:
The Rectangle: 3.3 cm x 1.4 cm

- Exact Area: 0.46200 x l0 3
m
2

N k Area (x 10 3m2) Capacitance (ppF)

I 8 1.0 0.46200 0.8755

8 0.1 0.46200 0.9029 $

_______ __________________ ____________________

- E

— -V.----- ~~~~~~~~~~ ~V -VV.~
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Table 7
The Triangle

Adjacent Sides: 2 cm, 1 cm; Included Angle: 90°

Exact Area: 0.20000 x 10 3
m
2

—3 2N k Area (x 10 m ) Capacitance (ppF)

4 1.0 0.20000 0.5648

4 0.1 0.20000 0.5958

6 1.0 0.20000 0.5800

6 0.1 0.20000 0.6050

8 -1.0 0.20000 0.5879

8 0.1 0.20000 0.6077

Asymptotic C~ipac1tance

N k Computed Value (;‘uFj~

4, 6, 8 1.0 0.6001

4, 6, 8 0.1 0.6109

Table 8
The Semicircle: Radius 1 cm - 

-

Exact Area : 0.15708 x 10 3rn
2

N k Area- (x 10
3m
2
) Capacitance (IJUF)

I t —

4 1.0 0.15307 0.4855

V 4 0.1 0.15616 0.5105 $ p ’.-
8 1.0 0.15607 0.5041 -

~~~~

8 0.1 0.15537 0.5186

— t r
- V.

’

~~~~~~V. 
~~V. V.iL
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Table 9
The Quadrant
Radius = 1 cm

Exact Area: 0. 78540 x 10

N k Area (x 10 4
m
2
) Capacitance (ppF) 1

8 1.0 0.78413 0.3507

8 0.1 0.78273 0.3612

Table 10
The Sector of an Annulus: Radii: R

1 
= 1 cm, R2 = 2 cm

(a) Sector Angle: 180°

Exact Area:

______ 
Area 

_____________ ____________________

N k Computed (x 10 3m2) % Error Capacitance (ppF)

8 1.0 0.45922 2.6 0.9456

8 0.8 0.45897 2.6 0.9502

8 0.1 0.53833 14.2 0.9399

-......— I _ _ _  _ _ _ _ _

(b) N = 4, k = 1.0

______________________ 
AreaSector 

—3 2 —3 2 I
Angle Computed (x 10 rn ) Exact (x 10 m2J % Error Capacitance (ppF)

V. 180° 0.44534 0.47124 
1 

0.90000

120° 0.30000 0.31416 4.5 0.7113

90° 0.22961 0.23562 2.6 0.5994

~

- I ~ - 

-

_ _  

- 
-S 
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I Table 11 -

The Ellipse: Semi—Axes: a, b
N — 4, k = 1.0, b = 1 cm

( 
______ 

Variation of Capacitance with a/b

a 
Area (x ~~~~m

2) Capacitance (PPF)

1 (cm) Computed Exact 
- 

¼ Error Computed Exact 1 % Error

1.0 0.30615 0.31416 2.6 0.6695 0.70800 5.4

I 1.2 0.36737 0.37699 2.6 0.7350 0.77719 5.4

1.4 0.42860 0.43982 2.6 0.7980 0.84365 5.4

1.5 0.45922 0.47124 2.6 0.8288 0.87604 5.4
V 

1.6 0.48983 0.50265 2.6 0.8591 0.90794 5.4

1.8 0.55106 0.56549 2.6 0.9185 0.9703 5.3

2.0 0.61229 0.62832 2.6 0.9766 1.0314 5.4

5.0 1.5307 1.5708 2.6 1.753 1.8436 4.9

Table 12
The Circle—with—Tangents: Tangent Angle (ci) — 30°

— 3 2
_ _ _ _ _  _ _ _ _  _ _ _ _  

Area (x lO m) 
_ _ _ _ _ _ _ _ _ _ _ _

Radius (cm) N k Computed Exact Capacitance (jjp F)

1 ~ 1.0 0.37320 0.38264 0.7509
4 0.1 0.38202 0.38264 0.7869

2 8 1.0 1.5210 1.5306 1.553j 8 0.1 1.5144 1.5306 1.593

I

.

