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INTE GRAL EQUATI ON OF THE THEORY
OF LIFTING SURFACES
N. N. Polyak hov

This work , which Is a cont inuat ion and a generalizat ion of
work [1], sets up a new form of an inte gral equat ion of the
lift ing surface and examines the method of its approximate solution .

§ 1. SettIng up the basic equation. Let us assume that we

have a supporting surface which represents a set of rectangular

lines lying in the plane y=0 and which are covered by a continuous-

ly distributed system of the fl—shaped vortices with denSIty y. We as-

sume that  the length of each line along the x axis Is equal to 2a...,
the wi dth is equal to dz , and the span along the z axis Is 2L.
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The inducti~,-e velocity caused by one fl-shaped vortex, located
as shown In the figure , at point N ’ ( x ’ , 0 , z ’)  which lies in the
middle of the line with  number k Is equal to [1]
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Let us replace the variable assuming that
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where x~ is the coordinate of the leading edge In the z segment ,
while the dashes denote the values taken In the ~~ ‘ segment . It is
evident that p characterizes the relative shift , while q character—
izes the relative narrowing of the lines. The vortices of all lines,
with the exeption of the line with number k inside of which lies

the point N’ , will yield the velocity
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Vortices of the line with n umber k will  elicit the velocity
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Let us use the approximation equality
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which will be more accurate the smaller the ;. Then we will obtain
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As a result, isolating the peculiarity and Integrating, we will

obtain

“=—- & 
~~~~~ 4A, I , ,f S~ K~1 E’, z’)d t , (
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where r i — s --
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is a regular function sInce 1 — 1
~E disappears on the order of

(E’ — I)2 when ~—‘ t’.
The Integrals which are In the first brackets can be determined

numerically with given ~. ~~~, z ’ . The integrals which are in the
• second brackets can be determined only after the values of y in

all sections can be determined in the first approximation.
On the basis of (Il ) the equation of impermeability at the point

N ’ will assume the form of the following Integral equation :

~~~~~~ ~~~~~~~ 
~ (flK(~, E’, z~)d~, (5)

where F Is a given function. The equation of this form was obtained
earlier, but now its kernel K has a simpler form, which is important
for obtaining the approximate solution (see [lB. The integral
equation (5)  permits an Innumerable number of solutionS. From this
number it is important to Isolate a solution which corresponds to
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the smooth flow near the trailing edge , which leads to the require-
ment that the density y~ disappears on this edge. The disappearance
should have a strictly defined order, since the principle value of
the Integral which enters the left su e  of equation (5) exists only
In certain classes of functions, in which the integral permits the
inversion. The Inversion formulas have the following form (see [2]
§ 88)

~ ~~~~~~~~~~~~ 4 d ~’a) i~(l)~~~~ i~-T i~~ J r

b) r*(I) = y T r  ___

c) ~
(1)= 

~~~~~~~~ 

. _____

where the right side of ( 5)  Is expressed In terms of ~~.
After the inversion of the integral of equation (5) under the

condition that the postulate of S. A. Chaplygin (1(41)’O) Is satis-
fied according to formula a) ,  we obtain

i~
(I)=t.— 2,.k,VI__ g !V~ 1

i*O’P ( 1, zid~. (6)

where ... corresponds to an ifinite elongation and

One can attempt to solve this equation by the iterations method , j
having assumed that In the expression for K the v V  in the fitrst
approximation. Then equation (6) will transform into the Fredhoim
equation of the second order with the regular kernel. In order to
solve it by the Iterations method , it is convenient to present t~e
solution In the following form

- ~~/
i-;_1 ifT i

3(I) 3(E) + A~~~~~3(1, r r r1+ ~~~~

where 6T*(±l) 0.
After the substitut~~n, the equation (6) will assume the form

I;



T (1) ~~~~~~~ , (7)

where

2,X’VI—z’~

.1,(1, z’)= S V1~Is~-

When solving equation (7) by the iterations method one should as—
sume that -~~ Is equal to ~j (Ai~~~ O) in the zero approximation .
Th is enab les one to determine the ~ In all sect ions Z ’k in the

first approximation, I. e., to determine -~(E. z), then find the
differences ift. z )— T~(~, z) and k~ and proceed with the calcula-
tion of the second approximation. The solution becomes comp letely

elementary if one uses the Vayzinger [Weisinger] hypothesis and one

assumes that F~ —~ is equal to unity when calculating J1 and Li and
assume that I’ is equal —0.5. F~’pm formula (7) it is evident that

i(1, a’) vanishes just like (1 — z’2)0 5  when z ’-~-±l , and the
derivative .~~~

. goes to infinity just as (1 — z’2Y0 5  when z’-’- ±1.
We can prove to ourselves that these boundary condit ions are a
direct consequence of the vortex method. Actually the vortex sheet ,

which corresponds to the curve ~=const , by Int ersect ing with the
Treffts [sp. unconfirmed] plane at infinity which is perpendicular
to it yields a rectilinear segment with the span (—1 , 1) which is

covered by a vortex layer with density -
~~~~ . The inductive velocity

