


fl2

N
()]

g2 22

i
™
N

Il

= [l

it

MICROCOPY RESOLUTION TEST CHARIT

NATIONAL  BUK

EAU

OF STANDARDS 1964 A




ey

ADAO 67311

DOC FILE copy

Technical Report PT-00929
THEORETICAL INVESTIGATION OF THE MICROSTRIP ANTENNA
A Semi-Annual Progress Report
by

Keith R. Carver

ar L. Coffe
o 3 D L e
a1 !
w APR 12 ¥ ke
repared for =TT T
prep \ &)Q‘ G 5 i
Army Research Office
Research Triangle Park
Durham, N.C.
ARO Grant DAAG29-78-G-0082
January 23, 1979
XIC
"ﬁ OOA
P
2 m Physical Science Laboratory
6,» £ BOX 3-PSL, LAS CRUCES, NEW MEXICO 88003
vers® AREA (506) 522-4400 TWX 910-983-0641
r 3 C
79 04 09 104
T

——




{ Y
) . \

Unclassified

‘ I ECURITY SSIFICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS

/ REPORT DDGUMENTATION PAGE BEFORE COMPLETING FORM l

NUMBER 2 20V ACCESSION.NO. REGHAENTIS-CAY &R -~

7771 15384.1-eL /

ITLE (and Subtitle) . .

/[;ﬁ‘éi'; 7 rerweell .)&,‘//‘ ﬂvﬁ C'/_‘-;élp('dl 1
- we - L W&x

/;g}—’;;eoretical Investigation of the // Technical
P icrostrip Antenna » ‘
e L —=

[ZJP TR T 77T W——

{ (/0] Keith R. Larver | 7= " BAAG23-78- ¢ 0082
| Edgar L./Coffey (;L,/ e ——d

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giRQA:OERLKESSINTT'N’URMODJEES:' TASK
New Mexico State University
Las Cruces, New Mexico 88003 /
11. CONTROLLING OFFICE NAME AND ADDRESS -\-.u.—aaaonu_gm..
U. S. Army Research Office // 123 Jan 79 F i
Peo Q. Box 12211 S+~ NUMBERO+LAGES

Research Triangle Park, ..C 27709
4. MONITORING AGENCY NAME & ADORESS(If different from Controlling Oflice) 1S. SECURITY CLASS. (of thie report)

s ———— -

IA 7

Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse aide if necessary and identity by block number)

microstrip antennas planar-arrays

design techniques geosynchronous satellites

systems applications transmiigsion-1line theory
i cylindrical arrays h\\ss

b 20. ABSTRACT (Contlnue on reverse side If necaseary and Identify by block number) [N | S reporf}eg ins with a dis
cussion of a general mathematical framework for the analysis of microstrip antennds.
! A discussion is then presented of methods based on the finite elements approach
along with key aspects of a computer code developed along these lines. Next, a
classical modal expansion method is presented and applied to both rectangular and
circular patches. Finally, the finite-elements approach is used to solve for the
magnetic currents on the radiating walls of a five-sided patch which can produce
circular polarization.

.
DD , on'ss 1473  eoimion }\ov 65 1S OBSOLETE dnclassirie%y ‘/é %_) ; ‘J




Technical Report PT-00929 oy

THEORETICAL INVESTIGATION OF THE MICROSTRIP ANTENNA

A Semi-Annual Progress Report

by

Keith R. Carver

Edgar L. Coffey

prepared for

Army Research Office
Research Triangle Park
Durham, N.C.

ARO Grant DAAG29-78-G-0082

January 23, 1979

XI1C

QEXC0

s L
- . .

z A » Physical Science Laboratory
< A BOX 3PSL. LAS CRUCES, NEW MEXICO 88003

v, < i : :

'VERS AREA (505) 5224400 TWX 910-983-054°

AI2 ¥SP

-




| ia— ey, e . — o 3

Mass Gaas BEE U IR AEE GBS S I e 2 S

e

THEORETICAL INVESTIGATION OF THE MICROSTRIP ANTENNA

A Semi-annual Progress Report

by

Keith R. Carver
Edgar L. Coffey

prepared for
Army Research Office
Research Triangle Park

Durham, N.C.

ARO Grant DAAG29-78-G-0082

January 23, 1979

Physical Science Laboratory
New Mexico State University
Las Cruces, N. M. 88003

g

T T T RN




Laa

ey ass IR GER T SR R G O G0 R e aEe e e e B BB

e
4

1.0

2.0

3.0

4.0

TABLE OF CONTENTS

ENERODECEEON Ve s e o i e e e e el s e e e ol ol el el e e

THEOREETCAT, "MODELSE S ol ie e g e e s el e e e s
2.1  Introductiom . . o . e e w6 o« s
N O At O T o e e el R e B e T,
2.3 Formalism for the Interior Problem . . . . . .
2.3.1 Complex Source POWEL . « &« = » o o & = & & » &
2.3.2 Dissipated Power S e
2.3.3 Radiated PoweE . « < s o o s @ 5 s e e
2.3.4 Stored‘Energy R R R e it e
2.3.5 Input Impedance < = i« « « & = & o & & o s e s
2.3.6 Impedance Bandwidth . . .
2.3.7 Antenma Efflciency . . ¢ « ¢« oia o' s & »

2.4 TFormalism for the Exterior Problem

NUMERICAL TECHNIQUES FOR THE INTERIOR PROBLEM . . . . .
3.1 Mathematical Development and Numerical Implementation
3.2 Numerical Difficulties Overcome/ to be Overcome .
3.2.1 Matrix Calculations for Irregular Polygons .
3.2.2 Impedance Boundary Conditions . . . . . . .
3.2.3 Eigenvalue/Eigenvector Computation .
3.2.4 Size of Matrices vs. Core Memory .

RESULTS FOR SPECIFIC MICROSTRIP ANTENNAS . . . . . .
4.1 The Rectangular Patch . « « ¢« o « ¢« o o « &
4.1.1 Closed Cavity Formulation . . . . . . . .
4.1.2 Radiating Cavity Formulation . . . . . . . . .
4.1.3 Multiple-Mode Effects
4.2 The Circular Patch . . . .
4.3 The Pentagon Patch . . . . .

O v U W W

10
10
11
13
16
17
18

27
28
31
31
32
33
33

37
37
37
41
60
67
73




|

XX

80
82

.

5.0 CONCLUSIONS

6.0 REFERENCES

T T W e W e s O P P D e e Y D D e e e




e NS GER N AEE mas SIS AR O ses O WEe W B

==
e SR S ——

1.0 INTRODUCTION

This report presents theoretical techniques which may be used in the
analysis and design of microstrip antennas. The involvement of the Physical
Science Laboratory in the theoretical analysis of these electrically thin
radiators has been principally motivated by a practical requirement for
better design techniques which could be applied to the development of
microstrip antennas for systems applications. Over the past seven vears,
PSL has acquired considerable practical experience in the design of both
stripline and microstrip antennas; microstrip antennas have been produced
in wrap-around cylindrical arrays for sounding rocket application
[Weinschel, 1975] and in planar-array versions for UHF communication from
buoys and ships to geosynchronous satellites [Weinschel and Carver, 1976].
Until recently, however, these designs have come from a combination of
experimental cut-and-try techniques supplemented by standard transmission-
line theory applied to simple rectangular patches.

The microstrip antenna concept dates back some twenty-five years to
work by Deschamps [1953]. However, nearly eighteen years passed before the
work was renewed and reported by J. Q. Howell at NASA Langley Research Center
[1972, 1975], R. E. Munson at Ball Brothers Research Corporation [1972,
1975] and H. D. Weinschel ét the Physical Science Laboratory [1973, 1975].

Mathematical modeling of the basic microstrip radiator was initially
carried out by applying transmission-line analogies to simple rectangular
patches fed at the center of a radiating wall [Mumson, 1974; Derneryd, 1976].
The radiation pattern of a circular patch was analyzed and measurements
reported by Carver [1976].

These earlier mathematical models, while giving reasonably good results
for center-fed rectangular patches, all shared some serious deficiencies:
(1) they consistently predicted resonant frequencies which were a few percent
off (usually on the high side) from measured resonant frequencies, (2) they
could not be adapted to multi-mode structures with arbitrary feed points
(such as corner-fed rectangular patches), and (3) they could not be adapted
to patches of arbitrary shape.

The present analytical work began in January, 1977 and received ARO
support beginning in April, 1978. It has been directed along two comple-

mentary paths: (a) for rectangular and circular patches, a modal expansion
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method incorporating impedance boundary conditions at the radiating walls,
and (b) for patches of arbitrary shape, a numerical approach based on the
method of finite elements. The initial proposal for the numerical analysis
was to use the Unimoment-Monte Carlo technique [Coffey, 1976; Coffey and
Carver, 1977]; however, for reasons discussed in Sec. 3.0, this numerical
technique has been abandoned in favor of the method of finite elements.
During the course of this effort, a comprehensive report was received from
workers at the University of Illinois [Lo, et. al., 1977] which used a
similar expansion method applied to impedance and radiation pattern analysis
of rectangular, circular and triangular patches. One of the differences
between the Illinois report and the present approach is that the latter
incorporates impedance boundary conditions at the radiating walls, whereas
the former does not. The wall conductance used in the present report is
based on a parallel-plate TEM waveguide radiating into a half-space
[Marcuvitz, 1949; Harrington, 1961]. The wall suéceptance is based on a
formulation by Hammerstad [1975]. The result of this model is a prediction
of impedance vs. frequency behavior which shows very good agreement with
measured results for rectangular patches; there is also good agreement with
measured results for circular patches.

This report begins with a discussion of a general mathematical frame-

work for the analysis of microstrip antennas. A discussion is then presented

of methods based on the finite elements approach along with key aspects of
a computer code developed along these lines. Next, a classical modal
expansion method is presented and applied to both rectangular and circular
patches. Finally, the finite-elements approach is used to solve for the
magnetic currents on the radiating walls of a five-sided patch which can

produce circular polarization.
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2.0 THEORETICAL MODELS
2.1 Introduction

A microstrip antenna is shown in Figure 2.1 as a patch of arbitrary shape
separated from a large ground plane by a homogeneous dielectric of thickness
t, where t is assumed to be much less than a wavelength. Practical microstrip
antennas have been fabricated with rectangular, circular, semi-circular, tri-
angular and pentagona: patch shapes. It is therefore of interest to develop a

theoretical foundation which can handle patches of arbitrary size and shape.

