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ABSTRACT

An application of control theory to an administrative
problem is given for the case of a system of stored items
which are periodically reworked to improve their relia-
bility. Expressions are developed for the final value of
the reliability when the system is stable and the limits

of stability are found. A Kalman filter is used in the

control model to obtain an estimation of the item relia-
bility when there are random errors in the measurement and
in the rework process. An extension is done for more than
one dimensicon for systems composed of subsystems in series,
parallel or a combination of both. A procedure for an
optimal sequence of levels of rework is found in the sense
of optimizing a linear combination of several performance
measures. Numerical examples are presented to demonstrate

the use of the several expressions.
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I. INTRODUCTION

In an earlier work Bohannan [2] developed a mathemati-
cal model for a system of stored items which are periodically
reworked to improve their reliability. That model yields
an expression, for the reliability of an item following
rework, in the form of a series. More recently, Bishop [1]
applied the discrete control theory to systems encountered
in economics and operations research rather than the more
typical applications in electrical systems.

In this thesis the mathematical model for the system of
stored items which are periodically reworked is developed
in terms of control theory, and the soclution obtained for
item reliability has a closed form that is more suitable for
further studies in this area. Important characteristics
such as system stability and the steady state value of the
reliability are directly derived from the control model
rather than obtained by inspection of simulated values.

The reliability of the stored items will depend upon
the reliability at the time of acquisition together with
the storage environment and length of time the items are
stored. When periodic rework of items is done, other varia-
bles that can affect the reliability of the item are the
effectiveness of the rework, the rate of rework, the rate
of acquisition of new items and the rate and policy of
expenditure of items for use, obsolescence, or even training

purposes.
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Such a system might include a stock of ordnance which
18 acquired, stored, and periodically reworked, but not
expended except for war time use, or alternatively expended
in training with replacement by new items.

On the other hand, items such as big missiles are not

likely to be expended, and thus expenditure and replacement
cannot be considered as a control variable for the relia-
bility. Thus, unless due to other factors, the expenditure
of such items would be avoided in favor of rework of the
1tems.

In this thesis we will study only the case where there
is no expenditure and replacement, leaving reliability over
time to be maintained by rework. We will also consider
the case where we have several levels of rework and want
to find the optimal sequence of levels over successive
reworks in order to optimize a given performance measure.

A general rework model is developed in Chapter II
which relates the reliability of an item followlng rework
tOo its reliability following the last rework. An equiva-
lent model is also developed relating the reliabilities
Oof an item immediately before consecutive reworks. These
models may be solved for any rework cycle given the initial
reliability at acquisition.

In Chapter III the concepts of control theory are
reviewed and applications to control of the reliability of

items in inventory are suggested and structured.
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When we have random errors in our measure of the item
reliability or when the rework process introduces random-
ness in the item reliability, then we have to make our
judgments based on estimated values. In Chapter IV, a
Kalman Filter 1s used with our control model to accomplish
this estimation. An examination of the final value and the
stability of our system is followed by an extension to
more than one dimension for the case where we have systems
composed of several subsystems in series, parallel or a
combination of both.

In Chapter V we shall extend our work to the case where
we can decide among several levels of rework. Using dynamic
programming, we will show how to derive the optimal rework
policy for this case in accordance with several performance
measures, namely, to obtain a desired reliability, to mini-
mize the costs Of several reworks, to minimize the time
to achieve a desired reliability, or to satisfy a combina-

tion of all these performance criteria. Conclusions and

9}

recommendations for further study are offered in Chapter VI.




II. DEVELOPMENT OF THE REWORK MODEL

In this chapter the general rework model is developed
which will relate either the reliability of an item follow-
ing a rework or the reliability of an item immediately
before a rework to the same reliability for the last rework
and the effectiveness of the rework process. A solution
1s found for these two reliabilities at any instant given

the initial or acquisition reliability of the item.

A. THE EFFECTIVENESS OF REWCRK

One form of rework mechanism would raise an item's
reliability to a certain level which i1s independent of the
item's reliability prior to rework, as might be the case
when components oOr parts are replaced. Another way,
developed by Bohannan (2] and adecpted in this thesis, is
for the rework mechanism to achieve an increase in relia-
bility which is proportional to both the item unreliability
before rework and the effectiveness of the rework mechanism.
This type of rework mechanism might exist where major assem-
blies or subassemblies are tested and repaired rather than
replaced. Denoting the item reliability immediately before
the rework by R, the reliability following the rework by

R we can define the effectiveness of the rework process

’
S
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The interpretation of the rework effectiveness a is that
the greater its value, the more effective the rework pro-
cess or in other words the item unreliability, 1-R, will
be reduced by an amount proportional to a since from

Equation (1) we can write

$L Rs =  (1=R} = al{l-R).
Under these circumstances, it may be possible for such a
rework mechanism to improve the item reliability to where
it is "better than new", "as good as new" or "not as good
as new". Because of deterioration of reliability during
storage, we note that in this last case, the reliability
might continue to decrease until the items need to be

replaced, rather than reworked.

B. THE REWORK MODEL
From the definition of effectiveness of the rework
process , given by expression (1), the reliability of

an item following the rework, Rs, is

Rs = R + a(l=R),

or

R = (l=a)R + a . (2)

10




Let R(t) represent the reliability of an item of age t

when there is no rework. We assume that all failures are

random, suggesting (i) that there are no early failures or
that some form of “burn in" has been used to eliminate
early age failures, and (ii) that because the items are

in storage and not in an operating environment, either
there are no wearout failures or the time to occurrence of
wearout is much longer than the projected time until the
next scheduled rework. Thus assuming that the reliability
R(t) is an exponential function,

e-(a+bt)

R(E) = ' (3]}

for £ > 0. Since the initial reliability R for £t = 0,

is

we have

R(t) = R_ e (4)

for t > 0 and b > 0. The value of the parameter b depends

on the nature of the item stored and on the storage environ-

ment.
If the system contains N items, which are reworked at

a constant rate o, then the period T to "turn over" the

il
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inventory is
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We begin by looking at new items that are going to be
reworked for the first time. The duration of the rework
process is T/N and the "age" of a new item selected for
rework under a First In, First Out (FIFO) policy will thus
be T-%, and its reliability R immediately prior to its
first rework will be

T
_b(T_—)
R(T-%) = R_e N (5)

o

If the item is going to be periodically reworked, we
can rewrite the above equation for the reliability just
prior to the (k+l)st rework. This will occur at time

t = (k+l)T-—2, and we have

N
’ -b(T - )
R(kT + T - ﬁ) = RS(kT) e
When k = 0 in this eguation, we get
T
b(T'-N-)

and from Equation (5) we have then

o
[

R(0) ,

L2

are used to label the branches, and indicate that a multi-
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or in other words the initial or acquisition reliability
may be considered as the "reliability following the Oth
rework", or as the initial value for the reliability
following the rework, Rs(k). Evidently there ig no rework
at the time of acquisition and this equivalence is used
only for purpose of coherence. The reliability just prior
to the first rework is then only defined for values of k
aqual to or greater than one.

The process 1s presented schematically in Figure 1.
Assuming that N or the rework rate are relatively large,
T-g ~ T and

R(KT+T) = R (kT) e °T |

For simplicity we will denote R(kT) by R(k), and the
reliability immediately before the (k+l)st rework, R(k+l),
can then be rewritten as a function of the reliability

following the kth rework Rs(k):

R(k+l) = R (k) e (6)
This expresses the reliability of an item immediately
before the (k+1)th rework recursively, as an exponential
function with initial value RS(kT) which is the reliability
of the item at the beginning of the kth period.
Rewriting expression (2) for the reliability following

a rework with this notation, we have

L3
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-
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FIGURE 1. Reliabilities during the kth period
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states that the transfer function from input u to a response
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Rs(k) = (l-a) R(k) + a . (7)

Combining the above equations, we have the expression
for the reliability after the (k+l)th rework in terms of
the reliability after the kth rework,

Rg(k+l) = (l-a)Rg(k)e™™T + o, k =0,1,2, ...
(8)

We may also write the reliability immediately before
the (k+l)th rework in terms of the reliability just prior
to the kth rework,

BT

oo I=RUEIIe T, K om LT (9)

R(k+l) = R(k)e P

When using this equation we have to consider as initial
condition the reliability immediately before the first

rework, R(1) = R e~ b7,

C. THE SOLUTION TO THE REWORK MODEL

Equations (8) and (9) are first order difference equa-
tions, and we can solve them by using the z transform tech-
nique, described in Appendix A, with the advantage that we
will obtain a closed form solution instead of a solution
in the form of summation.

