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ABSTRACT

This paper presents a branch—and—bound algorithm for solving fixed

charge transportation problems where not all cells exist. The algorithm

exploits the absence of full problem density in several ways, thus yield—

• ing a procedure which is especially applicable to solving real—world

problems which are normally quite sparse. Additionally, streamlined

new procedures for pruning the decision tree and calculating penalties

are presented. We present computational experience with both a set of

large test problems and a set of dense test problems from the litera-

ture. Comparisons with other codes are uniformly favorable to the new

method, which runs more than twice as fast as the best alternative.
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1. INTRODUCTION

Fixed charge problems arise in many “integer” and “non-

linear” programming applications. Many of these problems are net—

work problems with fixed charges attached to subsets of the arcs.

Examples include the well—known network expansion problems, plant

location problems, process selection problems, plus a wide variety

of related investment and distribution problems [5 , 13, 16, 17, 22 ,

29 , 34, 35, 37, 38, 45, 46, 48, 50, 553. In each of these, the cen-

tral decision “to invest or not invest,” “to build or not build,”

“to ship or not ship,” can be modeled by imposing fixed charges on

appropriate arcs of the network.

This paper examines the important subclass that consists

of fixed charge transportation problems with uncapacitated arcs.

This subclass is important for several reasons. First, uncapaci—

tated fixed charge problems are generally harder to solve than capac—

itated fixed charge problems. (Bounds that limit computation are

more diff icult to come by in the absence of restrictive capacities

on the arcs.) Second, every capacitated fixed charge network prob—

1cm can be transformed into an equivalent uncapacitated problem
•

of the transportation type. The resulting transportation problems
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are sparse (i.e., contain few admissible arcs) and have fixed charges

on only a portion of the existing arcs. Sparsity is an almost uni-

versal feature of real—world transportation problems, including

those that are not created as a transformation of another problem.

Research to date has primarily focused on totally dense transporta-

tion problems with fixed charges on all arcs. Unfortunately , these

almost never arise in practical applications. The goal in this

chapter, therefore, is to report on experimentation with solution

methods designed especially for the more realistic types of fixed

charge transportation problems——characterized by less than full

density of arcs and fixed charges. Because of the generally great-

er difficulty of solving uncapacitated fixed charge problems, it is

anticipated that the findings will provide conservative estimates

of the solution times to be expected for capacitated problems as

well. In addition, the study addresses the largest fixed charge

problems in the literature, involving up to 1,500 fixed charge arcs.

The procedure proposed for solving fixed charge transpor-

tation problems is a special purpose branch—and—bound method. This

method implicitly treats the fixed charge restrictions as though

modeled by introducing corresponding 0—1 variables, as in standard

0—1 LP formulations of fixed charge problems. However, such van —

• ables are not incorporated into the problem formulation itself, but

are handled indirectly by th~ rules of the solution method .

A chief component of this approach is an imbedded computer

routine based on extensive investigations into efficient ways to
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solve pure network problems , as described in previous chapters.

Thus, in particular, test results indicate that the imbedded

routine is from 200 to 400 times faster for solving uncapacitated

transportation problems than some state—of—the—art commercial

linear programming codes. This points up a second aspect of the

study : to determine whether the use of an exceptionally powerful

network code can materially facilitate the solution of fixed charge

transportation problems utilizing known branch—and—bound princi-

ples. Such a determination, of course , rests firmly on the dcci—

sion rules applied at various “subproblem” levels, and more parti—

cularly on the interactions between these decision rules and the

imbedded network solution routine. Computational tradeoffs that

appear to favor one rule over another when using one solution algo—

rithm may be significantly altered when using another. Moreover,

the precise way that a decision rule interfaces with a particular

solution algorithm, due to coding considerations, can be an iinpor—

tant determinant of overall efficiency. Care has been taken, there-

fore, not to bypass standard——and even “prosaic”-— approaches in

order to make certain that relevant possibilities are given their

due. This is reinforced by a concern with the nondense problem

structures that have often been neglected by other studies. As a

result, roughly twenty different branching and separation rule 
- 

-

combinations have been tested to determine their relative merits.

At the same time, to provide links with prior experimenta—

tion, a set of totally dense problems [23, 26) have been solved

L. - •~~~~~~~~-~~~~~~~~~~~~
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and compared the results to those of the most eff icient method in

the literature [32]. The outcomes are uniformly favorable to this

new method , which runs more than twice as fast as the best alter—

native code on all problems of full density. Since no good methods

designed to exploit sparse fixed charge transportation structures

have been published , comparisons of this approach to others on

such problems cannot presently be made. However, comparative re-

sults are reported from alternative choice rules incorporated into

the new solution routine.