The objectives of such an analysis are to predict both the far-field pattern
characteristics (including gain and polarization) as well as such near-field
characteristics as input impedance, impedance bandwidth, antenna efficiency,
mutual coupling, etc. This is an ambitious program and will require the
efforts of many investigators before it is completed. It is expected that
approximation methods will be needed in order to obtain practical answers.
However, to date there have been no publications in the open literature which
attempted to set up a formalism for the microstrip antenna based on a rigorous
approach. It seems worthwhile to attempt such an attack even though satisfac-

tory solutions may be difficult.

The analysis of the microstrip antenna may be facilitated by dividing the
radiation into an interior region and an exterior region. The interior region
is a cavity formed by the patch, the portion of the ground plane under the
patch, and the radiating walls formed by the projection of the patch perimeter
onto the ground plane. The exterior region is the rest of space and includes
the remainder of the ground plane, the remainder of the dielectric and the top

of the patch conducting surface. Practical ground planes are usually several

‘ wavelengths in dimension so that the assumption of an infinite ground plane is

justified for purposes of computing the far-field pattern shape over most of
the upper hemisphere. However, for angles near the plane of the ground plane,

edge diffraction effects must be considered.

The connection between the interior and exterior problems may be made by

enforcing the boundary condition that there be continuity of the tangential

3
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components of E and H at the radiating walls of the cavity. This is an extremely

difficult problem and nas not to date been solved.
2.2 Notation

A notation is needed which explicitly identifies both interior and exterior
fields. If the distinction between ipterior and exterior fields is not obvious
from context, the symbol i used as a superscript will identify an interior

field, 1.e.; E' or H'. Similarly, (Ee, ﬁe) are exterior fields.

Subscripts are then used to denote either mode indices (vide Section 3.0) or
the value of a field at a particular location. In particular, the fields
evaluated in the thin ribbon forming the radiating walls are denoted as (ErQ’

Hrw)' Fields evaluated on the exterior ground plane are denoted as (Eg "

H )
8p
and exterior fields evaluated on the top of the radiating patch are denoted as
(E , H).

P’ P

As in most other published literature, primed coordinates are used to denote
source point location and unprimed coordinates are used to denote field point

location.

2.3 Formalism for the Interior Problem

Consider the interior region of a cavity with radiating side walls, as shown
in Figure 2.2. Since t << A, it may be assumed that the interior electric

field is entirely z-directed and is independent of z.

The interior fields must satisfy the wave equation

fi - szi = - jwub -V (2.1a)

<l
x
<l
%

-k =- jue B+ 7 x 7° (2.1b)

<l
x
<l
x
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and
€ =¢' - je" = so(sé - j a;) - (2.2)

— 2
. . . = . .
J” is the electric current density (A m ) due to the coaxial feedline source

and may be written as

=3 I(z') 5(x - xo) 8(y - yo) o<zt < E) (253
a

where a is the cross-sectional area of the coaxial current element which is
— -
assumed to be electrically thin. M° is the magnetic current density (Vm )

due to the microstrip feedline source and may be written as

(

o W59 5y ey - T cx <y 4 Y
tw 2 2
M = (o < z' < t) (2.4)
0 otherwise

where w is the width of the microstrip feedline and V(x';o0) is the voltage
between the patch and the ground plane evaluated at the feedline connection

point.

For an antenna fed only by a microstrip feedline, 5 0; similarly, for
an antenna fed by a coaxial feeline, M = o.

In addition to satisfying the wave equations (2.1), the fields must also

satisfy the following boundary conditions®:

>

nxE =o (on top and bottom conductors) (2.5)
T —e T —e
n x =0 X

rw w

(on radiating walls) (2.6)

T T —e
n x =nxE

rw rw

*This first boundary condition assumes that the patch and the ground plane are
perfect conductors. Since almost all practical microstrip antennas are fabricated
from copper, this is an excellent assumption.
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If the intericr region were a non-radiating cavity, then H® = 0 so that the
tangential components of H' at the radiating walls would be zero. In the
language of classical boundary-value problems, this is known as a Neumann con-

dition.

However, the practical problem must contend with radiating walls so that the
interior fields must satisfy an impedance condition. A solution for the fields
then requires a knowledge of the impedance presented by the radiating walls as

a function of location on the wall.

The classical method for handling such cavities is to find a complete set of
eigenvectors which can be used to expand the general field. This is not diffi-
cult for such simple geometries as rectangular and circular patches and has
been discussed at some length by Lo, et. al. [1977]. If a‘complete basis can-
not be found, approximation techniques such as the Ritz-Galerkin method, point

matching, method of moments, etc., can be used to find the interior fields.

Section 3 of this report describes an approach to the interior problem using
the method of finite elements. This method, which shows great promise, requires
a knowledge of the impedance of the radiating walls or a reasonable approxima-

tion to it.

The balance of complex power for the interior region may be described by

Pin = PR + Pd + 2jw (Wm - We) (2.23
where

Pin = complex power supplied by source

PR = complex power radiated through edge walls

Pd = power dissipated by conducting walls and by the dielectric

w = angular radian frequency

wm = time-average magnetic energy stored in cavity

we = time-average electric energy stored in cavity

8
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2.3.1 Complex Source Power

For microstrip antennas fed by coaxial lines, the input power may be computed

by

ch) = - [[[ Ei . 3* dv'
in
i

Using (2.3) for J and assuming E'=zE , (2.8) becomes

t
ple) - . f Ei(xo, y,) ¥ (2')dz*

in
(e}

If I(z') is a constant, then (2.9) becomes

p{¢ =y ¥
in in “in
where
t
gt 1 i 8
V.m = f E (xo, yo)dz t E (xo, yo)
o

Because of the assumption that J® was filamentary (c.f. eqn.

input power computed as the imaginary part of (2.9) will be in error.

will be discussed later.

(2.8)

(2.10)

(2.11)

2.3) the reactive

This

For microstrip antennas fed by microstrip feedlines, the input power may be

computed by

p(ms) _ _ j]] Rl g
in

=i

Using (2.4) for M and assuming H = x Hi *y Hl,

Y
X5 + w/2
{ % '
p(ms) _ uly* Vx'50) gur gg
in X -
X, = W (o)

1

(2.12)
(2.13)

{
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il e et
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[f the strip width is narrow, V(x';o) is essentially constant and equal to

Vin so that (2.10) becomes

p(ms) _ * ¢
in in in

where

P f H' dz' (2.
in X

2.3.2 Dissipated Power

The power dissipated as heat can be subdivided into that associated with

ductor losses (Pdc) and that associated with dielectric losses (Pdd)

P = PP K2

where [Kraus and Carver, 1973]:

- i 2 b
P = Re Z, [f’“tan' ds (2.

cond.
walls

and

o
"

cavity

2.3.3 Radiated Power

(2.

4 = vE" ffflEiH dv (2.

14)

15)

con-

16)

17)

18)

The complex radiated power is obtained by integrating the complex Poynting

vector over the radiating wall surface, i.e.

Py = f/ & 1Y . a6 (2.

10

rad.
wall

19)
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Since E* is entirely z-directed, the only component of H' which is of interest
is that tangent to the radiating wall and parallel to the local edge of the

patch; this component is designated as HQ' Thus,

PR = - V2 H2 d2 (2.20)

wall
perimeter

where V2 is the voltage across the radiating wall and H2 is the parallel com-~
ponent of the magnetic field. HQ is also related to the surface electric
current density at the edge, as shown in Figure 2.3, by the boundarv condition

~

JS =n X H2 " (2.21)

A~

where n is a unit norwal directed away from the conducting surface. If HQ is
entirely tangent to tne radiating wall, then the current on the bottom side of
the patch will flow around the edge and onto the top side of the patch, as
shown. The electric field just exterior to the radiating wall will fringe and

refract at the dielectric-air interface in accordance with Snell's Law.

2.3.4 Stored Energy

The total stored energy in the cavity is given by

W=w +¥ =1 f[/(leilz+p [HY] 2)dy (2.22)
m e 2 o

cavity

Since the interior fields are independent of z, this can be slightly simpli-

fied to
W, = 1en ff lE}]2 ds (2.23)
2 )
cavity
area
W =-1-p t ff IH 2 ds (2.24)
m o
2 .
cavity
area ll

e e,

" " = - PR —
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2.3.5 Input Impedance

The input impedance to a coaxially-fed microstrip antenna can be

computed by noting the P |Ii \ Z and using (2-9) to obtain
Jt
= l—- i * 1 1
Zin - lI \2 S E (xo,yo)I (z'") dz
in 0

where a z-directed filamentary probe has been assumed. Similarly,

the input admittance to a microstrip transmission line-“ed microstrip

antenna can be computed by noting that P = lV l Y and using (2-1
to obtain
w
Y =———1—S (hx,,y) 1 VD de
in lV 12 10 2
in

where the feedline input has been modeled as a thin strip of magnetic

- A A A
surface current density MS = (z x n)(V/t) where n is a unit vector

(2-

2)

(2-

normal to the thin radiating surface and pointing into the cavity. The

strip is of width w. If the strip width is narrow, then V({) is essen-

25)

26)

tially constant and equal to vin' If t is small, then the input current
on the lower side of the upper microstrip transmission-line conductor
2
is Iin = [H (xl,yl)]w, so that
Y 1, /v, )" (2-27)
in ( in’ in g
Likewise, from (2-25), if a small value of t is assumed then both E1 and
I(z') are constant so that
Z = Vin/Iin (2-28)

in

The usual procedure for a probe-fed cavity is to find V, = -th(xo,yo)

in
by expanding Ez(x,y) in terms of a complete set of orthogonal modal

vectors (eigenfunctions) emn(x,y) and using the orthogonality property to

find the coefficients of the expansion in terms of the input current.

A similar procedure can be used for the microstrip-line fed cavity by

13
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finding I, = [Hi(xl,yl)]w and expanding Hi.

