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\ ABSTRACT

| Y

Interpolation operations have wide applications in signal processing systems,
An efficient interpolation technique is developed and demonstrated. This is an iterative
technique in which interpolation output at any stage is combined with the input to that stage
so that the interleaved result forms the input to the succeeding stage. Sampling rate
increases of high order are not difficult to achieve. Resampling of high-order interpolator
outputs permits precise control of sampling rate conversion ratios.

From this basic work in interpolation, a digital filter synthesis procedure is developed.
The resulting class of finite impulse response filters is competitive in speed and storage
with conventional designs. These filters have the property that the passband frequency
function of a generic design can be scaled by any desired factor in frequency while main-
taining stopband suppression to specified levels. This synthesis procedure uses a :
ngtretch-and-fill" iteration operation. The impulse response into a synthesis stage is
stretched, and the vacated spaces are then filled from new data synthesized at that stage.
The "stretch" performs the frequency scaling function while the "fill" operation eliminates )
image responses that would otherwise appear. Computation of the coefficients for these '
filters, of any order, is trivial.

A FORTRAN computer program which uses the developed algorithm is provided
for general interpolation service. Auxiliary use of this program for obtaining derived
filter coefficients is described, and examples of filter synthesis are given. Special entry
points are provided for data format mode conversion: complex~to-real and real-to-complex,

Equivalent procedures for sampling rate reduction are also presented and discussed.
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SECTION I
“NTRODUCTION

The basic technique of interpolation is familiar to most engineers in the context of '
"reading between'" tabulated points in tables of functions or other data. This -may be an :
unfortunate introduction to a useful, fascinating, and often overlooked technique for reasons
that go beyond the immediate mental anguish of doing the proportions correctly.

Satisfactory linear interpolation requires a fineness in the spacing of the abscissa
values or "sampling rate'" that is often far greater than that required to contain the basic
| behavior information of the function or data. This is especially true in digital signal
E processing systems where band-limited functions having accurately known spectra are
E involved. In such systems economies in design are sometimes overlooked because changes
| in the sampling rate within the system would be required. Such changes are most conven-
iently accomplished by the resampling of interpolated data. Such interpolation must be
done inexpensively using designs which allow control of introduced errors.

In some cases sampling rates that are adequate to permit reconstruction of the con-
tinuous waveform are inadequate for certain nonlinear operations, with multiplication being
a common example. In these cases interpolation may be used to raise the sampling rate
just prior to a nonlinear operation of this type.

Interpolation is obviously not confined to the time domain. In the spatial domain for
example, expensive beamformer processors can sometimes be saved by interpolation-
synthesis of outputs corresponding to intermediate pointing angles,

Data format or mode conversion between ''real" data and '""complex" data is often
required in signal processing work. This conversion problem can be shown to have a simple
interpolation solution, Media conversions often involve interpolation because of differences
in appropriate sampling rates. Samples of a waveform taken at or near the Nyquist rate
(two times the highest signal frequency) might be adequate for machine processing. However
this rate would be totally inadequate for display use. Try, for example, to mentally re-
construct a sine wave given, say, three-equispaced randomly located sample values taken
from one period. Interpolation prior to display is often a necessity.

[ e ey T —— : g




In this paper an interpolation technique is developed which is b~sically quite simple
and is very easy to use. The technique appears to offer comptitationa.l advantages over more
conventional interpolation methods. A modification of the interpolation process leads to a
filter synthesis procedure which is described. Applications such as mode transformations
are treated in detail, A computer program for interpolation and mode conversion is
presented along with instructions for use.

; The basic techniques developed for interpolation may also be used for sampling-rate
reduction, Computer programs and design procedures are presented which permit con-
venient sampling rate conversions either up or down.




SECTION II
BASIC SINGLE-LEVEL INTERPOLATION

2.1 FREQUENCY DOMAIN APPROACH TO INTERPOLATION

For present purposes it is convenient to formulate the interpolation problem in the
context of the tapped delay line representation of Figure 2-1, A sinusoidal signal

s(t) = cos 27 ft (2-1)

is applied to a delay line having 2N taps spaced T-seconds apart. In later development
T will represent a sampling period for a sampling rate R where

R = — (2-2)

It is desired that the output at the center of the line be obtained where

c(t) = cos 2T f[t - (2N -1) 12] (2-3)

An estimated center output ¢ (t) is to be delivered from the weighted sum of the tap voltages

so that
N

A T
c(t) = Z 00821I'f[t+(2k-1)-—]
K=1 3"‘ 2

+a_kc0521rf[t-(2k-1)%]§ (2-4)

using the signal at the center tap as reference. Expansion and rearrangement of the
terms in Equation (2-4) yields

* -

A N T
c(t) = Lk2=:1 (ak + a_k) cos 2rf (2k - 1) ?- cos 2 ft
F N il (2-5)
—Lk; (ak-a_k)slnzu’f(Zk-l)—z- sin 27 ft

—

2-1
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a. Tapped Delay Line Representation

b, Phasor Diagram

Figure 2-1, Interpolation Processor, Continuous Time Version
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Since the center tap signal was used as reference for Equations (2-4) and (2-5), we may
ignore the (2N -1) T/2 delay term of Equation (2-3) and represent cos 2 ft as the desired ]
output signal. It then becomes apparent that the first term of Equation (2-5) represents
an in-phase component while the second term represents a quadrature component relative
to the desired cos 2 7 ft signal. In order to eliminate the undesired quadrature term choose:

™ " (2-6)
and define

bk = 2 a , :

by (2-7) ‘

M |

So that Equation (2-5) becomes after Equations (2-2), (2-6) and (2-7) are used |
N
3(1:) = Z bk cos (2k - 1) -12- % cos 27 ft (2-8)
k=1 (3)

The estimate of Equation (2-8) has no phase error so that the bracketed factor
may be interpreted as the real filter transfer function H (f) of the estimator of Figure
2-1a (time delay of (2 N - 1) T/2 understood) where

l.-..

(2-9)

|=

N
H{) = Z bkcoa(zk-l)-;—
k=1

)

If H(f) were equal to unity, the estimation would be perfect. As shown in Figure 2-1b the
coefficient choice of Equation (2-6) insures that the resultant phasor 3 lies along the true
center phasor line c. However, the amplitude of ¢ may differ from unity and hence intro-
duce estimation errors. The problem then becomes one of choosing the coefficients

bk so that H (f) of Equation (2-9) remains as close as possible to unity over a frequency
range which will be confined to

0<f<34 (2-10)




Both the phasor diagram of Figure 2-1b and Equation (2-9) show the difficulty
involved, namely that the component angular relationships are fuactions of frequency.
At zero frequency the phasors are all collinear, and the sum of the coefficients should
be set equal to unity. As the frequency is increased the phase relationships change and a
different coefficient set bk is required for unity gain. Since the single frequency analysis
is meant to represent performance at only one of a band of signal frequencies, the bk choice
cannot be changed as a function of frequency. An optimum bk set (in some sense) must be
found for the signal characteristics of the application,

2.2 PROCESSOR COEFFICIENT DETERMINATION

Examination of Equation (2-9) reveals that an odd harmonic series of cosine terms
is involved with each cosine term having unit value at f = 0 and zero value at f = (R/2).
Thus H (f = R/2) = 0 regardless of the b, set chosen. Define now a maximum value of
f/(R/2) and consider design procedures confined to the range

f

0 S(T) = vy . (2-11)
Z

It is desired to minimize the peak error (deviation from unity) of H(f). If the error is
defined as 6 then the quantity to be minimized is omax where

8 = |1 - H (9] (2-12)

That is, we seek that set {bk} which minimizes the maximum value of 6 of Equation (2-12)
for a giveny , N. As expected, the computational load (required N value) is increased
when 6 o~ is made smaller and when y is made larger (closer to unity).

Consider now the trivial but {llustrative case in which N =1, H(f) now becomes

H(f) = b, cos —’2'— (2-13)

N'”In

When f =0, H(f) is equal tobl and when f/(R/2) = v, H(f) =b1 cos T y/2. Since the H(f)
behavior is monotonic, b1 must be chosen to equalize the errors at the frequency extremes,
The choice is clearly

b, = (2-14)

1 1+coc—!2-l




and

_1l-cosmy/2 : &
% max 1+cosTy/2 (2-15)
which may be rewritten as
cos Ty/2 = %:—g—%g— (2-16)

The interaction of performance and bandwidth for this simple case is easily calculated.
For & e levels of -20, -40, and -60 dB, the respective y values are 0.39, 0,13, 0,04,
Thus for a fixed computation load (N =1 in this case) one can only trade performance for
bandwidth,

The above procedure represents a modified form of linear interpolation using data
from the delay line tap pair adjacent to the center point of Figure 2-1a. Ordinary linear
interpolation would involve (a,, a_ss) values of 1/2 and a unit value of b,. Note that b, from
Equation (2-14) is always greater than one, This departure from ordinary linear interpolation
is necessitated by the desire to minimize the peak error in H(f) over the operating bandwidth,
The result in this case is a 6 dB reduction in peak error level as compared to the normal
linear interpolation usage of the tap signals.

The computational approach used for general {bk} determination will now be described.
First rewrite Equation (2-9) letting

X = R/2 (2-17)
so that
N
H(x) = 2 b, co8 (2k - 1) —;- x (2-18)
k=1

In the x interval from 0 to y select a set of equally spaced points { xi} and consider the
weighted squared error sum

2 .
E =2 v, [1 - H(x!)] (2-19)

i




The process starts with unit weights w, and a {bk} set is determined by the usual (Ref. 1)
least squares procedures in which

coa(zk-l);—x

is used to define the coordinate functions of the approximation, After the least-squares
operation is complete, the weights w, are modified in proportion to

|1 -1
so that the regions of high error are emphasized. Then a new weighted least-squares fit
procedure is invoked to derive a modified coefficient set {b'k}. After a few such itera-
tions it will be found that the peak errors of H(x) over the approximation region are
equalized and, coincidentally, minimized. (Several years ago the author wrote an inter-
active time-share program for this and a variety of other curve-fitting problems which
leans heavily on a Honeywell H-635 auxiliary library routine named LSQMM. The names
M. A. Martin and F. E, Liller are associated with this program.) This procedure appears
to have more general applicability and may be found more convenient to use than the
REMEZ exchange algorithm employed for similar purposes (Ref. 2)

These numerical procedures were used to obtain the performance data shown in
Figure 2-2, The particular cases displayed here were run for specific purposes to be
described in later sections, For the present, the results of Figure 2-2 may be discussed
in terms of the general interpolator design problem,

The time-share program previously mentioned was run for a variety of y values
over an appropriate set of N values, For each N value the peak error in H(x) was found
and expressed in decibels. Plots of 6 - in dB as a function of N were then made using
5 as a parameter, For a specific y, say 80%, the peak error decreases monotonically
with N as expected, For this particular y only, the error performance for least-squares
determination of the coefficient set {bk} is shown circled above and to the right of the
normal minmax performance curve marked "y = 80%". It appears tha the minmax
iteration is worth the order of 6 to 8 dB in additional error suppression,

The rapidly escalating processor costs incurred as y approaches one may be seen by
looking along the -35 dB error line, for example. Aty =80% an N of 6 will suffice,
at y = 90% an N of 11 is indicated, while at y = 95% the computation price has risen to
N =23, For the smaller y values N goes down rapidly, with simple two-point interpolation
(N = 1) providing error performance in excess of -50 dB for y of values of about 15% and
less.

2-6
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2.3 EQUIVALENT DIGITAL FILTER AND SPECTRAL CONSIDERATIONS

In the discussion up to this point the interpolation problem has been presented in
the context of continuous time functions made available only at equispaced delay intervals
T. Simple modifications of the structure of Figure 2-1a provide a convenient conversion
to the discrete time case of interest in digital signal processing. As shown in Figure 2-3
the delay line input signal is sampled at rate R = 1/T by the impulse train p (t). Additional
changes from Figure 2-1a involve summation of the e (t) output with the output of the a_,
tap after this tap output pulse is delayed by T/2 seconds. At any given input pulse time,

, the output of tap a_ represents input signal as it existed (N - 1) T seconds prior to t
The output o appmudmatea input signal as it existed (N - 1) T + T/2 seconds prior to te
Since the c sample represents an earlier epoch of s (t) than the a_ sample the latter must
be delayed by T/2 to maintain proper order. Thus the structure of Figure 2-3 may be
considered to operate on input data sampled at rate R and produce at its output sampled
data at rate 2R. Note also that the delay through the processor of Figure 2-3 is (N - 1)

T + T/2 seconds or 2N - 1 output rate sampling periods.

