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ABSTRACT

-v
Interpolation operations have wide applications In signal processing systems .

An efficient Interpolation technique is developed and demonstrated. This is an iterative
technique in which interpolation output at any stage is combined with the Input to that stage
so that the Interleaved result forms the input to the succeeding stage. Sampling rate
increa ses of high order are not difficult to achieve . Resam pling of high-order Interpolator
outputs permits precise control of sampling rate conversion ratios .

From this basic work In Interpolation , a digital filter synthesis procedure is developed.
The resulting class of finite Impul se resp onse filters Is competitive in speed and stora ge
with conventional designs. These filter s have the property that the paasband frequency
function of a generic design can be scaled by any desired factor in frequency while main-
t~~ning stopband suppression to specified levels. This synthesis procedure uses a
“stre tch—and—fifi ” iteration operation. The impulse response Into a synthesis stage is
stretched , and the vacated spaces are then filled from new data synthesized at that stage.
The “stretch” performs the frequency scaling function while the “fill” operation eliminates
image responses that would otherwise appear . Computation of the coefficients for these
filters, of any order, is trivial.

S A FORTRAN computer program which uses the developed algorithm Is provided
• for general interpolation service. Auxiliary use of this program for obtelning derived

filter coefficients is described, and examples of filt er synthesis are given. Special entry
points are provided for data format mode conversion: complex-to-real and real-to—complex.

Equivalent procedures for sampling rate reduction are also presented and discussed.
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SECTION I

~NTRODUCTION

The basic technique of interpolation is familiar to most engineers in the context of
“reading between” tabulated points in tables of functions or othe r data . This may be an
unfortunate Introduction to a useful , fascinating, and often overlooked technique for reasons
that go beyond the Immediate mental anguish of doing the prop ortions correctly.

Satisfactory linear inte rpolation requires a fineness in the spacing of the abscissa
values or “sampling rate ” that Is often far greater than that required to conta in the basic
behavior Information of the function or data. This Is especially true In digital signal
processing systems where band-limited functions having accurately known spectra are
involved . In such systems economies in design are sometimes overlooked because change s
in the sampling rate within the system would be required. Such changes are most conven-
iently accomplished by the re sampling of inter polated data . Such Interpolation must be
done inexpensively using designs which allow control of Introduced errors.

In some cases sampling rates that are adequate to permit reconstruction of the con-
tinuous waveform are inadequate for certain nonlinear operations , with multip lication being
a common example . In these cases Interpolation may be used to raise the samplIng rate

Just prior to a nonlinear operation of this type.

Interpolation Is obviously not confined to the time domain. In the spatial domain for
example , expensive beamforme r processor s can sometimes be saved by interp olation-
synthesis of outputs corresp onding to Intermediate pointing angles .

Data format or mode convers ion between “real ” data and “complex” data is often
required in signal processing work . This conversion problem can be shown to have a simple
interp olation solution . Medi a conversions often involve Inter polation because of differences
in appropriate sampling rate s. Samples of a waveform taken at or near the Nyquist rate
(two times the highest sIgnal frequency) might be adequate for machine processi ng. However
this rate would be totally Inadequate for display use . Try, for example , to mentally re-
construct a sine wave given, say, three-equispaced randomly located sample values taken
from one period. Interpolation prior to display Is often a necessity.

_ _ _ _  _ _ _ _ _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In this paper an interpolation technique Is developed which is b-slcally quite simple

and is very easy to use . The techniq ue appears to offer computational advantag€ a over more
conventional interpolation methods. A modification of the interpolation process leads to a

filter synthesis procedure which Is described. Applications such as mode transformations
are tre ated in detail. A computer program for interpolation and mode conversion Is
presented along with instructions for use .

The basic techniques developed for interpolation may also be used for sampling-rate
reduction. Computer programs and design pr ocedures are presented which permit con-
venient sampling rate conversions either up or down .

1—2
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SECTION II

BASIC SINGLE-LEVEL INTERPOLATION

2. 1 FR EQUENCY DOMAIN APPROACH TO INTERPOL ATION

For present purposes it Is convenient to formulate the interpolation problem in the
5 context of the tapped delay line representation of Figure 2-1. A sinusoidal signal

a (t) = 008 2~r ft (2—1)

is applied to a delay line having 2N taps spaced T-seconds apart . In later development
T will represent a sampling period for a sampling rate R where

R = -4- (2—2)

It is desired that the output at the center of the line be obtained where

c (t) = cos 2ir f [t  — (2N — 1 ) -i] (2—3)

An estimated center output ~ (t) Is to be delivered from the weighted sum of the tap voltages
so that

~ (t) = 
k~~ 1 

~~a1~cos2 i r f [t + ( 2 k _ 1) .~-]

+ a _k cos 21r f [ t _ ( 2 k _ 1) T1~ (2—4)

using the signal at the center tap as reference. Expansion and rearrangement of the
terms in Equation (2-4) yields

~ (t) 
= [k~~ 1 

+ 5 _k) c05~~~~ (2k _5
~~

) cos 2ir ft

N 
(2—5)

[k~~ 
(ak

_ a _k) a In2
~
r f ( 2 k _ 1)

~~~] 
sIn 2ir ft 5

2—1

L ~~ ~~Ti ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ _ _ _ _ _ _ _  _ _ _ _ _



-- ~~~— —-—-~-—- ----— -Sw-- - - - -5 -—5, - ~~-.. —-S.--- — ------ - 5 -~~ — 
~~~~ 5,~ - —

B6680

e(t)
-f  ~~~T/~~ 0~~~~~~~~ T ‘I

S 

-

a_3 a_2 a_1 c(t) al *3
_ _ I  I I 1 — —

_ _  

A
—, o(t)

- a. Tapped Delay Line Representation

*3

*2

a = 2 ,r f T

b. Phasor Diagram

I

— Figure 2-1. Interpolation Processor, Continuous Time Version
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Since the center tap signal was used as reference for Equations (2-4) and (2-6) , we may
ignore the (2 N-i) T/2 delay term of EquatIon (2-3) and represent cos 2w ft as the desIred
output signal. It then becomes apparent that the first term of Equation (2-5) represents

an In-phase component while the second term represents a quadrature component relative
to the desired cos 2 ~r ft signal. In order to eliminate the undesired quadrature term choose:

a.K a k 
(2-6)

and define
b

k
= 2 a II~

b 
(2—7)

So that Equation (2—5) becomes after Equations (2-2) , (2-6) and (2-7) are used

~ (t) = 

[k~~ 1 
bk cos (2 k - 1) j- 008 2w ft (2-8)

The estimate of Equation (2-8) has no phase error so that the brac keted factor

may be interpreted as the real filter transfer function H (f) of the estimator of Figure

2-la (time delay of (2 N - 1) T/2 understood) where

N

H (1) = bk cos (2k — 1) (2—9)

If H (I) were equal to unity, the estimation would be perfect. As shown In Figure 2-lb the

coefficient choice of Equation (2-6) insures that the resultant phasor ~ lies along the true
center phasor line c. However , the amplitude of ~ may differ from unity and hence Intro-

duce estimation errors. The problem then becomes one of choosing the coefficients

bk so that H (f) of Equation (2-9) remains as close as possible to unity over a frequency

range which will be confined to

0~~~ f c ~~~. 
(2 10)
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Both the phasor diagram of FIgure 2-lb and Equation (2-9) show the difficulty
involved , namely that the component angular relationships are functions of frequency .
At zero frequency the phasors are all collinear, and the sum of the coefficients should
be set equal to unity. As the frequency is Increased the phue relationship. change and a
different coefficient set bk Is required for unity gain. Since the single frequency analysis
Is meant to represent performance at only one of a band of signal frequencies , the bk choice
cannot be changed as a function of frequency. An optimum bk set (In some sense) must be
found for the signal characteristic s of the application .

2.2 PROCESSOR COEFFICIENT DETERMINATION

Examination of Equation (2-9) reveals that an odd harmonic series of cosine terms
is involved with each cosine term having unit value at f = 0 and zero value at f = (R/2) .
Thus H (f = B/2) = 0 regardless of the bk set chosen. Define now a maximum value of
f/(R/2) and consider design procedures confined to the range

f
o ~ . (2—il)

“TI

It Is desired to minimize the peak error (deviation from unity) of H(f) . If the error Is
defined as 6 then the quantIty to be minimized where

o = ~l — H ( f ) ~ 
(2—12)

That is, we seek that set ~bk} which minimizes the maximum value of 6 of Equation (2-12)
for a given y ,  N. As expected, the computational load (required N value) is increased
when 6 max is made smaller and when ~y is made larger (closer to unity).

Consider now the trivial but Illustrat ive case in which N = 1. H(f) now becomes

H (f) = b1 cos -
~~
- -

~~~
- (2—13)

When f = 0 , H (I) is equal to b1 and when f/(R/2) = y ,  H (1) b1 cos w y/2. Since the H (1)
behavior is monotonic, b1 must be chosen to equalize the errors at the frequency extremes.
The choice Is clearly

b = 
2 (2—14)1 1+coe —~~~
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and

= 
1 — 008 ir y/2 (2—15)max l+ cos 1r~#/2

which may be rewritten as

1 — 6 maxcos iry/2 = i + 6 max (2—16)

The interaction of performance and bandwidth for this simple case is easily calculated.

For 6 max levels of -20, -40, and -60 dB, the resp ective y values are 0.39, 0. 13, 0.04.
Thus for a fixed computation load (N = 1 in thin case) one can only trade performance for
bandwidth.

The above procedure represents a modified form of linear interpolation using data
from the delay line tap pair adj acent to the center point of FIgure 2-la. Ordinary linear
Interpolation would involve (a1, a_1 ) values of 1/2 and a unit value of b1. Note that b1 fr om
Equation (2-14) is always greater than one. This departure from ordinary linear Interpolation
Is necessitated by the desire to minimize the peak error in H (f) over the operating bandwidth.
The result in this case is a 6 dB reduction in peak error level as compared to the normal
linear Interpolation usage of the tap signals.

The computational approach used for general {bk) determination will now be described.
Fir st rewrite Equation (2-9) letting

X = (2—17)

so that

H (x) = 
1 

bk cos (2 k — 1) —i-- x (2—18)

In the x interval from 0 to y select a set of equally spaced points {x
1
) and consider the

weighted squared error sum

E =E ~, 
[
~ 

— H~xj) }  (2—19)
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The process starts with unit weIghts w1 and a {bk) set Is determined by the usual (Ref. 1)
least squares procedures In which

cos (2k - 1) -~~
— x

Is used to define the coordinate functions of the approximation. After the least-squares
ope ration is complete , the weights w1 are modified in proportion to

I 1_ H(~ci)I
so that the regions of high error are emphasized. Then a new weighted least-squares fit
procedure is invoked to derive a modified coefficient set { b~ }. After a few such itera-

tions it wIll be found that the peak errors of H (x) over the approximation region are
equalized and, coincidentall y, minimized. (Several years ago the author wrote an inter-
active time-share program for thi s and a varie ty of other curve-fitt ing problems which
leans heavily on a Honeywell H-635 auxiliary library routine named LSQMM . The names
M . A. Martin and F. E. Lifler are associated with this program . ) This procedure appears
to have more general applicability and may be found more convenient to use than the
REMEZ exchange algorithm employed for similar purposes (Ref. 2)

These nunar ical pr ocedures were used to obtain the performance data shown in
FIgure 2-2. The particul ar cases displayed here were run for specific pur poses to be
described in later sections. For the present , the results of FIgure 2-2 may be discussed
in terms of the general interpolator design problem .

The time-share program previous ly mentioned was run for a varie ty of y values
over an appro priate set of N values. For each N value the peak error in H (x) was found
and expressed in decibels . Plots of 6 max in dB as a function of N were then made using
o as a parame ter . For a specific y ,  say 80%, the peak error decreases monotonically
with N as expected . For this particular y only, the error performance for least-squares
determination of the coefficient set (bk} is shown circled above and to the right of the
normal minmax performance curve marked “ y = 80% ”. It appears th~ the minniax

Itera tion Is worth the order of 6 to 8 dB In additIonal error suppression.

The rapidly escalating processor costs incurred as 
~
, approaches one may be seen by

looklng along the -35 dB error line, for example. At y = 80% anNof6wll l euffioe ,
at y  = 90% an N of 11 is indicated, while at y = 05% the computation prioe haa risen to
N = 23. For the smaller y values N goes down rapidly , with simple two-point Interpolation
(N = 1) providIng error performance in excess of -50 dB for y of values of about 15% and
less.
2-6 

-

__________________________________________________ -. .r ,,. p” Z. ç~ r. - 
- . - - ---——— — - -— —

- . - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,,. ~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~ - 4



Cl CS,

>4 5

N
Z~ 4

>4

-
~~~~~

NI ~~I ~~ —I ~~ 
N

I ~I -~~~~

I

I I -

~~~~~~z _ , ~_ z

/ •1~~
/ 

/ 
_ _  _ _

:

~~

j
I

/ ~~~~~~~~~~~~~ :~~‘

//

/~~~~~~~~~~~
7

~~)0! 

I 

: 
4

- N

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

:~ - -

(Ri’) arrxv~ ~ro nr~ xva~

2—7

-7——--— - -  

- ;;
~~~~~~~