at the points of this segment is equal to

Since due to symmetry the circulation near the examined segment is
zero, the Interval should be inverted according to formula c) which
In this case will have the form

- ~—---~~. — -- —~-- - -~
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which corresponds to the boundary conditions formulated above . From

the aforesaid it Is evident that the boundary conditions for ¶ , both
at the leading edge and the trailing edge and also on lateral edges,
are the consequence of the intro duct ion of the vortex system for
which the appearance of singular Intervals which permit strict ly
defined conditions at the boundaries of the integration region Is
characteristic.

§ 2. SubstItuting the Integral equation with a system of al-

gebraic equations. This operation should be carried out, un derstan d-
ably , while adhering to the boundary conditions indicated above .

The presence of the singular integra l in equat ion (5) forces one
to seek the solut ion In the form

(8)

where ~~(± 1) should vanish just as VF-~~~ when E-’±I . Sub-
s t i tu t ing  (8) in (5) and eliminating the subscript k, we obtain

~~ 
÷ Y~~4K1s1~] ~~~~~~~~~~~~~ z’) TJ 1~KldE.

where K1=K (I, 
E’, z’):2)’(1—z”r.

To calculate the last integrals in the left and right sides
of equation (9) we divide the interval of integration into N partial
intervals (—1 , Es), (%j ,  Ia) . . .(~y_ ,. 1) . We will assume that the function
K (I. E z’) is known in each partial interval , having assumed that

in the first approximation ~~~~ . In the first and las t intervals
we approximate 1~ according to the parabolic law :

and in the remaining - according to the linear law :

6
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where ‘~ — values of k at the points of division. In this approxima-
tion the second Interval on the left side of equation ( 9 )  assumes

• the form

+1 ‘ H—i I~. N—I

-

~~~~~~~~ ~~~ 
~~~~~~~~~~~~ 

$ t ~i =

where C’ m represented by the integrals are calculated very simply,
analytically for any E’, including the Interval containing the

