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Motion of a Vortex Blotch
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Brown University
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Abstract

We derive an equation for invariant curves in the motion
of a vortex blotch. Kirchhoff's elliptical vortex is shown
to satisfy the equation exactly. We also find that
perturbations to a circular vortex are invariant configura-

tions to the (third) order of approximation calculated here.
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; Motion of a Vortex Blotch
i
!

We consider the motion of vortex blotches, a two dimensional
1 incompressible flow with zero vorticity except inside certain

closed curves. The streamfunction of such a flow is!

5 FRENE 2
§ Vix,t) =+ 5= [I ax, w(f;t)1n|§-§1| (1)
1 | where t for time and x denotes a two-dimensional position vector,

and the integral is over areas where the vorticity w(x,t) is different
‘ from zero. We consider, for simplicity, such areas as a single

’ closed curve C of constant vorticity within. The velocity field

is then given by

u(x,t) = - %;- 4; t(x;) In|x-x,|d2, (2)
o

where t is a unit tangent counter-clockwise along the curve. Since

fluid particles on the curve C remain there all the time, the motion
of a vortex blotch is completely described by the motion of these
particles. Denoting the position vector of points on curve C

by X = [x(t,s),y(t,s)], where s is aparametric coordinate on C,

we have the equation of motion as

X A
~ W
5" " 2 f’c o~ e Db £

where x, = [x(t.sl)py(tpsl)l.




It can be shown, for any C that the following integrals

along C are constant in time :

Area within = -;-([b‘ (x dy -~ y dx),
Centroid = (%vp’xzdy, - -12-§‘y2 dx),

Moment of inertia = %—¢' (x3dy - y3dx) .

In this note we concern ourselves with the question of in-
variant curves, i.e. those curves which do not change their
shape in time. The motion of aninvariant curve must be a com-

bination of solid translation, solid rotation,and sliding along

the curve. The translational motion is prohibited by the in-

variant of centroid as listed herein. The condition for invariant
curves can be expressed as in a certain rotating frame of refer-
ence, the normal velocity of every point on the curve should

vanish., Mathematically this becomes, after using (3) in a

rotating frame of reference about the centroid of C with an

angular speed @,

Qt(x)-x = %F 1n,::§1l5(5)~§(§1)dsl (4)

A, N
when n is an outward unit normal.

In terms of the parametric representation of the curve
x =x(s) , y=y(s) and X, = x(81) , ¥y = y(s;)

we have

A %;(x2+y2) = 4& in g—xﬂ (§§1-§§1)dsl (5)

where a dot denotes differentiation with its argument and A = Qu/w.




Equation (5) takes the form of the eigenvalue problems; all the
eigenfunctions represent the possible invariant curves, and the
corresponding eigenvalue give the speed of the rotating frame
wherein the curve remains fixed in time.

Equation (5) is invariant under a uniform stretching, and
a solid rotation. Therefore the size and the orientation of
the figure are immaterial as one would expect. It is,however,
not a translational invariant. The origin (x = 0, y = 0) has
been taken at the centroid of the figure. This introducas two
integral constraints

§$x2 dy = 0 and é’yz dx = 0 (6)

to the solution of (5).

We are looking for periodic solutions of x(s) and y(s). It

is natural to express these in Fourier series.

x(8) = ] (a cos n8 + b sin n@) ,

(7)

y() = ] (a cos n® + B sin neé) ,

where we choose 8 instead of s, ranges from 0 to 27 as the
parameter. The logarithmic term under the integral sign of

(5) make the integral quite difficult to evalgate. However,

if one takes only one value of n in (7), one can solve (5)
explicitly. Now for a single value of n, Eg. (7) represents

an ellipse. Realizing that (5) i8 indifferent to the orientation
we take (7) for a single value of n to be simply

Xx =acos §, y=Dbsino.
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This solves (5) provided A = mab/(a+b)”. The speed of rotating
frame of reference is then given by

Q = wab ; /8
(a+b)2 (8)

which checks with Kirchhoff's solution of elliptical vortex 1.

In a polar coordinate, a curve is represented by r = r(e),

and Eq. (5) can be put into the

2m
dr _ _1dr 2
2\ r de = 7r ae Io d¢ r“(¢)
e - 09 m. B "Ry, | Izn dé r"+1(¢)cos(n-l)(0-¢) (9)
d8 ;22 n2-1 M1/ 2

where we have used a series expansion for the logarithmic term in

(5) as follows:

w: g 2
1n[r2 + ri - 2rr,cos u]1/2 =1lnr-) (;-]‘)n gg%_gg' (10)

n=1

with r = r(9), r, = r(¢) and uy = 6-¢.




o e

We next consider a perturbation solution to (9) corresponding
to some small distortion of a circular vortex. It is found that
the solution can be represented as follows:

a,t+ea; cos m6+e2a2 cos 2me+e3a3 cos 3me+0(e4) (11)

r(e)

2
A°+e A2 (12)

>
]

where m is an integer taking to be greater than one in order for
(11) to satisfy (6). We consider that € << 1 so that (11)
represents some small distortion of a circular vortex.
Substituting (11) and (12) into (9), and equating the coefficient

of each power of € (up to e3 in the present case) to zero. We

obtain
Ay 1!.2(1‘:2)_ (13)
2
m(m-1) “
Ay = - (37 (14)
o
2
a a
2=l (15)
(o] (o]
43 _ (3m-1) (m-1) %1 :
o] (o]

The first expression above checks with the calculation for
the infinitesimal perturbation of a circular vortex as given in
Lambl. The approximate invariant as given by (11) and (12) can

be improved by adding higher terms in €. A systematic procedure

for higher order invariant will be presented elsewhere.
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