2. PROBLEM FORMULATION

The uncapacitated fixed charge transportation problem may

be written :

Minimize > f i (xi ~1cM icN~ ~

subject to:

x~ = D , jcN,
icM~ ~

x~ — S~ , 1CM ,

- 

jcN1 
-~

x
ij ~ 

0, iCM, jcN
1

where M and N are the index sets for the origin and destination

nodes, N1 is the index set for those destinations that can receive

flow from origin i, and M~ is the index set for those origins that

can send flow to destination j. (Thus, there exists arc (1,j) from 

~~ -~~~~~~~~~~~~~~~~~~
_ _



• - -
~~~~~~~ 

-

5

node 1 to node j, and a corresponding flow variable X
jj~ 

provided

1CM and j cN1 or equivalently provided jcN and icM~ .) The quanti-

ties D~ and S1 represent demands and supplies , assumed to satisfy

i~M 
S~ — 

jcN 
~~ The function f

ij
(xjj ) represents the “fixed

charge cost function” for the arc (i , j) ,  where

c
ij
x
1~ 

+ Pu if x1~ > 0 or

fjj(x
ij
) — 0 if x~~ — 0.

The fixed charge constant ~~~ Is ordinarily considered

to be positive, but is allowed to be zero to accommodate the situ-

ation in which only a subset of the arcs have “ true” fixed charges .

For this subset, the integer programming formulation replaces

by

c1~x1~ + F1~~~~

and appends the constraint

x < U
i j—  ~~Yj~

where U~~ is an upper bound on X .j~ and is a 0—1 variable.

In the LP relaxation of the integer problem (where 0 ~

• 
y
~~ ~ 1) the optimum value of Yjj is clearly x~~/U1~, and further—

more, the updated row equation for a basic y~~ variable is obtained

• from the row equation for xjj by the expression - 

-

~ij 
- xij/U

ij + 6i j /U ij

where is the slack variable for x~~ ~ U1~y~~.

~1L
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3~ HISTORY AND SURVEY OF EXISTING METHODOLOGIES

An early paper by Hirsch and Dantzig [27 ] established

several important characteristics of the general fixed charge linear

programming problem or, as it has come to be known, “the fixed charge

problem.” It was shown that the feasible region for this problem

is a bounded convex set and that its optimal solution will be at an

extreme point of this set. The paper also showed that not only is

a local minimum solution not necessarily a global minimum but that

every basic feasible solution Is a local minimum in non—degenerate

problems with all positive fixed charges.

3.1 Heuristic Approaches

The earliest solution methods in this area were heuristics

for the fixed charge transportation problem. The first, by Balinski

El], operated under the assumption that typical problems had many

fewer origins than destinations and, therefore , each demand will

tend to be satisfied by a single origin. For this case, a good

linear under approximation to f~~ (x~~) is c~~x~~ + F
ij
x
ij
/(minilnum

{S
i~
D
~

})
~ 

since the two objective functions’ values coincide when the

arc’s flow is at its upper or lower bound. Balinski’s approach used

this linear relaxation of the functional with the transportation

constraints to obtain an approximate solution to the original problem.

Another heuristic method for the fixed charge transporta—

tion problem, by Kuhn and Baumol [36], assumed that all typical

fixed charges are approximately the same, and used a modif ication



• _ 
-

7

of Vogel’s approximation method to attempt construction of a good,

but degenerate, solution. Other approximation algorithms have been

proposed for the fixed charge problem by Cooper and Drebes [9],

Denzler [11], and Steinberg [49].

More recently, Walker [54 ] proposed a procedure for the

fixed charge problem which he aptly describes as follows :

The basic approach in all three variants of the
algorithm is (1) to obtain a local minimum by using
the simplex method with a modification of the rule
for selection of the variable to enter the basic
solution, and (2) once at a local optimum to search
for a better extreme point by jumping over adjacent
extreme points to resume iterating two or three ex-
treme points away. [54 3

Good computational results were reported, with the heuristic solu-

tions often being optimal . This algorithm is discussed again in a

later section.

3.2- Optimal Solution Methods

The f i rst  optimizing algorithm published specifically for

fixed charge problems was by Marty (40 3 in 1967 . Beginning with a

feasible solution, his procedure determines a progression, or

ranking, of problem bases with increasing total variable cost corn—

ponents in their objective functions. Each basis added to the pro—

gression is chosen from the se t of extreme points which are adjacent

to the previously—ranked bases and whose objective function values

fall within stated bounds. This ranking terminates when an upper • 
-

bound on the total variable cost is reached , at which point the

ranked vertex with the smallest value in terms of the original fixed

_ IL
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charge objective function is optimal . While the algorithm is finite ,

even strong bounds on the total variable cost can lead to an ex-

tremely large number of bases to search and store, explicitly or

implicitly, for each ranking. (Such was the case in McKeown’s

testing of a computer code based on this approach [39].) Weak

bounds simply exacerbate the difficulty.

In the same year, Gray [26] proposed an alternative opti-

mization approach which implicitly enumerates all possible patterns

of “off—on” states of the fixed charge variables. The enumeration

process was restricted by strengthening bounds on the total fixed

charges and by exploiting the underlying transportation structure.

This approach has many of the same implementational problems as

Murty ’s, but for the first time an optimizing code for fixed charge

