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Motion of a Vortex Blotch

C. H. Su
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912

Abstract

We derive an equation for invariant curves in the motion

of a vortex blotch. Kirchhoff’s elliptical vortex is shown

to satisfy the equation exactly. We also find that

perturbations to a circular vortex are invariant configura-

tions to the (third) order of approximation calculated here.
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Motion of a Vor tex Blotch

by

C. H. Su
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

We consider the motion of vortex blotches, a two dimensional

incompressible flow with zero vorticity except inside certain

closed curves. The streamfunction of such a flow is1

~ti (x,t) = + 

~~~~~

- Jf d 2x 1 w(x;t)lnIx—x11 (1)

where t for time and x denotes a two-dimensional position vector,

and the integral is over areas where the vorticity w (x ,t) is different

from zero. We consider , for simplicity, such areas as a single

closed curve C of constant vorticity within. The velocity field

is then given by

u (x , t) = — t (x~ ) l n lx — x 1I d& 1 (2 )

where t is a unit tangent counter-clockwise along the curve. Since

fluid particles on the curve C remain there all the time , the motion

of a vortex blotch is completely described by the motion of these

particles. Denoting the position vector of points on curve C

by x — (x (t ,s) , y ( t ,s) 1,  where s s aparametric coordinate on C,
-

we have the equation of motion as

A

= — 
~~~~~~~~~~~~~ 

t (x 1) ln tx -x 1Ids 1 (3)

where x~ 
— (x ( t , s 1) , y ( t ,s1) ] .

___________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~.—-. __ .___,.~__ i_. _ _ . .__. —• - --— ----- - -.-



__ _
~~~~~ . •  — —— ,—~ — -— — — -— - ~.— . —.-—-—— -— — —,—•.•———-— .,——.—. . ---

~~~--.-• -
~~~~

2.

It can be shown , for any C that the following integrals

along C are constant in time

Area within = ~ Cx dy y dx),

Centroid = (.~~.~frx
2dY, - !~~‘~~2 dx),

Moment of inertia = 4 ~~~~~ (x~dy - y
3dx).

In this note we concern ourselves with the question of in-

variant curves, i.e. those curves which do not change their

shape in time. The motion of ariinvariant curve must be a com-

bination of solid translation, solid rotation, and sliding along

the curve. The translational motion is prohibited by the in-

variant of centroid as listed herein. The condition for invariant

curves can be expressed as in a certain rotating frame of ref er—

ence, the normal velocity of every point on the curve should

vanish. Mathematically this becomes, after using (3) in a

rotating frame of reference about the centroid of C with an

angular speed C~,

= !~~
_. 
~~~~~~~~~~~~~~~~~~~~~

when is an outward unit normal.

In terms of the parametric representation of the curve

x = x(s) , y = y(s) and = x(s1) , y1 = y(s1)

we have

A ~1(x 2+y 2 ) = lr~ ~
-
~
j (~~ 1-xy1)ds1 (5)

where a dot denotes differentiation with its argument and A — 

~w/w

—~~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~-~~-~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~~



3.

Equation (5) takes the form of the eigenvalue problems; all the

eigenfunctions represent the possible invariant curves, and the

corresponding eigenvalue give the speed of the rotating frame

wherein the curve remains fixed in time.

Equation (5) is invariant under a uniform stretching, and

a solid rotation. Therefore the size and the orientation of

the figure are immaterial as one would expect. It is,however,

not a translational invariant. The origin Cx = 0, y = 0) has

been taken at the centroid of the figure. This introduces two

integral constraints

4
~x
2 dy = 0 and 

4
~y2 dx = 0 (6)

to the solution of (5).

We are looking for periodic solutions of x(s) and y(s). It

is natural to express these in Fourier series.

x (O) = 
~ 

(an cos nO + b~ sin nO)
n=l

(7)

y(O) = ~ (ct~ cos nO + 8 sin nO)
n=l

where we choose 0 instead of s, ranges from 0 to 2W as the

parameter . The logarithmic term under the integral sign of

(5) make the integral quite difficult to evaluate. However,

if one takes only one value of n in (7), one can solve (5)

explicitly. Now for a single value of n, Eq. (7) represents

an ellipse. Realizing that ( 5)  Ia indifferent to the Oriéfltatlon

we take (7) for a single value of n to be simply

x = a c o s O , y = b s i n 0

-! 
- - • -  ~~~~~~~ .~~~~~~ t__ . - ~~~ - — -  - —~~~~~~~~~~~ — -- - _______



-.----- .-.‘--—-~--—.-—-- ----- - —--- ---.— - --—-- - - • - . - —,-.---- - --.--- - .•. - --- - ________________  _________

4

This solves (5) provided A = 11.~ib/(.~+b)’ . The apeecl of rotating

frame of reference is then given by

= uiab
2 ’• (a+b)

which checks with Kirchhoff’s solution of elliptical vortex 1.

In a polar coordinate, a curve is represented by r =

and Eq. (5) can be put into the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 2 n—l 1

2IT 
d+ r~~~~(4)cos(n—l) (e—$), (9)

n=2 n -l r 0

where we have used a series expansion for the logarithmic term in

(5) as follows :

ln(r 2 + r~ — 2rr 1cos ~.i ] 1’2 
= in r — ~~ (_i)~ 

cos rn) ,
2 

(10)

with r = r ( O ) , r 1 = r(~ ) and ~i = e—~~.

k:.
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We next consider a perturbation solution to (9) corresponding

to some small distortion of a circular vortex. It is found that

the solution can be represented as follows:

r(0) = a0+ca 1 cos mO+c 2a2 cos 2m0+c 3a3 cos 3m0+0(c
4) (11)

A = A0+c 2A 2 (12)

where m is an integer taking to be grea ter than one in order for

(11) to satisfy (6). We consider that c << 1 so that (11)

represents some small distortion of a circular vortex.

Substituting (11) and (12) into (9), and equating the coefficient

of each power of c (up to in the present case) to zero. We

obtain

— TT (m—l) (13)o~~ 2m 

2
— 

ir (m—l) a1 (14)A z — — 4 C
c

)

a a 2
2 

= 
2m— l (_!) (15)a0 4 a0

3a3 
= 
(3m—i) (rn—i) ( ..A) (16)a0 8 a0

The first expression above checks with the calculation for

the infinitesimal perturbation of a circular vortex as given in

Lamb1 . The approximate invariant as given by (11) and (12) can

be improved by adding higher terms in c A systematic procedure

for higher order invariant will be presented elsewhere.
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