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INTEGRAL EQUATION OF THE THEORY
OF LIFTING SURFACES

N. N. Polyakhov

This work, which is a continuation and a generalization of
work [1], sets up a new form of an integral equation of the
1ifting surface and examines the method of its approximate solution.
§ 1. Setting up the basic equation. Let us assume that we

have a supporting surface which represents a set of rectangular

lines lying in the plane y=0 and which are covered by a continuous-
ly distributed system of the []-shaped vortices with density y. We as-
sume that the length of each line along the x axis 1s equal to 2a,
the width 1is equal to dz, and the span along the z axis is 2L.

The inductive velocity caused by one [}-shaped vortex, located
as shown in the figure, at point N'(x', 0, z') which lies in the
middle of the line with number k is equal to [1]
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Let us replace the variable assuming that
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where x, 1s the coordinate of the leading edge 1n the z segment,
while the dashes denote the values taken in the %' segment. It is
evident that p characterizes the relative shift, while q character-
izes the relative narrowing of the lines. The vortices of all lines,
with the exeption of the line with number k inside of which 1lies

the point N', will yield the velocity
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Vortices of the line with number k will elicit the velocity
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Let us use the approximation equality
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which will be more accurate the smaller the &. Then we will obtain
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As a result, 1solating the peculiarity and integrating, we will
obtain
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is a regular function since 1 — K. disappears on the order of
(#—€ when E-F.

The integrals which are in the first brackets can be determined
numerically with given 8 %, z'. The integrals which are in the
second brackets can be determined only after the values of ? in
all sections can be determined in the first approximation.

On the basis of (4) the equation of impermeability at the point
N' will assume the form of the following integral equation:
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where F 1s a given function. The equation of this form was obtained
earlier, but now its kernel X has a simpler form, which is important
for obtaining the approximate solution (see [1]). The integral
equation (5) permits an innumerable number of solutions. From this
number 1t 1is important to isolate a solution which corresponds to




the smooth flow near the trailing edge, which leads to the require-
ment that the density w disappears on this edge. The disappearance
should have a strictly defined order, since the principle value of
the integral which enters the left side of equation (5) exists only
in certain classes of functions, in which the integral permits the

inversion. The inversion formulas have the following form (see [2]
§ 88)
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where the right side of (5) is expressed in terms of ®.

After the inversion of the integral of equation (5) under the
condition that the postulate of S. A. Chaplygin (i(41)#0) is satis-
fied according to formula a), we obtain
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where 7. corresponds to an ifinite elongation and
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One can attempt to solve this equation by the iterations method,
having assumed that in the expression for K the v-v‘ in the ftrst
approximation. Then equation (6) will transform into the Fredholm
equation of the second order with the regular kernel. In order to
solve it by the iterations method, 1t i1s convenient to present the
solution in the foliowing form

w®=0®+sn=u®) = VI=+ a0,

where Ay, (+1)=0.
After the substitution, the equation (6) will assume the form
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When solving equation (7) by the iterations method one should as-
sume that ¢, 1s equal to 1 81.4=0) 1in the zero approximation.
This enables one to determine the ¢, in all sections z'y in the
first approximation, i. e., to determine <( z), then find the
differences 1( 2)—1*(¢, 2) and B and proceed with the calcula-
tion of the second approximation. The solution becomes completely
elementary if one uses the Vayzinger [Weisinger] hypothesis and one
assumes that £°—f 1is equal to unity when calculating J] and Ay and
assume that ¥ 1s equal —0.5. Frpom formula (7) it is evident that

1(/, ) vanishes Just 1like (1 - z'2)o'5 when z'-*1, and the
derivative %} goes to infinity just as (1 - z'2)—0'5 when z'+ 1,
We can prove to ourselves that these boundary conditions are a
direct consequence of the vortex method. Actually the vortex sheet,
which corresponds to the curve §=const, by intersecting with the
Treffts [sp. unconfirmed] plane at infinity which is perpendicular
to 1t yields a rectilinear segment with the span (-1, 1) which is
covered by a vortex layer with density %} . The inductive velocity
at the points of thils segment is equal to
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Since due to symmetry the circulation near the examined segment is

zero, the interval should be inverted according to formula c¢) which
in this case will have the form
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which corresponds to the boundary conditions formulated above. From
the aforesald 1t is evident that the boundary conditions for ¥ , both
at the leading edge and the tralling edge and also on lateral edges,
are the consequence of the introduction of the vortex system for
which the appearance of singular intervals which permit strictly
defined conditions at the boundaries of the integration region is
characteristic.

§ 2. Substituting the integral equation with a system of al-
gebraic equations. This operation should be carried out, understand-
ably, while adhering to the boundary conditions indicated above.