-
~~

‘

~~~
- ‘ - .,

~~

—..
‘ 

---- - ——5-——
L _. E4~~~.m ~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

_ s~~~ - ~~~~~~~~~~ -s-i ’ - ~~s - 5- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ‘IL... _ ~~~~~~~ ‘ 5-~~~~5- I1II IiII ~~



- 5----- —

2. 3 EQUIVALENT DIGI TAL FILTER AND SPECTRA L CONSIDERATIONS

In the discussion up to this point the interpolation prcble~m has been presented in
the context of continuous time functions made available only at equispaced delay interva ls
T. Simple modifications of the structure of Figure 2-la provide a convenient conversion
to the discrete time case of interest In digital signal processing. As shown In FIgure 2-3

• the delay line input signal is sampled at rate R = l/T by the impulse train p (t). Additional
changes from Figure 2-la Involve summatio n of the ~ (t) output with the output of the
tap after this tap output pulse is delayed by T/2 seconds. At any given Input pulse time ,
t , the output of tap a represents Input slgnal as it existed (N - 1) T seconds priOr tO t

A 
-1 n

The output c approximates Input signal as It existed (N - 1) T + T/2 seconds prior to t~.
Since the sample represents an earlier epoch of s (t) than the a_1 sample , the latter must
be delayed by T/2 to maintain proper order. Thus the structure of Figure 2-3 may be
considered to operate on Input data sampled at rate R and produce at Its output sampled
data at rate 2R. Note also that the delay through the processor of Figure 2-3 Is (N - 1)
T + T/2 seconds or 2N - 1 output rate sampling periods.

B6684
~~~~~~~~~~~

r’(.XJ~I ~~~~ T~~~~~~~ -~j T/2~ .-- I
s(t) —4 ~ I~~~~~~ ~~ a1 ~2 *3

— — _____________ 11 -1- II — —
1d 1

t

Figure 2-3. Interpolation Processor , Sampled Data Version
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In the analysis of Figure 2-3 which foliows it is assumed that s (t) has a power
density spectrum S (f) where

S (1) =0 for I f i  ~ R/2 (2-20)

Since the sampling period is pr ecisely equal to the delay line tap spacing, all line output
voltages will be zero except for times which are multip les of the sampling period T. The
tap voltage d1(t) wIIl be -

A
cI.~ (t) = 0(t) p (t) (2—21)

The output on the a_1 tap represents signal data that is from a later time than the data on
the ~(t) bus by T/2 seconds . For this reason the a 1 Impulse samples of FIgure 2-3 must
be delayed as shown in order to maintain proper output sequence . This T/2 delay of the
a 1 sequence is exactly equivalent to

d2 (t) = a (t — (2N — 1) T/2) p (t — T/2) (2—22)

The impulse train p (t) may be represented by the Fourie r series

p(t) = cos 2w nR t (2—23)
n = 0

so that

P(t - T/2) = ~~~~ (—l)’~ 008 2w nRt. (2—24)
n = 0

Equation (2-22) may be written as

d2(t) = s (t - (2N - 1) T/2) cos 2w nRt (2-25)

and the other adder Input will be

A A
d1(t) = 0(t) p(t) = 0(t) ~~ co. 2w nRt. (2—IS )

n = 0

2—9
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CO

d(t) = (t) + 8 (t — 2 (N — 1) T/2) 1 E cos 2w nRt

I J n = O , 2,4

CO

+f ~~(t ) _ s ( t _ 2 ( N _ 1) T/2) i ~~~ 
Co. 2n cos 2ir nRt (2—27)

I J n = 1 , 3, 5

It is trivial to show that if x (t) has a power density spectrum X (f) , then

Y(f) = ~ [x ( f _ f 0 + x ( f + f 0] (2—28)

where

y(t) = x(t) cos 2w f~t (2—29)

and Y (f) is, of course, the power density spectrum of y (t) . The result In Equation (2-28)
will now be used with Equation (2-27) to derive the positive frequenc y portion of the
spectrum of d (t), D >(f).

A
From the discussion relative to Equation (2-9), the transfer function rela ting c (t)

and a (t) ii H (f) exp (- J 2irf (2N - 1) T/2). This allows use of Equation (2-28) so that
the power density spectrum D~~(f) of d(t) of Equation (2-27) may be written as (factor of

1/4 Ignored)

D~(f) = I 1 + H ( f - nR) ) 2 S(f ~~~~)
n = 0 2 ,4

+ I 1 — H ( f — nR) I 2 S(f — nR) (2—30)
n = 1 , 3, 5-

~~~~~~ 
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A ketch of Equation (2—30) for an 8 (f) of unity in the range I ~ 1 ~ R/2 is shown In
Figure 2-4a. The sampled data spectrum at the input to the interpolator has a perfodicity
of frequency span R , the Input sampling rate . The spectral periodiclty at the interpolator
output has a span 2R consistent with the doubling of the sampling rate as explained relative
to Figure 2-3. Thus the new foldover frequency (one-half the sampling rate ) is R.

Relative to this new foldover frequ ency we may define an effective frequen cy function
G (f) for the Interpolation proc essor of Figure 2-3

G (f) = 11 + H (f) I , 0 ~ f ~R/2
(2—31)

G(f) = I 1~~~~~ 1, R/2~~~~
remembering that

H (f = R/ 2) 0 (2—32)

The complication introduced by the doubling of the sampling rate from the sampled
data input of Figure 2-3 to the output at d (t) may be resolved by assuming an input data
rate of 2R with alternate sample values all equal to zero (Ref. 3). This construction leaves
the physical input signal to the line of Figure 2-3 unchanged, yet allows Input and output
power density spectra to be directly compared in the context of an equivalent filter G (f)
of Equation (2—31).

As discussed earlier , an ideal H (f) func tion would have unit value out to the original
foldove r frequency 1(/2. The resulting G (f) would have a gain of 2 from 0 to R/2 and be
zero elsewhere . This would produce block spectra in FIgure 2-4 of width fi centered
at even multiples of R . This, of course , Is the spectrum which would result if the original
a (t) were directly sampled at the rate 2 R.

The filter function G (f) of Figure 2-4a and Equation (2-31) may be discussed in
terms of a passband from 0 to ~ (R/2), a transItion region from y (B/2) to (2- v) (R/ 2) , and
a stopband from (2 - 

~‘) (R/2) to R. The paasband and stopband are directly related since
Equation (2-31) shows that a deviation 6 of H (f) from unity in the paasband at frequency
I results In a response of magnitude ~6I In the stopband at frequency R - f. Interpolation
errors result in the desired signal being at an incorrect level at the output (psasband)
accompanied by an image signal created within the processor (stophand). 
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b. Interpolator Error Spectrum
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Figure 2-4. Interpolator Output and Error Spectra
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The gain of 2 In the passba nd Indicates a reinforcement of desired output sIgnal from
4 the interpolated series by the signal from the “direct-through” series from tap a 1 of

Figure 2-3. Remember that the error performance calculations shown in Figure 2-2 were
made relative to the Interpolated series only. Thus the relative error values of the
sampled-data version of FIgure 2-3 are reduced by 6 dB from the values given In Figure 2-2.

The transition region of Figure 2-4 Is obviously a region of poor performance. The
desired signal level errors can be large, resulting in high levels of Image—signal generation .
Error effects resulti ng from this region can be reduced eithe r by making y large (which
can be computa tional ly very expensive) or by keeping the signal spectrum in the region
y R/2 to R/2 low. The latter condition results when the sampling rate is increased
beyond twice the low-pass filter cutoff frequency when the Initial analog-to-digital conversion
Is made , for example .

Filters of this type are also discussed In reference 5 and are described as “bali—band
non-recurs ive” filters.
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SECTION III

MULTILEVEL INTERPOLATION

3. 1 EXTENSION OF TECHNI QUE TO GENERA L L-i~~VEL CASE

If the sampling rate Is to be Increased by a factor of 2L, an iteration of the technique
of FIgure 2-3 may be used to good advantage as shown in Figure 3-1. The general L-level
procedure will be outlined firs t, with detailed design considerations to follow. ~Dtfferent
design approaches to multistage interp olation may be found In references 7, 8 and 10. )

Starting at the top of Figure 3-1, we reason that the interpolated data at the output of
level 1 represents the best estimate of Intermediate data values obtainable from the alloca-
ted pr ocessing investment made at that level . Thus it seems eminently reasonable to use
these Intermediate re sults as input for the next processing stage.

The design of the next stage (level 2 in this case) may be relaxed as compared to that
of level 1 because the rel ative signal bandwidth has been cut In half by the 1:2 increase in
sampling rate at ~he previous level.

For example, consider an error level line drawn horizontally in FIgure 2-2 through
the y = 60, 30, 15, ---% curves. If the signal bandwidth requirement calls for a~ ’ = 60%
first level, a proper 1st-level N value may be chosen by noting the interse ction of the error
line with the curve y = 60%.

Now at the second level the effective y is reduced to 30% and a lesser N will be satis-
facto ry which means a lighter processi ng load as compared to level 1. The next step
results In a level 3 y of 15%, and so on. Eventually the working-level ~y Is reduced to the
point where N = 1 which, in effect , means linear Inter polation . At this point (say at the
output of level K) the procedure is changed and the final processor simply does linear
interpolation of 2L-K 1 points between each Input pair. This procedure Is efficient In that
only that amount of processing needed for error control Is used at each level.

The procedure may obviously be extend ed. to provide arbitrary sampling rate multi-
plication at the linear interpolation output level. 

-

The problem specifications determine how many Figure 2-3 type processors will be
needed before reachi ng the 2L-K linear interpolation processor . Ouce the linear Inter-

polation level Is reached sampling rate multiples become Inexpensive.

The above discussion Is conceptually correct, but Important design details which
were passed over will be considered In the next two sections.
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Figure 3-1 Multilevel Interpolation Procedure
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3. 2 DESIGN CONSmERAT IONS. CRITICALLY SAMPLED CASE

The output spectrum of Figure 2-4a was based on a uniform input signal spectrum
extending to R/2. Deviations of this curve from a repeated block spectrum on 2R Hz
centers repre sents error power. A normalized error spectrum is sketched in Figure 2-4b.
The peak level ö 2 is reached in the pus and stopbands. In the transition region a high
density level is always reached . Err or contributions in this region can only be reduced
by narrowing the transition region (increasing ~ ) or by lowering the spectral level of
the signal in the foldover-f requency region (oversampling).

Error control in the multilevel interpolator is stro ngly influenced by the specific
application. In much of the previous literature (Ref . 3) Interp olation is done by passing a
digital signal through a digital low-peas filter which Is characterized by a pauband, a
transition region and a stopband. In order to compare Interpolation methods, the design
procedures in this section will also be based on an extended stopband in which uniformly
low error level Is maintained. In the multilevel interpolator, error spectrum distribution
can take many forms . Q~e form arises from the use of a low-pass filter in the operation.
It is not obvious that this is necessarily the best error distribution for all applications.

FIgure 3-2(a) shows a uniform input signal spectrum extending to R/2. FIgure 3-2(b)
shows the first-level filter function and output spectrum for the critically sampled case. A

is chosen at the first level which yields a transition region from 
~ i (R/2) to (2 - y

at first-level output. The error spectrum is not shown. However, It is known to peak at
the center of each tran sition region. This first-level design will produce stopbands In the
spectrum as shown by the circl ed number ones , indicating stop regions contributed by

level 1.

The level 2 design uses an “extended ” 
~2 of (2 - 71)/2 in order that the created

stopbands shown as circled two’s encompass the transition region and error-spectrum
peaks associated with the spectra centered at multiples of 2R. Figure 3-2(c) shows the stop-
bands produced by the level 2 processor while Figure 3-2(d) shows the level-two output spec-
trum with the stop regions identifi ed as to the processor level responsible.

Starting with the third level, the .y values can be simply one-half the previous level
value as shown in FIgure 3-2(e) (since the transition regions of these processors will corres-
pond to previously produced null regions). The spectrum and null region identification after
three levels is shown in Figure 3-2(f) . UsIng this design approach, the error In the final out-
put Is essentially the error contributed by the first level processor. The first-level error
spectrum peak is carefully maintained (unfortunately) In order that all other error peaks
In the null region will be suppressed.
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3.3 DESIGN CONSIDERATIONS. OVERS AMPLED CASE

A far more pleasant design task is presented when oversampling Is done so that a
null region in the input spectrum exists as shown in Figure 3-3(a) . Now the value can
be set near the signal cutoff frequency and the y value can be halved between all levels.
The transition region of the first-level processor falls In a null region created by the signal
which is identified with a circled S. The remnining plots in FIgure 3-3 are self-explanatory
based on the Figure 3-2 discussion. There are no error spectrum peaks which need special
attention in the oversampled case.

If the signal spectrum does not extend to zero frequency further design economies
are possible. In the coefficient determination process described in Section II, par. 2. 2,
u~e region over which H (f) is to be held to unity is now confined with “don’t care ” regions
both above and below the paseband. This results in better passband performance for a given
N value, and corresponds to the “stopband” filtering procedures discussed by Schafer and
Rabiner in Reference 3.

In the discussion relative to Figures 3-2 and 3-3 emphasis was placed on the stop-
bands contributed at each level. The transition region responses have cumulative filtering

- effects which are significant as will be noted later in the discussion of filter synthesis.
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SECTION IV
FILTER SYNTHESIS APPLICATIONS

4.1 PRELIMINARY CONSIDERATIONS

When the inter polation proce ss discussed in Sections II and Ill is examined as a digital
processor and the equivalent frequency function is studied, some interest ing results occur .

The work In this section leads to a class of digital filters having several Interesting properties:

• The Impulse respons e has a central term of unity and has a symmetric
distribution about this central value. The resulting finite impulse response
(FIR) filter provides a linear phase delay.

• The resulting passband region frequency func tion can be scaled arbitrarily
by stretchi ng the given impulse response and filling in the vacated terms
with new values .

• This scaling operation can be extended without limit in the synthesis procedure.
The numerical computation involved in coefficient determination Is trivial .

• A large varie ty of filter desIgns may be obtained from relativel y few stored
“seed” parameters.

• The designer, In addition to scaling, has control of passband width, transition
region width and stopband peak levels. Pasaband ripple Is not directly controlla-
ble but is related in a complex way to stopband attenuation . For the usual
stopba nd levels, paasband ripple is not a problem .

• Simple procedures exist for controlling passband ripple in those special
cases in which passband gain must be precisely controlled.

• Speed and storage needs of these filter s app ear to be competitive with the
requirements of more conventional filter designs.

A brief review of the details of the interpolation operation will serve to Introduce
the filter synthesis work . The single level inte rpolator of FIgure 2-3 creates two inter-
leaved output s. The original Input signal (delayed) from the a 1 tap and the interpolation
signal on the d1 bus. If this processor is cascaded with a similar one as per FIgure 3-1,
the outp ut of the second processor will contain, intact, the output of the first processor
interleaved with new data generated by the second processor. The output of the second
processor will, of course , also contain, intact, the Input to the first processor as Is
obvious by Induction. The data-rate doubling at each stage makes room for the old (input)
to be interleaved with the new data generated at that stage.
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In the general case of an L-level processor as per Figure 3-1 one can easily show
that the delay through the processor in terms of output pulsea.is simply

L
= 2 

(L + 1 — k)N - (2L 
— 1) = Nf (4—1)

where Nk is the number of coefficients at level k (one-half the processor length). For
L >  5, the linear Interpolation operation of program C432 always inserts a leading zero into
the impulse response of the equivalent interpolation filter. This produces a delay which is
one greater than that given by Equation (4-1). This result is predicated on the use of

= 1 for k >  5 when the calculation Is performed. The number of coefficients , Nr ~n
each side of the central (unity) term of the impulse response of the interpolation cascade is
also given by the Equation (4-1) calculation. This will be discussed in more detail at a
later point. The unit correctio n for D1 for L >  5 does not apply to the Nf calculation .

In terms of processor load It is convenient to define an “operation” as two additions
plus one multiplication. Since am = a m in these designs, one sums pairs of tap voltages,
multiplie s this sum by the coefficient , then sums to the d1 bus. It is easy to show that the
total number of interpolator operations per input sample is

= 

k = l  
2~~ 

- ~ N~ (4-2)

Consider now a level one processor of the Figure 2-3 type operati ng in the context
of Figure 3-1 with a 