I L
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- APPENDIX

A—i . The Capacitance of an Ellipsoid

The capacitance C of an ellipsoid with semiaxes a, b, c is given

21by Smythe as

C — 8rr c dx 
. (Al)0

/ 0 ~~(x + a2) (x  + b2)(x + c2)

In order to evaluate the integral in (1) we use the following result

given Jahnke, Emde and Losch26
:

f dt ! F(4,k),
+ t

2)(c 2 + t
2

) 

c

where cot 4~~~x/c , k= ~~~V~~
2 _ b 2, 0 (k < l ,

and F(4,k) — du ,

0 Il—k
2 

i~
2

the incomplete elliptic integral of the first kind. Under the trans-

formation t
2 — x + c2, the integral in (Al) becomes

I_ 2 r dt
j(t2 + a2 - c2)(t7 + b2 - c2) 

r
Using (2), and assuming that a > b > c, we obtain in~ ediately

- 2 F[co t~~ 
c~~~~, ~ a

2 
- b~ ~

7
~~~~~ a

2
- c

I

~V.V.~~ — .  V. --V V . _ V .  V.~~~~~~
’ ‘
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I
The capacitance of the ellipsoid can, therefore, he expressed in the

form

I 
C — 4rc (a2 — c2)~

/2/F[sin
_1

(1 — c2a 2)~’2(a2 — b
2
)1’2(a

2 
— c

2
~~~

’
~
2 (A3)

This expression corrects the result given by Stnythe.
21

The El1~pse

When c = 0, because F(~T/2,k) = K(k) (i.e., the complete elliptic
integral of the first kind with modulus k), (A3) becomes

C = 4lTac /K(e), (A4) V

where a is the semi—major axis of the ellipse and e the eccent ‘.

For a circle of radius a, putting a = b in (A4) gives iimi~ ~~i i t ~~~~7 -

C = 8ac ,

a well—known result.

I V

A ..2 The Potential due to a Uniform Charge Distribution

Over a Triangle.

I We present here a summary of the procedures adopted in deriving

the relations (27) and (30) for the potential due to a uniform charge

I distribution over a triangle. The notation adhered to is that used in

Section 4.2, unless otherwise indicated .

•~ 
1’ 

-

[
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A.2.l Field points in the plane of the triangle.

A.2.1.i The ~—Integra1.

We have

g(x’,y’;n) = (1- ~)d~ (A-5)
S 

~ n{x~,y’;x(~,n),yU,n)}

where

D{x’,y’;x(~ ,fl)~ (~ ,fl)} = ~[~x(~ ,n) - x,}2 + {y(~ ,n) -

— x~ A1~ + B1, y(~ ,n) — y
~ = A2~ + B2,

c = c  — x ’A - a (1 - n), B
1 = blrkfl + Clrkl irk irk s1 irk

A2 = a2rk(l ‘1), B2 = b2rk Tl + C2rk C2 k  C2rk —

We then have

D
2{x ’,y’,x(f ,Tl),yU,fl)} = (4 + A~)-((~ + p ’)

2 
+ q2]

S

where
2a (1 - ~)p’ = fl(a lk bl k  + a2 kb2 k ) + a1 kCl k + a2 k c2 k ;
rk
2cxrk(i — n)q = ~ (a1 kb2rk — a2rkblrk) + a1 kC2 k — a2 k clk .

These relations give

_ _ _~~~~~~~~~~~~ — f 
d~

0 + , 2 2

i.. cz~~g(x~,y~;n) — [cosh~~ 
~ + P
q 0

wh ich is the same as (28).  r

I
3

-S --



—~ - S w  V. • V V. -V~~~~ ~~~~ V. V V. —

— 

__ _
,I

70

A.2.l.2. The n—Integrals

In order to obtain (29) we require a primitive for

f(n )  — 1og{a+br~+./(a.fbfl)
2 

+ (c+dn)
2
}-1og(a’+b.mn+-/(a’+b’n)~ + (c+d~)

2}

It is easy to see that such a primitive has an algebraic form which does

not depend on the sign of (c + dq). Thus, provided — c/d 4: [0,1], we may

consider , instead , a primitive for the function

_ _ _ _  

I 
_ _ _f’(n) — log 

~ + dn~ 
+ c~~n~ 

+ l} - 10g(( a ’~~ ’fl ) +I(a ’+b’ n 2 
+ 1)

However, it can be shown that even when — c/d C [0,1], the improper
1

integral I f ’(r i ) dn converges . It is, therefore , sufficient to obtain
JO

a primitive E1(a,b;n) for

- ( 
V 

_________ _________— logf(a + bfl) + [(a + bfl)
2
.Fl}

+d v  ~ c + dn

‘ i t

for the case c + dii > 0.