transportation problems was devised. Gray also proposed and solved

[25] a series of problems which are still in use as benchmarks by

researchers.

Soland 147] later developed an efficient algorithm and

computer code for the plant location problem with concave costa, of

which the fixed charge transportation problem is a special case. L
Within a branch—and—bound framework, he uses piecewise linear en— r
velopes to underestimate the concave objective function in the prob—

• lets relaxations which are capacitated transportation problems. The

algorithm stops with a solution whose value is guaranteed to be

within a stated percent of the optimal , and good computational re—

sults were reported on Gray ’s test problems with a tolerance of one

JH.
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percent.

Kennington and Unger (32 ] also used a branch—and-bound

approach for solving fixed charge transportation problems and de-

rived an efficient means of calculating the simple penalties . A

computer code based on their algorithm was used to solve totally

dense problems with d imensions of up to 5 x 20. Their test re-

sults on f ixed charge transportation problems are the best published

to date.

Kennington used this code in [31 ] to study the e f fec t s  on

problem solvability of various branching and separation rules ,

penalties , problem dimensions , and cost characteristics of the op-

timal solution. Also, Rardin and Unger extended this branch—and—

bound algorithm to fixed charge network problems and used analysis

of variance in their testing to study the effects on solution t ime

o f :  the size of fixed costs relative to variable costs , solution

method , and number of arcs in the problem with fixed charges (41].

(Some of these researchers’ f indings are reexamined in Section

5.5.)

Other researchers on related fixed charge and concave

cost problems have used dynamic programming [56 ] and implicit

enumeration or branch—and—b ound [15 , 30 , 42 , 49].

a
4. NEW ALGORITHM FOR THE FIXE D CHARGE TRANSPORTATION PROBLEM

As emphasized previously, the algorithms and computer

codes described in the l i terature have not addressed the more real—

3
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Istic large scale and sparse fixed charge problems . This section

presents a new optimization ‘al gorithm designed explicitly for this

problem type and describes FIXNET , an experimental code based on

this new approach. •

Iii the discussion that follows , it is assumed that the

reader is familiar with the branch—and—bound technique of integer

programming. Algorithmic descriptions follow the terminology and

structure of Geoffrion and Marsten [18].

4.1 Solution Method

The general solution method is a branch—and—bound proce-

dure utilizing the LIFO (“last in first out”) rule for construct-

ing the enumeration tree . The LIFO rule was selected because it is

extremely simple and easy to work with. Consequently attention can

be focused on other types of decision rules and tests whose relative

influence appear likely to be independent of the rules for construct-

ing the enumeration tree. (The ability to produce a superior method

using LIFO more clearly establishes the merits of the other compo-

nents of the algorithm. ) In particular , the goal is to demonstrate

that a collection of straightforward techniques , properly integrated

with a powerful method for solving transportation subproblems, can

• prove highly effective for solving fixed charge transportation prob—

lems with a variety of structures.

In addition to LIFO, the other “structural” ingredients of

the algorithm are as follows.

- _- L~
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4.2 Linear Relaxation and Current Arc Costs

The standard linear relaxation of the fixed charge prob—

lem (see Zalinski (1]) is used, thus fi.(xij) is replaced in the

objective function by d~1
x~ . where d~1 — c~~ + F~1

/U~1
, making use

of the previously noted fact that — 
~ij

/U
ij 

holds at optimality

in the relaxed integer programming formulation. By means of this

connection we further observe that y
11 

is strictly between its up—

per and lower bound if and only if the same is true of x
11
. Also,

by means of the earlier observation that the updated LP row equation

for y
1~ 

can be obtained from that of X
jj 

(for x
ij 

> 0 and hence

basic) by the relation

y — x  /U + o iuii i l _ il ij ii

we may restrict attention to the flow and basis conditions of x
ii

to know automatically the corresponding conditions for y
~~
.

Since we deal with an uncapacitated problem the relaxa-

tion that replaces fjj(x
ij
) with djjxij is somewhat weaker than

might otherwise be the case, for reliance is made on the highly re—

dundant bound U~1 
for x~1 

given by u~ min{S~~D~}. (Useful

tighter bounds appear to entail substantial computational expense,

though one possibility is to use the accelerated “dual start”

a methods of the (23 ] paper , which are amenable to post—optimization

for multiple computations.)

Thus, the “current cost” attached to arc (i,j) at a given

stage of the branch and bound process is:



12

if x~~ is free,

M (large positive constant) , if xii is constrained to 0 , or

cjj , if xjj is constrained to positivity.

In the last case , the constant Fij is added to the current objective

function value (for each arc so constrained) and xii is permitted to

receive any non—negative value so that it may in fact receive the

value zero. This does no harm, since allowing xij to be zero while

incurring the fixed charge Fij merely produces an “inferior solution”

(which is conspicuously worse than the one in which X
11 

is zero and

the fixed charge is absent). The inferior solution will either be