L In tizs classical eigenvalue problem, a denumerably infinite set
of discrete eigenvectors and eigenvalues are found by imposition of

l either Dirichlet (Ez = 0 on boundaries) or Neumann (BEzﬁan = 0 on
boundaries) boundary conditions. The mode vectors are customarily

orthonormalized as follows:

2. <% dvw & o
GSXS mn Pq o mn, pq ( 9
cavity =
volume

where & =1 if m = p and n = q; 5.= 0 otherwise. Thus,
mn, pq

’

ejgg‘emn‘z av =1 (2-30)

is the electric stored energy in the mnth mode. In a closed cavity, the
time-average electric and magnetic energies are equal. Therefore,
normalization of the Emn vectors automatically normalizes the corresponding

h vectors.
mn

When the cavity begins to radiate real and reactive power out the

radiating walls, several differences are noted:

1. The time-average electric and magnetic energies are no longer
equal.

The eigenvalues are no longer necessarily real or discrete.
Energy is cross-coupled between discrete modes.

Only a finite number of discrete eigenfunctions exist.

wm & W

In addition to these discrete eigenfunctions, there will be
added a continuously varying eigenfunction with a continuous

range of eigenvalues.

i The electric field Ez(x,y) interior to a probe-fed cavity satisfies
l the inhomogeneous differential equation:
P 2
:5 E o E
z 4 2
+ ¢ ' F  w S I S(x—x)&(y-y) (2-31)

I ax2 ayZ z /7o in o o
l 14

— e g e
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along with the impedance-type boundary conditions:

DE

Z

+ o Ez =0 (en radiating walls) (2-32)
n

The partial derivative P /O n is with respect to an outward-directed
coordinate and & is dependent on the impedance of the walls. The
complete set of functions required to represent any arbitrary Ez

consists now of both the discrete modes -e_mn(x,y) plus a continuous

spectrum E(x,y;kx,ky). Thus the solution is given by

Ez(x,y) = —jw/uo Iin SS G(x,y;x',y')g (x'—xo)g(y'-yo) dx' dy'

cavity (2-33)

or

Ez(x,y) = —jw//.o Iin G(x,y;xo,yo) (2-34)

where G is the Green's function which satisfies the relation

1 M N
2— jg G(x.y!xo,yo;kx,ky) dkx dky = Z Z em(x,y)emn(xo,yo)
nj g Cz m=0 n=0

1'

+ Xg g(x,y;kx,ky) %(xo,yo;kx,ky) dkx dky

(2-35)

where the contour over k_ 1is determined by that over k_ according to

y 2,172 .
» .
taken around all singularities of the Green's function. Equations (2-31)

the separation condition ky = (k2 -k The contour Cl (or C2) is
through (2-35) are developed in the context of a rectangular microstrip
antenna; a similar development for circular patches can be carried out
using cylindrical coordinates. For both of these cases, the two-

dimensional Green's function is separable into a product of one-dimensional

15
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Green's functions. However, for arbitrary microstrip patch shapes,
this is not in general true.

Returning to (2-35), it is noted that for closed cavities, the
complete set of mode vectors is represented by only the discrete sum.
For open radiating cavities (waveguides) which satisfy a radiation
condition at the walls, the complete set of modes is the continuous
eigenfunction seen in the contour integral on the right-hand side of
(2-35). For the most general case, however, both discrete modes and
continuous modes will be present, along with discrete and continuous
eigenvalues.

Practical microstrip antennas usually have impedance bandwidths
yhich are small and of the order of 1%. This indicates a high-Q
condition and that the interior fields are dominated by the discrete
modes. However, the continuous spectrum g(x,y;kx,ky) cannot be
ignored since it is closely related to the radition admittance of the
walls.

These impedance considerations will be applied to specific

microstrip patch shapes in Section 4 of this report.

2.3.6 Impedance Bandwidth

The impedance bandwidth is given by

£
Af = = (2-36)
Q .
where fr is the resonant frequency and the total Q is given by
W
(33 I e (2-37)
Re P \

in
with W = we + Wm being the total stored energy both in the cavity interior
and the near-field region of the antenna. The real input power is either
dissipated by the conductors or dielectric or is radiated as real power

through the radiating walls. Thus

where
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e T = S

——

T Re P (2-39)

= W (2-40)
Re Z_ [fla_,_|? ds

W

TR a

(2-41)
The total stored energy (both in the cavity and in the radiated field)
can by computed by

We el s et o+ Zme (2-42)

where Pr is given by (2-20).

2.3.7 Antenna Efficiency

The antenna efficiency is the ratio of real radiated power to real

input power, i.e.

Re Pr
T, = (2-43)
Re Pin
Thus,
17 Q/Qr (2-44)
Also, using (2-20), (2-43) can be written as
R (R,2 + X,2) 1
n= V. in in b.4 X leziz d2 (2"45)

2 Z 2
Rin (Rw y Xw) . IVinl

where VZ = -Ez t evaluated at the radiating wall, and where Zw = Rw + ij

is the wall impedance, assumed independent of perimeter position.
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2.4 Formalism for the Exterior Problem

The two objectives of the exterior problem are to find the far-field
radiation pattern (including gain and polarization) and to describe the
near-field coupling behavior of the microstrip patch. The exterior fields
may be found from the equivalence principle if the tangential fields in
the radiating walls of the cavity and/or the tangential magnetic fields
on the exterior conductors are known; the equivalent magnetic surface

currents in the gap are given by

M =FE 3 i o
MS Ez X n (2-46)

where Ez is evaluated in the gap (radiating wall) and n is a unit vector
which is normal outward from the gap. The equivalent electric surface

currents on the top of the patch and on the ground plane are given by

ES =2z xH (2-47)

where H is evaluated on either the patch or the ground plane.

The exterior fields are then found by the formalism

E® = —1—(VxUxA - T) - UXF (2-48)
jwe

H® = —2—(UXUXF - M) + VXA (2-49)
jwe

where A is the vector magnetic potential given by
— pa— g '—__ ==
5 1 Js(r') e Jkll‘ r ’
B —— I J ds' (2-50)

4w |r - r'l

and F is the vector electric potential given by

E. 1 ﬁ (;l) e-jklr - f"
F=— J f e — ds' (2-51)
4 |r O [

When the exact current densities are known and if the conductivities of
the patch and ground plane are infinite, the fields satisfy the boundary

conditions:

18
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z X E =0
on patch and on ground plane (2-52)
e
zxH =]
s
A x B = x B
on radiating wall (2-53)
EExn=0
s

1lim 1rEe‘ is finite
Tr—>o

radiation condition (2-54)

lim |rH®| is finite
>

The formalism of (2-48) - (2-51) requires a knowledge of both }s
and Ms’ as shown in Fig. 2.4a. The fields can also be found from Js
alone (Fig. 2.4c) or MS alone (Fig. 2.4b).

For the MS formulation, a perfect conductor is placed over the surface
bounding the interior region. Since a tangential JS over a perfect
conductor produces a zero net field in the exterior region, the field is
calculated from ﬁé alone in the presence of the conductor. The exterior

field is then found as

E,(r")(z x )

E%(r) = - Wx J J — e LIEE g (2-50)
- { ]
el lt - ¢
wall
subject to the boundary condition
& =e
nxE =90 on perfect conductors (2-51)

This is an awkward equation to solve because of blockage introduced
by the conducting step jump.

In Fig. 2.5, additional equivalent sources are shown which produce
the same field in the half-space above the plane of the patch and a null
field below this plane. TFig. 2.5c shows an equivalence which takes advan-

tage of image theory; in this case, the perfect conductor is removed and
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Fig. 2.4. Three source formulations which produce the same exterior
field. (a) J and M ; (b) M_ alone plus perfect electric
conductor; (c? J algng plus perfect magnetic conductor.
The exterior region includes the half-space above the
patch as well as the region interior to the dielectric.
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Fig. 2.5. Three additional equivalent source formulatiocns which
produce the same field above the plane of the patch.
(a) J and M_; (b) M_ alone plus perfect conductor;
(c) "ﬁ alone (magne%ic image).
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the magnetic surface current density is doubled. Thus,

@ x i o Tele -7
ES(r) = -Ux J J aT— = ds' (2-52)
2n |z - ¢’

S-S
o

where the aperture plane is S and the portion of S which represents
the patch is So'

Finding an exact relationship between the tangential electric fields
in the aperture plane and those in the radiating wall of the cavity is not

a simple task, as is illustrated in Fig. 2.6 where the electric field lines

have been determined by graphical field mapping procedures for the d.c. case.

In the immediate vicinity of the edge, these d.c. field lines will be
similar to those of a radiating cavity. Due to the dielectric/air
discontinuity, the field lines will refract according to Snell's Law
and the electric field in air will be larger than that of the same
line in the dielectric. Furthermore, the tangential component of E;p
is appreciable only very near the edge of the patch.

An approximate relation between the field z Erw in the radiating wall
of the cavity and the tangential field Eap in the aperture plane may be
found by first assuming that the region of the aperture plane over which
effective magnetic currents exist is a thin strip of width w extending
from the edge of the patch outward. Over this region, z-components of
E;P tend to cancel, leaving only a tangential component. Let ﬁd be the
length of a field line from the ground plane to the dielectric surface
and let Za be the reﬁaining length of the line from the dielectric to the

patch. Then assuming the patch to be an equipotential surface,

Vp = --(Ed Zd +E, Za) (2-53)

where Ed is the electric field in the dielectric and Ea is the electric
field in air, both evaluated on the same line. Furthermore, the electric

flux density is constant over any one line so that

—vos -

—r——v

D=cypeEy=ckE (2-54)
22
— som—— - -
, W




A—

T

o A——

->

-

r—‘-_- —

— ERE TR GEE OE eeem GE e —"— p— W —

APERTURE PLANE

.

1.000 V../M

i

0.0625

!

/17777777 7777777777777/ 777777

Fig. 2.6,

/777777777777 777

patch with €

GROUND PLANE

Illustrating the d.c.
distribution for the edge of a microstrip
= 2,6, t = 0.0625" and a
patch conductor thickness of 0.002".

23

777777

7277277 ///ﬂ%/r 7.

77077

RADIATING WALL

OF CAVITY

fringing field

”




where €, is the dielectric constant of the patch. Combining (2-54) and
2
d -1
= — -+ -
Ea Vp( :, Ka) (2-55)

At the edge of the patch, Ka is zero and Ea is entirely tangential so that

v

= —2‘:
Eap(edge) €,

(2-56)
zd

“r Erw
This is the maximum tangential field in the aperture plane. The effective
tangential field is less than this. For an aperture plane of effective
strip width w = t, the tangential field at the outer edge of the strip

is essentially'zero*, so that the effective aperture tangential field is
approximately half that given by (2-56):

A r
- el = over aperture strip of width t 2-57)
- an - ( P p ) (

where ﬁp is a unit vector lying in the aperture plane and extending out-
ward from the patch edge.