B6684
= —— :]
ot T = 5 T S BT
s 8o 81 c®» 8 a8, a
ik * SN LY AR AN - Rk
. 4 ooy .
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- 8
r—»a
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I—ll
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Figure 2-3, Interpolation Processor, Sampled Data Version
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In the analysis of Figure 2-3 which follows it is assumed that s (t) has a power
density spectrum S (f) where

S(¢) =0for |f]| =R/2 (2-20)
Since the sampling period is precisely equal to the delay line tap spacing, all line output

voltages will be zero except for times which are multiples of the sampling period T. The
tap voltage d, (t) will be '

A

d ) =c@®)p(® (2-21)
The output on the a_, tap represents signal data that is from a later time than the data on
the s(t) bus by T/2 seconds. For this reason the a_, impulse samples of Figure 2-3 must
be delayed as shown in order to maintain proper output sequence. This T/2 delay of the
a_, sequence is exactly equivalent to

d, (t) =8 (t - (2N -1) T/2) p (t - T/2) ' (2-22)
The impulse train p (t) may be represented by the Fourier series
L]
p) = ) cos2r nRt (2-23)
n=0
so that
)
Pt-T/2) = 9, (-1)" cos 2r nRt. (2-24)

n=0
Equation (2-22) may be written as

dy) = 8(t-(2N-1)T/2) 2, (- cos 2r nRt (2-25)
n=0
and the other adder input will be

d = Stp® = ot Y, cos 2r mRt.
n=0
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Combining gives

A
d(t)=[c(t)+s(t-2(N-1)T/2):|E cos 27 nRt

n=0,24
L]
A
+lec@)-s(t-2(N-1)T/2 E cos 27 cos 27 nRt (2~27)

n=13,5

It is trivial to show that if x (t) has a power density spectrum X (f), then

Y@ = % [ X (f- fc) +X (f+ fc)] (2-28)

where
y(t) = x(t) cos 2m fct : (2-29)

and Y (f) is, of course, the power density spectrum of y (t). The result in Equation (2-28)
will now be used with Equation (2-27) to derive the positive frequency portion of the
spectrum of d (t), D+(f).

From the discussion relative to Equation (2-9), the transfer function relating 2 (9]
and s (t) is H (f) exp (- j 2nf (2N - 1) T/2). This allows use of Equation (2-28) so that
the power density spectrum D+(t') of d(t) of Equation (2-27) may be written as (factor of
1/4 ignored)

o' = D, |1+H(-nR)) 2 S(f-nR)
n=024
. 2 |1-H(@¢-nR)| 2 S(f -nR) (2-30)
n=1,3,5 :

. |

b




Asketchof Equation (2-30) for an § (f) of unity in the range || = R/2 is shown in
Figure 2-4a. The sampled data spectrum at the input to the interpolator has a periodicity
of frequency span R, the input sampling rate. The spectral periodicity at the interpolator
output has a span 2R consistent with the doubling of the sampling rate as explained relative
to Figure 2-3., Thus the new foldover frequency (one-half the sampling rate) is R.

Relative to this new foldover frequency we may define an effective frequency function
G (f) for the interpolation processor of Figure 2-3

G{) = |1+H(t)| , 0<f=<R/2

(2-31)
e =|1-n®-9|, B2 <t =R
remembering that
H(f = R/2) = 0 (2-32)

The complication introduced by the doubling of the sampling rate from the sampled
data input of Figure 2-3 to the output at d (t) may be resolved by assuming an input data
rate of 2R with alternate sample values all equal to zero (Ref, 3), This construction leaves
the physical input signal to the line of Figure 2-3 unchanged, yet allows input and output
power density spectra to be directly compared in the context of an equivalent filter G (f)
of Equation (2-31).

As discussed earlier, an ideal H(f) function would have unit value out to the original
foldover frequency R/2. The resulting G (f) would have a gain of 2 from 0 to R/2 and be
zero elsewhere, This would produce block spectra in Figure 2-4 of width R centered
at even multiples of R. This, of course, is the spectrum which would result if the original
8 (t) were directly sampled at the rate 2R.

The filter function G (f) of Figure 2-4a and Equation (2-31) may be discussed in
terms of a passband from 0 to y(R/2), atransition region from y (R/2) to (2-v) (R/2), and
a stopband from (2 - y) (R/2) to R, The passband and stopband are directly related since
Equation (2-31) shows that a deviation 4 of H (f) from unity in the passband at frequency
f results in a response of magnitude |6| in the stopband at frequency R-f. Interpolation
errors result in the desired signal being at an incorrect level at the output (passband)
accompanied by an image signal created within the processor (stopband).

2-11
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b. Interpolator Error Spectrum

Figure 2-4, Interpolator Output and Error Spectra




The gain of 2 in the passband indicates a reinforcement of desired output signal from

the interpolated series by the signal from the 'direct-through' series from tap a_, of

Figure 2-3. Remember that the error performance calculations shown in Figure 2-2 were

made relative to the interpolated series only. Thus the relative error values of the
sampled-data version of Figure 2-3 are reduced by 6 dB from the values given in Figure 2-2,

The transition region of Figure 2-4 is obviously a region of poor performance. The
desired signal level errors can be large, resulting in high levels of image-signal generation,
Error effects resulting from this region can be reduced either by making y large (which
can be computationally very expensive) or by keeping the signal spectrum in the region
v R/2 to R/2 low. The latter condition results when the sampling rate is increased
beyond twice the low-pass filter cutoff frequency when the initial analog-to-digital conversion
is made, for example,

Filters of this type are also discussed in reference 5 and are described as "half-band
non-recursive” filters.

2-13/2-14
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SECTION III
MULTILEVEL INTERPOLATION

3.1 EXTENSION OF TECHNIQUE TO GENERAL L-LEVEL CASE l

If the sampling rate is to be increased by a factor of 2L, an iteration of the technique |
of Figure 2-3 may be used to good advantage as shown in Figure 3-1, The general L-level
procedure will be outlined first, with detailed design considerations to follow., (Different
design approaches to multistage interpolation may be found in references 7, 8 and 10.)

Starting at the top of Figure 3-1, we reason that the interpolated data at the output of
level 1 represents the best estimate of intermediate data values obtainable from the alloca-
ted processing investment made at that level. Thus it seems eminently reasonable to use

these intermediate results as input for the next processing stage.

The design of the next stage (level 2 in this case) may be relaxed as compared to that
of level 1 because the relative signal bandwidth has been cut in half by the 1:2 increase in l
sampling rate at ihe previous level.

For example, consider an error level line drawn horizontally in Figure 2-2 through
the y =60, 30, 15, ---% curves, If the signal bandwidth requirement calls for a y =60%
first level, a proper 1st-level N value may be chosen by noting the intersection of the error
line with the curve y =60%.

Now at the second level the effective y is reduced to 30% and a lesser N will be satis-
factory which means a lighter processing load as compared to level 1. The next step
results in a level 3 y of 15%, and so on, Eventually the working-level y is reduced to the
point where N = 1 which, in effect, means linear interpolation, At this point (say at the
output of level K) the procedure is changed and the final processor simply does linear
interpolation of 2L-K-1 points between each input pair. This procedure is efficient in that
only that amount of processing needed for error control is used at each level.

The procedure may obviously be extended to provide arbitrary sampling rate multi-
plication at the linear interpolation output level. '

The problem specifications determine how many Figure 2-3 type processors will be
needed before reaching the ZL-K linear interpolation processor. Once the linear inter-
polation level is reached sampling rate multiples become inexpensive,

The above discussion is conceptually correct, but important design details which
were passed over will be considered in the next two sections.
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3.2 DESIGN CONSIDERATIONS, CRITICALLY SAMPLED CASE

The output spectrum of Figure 2-4a was based on a uniform irput signal spectrum
extending to R/2. Deviations of this curve from a repeated block spectrum on 2R Hz
centers represents error power. A normalized error spectrum is sketched in Figure 2-4b,
The peak level & 3 is reached in the pass and stopbands. In the transition region a high
density level is always reached. Error contributions in this region can only be reduced
by narrowing the transition region (increasing y) or by lowering the spectral level of
the signal in the foldover-frequency region (oversampling).

Error control in the multilevel interpolator is strongly influenced by the specific
application, In much of the previous literature (Ref, 3) interpolation is done by passing a
digital signal through a digital low-pass filter which is characterized by a passband, a
transition region and a stopband. In order to compare interpolation methods, the design
procedures in this section will also be based on an extended stopband in which uniformly
low error level is maintained, In the multilevel interpolator, error spectrum distribution
can take many forms., One form arises from the use of a low-pass filter in the operation.
It is not obvious that this is necessarily the best error distribution for all applications,

Figure 3-2(a) shows a uniform input signal spectrum extending to R/2. Figure 3-2(b)
shows the first-level filter function and output spectrum for the critically sampled case., A
v, 18 chosen at the first level which yields a transition region from 71 (R/2) to (2 - yl)R/ 2
at first-level output. The error spectrum is not shown. However, it is known to peak at
the center of each transition region. This first-level design will produce stopbands in the

spectrum as shown by the circled number ones, indicating stop regions contributed by
level 1,

The level 2 design uses an "extended" Y9 of (2-y 1)/2 in order that the created
stopbands shown as circled two's encompass the transition region and error-spectrum
peaks associated with the spectra centered at multiples of 2R, Figure 3-2(c) shows the stop-
bands produced by the level 2 processor while Figure 3-2(d) shows the level-two output spec-
trum with the stop regions identified as to the processor level responsible.

Starting with the third level, the y values can be simply one-half the previous level
value as shown in Figure 3-2(e) (since the transition regions of these processors will corres-
pond to previously produced null regions). The spectrum and null region identification after
three levels is shown in Figure 3-2(f). Using this design approach, the error in the final out-
put is essentially the error contributed by the first level processor. The firat-level error
spectrum peak is carefully maintained (unfortunately) in order that all other error peaks
in the null region will be suppressed. -
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3.3 DESIGN CONSIDERATIONS, OVERSAMPLED CASE

A far more pleasant design task is presented when oversampling is done so that a
null region in the input spectrum exists as shown in Figure 3-3(a). Now the 71 value can
be set near the signal cutoff frequency and the y value can be halved between all levels.
The transition region of the first-level processor falls in a null region created by the signal
which is identified with a circled S, The remaining plots in Figure 3-3 are self~explanatory
based on the Figure 3-2 discussion. There are no error spectrum peaks which need special
attention in the oversampled case.

If the signal spectrum does not extend to zero frequency further design economies
are possible. In the coefficient determination process described in Section II, par. 2.2,
we region over which H(f) is to be held to unity is now confined with ""don't care' regions
both above and below the passband, This results in better passband performance for a given
N value, and corresponds to the "stopband" filtering procedures discussed by Schafer and
Rabiner in Reference 3.

In the discussion relative to Figures 3~2 and 3-3 emphasis was placed on the stop-
bands contributed at each level. The transition region responses have cumulative filtering
effects which are significant as will be noted later in the discussion of filter synthesis.

3-7/3-8
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SECTION IV
FILTER SYNTHESIS APPLICATIONS

4,1 PRELIMINARY CONSIDERATIONS

When the interpolation process discussed in Sections II and III is examined as a digital

processor and the equivalent frequency function is studied, some interesting results occur.

The work in this section leads to a class of digital filters having several interesting properties:

e The impulse response has a central term of unity and has a symmetric

distribution about this central value. The resulting finite impulse response
(FIR) filter provides a linear phase delay.

e The resulting passband region frequency function can be scaled arbitrarily
by stretching the given impulse response and filling in the vacated terms
with new values. :

e This scaling operation can be extended without limit in the synthesis procedure.
The numerical computation involved in coefficient determination is trivial.

e A large variety of filter designs may be obtained from relatively few stored
"geed'" parameters.

e The designer, in addition to scaling, has control of passband width, transition
region width and stopband peak levels, Passband ripple is not directly controlla-
ble but is related in a complex way to stopband attenuation. For the usual
stopband levels, passband ripple is not a problem,

e Simple procedures exist for controlling passband ripple in those special
cases in which passband gain must be precisely controlled.