singularity. The integral on the right side is brought to the fol-

lowIn g form exact ly  In the same way

~~~~~

The integrals which enter the C”
~ 

can be calculated using the for-

mulas of mechanical quadrat ures , since they do not have peculiari-
ties. As a result , equation (9) will proceeed to the following

system of algebraic equations :

A C,(~’, z’) + ~~~~c~(I’ , z’)=F(~’, 
. . 

(10 )

In th is case the A0, 
~~
,, ...,I~N l are unknown. Their number is

equal to the number of intervals and , therefore , if inside each of
th ese we take a point with the coordinate ~~

‘
, we will have a system

which will enab le us to determine all the unknowns . The density ‘}‘
Is determine d by formula (8). This approximate solut ion will sat is-
fy the required boundary conditions of the vortex method.

~ 
3. Method of discrete vortices. There are two concepts regard—

ing this method. One of these is the Folkner concept and it entails
the fact that the supporting surface is broken down into a series

of lines which are parallel to the direction of motion . Each of the

lines is covered by a finite number of fl~
.1ike vortices with the

circulat ions ~~~ where m 
— line number , n - point number in thi

s7



line. In each section the values of’/~~ join the coeff icients of
expansion of the density y,,, in the series

i V 1 ~~~~s{A o(z .Jttl~~+~~~ Aii sIn hi!.~ (11)

where

I== — co.S. A Ai+A.iz~+A.~~.+.... x=O, 1, 2 

The connection between the r~ and A,., is established by equating
the total circulations originating from the discrete and continuous

distributions in each section . The same thing Is dOne with the

inductive velocities at the assigned points. In this way all rmn
can be expressed in terms of A,., and, consequen tly ,  total  in duct ive
ve loc i ty .  Folkner does not write the InteRra l  equation exp l ic i t ly ,
and for determining the A,., he uses the sys tem of equat ions which
expresses the condition of imp ermeabi li ty  at the various points  of
the sections used. The boundary conditions whi ch correspond to the

vortex method are sa t i s f ied  in this method.
Another approach towards the method of discrete vortices con-

sists of the fact that the expansion (ii) Is not introduced and the

circulations of fl—shaped vortices (the usual rectangular or skewed)

remains under the conditions of impermeability so that what we get

is a sys tem of algebrai c equations not relat ive to A,,,., as Folkner
has , but relative to I~~. This system has the form

= F:,, (12)

where I — vortex n umber , j  — number of’ a point , in this case the
numeration proceeds successively . Furthermore , segments of lI f tin g

vortices are located at O.25h , and the condition of Impermeability

is fulfilled at points 0.75h , where h — length of partial inter—

vals into which the cross—sect ions z=const are broken down .

Using the example of a two—dimensional stationary flow which
will be described by equation (5) with  the zero value of the integral
on the right side of (~~~ co), we can see that system ( 12) cannot
give us a correct solution for the problem. Actually , this system
obtained from an integral equation will have the form

_ _ _  
__ -J



—

~~ K,, 5 dE =F1, K,, = — eD~’ . (13)4-4

Firstly , the substitution of the kernel using formula (13) in the

Interval where it becomes unlimited (~ — coordinates of discrete

vortices ) is totally inadmissible and , secon dly , even we acc ept
st ruc ture  ( 12 ) f or the init ial system the theory of int egral equa-
tions says the following concerning the correspondance between (12)

and (13) (see [3], pg. 12): “ even if the determinant of system

(12) does not equal zero and the sys tem has one solut ion , system
(13) wIll have an infinitely large number of solut ions , since only
the average values of the y function in the Intervals (—i ,~ ,) ,

, etc. are determined uniquely”.

It is known that In order to select a parti cu lar solution from
an infinite number of solutions which would correspond to the

physical conditions , it is necessary to put forth the boundary

conditions which would correspond to the vortex method. Their

sa t i s f ac t ion  must be guaranteed , but sys tem (12)  which does not
reflect to any degree the conditions at the boundaries does not

f u l f i l th i s .  It is necessary to remember that the approximating
funct ion  must s a t i s fy  the same boundary condi t ions as the approxima-
tion function . It is assumed that the vanishing of the vortex

density at the t ra i l ing edge in the limi t wi l l  be f u l f i l l ed  aut o-
mat ica l ly  if the last oontrol points  In each sect ion are taken
between the trailing edge and the last discrete vortex. There are

no subs tan t ia t ions  for this  assert ion . In this case it is necessary
to remember that what is important here is not just the vanishing,

but  the vanishing of the rigidly defined order. The selection of
the last point does not correspond to the s tructure of a par t icular
integral and, therefore , canno t supp ly the necessary order of
disappearance . Actually , th is integral exists on ly in the concept
of the principal value which is obtained for the point lying bet—

ween the two segments of the vortex layer to which corresponds the
point lying between two vortices in the discrete scheme . The ‘‘last ”
point does not satisfy this condition . Thus, system ( 12 ) canno t

replace the initial integral equation with the boundary conditions

9
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which correspond to It. Therefore , the assertion that the method

• of discrete vortices in the theory of the lifting surface “ leads ,
in all cases , to  the  s u b s t i t u t i o n  of two— or th ree—diment iona l
integrodifferential equations with the systems of algebraic eQua-

t ions ” (see [LI], pg. 222) Is not true . Such a substitut ion for the

equations of the first order without the guaranteed satisfaction of

the rigidly defined boundary conditions is not lawful. The solution

depends on the nature of distribution of the vortices at the cal-

culated points which is assigned quite arbitrarily .
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