The far fields may now be computed by letting |t = r'| = r in the
denominator of (2-52) and by letting |? - ;'| =r -r' cos ¢' in the
exponential of (2-52) ; these coordinates are shown in Fig. 2.7. Then,

the far electric fields are given by
E(8,8) = 8 E,(8,0) + ¢ E (9,0 (2-58)
where

E, = -k F Eo = Jk Fy (2-59)

P 5

*
This is based on field maps for the static case and assumes that

€, is less than about 6.
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-jkr ' '
= _ 4 = v s jkr ' cos¢ o'
1 = t J Ms(r LS dl (2-60)
perimeter
and where
— ~ & Er
Ms = (z x np) > Erw (2-61)

It is emphasized that the magnetic surface current density in
(2-61) is approximate; more work is required to obtain better
relationships between the magnetic surface current density in the
aperture plane and the z-directed field in the radiating wall of the
cavity. ,

The corresponding far-zone magnetic fields are given by

E E
B ow -t . T e (2-62)
il
(o]

b Zo
where Zo = 376 Q is the free-space impedance.

Finally, it is observed that the real radiated power obtained by
integrating the real part of the power density around the radiating wall
of the cavity (eqn. 2-20) will be equal to the real radiated power
obtained by integrating the Poynting vector over a far-field hemisphere
minus the real power appearing in the surface wave traveling in the

dielectric. P
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3.0 NUMERICAL TECHNIQUES FOR THE INTERIOR PROBLEM

It was proposed originally that the most efficient numerical method

for solving the interior problem was the Unimoment-Monte Carlo Method
[Coffey, 1976; Coffey & Carver, 1977] implemented on a medium-size
hybrid computer. This technique was tested during the period 10 April,
1978 - 30 June, 1978 and was found to perform quite well on simple
boundary value problems [Coffey & Carver, 1978]. However, it has been
decided to abandon this unique method in favor of more traditional
techniques because (1) the hybrid computer at NMSU was being repaired
during the period 30 June, 1978 - 15 September, 1978 and was
unavailable for research, and (2) one of the principal investigators
(ELC) terminated employment with NMSU and a more traditional technique
seemed to be required which would not depend on his expertise in the
hybrid computer/Unimoment-Monte Carlo area. During the period 15 Sept.

to 1 Nov., 1978 a search for alternative computational methods was

undertaken with the goal of finding a method which would allow the goals

of this study to be fulfilled while overcoming the difficulties listed

above. Three techniques were considered:

1. The method of moments [Harrington, 1968], which would be used
to calculate electric currents induced on the surface of the
patch, from which the far fields could be found using the
magnetic vector poteﬁtial method.

2. The finite difference method, in which differential equations

are approximated by difference equations. These are solved for

the electric field at the perimeter of the patch, and the

far field may be obtained by using the electric vector potential.

3. The finite element method [Strang & Fix, 1973], a variational
method in which the minimization process automatically seeks
out the solution which is '"closest'" to the true analytical
solution. The far field is calculated by the same method as
in (2).

Of these three, the finite element method was chosen mainly because of

the generality of the technique (many different patch shapes may be
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considered) and the mathematical integrity inherent in the method
(unlike the method of moments, which only may converge - and sometimes

to the wrong solution).

3.1 Mathematical Development and Numerical Implementation

Maxwell's two curl equations may be combined to form the Helmholtz

equation (with zero charge density):
25 23 % §
VE + k_ E = jwuJ (3-1)

where kg = ZN/XO = quoeo in free space. The Helmholtz equation itself

does not couple together the rectangular components of E, i.e.

2 2 i
VZE + k. E_ = juul
2
V2E + k° E = g (3-2
g T hg By & Jun, )
PO g
v Ez ko Ez Jmqu

However, the boundary conditions may couple the rectangular components.
For example the radiation condition requires that the radially directed
component of E (Er) vanish properly at infinity. Since Er is composed

of (sin6 cosd:)Ex + (sinb simb)Ey + coseEz, the components of E are coupled
through the radiation condition. If a vector problem is to be avoided,
then tﬁe boundary conditions specified in the problem must contair only
one rectangular component of E. The report by Lo, et. al. (1977] assumed
that aEz/an = 0 (open circuit at radiating edges,'or Neumann boundary
value problem) and obtained fairly good results for a variety of patch
shapes. This present work assumes an impedance boundary condition on Ez

(Robbin boundary value problem):

3Ez
—+aE =0 (3-3)
z
an
Finally, it is assumed that Ez does not vary with z. This is a
fairly safe assumption for the lower-order modes, but is risky for
higher-order modes. By making this assumption, it is possible to reduce

the original three-dimensional problem to a two-dimensional problem
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of a partial differential equation (PDE) plus boundary conditions (BC):

2

”
u l

u
y*©

@
w

K
+ +k7u = joud, (PDE)

d
il

(3-4)

3
55 +au =0 (BC on patch perimeter)

where for simplicity, the variable u has been substituted for Ez'
The equivalent variational formulation of (3-4) is to minimize
the functional (Stramg & Fix, pp. 70-71, 1973]:

I(v) = J J(vi - V)Z, - k2V2 + 2jmquv) dA + § a v2 dL (3-5)

interior perimeter

for all permissible functions v(x,y). The particular function v*(x,y)
which minimizes (3-5) is the 'best'" solution to (3-4). Details of this
development may be found in Strang & Fix [1973].

Three tasks remain in order to solve the problem. First, a set of
"permissible" v functions must be determined. The goal is to choose trial
functions wl,wz,...wN, and from among their linear combinations
§quj to find the one which minimizes (3-5). In theory, there always
exists a set of trial functions which is complete, but it may be difficult
or even impossible to compute with them. The underlying idea of the finite
element method is this: divide the patch into smaller pieces such as
triangles or rectangles. Then within each piece the trial functions are
given a simple form: all trial functions are zero except one which is
usually a polynomial. Boundary (continuity) conditions are imposed
locally, along the edge of a triangle or rectangle rather than globally
as in the classical Ritz method. The approximation of the solution may be
refined, if necessary, not by including more complex trial functions, but
by further subdivision of the patch. A digital computer is ideally suited
to this task.

Second, the integrals in (3-5) must be computed for each trial function

in terms of still-to-be-~determined parameters. For the case at hand these

s
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parameters are the nodes of the subdivisions, but for other physical
problems, the parameters may represent other quantities. The integrals
in (3-5) are particularly easy to compute since each wj is zero except
within one subdivision.

Finally, the problem must be put into a form that can be solved
by a computer, as hand calculation is too tedious and time-consuming.
This form is given symbolically by [Strang & Fix, 1973, p. 32]:

'kg - 29"F = o (3-6)

where Q is the column matrix of coefficients (the solution), K is the
finite element matrix arising from (3-5), and F is the forcing function
column matrix, the linear (in v) term of (3-5). Equation (3=6) has a

minimum for
e "L (3-7)

and (3-7) is the matrix problem to be solved.

The eigenvalue problem (with the eigenvalue A = —kz) may be set up as

K, Q = AK,Q (3-8)
where 51 is obtained from
J J(vi + vi) dA + § a v2 dl (3-9)
interior perimeter

and K, 1s obtained from

J Jvz dA (3-10)

interior

Notice that the impedance boundary value a does play a role in the eigen-
value determination while the forcing term jquz does not. The eigenvalues
and eigenvectors of (3-8) may be obtained by using standard subroutine
libraries (SSP or IMSL for example - see list of references).

The calculation of the 51 and K, matrices for a general polygonal
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microstrip antenna has been implemented in the computer program MICRO,
a listing of which '‘can be obtained from the authors . The important
inputs to this program are (1) the number of triangular subdivisions
made to the original patch, (2) the numbers of the three nodes which
define each triangle, (3) the total number of nodes, and (4) the

X-y coordinates of each node. From this data, the program calculates
the LS} and K, matrices for the Neumann problem. If certain nodes are
constrained to a field of zero (Dirichlet condition) these node numbers
are also entered. The eigenvalues of the resulting generalized matrix

problem are computed and checked by IMSL subroutine EIGZF and printed.

3.2 Numerical Difficulties Overcome or to be Overcome

3.2.1 Matrix Calculation for Irregular Polygon Patches

To utilize the full power of the finite element method, the computer
programs written to implement the technique must be general enough to handle
a variety of geometries. For regular geometries such as the rectangle,
circle, etc., it is simple enough to devise computer programs that will
automatically partition the regular region into appropriate subdivisions.
On the other hand, for general polygonal microstrip antennas, such a program
would be unwieldy at best and not general enough at worst. This is
particularly important in the case of patch antennas because it is the
unusual geometry that is often so interesting. For example, there is a
five~-sided polygon patch which can be excited at a single feed point to
give right circular polarization, at a second point to give left circular
polarization, and at a third point to given linear polarization [Weinschel,
1975]. To make the MICRO program as general as possible the so-called
area method [Strang & Fix, 1973, pp. 90-97] was used rather than the
node method more familiar to those who work with moment methods.

The area method works as follows. Each triangular subdivision area is
taken, one at a time, and the three nodes which define the triangle are
determined. The integrals in (3-5) are performed with these three unknown
node values as parameters. The resultant expression is a quadratic and
may be put into the form of (3-6) to determine what is called EE, the
elemental K matrix. K is different for each area and contains at most

nine non-zero entries. The sum of all K matrices is the K matrix of (3-6).
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As an example, suppose one triangular area is bounded by nodes 1, 2, and

4. Then K has the form:
—e

r‘ S—
r x 0 x
x ® O =x 0
0 0 6 0
Ee = > -es ] ) R (3-11)
0 0

In this matrix, only kij # 0 for i,j = 1,2, or 4. A detailed compariscn
between the area method and the nodal method is given in Strang & Fix
L]

The second matrix computational difficulty was the evaluation of the

integrals of (3-5). These integrals are of the form

Prs = I J x° ys dA (3-12)

triangle

Holand and Bell [1969] have given explicit formulas for these integrals,
keeping the origin of the local (x,y) system at the centroid of the triangle.
For r + s < 6, '
) S ToB ) B
Prs cr+s A (XlYl + XZYZ + X3Y3) (3-13)
where (Xl’Yl)’ (XZ’YZ)’ (X3,Y3) are the vertices of the triangle in the
=0 s i 1T e, m -

il 2 3 4
= 2/105. Other possible coordinate systems and formulas are found

centroid system, A is the area, and e = L@
1/30, cg
in Strang and Fix [1973, pp. 90-96].