~~~~
, of, say, 80%. The spectrum of the level one output would appear as

shown in Figure 3-2(b) where the sampling rate Is 2R as compared to R at level one input .
The spectrum of Figure 3-2(b) also represents the frequency function (Figure 2-4a) of the
level one processor in the usual “Fourier transform of the impulse response” context,
based on the output sampling rate 2R. Note that as a digital filter, the level one processor
has a paasband edge which is 40% of foldover or one-half the Input design value.

A 

The Input sampling rate at each level becomes the foldover frequency at the output
of that level . Thus , the second level filter sees an entire frequency-pattern period at its
input transformed to fall within its foldover Inte rval as defined at the output sampling rate.
In Figure 3-2(c) an extended .y Is used to place the entire spectral group centered at 2R in
Figure 3-2(b) within the stopband of the second-level filter as previously discussed.

4-2
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In Figure 3-2 the frequencie s shown are absolute, but the y relationships to foldover
are referenced to input sampling rate values as was appropriate for the original interpolation
discussions. For present purposes reference to output sampling rates Is more appropriate,
which involves simply a scaling factor of one-half. At the outp ut of the third level, for
example, the absolute passband edge frequency is still y 1 (R/2) but the sampling rate here
is 8R which means that the effective y has been cut by a factor of eight. The paasband edge
at the output of level three is only 10% of foldover relative to the level three outp ut sampling
rate .

Comparing the original Input signal spectrum of Figure 3-2(a) with the level three out-
put spectrum of Figure 3-2(f) suggests a digital filter with a frequency function In the
Figure 2-4a context with a y 1/8 passband rel ative to foldover. The suggested low-pass
filter function can be rationalized relative to the sampling rate change by assuming an 8R
Input sampling rate with seven zero samples following every actual sample. The extended
y choice at level two of Figure 3-2 insure s that the original passband shape from level one
is maintained essentially intact through an arbitrary number of interpolation levels. Thus
in the frequency domain the net effect of each additional level is essentially one of scaling
the passba nd portion of the frequency function down by a factor of two.

The sampling rate equalization artifice used above In order to make meaningful the
frequency transfer function concept may be avoided completely . The impulse response
of the cascade may be obtained by Inputting a single unit value, followed by enough zero
samples to force out the entire impulse response sequence . (bce these numbers are avail-
able, a normal and equivalent filter structure may be constructed. Of course , if this
equivalent filter Is used for interpolation purposes computational advantage should be taken

- 
of the fact that only one in every 2L Input samples is nonzero. This topic will be touched
upon again In the paper. The Immediate concern, however, is the class of filters that may
be derived from the impulse response of the cascade of FIgure 3-1.

4. 2 DESIGN EXAMPLES

Filters derived from the interpolator cascade, not surprisingly, have many of the
same characteristics of the original interpolation process as discussed relative to -

Figure 2-2 (also see Table s 4-1 and 4-2) . Computer program C432 in the Appendix
contains 12-selectable cascade designs for interpolation identified by parameter NT.
Designs for stopbands of -65, -50, -40, and -25 dB are available. The first-level N value
selections for these designs are shown circled and numbered In FIgure 2-2. Each cascade

4—3

_______ —-5- ________

— --5 ~~~ _~~~~ _ _ ~~~~~ --5—. ______ —5- _-~~~-__-—---— -5- —5- — -~~~ — —f -



- -  _ _ _ _ _ _ _

a
to•Io O t o ~~ to~~ N t o t o~~ O lo C-1

00 tO CO ~~~~~~~~~~ C’)2ii
! . N9,—. ~~~~ C~~~ C~~~,-I ~~~~ C O N C ’ )N ,-4 ,.4

N C ’ )~~~~~~~~ — O * ~~~~~~ C O 0 0 ’ 4 CO
C’) C1 — ,-I ~~S C’) N — — — —Q t o~~~~~~ - CO C ’ I t o O ’ 4 00 t- 1.o N — N N

~ — O t o C O C O~~~~~~ O 0 0 I O~~~~4 C ’ ) N— — —
.2~ to 0 0 0 C O C O  O t oQ O  to ,-4 to
,.

~ 
, 1’ N ~4 — to to C’) N N ,-4 —

CO
~~~~~~~~~~

~~ 
CO a) CO ~ - — to CO — CO t- t- 10
CO N CO to C’) N

— CO C’) a) It) t- t- CO — CO C- It) C.)
C~, N ,- 4 ,-,

E-s~~~ * 
to

to 00 0 It) 0) to ~~‘ to It) It) N CO to
N N ~~ C’) N ,-l ,.4

I ~~~

O I

~~~~~~~~~~~~~~~~ C’) 0 00 to

I0 —

1

A

_ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _

E-’ N O) ~~~~~~ t o t o t -0 O C O © SIz — — — *

4-4

~~~~ 
- 

~~ _ - -— -~~~ ~~~~~~ ~~~~~~~~~~~~~~~~ 
- -



- -

TABLE 4-2 
-

INTER POLATOR TYPE DESCRIPTIONS

Interp olator 1st Sampling y ProgressIon Nk Values
Type Level Stopband Rate Level 2-5 by Level
(NT) 7 (%) Level (dB) Type (%) 1-5

1 80 -65 CritIcal 60, 30, 15, 7.5 10, 5, 3, 2, 2
2 80 —50 Critical 60, 30, 15, 7. 5 7, 4, 2, 2, 1
3 80 —40 Critical 60 , 30, 15, 7.5 5, 3, 2, 1, 1
4 80 —25 Critical 60. 30. 15. 7.5 3 , 2. 1. 1. 1
5 90 -65 CritIcal 60, 30, 15, 7.5 19, 5, 3, 2, 2
6 90 -50 Critical 60, 30, 15, 7.6 14, 4, 2, 2, 1
7 90 —40 Critical 60, 30, 15, 7 .5 10, 3, 2, 1, 1
8 90 —25 - Critical 60, 30, 15, 7.5 6~ 2, 1, 1, 1
9 60 -65 Oversampled 30, 15, 7. 5, 3. 75 5, 3, 2, 2, 1

10 60 —50 Oversampled 30, 15, 7. 5, 3.75 4, 2, 2, 1, 1.
11 60 —40 Oversampled 30, 15, 7. 5, 3.75 3, 2, 1, 1, 1
12 60 —25 Oversampled 30, 15, 7.5 , 3. 75 2, 1, 1, 1, 1

I
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design was obtained by drawing horizontal lines on Figure 2-2. at the four stopband levels
(taking into account the 6-dB gain provided by Interleaving). Safe N values at the various
cascade ~ lines (see Table 4-2 for the ~ 

-progresions) were selected for five levels and
the appropriate coefficients for these Interpolator designs were incorporated Into the
program.

As an example , the NT = 2 processor provides for -50 dB stopbanda and starts with
a first level N of 7 at a y value of 80% . The second level y is 60% with an N value of 4.
The third , fourth , and fifth levels have N values of 2, 2, and 1, and y values of 30, 15,
and 7.5% . Designs NT = 1-8 Lbe extended second-level ~ values and are suitable for low-
pass filter design. Designs NT = 9-12 are meant only for interpolation in the oversampled
case. Their “stophand ” usage mode for the derived filters wIll not be considered here.

If one considers use of the Figure 3-1 cascade for the derivation of impulse response
data , it is interesting to follow the development of this resp onse through the cascade. At
each stage the input response is stretched and new values are interle aved Into the vacated
spaces as per Figure 2-3. The passband region of the frequency resp onse function Is essen-
tially scaled down by two to one in the process. Afte r a sufficient number of interpolator
stages are travers ed, continued scaling may be done by simple linear interpolation as
previously discussed . Hence the frequency scaling operation can be extended easily in
most cases beyond values of practical interest .

Examples of the above techniques are demonst rated In Figures 4-1 through 4-7 . (All
frequency functions in this paper are normali zed to foldover frequency. ) For this demon-
strat ion, design NT = 5 was chosen which is admittedly a “showboat ” design. NT = 5 yIelds
the best performance (transition region width is 22% of passband width , W r/fp = 0.22, side-
lobe level = -65 dB) , but also has the largest processor demand. The tests run were
very simple : the impulse responses from the various levels of FIgure 3-1 were individually
extracted and written on disc files by the time-share program of the Appendix. At a later
time a -batch program read these files, performed on 8192-point Fast-Fourier transform (FFT)
and plotted the results , normalized to the peak level found In the entire positive frequency
space. The plots show the entire 4097-point spectrum with the foldover frequency referenOed
to unity at the far right of each plot .
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The impulse responses which result (see par . 4 5 )  from this synthesis procedure and
computer program have a central term of unity (the lone input- nonzero sample) which is
delayed In the file by the count given by Equation (4-1). The resp onse Is symmetric about
the central term (linear phase delay) and the number of active coefficients on each side of
the central term, Nr is also given by EquatIon (4-1).

Knowledge of the number of input pulses, N
0
, required to fully load the interpolation

cascade is often useful . This number define s the transient or “charge—up ” period which
precedes the normal steady-state operation of Interest . This number may be calculated
from

N
0 

= 
2 L - ~1 2~~~~~

1
~~~~ Nk .  (4 3)

This calculation is performed by the computer program described in Section 6 , par . 6.4

and tabulated data appears in Table 4—1 .

The level one filter freq uency function is shown in Figure 4-1 and the Cheby shev
behavior in both the pass and atopbands comes as no surprise. The stopband is at about
the -67 dB level which checks very well with the -61 dB circled first-leve l choice for
NT = 5 in Figure 2-2. The passband edge f~ Is 0.45 relative to foldover (one-half of
0. 90). The transition band width Is always a fixed 22% of the paasband In these figures
due to the frequency scaling. Hence only the passband frequency value f~ need be given to
define the filter behavior. The N

f 
value for thi s filter is 37, however 18 of these coeffi-

d ents are zero.
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FIgure 4-2 shows the level two filter function with f~ = 0.225. The level one sidelobes
are compressed in frequency due to the stretching in time . If there were no level two fill
of the vacated spaces, the level one passband would appear at the far right of Figure 4-2.
The net effect of the level two fill In the frequency domain Is very nearly a multiplication
of the level one paisband with level two stopband. Thua the -70 dB sidelobes at the right

of the figure are the coarse sidelcbes of the level two interpolator which has an N value of
5 (compared to 19 for the first level). The -70 dB sidelobes agree very well with the
-64 dB, N = 5, ~ = 60% value from Figure 2-2.

Note also In Figure 4-2 that the level one sidelobes are being affected by the level
two transition region which extends from 0. 3 to 0. 7 and is 6-dB down at 0.5 . As additional
levels are traversed, the transition region effects cumulate to drive much of the sidelobe

p structure below -100 dB as will be seen. The Nf for this filter is 83.

The “stretch-and-fill ” pattern effects of FIgure 4-3 for the level three resp onse
show a stopband at about -84 dB. This again agrees well with the FIgure 2-2, N = 3 value
at y = 30% of -78 dB. The transition region for i~,ve1 three extends from 0. 15 to 0. 85.
The passband frequency f~ for this filter is 0. 1125 and the Nf Is 171.