The presence of the singular integral in equation (5) forces one
to seek the solution in the form

w=4ViH+n (8)

where w(+1) should vanish just as Y¥1—8 when E&—=+1 . Sub-
stituting (8) in (5) and eliminating the subscript k, we obtain
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To calculate the last integrals in the left and right sides
of equation (9) we divide the interval of integration into N partial
intervals (—1, &) G &)...(y1» 1) . We will assume that the function
K (&%, 2') is known in each partial interval, having assumed that
in the first approximation 'ia'r‘ . In the first and last intervals
we approximate M according to the parabolic law:

w=% Y50 W= Vg

and in the remaining - according to the linear law:




gy = Ty +(i.‘-'b'£..)§-—‘e_: -,

§ where % - values of ¥ at the points of division. In this approxima-
tion the second interval on the left side of equation (9) assumes

the form
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where C'm represented by the integrals are calculated very simpl%
analytically for any &, including the interval containing the

! singularity. The integral on the right side is brought to the fol-
‘ lowing form exactly in the same way
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The integrals which enter the C"m can be calculated using the for-
mulas of mechanical quadratures, since they do not have peculiari-
ties. As a result, equation (9) will proceeed to the following
system of algebraic equations:
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In this case the Ae %W, ..., %y, are unknown. Their number 1is
equal to the number of intervals and, therefore, if inside each of £
these we take a point with the coordinate &, we will have a system
which will enable us to determine all the unknowns. The density ¥
is determined by formula (8). This approximate solution will satis-
fy the required boundary conditions of the vortex method. :

§ 3. Method of discrete vortices. There are two concepts regard-
ing this method. One of these 1s the Folkner concept and it entails t
the fact that the supporting surface is broken down into a series
of lines which are parallel to the direction of motion. Each of the
lines is covered by a finite number of [f1like vortices with the {
circulations rﬁm’ where m - line number, n - point number in this 4




line. In each section the values of/;nn Join the coefficients of
expansion of the density ym in the series
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where

t=—cosl, A, =As+Auz +AuZa+...,2=0,1,2, ....

The connection between the rhn and Aw is established by equating
the total circulations originating from the discrete and continuous
distributions in each section. The same thing is done with the
inductive velocities at the assigned points. In this way all rmn
can be expressed in terms of Aw and, consequently, total inductive
velocity. Folkner does not write the integral eauation explicitly,
and for determining the A« he uses the system of equations which
expresses the condition of impermeability at the various points of
the sections used. The boundary conditions which correspond to the
vortex method are satisfied in this method.

Another approach towards the method of discrete vortices con-
sists of the fact that the expansion (1) is not introduced and the
circulations of []-shaped vortices (the usual rectangular or skewed)
remains under the conditions of impermeability so that what we get
is a system of algebraic equations not relative to As, as Folkner
has, but relative to Fi. This system has the form ﬁ

L4
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where 1 - vortex number, J - number of a point, in this case the
numeration proceeds successively. Furthermore, segments of lifting
vortices are located at 0.25h, and the condition of impermeability
is fulfilled at points 0.75h, where h - length of partial inter-
vals into which the cross-sections z=const are broken down.

Using the example of a two-dimensional stationary flow which
will be described by equation (5) with the zero value of the integral !
on the right side of (A=), we can see that system (12) cannot [h
give us a correct solution for the problem. Actually, this system :
obtained from an integral equation will have the form
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Firstly, the substitution of the kernel using formula (13) in the
interval where it becomes unlimited (§; - coordinates of discrete
vortices) 1s totally inadmissible and, secondly, even we accept
structure (12) for the initial system the theory of integral equa-
tions says the following concerning the correspondance between (12)
and (13) (see [3], pg. 12): " even if the determinant of system
(12) does not equal zero and the system has one solution, system
(13) will have an infinitely large number of solutions, since only
the average values of the y function in the intervals (-L &) ,

(8, &) , etc. are determined uniquely".

It is known that in order to select a particular solution from
an infinite number of solutions which would correspond to the
physical conditions, it is necessary to put forth the boundary
conditions which would correspond to the vortex method. Their
satisfaction must be guaranteed, but system (12) which dees not
reflect to any degree the conditions at the boundaries does not
fulfil this. It is necessary to remember that the approximating
function must satisfy the same boundary conditions as the approxima-
tion function. It is assumed that the vanishing of the vortex
density at the trailing edge in the 1imit will be fulfilled auto=-
matically 1if the last control points in each section are taken
between the trailing edge and the last discrete vortex. There are
no substantiations for this assertion. In this case it is necessary
to remember that what 1is important here is not just the vanishing,
but the vanishing of the rigidly defined order. The selection of
the last point does not correspond to the structure of a particular
integral and, therefore, cannot supply the necessary order of
disappearance. Actually, this integral exists only in the concept
of the principal value which 1s obtained for the point lying bet-
ween the two segments of the vortex layer to which corresponds the
point 1lying between two vortices in the discrete scheme. The "last"
point does not satisfy this condition. Thus, system (12) cannot
replace the initial integral equation with the boundary conditions




which correspond to it. Therefore, the assertion that the method

of discrete vortices in the theory of the 1lifting surface " leads,
in all cases, to the substitution of two- or three-dimentional
integrodifferential equations with the systems of algebraic equa-
tions" (see [U4], pg. 222) 1is not true. Such a substitution for the
equations of the first order without the guaranteed satisfaction of
the rigidly defined boundary conditions is not lawful. The solution
depends on the nature of distribution of the vortices at the cal-
culated points which 1s assigned quite arbitrarily.
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Summary o

The rnper represents the simplification of the article [i]. The integral equation accor-
ding to lifting surface theorg' has a form (5) which can be transformed to the form (7).
1t is possibie to solve (7 by iteration. The second paragrlrh gives a system of linear
equations (10) which is approximately e%uivalent to integral equation (5). The vorticity
uistribution per unit chord y is given by (8), n(xl, 2) =0. i
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