® Speed and storage needs of these filters appear to be competitive with the
requirements of more conventional filter designs,

A brief review of the details of the interpolation operation will serve to introduce
the filter synthesis work, The single level interpolator of Figure 2-3 creates two inter-
leaved outputs, The original input signal (delayed) from the a_, tap and the interpolation
signal on the d1 bus, If this processor is cascaded with a similar one as per Figure 3-1,
the output of the second processor will contain, intact, the output of the first processor
interleaved with new data generated by the second processor. The output of the second
processor will, of course, also contain, intact, the input to the first processor as is
obvious by induction, The data-rate doubling at each stage makes room for the old (input)
to be interleaved with the new data generated at that stage.
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In the general case of an L-level processor as per Figure 3-1 one can easily show
that the delay through the processor in terms of output pulses.is simply

L
D= 2, gr1-by —@loy =N @-1)
k=1

where Nk is the number of coefficients at level k (one-half the processor length), For

L > 5, the linear interpolation operation of program C432 always inserts a leading zero into
the impulse response of the equivalent interpolation filter. This produces a delay which is
one greater than that given by Equation (4-1). This result is predicated on the use of

Nk =1 for k > 5 when the calculation is performed. The number of coefficients, Nf, on
each side of the central (unity) term of the impulse response of the interpolation cascade is
also given by the Equation (4-1) calculation., This will be discussed in more detail at a

later point. The unit correction for D1 for L > 5 does not apply to the Ng calculation,

In terms of processor load it is convenient to define an "operation'" as two additions
plus one multiplication, Since a m = %m in these designs, one sums pairs of tap voltages,
multiplies this sum by the coefficient, then sums to the d1 ‘bus., It is easy to show that the
total number of interpolator operations per input sample is

L

o, = 2 &~ N, (4-2)

k=1

Consider now a level one processor of the Figure 2-3 type operating in the context

of Figure 3-1 with a Y1 of, say, 80%. The spectrum of the level one output would appear as
shown in Figure 3-2(b) where the sampling rate is 2R as compared to R at level one input,
The spectrum of Figure 3-2(b) also represents the frequency function (Figure 2-4a) of the
level one processor in the usual "Fourier transform of the impulse response' context,
based on the output sampling rate 2R. Note that as a digital filter, the level one processor
has a passband edge which is 40% of foldover or one-half the input design value.

The input sampling rate at each level becomes the foldover frequency at the output
of that level. Thus, the second level filter sees an entire frequency-pattern period at its
input transformed to fall within its foldover interval as defined at the output sampling rate.
In Figure 3-2(c) an extended y is used to place the entire spectral group centered at 2R in
Figure 3-2(b) within the stopband of the second-level filter as previously discussed.
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In Figure 3-2 the frequencies shown are absolute, but the v relationships to foldover
are referenced to input sampling rate values as was apbropriate for the original interpolation
discussions, For present purposes reference to output sampling rates is more appropriate,
which involves simply a scaling factor of one-half. At the output of the third level, for
example, the absolute passband edge frequency is still 71 (R/2) but the sampling rate here
is 8R which means that the effective y has been cut by a factor of eight. The passband edge
at the output of level three is only 10% of foldover relative to the level three output sampling
rate,

Comparing the original input signal spectrum of Figure 3-2(a) with the level three out-
put spectrum of Figure 3-2(f) suggests a digital filter with a frequency function in the
Figure 2-4a context with a -yl/ 8 passband relative to foldover. The suggested low-pass
filter function can be rationalized relative to the sampling rate change by assuming an 8R
input sampling rate with seven zero samples following every actual sample. The extended
v choice at level two of Figure 3-2 insures that the original passband shape from level one
is maintained essentially intact through an arbitrary number of interpolation levels. Thus
in the frequency domain the net effect of each additional level is essentially one of scaling
the passband portion of the frequency function down by a factor of two.

The sampling rate equalization artifice used above in order to make meaningful the
frequency transfer function concept may be avoided completely. The impulse response
of the cascade may be obtained by inputting a single unit value, followed by enough zero
samples to force out the entire impulse response sequence, Once these numbers are avail-
able, a normal and equivalent filter structure may be constructed. Of course, if this
equivalent filter is used for interpolation purposes computational advantage should be taken

of the fact that only one in every 2L

input samples is nonzero. This topic will be touched
upon again in the paper. The immediate concern, however, is the class of filters that may

be derived from the impulse response of the cascade of Figure 3-1,
4.2 DESIGN EXAMPLES

Filters derived from the interpolator cascade, not surprisingly, have many of the
same characteristics of the original interpolation process as discussed relative to -
Figure 2-2 (also see Tables 4-1 and 4-2), Computer program C432 in the Appendix
contains 12-selectable cascade designs for interpolation identified by parameter NT.
Designs for stopbands of -65, -50, -40, and -25 dB are available, The first-level N value
selections for these designs are shown circled and numbered in Figure 2-2, Each cascade

4-3
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TABLE 4-2

INTERPOLATOR TYPE DESCRIPTIONS

Interpolator 1st Sampling v Progression Nk Values
Type Level Stopband Rate Level 2-5 by Level
(NT) ¥ (%) Level (dB) Type (%) 1-5

1 80 -65 Critical 60,30,15,7.5 |10,5,8,2,2
2 80 -50 Critical 60, 30,15,7.5 7,4,2,2,1
3 80 -40 Critical 60,30,15,7.5 53,2,1,1
4 80 -25 Critical 60,30,15,7.5 3,2,1,1,1
5 90 -65 Critical 60,30,15,7.5 19,5,3,2,2
6 90 -50 Critical 60,30,15,7.5 |14,4,2,2,1
7 90 -40 Critical 60,30,15,7.5 [10,3,2,1,1
8 90 -25 Critical 60,30,15,7.5 6,2,1,1,1
9 60 -65 Oversampled 30,15,7.5,3.75 | 5,3,2,2,1
10 60 -50 Oversampled 30,15,7.5,3.75 | 4,2,2,1,1
11 60 -40 Oversampled 30,15,7.5,3.75 | 3,2,1,1,1
12 60 -25 Oversampled | 30,15,7.5,3.75 | 2,1,1,1,1
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design was obtained by drawing horizontal lines on Figure 2-2 at the four stopband levels
(taking into account the 6-dB gain provided by interleaving). Safe N values at the various
cascade y lines (see Table 4-2 for the y -progresions) were selected for five levels and
the appropriate coefficients for these interpolator designs were incorporated into the

program,

As an example, the NT = 2 processor provides for -50 dB stopbands and starts with
a first level N of 7 at a y value of 80%. The second level y is 60% with an N value of 4.
The third, fourth, and fifth levels have N values of 2, 2, and 1, and y values of 30, 15,
and 7.5%. Designs NT = 1-8 use extended second-level y values and are suitable for low-
pass filter design. Designs NT = 9-12 are meant only for interpolation in the oversampled
case. Their "stopband" usage mode for the derived filters will not be considered here.

If one considers use of the Figure 3-1 cascade for the derivation of impulse response
data, it is interesting to follow the development of this response through the cascade. At
each stage the input response is stretched and new values are interleaved into the vacated
spaces as per Figure 2-3, The passband regicn of the frequency response function is essen-
tially scaled down by two to one in the process. After a sufficient number of interpolator
stages are traversed, continued scaling may be done by simple linear interpolation as
previously discussed. Hence the frequency scaling operation can be extended easily in
most cases beyond values of practical interest.

Examples of the above techniques are demonstrated in Figures 4-1 through 4-7, (All
frequency functions in this paper are normalized to foldover frequency.) For this demon-
stration, design NT = 5 was chosen which is admittedly a ""showboat" design. NT =5 yields
thebest performance (transition region width is 22% of passband width, WT/fp = 0. 22, side-
lobe level = -65 dB), but also has the largest processor demand. The tests run were
very simple: the impulse responses from the various levels of Figure 3-1 were individually
extracted and written on disc files by the time-share program of the Appendix. At a later
time a batch program read these files, performed on 8192-point Fast-Fourier transform (FFT)
and plotted the results, normalized to the peak level found in the entire positive frequency
space, The plots show the entire 4097-point spectrum with the foldover frequency referenced
to unity at the far right of each plot.
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The impulse responses which result (see par. 4,5) from this synthesis procedure and
computer program have a central term of unity (the lone input nonzero sample) which is
delayed in the file by the count given by Equation (4-1)., The response is symmetric about
the central term (linear phase delay) and the number of active coefficients on each side of
the central term, Ny is also given by Equation (4-1).

Knowledge of the number of input pulses, Nc' required to fully load the interpolation
cascade is often useful, This number defines the transient or "charge-up" period which
precedes the normal steady-state operation of interest, This number may be calculated
from

i
S (L+1-k) A
W Z 2 N, . 4-3)

2 k=1

This calculation is performed by the computer program described in Section 6, par. 6.4
and tabulated data appears in Table 4-1.

The level one filter frequency function is shown in Figure 4-1 and the Chebyshev
behavior in both the pass and stopbands comes as no surprise. The stopband is at about
the -67 dB level which checks very well with the -61 dB circled first-level choice for
NT =5 in Figure 2-2, The passband edge f b is 0.45 relative to foldover (one-half of
0.90). The transition band width is always a fixed 22% of the passband in these figures
due to the frequency scaling. Hence only the passband frequency value fp need be given to
define the filter behavior, The Nf value for this filter is 37, however 18 of these coeffi-
cients are zero,
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Figure 4-2 shows the level two filter function with f - 0.225, The level one sidelobes
are compressed in frequency due to the stretching in time. If there were no level two fill
of the vacated spaces, the level one passband would appear at the far right of Figure 4-2,
The net effect of the level two fill in the frequency domain is very nearly a multiplication
of the level one passband with level two stopband. Thus the -70 dB sidelobes at the right
of the figure are the coarse sidelobes of the level two interpolator which has an N value of
5 (compared to 19 for the first level). The -70 dB sidelobes agree very well with the
-64 dB, N =5, y =60% value from Figure 2-2,

Note also in Figure 4-2 that the level one sidelobes are being affected by the level
two transition region which extends from 0.3 to 0.7 and is 6-dB down at 0.5. As additional
levels are traversed, the transition region effects cumulate to drive much of the sidelobe

structure below -100 dB as will be seen. The Nf for this filter is 83.

The "stretch-and-fill" pattern effects of Figure 4-3 for the level three response
show a stopband at about -84 dB. This again agrees well with the Figure 2-2, N = 3 value
at y = 30% of -78 dB. The transition region for level three extends from 0. 15 to 0, 85.

The passband frequency t‘p for this filter is 0, 1125 and the Nf is 171,

The four-level equivalent filter of Figure 4-4 has an fp of 0.05625 and an Nf of 345,
The level four stopband at -82 dB corresponds to a -76.5 dB level at N = 2 for y =15% in
Figure 2-2, The transition region of level four extends from 0,075 to 0,925,

The level five response of Figure 4-5 has an fp =0,028125 and an Nf of 693. No
response is seen near the foldover frequency since an N of 2 at y = 7,5% (level 5 design)
places the stopband response near -107 dB and hence out of sight. The transition region
here extends from 0. 0375 to 0.9625.

The level six performance shown in Figure 4-6 is especially interesting as this
represents a departure in operating procedures, The interpolation program provides
Figure 2-3 type processors at each of the first five levels, Afte. the fifth level simple
linear interpolation is provided. The ~-59 dB control line (for -65 dB performance) drawn
in Figure 2-2 which was followed for levels 2, 3, 4, 5 at y values of 60, 30, 15, 7. 5% would
indicate one more stage of N = 1 at 3, 75% for the sixth level., The optimum N = 1 designs
have 6-dB less peak error than straight interpolation as was discussed relative to Equa-
tions (2-13) through (2-16); linear interpolation is equivalent to b1 = 1 in Equation (2-17).
The N = 1 point of Figure 2-1 for y = 3, 75% indicates that linear interpolation at the sixth
level would provide a stopband level of <62 dB. (The 6-dB gain of the note of Figure 2-1
is exactly offset by the 6-dB loss of linear interpolation. )

4-15

M



The actual peak response level noted near the foldover f;equency of Figure 4-6 is
closer to -66 dB which is within the -65 dB performance specification. The restricted
response width out of level five (fp = 0,028125) is the saving factor, This f A value, when sub-
stituted into Equation (2-13) for f/(R/2) with b1 =1, reveals an error level of -60. 21 dB
at band edge and when corrected by the 6-dB gain from interleaving, gives a -66. 21 dB
response level which confirms the Figure 4-6 results, Note also the sharpness of the
response drop on the left side. Comparison of measurements from 0 to passband
edge and from 1 to the sharp drop in the null region response also confirm the causal
mechanism cited. At this level f is 0,0140625 and Nf is 1387. With linear interpolation
or N = 1 one might consider that Fhe entire frequency space is a transition region.

Figure 4-7 shows level seven output which is the result of five levels of 1:2 interpola-
tion and one level of 1:4 linear interpolation. A calculation similar to the one for level six
predicts a stopband peak of -78. 25 dB which is confirmed by the Figure. The f b here is
0.00703125 and the Nf is 2775. It is clear that this scaling process could be continued
further without difficulty.