On writing a + bn — (c + drt)sh 0, we find that

ad — bc 0 ( dO.

J ?(a,b;n) dii — d ~dsh0 ~~ - J dsh0 - b 1

and it is easily shown that

________________________________ ____________________________________

f 
dO 1 I d(sh0 + cosh 0) — (b + ~~b2 + d2) I

dsh — _ _ _ _ _  
log J  

_ _ _ _ _  I ,0 — b  
1b

2 + d 2 J d(she + cosh o )_ ( b_ 4b 2
+d

2
) I

so th~t -

E1
(a ,b,fl) — E(a ,b;ri) + c + dii log (c + dii).

II A primitive for ~ (a ’,b’;ri) is

c + dii

II

E1(a ’ ,b’ ;r~) — E(a ’,b’ ;r i ) + d 
log (c + dii)

II

(-S
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- Thus the required primitive for f(~) is

E( ii) E(a ,b;n) — E(a’,b’ ;n). (A6)

This primitive yields the first expression for Csrk given in Section 4.2.

Alternative Expressions

I 
We now consider alternative methods of simplifying the expression

H(a ,b;~ ) = log ~d{a + b~ + ~~(a+bn)
2+(c + dii)2} - (c+d ~ )(b +~ b

2+d 2)~
d{(a+b~)+ 1f(a+bfl)

2
+(c+dfl)

2
} — (c+dii)(b—~ b

2+d2)

I (1) Direct reduction

I 
Now 

H(a ,b;n) — log d(cosh 0 + sh 0) — (b + 1/b
2 + d2)

d(co sh 0 + sh 8) - (b - .\1b2 + d2

Let 
_ _  _ _

I X
1 

— d cosh 0 +~~b
2 

+ d
2
, Y

1 — d cosh 0 - \fb 2 + d2,

a1 = d s h O + b , 81 — d s h 0 - b .

Thea X1Y1 -

+ 
~i 

(Y1 
- a1

)(Y~ + 8i)
Thus, H(a ,b;fl) i J  x1 + 

~~i 
f log 

- a1) (X1 + ‘

4- 
- 

- - - 
-—

- i.e. H(a,b;ri) — — log 8 + constant. 
V.-SV.V. -SVV. V. V. -S V.V-S V V.

1

‘

~ 

J 
On substituting for X1 and 8

~ 
and ignoring constants in the primitive

from now on, we f ind that - 

- -

I H(a ,b;n) - - log d + b 8h8 . cosh 0 ~b
2 

+ d~~~
J 

(Al)

Since (c + d~)(dshO — b) — ad — bc , a constant, we f ind , on simplifying

the right—hand side of (Al) that

a 
-

— 
- , . -V V. ’ 1V.



- - - ~~~~ V. V . V .  V.~~~~~~~~~~~~~ 

72 

V.

H(a ,b;n) — log[(b
2+d 2)n + ab + cd + ~~[(b 2+d 2)fl+ab +cd}2+ (ad _ bc)

2
J

- 

(A8 )

(ii) The use of subsidiary integrals.