In Appendix A we show that taking the z transform of

both sides of equation (8), we get

15
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= L ~bT oz
ZRS(Z) - ZRO = (l=-a) RS(Z) e + Er—— (10)

where Rs(z) means the z transform of Rs(k).

Rearranged, this gives

-bT a oz
(z= (l-a)e "")Rg(z) = 2R, + =07
or
: z- (1-we PT °  (z- (l-a) PF) (z-1)

which when expanded in partial fractions yields

z z a z
R_(z) = — R == — + —
: ze(l=aje X 2 Pl ii-aje T [z-(l=a)a "]
a
[(1-a)e PT-1]
The solution of this equation is obtained by taking
its inverse z transformed, as developed in Appendix A,
yielding
Rg(k) = (1-w)¥e™ Tp - — & [1-(1-0)Ke T
(l=a)e -1
(11)
Using the same method for Equation (9), we take the
z transform to get
ZR(z) = zR(1) = (l-a)e "TR(z)+ae ™7 2o, (12)
16
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L =bT il ae z
[z=(l-a)e “"]R(z) = zR(l) + =T -
Solving for R(z), we get
-bT
R(z) = ———:E%————— R(L) + a8 £ 5T
z-e (1-a) (z=1) [z-(1-a)e ]

which expanded in partial fractions yields

-bT
A z ae
R(2) » 1)+ =2 .
- bT(l-a) (z=1) [l (1=8)e bT]
" z se T (1-0)e™T)
[z=(l=c)e " 1 [f(l-a)je 2 =t]

Taking the inverse z transform, we find the solution in the

time domain to be

- =bT %,
Rik) = (l=a}%e “TRiyy - —8 (1~ (1-0) Ke KT

(l-a)e -1
(13)
Equation (13) gives the reliability of an item immediately
before the rework at time t = kT for a given initial con-
dition R(1l), the reliability of the item just before the
first rework. Equation (l1l) gives the reliability of the

item after the rework at time t = kT for a given initial

condition Ro’ the reliability of the item at the time of

17




acquisi;ion. Comparing these two equations we notice that
they are different only by a factor of e-bT, as might have
been expected from the Expression (6) that relates these
two reliabilities.

As an example, values of Rs(k) and R(k) are shown in
Table (I) for various values of Ry, a, b and T. As can be
seen in Table I, for T = 400 and Ro = 0.8 we have, for
a = 0.8, the case "not as good as new"; for a = 0.569 the
case “as good as new"; and for a = 0.7, an improvement of
item reliability constituting the "better than new" case.
The value of a that leads to the case "as good as new" can
be found by setting the reliability following the first
rework Rs(l) egqual to the initial reliability R, . Thus

from equation (ll) we have

Rg(1) = (L-a)e PTr(0) - ———-ﬁ—:ET——[l-(l-u)e_bT] = R(0),
(l-a)e ~'=1
which, rearranged, gives
a = [1= (1~a)e"®T] R(o)
or
& = qRi0)e T u R(0} (lee °T).

Solving for a yields

18
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TABLE

I

Examples of reliability immediately before rework

R(k) and reliability following rework Rg(Xk).
Initial reliability = R
Rework Effectiveness =
Deterioration parameter = b
Turnover period = T

R, = 0.8
a=0.2 a = 0,569
kK R(k) Ry (k) R(k) R,
1 0.536  0.629 0.53 0.
2 0.422 0.537 0.536 0.
3 0.360  0.488 0.53 0.
4 0,327 0.462 0.53 0.
R, = 0.8
T = 50 T = 100
kK  R(k) Ry (k) R(k) Ry
1 0.761  0.928 0.73¢ 0.
2 0.883  0.965 0.830 0.
300.918  0.975 0.859 0.
4 0.928 0.978 0.866 0.
R, = 0.95
a = 0.07 a =0.8
k Rk Ry (k) R(k) Ry
1 0.860 0.958 0.860 0.
2 0.867  0.960 0.979 0.
3 0.869  0.961 0.883 0.
4 0.869  0.961 0.884 0.

b = 0.001 for all cases

19

(k)
800
800
800

800

(k)
917
949
958

960

T = 400

T = 100

k)
972
976
977

977

a =0,7

R(k) Rs(k)
0.536 0.861
0.577 0.873
0.585 0.876

0.587 0.876

T = 250
R(k) R_(k)
S

0.623 0.887
0.691 0.907

0.701 0.912

0.710 0.913
a = 0.9
R(k) Rs\k)

0.860 0.986
0.892 0.989
0.895 0.990

0.895 0.990




R(0) (1-e~°T) =

aQ =
1 = R{0)e 2%

D. THE CONTROL VARIABLE

As pointed out by Bohannan (2], with these values a

steady state in reliability is reached by the fourth rework
and the influence of the initial reliability is lost. Thus
in order to rework an item to achieve a desired reliability,
we have to choose values for the rework effectiveness .,

or the turnover period T or both, so that the steady state
is not below the desired value. The turnover period can

be shortened by increasing the rework rate ° or by reducing
the inventory size N. Another way to have a higher relia-
bility would be by improving the storage environment, which
would reduce the reliability deterioration rate b, if this
is possible. However, the inventory size N and the deteriora-
tion rate b are not generally considered part of a rework
policy. In our formulation only the rework rate p and the
rework effectiveness a could be changed within a rework
policy.

In this thesis we choose to work with a fixed rework

rate p and to use the rework effectiveness a to control the
item reliability. This appears to be the usual practice in
preventive maintenance involving a fixed schedule and
several levels of maintenance or rework (corresponding to

several values of x). The use of the rework rate o to

R0
. 3

R_(K) = U(K) + Rk}
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control the system makes the system non linear, involving
equations that are time variant. This can be solved by
another area of the control theory which while not covered
in this thesis, can be done in a further work.

In this chapter we derived a rework model for the case
when we have a constant rework rate. We solved our dis-
crete recursive equations for the reliability before the

E rework, R(k), and after the rework, Rs(k), by the z trans-
form technique. The result is in a closed form rather than
in the form of a summation, making this solution more suit-
able for further analysis as will be done in Chapter IV.
Before this analysis, we will first derive in the next
chapter this same closed form solution by applying the

control theory approach.

il
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III. DEVELOPMENT OF THE CONTROL MODEL

In Chapter II we developed the rework model and found
the system of first order difference equations relating
the reliability immediately before the rework R(k) to the
reliability after the rework Rs(k):

R(k+1) = Rg(k) e 2T, (15)

and
Rs(k) = a(l-R(k)) + R(k) - (16)

We then solved this system using the z transform technique,
obtaining an expression for the reliability after any

rework as a function of the initial reliability, Ro'

i ky=BkTy o
| _ R_ (k) l-a) e - 1,
| e fo (1=aje *iauy

I (L)

k -bkT

(1-(1-a)

and an expression for the reliability immediately before any

rework as a function of this reliability before the first

rework:
—bT
R(k) = (l-a)Xe”PkTgp(y) - ———————B———[l =) B )
(l=a)e -
(18)

22

The response of the system, Y(z), can be now obtained
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In this chapter we will introduce a control theory

approach to the rework problem, and then derive these same
expressions in terms of control theory. This will provide
a basis for later solving the problem of obtaining an

optimal sequence of rework levels.

A. THE CONTROL THEORY APPROACH

In this section we will review, in a simplified form,
the main aspects of control theory that are of interest
to our rework model.

The first fundamental concept underlying a control

system is that of a dynamic model, that is a model des-

cribing the relationships among the relevant variables and
parameters of our system. In the model, the variables are
allowed to change with time in a deterministic way, and

the system behavior depends not only on their values at any
instant, but alsc on their past values and the rate of
change of these variables with time. The eguations derived
in Chapter II constitutes such a dynamic model of our system.