3.2.2 Impedance Boundary Conditions

The impedance boundary condition is easy to handle numerically once
the impedance parameter a(x,y) of equation (3-4) has been determined

theoretically. This is related to the wall admittance per unit length.
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Computationally, terms are added to the K matrix corresponding to that
portion of (3-5) containing a. If the patch antenna has been divided
into sufficiently many sections then o may be assumed constant over any
one section, and the integration is trivial. Otherwise the integration
may be handled numerically.

One significant problem must be dealt with whenever o is imaginary or
complex (indicating that energy is being radiated from the cavity walls):

the K or K. matrices become complex. For the radiation problem this presents

3
no difficulty since complex arithmetic may be used in the matrix inversion

routine. However, for the eigenvalue/eigenvector problem, only real arith-
metic routines have been found. Hence, a conversion from an N x N complex

problem to a 2N x 2N real problem must be performed. Mathematically, this

is trivial but such an increase in matrix size may require over times as

much computer time.

3.2.3 Eigenvalue/Eigenvector Computation

Up to this point all eigenvalues and/or eigenvector calculations have
been made by using IMSL subroutine EIGZF. However, to increase the size
of the problems now being solved or te include complex matrices in the
subsequent work under this grant, a different approach must be taken. The

"subspace iteration."

most promising technique thus far found is called
It is possible to compute the first p eigenvalues/vectors in about 8

iterations if the subspace dimension £ was
£ = min(2p,p+8) (3-14)

Since only the lower few modes are of importance in microstrip antenna
work (and the higher modes are just numerical garbage) this technique seems
to be the most promising. Briefly, to solve A X =AM X , start with an

eigenvector guess of Kn— , which is a matrix with £ orthonormal columns.

1

Solve K'Y =MX Then solve the eigenvalue problem
— - - —r

1

x T e
G EX)8 = v HX)Q (3-15)

The v, are the approximate eigenvalues and the new matrix En of approximate
eigenvectors is formed by multiplying Xn with the £xf matrix of eigenvectors

of (3-15). Since equation (3-15) is of only dimension £, subroutine EIGZF
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may be used efficiently here. For example, suppose the first four modes
are needed in a microstrip problem. Then by (3-14), £ = 12, and only

about eight 12 x 12 eigenvalue problems need be solved.

3.2.4 Size of Matrices versus Core Memory

At PSL only about 140K bytes of computer storage are avilable for

matrices K. and K This limits the size of K. and K, to about 132 x 132

5
four-byte iords. However, most of the entrieslin eitier matrix are zero.
For example, in a regular triangular partition there are at most seven
entries per row regardless of the size of the problem to be solved. To
utilize more effectively the available storage area, a linked list sparse
matrix routine has been written following the guidelines of Wexler [1978]
and Zollenkopf and Reid [1971]. This routine has been tested for the
simple case of the static Dirichlet problem within the rectangle. The
test, while verifying the integrity of the program, also illustrates the
tremendous savings in computer memory that can be obtained. For the

test case, a ten-to-one reduction in memory was achieved.

One of the advantages of using a sparse matrix program is the ease
with which the program may be combined with subspace iteration. Subspace
iteration requires only £x{ matrices (see 3.2.3) where £ is small. Thus

the K. and K, data may be kept in a linked list rather than in a full dense

matrii, and ihe storage requirements may be kept to on the order of £xf.
As an example, consider the finite element solution of the rectangular
interior problem for which one hundred (10 x 10) interior nodes have been
specified. The lowest three modes are desired. Using traditional matrix
techniques, two 100 x 100 matrices would have been needed to solve for the
eigenvectors and eigenvalues of the problem, or about 80K bytes of memory.
However, all but 460 entries in either matrix are zero. Sparse matrix
techniques utilize algorithms in which none of the zero entries need be
stored. Instead, two auxiliary tables are used. For the above example,
less than 7.6 K bytes of matrix space plus 3.8 K bytes of table space
would be required, a savings of 86%Z. (In addition, solution times are
generally more rapid, offering further savings in computer resources.)

The use of subspace iteration gives a great reduction in computer time
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because only the lowest three modes are needed in this example. Using
equation (3-14), £ = 11. Hence, eight 11 x 11 eigen-problems need be
solved versus one 100 x 100 eigen-problem. Since solution times vary at
least on the order of Nz, this represents a savings of 907%. On the
PSL IBM computer this represents a savings of 14 minutes for a 51 x 51
problem.

Finally, it should be noted that the method of moments generates
in general full, dense matrices, and sparse matrix techniques cannot be
used. This is because most moment method problems arise from integral
equations whereas most finite element method problems arise from partial
differential equatiomns.

At this writing neither the sparse matrix routine nor the subspace

iteration program have been implemented per se into the MICRO program.

33 Handling the Feedpoint

A microstrip antenna is usually fed in one of two ways: (1) coaxially
from beneath the ground plane, or (2) on the edge of the patch by a micro-
strip transmission line. Each method of feeding may be handled within the
framewor}. of the present mathematics.

The coaxial feed may be modeled as a point current source at (xo,yo)

fytde See. 2:3.5];
Jz(x,y) = Jo §5(x - xo) S(y - yo) (3-16)

and may be treated as a forcing term in equations (3-4) and (3-5). The
integrals for the F-matrix of (3-7) are simplified because of the Dirac
delta functions. It has been assumed that Jz has no z-dependence due to
the relatively small spacing (much less than a wavelength) between patch
and ground plane on most microstrip antennas. This assumption may not be
valid for feeds placed near an edge or horizontal metallic struction. In
these cases, a more rigorous feedpoint attachment theory must be used
[Newman, 1978].

The microstrip line feed may be handled via the boundary conditions.

Over the width of the line, assume that

E,(x,y) = E_ (3-17)
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and elsewhere use the impedance boundary condition discussed in Sec. 3.1.
The effect of (3-17) is to constrain one or more unknowns to the value
Eo; this has been discussed previously in Sec. 2.3.5. These node values
are then removed from the K matrices and transferred to the F matrix

as equivalent constants (knowns). While this formulation requires that
the boundary conditions be mixed (a rather intractable theoretical
problem), mixed boundary conditions are not at all difficult to handle

numerically.
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4.0 NUMERICAL RESULTS

4.1 The Rectangular Patch

4.1.1 Closed Cavity Formulation (Neumann Boundary Condition)

Consider a rectangular microstrip cavity of length a and width b,
as shown in Fig. 4.1. If there is no radiation out the side walls, the
Hx component of the magnetic field will be zero on the y = 0 and y = b
walls; the Hy components of the magnetic field will be zero on the x = 0
and x = a walls. The mode vectors (c.f. Sec. 2.3.5) are TM to z and

for this Neumann boundary condition are given by

Eﬁn =z T cos EEZ cos 225 (4-1)
vYeabt
1 ) A
‘h = — {n x %E-sin E%X cos Bgﬁ -y %1 cos E%X sin 225 )
jwu vYeabt J
(4-2)

where

2 1f m # 0 and n ¥ 0

= (4-3)
an V2 ifm=0o0orn=0

which satisfies the orthonormality condition (2-29). The corresponding

resonant wavenumbers kmn are given by

™ /Qmﬂ/b)z + (ar/a)? (4=4)

from which the resonant frequencies may be.obtained by
k

fmn a Ti— (4-5)
2nvYue

The magnetic current distribution at the four edges is computed from
(c.f. eqn. 2-46):

M =2zE xn (4-6)

s z
where E  is the z-directed electric field at the radiating wall.
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modes.
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The resonant wavenumber kmn

subdivisions. Two points are noted:

greater than the true values.

may also be computed numerically, using
the finite element method outlined in Section 3 of this report. To
illustrate the comparison, consider a rectangular microstrip cavity with
a =10 cm and b = 20 cm; the interior dielectric is assumed to be air.
Table 4-1 compares the resonant frequencies calculated using (4-5) to

that computed from the method of finite elements using 100 square

1. The resonant frequencies computed by finite elements are

2. As the mode number becomes higher, the error becomes greater.

Table 4-1

Comparison of Computed and Theoretical Resonant
Frequencies for Rectangular Microstrip Cavity
with b = 2a = 20 cm.

Mode Number Resonant Frequency
(m,n) True Finite Elements Apprcx.
(0,0) 0 0
(1,0) 750.00 MHz 750.48 MHz
€0,1) 1500.00 1502.26
(2,0) 1500.00 1503.76
(L,1) 1677.05 1720.83
(2,1) 2121.32 2211.62
: (0,2) 3000.00 3268.77

.

39

Both phenomena are characteristic of the finite elements method.

However,

for the microstrip antenna problem, neither is of concern because (1)
sufficient subdivisions can be taken to insure that the computed resonant

frequency is precise enough [Strang & Fix, 1973, Ch. 2] and (2)

Since there is no radiation, the mode vectors (4-1) form a complete

‘ only the first three or four modes are of practical interest.
‘ orthonormal set of discrete eigenfunctions (c.f. Sec. 2.3.5) which can be

!
L used to represent any arbitrary interior electric field, i.e.




| e

M el e e e

E = I I A e A (4=7)
b4 m=0 n=0 mn mn

This double Fourier series has coefficients which may be found using
the orthonormality property of the modal vectors; since this is a
straightforward exercise in mathematical physics, only the result will
be given. Assuming the cavity is fed by a z-directed filamentary current
located at (xo,yo), the total interior electric field is given by

=
s 5 Ty & e 90 a8 (4~8)
A mn o0’ Yo’ %% i
0

w2
mn

If the cavity thickness is small, I(z') = Iin; furthermore, the input
voltage 1is Vin = -t Ei(xo,yo) so that the input impedance may be calculated
from (2-28):

2
v, e (x ,y)
z, = fiﬂ - dptt 5 oA R g (4=9)
in m,n w? - w2
Thus, for the rectangular cavity
o WY 5 DX
s ol cos” —— cos
2 ] — 7 2 o
Zin Jeap - E “mn 2 2 (=20)
m=0 n=0 w -

The input impedance is purely reactive since no allowance for dissipated or
real radiated power has yet been made. This will be considered in the next
gsection.

