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Introduction

In the following sections we discuss the scientific acccs~plishments
\

made during the course of the 19 1/2 months of this contract.k~.11 the

work was in the area of~ gasdynamics, and our main area of research

has been cases of flows containing shockwaves. For the most part we

hive taken an approach which straddled the borderline of analytical

and numerical methods. This is best exemplified by the work discu~~~~

in Sec. l<~~~ which classical boundary layer methods are used to develop

• variable mesh numerical schemest and in Secs. 2 an~~I~ in which the

theory of characteristics, Riemann invariants, and shock expansion

theory are all used to obtain a robust method of numerical integration

• which is orders of magnitude faster than any other known scheme .
N

During the contract period the four following manuscripts hate

been prepared :

1. “A Variable Mesh Finite Difference Method for Solving a Class of

Parabolic Differential Equations ..”

2. “An Approximate Solution in Gasdynamics. ”

3. “On the :~umerica1 Integration of the Gasdynamic Equations .”

4. “On the Equations Governing a Trailing Wake .”

Of these the first has been published in the SIAM Journal on

Numerical Analysis, and the other three have been submitted for publication.

Two additional manuscripts are in preparation :

1. “Two-Dimensional Supersonic Flow: I. Analytical Approximation.”

2. Two-Diaensional Supersonic Flow: IX. Exact Numerical Int.qration.”
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In addition to the work covered by these manuscripts, several other

projects were undertaken but were not felt to warrant a publication .

These are also discussed below.
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1. Numerical Integration of Equations of the Navier-Stokes Type

A number of situations in fluid mechanics lead to flows containing

“boundary layers ” where flow variables experience rapid variation.

In the case of shock waves ~ priori location of this region is not known

(this is also true of the wake roll-up region behind a moving body) .

The numerical integration of the fluid eaiiations in such situations

present a number of difficulties. In any real situation, where Reynolds

numbers are large, transition layers are email and a numerical scheme

based on a uniform mesh is unf~aSible. To deal with this situation

we have investigated a variable mesh scheme for the equation

(1) Lu F( x, t , U, U , u
?x2 X t

From the mathematical viewpoint this represents a parabolic partial

diff erential equation and it is known that such equations , even for

smooth data, give rise to region5 of rapid variation for which a priori

error bounds fail.

A particular example of equation (1) is

)i.+k~
-n/2U~~~._ ~~ ~~u_

~ x 2 ? 2x

which for n — -1 is the -.quation-of Burgers (l].ilore .recently Eqn. (2),

which we call the modif ied Burgers equation, has been derived from the

Wavier-Stokes equattons for problems involving explosions and sonic

booms (2] , (3] .

We have developed a method for dealing with problems of this type ,

-
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4 a

which is uniformly second order accurate. A variable mesh (in x) is

generated based on boundary layer methods. The neighborhood of the shock

contains a zone of high density grid points, and a low density grid

is used in regions of slow variation. The grid system is rezoned during

the course of the numerical integration, i.e., grid generation is an

integral part of the numerical code. Further reduction of the numerical

problem is obtained from use of approximate shock trajectories, which can

be derived from asymptotic theory.

The results of this investigation extend by three orders of magnitude

a similar calculation (using a uniform mesh) found in (4). As an example

if n — 2 and the reciprocal Reynolds number S is 10 , a uniform mesh

approach requires � 10~ mesh points. For the method discussed here
600 points are required at the initial instant, With the course of time

this decreases steadily, e.g., at t — 2000 only 300 points are required.

The following figures give in graphical form the evolution of an initial

discontinuity for the three Reynolds numbers, R — 
—l 
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A report of this work appears in the following publication :

T.U. Chong, A Variable Mesh Finite Difference Method for Solving

a Class of Parabolic Differential Equations in One Space Variable, SIAN J.

Numer. Anal. 15, 4 (August 1978) ,pp. 835—857 .

Abstract. A variable mesh finite difference scheme for a class of

parabolic differential equations which exhibit shock-like structures is

developed. It is shewn that a properly chosen variable mesh will yield

results comparable in accuracy to one using a such finer uniform mesh.

Ccrputable criteria and schemes for generating such variable meshes are

given. A scheme is then applied to the Burgers’ and modified Burgers’

equations with a small viscosity. ~xcellent agreement is obtained with

known exact solutions.