The three filter functions in the figures which follow were all taken at level five in
the y = 90% set so that fp = 0,028125 and WT/fp = 0, 22 for all of these. Figure 4-8 shows
the NT = 8 design which was specified for -25 dB stopbands and used an Nk sequence of
6,2,1,1,1, This high stopband level keeps the entire stopband region in view. The inter-
polator levels responsible for sidelobe groups seen in left-to-right order are:
1,2,1,38,1,2,1,4,1,2,1,3,1,2,1, 5,

For this high sidelobe design the mainlobe of passband ripple is large enough to be
visible in the plot. Calculations made with an auxiliary test program indicate that the peak
passband ripple deviation is at the level of -22 dB. This compares with a peak ripple
level of -26.7 dB at the output of level one. The peak passband ripple level increased by
4.7 dB in transit through the four levels two through five.

Figure 4-9 is next in this series with an NT value of 7 which is specified at -40 dB
sidelobes, The Nk sequence here is 10, 3, 2, 1, 1.

Finally, for this group Figure 4-10 for NT = 6 gives results for the -50 dB design
which used tmNk sequence of 14, 4, 2, 2, 1. The results are consistent with expectations.




4-17

3 d gP %0 *22- = o1ddry pueqssed jyeed |
‘862 = 'N ‘02182070 = J ‘s="T ‘8= 1IN ‘%06 = "4 ‘vopound Ia[id ‘s-¥ sandy m
|
8o~ 8.0 8.° . : . , . . ‘ ., : . : - ., scc 36 8.°
_; _H T _ , T ) . “ 001-
1111 g B R L [ . L0 S R !
% ». il ‘C ....m,.._ il A sy i b | B £10 55 _ ____ 4 SESEUAE
+~J|-:~l-f e R R A i : } : o-
p-fec b EV Il ] L R
% | Rl §) L |8
% v -8
g__ 1 ’-”
| -
| = 02-
| o
= ~o
m.




‘06g = 3

N ‘S21820°0 =

d °p 60 "6€- = aﬁa& pueqssed yead
7'6="1 ‘4 =0IN ‘%06 = "A ‘wopoung IN[I °6-¥ 2anBd

N R ) | 4

i | i !

* i | | ,
b—— 4 - =} i A | e '

| i ! ! ! |

} | | t \

i f { t i |

—_—— b o ST WSS YRS S ———t— -4

o 1 | | !

| { “ ! { { { { |

— 4 R s s |
L g T e Sk 5 B BN RV i
e

it

P




4-19

3 d dp g2 *9%- = 9[ddiy pueqssed yead
‘865 = °N ‘Sz1820°0= J ‘S="T ‘9= LN ‘%06 = "4 ‘uvopoung )3 “OT-¥ SInBL

B

o
{ i
= g P ——
- =S -
i ‘ i o
! y | i =
! S
e} .AI,. ,:(,,.——
| e S
i ! ! | s
4 PSEERE S (S S X <
L
{
——————
{
e
——
(’”"

. : -+ _ i

. !

| i { i (

T - : . pooeb s 09 B

{ | f i H H

| _ ﬂ 4 i : W
= ; h T A e B T~

| el ! S "
e - | e - §

A _ E
]
ﬁ T e .AR’ ;

i anitisaini o




These plots of derived filter transfer functions have allowed the detailed workings
of this synthesis procedure to be examined. This data has also confirmed quantitatively the
performance predicted by the theory of the synthesis procedure, Comparisons of these
b ' filters with those of more conventional design in terms of efficiency in application and other
similar factors are given in par, 4.4 of this section.

4.3 DESIGN PROCEDURES

The basic purpose of a filter is to pass one band of frequencies and exclude another
band. One is concerned therefore with ripple in the passband, attenuation in the stopband
and the width of the transition region. At first level output, the passband edge fp is

P T (4-4)

The stopband edge f A is

Y1
fa it ot (4-5)

with a transition region width Wi of

wp = f -t =1-y, (4-6)

all relative to the foldover frequency which equals one-half the sampling rate. (Sampling
rate is 2R at the output of level one,)

The overlap in second level Yo required to place transition regions in the stopband
requires that
> 71
=1- 5 (4-7)
From this level on the y values may be halved at each level. Equation (4-7) shows that
71 values of 2/3 or less result in a ¥ g Which is equal to or greater than 71 which increases

filter length, At Y1 = 2/3 the transition region width equals the passband bandwidth. This
represents a rather poor filter in any event,

The Appendix computer program provides 71 values of 80% and 90% for filtering, *
At 80% the transition bandwidth is one-half the passband extent so that w,l_/f = 50% for
Y1 = 80%. For y, = 90% we have w.r/f = 22%, ahoﬂorﬁltorbutaoolmerom




The design procedure is quite simple:

1. Select transition region relative width y, = 80% (NT =1 - 4) or y, =90%
(NT =5 - 8), currently available,

2, Select stopband level (-25, -40, -50, -65 dB), NT is now identified. (See
Tables 4-2 and 4-2,)

3. Normalize desired filter cutoff frequency f 8 by use of Equation (4-13) to
obtain fp' . Compute frequency compression ratio Cf
4, If Cf is acceptably close to a power of 2, compute
L = LEV =1log, (C) (4-9)

(if this is not possible go to step 6.)

5. Use the Appendix program (XLINT, LINT) to generate the desired filter
impulse response. Task complete.

6. If the C, factor cannot be approximated sufficiently well by a power of 2,

f
find and L and J such that
2L

,<.-.,_..,-A.....-...m_......_.......-.4—..._..”-.._.-.....«..,.-...........Nv.{U.

(See Section 5 par, 5.4 for details of L, J determination,)

(a) Using LEV = L get impulse response data as in step 5.

(b) Derive desired symmetric filter impulse response by using central term
(unity) of (a) above and selecting every Jt'h term thereafter. Task complete,

For an example of a ""J-derived" filter consider the following: Let sharpness of cutoff
require y, = 90%. Let sidelobe level specification be < <60 dB, so NT =5 is selected.
Assume clock period in processor hardware of 200 us or 5000/s repetition rate, and assume
filter cutoff frequency f o =225 Hz £ 2%. Normalize this cutoff frequency to the foldover

frequency as per Equation (4-13).
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then from Equation (4-8)

Cs = -yl/f!; = 0,9/0.09 = 10

This is not a power of two, go to step 6 and try

7 :

3 B
C; = 10= —= = 9.8462 |

This will give fc = 228,52 Hz which is within the +2% tolerance.

~

Use LEV =7, NT =5 and get impulse response from Appendix program C432, From
Equation (4-1) we find that the central peak is delayed by

Delay = 2775 + 1 = 2776,
(The central peak is in cell number 2777 of the array.) Equation (4-1) states that there are |

Nf = 2775 j

active coefficients on each side of unity. After every 13th element is selected and the new
impulse response is created, it will have a delay of 213 and an Nf = 213, Figure 4-11 shows
the frequency function for this filter, The impulse response involved in Figure 4-7 was
censored to yield the impulse response of the Figure 4-11 data,

Figure 4-11 could also be compared to Figures 4-3 and 4~4 which are the closest 1\
'"'normal-sequence' filters. Apparently no real violence was done to the basic frequency %
response by the resampling process. This suggests that very-high LEV impulse responses

be calculated and stored for a particular combination of transition width/passband ratios

and sidelobe levels, These stored responses could then simply be resampled by some 1
appropriate factor J for specific cutoff frequencies. |

In this regard the three equations which follow may be helpful in defining the filter,
Once the transition bandwidth to passband frequency ratio (wT/fp) is known, the first-
level y becomes
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or

W,
f'r=2(1 _1) 4-12)
P 12

A specified cutoff frequency fc is normalized to its foldover frequency to yield fl;

fp' = fc/(one-half sampling rate) (4-13)

which may then be substituted into Equation (4-8).
4.4 COMPARISON TO CONVENTIONAL DESIGNS

A rule-of-thumb guide often used to estimate the total length K of a low-pass digital
filter is (Ref. 4) given by Kaiser as

-10 log, . (E Ez) -15
i3 10 V1 2
K = 14 (W) (4-14)

where El’ E2 are pass and stopband peak ripple values and W is the transition region
width expressed relative to sampling rate. When expressed in terms of filter half length
N and transition width W relative to the foldover frequency one obtains

-10 log, , (E, E,) -~ 15
X 10 (®1 "2 u
N, = Tt (4-15)

The filter synthesis procedure described in this paper provides no direct control
of passband ripple. The individual level processors provide a passband gain proportional
to (1 + 6) where § is an error directly related to stopband level. Thus, through two
stages, the passband gain is

1+68,) (1+8,) = 145, +85, (4-16)
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All stages have nearly the same § value and since the stages have different y values, it
seems reasonable to assume that the 6's will add on an rms basis, A fair estimate of
ripple might then be obtained and substituted into Equation (4-15) so that equivalent
standard-design filter sizes might be estimated. This yields

-10 logw(ﬁ 5 ’) -15

or )
-20 log, . (6) - 51log, . (L) - 15
> *10 \° 10 %

T

The first numerator term above is the negative of the stopband level in dB.

The filters described in this paper may be sized assuming that wT/fp is given so that
Y, may be computed from Equation (4-11), Convenience is gained with no loss of generality
if comparisons are normalized to level one output conditions. This results in a w,, value of

T
a- -yl) according to Equation (4-6). The Wi at level L, VoL would then be
S T ETL i
This allows Equation (4-18) to be written as
-20 log,, (6) - 15 - 5 log, , (L) kL
N = 10 10 gl =1 (4-20)

14(Q-~y,

Once the L value is selected, Equation (4-1) or Table 4-1 may be used to obtain the

required Nf which may be compared to that obtained from Equation (4-20).

Letting pr be the coefficient count of the fiiter design of this paper and KNf be the
corresponding Kaiser (Ref, 4) estimate, the results of Figure 4-12 obtain, The paper
design appears to require more coefficients, but the ratios are reasonable. The passband
ripple problem of the paper procedure shows to its disadvantage at the lower stopband
suppression levels, as expected. For the higher-quality filters the paper design compares
reasonable well with more conventional synthesis procedures. (Later passband ripple
studies indicate that the ratios of Figure 4-12 are too large for the higher L values).
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4.5 TIME DOMAIN CONSIDERATIONS

In previous discussions the filter frequency function was examined at different levels
in Figure 3-1 structure. A similar study will be made here of the filter impulse response
function. The case NT = 5 interpolator places serious restrictions on stopband level and the
processor is nontrivial at all levels (Nk =19, 5,3,2,2), Figure 4-13 shows the first level
impulse response which has an Nf =37. (The sample values are the significant items
of concern, the CalComp plotter draws straight lines between points. The discontinuities
in slope indicate point location.) The frequency function for this data appears in
Figure 4-1,

The second level processor is also a sophisticated one (N2 = 5) so that when the first
level input values are interleaved with new derived values the output of Figure 4-14 results,
Considerable smoothing has been done but slope breaks are still evident, The Nf value
is 83. The corresponding frequency function is that of Figure 4-2,

The third level processor has an N3 = 3 and its "stretch-and-fill' action produces the
considerably smoothed data of Figure 4-15 (frequency function is Figure 4-3). Slope

granularity is still in evidence near local peaks. The Nf for this data is 171,

Fourth level output in Figure 4-16 is very smooth; the processor sophistication has
dropped to N M 2 here. Nf is 345 and the corresponding frequency function is that of
Figure 4-4,

Another N5 = 2 stage at level five produces the output shown in Figure 417 which
has an Nf =693 and corresponds to the frequency function of Figure 4-5.

Beyond this point in the chain, linear interpolation may be used. The "J-derived"
filter of Figure 4-11 has the impulse response shown in Figure 4-18 where Nf = 213. This
filter was derived by using L = 7 and then selecting every 13th sample of the resulting
impulse response.

This rather attractive smoothing of the impulse response with an increase in L does
not always occur., Consider Figures 4-19 and 4-20. Here NT =8 vy = 90%, -25 dB
stopband) and the {Nk} sequence is 6, 2, 1, 1, 1. Because of the high sidelobe levels, the
stages of Figure 3~1 beyond the second are just modified linear interpolators (Nk =1),

The level one output is coarse as expected (Nf =11). However note that the L = 7 output
of Figure 4-20 shows considerable slope granularity. The high sidelobe specification
(~25 dB) permits this kind of crude ""stretch-and-fill" operation, (The Y-axis scaling for
all impulse response plots is the same. There are subtle differences in the X~axis
positioning and scaling for the different plots,)
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4.6 PASSBAND RIPPLE CONSIDERATIONS

Small deviations from unity gain in the passband at each level result in a deviation
from unity in-band gain of the resultant derived filter. The derived filter passband gain
deviation is approximately equal to the sum of the individual level deviations. (The derived
filter gain must be normalized as the nominal voltage gain is 2L in the passband.) In this
design procedure the stopband peak levels are under strict control., The passband peak
ripple levels are not similarly constrained. The nature of passband gain error cumulation
is somewhat complex, Measurements of peak in-band ripple level for some of the derived
filters discussed here have been made with rather encouraging results,

The worst-case assumption of coherent addition of the deviations was found to be
far too pessimistic. The rms-addition assumption of Section 4, par. 4.4 was found to
slightly understate the peak ripple level in the L = 2, 3 region. For higher L values the
rms assumption becomes too pessimistic. For example in NT =5, L =7 case the peak

in-band ripple is about 5.8 dB worse than at the output of level one. An rms addition assump-

tion would predict an 8.5 dB degradation.