It should be remarked that the shape and polarization of the far-field
pattern can be fairly accurately predicted using only the magnetic line
source model, i.e. eqns. (2-58) through (2-61), with magnetic surface currents
computed from (4-6) and (4-1). This simple approach works well for predicting
the pattern shape for discrete modes, as has been pointed out by Lo, et. al.
1397775,
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4.1.2 Radiating Cavity Formulation (Impedance Boundary Condition)

Since the microstrip antenna cavity radiates real and reactive
power, the interior fields must satisfy an impedance-type boundary
condition at the radiating walls. If the wall admittance is purely
susceptive, then the eigenvalues kx (similar to nm/a for the discrete
case) and ky (similar to mm/b ) will still be real-valued and discrete.
However, for the radiative condition, the wall admittance is complex.
It may be shown that the eigenvalues are given by the coupled trans-

cendental equations:

2 kx ax
tan k. a = —— (4-11)
X k2 - a2
X X
2k @
tan k b = —L—7 (4-12)
Yy k2 ¥, az
Y y
where
K =y ke AR (4-13)
> Jh
and
21rZo t
e ® 2 wa e (4-14)
o b
ZTrZ0 v .
= " (4-15
a, = J i ol ( )

with Yw being the wall admittance taken on the appropriate wall; Z0 = 376 Q
and Xo is the free~space wavelength.

In the dominant TMlOO mode, effectively only the y = 0 and y = b
walls radiate; furthermore, the electric field in the radiating walls is
essentially independent of x so that the wall conductance may be approximated
by that of a parallel-plate TEM waveguide opening onto a large ground plane;
the resulting conductance is given by [Harrington, 1961, p. 183]:
G, = 37 [1 - 1.645(t/x Ala/A )1 (V) (4-16)

w

For electrically small substrate thicknesses, this becomes
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Gw = 0.00836 (a/ko) 45)) (4-17)

This is plotted in Fig. 4.2 along with the conductance of a slot antenna
radiating into half-~space (Derneryd, 1976); it is seen that the conductance 1
computed from (4-17) is roughly double that used by Derneryd for a slot
antenna.

The wall susceptance may be computed from an expression for the
capacitance of an opeﬁ microstrip circuit [Hammerstad, 1975; Derneryd, 1976]
and may be written in the convenient form

M a
B, = 0.01668 — 1~ ¢ U) (4-18)

X e ?
o

where

a
- 0.412(8‘3 i '300—‘[ il (4-19) !
{_Ee i .zssJ[_% + .813 )

v 4
t

and where €, is the effective dielectric constant given by [Schneider, 1972]:

e +1 e -1
. £ 3 o [1 & lOt}
e a

2 2

-1/2

(4-20)

Fig. 4.3 is a graph of both the susceptance computed from (4-18) and that of
the parallel-plate waveguide radiating into a half-space; both are for an
assumed air dielectric.

For the TM

mode, kx = 0 and the resonant frequency may be computed

100
from

k
£, = 4.775 —L-  (CHz) (4=21)

€
e
where ky (in cm-l) is obtained from a solution to the transcendental equation
(4-12) and where ay

boundary condition is to produce a dependence of the resonant frequency on 5

is computed from (4-15). The effect of the impedance i
the dimension a; this is not found in the Neumann condition (c.f. eqns. 4=4

and 4-5 with n = 0). This theory produces good agreement with experimentally-
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into a half-space (Harrington, 1961).
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measured resonant frequencies at both L-band [Lo, et.al., 1977] and S-band,
as is shown in Figs. 4.4 and 4.5. 1In both cases, it is noted that as the
dimension a is increased the resonant frequency decreases; this can be seen
more clearly in Fig. 4.6 which is a graph of both left- and right-hand
sides of (4-12). The solution for the TMIOO mode in the Neumann condition
is kyb = m; however, with an impedance condition, this becomes slightly less,
typically 967% to 987% of w.

The values of a are complex, although the real part is normally
much larger than the imaginary part (because of the susceptance being larger
than the conductance). Thus, in solving (4-15), only the real part of a is
used and the eigenvalues are approximately real.

The interior fields and input impedance may be calculated using a
modification of the Fourier series expansion presented in Sec. 4.1.1 by

letting the resonant frequencies become complex [Harrington, 1961, p. 435]:

e i ¢ _
) &> w (1 + Q) (4-22)

where W is the Yano resonant frequency. In the vicinity of resonance,

(4-10) becomes™

mmy nmTx

2 2

wt ¥ cos 2 cos
3 an b

Zin =] XL gl

- (4-23)
¢ ab w? - w;n(l + % )

where XL is the series inductance of the probe feed connected to the micro-
strip patch, i.e.

376 &
XL = tan Y g £:8) (4-24)
[e]

The second term of (4-23) is of the same form as the input impedance to a

parallel RLC circuit as shown in Fig. 4.7; thus,
2

Q an t mmry 2 nrx,
& 2 4-25
R s cab~ °°%° % cos® — ( )
mn
1 x2 ¢t mmy nmx
= mn 2 (8] 2 (o) 4-26
) . b °°%° 3 cos® — ( )
1] mn

* 1t is assumed here that on1§_bne resonant mode is excited, i.e. no
closely-spaced modes or degeneracies.
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Fig. 4.4 A comparison between experimentally-determined
resonant frequencies and theoretical values
based on an impedance boundary condition,
L-band microstrip patch fed by microstrip
transmission line (Lo, et. al., 1977].
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‘ Fig. 4.5 A comparison between experimentally-determined
resonant frequencies and theoretical values
based on an impedance boundary condition.
S-band microstrip patch fed coaxially; experimental

’ values include compensation for probe series

inductance effect.
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HEAT LOSSES

L = INDUCTANCE ASSOCIATED WITH ENERGY STORAGE IN
CAVITY

C = CAPACITANCE ASSOCIATED WITH ENERGY STORAGE IN
CAVITY

Fig. 4.7 Equivalent circuit model of microstrip cavity
fed by coaxial probe.
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Also it is noted that

it
w2 B e

mn (4-28)

L C

and
Q=w_ RC ' y (4-29)

The resistance may be computed by noting that at the resonant frequency
(where the second term in 4-23 becomes purely real), the input resistance is

Rin i Rc % Rd +R (4=30)

where RC is the equivalent resistance associated with dissipative losses in
the conductors (c.f. eqn. 2-17) and Rd is the equivalent resistance associated
with dissipative losses in the dielectric; R is then the reciprocal of twice

the conductance of one slot (eqn. 4-17), i.e. for the dominant mode
R=59.8 (A / a) (2) (4-31)

The first term in (4-27) will be recognized as the d.c. capacitance of a
parallel-plate capacitor of area ab and thickness t.

It is emphasized that in (4-23) the series inductance term is
associated with the coaxial probe and results from coupling to the TM field.
For a microstrip antenna fed by a microstrip feedline this term is not
present, and the input impedance is given by the second term of (4-23).

Fig. 4-8 compares the input impedance of the present model with the
transmission-line model of Derneryd [1976] for a microstrip-fed patch with
a=6.858 cm, b =4.140 cm, t = 0.1588 cm and €, = 2.62. Two significant
differences are noted. First, the input resistance at resonance from (4-23)
is 118  whereas that from the Derneryd model is 220 Q; this results from

the different models used for the slot conductance. Second, the resonant
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Fig. 4.8 Comparison of Modal Expansion Model and Transmission
Line Model for a microstrip-fed patch with a = 6.858 cm,
b =4.140 cm, t = .1588 cm, and €. - 2+02.
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frequency for the modal expansion model is predicted to be 2194 MHz,
whereas the Derneryd model predicts 2172 MHz. The measured resonant
frequency for this antenna was 2195 MHz, in nearly perfect agreement with
the modal expansion model.

For the TMlOO mode, the impedance is predicted to be independent of
the probe position xo; this is verified by experimental data [Weinschel &
Lanphere, 1973] for feed points ranging from the center to near the corner.

When the patch is fed by a probe (coaxially), the inductive term must
be retained in (4-23), which has the effect of moving the impedance circle
toward the inductive side of the Smith Chart. For a typical substrate with
£, " 2.62 and t = 0.1588 cm, XL = 7.7 @ at 1 GHz, 15.5 @ at.2 GHz, and
80.1 2 at 10 GHz. Since practical impedance measurements are often made
with coaxially-fed patches, it is important to correct such measurements
for the inductive effect, particularly at S-band or higher.

As the feed-point ¥, is moved inward toward the center of the element,
the resistance decreases in accordance with (4-25); the capacitance increases
but the inductance decreases in such a way as to maintain the same resonant
frequency and the same Q.

Figs. 4.9 - 4.12 compare measured impedance data with theoretical
values (based on 4-23) for a patch with a centered feedpoint at several
inset distances ranging from O cm (edge) to 1.524 cm. The agreement is quite
good, and seems to validate many of the preceding assumptions. Fig. 4.13
compares experimental [Dunn, 1978] and theoretical impedances for an edge-fed
L-band patch and again the agreement is good.

One restriction on the present formulation, which assumes a single
well-isolated resonant mode, is that it becomes less accurate as the
dimension a becomes less than b. Thus, the second term in (4~23) includes
only one mode; future formulations will include multiple modes and provisions
for estimating the effect of feed probe slight positioning errors on

degenerate modes (e.g. TMOlO and TMlOO for a square or nearly~square patch).
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The power dissipated in the rectangular patch may be divided into
a portion associated with conductor losses and the remainder caused by
dielectric losses, as described in eqmns. (2-16) - (2-18). By using the
preceding modal expansions, it is easy to show that at a well-isolated
resonant frequency, the power lost as heat in the conducting walls

%
(assumed to be copper) is :

- 2 =
Pdc lIinl Rc (4-32)
where
R_ = 0.00027/F = Q* (R ) (f = frequency in GHz) (4-33)
The power lost as heat in the dielectric is
= | 2
Pag = 1140l %Ry
where
tA
_ tan § o 2 & b
Rd = 30 —E;—— = Q Q) (4-35)

where e; is the real part of the relative permittivity and tan § is the

loss tangent. The input power is

P, = |I, |%R, (4-36)

in in in

The radiation resistance referred to the input is therefore

R R = R ="K
c

in d

where

R
= = = 2 = L 7|2
Also, Q = Q wW/ (Re P ) where Re P_ GWIV] and W ECT|V| and where

CT includes both the patch and edge-effect capacitance. This gives

(4-37)

59.8 (Ko/a) ¢ Q) (4-38)

Q = (erb/2t) + (2€eA2/t) (4-39)
Thus, the antenna efficiency is
P P R *+R
nel=- S a®S e 90 < d (4=40)
b R
in in

*
It is assumed that the patch is fed on the edge and in the TMlOO mode.
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As a numerical example, let a = 6.858 cm, b = 4.140 cm, t = .1588 cm,

s; = 2.62 and Ao 13.6 cm. Then, from (4-33), Rc =.38 Q and from

(4-38), we get Q

37, R =119 Q. Table 4-2 shows the effect of various

loss tangents on both Rd and the antenna efficiency .