The second fundamental concept we will need is that of

a closed-loop control system, i.e., one in which the output

has a direct effect upon the control action, as shown
schematically in Figure 2. The output and the reference
input are compared in the controller and we say that the
output is fed back to the controller. The difference between
the reference signal and the feedback signal, called the

error signal or input signal to the plant, is then used to

This is the same as +ha » ceee—e_ -
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FIGURE 2. Block Diagram of

a Control System
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change the behavior of our plant or process with the goal
of bringing the output of the system to a value that gives
a zero error.

The "plant" is any physical or abstract object to be
controlled. Sometimes we feed back a measure of our output:
for this case, a box representing the measurement device
would be drawn in the feedback branch of the block diagram
of Figure 2. In summary, the term "closed loop" implies

the use of feedback action in order to reduce system error.

An open loop control system 1s a control system in which
the output has no effect upon the control action, that is,

the output is neither measured nor fed back for comparison

with the reference. An advantage of the closed-loop control
system is that the use of feedback makes the system output
relatively insensitive to external disturbances and internal
variations in system parameters, since a correction action
is taken anytime the error is not zero.

An useful tool in control theory is a signal flow graph.

This is a pictorial representation of a set of simultaneous
algebraic equations in which each variable is represented
by a graphical symbol called a node, and the dependencies
between pairs of variables are represented by directed
branches drawn between pairs of nodes. These dependencies
between two variables are called transfer functions, or
gains and are defined as the ratio of the incoming variable

to the variable at the end of the branch. Transfer functions

25
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are used to label the branches, and indicate that a multi-
plication operation is done upon the value entering the
branch in the arrow direction, delivering a new branch value
to the node where the branches terminates. The nodes are
also summing devices which sum all values arriving by the
way of incoming branches. As an example of this, Figure 3
shows the signal flow graph for a hypothetical system

defined by the set of equations

L 2
X, = ax;
Xy = ix, + ex, + gu
X, = CX,4
¥ = hX4

Given the signal flow graph of a system we often wish
to write the overall transfer function from an input or
reference value to the output. This can be obtained
directly from the signal flow graph by inspection or by
use of Mason's Theorem. This theorem, which we will use
later, expresses the transfer function in terms of various

loop gains and the parallel gains from input to output, and

26
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FIGURE 3. Example of a signal flow graph diagram
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states that the transfer function from input u to a response

Y is

where the terms are defined as:
(1) 4 is the determinant of the feedback configuration

and is calculated from the equation

where the Lj (or Lk' etc.) are loop gains all the way
around a feedback loop in the system. Thus §L1 means the
sum of all loop gains. The next term [' L, L, is the sum
of all products of pairs of different loop gains - e.g.,
LlL3 and so forth. The prime on the summation means we use
only the products for pairs of gains of non-touching loops.
In other words, L1L3 is included only if loop 1 does not
touch loop 3 (two loops touch if they have at least one
node in common). Likewise, ['L L L is the sum of all
products three at a time, where again each of the three
loops does not touch the other two.

(2) Pi is a path gain of the ith forward path from
input U to output Y (a path which contains no loops).

(3) &, is the system determinant ) after we have

i
excluded all loops which touch the P, path.

—
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The Mason's Theorem is better understood by an example.

Suppose our system is described by the signal flow graph
of Figure 3 and we want to determine the overall transfer
function Y/U. The loop gains are

L = ab , L2 = ce , L3 = aicd .

Hence

ZLj = ab + ce + aicd .

The loop L,y touches both Ll and L, but Ll and L2 are

non-touching. Hence

I'LL, = aicd,

and there are no three non-touching loops. We can then

write the determinant A

) - \‘ '

R, R ?Lj + 1'L L, o
or

A = 1 - (ab + ce + aicd) + aicd

The direct paths from U to Y are




- =BT
zR(z) - zZR(1) = (l-a)e PTR(z)+ae E%T y (12)
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Pl = faich

and

P2 = g e h

Since Pl touches all loops,

Path P2 does not touch Ll’ hence

A = 1 =L = 1 - ab .

Substituting into Mason's formula, we have

e N P &y + Pyhy
8) A i
or
T faich + gch(l - ab)

l - (ab + ce + aicd) + aicd

Summarizing, we can say that Mason's theorem gives a simple,
fast procedure for writing a desired transfer function \
directly from the signal flow diagram. The response of

our system can then be immediately derived from this trans-

fer function as proportional to the input,
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¥ = T U,

and this is called the solution to our control model,
i.e., an expression for the response of our system as a
function of any input to the system and a known (derived by

Mason's Rule) overall transfer function.

B. THE RELIABILITY CONTROL MODEL

Our concept of a system is not limited to physical

systems. The concept can be applied to abstract, dynamic
phenomena such as those encountered in economics and opera-
tions research. Also, feedback control systems are not
limited to the field of engineering but can be of particu-
lar interest to the manager, public official, operations
researcher, biologist, and design engineer. 1In this section
we will structure the reliability model in control theory
terms. The plant of the control theory approach will be

the inventory, where the (decreasing) reliability of items

is our variable of interest, or state variable. The con-

troller will be substituted by a decision-making function
that will decide upon a level of maintenance which is optimal
in the sense of minimizing a certain performance measure.
We will defer optimization until Chapter VI, and for the
present will assume a single level of rework, as defined

in Section D of Chapter II, corresponding to a certain

effectiveness of the rework a.

T T T I
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Our dynamic model is described by expressions (15) and
(16),

R(ktl) = R (k) e °T , k =0,1,2, ...,

and
Rs(k) = a(l = R(k)) * R(k) , k=1,2,3,

and the signal flow graph can be drawn in several ways, one
cf which is shown in Figure 4. At the second node from

the left the present item reliability, whose measured value
is fed back to this point, is compared with the reference
value, Rys that is made here equal to 1.0 due to our
definition of rework effectiveness (this will be better
clarified later). The difference, when not zero, produces
an automatic decision to rework the item, and after the
rework, this difference becomes multiplied by a since from

expression (l16) we have
Rs(k) - R{k) = a(l = R(k)) = utk) (19)
This difference will be denoted by U(k), and called
the input to our plant. Physically the item is returned

to the inventory at this point and the reliability of the

item is given by the sum

32
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b = 0.001 for all cases
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FIGURE 4. Reliability Flow Graph for the Rework Model
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Rg(k) = U(k) + R(k) .

This sum is performed at the fourth node. While in the
inventory the item reliability will deteriorate by a

factor e °T

given by expression (15) and at the end of a
period of length T we have the item reliability R(k+1l)
immediately after the (k+l)th rework represented at the
fifth node by R¢k+l). The relation between R(k) and R(k+l)
is a function called a unit delay of time, represented by
a box in the flow graph, with the meaning that the output
of our system R(k+l) 1is one period T ahead of the value
fed back, R(k), used to compute it.

The variable Y (k) is used to emphasize the fact that
R(k+1l) 1s the output of our control system. Branches with
a gain equal to 1.0 are used when there are variables that are
just renamed or going to be opverated on in another mode.

Taking the z transform on both sides of Egquations (15)

and (l16) by applying the properties given in Appendix A,

we have

R(z) = z 1 R(z) ¢ T + R(L) , (20)
and

Rg(2) = a(zEy - R(2)) + R(z2) , (21)

and the signal flow graph can be drawn as in Figure 5.

34
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The response of the system, Y(z), can be now obtained
by applying Mason's theorem as shown earlier. Since we
can consider that we have here two input values, namely
R(1l) and RD' this yields the overall transfer function

with respect to the initial condition R(1l) as

Xézy 1 i 2z
R(1) (1=~ o Phg s o o BT

zellegle OF

and with respect to the reference value RD'

ae-bT( 2 =

Y(z) _ z-1) 2 o e T,
RD 1-ae Tz-l-be-bT (z-l)(z-(l-a)e-bT)

The response of the system due to the reference value

that here is made equal to 1.0 is then

RDae'sz
Y(z) = '

(z=1) (z=(1-a) e PT)

and the response of the system due to the initial condition

is given by

R(1l)z
(z=(l-a)e”

Y(z) = bT)

Using the superposition principle for differential

equations, the total response is

-bT
Y(z) = ae 2 3 R(l)z

BT (2d}

(2=1) (2=(1=a)a 2%)  (2~{l-a)e °T)




error signal or input signal to the plant, 15 TaEH BS52 =%
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This is the same as the z transform of Equation (13) J
in Chapter II, and the inverse z transform of the total
response then gives the same Equation (13) for the relia-

bility of an item immediately before a rework. This is

-bT

Y(k) = R(k) = (l‘a)ke-kaR(l) % _&e;-rsr(l_(l_a)ke‘bk'r]’
(l~a)e "7-1

k= 15253, ce-

where the argument (k+1) was changed to k. In this case
the z transform had to be applied because the unit delay
present in the system, does not provide a linear function
necessary for the application of Mason's theorem. In the
z domain, however, the unit delay becomes a very simple
function and the solution may be found easily.