If in-band ripple is of very serious concern one canproceed with the designs as out-
lined previously, When complete, the precise normalized gain of the derived filter may be
calculated. If this gain is represented by 1 + § (f) then the compensating gain function
1 - 6 (f) may be immediately specified. The procedures of Section 2, par. 2.2 may then
be used to determine the coefficients of a pre~emphasis correction filter, For the specific
case of NT =5, L =7 the writer used this procedure to reduce peak in-band ripple to level
one (stopband) values. The pre-emphasis filter complexity required was equal to that of
the first level filter "~ the original cascade (Nf =19). An alternative approach might be
to overspecify stopband level at the outset to provide room for in-band ripple growth
through the cascade.

In order to keep the ripple problem in perspective Figure 4-21 shows the variation cf
pass band gain with ripple magnitude. Ripple levels in the -20 dB region cause less than
a 1-dB gain variation, Gain variations are the order of 0.05 dB at -40 dB ripple levels.
In many engineering applications the sidelobe specification will result in ripple levels
which produce negligible pass band gain variations in spite of ripple growth through
the cascade.
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SECTIONV
APPLICATIONS

5.1 MODE CONVERSION, COMPLEX-TO-REAL

Those who do practical digital signal processing work usually deal with a variety of
processing software and hardware modules. One must also deal with a number of different
formats in the data supplied as input or specified for the processed output data, One
of the most significant format characteristics concerns the nature of the sampling process
itself. The individual sampling operation may involve one real number (a '""real" sample)
or an ordered pair of real numbers (a '"complex' sample).

Consider the low-pass signal spectrum illustrated in Figure 5-1(a). The signal shown
has an upper frequency limit of 2f o 80 that the sampling rate R must be 4 f o if the usual
single-number-per-sample ("real’) low-pass sampling is done. It often happens, however,
that the signal band of interest is centered at a frequency which is high compared to the
bandwidth of the signal. In this case sampling at a rate equal to twice the highest frequency
is very inefficient and one of two alternate procedures is normally followed.

For purposes of illustration assume that the bandpass signal has a bandwidth of 2{ o
The signal could be bandpass filtered then frequency~shifted down to a new center frequency,
f o 88 shown in Figure 5-1(b). At this point the usual low-pass (real) sampling could be
made at rate 4 f e This procedure requires a front-end filter tailored to the bandpass
signal spectrum, a mixer, local oscillator, and post-mixer low-pass filter as shown
in Figure 5-1(b).

An alternate approach, shown in Figure 5-1(c), uses product detection by cosine and
sine signals from a local oscillator at the band center frequency, followed by low-pass filters
to produce the familiar i(t) and q (t) signals, (In the general case these are not Hilbert
transform related.) These in-phase and quadrature signal components have a high frequency
of fc. These signals are then each sampled at a rate 2fc to produce, at each sample time,
an ordered pair of real numbers (ik, q ). This pair is often referred to as a "complex"
sample,

These two sampling techniques are theoretically equivalent, Each has its own
practical problems and advantages and both are commonly encountered in practice. Data
processing modules are not always designed to accept or produce either format. Hence
one aften encounters the practical need for mode conversion from real to complex or from
complex to real, The complex-to-real conversion will be discussed first with the aid

of Figure 5-1,
5-1
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It may be seen from Figure 5-1(c) that three quantities define the bandpass signal:
the center frequency, i(t), and q(t). If frequency translation of the signal is properly
done, i(t) and q(t) remain unchanged and only the center frequency changes. Because of
this invariance it may be assumed that the bandpass signal has been shifted to the center
frequency f » of Figure 5-1(a). The resulting time function may then be expressed both in
terms of real samples and complex samples involving i (t) and q (t) (which are invariant
with frequency translation). Relationships between real and complex sampling may therefore
be established and used in mode-conversion operations,

The signal function s (t) may be expressed as
s(t) = i(t) cos 27 fct -q (t)sin 27 fct (5-1)

A sampling vate of R =4 o will yield time values of tk =k/4 fc so that Equation (5-1)
becomes

T
sk=ikcos%k-qksin?k. (5-2)

which means that

% k = s
Sk = (=1) ik, k=0,24,6,
(k-1) (5-3)
e 2 - s
8 = (-1 4 . k=1,3,5,7,

It may be seen that the real samples 8 alternately reflect the i (t) and q(t) component
values, Complex samples are taken at half the rate, but i (t) and q(t) are sampled
simultaneously. If Pk represents a complex sample as per Figure 5-1(c) then it
follows that

{'k} — iol -ql' "120 q3’ 14’ -q5’ - 16’ q7o ]
(5-4)

o’ “ i

1 LA RS
G = Gp TiQp - G <y
If complex samples {pk} are given and real 8 samples are desired, Equation (5-4)
shows that the even samples of 8, are directly available from the ‘k terms of Py The
odd samples of s, are samples of q(t) but at times intermediate to the sampling times of

tlnpknumberpdr.
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A single level of interpolation of the q terms of the complex samples is required.
Only the interpolated values are to be kept, the original input q terms are discarded. The
delay inherent in the interpolation operation on the q sequence must be applied to the ik
terms, and the sign changes in the 8 series of Equation (5-4) must also be accounted for,
A subroutine for complex~-to-real conversion based onthe above principles appears in the
Appendix as part of C432 and is also described in Section VI.

5.2 MODE CONVERSION, REAL TO COMPLEX

In Equation (5-4) it is now assumed that the sequence { sk} is given and that the
sequence {pk} is desired. For the sake of variety only, synthesis of the complex sequence
at odd-numbered times will be considered. The q portions of the complex pair are available
directly from the odd 8 terms as shown in Equation (5-4). The odd-numbered i terms
must be generated by single-level interpolation from the even-numbered i samples. Only
the interpolation data is kept, the input i data is discarded. Delay compensation of the q

data to match the interpolator delay must be provided, al-n> with proper sign-change
accounting., A subroutine for real-to-complex conversion ! on the above principles

appears in the Appendix and is described in Section VI. Fc - rent approach to the
real-to-complex conversion see reference 11,

Conversions of the types discussed above involve an inherent phase ambiguity which
is an integral multiple of n /4,

5.3 COMPARISON OF INTERPOLATION METHODS

Schafer and Rabiner (reference 3) discuss in detail interpolation using digital low-pass
or stopband filters. In Section C of the above reference, comparisons to classical interpola-
tion methods such as those of LaGrange are examined. These writers conclude that the
frequency response characteristics of the clasaical interpolators leave much to be desired.
They further conclude that for most digital signal processing work low-pass or bandstop
filters are to be preferred over classical interpolation algorithms.

Attention can then turn to a comparison of the iterative technique of Figure 3-1 and
the use of low~pass filters for interpolation. It has been shown in Section IV that the filtexs
derived from the interpolation scheme of Figure 3-1 appears to be reasonably competitive
with conventional filter designs in terms of processor demand. It is then possible to
estimate the relative performance of the iterative interpolation method and the filtering
method by use of Equations (4-1) and (4-2).




The 0i result of Equation (4-2) gives the number of operations per input value which

produces 2L output values, The Nf result of Equation (4-1) gives the number of filter
operations per output value, However, in interpolation service, only one in every ZL input
samples is nonzero so that the computational load is reduced by the factor 2L If the
comparison is based on operations per output value, both 0 and Nf would be divided by

2 and their ratio would remain unchanged. Therefore the ratio

L

Z 2(L+1-k)Nk_(2L_
N
f _ k=1
0—1-— L (5-5)
E: k-1
2 Nk
k=1

provides the comparison desired.

Figure 5-2 shows the plotted results of Equation (5-5) for the 12 interpolator designs
of the program in the Appendix. It appears that the minimum processor demand advantage
of the iterative interpolator is approximately a factor of two, As the sampling rate multi-
plication factor increases the iterative interpolator advantage also increases. For the
higher-performance interpolators, this advantage increase is significant.

(It could be argued that for filters derived specifically by the procedures of this paper
Equation (5-5) should be multiplied by the factor (2L - 1)/2L. This results from the exact
nulls in the impulse response which have a spacing 2L. This would bring the two procedures
into near parity for low L values, The high L value results of Equation (5-5) however would
remain unchanged. The degree to which other filter designs could take practical advantage
of impulse-response nulls is difficult to assess in general. A heuristic explanation of the
advantage of the Figure 3-1 iterative interpolator concerns variations of processor com-
plexity and data rate through the cascade. Early inthe cascade the processors are the most
extensive, but the data rate is lowest. Later in the cascade when the data rate is high,
the processors are short.) The advantages of the cascade over the lowpass filter for
interpolation service are also discussed in references 8 and 10,

5-5
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Table 4-1 gives some parameters of the interpolators and derived filters for levels
from 1-5. The delay and Nf tabulations may be used as an aid in locating coefficients in
memory when the Appendix program is used to provide equivalent filter impulse response,

5.4 ARBITRARY SAMPLING RATE MULTIPLICATION FACTORS

It often occurs, of course, that the sampling rate multiplication factor K is other
than a power of two, The Appendix program, as written, will only give powers of two
for K. There are at least two solutions to this problem,

The first approach is that used in the ""J-derived" filter of Section IV. The program
is run with some selected level L to yield a multiplication factor of 2L. The resulting output
data is then resampled with period J. The problem becomes one of selecting L, J so that

K = aly/s (5-6)

A simple solution involves selecting a trial L and solving for J according to

\
ARIIPRE 10,5
K
unless
L (2N+1) _ ? "
F TRaL B0 6-1
then
J=N+1 s ‘;

where [ ] represents the integer pars\ of the enclosed quantity. This trial L, J will yield |
an approximate multiplication factor, K, of '

A
ol =
K—J (5-8)

An error measure Al( may be defined

A L
& ol kel o il

K K - sl e

One starts with the smallest L value which is at least as large as loc2 (K). Equations
(5-7), (5-8) and (5-9) are used and the resulting Ay is noted. If the error is too large,
increment L by one and repeat until the error reaches an acceptable level. An HP-67
program for implementing this procedure is given in the Appendix, and labeled
"PROGRAM 1-11-79",




For example let K = 13, The above procedure yields a solution L =9, J = 39 for 1%
error (2%/39 = 13.13), or L = 10, J = 79 for 0.3% error (21°/79 = 12.96). This approach
will always yield the minimum L required to meet any output sampling rate multiplication
factor error specification,

This technique will work very nicely also when the desired output sampling rate is
not an integer multiple of the input sampling rate, For example let a sampling rate multipli-
cation factor K = 7 be required within 0,02%. The above procedure quickly yields L =9,
J =163 (2°/163 = 3.1411, A = 0.0155%).

The second solution to this problem involves a modification of the computer program,
One must traverse enough processors of the Figure 2-3 type until the sampling rate is
sufficiently high so as to permit linear interpolation. Once this stage is reached the
sampling rate multiplication factor at the linear interpolation level can be any integer value,
Due to a foolish consistency (hopefully not that of which Emerson spoke) the writer continued
the power of two logic through the last ""stage" when coding the Appendix program,

Hindsight now makes it clear that this stage should have been coded for any desired
multiplication factor, say J. The overall sampling rate increase could then be 2L xJd
where L is the number of Figure 2-3 doubler stages. The output data could then be censored
by a factor of 2L to give precisely a 1:J overall factor. This feature would also lend more
flexibility to the operations discussed relative to Equations (5-6) through (5-9).

5.5 SAMPLING RATE DIVISION

The advantages of the cascade interpolation technique of Figure 3-1 over the classical
low-pass filter processing of zero-filled input data have been discussed in detail. If one
studies Figure 3-1 and visualizes 2L output samples for each input sample, simple faith in
the consistency of nature raises, on first impulse, the possibility of putting 2L samples in
at the bottom and getting one sample out at the top. Is there a cascade equivalent of the
conventional low-pass filter/data censor combination? The answer is yes and, furthermore,
the significant advantages of the cascade over the low-pass filter method noted for inter-
polation are again to be enjoyed in the sampling rate division operation. a FORTRAN pro-
gram for data rate division also appears in the Appendix under deck name C434.