Further work should consider multiple shocks, shock interaction , and

higher dimensional discontinuities.
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2 , Unsteady Gasdynainics--Analytic Approximation and Numerical Integration

We have pursued a novel method of treating gasdynamic flows in

which shock waves occur. Our research has produced a new analytical

approximation and a new numerical procedure for the exact integration

of gasdynainic flows with shocks. As a result of the analytic approach

ws have been able to recast the gasdynamic equations in a form

which we believe is optimal for machine integration . The result has been

a highly accurate and extremely rapid numerical pro. ~1ure. Unlike

existing methods , where shock waves oscillate , and often fail to stabilize,

the present method is able to fix a shock wave once and for all.

We consider the situation as depicted in the figure.

/
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A piston is moved into a gas at rest with the trajectory P(t). Leading

and trailing shocks X (t) and X
2

(t) are formed . In brief the analysis

is as follows:

Riemann invariants (normalized)

- + 2c(1)

are introduced . (U) is for an ideal gas , the modification of the develop-

ment for non-ideal gases is relatively minor.) A new coordinate ~ystem

(
~ ./) is introduced through

acc ~~~~~ 

.

~t a~
+ Cu + C) c)x 0

The gasdynamic equations then take on the form

as(2) 1.0  -

+?r £~~ .(3) —
~~~~~~

èr ~l( )

The time , t , is governed by

(5) ~~~ + in c)t~ — 0

and th. spatial variable, x, can then be deter mined from 
a

.

x~ . — Cu + c)t.~

Ii ~T~T_~ t~ ~T
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These equations are to be augmented by shock and boundary conditions,

which are not repeated here.

The first step in the procedure follows from an approximation

which occurs in shock expansion theory [1), (2), (3), viz.,

(6) r~~ r (a~)

With adoption of (6) we drop equation (4). Eqs. (2), (3), (5), and

(6) constitute the approximate theory and can be solved in terms of

quadratures and the functions S ( d), r (o(.) which are evaluated at the

shock wave. The results of this approximation are remarkably accurate.

Even in the neighborhood of ionizing shocks the approximate and exact

solutions differ by less than one percent.

The exact numerical procedure uses the approximate solution as a

first step in an iterative procedure. The approximate solution is

substituted into the right hand side of (4) and a new value of r (o( ,

obtained. This in turn is used to solve (2), (3), (5), and (6), and the

iteration repeated if necessary. According to the present version

of the numerical codes, this procedure conver ges in less than three

iterations.

As an example which is typical of the integration procedur .,

we consider a parabolic piston motion,

- P (t ) M0t(1 
- t/2 )

where N0 is the Mach number of the piston at the initial instant. - At
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N — 3 the flow is considerably away from equilibrium. For example,

the temperature behind the initial shock is four times its initial value.

The result of the numerical integration for N0 — 3 is shown in the

following four figures.

The first of these figures indicates the particle paths, o~ equal
constant, the C~ characteristics, ~ equal constant , and the shock waves,

heavy lines, in the physical plane. Each of the following three figures
+

gives the variation of the physical quantities, S r , p, C on either

particle paths or C~ characteristics. Thus the solution to the piston

problem is furnished entirely in graphical form.

1)I . ~~~~~~~~~~~ 

- 
- . 

a 

-

—--- — - -----—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
——-— ~~~~~~~~~~~~~~~~~~~~ — - - — —



— 
-

M0=3 
‘22 

-

I0~ 2 -  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8- I - 8’.76
fl 6-  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  u 0 -  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 I - 81)37 
8~t22 8’1a07

2 -  
________________________________ 

-2 -

i u : .  i i  i 3 j  i i i i

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
- a

M0=3

- 5.0 - -

- 
a:.8

r -6.0 - - : a

- ~~~0:.2 -

I I I I I I I I I I •

p a
2 -  -

a

1.6

1.2 
M0=3

S -

.8
a

.4

11 Pt - . —
— I  I I I - 1  I 

•
I ~ I

- 0  .2 .4 .6 .8
n - -

•lbiM~S&..—~- a~~~~~ : 

a a  

- 

“ -~~~-—-- —---— — ----—----- - — -- -- - ----- - - - -



r~’- w 
_ _ _ _ _ _ _ _  -

—

• —13— 
-

The results describe in this section are reported on, in detail,

in the following two manuscripts:

L. Sirovich .and..T.H. Chong, An ~pproximate Solution in Gasdynamics.

T.H. Chong and L. Sirovich, On the Numerical Integration of the

- 
Gasdynamic Equations.