If the reference input RD is not equal to 1.0 but is

the desired value of the item reliability that we want
Rs(k) to match after some reworks then the definition of

rework effectiveness would become

R_ (k) - R(k)

RD - R(k)

Here, if the reliability immediately before a rework was
greater than the value of the desired reliability, the
} value of o would be negative. To avoid this problem we
, z might use a decision rule that could be expressed as a

function M(R,RD) defined as

3




0 6 Ry - R (k) <o

M = (23)

a 35 RD = Rk} > 0O

with the meaning that no rework has to be done when the
item reliability R(k) is greater than the desired value

Our model would then become

R.(k) = R(k) + M\RD - R(k)) (24)
This approach, however, would introduce a non-linearity
into our system that could not be eliminated by the z

| transform procedure, and the solution of our problem would

probably have to be obtained by computer. Hopefully we

can handle this problem and find an optimal seguence of

reworks that makes the value of Rs(k) to match the desired
value RD by using the optimization process that will be
developed in Chapter V.

Summarizing, we have structured the item reliability
model in terms of control theory for periodic reworks with
effectiveness of rework a as defined by equation (l). We
are now able to apply the tools of control theory to find:
(1) the limits of stability of our system as a function
of the rework period T, (ii) the stable final value of the
reliability as the number of reworks increase, and the use

of a Kalman filter. This will be shown in the next chapter.

R TP
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IV. APPLICATIONS OF THE CONTROL THEORY MODEL

In this chapter we will show how the results of our
control model can be applied to study the behavior of the
item reliability. First, we will study the stability of
our system, and then the final value reliability when t
increases. After introducing randomness to the system,
we will show the use of a Kalman Filter to estimate the

value of the reliability that is fed back.

A. SYSTEM STABILITY
A linear control system is stable if the output even-
tually comes back to an equilibrium state when the system

is subjected to a disturbance. 1In our reliability system

we are interested in knowing if there is any range of values

of the rework effectiveness factor a for which the system
becomes unstable, i.e., the reliability might continue to
decrease until the items need to be replaced rather ﬁhan

reworked.

From control theory we Xnow that the characteristic

equation of a control system is equal to the denominator of

the overall transfer function plus 1.0 and that for the

system to be stable the roots of the characteristic

equation, in the z domain, have to be inside the unity circle

(10]. For our reliability system we have from Equation (21)

the characteristic equation in the z domain as

39
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Ia=lila=(1=a}a" P2 + 1 = O .

Rearranging our characteristic equation, we have

2 bT

z¢ - [1+(1-a)e"bT]z + [1+(l-a)e ] = 0,

with complex roots at

-bT
e l+(12a)e . %\/TE+(lJa)e B el =ale ]

The absolute value of these complex roots is given by

2| = Jra-a) e T

Here,

ol = 1




2bT

(l-u)2 < e

This gives a second order inequality in a

az - 20 + 1 - 3eZbT ¢ Q@

that when solved shows us that for a stable system, the
value of & must be within the range

1-"T/F < a < 1°'3 (25)

For the example of Chapter II with b = 0.001 and

T = 100, we get

0.56 < a < 2.56

that agrees well with the value of y in Table I for which
the item is "as good as new" after each rework.

Outside these limits or when a is less than 0.56, (since
a by definition is less than unity), the system is unstable.
Here, the item will have its reliability deteriorating with
time until the item needs to be replaced rather than

reworked, i.e., for a < 0.56 eventually R = 0

B. THE FINAL VALUE IN STABLE SYSTEMS
When the system is stable 1ts response tends to a

constant value as the time increase whenever there is no

41
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disturbance input. To find this steady state value we
will apply the final value theorem, derived in Appendix A,
that gives us the limit of the system response when time

becomes very large. The theorem is stated as

lim ¥(k) = 1lim [(z-1)Y(2)] .
k> = z-+1

For our overall transfer function, this results in

lim R (k) = Lim [—32 4+ 2R(0) (z=1)
kom 2] z=(l-a)e 2% z-i(i-ale °F
(o}
PR PO (26)
1-(1~aje PT

Substituting selected values from Table 1, we get

a=0.7 T = 100 lim Rs(k) = 0.961
t»x

a = 0.8 T = 100 lim Rs(k) = 0.977
t+>x

a = 0.7 T = 400 lim Rs(k) = 0.876
£t

and these limits agree well with the values taken from
the table for the fourth rework.
As we can clearly conclude from expression (26) the

steady state value of the reliability after the rework Rs(w)

42




depends only on the rework effectiveness a and on the turn-
over period T for a given degradation parameter b, and is
thus independent of the initial value of the reliability

as was intuitively observed in Chapter II.

C. ERROR COMPENSATION USING A KALMAN FILTER

In this section we will show how a Kalman Filter can
be applied to our model in order to compensate for errors
in the measurement of the item reliability. Again, measure-
ment here does not imply a physical action. We suppose the
nature of the stored item is such that it receives frequent
diagnostic checks which yield an estimate of its reliability,
and such "measurements" are subject to random error.

In the model developed in Chapter III we have shown how
the item reliability is fed back so that a decision can be
made about doing a rework so that the item's reliability
can approach a desired value. In practice we have to
measure the item reliability or estimate it by some way in
order to feed back this observed value. This measurement
process, however, contributes to the variance within the
system. Other sources of variance in the process include
variability in the item environment and in subsystems
reliabilities due to repairing or substitution of parts.

We call these random errors as noisy or random input to
our plant, since we can model these errors as random
variables that are input somewhere in the plant as will

see later.
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If we do not want our control system following these
random inputs excessively it would be a good policy to
smooth the reliability values over time and then feed back
a predicted value upon which we made our decisions.

A useful, smoothing device is a Kalman Filter, and a
block diagram of a general system with a Kalman filter is
shown in Figure 6. Other filters could be used here but
with a discrete system we chose the Kalman filter: it is
the optimum recursive filter in the sense that it minimizes
the variance of the estimator error. The random input at
the plant in Figure 6 is designated by the random variable
w(k) and represents the error introduced by the environment
and rework process. The random error in the measurement
is designated by the random variable v(k).

Making the assumption that these noises are additive
expected values, we can restate our system equations (15)
and (l16) as

Rik+l) = @ DT R (k) + w (k)

and
Rs(k) = (l-a) R(k) + aR.,

D

and substituting the second equation into the first, we

have
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R(k+1) = e T[(1-0)R(K)+aR ] + w(k) .
Rearranging and grouping terms we have
R(k+1) = e PTrRk) + e™Tuk) + wik) (27)

where

U(k) = alRy - R(K)]

as before and RD = 1.
If we introduce the Kalman Filter in our system we
are feeding back an estiamted value R(k) instead of the

actual value R(k) and the input to the plant becomes
U(k) = (Rp - ﬁ(k)] (28)
The measurement process can be modelled by the equation
Y(k) = H R(k) + v(k) (29)

where H can be any function describing the measurement, and
v(k) is the random variable in the measurement process.
We need the following additional assumptions to make
the application of a Kalman Filter valid: |
(a) The measurement error v(k) and the random process
input w(k) has zero mean and are uncorrelated between

states, with variances S and Q respectively, or

46

S i e A e oot s s ot i R




r""-mm - . —— ——— — ~y

E[v(k)v(j)] = s ij P Son R e R T

Elw(k)w(j)] = Q skj b e 0,1,2,'... .

where Skj is the Kronecker delta function.