(The advantages of multistage data rate reduction (decimation) are discussed in
references 6, 8 and 9, In the case where lowpass filtering is to be done while maintaining
the sampling rate, reference 9 demonstrates significant gains for a joint use of rate reduc-
tion followed by rate multiplication, )
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The sampling rate division cascade uses the same level processor-equivalent
filters as the interpolation cascade but with some significant differences. The processors
are used in reverse order. The exit is always from the level one processor, and the
entrance depends on the number of levels or L value of the rate-reduction operation, For
example, if a 16:1 rate reduction is specified, L = 4 and the cascade would be entered at
the level four design where a 2:1 rate reduction would be achieved after filtering. This
output would then go to a level 3 design followed by a level 2 design, and finally to the level
1 design for pre-output processing. If L exceeds 5, a linear interpolation processor leads
off the chain, but this is a special case which will be treated separately later,

Figure 5-3 illustrates the process at each normal level. In Figure 5-3(a) the input
data at rate R is passed through a low~pass filter whose output is resampled for a 2:1 rate
reduction, As discussed earlier, these filters have a unit central weight with symmetrical
filter coefficients and interleaved zero weights as shown. If there are N coefficient values
for this filter, (4N-1) storage locations are required. An exact equivalent filter/censor
combination requiring only (3N+1) locations is shown in Figure 5-3(b). In this configura-
tion the input values are switched between what turns out to be the interpolation processor
and a delay element, The censored output is available directly from the adder as shown,
It is this latter processor that is coded in C¢34,

If L exceeds 5 the lead-off processor is a linear interpolator followed by censoring.
The impulse response of the linear interpolator has a unit central term flanked by descend-
ing sized terms equal to M/'A.?l"5 where M =1, 2, --- (21""5 -1), These terms are con-
tiguous, Following the interpolator, every 2L"5h value is selected for output, This is
precisely equivalent to a chain of L-5 normal cascade processors having Nk =1 and

a, = 1/2.

Sampling rate division at each level is achieved by the equivalent of low-pass filtering
followed by 2:1 data rate reduction, One final output value is generated for each 2L input
values, The sampling rate is highest where the processors are shortest. The processor
lengths are greatest where the sampling rate is lowest (near the output). The number
of operations per output value for the cascade divider is

% k-1
04 = E 2 N (6-10)

which is precisely the same as the interpolation result 0 of Equation (4-2) which was
based on one input pulse yielding 2L output values.
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The delay through the cascade divider measured in input pulses is (see also
Equation (4-1)).

L
Ioked. L
Dy = Q. N2 -o@l-y (5-11)
k=1

whether dealing with interpolation or rate reduction, the equivalent overall low-pass filter
is the same for a given (NT, LEV) pair, It is not surprising then to find that the ratio of
operations required for filtering divided by the number of cascade operations per output
data value is, for rate reduction,

L
Y N Lkl _ Ly
N - pa (5-12)

— = s

d L

z: Nkzk-l

=1

which is exactly the result of Equation (5~5) for interpolation. It follows therefore that the
considerable-computational efficienty advantages of the cascade over the filter shown in
Figure 5-2 for interpolation apply here also, Note also that the only limit to rate reduction
factor in the present program is the 2L memory size required of the input array.

The impulse response determination of the equivalent low-pass filter obtained by
driving the interpolation program C432 with a unit value followed by a string of zeros will
not work with the rate reduction program C434. What one obtains in the latter case is a
2L-censored version of the relevant impulse response; not a very useful result, This is
perhaps a manifestation of the reversibility of the interpolation process as compared to the
irreversibility of the rate-reduction process. The latter discards information, the former
does not,

Cascade-derived impulse responses were used successfully and correctly in the
interpolation case, but care must always be exercised because of the sampling rate changes
through the cascade. Even in C432 the impulse response of a two-level cascade is not the
normal convolution of the individual level impulse responses. If one is intersted in equiv-
alent filter impulse responses program C432 must be used; C434 cannot be employed for
such a purpose,

5-11
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The low-pass filter equivalents of the individual level processors have very useful
spectral properties for the two-to-one rate reduction achieved in each stage. In our frame
of reference, frequency extends from zero to unity (referenced to R/2 or half the sampling
rate). The symmetric coincidence of passband and stopband about f = 1/2 for these filters
is fortuitous. The spectral components in the stopband region will be folded into the pass-
band. Hence the region of high attenuation is precisely where it will do the most good.

The spectral components near frequency f = 1/2 are attenuated by about 6 dB (trans-
ition region center) and are moved up to f = 1 for the next stage. In the next stage stopband
attenuation is applied to this reduced level aliasing band before being folded into the pass-
band. The cumulative attenuation effects of the transition regions as the cascade is
traversed keep the passband noise level growth well under control for high L values.

Design of a rate division processor is quite simple. The equivalent filter transition
region width and stopband attenuation are defined by the NT choice. The rate-reduction
factor 2L (via specification of LEV in C434) may be thought of as defining a filter at input
level having passband edge fp = -yl/zL where 71 refers to the interpolator level one proces-
sor (which is now at the end of the rate-division chain). At the final cascade output,
censoring will have moved fp to the value y 1

As a test of the C434 concept, programs LINT and LDIV were run back-to-back for
NT =5 and LEV =7, That is, a 1:128 data rate expansion is first done and is followed by
a 128:1 data rate reduction., The net transfer function result should be constant within the
passband constraints of the NT = 5 design. A unity-value sample followed by a string of
zeros was entered into LINT to produce the impulse response whose frequency function is
that of Figure 4-7. This impulse response data was then entered into LDIV. Note that one
data point into LINT produces one data point out of LDIV with 128 points being involved each
time at the C432/C434 interface.

This operation produced 87 nonzero final output values which are plotted in Figure
5-4, The Fourier transform of this overall impulse response (8192-point FFT) is shown
in Figure 5-5. The response is flat out to f = 0.9 where gain begins to drop to a -11 dB
value (?) at f =1, Sampling rate division expands the frequency scale between input and
output. Note that the input to LDIV had a band edge value fp =0,00703125 (see Figure 4-7
caption); when this fp value is multiplied by 128 an fp =0,9 results,
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An expanded scale plot of the Figure 5-5 data is shown in Figure 5-6. When properly
adjusted for normalization the "round-trip'" passband your variation limits are +0,0125 dB
at f =0 and -0,0226 dB at f = 0,9, :

If one were to obtain the frequency response curve of the divider chain plotted in
terms of input frequency, the results would be precisely those obtained by taking the
Fourier transform of the impulse response of the equivalent interpolator chain. The true
output frequency would, of course, be 2L times the input frequency. Let f, be the input

i
frequency and f, be the divider output frequency (both normalized to R/2). Define

d
f = [21‘ x fl] (5-13)
MOD 2
then
f g - ft for ft =1 (5-14)
or
fd = 3= ft for f‘ >1 (5-14a)

The frequency division factors available directly from C434 are powers of two. This
restriction may be lifted by use of the interpolation program as a preprocessor prior to
use of the rate division program. Let the division ratio desired be represented by vd which
is greater than one but is not a power of two. Let Li' Jlbe the interpolation program
parameters as used in Equation (5-6) and related discussion in Section V4, par. 5.4. Let
Ld be defined as the level specification for the C434 rate division program,. The division
ratio vd is first specified. The L " Ll and Ji values are sought which will define the
minimum-complexity interpolator/divider chain to achieve a division ratio Vd, plus or

minus a tolerance specification,
First choose the smallest L d such that

L
9 d

Va

>1 (5-15)
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If V, is an integer, then

d
L =1L :
i d :
Integer
and (5-16)
J =V (Vd °“1y)
i d
Ly
which simply says to multiply the sampling rate first by the factor 2 /Vd in C432, then
L
d

divide this resulting sampling rate by 2 ~ in C434.

If V4 is not an integer, determine Ld first as in Equation (5-15) then define a rate
multiplication factor Ki of

: Ld L Li
K = - 4 (5-17)
i v d Ji
and use the procedures of Section V par. 5.4 to solve for Li’ Ji’ the interpolation operation

parameters,

The frequency-domain effect of interpolation is compression. A spectrum that extends
from 0 to v, (normalized to R/2) is compressed to 0 to Yl/vi’ after a 1:V; sampling rate
increase. Information is not lost in this process. The frequency~domain effect of rate
reduction is expansion after filtering. The 0 to 71 spectrum is first lowpass filtered with
f", = yl/Vd where V;: 1 i8 the rate reduction ratio. After this filtering operation the spec-
trum is expanded by the factor V, so that -yl/V d becomes vy, . Signal information originally

residing in -yl/vd to y, is lost in the process,

An examination of the frequency-domain effects of the example of Equations (5-15)
through (5-17) will show that the net effect of interpolation followed rate reduction is an
equivalent rate reduction operation of ratio vd : 1, If the rate reduction of ratio vd precedes
the interpolator of ratio V’ a much different result obtains, The original input signal is
lovpannltarodwuhtp'--yllv . This cutoff frequency is then moved to y, by the censoring
operation. The resulting spectrum is then compressed by the interpolation ratio V..
Frequency components in the original lpootrumnbovoyl/vdm suppressed while com-
ponents whose frequencies are below this cutoff value are relocated in spectral position by
ﬂnmtorvd/vi. uvdsvltheneteﬁoctofthu combined operation is lowpass filtering
only. The input and output sampling rates will be equal and the passed spectral components
retain their original frequency positions. As discussed in reference 9, the above arrange-
ment is an efficient approach to the problem of lowpass filtering when sampling rate changes
are not permitted,
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SECTION VI
COMPUTER PROGRAMS

6.1 MULTILEVEL INTERPOLATION PROGRAM LINT

In the Appendix a computer program with deck name C432 is listed. Concurrent
loading of the Block Data subprogram C435 is required. The program is written in
Honeywell YFORTRAN time-share format, In this section the concern is with entry names 1
LINT and the initializing entry XLINT, which must be called prior to the first LINT call. 1 |

CALL XLINT (NT, LEV, LAG)

NT - This is an input quantity and selects the interpolator type. Tables 4-1 and 4-2 give |
details, Types 1-8 assume significant spectral energy out to half the sampling rate,
and use an extended y at the second level in order to maintain low stopband responses. { |
NT values of 9~12 should be used in the oversampled cases as the y progression here is i
a straight one to one-half. Low signal spectrum levels are assumed in the y (R/2) to (R/2)
frequency range for NT =9 through 12,

LEV - This input quantity is the number of levels of interpolation. The sampling rate will
be multiplied by 2LEV. There is no uppler limit to LEV. However the user must provide
sufficient space in the output array, FOUT to contain 2LEV values,

LAG - This output quantity represents the total delay through the interpolation processor
expressed in terms of samples at the output sampling rate.

After XLINT is used, a call to the main entry LINT is made for each input data value

CALL LINT (VIN, FOUT)

VIN - This is a single input sample value.

; FQUT - This is a vector in which the output sample values are returned by the program.
2LEV values are returned for each input value.

| 6.2 MODE CONVERSION PROGRAM C C

CALL CONV (NT, LAGP)
This is an initializing entry, and must be called before first use of either CORE or
REC@. CONV services both mode conversion routines,




NT - This is an input quantity and selects the interpolator type. Only the first three col-
umns of Table 4-2 have any significance in this usage.

LAGP - This output quantity represents the mode-conversion processor delay in terms of
output sample pairs. +

The complex-to-real transformation is done by

CALL CORE (C@MP, RE)
C@OMP - A two-location input vector containing one complex input data pair,
RE - A two-location output vector containing a sequential pair of real samples.

The real-to-complex transformation is done by
CALL REC@® (RE, C@MP)
RE - A twec-location input vector containing a sequential pair of real samples,
COMP - A two-location output vector containing one complex output data pair,

6.3 HP-67 PROGRAM 1-5-79 FOR SECTION V, PAR, 5.3 EQUATIONS

This program evaluates Equation (5-5) but in the process it yields the delay and Nf
value of Equation (4-1), the Oi value of Equation (4-2), the Nl,loi ratio of Equation (5-5),
and finally the Nc value of Equation (4-3).

1. Depress "D" to initialize. Program can handle level values (L) up to 15, All
{Nk} values are set to unity during this initialization. Wait for program halt,

2, Enter number of coefficients at each level starting with level one. Enter one
value and depress "R/S".