bypassed or identified as dominated during the solution process.

However , a special technique for taking advantage of the fact that

Xii should be positive will be described subsequently.

4.3 Algorithm for Trdnsportation Subproblems

The method for solving transportation problems is an out-

growth of several years of continuing developmental and testing ef-

forts documented in [2 , 3, 19, 20, 23 , 24]. The procedure makes

use of the “augmented thread” [24] and is about three or four times

faster than the PTRANS code reported in [201. Like PTRANS, it is

based on a network specialization of the primal simplex method. Thus

no dual steps are made, despite the widespread use of the dual method

in branch—and—bound algorithms.

This particular code by Barr (2]  was chosen over the

out—of—kilter approach foi- two reasons : speed and memory require—
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ments. Not only is it one of the fastest transportation codes in

existence, it has the smallest memory requirements of any known

code for this problem. Specifically, only four node—length arrays

and two arc—length arrays must be stored as opposed, for example,

to four and eleven, respectively, for the SUPERK code [4]. These

spacial parameters are exceptionally important in this context

since additional fixed—charge values and the branch—and—bound tree

structure require another five arc—length arrays.

4.4 Fathoming Tests

As is customary, in branch—and—bound algorithms, the fol-

lowing conditions terminate forward progress through the enumera-

tion tree and initiate a “backtracking” step:

(1) The current subproblem has no feasible solution.

(2) The optimal objective function value for the current sub—

problem (augmented by “penalties” and added to the fixed costs in-

herited by that subproblem) exceeds or equals the objective func-

tion value of the best feasible fixed charge solution currently

found. (Note that this condition actually includes (1) in a primal

approach, since infeasibility is detected by a “big 14” variable

which is positive in an optimal solution.)

(3) The ’ optimum objective function value for the current sub—
a

problem does not worsen (become larger) when the optimal solution

is evaluated by the true f ixed charge objective function (instead

of the linearized objective function). I
— .  .~~ . :. ~

. I~~~~~~~ . . T ::~~I1T 1 TI:~T . ~ITI~~ T . ~~. . 
- .~ . :: 
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In case (3) , the current solution can provide a new “best

known” solution for the original problem. More generally, any time

the current solution provides an improved evaluation according to

the true fixed charge objective, then the solution becomes the new

“best known” (incumbent) solution, regardless of the relation of

this evaluation to that of the linearized objective function.

4. 5 Culling of Variables

In addition to these standard fathoming tests, we make use

of the following. As established in [27], an optimal fixed charge

solution can be found among solutions that are basic. Hence, the

variables X
jj 

that are “constrained to positivity” can be further

required to be members of the basis. In a network, a collection of

variables can be basic only if their arcs do not form a loop. Each

time a variable is to be constrained to positivity, therefore, the

procedure tests whether any loops are created relative to other vari-

ables so constrained. If so, the constraining step is identified as

inadmissible. The primary virtue of this test is that it can be

executed rapidly even in very large networks with a very small corn—

mitment of memory resources. 
• 

-

4.6 Penalty Calculations

The algorithm employs the simple “up” and “down” (one dual

pivot “look ahead”) penalties as proposed by Driebeek [12]. Al—

though commonly used in integer programming for branching decisions,
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strengthening of bounds for fathoming , and identifying variables for

“pegging” positive or zero, these values are laborious to calculate

by standard means .

The application of penalties to fixed charge network prob-

lems was f i rs t  undertaken by Kennington and Unger [31, 32] who used

group theory to derive a specialization of the Charnes’ “poly—w” [6 3
technique for efficiently calculating individual penalties. This

technique computes the pair of penalties for a given basic fixed

charge arc by repricing the basis and inspecting all nonbasic van —

ab].es. Thus , to determine the penalties associated with all basic

fixed charge variables involves several passes of all of the non—

basic arcs.

The new algorithm uses a “generalized predecessor” label-

ing approach that permits all of the penalties to be determined (in

the network structure) with only moderate effort beyond that required

to calculate one of these penalties . The details of this procedure

are given in the Appendix, but the essential outcome is to enable

the “poly—w” step to be implemented for all constraints simulta-

neously via a set of easily—determined node labels. These labels

allow ready identification of all fixed charge arcs in the “stepping

stone” path of each nonbasic arc. Thus, with this information, only

one pass of the arc data is required to perform the minimum ratio

calculations for all f ixed charge penalties , as opposed to multiple

passes using other techniques.

I i’

— • 
~
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4.7 “Local Star” Optimum Advanced Start

The computational effort of the solution process diminishes

as tighter bounds are placed on the optimum solution value. There-

fore, a smaller upper bound on the optimum was sought by the initial