The four-level equivalent filter of FIgure 4-4 has an f~ of 0.05625 and an N
f 

of 345.
The level four stopband at -82 dB corresp ond. to a —76 . 5 dB level at N = 2 for -y = 15% in
Figure 2-2 . The transition region of level four extends from 0. 075 to 0.925.

The level five response of Figure 4-5 has an f~ = 0. 028125 and an Nf of 693. No
response is seen near the foldove r frequency since an N of 2 at y = 7. 5% (level 5 desIgn)
places the stopband response near -107 dB and hence out of sight . The transition region
here extends from 0. 0375 to 0.96 25.

The level six performance shown In Figure 4-6 is especially interesting as this
represents a departure in operating procedures. The interpolation program provides
Figure 2-3 type processors at each of the first five levels. Afte~ the fifth level simple
linear interpolation is provided. The -59 dB control line (for -65 dB performance) drawn
In Figure 2-2 which was followed for levels 2, 3, 4, 5 at y values of 60, 30, 15, 7.5% would
indicate one more stage of N = 1 at 3. 75% for the sixth level. The optimum N — 1 designs
have 6-dB less peak error than straight Interpolation as was discussed relative to Equa-
lions (2-13) through (2-16); linear interpolation Is equivalent to b1 = 1 in Equation (2-17)~.
The N 1 point of Figure 2-1 for y = 3. 75% indicates that linear interpolation at the sixth
level would provide a stopband level of -62 dB. (The 6-dB gain of the note of Figure 2-1
ii exactly offset by the 6-dB loss of lth.~~ Interpolation.)
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The actual peak response level noted near the foldover frequency of FIgure 4-6 i~
closer to -66 dB which Is within the -65 dB performance specification. The restricted
resp onse width out of level five (f~ = 0.028125) Is the saving factor . This f value, when sub-
stituted Into Equation (2-13) for f/(R/2) with b1 = 1, reveals an error level of -60. 21 dB
at band edge and when corrected by the 6-dB gain from interleaving, gives a -66. 21 dB

response level which confirms the Figure 4-6 results. Note also the sharpness of the
response drop on the left side. Comparison of measurements from 0 to passband
edge and from 1 to the sharp drop in the null region response also confirm the causal
mechanism cited. At this level f 1. 0. 0140625 and N Is 1387. With linear interpolation
or N = 1 one might consider that entire frequency space is a tr ansition region.

FIgure 4-7 shows level seven output which is the result of five levels of 1:2 interpola-
tion and one level of 1:4 lInear interpolatIon. A calculation similar to the one for level six
predicts a stopband peak of -78. 25 dB which is confirmed by the Figure. The f~ here Is
0. 00703125 and the Nf is 2775. It is clear that this scaling process could be continued
further without difficulty.

The three filter functions In the figures which follow were all taken at level five In
the >‘ = 90% set so that f~ = 0. 028125 and W j /fp 

= 0. 22 for all of these. FIgure 4-8 shows
the NT = 8 design which was specified for -25 dB stopbands and used an Nk sequence of
6 , 2, 1, 1, 1. This high stophand level keeps the entire stopband region in view. The inter-
polator levels responsible for sldelobe groups seen In left-to—right order are:
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5.

For this high sidelobe design the mainlobe of passband ripple is large enough to be
visible in the plot . Calculations made with an auxiliary test program indicate that the peak
passband ripple deviation is at the level of -22 dB. This compares with a peak ripple
level of -26 . 7 dB at the output of level one. The peak paasband ripple level increased by
4. 7 dB In transit through the four levels two through five.

FIgure 4-9 is next In this series with an NT value of 7 which Is specified at -40 dB
sldelobes. The Nk sequence here Is 10, 3, 2, 1, 1.

Finally, for this group Figure 4-10 for NT =6 gives result. for the -50 dB design
which used an Nk sequence of 14, 4, 2, 2, 1. The results are consistent with expectations.
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These plots of derived filter transfer functions have allowed the detailed workings
of this synthesis procedure to be examined. This data has also confirmed quantitatively the
performance predicted by the theory of the synthesis procedure . Comparisons of these
filters with those of more conventional design In terms of efficiency In application and other
similar factors are given in par. 4. 4 of this section.

4. 3 DESIGN PROCEDURES

The basic purpose of a filter is to pass one band of frequen cies and exclude another
band. One Is concerned therefore with ripple in the passband, attenuation in the stopband
and the width of the transition region. At first level output , the pa.sband edge f~ Is

(4—4)

The stopband edge f5 is

fs = ~~— i ~ (4—5)

with a transition region width wT of

W
T 

= f5 - f ~ = 1 - - 1 1 (4-6)

5- all relative to the foldover frequency which equals one-half the sampling rate. (Sampling
rate Is 2R at the output of level one.)

The overlap in second level y 2 required to place transition regions in the stophand
requires that

>

~‘2 = 1- -I— (4—7)

From this level on the y values may be halved at each level. EquatIon (4-7) shows that
values of 2/3 or less result In a y 2 which is equal to or greater than which increases

-
- filter length. At = 2/3 the transition region width equals the psasband bandwidth. This

represents a rathe r poor filter in any event.

The Appendix computer program provide. 
~ 

value. of 80% and 90% for filtering.
At 80% the transItion bandwidth Ii one-half th. pss.bsed extent so that w1Jf~ = 50% for

= 80%. For y 1 = 90% we have w~r/fp - 22% a b.ttsr filter but a costlier one.
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The design proceduie is quite simple:

1. Select transition region relative width = 80% (NT = 1 - 4) or = 90%

(NT = 5 - 8), currently available.

2. Select stopband level (—25 , —40, -50, -65 dB), NT is now identified . (See
Tables 4-2 and 4-2.)

3. Normalize desired filter cutoff frequency 
~ 

by use of Equation (4-13) to

obtain f~~. Compute frequency compression ratio Cf

Cf = y 1/f~ (4-8)

4. If Cf is acceptably close to a power of 2, compute

L = L E V = log2 (Cf) (4-9)

(If t.his is not possible go to step 6.)

5. Use the Appendix program (XLINT, LINT) to generate the desired filter
Impulse response. Task complete.

6. If the Cf factor cannot be approximated sufficiently well by a power of 2,

find and L and J such that
L

Cf ~~~ —s—— (4—10)

(See Section 5 par. 5.4 for details of L, J determ Ination.)
(a) Using LEV = L get Impulse response data as In step 5.
(b) Derive desired symmetric filter impulse response by using central term

(unity) of (a) above and selectIng every ~th term thereafter. Task complete.

For an example of a “J-derived” filter consider the following: Let sharpness of cutoff
require y

~ 
= 90%. Let sidelobe level specification be ‘C -60 dB, so NT = 5 is selected.

Assume clock period in processor hardware of 200 ~s or 5000/s repetition rate , and assume
filter cutoff frequency 

~c = 225 Hz ± 2%. Normalize this cutoff frequency to the foldover
frequency as per Equation (4-13).

f 9  — 225 = 0 0 9p~~~ R 5000
2
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then from Equation (4-8)

Cf = y 1/f~ = 0. 9/0. 09 = 10 -

This Is not a power of two, go to step 6 and try

2~Cf = = 9. 8462

This will give f0 = 228. 52 Hz which Is within the *2% tolerance.

Use LEV = 7 , NT = 5 and get impulse response from Appendix program C432. From
Equation (4-1) we find that the central peak Is delayed by

Delay 2775 + 1 = 2776 .

(The central peak is in cell number 2777 of the array. ) Equation (4-1) states that there are

Nf = 2775

active coefficients on each side of unity. After every 13th element Is selected and the new
impulse response is created , It will have a delay of 213 and an Nf = 213. Figure 4-11 shows
the frequency function for this filter. The impulse response involved in FIgure 4-7 was
censored to yield the Impulse response of the FIgure 4-11 data.

Figure 4-11 could also be compared to Figures 4-3 and 4-4 which are the closest
“normal-sequence” filters . Apparently no real violence was done to the basic frequency
re sponse by the resampling process. This suggests that very-high LEV impulse resp onses
be calculated and stored for a particular combination of transition wldth/passband ratios
and sidelobe levels. These stored responses could then simply be resampled by some
appropriate factor J for specific cutoff frequencies.

In this regard the three equations which follow may be helpful in defining the filter.
Once the transition bandwidth to passband frequency ratio (w 1Jf~) is known, the first-
level y becomes

= 1 (4—11)

4 
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or

- 2 1’ - 1 (4-12)
f.~ 

— I
A specified cutoff frequency 

~ 
Is normalized to its foldove r frequency to yield f~,

= f0/(one—half sampling rate) (4—13)

which may then be substituted into Equation (4-8) .

4.4 COMPARISON TO CONVENTIONA L DESIGNS

A rule-of-thumb guide often used to estimate the total length K of a low-pass digital
filter is (Ref. 4) given by Kaiser as

—lO log (E E2) - 1 5
— 14 (W) 

-

where E1, E2 are pass and sropband peak ripple values and W is the transition region
width expressed rel ative to sampling rate. When expressed In terms of filter half length
Nf and transition width wT relative to the foldover frequency one obtains

- lO log (E E ) — 1 5
f~~ 14WT 

-

The filter synthesis procedure described in this pap er provides no direct control
of pas sband ripple. The Individual level processors provide a passb and gain proportional
to (1 + 6)  where 6 is an error directly related to stophand level. Thus, through two
stages, the pa.sband gain is

( l + o i) ( 1 + 6 2) 1 +6 1 +6 2 (4—16 )

C
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All stages have nearly the same 6 value and since the stages have different y values , it

seems reasonable to assume that the 6 ‘a will add on an rms basis . A fair estimate of
ripple might then be obtained and substituted Into Equatio n (4-15) so that equivalent
standard-design filter sizes might be estimated . Thi s yields

_io log10( , j r62) —15

or 

Nf = 14 WT 
(4-17)

-20 1og10 ( 6 ) — 5 1 o g 10 (L) -15
Nf = 14 WT 

(4—18)

The first numerator term above is the negative of the stopb and level In dB.

The filters described In this paper may be sized assuming that w1~/f~ Is given so that

~ 1 may be computed from EquatIon (4-11). Convenience is gained with no loss of generality
If comparisons are normalized to level one output condi tions . This results in a WT value of

(1 - 
~ 

according to Equation (4-6). The WT at level L, WTL would then be

(1 - ‘y 1)wTL = 
2

L — 1  
(4 19)

This allows Equation (4-18) to be written as

~ _20 log10 ( a ) _ 1 5 _ 5 I o g 10 (L) f L — 1
— Nf = 14 (1 - j 2 (4—20)

Once the L value Is selected , Equ ation (4—1) or Table 4-1 may be used to obtain the
required Nf which may be compared to that obtained from Equation (4-20).

f Letting ~ Nf 
be the coefficient count of the filter design of this pape r and KNf be the

corresponding Kaiser (Ref . 4) estImate , the results of FIgure 4-12 obtain . The paper
design app ears to require more coefficients , but the ratios are reasonable. The paasband
ripple problem of the paper procedu re shows to Its disadvantage at the lower stopband
suppression levels, as expected. For the higher-quality filters the paper design compares
reasonable well with more conventi onal synthesis procedures. (Later passband ripple
studies indicate that the ratios of Figure 4—12 are too large for the higher L values).
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4.5 TIME DOMAIN CONSIDERATIONS 
-

In previous discussions the filter frequency func tion was examined at different levels
In Figure 3-1 structure . A similar study will be made here of the filter impulse response
func tion . The case NT = 5 Interp olator places serious restrictions on stopband level and the
processor is nontrivial at all levels (N k = 19, 5, 3, 2, 2). Figure 4-13 shows the first level
impulse response which has an Nf = 37. (The sample values are the sIgnificant Items
of concern , the CalCom p plotte r draws straight lines between points . The discontinu itie s
in slope indicate point location .)  The frequency function for this data appears in
Figur e 4-1.

The second level processor is also a sophisticated one (N 2 = 5) so that when the first
level Input values are interleaved with new derived values the output of Figure 4-14 results.
Considerable smoothing has been done but slope breaks are still evident . The Nf value
is 83. The corresponding frequency function is that of Figure 4-2.

The third level processor has an N3 = 3 and its “stretch-and-fill ” action produces the
considerably smoothed data of Figure 4—15 (frequency function Is Figure 4-3). Slope
granularity is st ill In evidence near local peaks. The Nf for this data is 171.

Fourth level output in Figure 4-16 is very smooth; the processor sophisti cation has
dropped to N4 = 2 here. Nf is 345 and the corresponding frequency function Is that of
FIgure 4-4.

Anothe r N5 = 2 stage at level five produces the output shown In Figure 4-~ 17 which
has an Nf = 693 and corresponds to the frequency function of Figure 4—5.

Beyond this point in the chain , linear interpolation may be used. The “J-derived ”
filte r of Figure 4-11 has the impulse resp onse shown In Figure 4-18 where Nf 213. This
filter was derived by using L = 7 and then selecting every 13th sample of the resulting
Impulse resp onse.