3. Repeat step 2 till {Nk} set is stored. Values beyond level entered are one.
4. Enter L value, depress "C",

5. Program halts with N‘, Dl value of Equation (4-1) in display. To continue
depress "R/S".

6. Program halts with O‘ of Equation (4-2) in display. When ready to continue,
depress "R/S",

7. Program halts with N‘/Ol of Equation (6-6) in display. Use ""R/S" to continue,
8. Program halts with Nc of Equation (4-3) in display. This completes the sequence.

9. At this point the user can return to step 4 to repeat with a new L value and the 1
same {Nk} set, or the user may return to step 1 to enter naw{Nk} set, :
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6.4 HP-67 PROGRAM 1-11-79 FOR SECTION V, PAR. 5.4 EQUATIONS

This program may be used to execute the procedure discussed in Section V, par. 5.4,
specifically with reference to Equations (5-6), 6-7, (5-8), (5-9).

1. Enter desired sampling rate multiplication factor K. Depress "A",

2. Program halts showing next L value to be tried. Press "R/S" when ready
for trial cycle.

a) Program pauses (flashing decimal) and displays | AK' % of Equation (5-9).
b) Program pauses to display J value of Equation (5-7).

A
c) Program pauses to display K value of Equation (5-8).

3. Program increments L and returns to step 2,

Note: During step 2, halt, user may enter any L value for trial. If user
enters L value and "ST@2" L sequence is modified. For data recovery,
incremented L is in register 2, last J value is in register 1.

6.5 MULTILEVEL SAMPLING RATE DIVISION PROGRAM LDIV

This program is listed under deck name C434 and requires concurrent loading of the
Block Data subprogram C435. The program is written in Honeywell YFORTRAN time-share
format. There are two entry points to this program, An initializing entry XLDIV must be
called prior to the first usage of the working entry LDIV.

CALL XLDIV (NT, LEV, LAG)

NT - An input variable which selects the processor type. Type specifications 1 through 12
are currently valid,

LEV - An input variable which specifies the number of levels of rate division, The
sampling rate will be divided by 2LEV. There is no upper limit to LEV, however the
user must dimension an input array FIN of size 2LEV or greater,

LAG - This output variable represents the total delay through the rate division processor
expressed in terms of input samples,

After XLDIV is called, a call to the main entry LDIV is made for each group of
2LEV input values; one output value results for each LDIV call,
CALL LDIV (FIN, VOUT)

FIN - An input vector containing 2 E"V data values.
VOUT - A single output variable.

N o
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SECTION VI
CONCLUSIONS

The ease of design, computational economy, and high data-rate increase factors
available from the iterative-interpolation technique make this approach attractive relative
to the conventional filter method of sample-rate multiplication. The filter synthesis
procedure which was derived from the interpolation algorithm also appears to have
practical utility.

The computer program C432 of the Appendix should be useful in its present form for a
variety of interpolation, filter design, and mode-conversion function, Some improvements
in the program are planned, however. A y =95% cascade should be added. This gives a
transition region which is 11% of the passband. Such designs are unavoidably expensive
in processor length, If digital filters are ever to rival analog filters in performance, hard-
ware technology must advance to the point where such designs can be accepted. The rate-
doubling sections of the cascades should be increased in number to accommodate some lower
stopband level specifications. As previously discussed, the linear interpolation stage should
be recoded for an arbitrary 1:J sampling rate increase. The algorithms in Section V
par. 5.4 for arbitrary sampling rate multiplication factors could be included in a future
version of the program, The user would then be required only to specify the sampling
rate multiplication factor desired and the program would automatically provide the optimum
solution,

Notice should be taken of the real advantages of applying the iterative interpolation
technique as opposed to the more conventional use of low-pass or band stop filters for this
service, The ease with which good interpolators can be designed and their efficiency in ser-
vice, especially at high multiplication ratios, should suggest man; new areas of application
for the interpolation process. -

One such new area of promise concerns the use we have made here of the interpolator
in filter design. Basically, a generic impulse response function, believed to be optimum
in some sense, primes the process. Whether this generic function is obtained out of first
level as in our example, is or supplied externally is incidental, The proper interpolation
process is then applied to derive filters having passband frequency functions which are
scaled replicas of the generic filter equivalent functions, It would be useful to know to what

7-1
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degree the original optimality property is retained in the derived filters. If the degree of
retention is high, these results could have significance beyond the digital filter design
goals of Section IV.

The complementary use of the cascade technique for sampling rate division in pro-
gram C434 makes available many of the advantages of the companion C432 interpolation
program. A combination of these two programs offers the user a convenient, efficient set
of procedures for a variety of signal processing tasks.
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APPENDIX A

PROGRAMS

In this Appendix four computer program listings are given as mentioned in the
main text. Block data subprogram C435 must be loaded along with C432 or C434, The
two HP-67 programs have been coded so that they may be merged oxto one magnetic card,
if desired., The FORTRAN programs are also available in standard (FORTY) source-deck
format.




108C4A32 C4a32 ITERATIVE INTERPOLATION SUBROUTINE,
20% JP COSTAS 12713/ ®

30%USE WITH BLOCK DATA SUBPROGRAM C43S

40%

SO SUBROUTINE LINTCVIN, FOUT)

60+

70#VIN=-SINGLE INPUT DATA ITEM

80#FOUT-ARRAY FOR OUTPUT DATA STORAGE

90%

100*DIMENSIONED FOR MAX N OF 64

110

120 COMMON /GPA32/ SCOEF(S12),NGC 6,20)

130%

140 DIMENSION FOUTC1),HOLDC 128, 5)2»0UT( 32+ 6) sNCFC'S) » MPC S)o
1508 COEF( 64,5),DELAY(128),USE(128),COEF2¢ 64,
160& COMP(2),REC2)

1 70%

180 EQUIVALENCE (DELAYC1),HOLDC151)),CUSECI)HOLDC1,2)),
190& (COEF2(1),COEF(1,1))

200*

210%

220#NT-INTERPOLATION TYPE 1-12 IN THIS VERSION
230%NGC 6.NT) ~ADDRESS~1 IN SCOEF OF COEFFICIENT DATA
240%NGCL,NT) “NUMBER OF COEFS AT LEVEL L

250*

260 OUTC(1,1)=VIN

2760 D@ 1 Ls=1,NLEV

280 NCFL=NCF(L)

290 NCFM=NCFL~-1

300 LENL=2%NCF(L)

310 LML=LENL-1

320 KMAX=2%s(L~-1)

330¢KMAX 1S NUM INPUT DATA VALUES AT THIS LEVEL
340 KK=0

350 D@ 1 K=1,KMAX

360 MPCL)=MODCMPCL) +1,LENL)

370 MPL=MP(L)

380 KK=KKe1}

390 NEW=MOD(MPL+*NCFM,LENL)

400 HOLDINEW+1,L)=0UT(K,L)

410 BOUT=0.

420 Mi=MPL

430 M2=MODCMPL*LML,LENL)

440 DO 2 J=1,NCFL

450 MI1=MODCMI+LML,LENL)

460 M2=MODC(M2+1,LENL)

AT0 2 BOUT=BOUT*COEFCJ,L)*(HOLD(MI*1,L) *HOLD(M2+1,L))
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" 480 OUTC(KK,L+1)=BOUT

490 KK=KK+1 .

560 1 BUTCKK,L+1)sHOLDCMPL+1,L)

S10 IFC(LEV.6T.S) GO TO 3

S20 DO 4 K=1,KA

S30 4 FOUTCK) =0UTCKsNA)

S40 RETURN

$50 3 KK=0

560 D@ 6 K=1,32

S70 BOUT=COUTCK» 6) -SAVE) /DEL

S80 D@ S J=1,NDEL

$90 KK=KK+1

600 S FOUTCKK)=SAVE¢FLOATCJ=-1)#BOUT

610 6 SAVE=OUT(K, 6)

620 RETURN

630+

640%

656 ENTRY XLINTCNTsLEV,LAG)

660

670%

680+INITIALIZATION ENTRY FOR LINT
690+#NT-INTERPGLATION TYPE C(1-12 IN THIS VERSION)
700+LEV-NUM LEVELS OF INTERPOLATI®@N .
T10%EACH INPUT VALUE GENERATES 2##LEV QUTPUT VALUES
7204LAG-DELAY THRU INTERPOLATOR IN TERMS OF QUTPUT SAMPLES
730% :

750 SAVE=0.

760 KK=NGC6sNT)

770 D@ 7 L=1,5

7806 MP(L)=-)

790 Mi=NG(L.NT)

800 NCF(L)IY=M}

810 DO 7 J=1,M)

820 KK=KKe1

830 7 COEFCJsL)=SCOEF(KK) /2.
840 NLEV=MINOCLEV,S)

850 DO 8 J=1,640

860 8 HOLDCJ»1)=0.

€70 DO 9 J=1,192

886 9 OUT(J»1)=0.

890 I1FCLEV.GT.S) GO TO 10
900 KA=2+*NLEV

910 NA=NLEVe1l

920 GO TO16

930 10 NDEL=2%%(LEV~-S)

940 DEL=FLOAT(NDEL)




9S50 16 MisLEVe]

960 . LAGS] =28sLEV

970 D@ 1S J=1,LEV

980 KK=1

990 IFCJeLE+S) KKsNGCJsNT)

1000 15 LAG=LAG*KKe2es(M]=J)

1010 RETURN

1020+

1030¢

1040 ENTRY CONVCNT.LAGP)
10S0+INITIALIZING ROUTINE FOR BOTH CORE AND RECO
L 1060¢NT-INTERPOLATION TYPE 1-12 IN THIS VERSION
- 10705LAGP-PROCESSOR DELAY IN TERMS OF GUTPUT SAMPLE PAIRS
108G NCFLSNGC1oNT)

1090 LAGP=NCFL

1100 LENL=2¢NCFL

1110 LMLSLENL=1

1120 MPL==) :

1130 KKsNG( $oNT)

1140 D8 11 J=1,NCFL

1250 KK=KKe}

1160 11 COEF2¢J)=SCOEFCKK) /2.

1170 DO 12 J=1,256

; 1180 12 HOLDC(J»1)=0.

E 1190 FLIP=1.

] 1200 RETURN

1210¢

1220+

1230 ENTRY CORECCOMP,RE)

1240%COMPLEX -T@-REAL TRANSFORMATI®N ENTRY
1250%COMP-LOCATION PAIR FOR COMPLEX INPUT
1260%RE-LOCATION PAIR FOR REAL QUTPUT

1270 MPL=MODCMPL+1,LENL)

1280 REC1)=DELAYCMPL+}1)*FLIP

: 1290 FLIP=-FLIP

i 1300 NEW=M@DCMPLeNCFL,LENL)

1310 DELAYCNEW®1)=COMPC 1)

1320 USECNEW+1)=COMP(2)

1330 BOUT=0.

1340 M1=MODCMPL*1,LENLS

1350 M2xMPL

1360 DO 13 J=1,NCFL

1370 Mi=MODCMI+LMLLLENL)

1380 M2=MODCM2+1,LENL)

1390 13 BOUT=BOUT+COEF2CJ) #C USECMI+1) +USECM2+1))
1400 REC2)sBOUT*FLIP

1410 RETURN
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1 4209
1430 ;

1440 ENTRY RECOCRE,COMP)

1 ASOSRE-LOCATION PAIR FOR REAL INPUT
1460¢COMP-LOCATION PAIR FOR COMPLEX SUTPUT
1470  MPL=MODCMPL*1,LENL)
1480 COMP(2)=DELAYCMPL*1)
1490 NEWSMODCMPLNCFL,LENL)
1500 USECNEWS1)SREC 1)#FLIP
1510 FLIP=-FLIP

1520 DELAYCNEW®1)=REC2)*FLIP
1530 BOUT=0.

1540 M1=MODCMPL1,LENL)
1550 NE=MPL

1560 DO 14 J=1,NCFL

1570 M1sMODCM]I +LML,LENL)
1580 M2=M@DCM2¢1,LENL)

1590 14 BOUT=BOUT*COEFR2(J)SCUSECM] *1) *USE(ME*]))

1600 COMPC1)=BOUT
1610 RETURN

1620% .