use of a pivoting procedure proposed by Walker [54 ] for isolating

a “local star,” or locally optimum basic solution (also see [6 1).

This modified simplex pivoting procedure prices out a

given nonbasic arc by using its basis representation to determine

the change in the nonlinear objective function value that would be

made by pivoting the variable into solution. Specifically, the non—

basic’s “stepping stone” path must be traced to calculate the leav-

ing arc, the change in total variable cost, and the changes in

total fixed cost from degenerate basic arcs becoming positive and

from ties for the leaving variable. With this information any

change in the fixed charge objective function is known and the pivot

may be performed if it is improving.

Although every extreme point in the fixed charge problem

is a local optimum in the absence of degeneracy and negative fixed

charges [27], network problems are notoriously degenerate and good

results were reported by Walker with this technique. Hence, this

optional starting procedure was included in the experimental code

for testing.

5. COMPUTATIONAL TESTING OF THE NEW ALGORITHM

5.1 Computer Code Description
p 
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All of the algorithmic features described above were im-

plemented in a new optimization code called FIXNET. FIXNET is

written in a machine—independent FORTRAN IV and was given a modular

design to facilitate experimentation with various decision rulesa
and parameters. It maintains all data in internal storage and uses

no special coding to capitalize on the features of a particular

machine.

This section describes the initial testing of FIXNET to

determine the best operating rules plus additional testing on a

variety of problem types to measure the effect of problem para-

meters on solvability. Included in the test set are sparse problems

• and the largest fixed charge problems to appear in the literature,

with the equivalent of up to 1,500 integer variables.

All problems were run on a CDC 6600 computer with FIXNET

compiled by the RUN compiler. All times given are exclusive of

input and output and indicate the total central processing time re-

quired to optimize a particular problem.

• 5.2 Advanced Startlng Procedure

In the initial testing stage, the use of the “local star”

pivoting scheme was evaluated and found to not be cost effective.

In most cases, Walker ’s “phase 1” procedure did not substantially

improve the solution derived from the Balinski relaxation and the

pricing procedure for nonbasics was computationally expensive, even

though it was specialized to transportation problems and used the
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efficient ATI data structure. This ‘nay have been a consequence of

low problem degeneracy and the tendency towards local optima at

extreme points described previously. As a result, this procedure

for obtaining a stronger initial bound was not used in the final

version of FIXNET , which determines an initial solution from

Balinski’s relaxation.

5.3 Branching and Separation Stra tegies

Within the branch—and—bound framework , two rules for

directing the search among subprobl~~s are crucial to the effec tive

performance of an algorithm. First, following the solution of a

• subproblem that cannot be fathomed, a separation variable is chosen,

usually from the set of basic integer variables which are between

their upper and lower bounds. Two new “candidate” subproblems are

derived by placing contradictory constraints on the separation van —

able, such as requiring it to be zero and to be positive.

Secondly, the branching decision rule determines which one

of the outstanding candidate subproblems is to be solved next.

Within the LIFO strategy used here, the next subproblem is one of

the two new candidates formed by separation or , af ter fathoming, the

most recently defined candidate problem that is still eligible. a

In total, approximately twenty separation and branching k
rule combinations were tested. The separation variables were al—

ways chosen from the basis and ‘separation accomplished by means of

the cost parameterization procedure described in Section 4.2.
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Of the two general strategies tested, the first utilized

the up and down penalties for all basic fixed charge arcs between

their upper and lower bounds. Separation criteria tested included

choosing the variable with the largest individual penalty (rule

SR—l) and the one with largest absolute difference in penalties

(SR—3). A third separation rule considers the smaller penalty for

each variable and chooses that variable corresponding to the larg-

est of those penalties (SR—3) . Branching rules tested included

always forcing the separation variable to its upper bound (BR—l),

to its lower bound (BR—2), and in the direction of its smaller or

larger penalty (BR—3 and BR—4).

The second strategy set tested did not require the compu-

tation of penalties but instead used the function g
~1 

F
ij (1—

the deviation of the linear relaxation, ~~~ from the

true objective function, 
~~1’ 

at this level of flow. The basic pre-

mise is that the deviation values’ simplicity and speed of calcula-

tion would outweigh any benef its derived from the richer , but compu—

tationally more complex, penalty values. The variable chosen for

separation had either the largest or smallest deviation (SR— 5 and

SR—6) and preference could be given to those variables that were not

within cxU units of either bound (SR—7) where 0 < a < 1. Branching
ii .

was performed by rules BR— l and BR—2 above.
f

While many different tes t problems were run in order to