This rathe r attractive smoothing of the impulse response with an increase In L does
not always occur . Conside r Figures 4—19 and 4-20. Here NT = 8 (y 1 = 90%, -25 dB
stopband) and the {N k) sequenc e Is 6 , 2, 1, 1, 1. Because of the high sidelobe levels, the
stages of Figure 3-1 beyond the second are jus t modified linear Interpolators (Nk = 1).
The level one output is coarse as expected (Nf = 11). However note that the L = 7 output
of Figure 4-20 shows considerable slope granularity. The high sidelobe specIfication
(-25 dB) permits this kind of crude “stretch-and-fill ” operation. (The Y-axis scaling for
all impulse response plots Is the same. There are subtle differences In the X-axjs
positioning and scaling for the different plots ,)
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4.6 PASSBAND RIPPLE CONSIDERATIONS

Small deviations from unity gain in the pasaband at each level result in a deviation
from unity in-band gain of the resultant derived filter. The derived filter passband gain
deviation is approximately equal to the sum of the individual level deviations. (The derived
filter gain must be normalized as the nonlinni voltage gain is 2L In the passband.) In this
design procedure the stopband peak levels are under strict control . The passband peak
ripple levels are not similarly constrained. The nature of passb and gain error cumulation
is somewhat complex . Measurements of peak in-band ripple level for some of the derived
filters discussed here have been made with rather encouraging results.

The worst-case assumption of coherent addition of the deviations was found to be
far too pessimistic. The rms-additlon assumption of Section 4, par . 4.4 was found to
slightly understate the peak ripple level In the L = 2, 3 region. For higher L values the
rma assumption becomes too pessimistic. For example In NT = 5, L = 7 case the peak
In-band ripple is about 5.8 dB worse than at the output of level one . An rms addition assump-
tion would predict an 8.5 dB degradation .

If in-band ripple is of very serious concern one can p roceed with the designs as out-
lined previously. When complete , the precise normalized gain of the derived filter may be
calculated . If this gain Is represented by 1 + 6 (1) then the compensating gain function
1 - 6 (f) may be immediately specified. The procedures of Section 2, par . 2.2 may then

be used to determine the coefficients of a pre—emphasis correction filter. For the specific
case of NT = 5, L = 7 the writer used this procedure to reduce peak in-band ripple to level
one (stopband) values . The pre-emp hasis f,~lter complexity required was equal to that of
the first level filter ‘

~~ the original cascade (Nf = 19). An alternative approach might be
to overspecify stopband level at the outset to provide room for in-band ripple growth
through the cascade .

In order to keep the ripple problem in perspective Figure 4-21 shows the variation of
pass band gain with ripple magnitude. Ripple levels in the -20 dB region cause less than
a 1-dB gain variation. Gain variations are the order of 0. 05 dB at -40 dB ripple levels.
In many engineering applications the sidelobe specification will result in ripple levels
which produce negligible pass band gain variations in spite of ripple growth through
the cascade.
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SECTION V

APPLICATIONS -

5. 1 MODE CONVERSION , COMPLEX-TO-REA L

Those who do practical digital signal processing work usually deal with a variety of
processing software and hardware modules. One must also deal with a number of different
formats In the data supp lied as Input or specified for the processed output data. One
of the most significant format characteristic s concerns the nature of the sampling process
Itself. The individual sampling operation may involve one real number (a “real ” sample)
or an ordered pair of real numbers (a “complex” sample).

Consider the low-pass signal spectrum illustrated in Figure 5-1(a) . The signal shown
has an upper frequency limit of so that the sampling rate R must be 4 f1~ If the usual
single-number- per-sample (“real”) low-pas s sampling is done . It often happens, however ,
that the signal band of Interest is centered at a frequency which is high compared to the
bandwidth of the signal . In this case sampling at a rate equal to twice the highest frequency
is very inefficient and one of two alternate procedures Is normall y followed.

For purposes of illustration assume that the bandpas s signal has a bandwidth of 2X
~•

The signal could be bandpass filtered then frequency-shifted down to a new center frequency,
as shown in Figure 5-1(b). At this point the usual low-pass (real) sampling could be

made at rate 4 f~. This procedure requires a front-end filter tailored to the bandpass
signal spectrum, a mixer, local oscillator , and post-mixer low-pass filter as shown
in Figure 5-1(b).

An alternate approach, shown In Figure 5-1(c), uses product detection by cosine and
sine signals from a local osdilWor at the band center frequency, followed by low-pass filters
to produce the fAmfilar 1 (t) and q (t) signals. (In the general case these are not Hu bert
transform related.) These In-phase and quadrature signal components have a high frequency
of These sign~1s are then each sampled at a rate 2f

~~ 
to produce, at each sample time,

an ordered pair of real numbers 
~
1k~ 

q~ ). This pair is often referred to as a “complex”
sample.

These two sampling techniques are theoretically equivalent. Each has Its own
practical problems and advantages and both are commonly encountered In practice . Data
processing modules are not always designed to accept or produce either format. Hence
one aften encounters the practical need for mode conversion from real to complex or from
complex to real. The complex-to-real conversion will be discussed first with the aid
of Figure 5—1.
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It may be seen from FIgure 5-1(o) that three quantities define the bandpass slgnai:
the center frequency, 1(t), and q (t). If frequency translation of the signal Is properly
done, i (t) and q (t) remain unchanged and only the center frequency changes. Because of
this invariance it may be assumed that the bandpass slgnkl has been shifted to the center
frequency f0 of FIgure 5-1(a). The resulting time function may then be expressed both in
terms of real samples and complex samples involving i (t) and q (t) (which are Invariant
with frequency translation). Relationships between real and complex sampling may therefore
be established and used in mode-conversion operations.

The signal function s (t) may be expressed as

s (t) = i (t) cos 2ir f0t — q  (t) 8in 2ir fct (5—1)

A sampling r ate of R =4  
~c’ will yield time values of t,,~ = k/4 f

~ 
sc that Equation (5-1)

becomes

ir
= ‘k cos —

~~
- k - sin -

~~
- k . (5—2)

which means that

= (_ 1) k~~~,

(k — i) (5—3)
5k = (— 1) 2 

~~~ k = 1 , 3, 5, 7, ———
It may be seen that the real samples 5k alternately reflect the 1(t) and q (t) component
values . Complex samples are taken at half the rate , but 1(t) and q (t) are sampled
simultaneously. ~ p~ represents a complex sample as per Figure 5-1(c) then it
follows that

= 
~0’ — q 1, ~~

I 2p q3, i4, — q 5, _ i61 ~~
(5-4)

) 
i01 — ~~ — , i4~ — 151 — , 

-

— , q2, —
. q4. — 

q6, ~~~,

u complex samples tpk ) are given and real k samples are desired,. Equation (5-4)
shows that the even spmples Of are directly available from the 

~k terms of p’s. The

odd samples Of are samples ci q (t) but at times intermediate to the sampling times of
the number pair.
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A single level of interpolation of the q terms of the complex samples is required.
Only the interpolated values are to be kept , the original input q terms are discarded. The
delay inherent in the interpolation operation on the q sequence must be applied to the
terms, and the sign changes in the series of Equation (5-4) must also be accounted for.
A subroutine for complex-to-real conversion based on the above principles appears in the
Appendix as part of C432 and is also described in Section VI.

5. 2 MODE CONVERSION. REAL TO COMPLEX

In Equation (5-4) it is now assumed that the sequence ~ s~ } is given and that the
sequence 

~~~ 
is desired. For the sake of variety only, synthesis of the complex sequence

at odd-numbered times will be considered, The q portions of the complex pair are available
directly from the odd terms as shown in Equation (5-4). The odd-numbered I terms
must be generated by single-level interpolation from the even-numbered I samples. Only
the interp olation data Is kept , the input i data Is discarded . Delay compensation of the q
data to match the inte rpolator delay must be provided , al vPh proper sign-change
account ing. A subroutine for real-to-com plex conversio n ‘ on the above princip les
app ears in the Appendix and Is described In Section VI. Fc - - -ent approach to the
real- to—complex conversion see refere nce 11.

Conversions of the types discussed above involve an inherent phase ambiguity which
is an integral multiple of ii /4.

5.3 COMPARISON OF INTERPOLATION METHODS

Schafer and Rabiner (refere nce 3) discuss in detail interpolation using digital low-pass
or stopband filters. In Section C of the above reference , comparisons to classical Interpola-
tion methods such as those of LaGrange are examined. These writers conclude that the
frequency response characteristics of the classical interpolators leave much to be desired.
They further conclude that for moat digital signal processing work low-pa ss or bandatop
filters are to be preferred over classical interpolation algorithms.

Attention can then turn to a comparison of the Iterative techn ique of Figure 3-1 and
the use of low-pus filters for interpolation. It has been shown in Section IV that the filters
derived from the interpolation scheme of Figure 3-1 appears to be reasonably competitive
with conventional filter designs in terms of processor demand. It Is then possible to
estimate the relative performance of the iterative Interpolation method and the filtering
method by use of Equations (4-1) and (4-2) .
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i~~~~ 0~ result of Equation (4-2) gives the numbe r of operations per input value which
produces 2L output values , The Nf result of Equation (4-1) gives the number of filter
operations per output value. However, in interpolation service, only one in every 2L 

~~~~~
samples is nonzero so that the computational load is reduced by the factor 213. If
comparison is based on operations per output value, both O~ and Nf would be divided by
2
I

~ and their ratio would remain unchanged. Therefore the ratio

= L 

2 (L + 1 — k) Nk 
— (2 L — 1)

2 k~~~ 14k

provides the comparison desired.

FIgure 5-2 shows the plotted results of Equation (5-5) for the 12 Interpolator designs
of the program in the Appendix. It appears that the minimum processor demand advantage
of the iterative interpolator is approximately a factor of two. As the sampling rate multi-
plication factor increases the iterative !nterpolator advantage also increases. For the
higher-performance interpolators, this advantage increase is significant.

(It could be argued that for filters derived specifically by the procedures of this paper
Equation (5-5) should be multiplied by the factor (2L - 1)/2 L This results from the exact
nulls in the impulse resp onse which have a spacIng 213. This would bring the two procedures
into near parity for low L values. The high L value results of Equation (5-5) however would
remain unchanged. The degree to which other fIlter designs could take practical advantage
of impulse-resp onse nulls is difficult to assess In general. A heuristic explanation of the
advantage of the Figure 3-1 iterative interpolator concerns variations of processor com-
plexity and data rate through the cascade. Early In the cascade the processors are the moat
extensive , but the data rate is lowest. Later in the cascade when the data rate Is high,
the processors are short. ) The advantages of the cascade over the lowpass filter for
interpolation service are also discussed in references 8 and 10.

5—5

-5 — --- ~~~~~~~~ - 5 — 1’~~~
,i

~~---- —~~~ - ~~~~



~ --5

_______________ 
36676

I I -SS d B— 8
14~~~~~~~~~~~~~~~~~ 9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

J 

I .

I -SO dS
17 _________

— — 4O dB —

I r
~~~ ;

;E
~ ~~~~~~~~~~~~~~~~~~~ mm

- -65 dB - S
s _ ~~~~~

80% _ __/
-50 dB

N1 6 — — — — — — —
0I —

4 — —  —

— — -40 dB -
— = -25 dB —

0~~~~~~— —_ _ _  I
2 3 4 5 6 7 8 9

L

6 
7~~= 6O% 

— — -65 d B — S

L - LOG2 (MMPLRIO RA TE MULTIPL ICATIO N FACTOR~
5- STOP BAND LEVEL (dB)

N~ - REQUIRED Fll.TER OPE RA TIONS
- REQUIRED INTERPOLATOR OPERATIONS

FIgure 5-2. Processor Demand Comparisons, Lowpus Filter vs.
Iterative Interpolator