We obtain here two primitives h
1(~

) and h
2
(~) for the function

I . 
h(a,b;n) = ~~(a + b~)

2 
+ (c + dfl)

2, (A9 )

where 
______________

h
1

(fl) = (c + dfl)~ /(
a bn 

+ 1 dii

and 
_ _ _ _  V

I h (ii) =~ fb
2 + d2 

J {n + ab + Cd}
2 
+ f

a + c
2 

- 
(ab + cd)

2
j  d~

b = d  b +d (b + d )

For h1(ri), putting a + bn = (c + dn)sh 0, as before, gives I

1 h
1
(~) = 2 2 {(b2 + d2)~ + ab + cd} ~~(a + b~)

2 + (c +
2(b + d )  - - - i

I - 
(ad-bc)

2 

~ 
dfa + bn + 1/(a+bfl)

2+ ( c + dfl)
2
} - (c +dn)(b+~~ b

2
+d

2

2(b 
~~ - d{a + bii + 1/(a+bfl)

2
+(c+dfl)

2
} — (c+drt)(b —~ib

2
+d

2 I
I

When the integral for h2(rt) is calculated, however , we have

I. h (n) 2 2 (b2 + d2)~ + ab + cd} 
~~(a + bii)2 + Cc + dfl)

2 - 
-~

2(b + d )I. 
_ _ _ _ _ _ _  

I
- + 

(ad - ~c) 2 log [ (b2+d2)n+ab+cd + ~ {(b 2+d 2)~ +ab +cd}
2 + (ad -bc)2]

2(b +d )

These V.
two expreee-ions_for the rimitive of h(a,b;n) thus establish the V. V. -

equivalence already implied by (Al) and (A8). - 
- . 

- -

I
I I F

— 
~~~~~~~~~~~~~~~~~ 
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A .2.2 Arbitrary field points

A .2.2.l The

Here, instead of (AS), we have
1

~(x~,y~,z~ ;n) 
~ — 

(1 — i i)  df

~ D{x ’,y ’,z’;x(~,~ ),y(~ ,n)}

where, on proàeeding as in Section A . 2.1.1 we find

I - a~~g(x ’,y’)z’;n) — d~ 
2

~~~~~~~~~~~ ÷~~~

—2 2 e
2 2 2  ,2.where q — q + 2’ and ci ke = z

(l—
~~
) r 

-

Thus,

~~~~~~~~~~~~~~ = log{a + bri + ~~(a + bn)
2 + (c+ d~)

2 
+ e

2}

—log{a’ + b’~ +-I(a’ + b ’ ri) 2 + (c+dri)2 + e2},

with a, b, a’, b’ , c, d, being defined as in Section A.2.1.l

A.2.2.2 The ri—Integral

(i) The p—ri transformation and applications V

We define a new variable p as follows: - 
-
~

p J~c+d fl )
2 +e2 .

This allows us to proceed as in Section A.2.l.2, so that we need only

consider the primitive of the function

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The relation

a + b n p sh~~

V. 
-~~ V. V V. _ _ _
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1
gives

pd sh~~~~~k + h ~~p
2

— e
2
, k ad — bc ,

so that p satisfies the x—quadratlc -

x
2(d2sh2 ~ - b

2
) - 2xdksh ~ + b

2
e
2 

+ k
2 = 0.

We choose the root p given by

up = dk sh ~ + bJ~~~
_ e

2
u, (A-10)

where u = d2sh2 ~ — b
2
, since this expression for p reduces to c + d~

for field points which lie in the plane of the triangle (i .e. for e = 0).
The primitive for f’(a,b ;ì~) is thus

G(a,h;n) = - Jn d~ .

Since bri = —a + p sh 4 ,  we have

G(a,b;rj) = C. — ~~~ C
1 

+

where

~~
p sh 4’ ~~~~ f d4’‘0 b ‘ ‘1 d d 

~ d
2
sh
2 

4’ — b
2

and 
~2 = J 

sh4’V’k
2 

— e
2
u 

d4’

Let

X = d sh 4’ + 1/b
2 
÷ d

2
, Y = d sh 4 ’-  ~~ b

2 
+ d

2
,

a d s h 4 ’ + b, I3 d s h 4’ — b  (All) 
L

Then XY = a~ , and we find that on writing f -

~~~~~~~~~~~~~~~~~~~~~~~~ __V.V.~~V.V.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ V.V. _-SV. V V. 
1 d d 1

— I d4’ 1 Y+~ Y+ ci
1 

— J d2sh
2
4’— b

2 
2b1b2 + d2 

— log 
~~

- —  ],
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I and 

e
2 du k2 du

— e u)(b +d +u) j( k - e u)(b +d +u)