(b) The initial state is a random variable which has
known mean E(R(0)] = R, and variance M.

(c) The estimator is characterized by the linear

relationship

R(k|k) = R(k|k-1) + G(k)[¥(k) - HR(k|k=1)] , k = 0,1,2,...,

where:

R(klk) is the optimal estimate of R(k) given
observations at times up to and including k,
ﬁ(klk—l) is the optimal prediction of R(k) given
observations at times up to and including k-1, and
G(k) is the gain of the Kalman Filter at each step.
(d) The random input and initial state are uncorrelated.
(e) The random errors in the plant process or random
input w(k) and the random error in the measurement

process v (k) are uncorrelated or

E(w(k)v(j)l = 0 Jek = 0,1,8) oo o




The functioning of the Kalman filter is by predicting
the value of the item reliability ﬁ(k]k-l) using the esti-
mated value at the end of the (k-1l)th period, multiplying
this predicted value by the function H, so that this new
value can be directly compared with the measured value.

The filter gets the corraction term [Y(k)-HR(k|k-1)]

that can be conveniently weighted by the gain G(k) to
correct the predicted value, and obtains a new estimated
value for the kth period.

Notice that if we did not use a predicted value,
what is equivalent to say that é(kfk—l) = é(k-lik-l) = ﬁ(k-l),
we would have exponential smoothing and the gain G (k)
would then be the smoothing constant. With the predicted

value any trend is recursively incorporated in the esti-

mated value.
The best prediction R(k|k=-1l) that can be made is
clearly by using our model (Equation (27)),

R(k|k=1) = e °T R(k-1|k-1) + e PT t{k-1), (30)

and from assumption (¢) above, the equation for the esti-

mated value R(k|k) is

R(k) = R(k|k) = R(k|/k=1) + G(k)[Y(k)=-HR(k|k=-1)].
" (31)
With these two equations and the assumptions above it

is shown [9] that the sequence of gains that minimizes the

e .l"l "'“I “““«iﬁn—j
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variance of the estimator error P(k|k) is given by the

recursive equations

G(k) = P(k|k-1)H(H?P(k|k-1)+s]™} , (32)

P(k|k) = (1 - HG(k)] P(k|k=1) , (33)
and

P(k|k-1) = (e PT)2p(k-1|k-1) + Q. (34)

These are initialized by the value
P(O|-1) = M. (35)

From these equations we can see that the Kalman Filter
gain G(k) does not depend on the measurement values Y(k),
and can thus be computed in advance and stored for later use
when processing the measurements as they become available.
We can see also that the gain at time k, G(k), is inversely
realted to the variance of measurement error S — the more
uncertainty in the measurements, as reflected by a larger
S, the smaller G(k) will be, and the less the correction
term [Y(k)-Hﬁ(klk-l)] in Equation (31) will be weighted in
determining the next estimate. The random input error Q

also affects the gain G(k), and as the uncertainty in the
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prediction of P(k|k-l) increases and the more uncertainty
we have in our model, the larger will be G(k). For large
values of M or no confidence in the initial guess ﬁ(ol—l)
the filter makes ﬁ(OlO) equals to the first measurement
Y(0) since G(0) is equal to 1.0. When the initial guess is
hetter the filter makes a weighted combination of the guess
i(O(-l) and the first measurement Y(0), as one can conclude
from Equation (31).

A flow graph in the time domain of our system is shown
in Figure 7. The lower part of the flow graph is the
Kalman Filter, which receives as input the measured value
Y (k) and the input to the plant U(k), and has as output the
estimated value i(k). This is multiplied by the measurement
function H and the result is compared with the observed
value Y (k). The difference is then multiplied by the gain
G(k) and summed to the predicted value to produce the
estimated value, as given by Equation (31).

When we have more than one state variable, an advantage
of the Kalman filter not shown here is that we do not need

to measure all state variables but c¢nly a smaller number

to get all the estimated values we need to feed back toc the
plant.

As an example, suppose we have values from Table I in
that « = 0.7, b = 0.001, T = 100 and ﬁo = 0.8; suppose also
that the variance in the estimated value of Ro is M = 0.1,
and that the variances in the random input and in the measure-
ment are known to be Q = 0.1 and S = 0.1. Let our measure-

ment equation be given by
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FIGURE 7.

Flow graph in the time domain for the
rework system with a Kalman Filter

51




¥(k) = R(k) + v(k)

which in terms of Equation (29), implies H = 1. With these
values we can compute the Kalman filter gain for four
periods using Equations (32) to (35):

G(0) = 0.5,

G(1)

(]
o
w
@

G(2) = 0.60,

G(3) = 0.60, and

G(4) = 0.60.

§ Suppose the measured values are

Y (1)

Y(2) = 0.82,

Y(3) = 0.86, and

Y(4) = 0.85.

and we guess a value for the initial reliability
R(1]0) = 0.724. We obtain, by using Equations (30) and (31),

the values




a(l) = 0.737 ;
R(2) = 0.825 ,
R(3) = 0.859 , and
R(4) = 0.856 .
Notice that the reliability before the rework, R(k),
is not defined for k = Q. For this reason we use as initial

guess R(1|0) the value of the reliability before the first

rework computed from the initial value Ro = 0.8 and use the

gain G(0) to estimate R(l), the gain G(l) to estimate R(2)

and so on. The gain would not be delayed by one period if

we had decided to call the reliability before the first

rework by R(O0).

D. EXTENSIONS TO MORE THAN ONE DIMENSION

In a missile we can consider for example its booster,
cruise motor, guidance, and warhead as four subsystems that
are independently influenced by the environment and have
different reliability deterioration factor b. To extend
our model for this case we need to decompose our system
in several distinct subsystems. Here we may put the

§ equations for the subsystems in matrix form.

: We can define the vector of reliabilities of the

subsystems that will be called our state variables, as b




e B A L oo A

] ]
R, (k)
Rk = | R2®)

R3(k)

Ry (k)

A )

and a vector of reference reliabilities as

Rpy

R

BD — D2

Rp3

Rp4

L B

The input vedtor can now be defined as before in terms

of the effectiveness of the rework «, for each subsystem:

515
Mo, (k)] Ry, = Ry
U, (k) . = Ry
Uik) = | 2 = Loy ay ay al 02 5
& bt o
LUU"’ foa ™ Ry
or
T

Uk) = a” (Ry = R(k)]
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We can then write our state equation for the system with

random input as

R(k+l) =
where the matrix ) is
-b
e
0
‘2 =
0
LO

o

I3« P2

(k) + ¢ U(k) + Y(k) ¢

The measurement equation is

Y(k) = H

0 0 0
-b,T

& © @ 0

-b,T
0 e 3 0
-b

0 0 e

+ v(k) ,

and the vector of estimated values is given by

(36)

(37)

R(k) = R(k|k) = R(k|k-1) + G(k) [¥(k) = HR(k|k=1)]

and the vector of predicted values by

Rik|k-1) = e

-b

=51

2T R(k=1|k=1) + &2

where G(k) is the vector of the Kalman filter gains.

g(k"l) '

(38)

(39)




If we are interested in the overall system reliability

and if as in the missile case the subsystems are inde-

pendent and in series, we have the output equation

which can be added to the control signal flow graph as
shown in Figure 8. For subsystems arranged in parallel

or series-parallel, the system can be handled in a similar
manner, and needed changes in the output equation will not
influence the system itself.

In this chapter we applied tools from control theory
to our reliability model and showed how to find the limits
of the rework effectiveness a for which the system is
stable and the final value of the item reliability when k
becomes large. We also showed how a Kalman filter may be
applied to smooth the estimated values of item reliability
and feed back this estimated valuesupon which the decision
about a is made.

In the next chapter we will show how the decision
about a can be optimized with respect to a given performance

measure.
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V. OPTIMIZATION

In the previous chapter we have studied our control
model for the case we have linear equations and a single
level of rework effectiveness a. In this chapter we will
extend this study for non-linear equations and several
levels of rework effectiveness, and show how to find the
sequence of rework that optimizes a given performance
criteria. First we will discuss various performance
criteria that could be used for our control model, and then
we will show how to find the optimal sequence of rework

levels by dynamic programming.