1630¢

1640 END
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10%2CA34 CA434 ITERATIVE SAMPLING RATE DIVISION SUBROUTINE
20%JP COSTAS 2/ 1/ P
30%USE WITH BLOCK DATA SUBPROGRAM CA3S
40%
SO SUBROUTINE LDIVCFIN, vmm
60%
TORFIN-INPUT DATA ARRAY
80%VOUT=-SINGLE SUTPUT DATA VALUE
90% :
100#DIMENSIONED FOR MAX N OF 684
110
120 COMMON /7GPA32/ SCOEF(S12).NGC 6,20)
130
140 DIMENSION FINC1),DELAY(C 6Ss S)sHOLDC 128,5), 8UTC 32, aoncﬂ s>.
1508 MPCS)>MPDCS) » COEF( 640 5)
1 60
1t T0sLAST EFN IS 17
180
190
200¢NT-INTERPOLATION TYPE 1~-12 IN THIS VERSION
2108NGC 6, NT) ~ADDRESS=1 IN SCOEF OF COEFFICIENT DATA
2208NG(L,NT) -NUMBER OF COEFS AT LEVEL L
230*
240 IFCLEV.LE.S) GO T@ 3
2SOSENTER LINEAR INTERPOLATION PROCESSOR
260 SUM=FINC1)
270 DO 6 J=1,NDELM
280 6 SUM=SUMSFLOATCNDEL =J) /DEL*FINCJ+1)
290 OQUTC1,1)sSUMeSAVE
300 WMPL=1.
310 DO 11 Ksg,32
320 MPL=MPL+NDEL .
330 SUM=FINCMPL)
340 DO 12 Js=),NDELM
350 12 SUMsSUM*FLOAT(NDEL =J) /DEL*( FINCMPL¢J) ¢FINCMPL=J))
360 11 QUT(K,1)aSUM
370%NBW SET UP SAVE FOR NEXT CYCLE
380 SAVE=0.
390 DO 13 J=)1,NDELM
400 13 SAVESSAVESFLOATCJ) /DELSFINCKB*J)
410 GO TO 14
420 3 DO 1S K=l,KA
430 1S GUTCK, 1)=FINCK)
440 14 CONTINUE
4350
H60%
AT0*ENTER THE NORMAL CASCADE PROCESSOR




480 DO t L=1,NLEV
490 LPsNLEV*1-L
S00 KMAXs2ésLP
S10SKMAX IS NUM INPUT DATA VALUES AT THIS LEVEL
S20 NCFLaNCF(LP)
$30 LENL=2¢NCFL
S40 LEND=NCFL+1
. $S9 LML=LENL=-1 i
S60 KK=0
S70¢KK 1S POINTER IN DATA GUTPUT. ARRAY : : |
. 580 |
S90 DO 1 K=i,KMAX,2 :
600 MPCL)SMODCMPCL) ¢1,LENL)
610 MPL=MPCL)
620 MPDCL)=MIDCMPDCL) +1,LEND)
. 630 MPDL=MPDCL)
640 KKsKKe1
f 650 NEW=MODCMPL ¢NCFLoLENL)
660 NENWD=MODCMPDL *NCFL,»LEND)
670 HOLDCNEW*1,L)=0UTCK,L)
680 DELAYC(NEWD*1,L)=0UTCK*1,L)
690 BOUTSDELAYCMPDL+1,L)
700 M1=MODCMPL+1,LENL)
710 M2=MPL
720 DO 2 J=1,NCFL
730 M1=MODC M) +LML,LENL)
740 W2sMODCME+1,LENL)
750 2 BOUT=BOUT*COEFCJoLP) SCHOLDCMI+1,L) ¢HOLDCME+15L))
760 1 OGUTCKK,L+1)sBOUT
770 VOUT=BOUT,
780 RETURN
790¢
800
810 ENTRY XLDIVCNT,LEVsLAG)
820
830* ;
S40¢INITIALIZING ENTRY FOR LDIV g
S8 SOSNT-PROCESSOR TYPE C1-12 IN THIS VERSION) CINPUT DATA) |
8 60SLEV-NUM LEVELS OF DIVISION CINPUT DATA)
! 8 70sLAG-PROCESSOR DELAY IN TERMS OF INPUT PULSES ¢ QUTPUT mn:
: 880¢ONE OGUTPUT VALUE REQUIRES 2¢sLEV INPUT VALUES
890+
900 SAVE=0.
910 KKsNGC6sNT)
920 DO 7 L=1,$
930 MPCL)==-}
940 MPDC(L)=-1

ATy
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950 MIsNG(LNT)
960 NCFCL)=M]
970 DO 7 Js1,M1
980 KK=KKe}
990 7 COEFCJ,L)sSCOEFCKK) /20
F | 1000 NLEV=MINOCLEV,S) '
1610 DO 8 J=1,640
e | 1020 8 HOLDCJs 1300
| 1030 DO 9 J=1,192
1040 9 GUTCJs 1304
1050 DO 16 J=1,328
1060 16 DELAYCJ»1)=0.
1070 NDEL=2es(LEV-S)
1080 DEL=FLOATCNDEL)
1090 KAS@esLEV
1100 KB=KA=-NDEL*1
1110 NDELM=sNDEL -1
1120 MisLEVe1
1130 LAG=1-@esLEV
1140 DO 17 J=1,LEV
1150 KKsi
1160 IFCJeLE<S) KKsNGC(JsNT)
1170 17 LAGSLAGHKK#2s8( M1 =J)
1180 RETURN
1190
1200 END
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10#C43S CA43S BLOCK DATA FOR. C4a32 AND CAa34
20%JP COSTAS 02/725/1P
30%

40 BLOCK DATA

SO*

60 COMMON /GPa32/ 80'!"( 5!2)0"8( 6, 20) :

70% ‘ -
80%

90*NT-INTERPOLATION TYPE 1-12 IN THIS VERSION

1008NGC 6oNT) ~ADDRESS~1 IN SCOEF OF COEFFICIENT DATA

1 10¢NGCLoNT) -NUMBER OF COEFS AT LEVEL L

120%

130 DATA I(NG(J21)sJ%1568)7100553,252,07

140 DATA CNGCJs2)0J21,56)7 15 452,251,227 ®

150 .DATA (NG(Js3)eJ=1,58)7503,20151,38/

160 DATA (NG(J»A)sJ=1,6)73s2515151550/

170 DATA (NG(J»S)sJ=156)71955,3,2,2,587

180 DATA (NG(Js6)oJ=1,6)/1454,2,2,1,89/

190 DATA (NG(JeT)9J=1,6)/71003,251510112/

200 DATA (NG(Js8)5J=15,6)7602015151,129/

210 DATA (NG(J»9)sJ=1,6)/5030202015140/

220 DATA (NG(J»10)+sJ21,6)74,2:251510183/ d

230 DATA CNGCJ»11)0sJ%156)730201515101637 ;

240 DATA (NG(Js12)sJ=1,6)/72515151510171/

N

260%
270¢NT=1, 80%, -65SDB

280 DATACSCOEF(J)»J=1,22)71:264545°:398901,:214047,~128818, 00”12320
2908-:04752435 0270881, =<0141908, «00651868, 00254049,

300+

31081:23918,-3:31141E=015¢124558, =4.07S3SE-02:,8 ¢ mat-oaa
32041:184695-21561953:.1049 ¢E~02»

33041.13018,--130329,»

34081126285 -:1262%97

350+%

360*NT=2, 80%, -S0DB

3 DATA(SC'!F(J).J'!S.GB)IIo!6|4’o°039.l950 .eou“.-.uatu.omsu
3804+ -:0316199, 0154772,

390+

400481231830 -¢312735¢103554,=.025179,

4108114551, -¢148007,

4208113018, -+130329,» 4 ;

43041.00348/ |

440% g8

A450¢NT=3, 80%, -40DB

460 DATACSCOEF(J)»J=239,50)71:258075=¢3804685 « 18 ‘340’00’5145‘0 «0345748
470

o




480485122058, = 285339, <0759 444,

49081145515 =0 ‘001.

50041 .01 401,

$1041.00348/

S20% : T

S30sNT=4, 80%» -25SDB

S40 DATACSCOEFC(J)»JnS51,58)/71:2528 603660630 214951,

5S50%

S6081.20257 ~254076,

$7041:.05764»

S8041.01401,

59041 .003487

600%

610#NTaS, 90%, -65SDB

620DATACSCOEFCJ) 2 J2S59589)/71270985 =041 7671524383465 -166627 122307
63049 <30066E=02s 7+ 199 ATE=02+ =S¢ 61 48 1E=025 4. IC09LE-02s -3+ 4021 SE=-02»
64082618 A1E=025 =1:98932E=02s 1 ¢ 48 T24E=02+ =1 .088 C0E-02» 7+ T4AE8 AE-0»
6508-5:3449E-0353:51693E-035-2:18409E-03,> 1+ 70604E-03»

64682

6708123918, °¢3311415,124558,-.0407535,8 « 7S042E~03,»

6808118469, -215619,3¢ 104,6['020

69041:130185,-+130329, i

7008112628, -« 12629/

710

720¢NT=6, 90%, -SODB

T730DATACSCOEFCJ) »J=2905112)71:270340=cA15770 2404485 =01 62436011 71 660
7408-8 « T088 IE~025 6+ SABBOE~02s ~4.92510E=025 3 6TISSE-0Ls ~2:.6984TE-02»
7508193 773E=02+s=134576E~02+8 +9 ASRE~03/, -8 + S1 445E~-03»

760%

77041231835 =:3127351035%545 025179,

7808114551, -148007,

7904113018/, ~-+130329%,

80041.00348/

810%

S20eNT=7, 90%, -40DB

S30DATACSCOEFCJ) »J=113,129)71:26955, 0413328, 236360157144, .
:;:o 1107890797615 0576061+ -:0410163%, 028 7082, -¢031823» .

86081 .22056, 285339, 0799 446

8§7081:14351,-.148007,

8808101401,

89041.00348/

900eNT=8, 90%, -23D8

910DATACSCOEF(J)»J2130,140) 7126844540963 7» « 23096150149 662>
9204:1031412-:131136»

9 30+

94048120837 254076,




95041.05764»

926041.01401,

97041 .00348/

980 :

S90%NT=9, 60%» -63DB

1000DATACSCOEF(J) »J21415153)71:.23918,-3311415.124358, 0040 7535,
10108.008 75048,

1020%

1030481184695 ~:2156195 0310896,
104081:130182~-130329,

10504112628, ~0126£9,»

106041 .0008 7/

1070%

1080*NT=10, 60%, ~SODB

1090DATAC SCOEF(JI) s =154 lél’ll « 23183, '031 273501035545 =.02%51 79,
1100811455150 48007,

11108113018,~-.130329,»

112081.00348,

113081.0008 7/

1140%

11S0#NT=11, 60%, -40DB
1160DATACSCOEFCJ)»J=1640171)71:.22058, 28533950759 4460
1170

11808114551, ~01 48007, ; '

11908101401,

120041.00348,

121041 000“ 17

1220

1230¢NT=12, 60%,» -25D8

1240DATACSCOEFCJ) s J=1 725 1 77)/! 202579 =« 2540 760
123%0%

12604105764

127041.01401,

128041.00348,

129041.0008 7/

1300

1310 END
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PROGRAM 1-5-79 (HP-67), FOR USE WITH SECTION V, PAR. 5.3 EQUATIONS

1 (D) FLBLD 45 X
2 2 46 STO4
3 5 47 RCL()
4 hSTI 48 x
5 (5) fLBL5 49 STO+6
6 fDSZ 50 RCLS
7 1 51 2
8 STO() 52 +
9 hRCI 538 STO3
10 1 54 RCL()
11 0 55 x
12 XAy 56 STO+5
13 GTO5 57 hRCI
14 (3) fLBL3 58 9
15 R/S Enter {Nk] 59 -
16 STO() 60 RCLO
17 1Sz 61 gxAy
18 GTOS 62 GTO2
19 (C) fLBLC Enter L 63 RCLS
20 STOO 64 RCL2
21 2 65 -
22 hx —y 66 R/S
67 RCLS
23
@ B &  ®s
g: EN’P 70 R/S
E. s
gg §T,32 738 RCLO
0 2 74 1
31 x 75 F
32 STO3 o hy*
n ax ™ mm
-+ STOS 79 fINT
% : 80 STOT?
38 STO4 82 GTO4
39 9 83 1
40 hSTI 84 STO+T
41 (2 fLBL2 86 “4) fLBIA
42 1187 86 RCL7

43 RCIA 87 R/8

Show Nf, Di
Show O,
Show N,/oi

Show N




PROGRAM 1-11-79 (HP-67) FOR USE WITH SECTION V, PAR. 5.4 PROCEDURES

(A) fLBLA
STOO
fLN
2
fLN
fINT

(1) f{LBL1
ENT}

10 1

11 +

12 STO2

13 R/S

14 ENTt

15 2

- - N S S

h 1/x

hR{

17
18
19
20
21
22
23
24 ENT!
25
26
27
28
29
30 hRt

Show L.

31
32
33

35

X
fINT
RCL3
+
STO1
RCI14
hx -y

&

1
hABS
EEX
2

X
f-x-
RCL1
f-x-
2
RCL2

Rewa

f-x-
RCL2
GTO1

Show |A | %
Show J

A-13
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