5-6

-

~~~~

-5 :~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~
—-——-~~~~~~~~~~~~ - - 

- 5 - 5 -

- -

Table 4-1 gives some parameters of the Interpolators and derived filters for levels
from 1-5. The delay and Nf tabulations may be used as an aid In locating coefficients In
memory when the Appendix program is used to provide equivalent filter impulse response.

5. 4 ARBITRARY SAMPLING RATE MULTIPLICATION FACTORS

It often occurs, of cour se, that the sampling rate multiplication factor K is other
than a power of two. The Appendix program, as written, will only give powers of two
for K. There are at least two solutions to this problem .

The first approach Is that used in the “3-derived” filter of Section IV. The program
is run with some selected level L to yield a multiplication factor of The resulting output
data is then resampled with period 3. The problem becomes one of selecting L, 3 so that

K 2 1’/J (54)

A simple solution involves selecting a trial 13 and solving for 3 according to

I L
3 = N =L 

~unless
( 2 N + 1)  — 2 E > O 5—7)
N ( N + 1)

then
J = N + l

where I I represents the Integer par~ of the enclosed quantity. This trial L, 3 wIll yield
an approximate multiplication factor , K , of

A 2L
K =  (5—8)

-

- An error measure may be defined

A 7
K 2

K 
(5—9)

One starts with the smallest L value which is at least as large as log2 (K). Equations
(5-7), (5-8) and (5-9) are used and the resulting AK is noted. U the error is too large,
increment L by one and repeat until the error reac hes an acceptable level. An H P-67
program for implement ing this procedure is given in the Appendix , and labeled
“PROGRAM 1—11—79” .
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For example let K = 13. The above procedure yields a aolution 13 =9 , J = 39 for 1%
error (2~/39 = 13. 13), or L = 10, J = 79 for 0.3% error (210/79 = 12.96). This approach
will always yield the minimum L required to meet any output sampling rate multiplication
fac tor error specification .

This technique will work very nicely also when the desired output sampling rate is
not an Integer multip le of the input sampling rate. For example let a sampling rate multipli-
cation factor K = r be required within 0. 02%. The above procedure quickly yields L = 9 ,
J = 163 (2~/163 = 3. 1411, ~~ = 0.0155%).

The second solution to this problem Involves a modification of the computer program.
One must traverse enough processors of the FIgure 2-3 type until the sampling rate Is
sufficiently high so as to permit linear interpolation. Once this stage is reached the
sampling rate multiplication fac tor at the linear interpolation level can be any intege r value.
Due to a foolish consistency (hopefully not that of which Emerson spoke) the writer continued
the power of two logic through the last “stage” when coding the Appendix program.

Hindsight now make s it clear that this stage should have been coded for any desired
multiplication factor , say 3. The overall sampling rate increase could then be 2L x j
where L is the number of Figure 2-3 doubler stages. The output data could then be censored
by a factor of 2L 

~ give precisely a 1:J overall fac tor . This feature would also lend more
flexibility to the operations discussed relative to Equations (5-6) through (5-9).

5. 5 SAMPLING RATE DIVISION

The advanta ges of the cascade Interpolation technique of FIgure 3-1 over the classical
low-pass filter processing of zero-filled input data have been discussed in detail. U one
studies FIgure 3-1 and visualizes 2L output samples for each input sample, simple faith in
the consistency of nature raises , on first impulse, the possibility of putting ~~ samples in

at the bottom and getting one sample out at the top. Is there a cascade equivalent of the
conventional low-pass filter/data censor combination ? The answer is yes and, furthermore,
the significant advantages of the cascade over the low-pass filter method noted for inter -
polation are again to be enjoyed in the sampling rate division operation, a FORTRAN pro-
gram for data rate division also appears In the Appendix under deck name 0434.

(The advantages of multistage data rate reduction (decimation) are discussed in
references 6, 8 and 9. In the case where lowpaas filtering is to be done while maintaining
the sampling rate , reference 9 demonstrates significant gains for a joint use of rate reduc-
tion followed by rate multiplication.)

5—8 -
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The sampling rate division cascade uses the same level processor -equivalent
filters as the interpolation cascade but with some significant differences . The processors
are used in reverse order , The exit Is always from the level one processor, and the
entrance depends on the number of levels or L value of the rate-reduction operation. For
example, If a 16:1 rate reduction is specified , L =4  and the caecade would be entered at
the level four design where a 2:1 rate reduction would be achieved after filtering. This
output would then go to a level 3 design followed by a level 2 desIgn, and fIn~1Iy to the level
1 desIgn for pre-output processing. If L exceeds 5, a linear Interpolation proces sor leads
off the chain, but this is a special case which will be treated separately later.

FIgure 5-3 illustrates the process at each normal level. In FIgure 5-3(a) the input
data at rate R is passec~ through a low-pass filter whose outp ut is resampled for a 2:1 rate
reduction. As discussed earlier , these filters have a unit central weight with symmetrical
filter coefficients and Interleaved zero weights as shown. If there are N coefficient values
for this filter , (4N-1) storage locations are required. An exact equivalent filter/censor
combination requiring only (SN+1) locations Is shown in Figure 5-3(b). In this configura-
tion the Input values are switched between what turns out to be the Interpolation processor
and a delay element . The censored output is available directly from the adder as shown.
It is this latter processor that Is coded hi C434.

U L exceeds 5 the lead-off processor is a linear Interpolator followed by censoring.
The impulse response of the linear interpolator has a unit central term flanked by descend-
ing sized terms equal to M/2~~

5 where M = 1, 2, --- (2~~~~ -1). These terms are con-
tiguous. Following the Interpolator, every 2L_5

th value is selected for output. This is
precisely equivalent to a chain of L-5 normal cascade processors having Nk = 1 and
ai = 1/2.

Sampling rate division at each level is achieved by the equivalent of low-pass filtering
followed by 2:1 data rate reduction. One final output value is generated for each 2L thput
values. The sampling rate Is highest where the processors are shortest. The processor
lengths are greatest where the sampling rate Is lowest (near the output). The number
of operations per output value for the cascade divider is

= 2~~
l Nk (5-10)

k=1

which is precisely the same as the interpolation result 0~ of Equation (4-2) which was
based on one input pulse yielding 2L 0~t~~t values.
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The delay through the cascade divider measured in input pulses is (see also
Equ ation (4-1)).

L
= 

~~~ N~ 2L-k÷ 1 
- (2 L - 1) (5—11)

k=1

whether dealing with interpolation or rate reduction, the equivalent overall low-pass filter
is the same for a given (NT, LEV) pair. It Is not surprising then to find that the ratio of
operations required for filtering divided by the number of cascade operations per output
data value is, for rate reduc tion,

L

E Nk 
~ - (2 L 

- 1)
Nf — k=1 (5—12)

L

E
k=1

which Is exactly the result of Equation (5-5) for Interpolation. It follows therefore that the
consIderable-computational efficienty advantages of the cascade over the filter shown in
FIgure 5-2 for inter polation apply here also. Note also that the only limit to rate reduction
factor in the present program is the 2L memory size required of the Input array .

The impulse response determination of the equivalent low-pass filter obtained by
driving the interpolation program C432 with a unit value followed by a string of zeros will
not work with the rate reduction program C434. What one obtains in the latter case is a
2L_censored version of the relevant impulse response; not a very useful result. This Is
perhaps a manifestation of the reversibility of the interpolation process as compared to the
Irreversibilit y of the rate-reduction process. The latter discards Information, the former
does not.

Cascade-derived impulse responses were used successfully and correctly In the
Interpolation case, but care must always be exercised because of the sampling rate changes
through the cascade. Even in C432 the Impulse response of a two-level cascade is not the
normal convolution of the individual level impulse responses. If one is interated In equiv-
alent filter impulse responses program C432 must be used; C434 cannot be employed for
such a purpose.
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The low-pass fIlter equivalents of the individual level proce asors have very useful
spectral properties for the two-to-one rate reduction achieved in each stage. In our frame
of reference, frequency extends from zero to unity (referenced to R/2 or half the sampling
rate). The symmetric coincidence of passband and stopband about f = 1/2 for these filters
is fortuitous . The spectral components in the stopband region will be folded into the pass-
band. Hence the region of high attenuation is precise ly where it will do the most good.

The spectral components near frequency f = 1/2 are attenuated by about 6 dB (trans-
ition region center) and are moved up to f = 1 for the next stage. In the next stage stopband
att enuation is applied to this reduced level altasing band before being folded Into the pass-
band. The cumulative attenuation effects of the transition regions as the cascade is
traversed keep the passband noise level growth well under control for high L values.

Design of a rate division processor is quite simple . The equivale nt filter transition
region width and stopband attenuation are defined by the NT choice. The rate-reduction
factor (via specification of LEV in 0434) m a y  be thought of as defining a filter at Input
level having passband edge f~ = where refers to the interpolator level one proces-
sor (which is now at the end of the rate-division chain). At the final cascade output,
censoring will have moved f~ to the value y

As a test of the 0434 concept, programs LINT and LD1V were run back-to-back for
NT = 5 and LEV = 7. That is, a 1:128 data rate expansion is first done and is followed by
a 128:1 data rate reduction. The net transfe r function result should be constant within the
passband constraints of the NT = 5 design. A unity-value sample followed by a string of
zeros was entered into LINT to produce the Impulse re sponse whose frequency function Is
that of FIgure 4-7. This Impulse response data was then entered into LD1V. Note that one
data point Into LINT produces one data point out of LD1V with 128 points being Involved each
time at the 0432/0434 interface.

This operation produced 87 nonzero final output values which are plotted in Figure
5-4. The Fourier transform of this overall impulse response (8192-point FF~) is shown
in Flgure 5-5. The response is flat o u t t o f = 0.9where galn beglns to drop toa-ll dB
value (?) at f = 1. Sampling rate division expands the frequency scale between Input and -

output. Note that the input to LD1V had a band edge value f~ = 0.00703125 (see FIgure 4-7
caption); when this f~ value Is multiplied by 128 an f~ =0. 9 results.
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An expanded scale plot of the Figure 5-5 data Is shown in Figure 5-6. When properly

adjusted for normalization the “round-trip” pasaband your variation limits are 4-0. 0125 dB

a t f = O a n d —0 .O226 dB a t f = 0 . 9 .

If one were to obtain the frequenc y resp onse curve of the divider chain plotted in
terms of input frequency, the results would be precIsely those obtained by taking the
Fourier transf orm of the Impulse response of the equivalent Interpolator chain . The true
output frequenc y would, of course , be 2L times the input frequency . Let f1 be the input
frequency and 

~d be the divider output frequency (both normalized to R/2). Define

ç = { 2~ x (5—13)
MOD 2

then

= f
~ 

for ~~1 (5—14)

or

~d = 2 _ f
~for f~ > 1 (5—14a)

The frequency division factors available directly from C434 are powers of two. This
restriction may be lifted by use of the interpolation program as a preprocessor prior to
use of the rate dIVISIOn program. Let the division ratio desired be represented by Vd which
is greater than one bul ls not a power of two. Let L1, J~ be the interpolation program
parameter. as used in Equation (5-6) and related discussion in Section V4. par. 5.4. Let

be defined as the level specification for the 0434 rate division program. The division
ratio Vd is first s~*cified . The L~, L1 and values are sought which will define the
min1mum-comnple~city interpolator/divider chain to achieve a division ratio Vd, plus or
minus a tolerance specification .

First choose the smallest Ld such that

> 1 (5—15)
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If V~~Is an integer, then

and 
= 

: 

(integer
) 

• 

- 

1. 

(5-16)

which simply says to multiply the sampling rate firs t by the factor 2 d1v in 0432, then
L

divide this resulting sampling rate by 2 d in 0434.

If Vd ls not an integer, determine Ld first as in Equation (5-15) then define a rate
multiplication factor K~ of

Ld L1
K = 

2 2 (5—17)

and use the procedures of Section V par . 5, 4 to solve for L1, J1, the Interpolation operation
parameters.

The frequency-domain effect of interpolation is compression. A spectrum that extends
from 0 to y 1 (normalized to R/ 2) Is compressed to 0 to .y1/V~: after a 1:V1 sampling rate
Increase. Information is not lost in this process. The frequency-domain effect of rate
reduction is expansion after filtering. The 0 t o y 1 spectrum Is first lowpus filtered with

= ~‘ where Vd: 1 1. the rate reduction ratio. After this filtering operation the spec-
trum is expanded by the factor Vd so that ~ l/Vd becomes y 

~
. ~ gnM informatIon origInally

residing in y l/Vd to is lost in the process.

An s~aminsfton of the frequency-domain effects of the example of Equations (5-15)

throogh (5-17) wIll show that the net effect of Interpolation followed rate reduction is an
.quival.nt rate reduction operation of ratio Vd : 1. If the rate reduction of ratio ‘1d ~~~~~~~~
the Int.rpolator of ratio V1 

a much different result obtains. The original Input sigi al is
lowpsss filtered with f )’ - ~ l/Vd. This cutoff frequency is then moved to y 1 by ~~~
operation. The resulti ng spectrom is then compressed by th. interpolation ratio V1.
Frequency components in the original spectrum above p l/Vd are suppressed while com-
ponents whose frequencies are below this cutoff value are relocated in spectral position by

the factor Vd/VI. U V d = V~ the net effect of this combined operation is lowpsss filtering
only. The Input and output sampling rat.. will be equal and the passed sp.ctral components
retain their original frequency positions. As discussed in reference 9, the above arrange-
ment is an efficient approach to the problem of lowpass filtering when sampling rate change.
are not permitted.
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SECTION VI 
-

COMPUTER PROGRAMS

8. 1 MULTILEVEL INTERPOLATION PROGRAM LINT

In the Appendix a computer program with deck name C432 is listed. Concurrent
loading of the Block Data subprogram C435 is required. The program is written in
Honeywell YFORTRAN time-share format. In this section the concer n is with entry names
LINT and the initializing entry XLINT, which must be called prior to the first LINT call.

CALL XLINT (NT , LEV, LAG)

NT - This is an input quantity and selects the interpolator type. Tables 4-1 and 4-2 give
details. Types 1-8 assume significant spectral energy out to half the sampling rate,
and use an extended -p at the second level In order to maintain low sto~~and responses.
NT values of 9-12 should be used in the oversampled cases as t h e y  progression here Is
a straight one to one-half. Low signal spectrum levels are assumed In the- -y (R/2) to (R/2)

frequency range for NT = 9 through 12.

LEV - This input qna nHty is the number of levels of Interpolation. The sampling rate will
be multiplied by ~~~~~~ There is no uppler limit to LEV. However the user must provide
sufficient space in the output array, FØUT to contain 2~~~~

’ values.
p LAG - This output quantity represents the total delay through the interpolation processor

expressed in terms of samples at the output skmpling rate.

After XLINT is used, a call to the main entry LINT is made for each Input data value

CALL LINT (yIN, FOUT)

VIN - This is a single input sample value.

FØUT - This ts a Vector In which the output sample vale.. are retui’nsd by the program.
values are rebarned for each input value.

6.2 MC1)E CONVER~~ON PROGRAM C~ BE. RECØ. AND CØNV

CALL CØNV (NT, LAGP)

This is an initializing entry, and must be called before first use of either CØRE or

RECØ. CØNV services both mode conversion routines.

6—1
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NT - This is an input quantity and selects the Interpolator type. Only the first three col-
umna of Table 4-2 have any significance in this usage . -

LAGP - This output quantity represents the mode-conversion processor delay in terms of
output sample pairs.

The complex-to-real transformation Is done by

CALL CØRE (CØMP , RE)

CØMP - A two-location input vector containing one complex Input data pair.

RE - A two-location output vector containing a sequential pair of re al samples.

The real-to-complex transformation is done by

CALL RECØ (RE , CØM P)

RE - A two-location input vector containing a sequenti al pair of real samples.

CØMP - A two-location output vector containing one complex output data pair.