Both of these manuscripts have been sukmtitted for publication.
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3. Steady Supersonic Flows

In parallel with the trea tment described in S.c . 2, we have also

investigated the case of two-d imen.~ional supersonic flows . The analysis

and methods snimn.~rized below applied to flows rang ing from the low

supersonic limit to high supersonic speeds.

The two-dimensional form of the gasdynamic equations in characteristic

form follows from the introduction of the Pr andt l angle

— sin 1 
N

and the flow angle

O tan 1”

as dependent variables . Then with the introduction of the RAemann

invariants a

(1) r ± a 9 + P ( u)

~ihere the Prandtl function P is defined by

(2) p - tan (
~f /4.) -

the governing equations are:

(3)

+ 1 dS.
(4) r~~~ ~~*in fr4 cosFt ~~

(5) r; U - t an et a np 4 ) j~~~G~ 
a

. . - _~~~~~~ . .~~. ~~~~~~~~~~~ —- - ~~~~~~~~~~~~~~~~~~~~~~ 
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In these the physical plane (x, y) has been transformed to (( , 
~~ 

) -

plane by means of

(6) y~ a t a n e x~

(7) ~~ — tan ~~~~~~~~ )x~

+The first of these corresponds to streamlines and the second to C characteristics.

The method of solution (in the upper half plane) follows from

what we refer to as the approximat ion . of shock expans~~n -theory [1—3] ,

viz, that r is “almost constant” on streamlines. We therefore replace

Eq. (6) with the condition

(8) r

Both r (~~~) and S (~~~) are to be determined at~ the -ihock .

The solution to the approximate theory as given by (3) , (4), (8) ,

as well as shock relations not listed here leads to solution in terms of

quadra tures . Furthermore , it leads to results at the body which are

within one percent of the exact results (to be described below), even

at the highest Mach numbers.

An exact numerical integration also proceeds from the above formulation.

The results of the approximate theory are substituted into the right hand

side of Eq. (5) which leads to a new determi nation of r (sC , ~~) (note

that r is now dependent) . This in turn is used to solve the remaining
-

, equations (5), (6) ., (7) , and (3 ) ,  as well as the shock relations .

a 
- 

. A significant aspect of the numerical integration is the fact

that the shock wave is fixed as part of the transformation from the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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physical plane (x , y) to the (~~,~& ) plane. The figure below indicates the

numerical grid system. The lead shock i-S fix ed and a uniform .( grid is abosen.The

remaining grid system is then fixed. (The grid shown is roughly 1/10 the density used.) -

I —

J _ _
~~~~~~ bho~~

1S04 /
-

-

0~1- - 

I 
_ _

0 04 D.~~ /

- To illustrate these results we consider a 10% parabolic profile and

~~ upstream Mach numbe r of five • The following figure shows the map of the

previous figure to the physical plane . ~ equal constant are streamlines

(not all of which are drawn), and~~ equa l constant are C cha racte ristics .
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A complete 3olution in graphical form is obtained on representing

ths physical quantities on the str eamlines and C tharacteristics.

As an illustration the next two figures show the variation entropy

a w~.d r (01 • fi ). The last figure is especially noteworthy since it gives

a posteriori support for our initial assumption , viz., that r is 
a~~~ 

good

approxiation constant on streaml ines .
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A number of additional cases have been worked out and further study

of these cases should be made.

A report on the progress made so far is now in prep aration .
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4. Aerodynamic Wakes

We have considered the development of a wake which follows the

passage of a lifting body . As is well known, a persistent vortical

structure known as “horseshoe vortices” is found in such a wake. Our

ef forts have been directed at determining simplified equations which

gôvern this wake structure. We have , however, included compressibility ,

entropy , and diss~.pative effects in the calculations. a

As a starting point of the analysis, it is assumed that the stream—

wise direction, x, experiences slow variation as compared with variation

in the cross (Treffitz) plane, (y, z) .  The method of treating this

problem is based on two scale perturbation techniques. To sunm~arize

the results we denote the crosswise velocity by u
1 

— Cv , w )  and the

longitudinal velocity by u • It is then found that

(1)

where ~ — , so that a crosswise stream function ~~
‘ exists , i.e.