Table 4-2

Antenna Efficiencies for Microstrip Patch

Loss Tangent Equiv. Diel. Resistance Efficiency (Loss)
tan § Ry -n

0.0001 0.12 5 99.58 % (.02 dB)

0.0005 0.60 99.18 (.04 )

0.001 1.19 98.68 (.06 )

0.005 5.96 s4.67 (.24 )

0.0k 11,92 89.66 (.47 )

Fig. 4.13-1 is a graph of the antenna efficiency as a function of substrate
thickness for several loss tangents and for the microstrip patch in the

above example.
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4.1.3 Multiple Mode Effects

In the preceding formulation of (4-23) for the impedance of a
rectangular patch, it was assumed that there was essentially one resonant
mode whose bandwidth was much less than the frequency separation to the
next adjacent modes. However, for some microstrip antenna designs, this is
not necessarily the case; for example, a square patch fed at a corner
can excite both the TMlOO and TMOlO modes in phase and at *he same
resonant frequency.

Consider a corner-fed rectangular patch where the dimensions a and b
are approximately the same. The total input impedance is the sum of the

impedances of each mode; neglecting the inductive reactance of the probe and

using only the second term of (4-23) with W e 0, the input impedance is

Zin = ZlOO + ZOlO (4-40a)
where
-2jwt
Z = - (4-40b)
i eab [0? - w2 (1 +4 )]
10 QlO
-2jwt
Z = - (4-40c)
e eab [w2 - w2 (1 +< )]

It is assumed that all other modes are short-circuited.

This model raises the possibility of increasing the bandwidth of the
patch by stagger-tuning the modes. The resonant frequency “10 is determined
primarily by the dimension b and the resonant frequency w is determined

primarily by the dimension a. =
Figs. 4-14 a,b, and ¢ show this effect by comparing the impedance

behavior of square and nearly-square patches, all with a = 4.14 cm,

t = 0.1588 cm and e ™ 2.62. Fig. 4-lb4a shows the plot for b = a = 4.14 cm

(square patch), which is the degenerate case. Fig. 4-14b is for b = 4.328 cm

and shows a loop which is associated with the frequency band where Z

100
and ZOlO are about the same. Fig. 4-l4c is for b = 4.500 cm and the loop is
seen to become larger at the same time the resonant frequency decreases.
This multiple-mode excitation technique may hold promise for some improvement

in bandwidth.
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microstrip patch with a = 4.14 cm, b = 4.328 cm.
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Multiple-mode excitation can also produce various polarization states
of the antenna. For a square corner-fed patch, the polarization is linear
with the E-plane oriented along the diagonal containing the feed. For
corner-fed rectangular patches with a # b, however, the possibility exists
of producing circular polarization with a single feedpoint.

By using (4-8) and (4-122), the interior fields of a corner-fed

rectangular patch may be written as

o “ ijin cos E%X cos EEE
B(X,y) = 2 ——— L 73 - (4-40d)
eab my,n w2 - w2 (1 + <)
mn Q
mn
For a patch with dimension a slightly less than b, the TM and T™™

100 010
modes will have closely-spaced resonant frequencies so that only two terms

of the series are retained:

= - ij,n cos E% cos Ef
E(x,y) = 2 t : + -
: gab w? - wio(l + % ) w? - wél(l +'% )
10 01
(4=40e)
The magnetic surface current on the y = 0 wall is thus given by
_ se ol 1 cos EE
e : + . (4-40f)
o o w? - m%él + % ) w? - wél(l 2 % )
10 Ok
and the magnetic surface current on the x = 0 wall is given by
g iji cos 1% 1
e ab“ + - (4-40g)
sy L w2 - io(l + % ) w? - wgl(l + % )
10 01

The second term in (4-40f) and the first term in (4-40g) have no net effect
on the polarization in the broadside direction.

To achieve circular polarization, [Msxl = ]Msyf and their phases must
differ by 90°. _

By using (4-40f) and (4-40g) it is found through trial-and-ec::-or

numerical evaluation that a corner-fed patch with b/a = 1.029 should produne
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approximately circular polarization in the broadside direction. A similar
prediction has been made by Kaloi [1978] although no ratio of b/a was given
and no computed or measured axial ratios were presented. The numerical
procedure for the prediction of circular polarization is to enforce the

above conditions, i.e.

|o? - w2+ g—)l - lo? - w3+ 3] (4-40h)
10 01
and
1 w3/, _1 —3901/%;
tan —?——2-— - tan —2—2— - % (m/2) (4=-401)
= B S

As an approximation to the resonant frequencies w and w the Neumann

>
boundary condition can be used so that Wi = ﬂ/b/%g and g;l ~ m/avue.
Then QlO = wlORlOclO where RlO = 59.8Xo/a and ClO = gab/2t; similarly,
QOl = wOIROlCOl where ROl = 59.8Ao/b and COl = ClO' These equations are
easily solved by iterative means using a programmable calculator.
As an example, let a = 4.14 cm and b = 4.26 cm. The predicted on-axis
axial ratio vs. frequency is shown in Fig. 4-15. If the patch is fed at
the P O ey 0 corner, the polarization is left circular; if the patch
is fed at the x0 = 0, y0 = b corner, the polarization is right circular.
The computed polarization bandwidth (defined as the frequency spread between
axial ratio values 3 dB greater than the minimum) is 22 MHz.
A corner-fed nearly-square patch with the above dimension was constructed
to test the validity of the above theory. The dielectric constant was 2.62,
the thickness was 1.588 mm and the patch was fed at the e O P 0 corner
by a coaxial probe (SMA connector). The measured axial ratio vs. frequency
is shown in Fig. 4.15. The measured impedance diagram is shown in Fig. 4.15-1
First, the agreement between theoretical and experimental axial ratios
is very good. Second, it is observed that the excitation of the two modes is
in evidence from the presence of the cusp (small loop) at 2200 MHz. It is
also noted that the cusp occurs where the axial ratio is minimum. The extensi
of this principle relating polarization and impedance for multi-mode micro-

strip patches is straightforward.
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AXIAL RATIO (dB)

0

THEORETICAL

O== «= ==O MEASURED

RCP FEEDPOINT

a=4.14 cm
\\

N
b= 4.26N
AN )

LCP FEEDPOINT

] | | 1 1

2160 2180 2200 2220 2240 2260 2280

. 3
’ ”
s k. a

FREQUENCY (MHz)

Fig. 4.15 On-axis axial ratio vs. frequency for a corner-fed
microstrip patch with a = 4.14 cm and b = 4.26 cm.
Solid line is theoretical and dashed line is measured.
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4.2 The Circular Patch

Consider a circular microstrip cavity of radius a and substrate
thickness t, assumed to be electrically small. The orthonormal electric
field mode vectors, which are again assumed TM to z, satisfy the Neumann

condition for a non-radiating cavity and are given by

oL 4 - 5
e (p,9) = 2 J (k! =) cos n¢ (4-41)
BE av2emt A L
nr
where
V2 ifn=20
T (4-42)
1 ifn=1
and

' =
Jo(kor) if n 0

4 (4-43)

T B 9 1/2
———— 1
k' I (n+l+2k) Jn+l+2k(knr) n#0
nr | k=0

and where the eigenvalue kér is the rth-ranked root of the Neumann condition
1 ' - -
Iy (knr) 0 ] (4=44)

Table 4-3 lists in ascending order of frequency the eigenvalues for a

few of the lower-order modes [Abramowitz and Stegun, 1964].

Table 4-3

v 5t =
Eigenvalues of Jn(knr) 0

Mode Eigenvalue

(n,r) -

.84118
.05424
.83170
.20119
.33144
.70613
.01558

oOoNKHFHEFNONMMEO
v w w v w v v e
NHEHMHFHEHOOO
~NOLM e WWHEH O
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The resonant wavelengths are then calculated by
2w¢sr a
A = ————— (4-45)
o K
nr

Radiation patterns for the T mode have been measured and calculated

010
by Carver [1976] and more recently and completely by Lo, et. al. [1977].
The dominant TMlOO mode has a resonant frequency given by

c (1.84118)
fr = — (4=46)
2ma /E:

where c is the speed of light in vacuum. The normalization constant AlO
for this mode is computed numerically from (4-43) to be 0.33887. The
ElO mode is zero at the center of the patch and has a maximum amplitude
at ¢ = 0 and ¢ = m; however, the electric fields in the edge walls are
180° out of phase at these diametrically opposite points. Such a mode
produces a broadside pattern at the resonant frequency and has been used
successfully in practical array designs [Parks & Bailey, 1977]. This mode
may be excited by either a probe or a microstrip transmission line feed at
the edge.