A. THE PERFORMANCE MEASURE
The optimal control problem in our thesis is to find

a control u(k) as defined by the expression

u(k) = a(k) (Ry = R(k)) , (40)

which causes the system to follow a trajectory that opti-
mizes a performance measure J. The rework effectiveness,
a(k), is now allowed to change from step to step and in
fact the problem now becomes cne of finding the sequence
of rework effectiveness a(k) that yields the optimal
sequence of control u(k). NOtice that since a(k) is no

longer constant, Expression (40) is non-linear.
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First let us consider a trajectory (that is, the

sequence of values the item reliability follows over time)

that attains the desired reliability with a smallest num-
ber of reworks. This type of problem is called a "Minimum-
Time" problem and the performance measure to be minimized

may be generally stated as

for the case of our discrete system, this becomes

N-1
Fooam - 0
k=0

where (N-1) is the first period the desired reliability,

R is attained.

Dl
If instead we want to minimize the deviation of the

first state of our system from its desired value we have

the type of problem called a "Terminal Control" problem.

Here, possible performance measures are

N
3 oe DR R
i

where the summation is done in all dimensions or reliabili-

ties of the sub-systems. If positive and negative deviations
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are equally undesirable these deviations should be

squared.

1
™. |

To transfer a system from an arbitrary initial state
R, to some specified desired value with minimum expenditure

of control effort or with minimum cost, we need to minimize,

N-1 N-1
J = JC(kT = J cu(k)T,
k=0 k=0

where we assume that the cost of a rework C(k) is propor-
tional to the control u(k) or equivalently that the cost
is proportional to the reliability improvement, Rs(k) - R(k),
after each rework.

Since these criteriaare completely distinct in their
concepts, we shall follow the usual approach of using a
combination of them, that for the one dimensional problems

takes the form,

N-1
HN[Ry = Rg(k)] + [ [Q' + cu(k)IT
k=0

(&)
[}

Qr

N-1
J = HN[Ry - R(k)] + [ [Q+Gu(x)] , (41)
k=0




where HN, Q and G are relative weights so that by adjusting
their values we can weight the relative importance of each
criteria with respect to the other. These weighting fac-
tors can be functions of time if the relative importance
varies with time. Notice that now the performance measure
is a combination of criteria and has no physical meaning.

It should be noticed also that the rework effectiveness
a(k) now has the definition given at the end of Chapter III:

Rg (k) = R(k)

a(k) = RD = Rz'k) ’

and that even when RD is not equal to 1.0 we do not need

the decision rule

0 i Ry - R(k) < 0

a (k) if Ry - R(k) > 0
because the constraints in a(k) do not permi£ a to become

negative.

B. OPTIMIZATION USING DYNAMIC PROGRAMMING

We now wish to show how the performance of our rework
control system may be optimized in terms of the combined
performance measure (41). An optimal solution would be
expressed as a sequence of reworks that minimizes this
criterion. We shall approach the problem with the method

of dynamic programming, as developed by Bellman.
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The basic notion here is given by Bellman's principle
of optimality:
;ﬁ "An optimal policy has the property that whatever the
initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard

SRS ———

to the state resulting from the first decision" [5]. Thus

i if Jr . n(R(k+1)) is the minimum cost to reach the final
’
state at k = N, starting from the state R(k+l) at time

t = (k+1)T, and Jk k+1 is the cost to move from kth to the
’

(k+1)th state, then CQN(R(R),u(k)), the minimum cost to
go from the kth to the (k+l)th state when we use a particu-
lar control u(k) is given by

C;N(R(k).u(k)) = (R(k) ,u(k)) + J* (R(k+1)).

Jk,k+1 k+1,N

(42)
The optimal decision at the instant k, u*(k), is the
decision that minimizes CiN(R(k),u(k)) over the set of

possible controls u(k),

* = 1 *
JkN(R(k)) 3?2) [CkN(R(k).u(k))l . (43)
Expressions (42) and (43) form the functional equations
of our dynamic programming approach. The optimal sequence
of decisions are built up from the final state N backwards

toward the earlier states. This is necessary in order

that J* be known prior to the calculation of C*. The values

of R(k) are given by our model, and the constraints of the
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problem are

0.0 < EB(k) < 1.0
and

0.0 < «k) < 1.0

The first step in the computational procedure, then,
is to find the optimal policy for the last stage of opera-
tion. This is essentially a matter of trying all of the
allowable control values at each of the allowable state
values. To limit the required number of calculations, and
make the computational procedure feasible, the allowable
state and control values are discretized. The degree of

: approximation depends on the separation of these discrete
values and on the method of interpolation used and can,
of course, be adjusted.

For each discrete value of R(N-1l) we try all discrete
values of u(N-1l) and calculate the resulting state R(N).

The optimal control for this rework is the one which yields

the minimum cost. The procedure is repeated for all the
other discrete values of R(N-1). This gives a table of
optimal policy for each value of R(N-1) at the last stage.
Since the cost JN-l,N is dependent on the value of the
state R(N-1l) and on the value of the input applied, u(N-1).
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the minimum cost J* and the optimal control u*(N-1l) are
dependent on the value of the state R(N-1). For the last
rework we use only the first term (terminal control) of

our performance measure (41), but for the other, successive
stages we must compute each term in that expression. When

a state does not coincide with one of the discrete values

we have to use interpolation to find the corresponding value
of the performance measure. Since a direct search is used
to solve the functional eqguations, the solution obtained

is regarded as the global minimum.

A flow chart describing the computational procedure is
shown in Figure 9. A Fortran program for this flow chart
is described in Appendix B.

As an example of the use of this dynamic programming
procedure, we sought the optimal seguence of reworks for

the case where b ='0.001, P

100, and constraints,

0.8 < R(k)

N
—
.
o

and

0.7 < a(k) < 1.0.

We chose to work with twenty discrete values for R(k),

thirty discrete values for a(k), and four reworks. We

input in the program the equations of our model:
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Rg(k) = R(k) + a(k) (1=R(k))

R(k+1) = R_(k) ¢°T,

and considered as input variable the rework effectiveness
a(k) since in this program the equations need not be linear
and this is the variable of immediate interest for the user.
For the performance measure J given by Expression (41)
we considered four distinct types of problems obtained by
changing the weights. These are:

(1) Minimum Cost, so that the weights of the combined

criterion J (41) are
G = 1.0 , Q = 0.0 and HN = 0.0 ,

(2) Terminal State, or minimizing deviations from the

final value. Here the weights in J are
G = 0.0, Q = 0.0 and HN = 1.0 ,
(3) Terminal State and Minimum Cost, where we assume
a desired reliability RD = 0.99, and a relatively important

terminal state represented by the weights

G = 0.9, Q = 0.0 and HN = 500.0 ,
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and
(4) The linear combination of the three criteria

represented by the weights

G =0.05 , Q = 0.05 and HN = 500.0.

The dynamic programming solutions for the four cases
are presented for each rework period in the Computer Output
Section of this thesis. From these solutions we can now
find, for each of the four cases, the optimal sequence of
reworks for a given initial reliability RO (entering with
this value at the first rework table and, interpolating
among the values listed, we can follow the process until
the final state is reached).