~~~~ b jJ.(u, w) (- 
~

— y  ~, r)

The stream function is then found to satisfy

(2)

where -A~ -V~. is the Treffitz plane vorticity and ~~is a viscous

coefficient. The longitudinal velocity u also satisfies an equation of

the same form, -

j  

a a

a ~; 
. a  

.a

_ _ _ _ _ _ _ _ _ _ _ _ _  _________-

~~~ 

---a-
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(3) (~~~+ Cuj V’j )Ju - j ’S7Lu

In contrast to (2) and (3) the temperature is found to be governed by

(4) (~~- +  (~ 1
a-j

’ V.~)3T B gc 7~ T

where is a heat conductivity coefficient.

As equations (2) and (3) indicate, vorticity and entropy effects

decouple and give rise to different diffusion rates. The total vorticity

to the present order is given by

C ,

and as a result the twisting and stretching of vortex lines occurs

within the framework of this analysis.

The work just described is independent of Mach number and is thus

equally valid for supersonic as we]l as subsonic flows.

In addition to the above work we have examined the effect of a real

athosphere on the forms of the governing equation . Statification

eff ects and shearing winds have been included in a further analysis.

0 - The resulting equations are again in the form of nonlinear diffusion

equ~itions--bu t are now completely coupled .

A full report of this work appears in the manuscript s

L. Sirovich and T.H. Chong. On the Equations Governing a Trailing Wake

a which has been submitted for publication .
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5. Two-Dimensional Unsteady Plow

Consider uniform (upstream) two—dimensional inviscid f low past a

body which is undergoing unsteady motion. Assume that the motion of

the body is “slow” in the sense that the reduced frequency

- U

is small. Ci)is a typical oscillation frequency of the body motion, L

is the body length, and U is the supersonic uniform upstream flow. From the

assumed weakness of the shock waves , we also asszme that the Riexnann

invariant along the upstream going characteristic takes a negligible

jump across the front shock (see Sec. 2) .  Then from simple wave

transonic perturbation theory , we obtain the governing equations for

the normalized velocity perturbations , (u , v) ,  in the form

(1) 
v~

Vt e F~ + (
~~ ~~where

- _ _  ~‘p

5L~ ) ils,
2 2

~nd M - U/c is the upstream unperturbed Mach number, ~ - M -1,

r — ($~+l)M2.

The boundary condition on v is a

-

~ 

(2) v ~ 
~~~~~ ~~~~~~~ 

~ 
a

I  

a

- , .

— 0 0 ~_ — 0— - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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where y — ~~ Cx , t) is the body and

~~~~ s~

t~~ ~~~~
- ) f/~~ v)

Psom shock analysis, we find that the shock surface is governed by

an equation of the form

4. 3(~~ ) t)~jdv = CCj , G~’t)

where the functions A, 3, and C are explicita Eqns. (3) and (4) together

with the solution for v, (2), define a shock surface in the physical plane.

For purposes of illustration, we further assume that v is small

(this puts the analysis in the supersonic regime), and expand F and G

in powers of v, then (4) yields (up to quadratic terms in v) a solution

in the form

~~~~~/ sr~ s ’t0(’~~

(5) ‘t~~

i~ ç~.4(~~ ki1 S t _S 1o~c~
s.i

~jac)
where s is arc length , ca (S ) ,

~’ (
~

), y ( ~~ ))  parameterizes a curve

on the shock surface, and the functions a and b are explicit. By

eliminating parameters s and from (5), we obtain an approximate solution

to (4) in the form y — y ( O ,~t’) .

As a sample calculation , we have considered a pulsating wing

defined by



____ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0a

y - &%(~~~~
)(t4 ~~~~~~~~

for 0 <  6 ,o ~. x ~ . 1, 0 4 ~S <. 1. In this case all steps outlined above
can be carried out explicitly to yield a shock surface as well as

conditions on the moving body.

- 
At the present stage of development we do not feel that this work

warrants publication.
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In a similar manner two-dimensional supersonic theory was considered .

From this analysis we found that Whitham theory (1st order ) with only

minor modification may be extended to second order. This theory still

places characteristics and shock waves incorrectly to this order. A

new equation which has the form (in two dimensions)

4 

a

has been derived and show n to be valid uniformly through the second order.

This equation nay be integrated by standard means.

Although this work may be of analytic interest, it. is spperseded

by the work described in Sec. 3. As a result we have not pursued it

further and do not contemplate a manuscript on this topic.

I
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staff was employed : L. Sirovich, T.H. Chong, and T. Lewis. A part-time
-
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freelance help was employed for preparation of text and figures for

- manuscripts , 
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