choose the best overall separation and branching strategy, results

are shown here for the small, totally dense test prob lems posed by

1!. 

_ _ _ _ _ _ _ _ _
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Gray [25]. (Prob lem specifications are given in Table I.) The

results of running the four bes t strategies on these problems are

shown in Table 2. Note that the use of penalties (rule SR—3)

substantially reduces the number of transportation subproblems to

be solved and that solution times under this separation rule corn—

pletely dominate the t imes obtained with the maximum deviation rule

(SR—5).

Table 1

PROBLEM SPECIFICATIONS FOR GRAY’S FIXE D CHARGE

TRANSPORTATION TEST PROBLEMS

PROBLEM TOTAL SUPPLY COST RANGES
N UMBER DIMENS IONS ARCS AND DEMAND VARIABLE FIXED

1 3 x 4 12 70 0.64—7.60 5—15

2 4 x 6 24 115 0.59—2.83 10—20

3 4 x 6 24 183 2—114 0—43

4 
• 

4 x 8 32 135 0.59—6.99 10—20

5 5 x 7 35 125 0.59—2.83 10—20

6 
• 

5 x 7 35 125 0.59—2.83 1—99

7 - 5 x 7 35 125 0.59—9.01 91—220

8 . 5 x 7 35 218 - 2—114 1—36

9 6 x 8 48 160 0.59—6.99 10—20

-
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TABLE 2

FIXNET SOLUTION STATISTICS WITH
SPECIFIED SEPARATION AND BRANCHING RULES

SEPARATION: SR—5 SR—5 SR— 3 SR— 3
BRANCHING: BR-I. BR-2 BR-2 BR-3 1

PROBLEM SP TM SP TM SP TM SP TM

1 7 .016 7 .009 3 .008 3 .016

2 153 .468 140 .426 55 .245 67 .300

3 13 .043 13 .039 1 .008 1 .008

4 67 .260 177 .720 25 .152 32 .188

5 413 1.469 518 1.900 108 .645 95 .555

6 71 .257 33 .124 20 .120 15 .101

7 385 1.450 371 1.489 120 .768 76 .475

9 1307 6::6i 722 3:::: 357 2.814 305 2 :392 1
SP — number of transportation subproblems solved

TM — CX 6600 central processor seconds required for optimization

The use of the streamlined penalty calculation scheme was 
- -

deemed cost—effective for FIXNET and strategy SR—3/BR—3 was adopted -
‘

as the standard for all test runs made for this study.

5.4 Comparison of Solution Codes 
.
‘~

The test problems posed by Gray in 1968 have been solved

‘—I--
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by numerous researchers in this area , thus providing a limited

means of comparing a variety of solution approaches . Table 3

provides comparative solution times on the Gray problems for the

following codes : Gray ’s decomposition code [26],  Fisk and McGowan

[14], McGowan’s extreme—point ranking approach [39], the branch—and—

bound codes by Soland [47] and Kennington and Unger [32], and FIXNET.

The testing environments differ, and the Univac 1108 and CDC 6600

computers have comparable add times , while the Univac 1110 is

twice as fas t, and the Burroughs 5500 is three times as slow.

Even with adjustments for different machine efficiencies,

FIXNET clearly dominates all other codes on all problems. Al-

though FIXNET was designed for larger sparse problems , it outper-

formed the reported solution times of the two best codes in the liter-

ature (Kennington’s and Soland ’s) by factors of 1.33 to 6.63 with an

average of 3.7 times faster than Kennington’s on these problems.

Although Kennington and Unger ’s code uses the same initial

problem relaxation as FIXNET, the number of subproblems differed,

at times greatly. This difference is the resul’ of different branch-

ing, separation, and candidate problem selection rules. It is par—

ticularly interesting to note that in seven out of the nine cases

shown here, the “elementary” LIFO technique required fewer sub—

problems for optimization than the sophisticated “best candidate”

selection technique of Kennington and Unger. Moreover, even when

FIXNET examined a larger number of subproblems , its solution times

were favorable due to the speed in which the subproblema can be

V . _j .
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TABLE 3
COMPARATIVE CODE STATISTICS ON GRAY ’S FIXED

CHARGE TRANSPORTATION PROBLEMS

(X)D5 : (~RAY FISk AND MCKEOWN 2 
SOLAND

6
KENNINCTON FIXNET

MCKEOWN AND tJNCER
NAQIINE : B-5500 UNIVAC 1110 UNIVAC 1108 CUC 6600 CDC 6600 CDC 6600

PROBLEM Th Th Th Th SP Ill SP Th

1 7 .7  .6 .54 6 .028 3 .016
2 32 .6 7 3 1 LIN R3 

0.4 96 .746 67 .300
3 26.3 1.5 1.31 DNR 4 .030 1 .008
4 171.4 84.5 DNR DNR 48 .601 32 .188
5 263.8 195.1 DNR 1.7 224 2.760 95 .555
6 146.9 33.9 DNR DNR 46 .538 15 .101
7 97.0 42.9 DNR DNR 56 .836 76 .415
8 3.262.8 DNR 2.22 DNR 4 .053 1 .008
9 1~ S10.0 200.+ DNR 7.0 62 8.890 305 2.392

TM — .olutlon time in CF seconde t
Subop tfmal qolutton

SP • number oi nubproblei ,us eolved 2
Fixed char ge linear progra~uim1ng code

DN R — did not repor t 3
Data storage overflow

4 S~ lut1nn val,,,, wtt l,1 n 1 per~~nt of
optimum , usin g separable roflcav ,,
transporta tion code

~
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solved and the efficiency in which the decision rules could be im-

plemented . This preliminary testing indicates not only the eff 1—

ciency of the code , but the narrow variation in solution time

points out its robustness.

5 5  Computational Studies of Problem Parameters

While many algorithms for the fixed charge transportation

problem have appeared in the literature, computational testing has

been restricted to extremely small problems . In fact , the largest

such problem reported optimized to date has dimensions of 5 x 20

with 100 fixed charge arcs [31].

En order to test the efficiency of FIXNET on larger and

sparser problems and to explore the impact of topological character-

istics on tractability, a large number of new test problems were de-

vised. This was accomplished using a modified version of NETGEN , a

machine—independent program for generating randomized network prob-

lems [33]. (Copies of this program are available to permit dupli-