It can be readily verified that

2 2
I du e —1 

_ _ _ _ _ _ _

j 
=~~~sin [e 2 2 2 2~~ ’

I j(k
2 

— e
2
u) (b2 + d 2+u) 

k +e (b +d )

I and _ _  _  _

f 
du 

- 
______  

log 
kV ~

2
+d
2
+u +1b

2+d
2 
fi~~-e

2
u

I - uJ~~~~ e
2
u) (b2 + d

2 + u) k/b
2 

+ d
2 

k ~/~
2
4~f
2 
+ u - lb

2 + d
2 /~ - e

2
u

(Al2 )

These results ultimately show that

I - G(a,b;n) = (c fl)~ + 
2 

[log - log~ ~~ f i
2 d b  +d

+ -~~ sin~~ 
ed cosh 4’

d 
V
’
~~~+ e 2(b2 +d

2
)

-
- 

+ 
k log 

kd cosh~4 +1b
2 +d21k

2 _ e2
u4, (Al3) -

•

2d{b
2+d2 kd cosh 4’ _ /b

2 +d2/k
Z_

~~~~I

— i

where • = log [a + bri + (a+brl)
2 + (c -+ d~)

2 
±V.!_]

.

+ d~)
2 

+ e
2

Ii

I
I

• 
- 

~

“

~~

‘ 

-
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(ii) Alternative expressions

The expression L L1 
— L

2 
+ L

3 
occurs in (Al3), where

I 
L1 = log ~ , (A14)

L2 = log 
f ~ ~ 

~, (A15)

and _______ ________

L
3 = log kd cosh 4’ + lb

2 
+ d

2 I~ — e
2
u (A—l6)

kd cosh 4’ — ~fb
2 + d2 ‘~/~~ — e

2
u

We give here a simplified form of L which is similar to the expression

H(a,b;ri) defined by (A8).

(a) Direct reduction

Let y = ~~(a + b )
2 + (c + d )2 + e2.

I It is easy to write (Al6) in the alternative form

I L3 = L31 + L32, (Al7)

where

L31 - log i 
~ 

+ d
2 
(b cosh 4’ + lb

2 + d2 sh4’) - kd

I p 1b
2 + d2 (b cosh 4’ — ~Ii,

2 
+ d2 sh4’) +

and 
_ _

I L — logJ lb
2 

+ d
2 
sh 4’ 

- b cosh 4’
b + d sh 4 ’+ b cosh 4’

~~~~~~~~~~~~~~~~~~~-furtb~~. reduct ion gives

L31 - p(a,b;~ )-1 og {k
2 + e2(b

2 
+ d

2)} , --—- -

I 
where P(a ,b;ii) - 2 log [(b2 + d

2) fl + ab + cd + y~~b
2 

+ d
2
J, (Al8)

I and ~~~~~~ d
2 
~~~(b2 + d

2
)ri + ab + cd}2 + (ad — bc) 2 + e2(b2+d2)

~ 
I F

4
- -~~ - -  - V.
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Using the relations (All) it is easy to show that

L
32 = log ~~~ = , (Al9)

- L1 
+ L

2 
= log I f I ;

- 

and that L
1 

— L
2 

+ L32 = log ~ b
2 + d

Z - 2b 
, a constant .

I. ~ b +d +2b

We thus have immediately

L
1 

— L
2 + L

3 
= P(a,b;ri) + constant, (A2l)

I so that the function L1 
— L

2 
+ L3, being a component of the primitive

G(a,b;ri) given by (A13), is equivalent to P(a,h;n). The function

P(a,b;n) is very similar to H(a,b;n), and reduces to it when e = 0.