The results are in Tables II to V for two values of
initial reliability of an item. As we can see from these
tables, the sequence of reworks that minimizes our perfor-

mance measure depends on the value of the initial reliability

Ro' for given values of the desired reliability RD and of
weightings in the performance measure.
Summarizing, we have applied a dynamic programming

procedure to our control model of the reliability of an

item and were able, for the four selected cases, to find
an optimal sequence of reworks that minimizes a selected
performance measure. For other selections of performance
measure J, relative weightings HN, Q and G, constraints,

initial reliability Ro and model parameters b and T, we
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TABLE II

RELIABILITY FOLLOWING REWORK FOR INITIAL RELIABILITY
Ro, AND OPTIMAL SEQUENCE OF REWORK LEVELS a (k)

Case (1) - Minimum Cost
N-1
PERFORMANCE MEASURE: J = [Ry-R_(k)]H + [ Q+GU(k)
k=0

with H=0.0, Q=0.0, G=1.0 and U(k) = a(k)

Ry (k+1)

0.926

0.933
0.936
0.937




= w N+ o ~

P

0
1
2
3
4

TABLE III
RELIABILITY FOLLOWING REWORK FOR INITIAL
RELIABILITY R_, AND OPTIMAL SEQUENCE OF
REWORK LEVELS a (k)
Case (2) - Terminal State

PERFORMANCE MEASURE: J

[Ry=Rg (k) 1H +

with RD = 0.9 R = L0 g i 00,

and U(k) = a(k)

Ry = 0.8

Rs(k) a (k) Rs(k+l)
0.800 0.90 0.972
0.972 0.90 0.988
0.988 0.90 0.990
0.990 0.90 0.990
0.990

Ro = 0.9

Rg (k) a (k) Rg (k+1)
0.900 0.90 0.982
0.982 0.90 0.989
0.989 0.90 0.990
0.990 0.90 0.990

N-1

)

k=0
G

Q+GU (k)

= 0.0




TABLE IV

RELIABILITY FOLLOWING REWORK FOR INITIAL RELIABILITY
Ro AND OPTIMAL SEQUENCE OF REWORK LEVELS a (k)

Case (3) - Terminal State with Minimum Cost
N-1
PERFORMANCE MEASURE: J = [Ry=Rg (k) 1H + } Q+GU (k)
k=0
with RD 0.99 , H=500.0, Q=0.0, G=0.9

and U(k) = a(k)

Ro = 0.8
k Rg (k) a (k) Rg (k+1)
0 0.8 0.60 0.890
1 0.890 0.60 0.924
2 0.924 0.60 0.933
3 0.933 0.867 0.979
4 0.979

R = 0.9

o
k Rg (k) a (k) Rg (k+1)
0 0.900 0.60 0.926
4 0.926 0.60 0.933
2 0.933 0.60 0.936
3 0.936 0.864 0.978
4 0.978
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TABLE V

RELIABILITY FOLLOWING REWORK FOR INITIAL RELIABILITY
Ro, AND OPTIMAL SEQUENCE OF REWORK LEVELS a(k)
Case (4) - Terminal State in Minimum Time with
Minimal Cost

N-1
PERFORMANCE MEASURE: J = [RD-Rs(k)]H + ) Q+GuU(k) ,
k=0

with RD =0.99 , H=2500.0, Q=0.05, G=0.05

and U(k) = a(k)

R, = 0.8
k Rs(k) a (k) Rg (k+1)
0 0.800 0.60 0.890
1 0.890 0.60 0.924
2 0.924 0.868 0.977
3 0.977 0.90 0.989
4 0.989

R, = 0.9
k R (K) a (k) Rg (k+1)
0 0.900 0.60 0.926
1 0.926 0.60 0.933
2 0.933 0.835 0.973
3 0.973 0.90 0.988
4 0.988
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would obtain different sequences of rework effectiveness
a(k) that optimizes the selected performance measure. A
suitable selection of the performance measure and relative
weightings being a responsibility of the manager according
to his purposes, experience and data available. Thus the
cost of each rework, the minimum value allowable to the
item reliability, minimum and maximum levels of rework that
are physically feasible to implement, and other factors
like the urgency to attain a desired reliability in minimum
time, or a constraint in the budget, are taken into account
when selecting the weightings in the combination of all

the criteria.

In the next chapter we will present the general conclu-

sions of this thesis and suggest the areas where one could

do further study involving the rework control model.
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

A simple, closed~loop inventory storage system from
which the stored items are removed, sent through a rework
mechanism to improve their reliability, and returned to
storage has been investigated in this thesis. Such a sys-
tem might be a stock of large ordnance which is acquired,
stored and reworked at regular intervals.

A general rework model was developed by using the tools
of control theory and a solution in closed form was found
that permits further analysis of the system in a much easier
way than if we had a solution in the form of series. This
model also permitted us to find in a direct way the values
of effectiveness of the rework that makes the system unstable
and the final value of the item reliability over several
reworks when the system is stable.

A Kalman filter was used in the control model to obtain
an estimation of the item reliability when we have random
error in our measure of the item reliability or when the
rework process introduces randomness in the item relia-
bility. This model was extended to more than one dimension
for the case where we have systems composed of several
subsystems in series, parallel, or both. Finally a study
was made for the case where we can have several levels of
rework and want to find the optimal sequence of such reworks

that minimizes a performance criteria that leads to the
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case of minimum time, minimum cost, terminal state or a
linear combination of these criteria.

This thesis shows that control theory may be applied
for administrative problems where a mathematical model des-
cribing the system can be derived. Control theory gives
a broader understanding of the problem and due to its flexi-
bility would permit us to include in the model many other
variables not studied in this thesis.

Among the several interesting areas which might be
pursued in further study, one is to determine methods for
measuring or estimating the item reliability by frequent
diagnostic checks so that this measurement process can be

incorporated in the model. Another area is to broaden the

field of the rework model so that other state and input
variables could be incorporated. These include the proba- i
bility that an item chosen at random might have reliability

exceeding some predetermined reliability requirement, and

other input variables (such as items expended for training

purposes, use, Or obsolescence, as well as new items acquired

periodicaly). The rate of rework, the rate of expenditure,

i
B
B
|
£
or the rate of acquisition could then be sought as control E
variables besides the rework effectiveness. Non-linear E
functions caused by the decision rule of doing a rework ;
only when the item reliability is smaller than the desired

value, can also be solved in terms of non-linear control T

theory.




A reliability control model has been developed in this
thesis for a system of stored items requiring rework.
It is hoped that the results presented here will not only
be useful to inventory managers and high-level planners
but will also generate further interest in the application

of control theory to administrative problems.




APPENDIX A

Z_TRANSFORM

A.l DEFINITIONS AND PROPERTIES

The solution of difference equations by the z-transform
method is very useful, because we can transform difference
equations into algebraic equations in z. Once solved

this algebraic equation we can then find the inverse z

transform of this solution to obtain the solution in the

time domain.

Thus, given a discrete function of t, f(kT), the
z-transform of this function, symbolized by F(z), is defined

by

2(£(kT)] = F(z) & [ £kmz K (44)
k=0

From this definition we can obtain several useful

properties. For example, let's find the z-transform of

£((k+1)T):
ZIE(+)T)] = § £((k+1)Tz X = J f(kmz X% \
k=0 k=1

= z[ J £(kD)z X - £(0)] = z F(z) - z£(0).
k=0

(45)
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Thus when a difference equation is transformed into an
algebraic equation in z by the z-transform method, the
initial data are automatically included in the algebraic
representation.

Other useful properties are

z[af(kT)] = a F(2) (46)

and

z[1(kT)] = Z, (47)

(o

where 1(t) is the unit-step function:

These two properties permit us to find the z transform
of a constant, since any constant a can be expressed by
the product al(kT):

zla] = az/z-1 (48)

Another property is the distribution property

z[£, (kT) + £,(kT)] = z[£f; (kT)]+z[£f,(kT)] (49)
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The z-transform of the most common functions are given
in several references listed in the Bibliography (1], [4]
and [10].

The inverse transform of F(z) is £(kT), and is denoted

by
27 liF(z)] = £(kT) . (50)

From the tables of z-transform we can find the inverse
of the simplest function. More complicated z-transforms
may have to be expanded into partial fractions so that the
tables can be used. Normally, we expand F(z)/z instead of
F(z) into partial fractions because this leads to functions
with z in the numerator after we multiply back by z, and the
functions of z appearing in tables of z transforms usually
have the factor z in their numerators.

When the partial fraction expansion does not give
tabulated functions, we may have to find the appropriate
z-transform from the definition. This will be the case
in our problem.