cation of test problems by other researchers.)

Because of the peculiar nonlinear topology of integer and

fixed charge programs , widely varying degrees of difficulty may be V

encountered in optimizing seemingly similar problems. (Note the

solution times for Gray ’s 5 x 7 problems in Table 3.) Researchers

in this area have put forward numerous explanations for problem r
tractability, based on both a priori analysis of prob lem character—

istics and a posteriori evaluation of optimum solutions. Presented

--
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in this section are three studies that use FIXNET—generated statis—

tics to test proposed explanations for what makes a problem diff i—

cult to solve.

Problem set A was designed to evaluate the effect on

solution times of differences in average variable and average f ixed

costs. Within the set were two groups of problems which were iden-

tical except for the fixed charge values. As shown in Table 4,

all problems were 50 x 150 with 1500 arcs , a total supply of 2500,

and unit costs with values from 0 to 10. The first four problems

were generated with fixed charges on 300 arcs and the second four

had 600 fixed charge arcs. Each problem within a group of four had

different ranges for the fixed cost, with the narrowE~st range of 0

to 50 and the widest range of 0 to 10,000.

The effect of average problem fixed cost on FI~~ET solution

time was negligible. As indicated in Table 4, times ranged from

4.150 to 4.966 seconds on the first group and 13.901 to 15.551

seconds on the second group, with no discernable relationship be-

tween average fixed cost and solution time. However, the number of

fixed charge variables had a significant effect on solvability.

In the computational study by Kennington [31], a pos—

ten on analysis of optimal solutions suggested another possible

determinant of solution difficulty. As the ratio of the total

fixed charges to the total variable cost in the optimal solution

decreased, solution times tended to rise. Hence, problems became

much more difficult when the variable costs dominated. To verify

II
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this observation, a basic test problem was constructed and the

total supply modulated so as to vary the amount of flow in the

problem and, therefore , the total variable cost and its proportion

to total fixed cost. As indicated in Table 5, adjustment of the

total supply varied the ratio from 7,257 to .36; solution times

fluctuated , but without the relationship described above. Similar

test sets yield the same inconclusive results. The inability to

verify Kennington’s observation may be the result of his use of

small, totally dense problems plus a different branch—and—bound

algorithm and code.

TABLE 4
PROBLEM SET A:

PROBLEM SPECIFICATIONS AND FI~~ET SOLUTION TIMES

PROBLEM SIZES : 50 x 150 20% DENSE (1500 ARCS) TOTAL SUPPLY: 2500

FIXED CHARGE MAX UNIT: FIXNET SOLUTION
DENSITY MAX FIXED COSTS TIMES (SEC) ON CX 6600

20% (300 arc) 10:50 4.966
10:100 4.405
10:1000 4.150
10:10,000 4.480

40% (600 arc) 10:50 15.551
10:100 13.901
10:1000 14.457
10:10 ,000 14.907

• 

•
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TABLE 5

PROBLEM SET B:
PROBLEM SPECIFICATIONS AND FI~~ET SOLUTION STATISTICS

BASIC TEST PROBLEM: 50 x 150, 1500 ARCS
FIXED CHARGE DENSITY: 40% (605 ARCS)
UNIT COSTS 1—10, FIXED COSTS 1—100

PROBLEM TOTAL SUPPLY F/C RATIO SP PIVOTS TM

1 1K 7 ,257 8 1220 5.99

2 2.5K 8,252 12 1616 8.06

3 5K 2 ,158 77 3163 19.69

4 10K 1,076 114 3788 26.09

5 50K 214.2 49 2364 14.62
6 lOOK 170.0 146 2338 14.77

7 LM 11.47 130 3714 31.12

8 5M 2.40 189 3725 30.17

9 1OM 3.34 2 4490 41.64
10 50M 1.74 2 1199 8.80

11 lOOM .36 1155 6.21

F/C Ratio — Ratio of total fixed cost to total variable cost in
optimal solution value

SP — number of transportation subproblems solved by FIXNET
Pivots — number of pivots made in solving subprob lems
TM — FIXNET solution time in CDC 6600 central processor seconds
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Note, however , that the solution times presented here are

for mixed integer programming problems with 1500 continuous variables

and 600 fixed charge variables. Even the largest time of 3]. seconds

is remarkably good for problems of this size and the range of solu-

tion times emphasizes the efficiency and robustness of the new algo-

rithm.

Test Set C, described in Table 6, was designed to study

the effect of problem dimensions holding the number of fixed charge

variables constant. With these problems, the average solution times

increased with increasing dimension sizes, as would be expected, but

again the average times slightly more than doubled when the number

of fixed charge variables was doubled. Since solution time for

combinatorial problems of ten increases geometrically with the number

of integer or f ixed charge variables, the eff iciency of this new

algorithm is again demonstrated.

In summary, testing has demonstrated that the code FIXNET,

based on the new solution algorithm, is extremely efficient for

solving fixed charge transportation problems. It has solved prob—

lems with 3,000 constraints and 1,200 fixed charge variables in

nine seconds on a CX 6600, and is designed for the sparse large—

scale problems encountered in real—lorld applications. This pro—

cedure brings many heretofore unsolvable problems within the reach P
of practitioners and researchers alike, and in general provides a

tool for handling the realistic considerations of fixed charges and

economies of scale that have previously been neglected in network
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TABLE 6

PROBLEM SET C:

PROBLEM SPECIFICATIONS AND FIXNET SOLUTION STATISTICS