6. 3 HP-67 PROGRAM 1-5-79 FOR SECTION V. PAR. 5. 3 EQUATIONS

This program evaluates Equation (5-5) but in the process it yields the delay and Nf
value of Equation (4-1), the Oi value of Equation (4-2), the Nt/Oi ratio of Equation (5-5),
and finally the N~ value of Equation (4-3).

1. Depress “D” to initialize. Program can handle level values (L) up to 15. AU
{Nk) values are set to unity during this initialization. Wait for program halt.

2. Enter number of coefficients at each level starting with level one. Enter one
value and depress “R/S”.

3. Repeat step 2 tin {Nk) set is stored. Values beyond level entered are one.

4. Enter L value, depress “C”.

5. Program halts with N~ D~ value of Equation (4-1) In display. To continue
depress “R/S”.

6. Program half with O
~ 

of Equation (4-2) in display. When ready to continue,
depress “R/S”.

7. Program halts with N/01 of Equation (5-5) in display. Use “R/S” to continue.

8. Program halts with N0 of Equation (4-3) In display. This completes the sequence.

9. At this point the user oan rebarll to step4to repeat withanew L value and the
same (Nk) set, or the user may return to step 1 to enter new {Nk) set.
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6. 4 HP-67 PROGRAM 1-11-79 FOR SECTION V. PAR. 5.4 EQUATIONS

This program may be used to execute the procedure discussed in Section V, par. 5. 4,
specifically with reference to Equations (5-6), fr7), (5-8), (5—9).

1. Enter desired sampling rate multiplication factor K. Depress “A”.

2. Program halts showing next L value to be tried. Press “R/S” when ready
for trial cycle.

a) Program pauses (flashIng decimal) and displays I A~ I % of Equation (5-9).
b) Program pauses to display J value of Equation (5-7).

A
C) Pro gram pauses to display K value of Equation (5-8).

3. Program Increments L and returns to step 2.

Note: During step 2, halt, user may enter any L value for trial. If user
enters L value and “STØ2” L sequence is modified. For data recovery,
incremented L is in register 2, last J value is in register 1.

6. 5 MULTILEVEL SAMPLING RATE DIVISION PROGRAM LDIV

This program Is listed under deck name C434 and requires concurrent loading of the
Block Data subprogram C435. The program is written in Honeywell YFORTRAN time-share
format. There are two entry points to this program. An initializing entry XLDIV must be
called prior to the first usage of the wor$dng entry LDIV.

CALL XLDIV (NT, LEV, LAG)

NT - An input variable which selects the processor type. Type specifications 1 through 12
are currently valid.
LEV - An input variable which specifies the number of levels of rate division. The
sampling rate will be divided ~~ 2LEV

• There is no upper limit to LEV, however the
user must dimension an input array FIN of size or greater.
LAG - This output variable represents the total delay through the rate division processor
expressed in terms of input samples.

After XLDIV is called, a call to the main entry LDIV Is made for each group of
2 E~~input values; one output value results for each LDIV call.

CALL LDIV (FIN, VOUT)

FIN - An input vector containing 2LEV data values.
VOUT - A single output variable.
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SECTION VII 
-

CONCLUSIONS

The ease of design, computational economy, and high data-rate Increase factors
available from the iterative-Interpolation technique make this approach attractive relative
to the conventional filter method of sample-rate multiplication . The filter synthesis
procedure which was derived from the Interpolation algorithm also appears to have

• 
- 

practica l utility.

The computer program C432 of the Appendix should be useful in Its present form for a
variety of Interpolation, filter design, and mode-conversion function. Some improvements
in the program are planned, however . A y = 95% cascade should be added, This gives a
transition region which Is 11% of the pasaband. Such designs are unavoidably expensive
in processor length. If digital filters are ever to rival analog filters in performance, hard-
ware technology must advance to the point where such design.e can be accepted. The rate-
doubling sections of the cascades should be increased in number to accommodate some lower
stopband level specifications. As previously discussed, the linear interpolation stage should
be recoded for an arbitrary 1:J sampling rate increase. The algorithms In Section V
par. 5.4 for arbitrary sampling rate multiplication factors could be Included In a future
version of the program. The user would then be required only to specify the sampling
rate multiplication (actor desired and the program would automatically provide the optimum
solution.

Notice should be taken of the real advantages of applying the iterative interpolation
technique as opposed to the more conventional use of low-pass or band stop filters for this
service. The ease with which good interpolators can be designed and their efficiency In ser-
vice, especially at high multiplication ratios, should suggest many new areas of application
for the interpolation process. -

One such new area of promise concerns the use we have made here of the InterpOlator
in filter design. Basically, a generic impulse response function, believed to be optimum
In some sense, primes the process. Whether this generic function is obtained out of first
level as In our example, is or supplied externally is incidental. The proper Interpolation
process is then applied to derive filters having passband frequency functions which are
scaled replicas of the generic filter equivalent functions . It would be useful to know to what
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degree the ortgIn~1 optimality property is retained In the derived filters. If the degree of
retention is high, these results could have significance beyond the digital filter design
goals of Section IV.

The complementary use of the cascade technique for sampling rate division in pro-
gram C434 makes available many of the advantages of the companion 0432 interpolation
program. A combination of these two programs offers the user a convenient, efficient set
of procedures for a varie ty of signal processing tasks.
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APPENDIX A 
-

PROGRAMS

In this Appendix four computer program listings are given as mentioned in the
main text. Block data subprogram C435 must be loaded along with 0432 or 0434. The
two HP-6 7 programs have been coded so that they may be merged or~to one magnetic card,
if desired . The FORT RAN programs are also available in standard (FORT Y) source-deck
format .

A-i 
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~—--~~~~—- - __

1 0*C432 C432 ITERATI VE INTERPOLATION SUBROUTINE .
20* JP COSTAS 12/l3/~~
30*USE WITH BLOCK DATA SUBPROGRAM C435
40*
50 SUBROUTINE LINTC yIN. POUT~
7o*v IN- slNag INPUT DATA ITEM
80*F UT A RRAY POR OUTPUT DATA STORA GE
90* -

100*DIMENSI INED POR MAX N OP 64
110*
$20 COMMON /~~ 432/ SCOEP( 512).NGC 6.2•)
130*
140 DIMENSI ON POUT(1).HOL D( $ 28.5).OUT( 32. 6) .NCPC5).NP( S).
1501 COgPC 64, s ).DELAYCI2Ø),USEc 128).COEF2c 64) .
1601 CSNP(2) a REC2)
I 70*
110 EQUI VALENCE (DEL AYC 1).HOLD ( I. l)).(USE( 1).N&DC 1.2)).
1,01 (COEP2 (1).COEF ( 1.1))
200*
210*
220*NT INTERPOLATI eN TYPE 1~~12 IN THIS VERSION
230*NGC 6.NT)-ADDRESS 1 IN SCOEP OP COEFFICIEN T DATA
24S*NG (LjNT)~ NUMBER OF COEFS AT LEVEL L
250*
260 OUT (1.1)eVIN
270 Dl 1 LS1INLEV
280 NCFL.NCF(L)
290 NCPMaNCFL~ 1
300 LENLa2*NCPCL)
310 L ML. sLENL -I
320 KMAX S2**CL-I) -
338*KMAX Is NUN INPUT DATA VALUES AT THIS LEVEL
340 (K0
350 Dl 1 KzliKMAX
360 NP(L) MOD( P1PCL)+$.LENL)
370 MPLSNP(L)
380 MKRKK .1
390 NEWsMID( MPL+NCFM.LENL)
400 14OL0(NEW+1.L)SSUT(K.L)
410 BlUT~0.420 M1~ MPL
430 N2*MID( MPL.’LML.LENL.)
440 Dl 2 J.1.NCPL
450 N1$NSDCN1 .LML.LENL)
460 N2.MOD( M2+l.LENL)

— 470 2 BOUT .BOUT.CIEFCJ .L)*CHGLDCMI.t.L).HOLDCM2+l.L))

A-2



480 IUT (KKaL+1) BOUT
490 KKaKK ,l
500 1 OUT (KK,L,1)BHSL.D(MPL,l.L)
510 lP (LEV .GT.S) GO TI 3
520 DO 4 K.1.KA
530 4 FOUT( K) OUT( K.NA)
540 RETURN
550 3 KKUO
540 Dl 4 (*1.32
570 BIUTaC OUTC K. 6)-SAVV /DEI.
580 DO 5 Ja1.NDEL
590 KK.KK+ 1
600 5 PlUT( KK)s SA VE.FLOAT(J -1)*BSUT
610 6 SAVEUOUT( K. 6) -

620 RETURN
430*
440*
650 ENTRY XLINT (NT .LEV.LAG)
660*
670*
680*INITIALIZAT I IN ENTRY PIR LINT
690*NT-INIERPOLATI IN TYPE (1-12 IN THIS VERSION)
700*LEV NUN LEVELS OP INTERPOLATI ON
710*EACH INPUT VALUE GENERATES 2**LEV OUTPUT VALUES
721*LAG-DELAY THRU INTERPOLATOR IN TERMS OP OUTPUT SAMPLES
730*
740*
750 SAVE~O.
760 KKaNG( 6.NT)
770 Dl 7 .1.5
780 NP(L)~~~l
790 Nl~ NGC L.NT)
800 NCPCL)sN I
8)0 Dl 7 J 1,II1
820 KK~KK+1
830 7 COEPCJ .L)~ SC0EF(KK)/2.
840 NLEV .MINO (LEV . 5)
850 DO B J 1.440
860 1 4OLDCJ.l)~l.170 D19 J~ 1.l92
080 9 OUT (Ja1) 0.
890 IF(LEV .GT.5) GO TI $0
9S0 KA.2**NLEV
910 NA .NLEV .t

~20 GO TOIl
930 10 NDEL~2**CLEV-S)
940 DEL.FLIATC NDEL)
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~~~~~~~~~~~~~-—-~~~~~~~~~~~~~~

950 16 M 1~ LEV.I
960 * LA GI u 2 * * LcV
970 Dl $5 J~ $.LfV980 KK. %
990 IF(J. LC.S) KK*N0(J.NT)
1000 1$ LA G-LA G.KK*te*(N1-J)
1010 RETURN
1020*
1030*
1040 ENTRY CSNWNr .LA~~~1S50*INITIALIZINI ROUTINE FIR ROTH CIRE AND RECO
1060*NT-INTf ~~ ILATlSN TYPE 1-12 IN THIS VERSION
1070*LAGP-PRSCESSIR DELAY IN TERMS OP OUTPUT SAMPLE PAIRS
I08(~ NCFL~NOC)eNT)
1090 LAGP NCFL
$1 00 LENLS2*NCPL
1110 LML.sLENL -1
1120 NPI.s-1 -
1130 KK~NG (l.NT)
1140 DO *1 J.$.NC~L
FS0 KK KK.1
1160 11 COfP2CJ).SCOEF KK)~ 2.
1170 DI 12 J.1.256
1 180 12 HOLD (Ja1).O .
11,0 PLIP.I.
1200 RETURN
1210* -

1220*
1230 ENTRY CIRE( CIMP. RE)
I 240*CIMPL EX -TI-REAL TRANSPORNATI IN ENTRY
1250*CIMP-LICATI IN PAIR FIR COMPLEX INPUT
1 260*RE-LOCATION PAIR PIR REAL OUTPUT
1270 MPL-141D(MPL.I.LENL .)
$ 280 RE(l)aDELAY(MPL.l)*FL!P
129S Ft.IP ..FLl p
1 300 NEW .NIDC MPL.NCFL.LENL)
1310 DELAY C NEW .1).CINP D
$320 USE ( NE We I,) eCIMP( 2)
1 330 BOUTsO.
1340 M 1~ MID (NPL+1aLENL)1350 M2~MPL
1360 Dl 13 J-I.NCPL.
1370 NICMID(M1.LML.LENL)
1380 M2 MID( M2+1,LENL )
l3~0 13 BIUT—B0UT.CIEP2CJ)*CUSECM1,1 ,uSECMp.)~~1400 RE( 2).BIUT*PLIP
$410 RETURN
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1420*
1430*
1440 UITRY R~CS( RCa COMP)
* 450*RC~LOCATI N PAI R P R  REAl. INPUT
* 460*CSMP.LSCATI SN PAI R PSR C NPLVC •UTPUT
*470 NPL NSDCNPI.+*e LENL)
*420 CSNPC 2)~ D~ .AYCNPL.1)
1490 NEWaNI DCMPt..NCFL.LCNL )
* 310 USC(NEW *)~ R!C1)*PtIP
151. PtIP.-PLIP
* 520 DCLAYCN CW,*)sRCC P)*fl.I P
$ 530 IIUT.O.
1540 NIND(NPL+1.LENL)
1550 NS NPL