As before, the total field of a probe-excited cavity can be expanded
in terms of the mode vectors. For a radiating cavity with a finite Q,
this becomes

e w te (o4 e (o.4)

E,(ps¢) = -1, QGuw I I (4-47)

af) pm - i
n=0 r=0 w wnr(l + 3 )

where (po,¢o) is the feed-point location. The input impedance is then

i
© ® te _(p,¢)
z, = jw I I Lo 0 (4-48)
n=0 n=r w2 - w2 (1 + 1 )
nr Q

In the vicinity of a resonant frequency, this becomes

2
te (b ,¢)
nrt o' 'o
Zin = j XL - Jw _E

w

(4-49)
2 1
- wnr(l - Q)
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Using A,, = 0.33887 along with eqns. (4-41) and (4-42), the mode vector
for this dominant mode is

1.6658

(e}
(o]
e1o(po’°o) = J1(1.84118 - ) cos b (4-50)

a Vet
The first term in (4-49) is the series inductive reactance associated with
the probe and is computed from eqn. (4-24). For a circular patch fed by

a microstrip transmission line this first term is not present. The second

term is of the same form as the impedance of an RLC circuit, i.e.

jw/C
zZ = 2 > gl (4-51)
ws - wnr(l + Q)
where
2 _
w . = 1/GEC) (4-52)
Q = R/(wL) (4-53)

Thus, substituting (4-50) into (4-49) and noting the analogies (4-51) -
(4-53), the following relatiomships are obtained:

Q 2,715t 2 Do
R = T T Jl(l.84118 —‘a‘) (4=54)
nr
E 2.775¢t 2 s
L = u)—_ *;z— J1(1.84118 _a') (4-55)
nr
ea’ -2 Py
G = — Jl (1.84118 —;-) (4-56)
2ol iDE

At resonance, the input resistance is equal to the reciprocal of the total
effective wall conductance Gw' An exact solution to this theoretical
problem of the wall admittance for this geometry has not been found by the
author; however, an approximate form will be given in a subsequent paragraph.
For a radiating cavity, the Neumann condition is not satisfied; the

impedance boundary condition means that (1) the eigenvalues and eigenvectors
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are no longer purely real, and (2) the resonant frequencies will be slightly
less than those obtained for the closed cavity case. The transcendental

equation for the eigenvalue of the TM 00 mode can be shown to be

1
\J 1 = - ' —
Jl(klo) a Jl(klo) (4-57)
) where
ZO Yw t
‘ G ——— (4-58)
o
and where differentiation is with respect to p, Zo = 376 Q, and Yw is the
‘ wall admittance. If Yw = 0, then (4-57) reduces to the Neumann condition
(4=44) for n = 1. By use of a recursion relationship, (4-57) can be written
l in a more convenient form as
i klO Jo(klo ) = (1 - aa)Jl(klo) (4-59)

'
10"
as given in Abramowitz and

To solve this equation for the eigenvalue k it is convenient to use

the polynomial approximations for Jo and Jl
Stegun [1961]; the appropriate value will be slightly less than the Neumann
condition value, i.e. 1.84118. Table 4-4 lists both the eigenvalues and

the fractional reduction in resonant frequency for several values of aa.

Table 4-4

Eigenvalues for Impedance Boundary
Condition and Fractional Reduction
in Resonant Frequency

aa l kiO , fr / fro
‘ 0 (Neumann condition) | 1.84118 1.00000
-.01 1.83345 0.99580
i -.02 1.82567 0.99158
-.02025 1.82567 0.99145
-.03 1.81780 0.98730
-.04 1.80988 0.98300
-.05 1.80190 0.97867
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The relationship of the values from (4-58) to the values tabulated can
be made directly if it is assumed that the wall susceptance is much greater
than the wall conductance; this is usually the case.

Since the power in the radiating walls varies as cos?4 for the TMlOO
mode, the effective radiating length is half the circumference. Thus, if
a is not too small, the relationships for a planar parallel-plate TEM
guide radiating into a half-space (eqns. 4-17 and 4-18) may be adapted to
the circular patch, replacing a (in the previous equations) with ma in

the present case, so that the wall conductance is

G, = 0.00836 7=  (U) (4-60)
o
The wall susceptance is adapted from the open ended microstrip capacitor

(eqns. 4-18) and is thus

B, = 0.0083% = e (U) (4-61)
0
where Al/t has been taken as 0.5.
As a numerical example, consider a circular patch with a = 6.75 cm,

t = 0.1588 cm, and TR 2.65. The resonant frequency for the Neumann
condition can be found from (4-46) as 800.0 MHz. From (4-61), Bw = ,0125U
and from (4-60), Gw = 0.00178U. From (4-58), o = -.003 cm-l. A solution
to the impedance boundary condition, with aa = -.02025, gives
ki = 1.82567 as shown in Table 4-4. This corresponds to a 99.145%

10
reduction in the resonant frequency, so that the predicted resonance is

793.2 MHz.

This example was chosen to correspond to measured data for a patch
of the same size [Lo, et. al., 1977, p. 36]. The measured resonant
frequency was 794 MHz, which is in nearly perfect agreement with the
above calculation. This appears to confirm that (4-61) is a good
approximation. Fig. 4.16 is a comparison between the theoretical
input impedance, based on eqns. 4-49 (without the probe inductance)
through 4-61, and experimental values measured by Lo, et. al.' There is
generally good agreement, except that the measured input resistance at

resonance is slightly larger than the theoretical value.
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Comparison between theoretical and experimental input
impedances to a circular microstrip patch with a = 6.75
cm, t = 0.1588 cm, and ., = 269
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4.3 The Pentagon Patch

In Sec. 4.1.3, it was pointed out that circular polarization is
theoretically possible from a microstrip antenna with a single feedpoint,
if two spatially orthogonal modes were excited in phase quadrature.

A practical example of such an antenna has been reported by Weinschel
[1975] who obtained circular polarization over a 1% bandwidth from a five-

sided microstrip patch, shown in Fig. 4.17. This antenna has been used in

an S-band cylindrical array producing circular polarization [Weinschel, 1975]

and in a UHF scanning array for buoy or ship communication to a satellite
[Weinschel and Carver, 1976].

A typical impedance plot for an S-band pentagon microstrip patch is
shown in Fig. 4.18. The loop at 2279 MHz is evidence of the existence of
two modes, as discussed previously in Sec. 4.1.3.

The modal expansion for the interior fields of such a polygon cannot
be carried out by the classical technique of separation of variables since
the boundary conditions cannot be imposed in a simple fashion. The method
of finite elements can be used, however, by application of the principles
discussed in Sec. 3.0. In fact, this antenna serves as an illustration of
the true power of the finite element method.

Table 4-5 lists the computed eigenvalues (using program MICRO) for
the first eight modes of a UHF pentagon patch whose first non-zero resonant
frequency was measured to be 469 MHz. The grid and nodes used for

computational purposes is shown in Fig. 4.19.
Table 4-5

Results of Finite Elements Computed

Values of Lower Eight Eigenvalues

and Resonant Frequencies for Penta-
gon Microstrip Antenna

n K f

n n
1 0 . 0
2 0.1046 cm 499 MHz
3 0. 1112 531
4 0.2902 1384.4
5 0.4595 2062.2
6 0.4799 2153.8
7i 0.7733 3570.2
8 0.8672 3891.3
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The resonant frequencies were computed assuming a Neumann boundary
condition (open circuit at walls) so that the computed values are
expected to be a few percent high. The measured fl resonance is 0.94
times the calculated value.

Fig. 4.20 is a graph of three of the computed modal E; fields
(eigenfunctions) in the radiating walls of the pentagon patch. Since
the open-circuit wall impedance condition was used, the mode vectors are
entirely real. The eigenvalues and eigenvectors for modes 27, 28 and 31
e = 0.1203 and 3. . k,

28 = K28 “27 " *27
= 0.13605 are closely spaced, indicating the possibility of a multiple-

are shown. It is noted that eigenvalues X

mode condition being produced by a single feed.

Fig. 4.21 illustrates the individual magnetic currents in each wall
for modes 27 and 28. The net effect is that mode 28 is vertically polarized
and mode 27 is horizontally polarized. The relative amplitudes and phases
of modes 27 and 28 would be determined by the feedpoint location and the
frequency. However, these preliminary results point strongly toward a
theoretical prediction of circular polarization for the pentagon patch, if

the feedpoint and frequency are properly chosen.
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Fig. 4.17 Pentagon microstrip antenna element which
produces circular polarization (after
Weinschel, 1975).
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includes effect of quarter-wave matching trans-

microstrip antenna [Weinschel, 1973].
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MODE 28
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=23.71% K28
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=.50 = 4.90
0.50%6.87
=3.43
0.55x9 K
=495 27
0.50 %6.87 MODE 27
=343

/ozx 258

= 0.23

0.56x9= 495

Fig. 4.21

Illustrating individual magnetic currents in each
wall for modes 27 and 28; also illustrating vector
sum for modes 27 and 28 - K - and K28 are within
1% of being perpendicular.

- e .-
”‘r} i -




S

5.0  CONCLUSTONS

This report has presented a method of analysis which can be applied
to microstrip antennas. The primary emphasis to date has been on the
prediction of the interior fields, since this is a more difficult problem
than the prediction of the antenna pattern.

For formulations based on a cavity model with open-circuit walls
(fields satisfying a Neumann boundary condition) both the interior mode
vectors and eigenvalues are real. However, thetmicrostrip patch presents
a wall admittance which is complex, with the capacitive susceptance
usually being several times the conductance. Thus, the mode vectors are
nearly real and the eigenvalues are nearly real. Solution of a trans-
cendental equation can very accurately predict the resonant frequencies
once the appropriate wall admittance is known.

The problem of finding the wall admittance of an arbitrary microstrip
patch shape has not yet been solved and emphasis should be placed on finding
solutions. However, an approximate formula has been found which uses the
conductance of a TEM parallel-plate waveguide and the susceptance of an
open-ended microstrip capacftor. This gives good agreement between
measured and calculated input impedances for the rectangular and circular
patches considered. The input resistance at the resonant frequency is
determined by the wall conductance, whecreas the resonant frequency is
primarly related to the patch dimensions and the wall susceptance.

For a patch fed by a coaxial probe, the input impedance to the patch
proper will differ from the measured input impedance to the coaxial
connector by a series inductive reactance term, given by eqn. (4-24).
This term must be known in order to correct measured impedances with a
probe to the true input impedances seen by a microstrip transmission line
used in an array design.

When a corner-fed nearly-square patch operates in a two-mode config-
uration with two closely-spaced resonant frequencies, it is possible
theoretically to obtain circular polarization over a 1% bandwidth. This
multiple-mode effect, discussed in Sec. 4.1.3, has been experiment-
ally confirmed at PSL.

The method of finite elements has been applied to the anaiysis of a
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five-sided patch which, when properly excited, can produce circular
polarization. This analysis, which is in a preliminary stage, confirms
the existence of two spatially-orthogonal exterior fields at broadside
and at two closely-spaced resonant frequencies. . The feedpoint problem
has not yet been solved for this geometry.

Both the classical expansion analysis and the numerical analysis
approaches will be continued. The finite elements program (MICRO)
will be expanded to include (1) sparse matrix algofithms to decrease
computer storage requirements and (2) subspace iteration to decrease

execution time.
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