DIMENSIONS NO. ARCS NO. FIXED CHARGE ARCS SP TIME

30 x 70 300 300 2 .607

600 62 6.693

900 8 2.236

1200 2 1.973
50 x 150 750 2 3.151

1500 2 5.150

3000 2 6.513

30 x 70 600 600 50 7.424

1200 8 3.253

2000 2 3.724
50 x 150 600 2 2.287

1200 192 28.841

2000 8 8.453

3000 3 11.987

100 x 300 3000 2 14.869

50 x 150 3000 1200 4 9.029

RANGE OF UNIT COSTS : 1 — 10 FIXED COSTS : 1 —
TOTAL SUPPLY : 100 TIMES THE NUMBER OF SOURCES

SP — number of transportation subproblems solved
TIME — solution time in CP seconds on CDC 6600

ii



--‘- w~
-

30

applications due to the computational difficulty ordinarily viewed

as inherent in such considerations.

1 - ~

-
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APPENDIX

THE GENERALIZED PREDECESSOR LABELING METHOD FOR COMPUTING

PENALTIES IN FIXED CHARGE TRMSPORTATION PROBLEMS

The principal requirement of Driebeek—type penalty calcu-

lations is to know the updated simplex row coefficients for each

row associated with a basic integer variable. To obtain such co-

efficients for all rows of interest by a single pass, we use the

following generalized predecessor labeling procedure. Define the

path P(q ,s) to be the ordered set of nodes and links connecting

and including nodes q and s in the rooted spanning tree basis.

Hence, P(q,s) q(q,h),h ,. ..,k,(k ,s),s. Therefore, nonbasic arc

(q,a) is represented in the basis by the arcs corresponding to the

links in P(q,s), with the arcs ’ directions determined from their

origin—to—destination orientation.

The coefficient of xqg in the updated row equation for a

basic variable x~~ is therefore zero if arc (i,j) does not lie on

P(q,s). If the basic arc (i,j) does lie on P(q,s), the row co—

efficient of x is +1 if the basic arc is oriented in the same
• qs

direction as its corresponding link in P(q,s) and is —l if the

basic arc is oriented in the opposite direction. By the connection

between Yjj and the coefficient of X
qg 

in the row equation of

the integer fixed charge variable y
~~ 

is therefore, corresponding—

ly, 0, 1/U~~ or —1/U~~.

31
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Theref ore, by tracing out the stepping stone path (basis

equivalent path) for each nonbasic variable X
q5~ 

all nonzero

tableau row coefficients for this variable in the row equation for

each basic X
jj 

(and hence Yjj) can be determined. This path is

found for a given nonbasic arc (q,s) by tracing the predecessors of

q and s to their point of intersection.

The generalized predecessor labeling method takes advan-

tage of the preceding observations as follows.

Let p (q) be the predecessor of node q or zero if q — r

(the root node of the basis tree), and let I be the set of basic

fixed charge arcs with flow between their upper and lower bounds.

The generalized predecessor label for node q is defined as: (a)

zero if q — r , (b) the f irst node q* ~ q in P(q,r )  such that

(q*,p(q*))c1 or (p(q*),q*)cI, or (c) r , if q* does not exist.

(In case (b), node hcP(q,r) “preceeds” node knP(q,r) if d(h) > d(k),

where d(h) is the number of nodes in P(h,r).) This value is flag—

ged with a “*“ if (q,p(q))~ I and (p(q),q)~ I.
The fixed charge arcs in the basic representation of non—

basic arc (q,s) are recovered by tracing the generalized predeces—

sors of nodes q and s to their point of intersection. For each

node k encountered in this tracing, the link (k,p(k)) corresponds

to a basic fixed charge arc, except when node k is flagged with

or is the root node. As before, the orientation of the basis

arc with respect to its link determines the value of the basis row •

coefficient .
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Figure A—]. shows a transportation basis with the bolder

links indicating f ixed charge arcs whose row coeff icients are to

be determined. The generalized predecessor labels are given next

to each node and in the NODE/GP array. These indices indicate

that the nonbasic arc (5,13) has a +1 coefficient in the simplex

rows of basic arcs (5,10) , (2 ,8), and (1,9) and a —l coefficient

in the row of basic arc (4,9). Note that the generalized prede-

cessors “skip over” links (10,2) ,  (8,1), and (13,4).

The generalized predecessor labels have the effec t of

logically compressing the basis tree to include only those fixed

charge arcs of interest. By so doing, the work required to compute

the full set of penalties is greatly reduced over other techniques.

~ -~~~~-- • •— — —•- —• —5 5 -—--5’ — L
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(0)

(*1) 8 ( 1)  9

( 1) 2 (*1) 3 (9)  4

(*�~‘jj~ ~~~~~~~(*~~) ~~~~~~~~~~~~

~~ 
(~~~)

(*2)

NODE GP

1 0
2 1
3 * 1
4 9
5 2
6 2
7 4
8 1
9 1

10 2
11 * 2
12 *1
13 4
14 •4Lis *4

Bolder links indicate fixed charge arcs with flow between upper and
lover bounds .

Figure A—l — Optimal Rooted Spanning Tree Basis for
7x8 Transportation Problem with Generalized 

•Predecessor Node Labels
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This paper presents a branch—and—bound algorithm for solving fixed charge transpor-
tation problems where not all cells exist. The algorithm exploits the absence of
full problem density in several ways, thus yielding a procedure which is especially
applicable to solving real—world problems which are normally quite sparse. Addi-
tionally, streamlined new procedures for pruning the decision tree and calculating
penalties are presented. We present computational experience with both a set of
large test probl~ms and a set of dense test problems from the literature. Compari—
sons with other codes are uniformly favorable to the new method, which runs more
than twice as fast as the best alternative.
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