* 560 0 1 4  J .*aNC~~
~1570 NIsMSD (N1+L*.LENL)
*5.0 N2~ N0D( N2+ 1,LENL)
1590 14 BSUT.I0UT+CSE~2(J)*CU$E(Nl•*).USE(N2.*))*600 CSMPC1)~BSUT6*0 RETURN
1620*1630*
1640 END
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10*C434 C434 ITERATIVE SAMPLING RATE DIVISION SUBROUTINE
20*JP COSTAS 217179
30*USE WITh BLOCK DATA SUSPRIORAM C435
40*
Sb SUBROUTINE LDIV( PIN. VOUT)
60*
70*PIN-INFUT DATA ARRAY
8O*VOUT” SINØ.E OUTPUT DATA VALUE
90*
100*DI MENS I ONED P0* MAX N OP 64
* 10*
120 COMMON /~~ 432/ SCbEPC5*2).NG( &.20)
130*
* 40 DIMENSI ON FIN( 1). DELAY C 65. S).HILD( 128. 5).OUTC 32. 6)iMCP( 5).
1501 NP(5).MPD( 5).CIEF( 64.5)
* 60*
170*LA$T EPN IS $7
1$0*
1,0*
2O0*NT~1NTERPSLATION TYPE 1-12 IN ThIS VERSION
210*NG(6.NT)-*DDRESS * IN SCOEP OF COEFFICIENT DATA
220*NG(L.NT) ’NUNBER OP COEPS AT LEVEL L
230*
240 IFCLEV.LE. S) 60 TO 3
25S*ENTER LINEA R INTERPOLATI ON PROCESSOR
260 SUN.PIN(l)
270 DO 6 J~ *.NDELM
210 6 SUN~SUN.FLOAT( NDEL-J) IDEL*PINC J• 1)
290 OUT(1.1)aSUN+SA VE
3S0 MPI..*
310 00 II (.2.32
320 MPLZMPL,NDEL
330 SUN~FIN(NPL)
340 DO 12 Jal.NDELN
350 * 2 SUN.SUN.PtOAT(NDEL ’J) IDEL*( Fl N( NPL .J )  ,P1 NC MPL~J ) )
360 * 1 OUT( Ka1)a$UN
370*NOW SET UP S*VE PU NVCT CYCLE
380 $AVE•0.
3~ 0 00 *3 J~ *eNDfl.$
400 13 SAVE.SAVE.PLOATCJ)/DEL*F1N( K$+J)
410 GO TO *4
420 3 DO 1~5 K 1iKA
430 15 OUT(K.1)~ I’INCK)
440 *4 CONTINUE
450*

‘

V 

460*
470*ENTER ThE NORMAl. CASCADE PROCESSOR
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420 DO 1 Lul.NI EV
490 LPsNLEV+ 1~ L
500 KMAX.***LP
S10*KNAX IS NUN INPUT DATA VALUES AT ThIS LEVEL
520 NCPt.~NCP(LP)
530 LENL.2*NCFL
540 LEND.NCFl.•1
550 LML.LENL~ 1
560 KK.0
570*KK IS POINTER IN DATA OUTPUT ARRAY
580*
S~0 DI * K~ 1.KNAX.2
600 MP (L)~ NOD (NP (L)+1aLENL )
610 MPL.NP(L)
620 NPDCL).MOD (NpD (L)+I.LEND)
630 MP~~ sMPD(L)
640 KKaKK .$
650 NEW.MOD(MPL.NCPL.LENL)
660 NEWD MOD(NPCL.NCPt..LEND)
670 HOLD(NEW+1.L)-OUTC K.L)
680 DELAYCNEWD .IaL).OUTCK+1.L)
690 BOUTsDELAY(MP~L+1.L)
700 N1~ NOD(~~ L.1.LENL)
710 M2.NPL
720 DO 2 J~ 1.NCFt.
730 Nl.NSDCN1+LNL.LENL)
740 M2aI4OD(M241.LENL)
750 2 BOUTaBOUT+COEF (J.LP)*(IIOLD(141+IiL)•NOLD (ME+1.L))
760 $ •UT(KK.L~ l).8OUT
770 VOUT~BOUT
780 RETURN
790*
800*
1*0 ENTRY XLDI VCNT.LEVa LA6)
820*
830*
840*IN1TIAL.IZING ENTRY FOR LDI V
8S0*NT- PROCLSSOR TYPE (1 12 IN ThIS VERSION) (INPUT DATA )
860*LEV-NUN LEVELS OP Dl VISION (INPUT DATA)
• 70*LA43-PROCIS$IR DELAY IN TERMS OP INPUT PULSES (OUTPUT DATA)
•80*ONE OUTPUT VAL UE REOUIRCS 2**LEV INPUT VALUES
890*
900 SAVE~0.
910 KK.N6(6.NT)
920 DO 7 L~ * .S
930 NPCL).~ 1
~ 4S MPD(L)u~ 1

A—7

________ ____________________________________________________________ —

L . —



,S0 N1.NGCL.NT)
960 NCF(L).Nl
970 DO 7 JaI9MI
960 KK KK•1
9~ S 7 COEP (J .L).SCI EF (KK) 1*.
$000 NLEV.NINOCLE V. 5)
1010 DO $ J.1.640
* 020 6 HOLD(J.*)~ 0.
$ 030 DO 9 J s$.  $92
1040 9 OUTCJ.l)~0.
1050 DO l6 J~ $.32S
*060 *6 DELAY (J.1)~0.
1070 NDEL.2**(LEV-S)
1080 DEL .FLOAt (NDEL)
10,0 KA.2**LEV
$ 100 KB.KA ’MDEL.$
$110 NDELN.ND~~ *1
1120 M1sLEV•1
1*30 LAO I-2**LEV
1140 DI l7 J ~ 1.LEV
1* 50 KK.$
$160 IYCJ.LE.5) KK~N6(J.NT)
* 170 17 LAGSLA G+KK*2**CNI J)
1150 RETURN
1190*
$ 200 END

A-S



*0*C435 C435 BLOCK DATA FOR C432 AND C43A
20*JP COSTAS 02/25/79
30*
40 BLOCK DATA
50*
60 COMMON /~~ 432/ SCOEF( 512).NG( 6.20)
70*
60*
90*NT-INTERPSLATION TYPE 1-12 IN ThIS VERSION
100*NG( 6aNT) -ADDRESS l IN SCOFF OF COEFFICIENT DATA
1 l0*NG(L.NT) - NUMBER OF ClEFS AT LEVEL L
$ 20*
130 DATA (N6(Ja l).J~ 1.6)/10. 5.3.2.2,0/
140 DATA (NGCJ.2).J~ 1.6)/7.4.2.2.1.22/
150 .DATA CNGCJa3).J.1.6)/5.3.t.1.l.3S/
$60 DATA (NGCJa 4).J~ $.6)/3.2j1.1.1.50/170 DATA (NG(J .5).J .1.6)/19.S.3.2.2.58/
180 DATA (NG(J .6).Js l.6)/14. 4.Q.2. 1.8~~l190 DATA (NG(J . 7).J 1e6) .910.3.2.1.1.112/
200 DATA (N6(J.8).J 1~ 6)/6.2.1.1.1.129/
RIO DATA (NGCJ.9).J.$.6)/5.3.2.2.$.140/
220 DATA (N6CJ.10).J ~ l.6)/4.2.2.1.1.$53/
230 DATA CN0(J.1l).J~1.6)/3.2.1.l.I.163/
240 DATA CNG (J.l2).J~1.6)/2.1.1.1.1.171/
250*
260*
270*NT.*. 802. .6500
280 DATA( 5CO~PCJ).J.I.22)/I.26454.-.3~69S1..214 47.-.I28816..SA123P.
2901-.047S243. .0270681. •~~~~ 41~ 0S. .00651666. -.S0P5404~.300*
3*011.23918.-3.31141E-01..124558. -4.07535t- 02.$.75042E’03.
32011 .16 469. .215619. 3.1049 6t -02.
33011.13016. - .130329.
34011.I2625. .12629/ 2

350*
360*NTs2. 802. •S000
370 DATA(SCOEF(J).J.23.36)/1.26*49. .390195..200S 46.*.112826..0622S64
3101. - .031 6I~ 9. .0154772.
3~Ø*
4001$ .23*83. -.3*273. • 103554. -.025*79.
41011.14551.— .142007.
42011.1301$.*.130329.
43611.00342/
440*
45O*NT.3. 80*. -4001
460 DA TA( SCIEPCJ) aJ~39. 50)/ I .25.07. .38046$. • 18 ~$4, .0,%743~. .094574S
470*
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• a. Ti

• 4201.1.220S8.-.285339..075~ 44~.49011.14551.’ .142007.
S001I.0I401. -

51011 .00342/
520*
S30*NT~4. 80*, -25DB
540 DATA( SC0EF(J).J~ 51.58)/1.25216. - .366063. .P149S1.
550*
56011.20257. .254076.
57011 .05764.
5.011.0*401.
59011.00342/
600*
610*NT .S. 90*. -65DB
62ODATAC SCOEPCJ).J 59.89)/$.27098. .41 7671..243S46. .16662 7..122307.
630 1-9 .30066E-02. 7.199 47E-02. -5.6142 * C-OP. 4.360,QE-0P. 3 • 402* SF-OR.
64012.6184* £-02. -1 .98~ 32E-02. 1.42 724E-02. -1.068 SOC-02. 7. 7461 4E-03.
6501-5. 3449E-03. 3. 51193E 03. -P. $8409t-03. 1. 70604E-03.
660*

.23916. .331 $ 4$. • $24551..’.0407535,8
68011.18469. -.2$561~. 3. 10496E-02 .
6~01I.*3018. •.I3032~.70011 .$262S.—.l262~ /
710*
7P0*NT~6. 90*. -SODS
730DATAC SCO~ F(J).J.~O. 112)/I .P7034. — .41577. .2614m~~~.162436b .117* 66.
74011.7066 3E 02. 6. 5480E ’ OP. -4.92510E’OE. 3. 673S5F 02. E. 6~64?! 02.
75011 .93773f 02. 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
760*
77011.23*83. -.3*273. • *03554. .0251 79.
7801$ • 14551. . 141007.
790&*.130l$.-.13032~.
80041.00342/
810*
820*NT.7. 90*. 400S
$30DATAC 3COtP(J).J~ I13.I19)1I.IøSS. .4*3328..P36S6. .lS?1 44.,
14S1.110789. .0797615..0576061.•.0410*65..028 70S2. .03$8*3..
• 30*

8701*.14S51. -.142007.
88011 .0*401.
8901$ .00361/
900*Nt~~. ~I*. -ISOS
9IODATACSCOEUJ).J.130,140)#*.$4644,-.409637..230961.-.$49662.
~ *O1.l0314*. - .13* *36.
~3I*
9101* .1013 7. °.1510 76.

A-b



93111.05764.
96011.0140*.

• 97041 .00361/
960* -

990*N$ 9. 602. 6505
— )OØ0OATACSCO~P(J).J.I4I.1S3)/1.P3~I$. .33I14l..*24S5S. .040 7S35.

I0101.00S 17S$42.
1020*
10304* .1840.-.21S619..031049 6
104011.13016.-. 130329.
$0S011.12121. .12629.
106011.00067/
1070*
1050*NTs*0. 602. -SO DS
IO9ODATA( SCIEP(J).Ja $ 54. $63)#1.23*83.•.31273..103554. .025179.
1IOO 1I.14551.-.142007.
1*l04I.13016.-.1303*9.
112011.00348.
113011.00087/ 

•

1140*
— I$5Q*NTa11. 60*. -4005

1160DATA C 3COEF(J).J.*~~4.* 71)/1.220 S6.’.2SS33~..07S9446.
1170* •

I*804l .14S51.-.148’S07.
11~ 051 .01401.
120011.00348.
121011 .0006 7/
1220*1230*NT.12. 60*. -25DB
I2400ATA(SCOCP(J).J.*72.17?)/1.20257. .254076.
1250*

• $ 26011 .05764.
127011 .01401.

• 128011.00361.
129011.00067/
1300*

• $3 10 END

- 
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PROGRAM 1-5-79 (HP-6?), FOR USE WITH SECTION V, PAR. 5.3 EQUATIONS

• 1 (D) FLBLD 45 x
2 2 46 8T04
3 5 47 RCLQ) (Nk}4 hSTI 48 x
5 (5) fLBL5 49 8T046 O~ sum
6 fDSZ 50 RCL3
7 1 51 2
8 STO(i) 52 +
9 hRCI 53 STO3

10 1 54 RCL(i)
11 0 55
12 gx~y 56 STO÷5 N~ sum

- • 

13 GTO5 57 hRCI
14 (3) fLBL3 58 9
15 B/S Enter (Nk) 59 - 1— 9

16 STO(i) 60 RCLO
17 USZ 61 gxg&y
18 GTOS 62 GTO2
19 (C) fLBLC Enter L 63 RCL5
20 STOO 64 RCL2
21 2 65 —

22 hx~~ y 66 R/S Show N~~D

24 ENTt 68 B/S ~ iowO1
25 ENTt 69

i 70 R/S ~ tow N/O1
• 27 - 71 RCL5

28 STO2 72 2

29 hR l  73 RCLO
30 2 1

75 —
uJ. x
32 sro~ 

76

33 C 78 ENT I
35 ST~~ 80 8T07
37 81
38 82 0T04
39 9 83 1
40 Iis’rI
41 (2~ fLBL2 85 (4) fLBZA

• - • 42 nsz 86 RCL7
43 RCIA 87 B/S Show N0
44 2

- -

N
A-12
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PROGRAM 1-11-79 (HP-67) FOR USE WITH SECTION V, PAR. 5.4 PROCEDURES

1 (A) fLBLA 31 X
• 2 STOO 32 tINT

3 fLN 33 RCL3
4 2 34 +
5 fLN 35 STO1
6 + 36 RCL4
7 tINT 37 hx~~y8 (1) fLBL1 389 ENT~ 39 j10 1 40 —

8T02 41 bARS
13 B/S Show L 42 EEX
14 ENTI

45 f - x -  S h o w I A I %
46 RCL1

17 h y X 47 f - x -  Show J
18 RCLO 48 2
19 + 49 RCL2
20 STO4 50 hy~C
21 ENTt 51 RCL1
22 tINT 52 ÷ A
23 SF03 53 f - x -  Show K
24 ENT t 54 RCL2
25 h 1/x 55 GTO 1
28 2
27 +
28 hR~29 -

30 hRt

• A-13
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