Similar properties of z-transforms exist for inverse
z transforms and will be useful:

2 r(z)/z) = z7riz7YR(z)) = fl(k-1)T] , (51)

2" aF(z)] = az"l(F(z)] = af(xT) , (52)
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a for t > 0 , (53)

and

27HE (2) +Fy ()] = 2ThR(2 vz iR, L (54)

The characteristic equation of a system is equal to
the denominator of the overall transfer function and the
stability of the system can be determined from the location
of the roots of the characteristic equation [10]. A con-
dition for stability is that all roots must lie inside the

unit circle or
< 1 (55)

Another important property of the z transform is the
Final Value Theorem [10]:

"If x(t) has the z transform X(z) and X(z) has no
poles (roots) outside the unit circle (|Z| < 1, that is the
condition for stability), then the final value of x(t)

or x(k) is given by

lim x(t) = 1lim x(k) lim{(z=-1)X(2)]." (56)
Lo k+» g

To prove this note that

[}
-
"
2
N
|

2ix(k)] = X(2)
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Zlx(k+l)] = 2X(z) - 2x(0) = § x(k+l) z X

k=0

Hence

2X(z) - zx(0) - X(z2) = (2-1)X(z) - zx(0)

@ @

= 7 ox(k+l) 27 - xtk) 27

k=0 =0

k

from which we obtain

(z=1)X(2) = zx(0) + § [x(k+l) - x(k)] z ¥

k=0

Because of the assumed stability condition, we obtain,

as z - 1,

lim {(2=1)X(2)] = Xx(0) + X(») = X(0) = xX(»)
2+l

which is Equation (56).
A.2. Z TRANSFORMS OF EQUATIONS (8) AND (9)

We found that the reliability immediately before the

(k+1) th rework is given by equation (57).

bT

R(k+l) = (l-a)e PTR(k) + ae” (57)
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Since (l-a)e-bT

and aRDe-bT are constants, we can apply
the properties (45), (46), (47), (48) and (49) to find the

z-transform of both sides:

ZIR((k+1)T)] = z((l-a)e PTR(xT)] + z[ae™PT)
= Z[R((k+1)T)] = (1-a)e PTZ(R(kT)] + ae ®TZ(1(kT)]
zR(z) - ZR(1) = (l-x)e “TR(z)+ ae™™T Zo, (38)

which is Equation (12) of Chapter I when we use R(l) as
the initial condition.

Similarly for Equation (8):

Rg((k+1)T) = (l-a)Rg(kTe >T + o (59)

- -l o st
zRg(z) = 2zR(0) = (l-a)e ""Rg(2) + a 773 (60)

which is Equation (10) of Chapter I.

A.3. EXPANSION INTO PARTIAL FRACTIONS

Equations (58) and (60) can be solved for R, (z)

and R(z), giving:

4 oz
Rs(z) = -———_-BTR(O) + e (61)

2=(1-a)e [2=(1~a)® 2%] (g=1]
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R(z) = ——2——=Rr(1) + 2e 2 : (62)
z-(l-a)e ¥ [z=(1l-a)e bT][z-l]

In order to have simpler expressions we can proceed now to
expand into partial fractions. We will exemplify it for the
last equation only, since they differ only by a constant
factor in the last term.

The first term has already a simple form so that we
need only to expand the last term. For reasons stated in

Section A.2, we will expand this term divided by z:

i ae °T, . ae-bT'
2 [2-(l-a)e T} [2-1] [z- (1-a)e PT] [z-1]
A B 4
n e = (63)
z-1 2=-(l-a)e bT

To determine the coefficient A we can multiply both

sides by (z-1) and evaluate the expression at z = 1l:

-bT

ae . A+ | B(z-1)
2-(1-a)e " PT| z=1 z- (1-a)e 27T | z=1
This gives
-bT
A = __ae—-ﬁ )
l1-(l-a)e
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To evaluate B we multiply both sides by [z-(l-a)e PT)

and evaluate at z = (l-a)e-bT, so that the term with A

becomes zero:

ae”PT
z-l

= 0+ B,
z-(l-a)e-bT

this gives

‘ ae—bT
é B = = '
? O
Substituting back into (¢3) , we have
E
ae bT 2 - bT
(2=1) [2=(1-a)e bT] (1-(1l-a)e Jia=1]
3 ae‘bT :
[(1~a)e PT=1] {z-(l-a)e T}
and R(z) can now be put in the form:
o HY
R(z) = I ——R(1) + = .
z2=(l-a)e - L (1=-(l-a)e bT)
-bT
2z ae e
* - = (64)
[z-(l-a)egBT] [(L=a)e bT—l]

The expansion for Rs(z) follows immediately from this last

equation:




R_(z) = ——z—-:'S—R(O) + f 2 ——
. z-(1-a)e °F 2=} 1o(1-a)e™PT)
- z o (65)
[z-(l~a)e-le [(l-a)e'bT-l]

A.4. INVERSE 2 TRANSFORM

The first and last terms of Equations (64) and (65)
are not found in the tables of z-transform so that we will
proceed now to develop the expressions of these z-transforms
from a guessed form of £ (kT).

Since the first and last terms are identical in terms
in z, differing only by constant factors, we need to do the
development just for the expression in z.

Thus, let's assume that

£(kT) = (l-a)k o7DKT

Applying the definition of z transform we have

F(z) = J £(kD)z X = ] (1-a)Ke PkTk (66)
k=0 k=0

Multiplying both sides by (l-a)e-sz'l, we have:

(1-a)e 2Tz lp(z) = I (1-g) KL B (k+1) T = (k+1) (67)
=0




Subtracting (67) from (66) side

kK -

[l-(l-a)e-sz-l]F(z) = ] (l-a)e
k=0

or

[=C=a)s 20 M r(e) = 1+ T (1-a)
k=0

L)

by side we get

bkT_ -k _ k+l -b(k+1)T, = (k+1)

! o(1-a)
k=0

k+le-b(k+l)Tz-(l+l)

- (l_“)k+le-b(k+1)Tz-(k+l)
k=0
or
[l-(l-a)e-sz-llF(z) - ]
Thus
1 z
F(z) = oy =7 T - =
1= (1=a)e 2tg > g Llnja oF
From this it follows that
e = £(kT) = (l-a)Ke™PKT
Also,
z-l ( 2 - N ] a(l-a)ke-ka
z-(l-a)e-bT (l-a)e-BT-l (l=a)e” T-l




and we can get similar expressions by changing the constant
part. From (52), (54), (69) and (70) we can now find

the inverse z-transform of equations (64) and (65):

-bT k ~-b(k+1)T
R(KT) = (l-a)ke kaR(l) + e o * a(l=a) 45?
l1-(1l-a)e (l=a)e -1
or
k ,=bKT BT k =bkT
R(kKT) = (l-a) R(1l) + “——-E——[(l-a) =-1]
(I-a)e -
(TL)
And from (65)
R, (kT) = (L-o)Xe™®KTR_ & : T el SRR Y
O -bT
(l=a)e -1

These are the equations (13) and (ll) of Chapter I, respec-
tively, and constitute the solution of the difference

equations (57) and (59) in the time domain.




APPENDIX B

COMPUTER PROGRAM DISCUSSION

In Chapter V we have shown that the functional equa-
tions of the dynamic programming to compute the optimal

costs over the set of possible controls are

Cry (RO u(k)) = g o (R(K) ,u(k)) +3f, ) o (R(k+1))

and

J]:N(R(k)) min [ciN(R(k)’“(k”]

u(k)

The program that performs these computations is
listed in the Computer Program Section of this thesis and
is composed of three subroutines and two functions. The
subroutine QUANTU computes the discrete values of the state
variable R(k), and of the inputs U(k). For each discrete
value, the subroutine STATE computes the value of the state
variable at the next state and the dynamic equations of
our model (15) and (16) has to be input in this subroutine.
With the vlaue of R(k+l), the subroutine cost selects the
value of the performance measure J by interpolation between
the two nearest discrete values stored in the array of
discrete values of optimal cost, COSTOP, of the (k+1l)th

state. This is possible because the computation is done
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backwards from the last stage of operation. The costs of
the last stage are computed by the Function HN, and the
subsequent cost for each state and each value of the input
U are computed by the Function G. These costs are summed by
the subroutine COST and in the main program the minimum .
value is found for all discrete values of U(k). These com-
putations are repeated for all the discrete values of the
state variable as can be seen in the flow chart of figure 9.
The program output presents the optimal costs and corres-
ponding effectiveness of rework o to go to the final state
for all discrete values of the reliability so that starting
with a given initial reliability at the initial state or
first rework table we can, interpolating through the values
of the next state until the final state, find out the optimal
sequence of rework for that particular initial condition.
The program output for the examples of Chapter V are

presented in the Computer Output Section of this thesis.
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