Reduced expressions for L1, L
2 

and L
3

I The relations (A17) - (A2]) imply that , to within arbitrary

constants ,
2 2 2 2

1 a - Y  1 B - Y
L
1 

= -
~~

- log 
~2 — a

2 , L2 = -
~~

- log 
~2 — B2 and

L3 = P(a,b;n) + log /b + sh ~ - b cosh 
~

11b
2 

+ d
2 

sh 4’ + b cosh 4’

On substituting for X, Y, a, ~~ , 4’ and P, the following explicit reduced

forms result:

log 
b(a + bri ) - d l(c + dn)

2 + e2 + y
,lV.
b2 + d2 (A22a)

d(a + b~) ÷ b ~ (c + d~)
2 

+

V 
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L2 = log 
d(a + bri) — b /(c+ dTi)

2
+e

2 
, (A22b)

b(a+b~) + dl (c+d~) +e + y ~[b +d

and ________

L
3 

= 2 log[(b
2 

+ d
2
) + ab + cd + y1b

2 
+ d

2
]

+ log 
b
2
{(c + ~~~~)

2 
+ e

2
} - d

2
(a + b~)

2

(2b
2
+d2)(a+bfl)

2 
+ b

2
{(c+dr))2 +e

2
} + 2b(a+bn)yll’b

2
+d
2

(A22 c)

(b) Auxiliary integrals

In line with the procedure based on the function h(a,b;ri) defined

by (A9), we consider here two primitives for the function

J(a,b;n) = V (a + bn)2 + (c + dn)2 + e
2
,

where the primitives J
1
(fl) and J

2
(rl) are given by

J1(n) = J ~~(
a +b fl)

2 
+ 1 d~ ;

~ (~) ~~~~~~ ~ ÷ 
ab +cd~~ + f

a + c  
- 
(ab +cd)

2
~~ e

2

b +42 b2 +d2 (b2+d2) b +d

With the expression for p given by (AlO), we find that

= b~ 
~ (a + bn)

2 + (c + c~)
2 

+ e
2 

~~~ -

(k2 - b
2
e2) f dO + k

2 dO
+ 2b 

~ d
2
sh
2 
0 — b

2 b 
~ (d~sh

2
0— b

2
)
2

2 2I 2 
~ (h

2 + d 2 + u ) (k 2 - e2u) u ~ (b
2 + d2 +u) (k2 - e2u)

V.~~~~Ti
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It is easy to show that

f du = - 
2 

1
2 2 ~~(b

2+d 2 + u) (k 2 -e
2
u)

u2 {(b2 +d 2 +u ~~k2 _ e 2u k u (b + d  )

+ 
(k2 -b 2e2

~~ d~~~ ) 
log kV~~~+ d 2 + u  +~~~~~~ d2

~~ k2 _ e ~~

4dk(b + d ) kib2+d2 +u _~ I~~ +d2 %/k
2 _ e2u

f dO — 
d cosh 0 + 

bL
1

(dsh 0 + b)2 
- - 

ci(b
2 

+ d
2
) (b

2 
+ d

2
)
312

I dO d cosh O 
bL2

(dsh 0 - b)
2 

- 

B(b
2 
+ d~) 

- 

(B 2 
+

These relations, together with (A12), give the primitive

= {( c + dfl)(b + d2) + kbl J(a + b~)
2 + (c + dri)

2 
+ e2 

—

2b(b + d )

+ {k
2
+e

2(b2 + d
2)} [L1 - L2 + L

3
]. 

-

However , on evaluating the integral for J2(~ ) ,  we find 
- 

-

{(c + d~ ) (b 2 + d
2) + kb)} 

~ (a + bn)
2 

+ (c ÷ dn)
2 

+ e
2

2b (b + d )

+ 
{k2 +

2
e
2(b: + d

2)} P(a ,b;n).
4(b + d )

Thus L
1 

— L
2 + L

3 
is equivalent to P(a,b;n), as before. r:.
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A.2.2.3 Planar Interactions

The primitive G(a,b;n) given by (Al3) can be written in the form

G(a,b;n) = (c + ! ~~~~~~~~ ed cosh 4’
F 1/k

2 
+ e

2
(b
2

-i- d
2
)

+ 
k 

[L - L  + L ] .
1 2  2 1 2 3

2d l/b + d

For planar interactions, e = 0, so that X = X1, Y = Y1, c i =  a1, B B1

I and4’ 0. Also,

L3 = log , and L1 + L3 = log , so that

L1 
— L2 + L

3 = —2L2, a relation which can also be established using the

explicit forms given by (A22). -

I Thus , G(a ,b ;n) = E
1
(a,b;ri), showing that when the field point lies

in the plane of the uniformly charged triangle, ~‘e recover the primitive

1 ; for planar interactions given by (A6).
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