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1.0 INTRODUCTION

I This report presents theoretical techniques which may be used in the

analysis and design of microstrip antennas. The involvement of the Physical

I Science Laboratory in the theoretical analysis of these electrically thin

radiators has been principally motivated by a practical requirement for

I better design techniques which could be applied to the development of

microstrip antennas for systems applications. Over the past seven years,

• 
I 

PSL has acquired considerable practical experience in the design of both

stripline and microstrip antennas; microstrip antennas have been produced

I in wrap—around cylindrIcal arrays for sounding rocket application

[Weinschel, 1975] and in planar—array versions for UHF coimnunication from
buoys and ships to geosynchronous satellites [Weinschel and Carver, 1976].

I Until recently , however, these designs have come from a combination of

experimental cut—and—try techniques supplemented by standard transmission—

I line theory applied to simple rectangular patches.

The microstrip antenna concept dates back some twenty—five years to 
*

I work by Deschamps (1953]. However, nearly eighteen years passed before the

work was renewed and reported by J. Q. Howell at NASA Langley Research Center

I ( 1972 , 1975], R. E. Munson at Ball Brothers Research Corporation [1972,
1975] and H D. Weinschel at the Physical Science Laboratory [1973, 1975].

Mathematical modeling of the basic microstrip radiator was initially

carried out by applying transmission—line analogies to simple rectangular

patches fed at the center of a radiating wall [Munson, 1974; Derneryd , 1976].

The radiation pattern of a circular patch was analyzed and measurements

reported by Carver [1976].

These earlier mathematical models, while giving reasonably good results

for center—fed rectangular patches, all shared some serious deficiencies : L
I (1) they consistently predicted resonant frequencies which were a few percent

off (usually on the high side) from measuted resonant frequencies, (2) they

I could not be adapted to multi—mode structures with arbitrary feed points

(such as corner—fed rectangular patches), and (3) they could not be adapted

to patches of arbitrary shape .1 The present analytical work began in January , 1977 and received ARO
support beginning in April , 1978. It has been directed along two comple— rI mentary paths: (a) for rectangular and circular patches , a modal expans ion

1 1
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I
method incorporating impedance boundary conditions at the radiating walls,

I and (b) for patches of arbitrary shape , a numerical approach based on the

method of finite elements~. The initial proposal for the numerical analysis

was to use the TJnimoment—Monte Carlo technique [Coffey, 1976; Coff ey and

j Carver , 1977]; however , for reasons discussed in Sec. 3.0, this numerical

technique has been abandoned in favor of the method of finite elements.

I During the course of this effort, a comprehensive report was received from

workers at the University of Illinois [Lo, et al., 1977] which used a

similar expansion method applied to impedance and radiation pattern analysis
of rectangular, circular and triangular patches. One of the differences

between the Illinois report and the present approach is that the latter
1 incorporates impedance boundary conditions at the radiating walls, whereas

I the former does not. The wall conductance used in the present report is

based on a parallel—plate TEM waveguide radiating into a half—space
[Marcuvitz , 1949; Harrington, 1961]. The wall susceptance is based on a

I formulation by Hammerstad [1975]. The result of this model is a prediction

of impedance vs. frequency behavior which shows very good agreement with

I measured results for rectangular patches; there is also good agreement with

measured results for  circular patches.

I This report begins with a discussion of a general mathematical frame-

work for the analysis of microstrip antennas. A discussion is then presented

i of methods based on the f ini te  elements approach along with key aspects of

a computer code developed along these lines. Next, a classical modal

r expansion method is presented and applied to both rectangular and circular

I patches. Finally, the finite—elements approach is used to solve for the

magnetic currents on the radiating walls of a five—sided patch which can

produce circular polarization.

I -

I
2
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2.0 THEORETICAL MODELS

2.1 Introduction

A microstrip antenna is shown in Figure 2.1 as a patch of arbitrary shape

separated from a large ground plane by a homogeneous dielectric of thickness

I t , where t is assumed to be much less than a wavelength. Practical microstrip

antennas have been fabr ica ted  wi th  r ec t angu la r , c i r cu l a r , s emi -c i r cu l a r , t n -

• 
I 

angular and pentagona~ patch shapes. It is therefoc~ of interest to develop a

theoretical foundation which can handle patches of a r b i t r a r y  size and shape .

The objectives of such an analysis are to predict both the far-field pattern

I characteristics (including gain and polarization) as well as such near-field

characteristics as input impedance , impedance bandwidth , antenna efficiency ,

mutua l coupling , etc. This is an ambitious program and wil l  require the

I e f f o r t s  of many investigators before  it is completed . It is expected that

approximation methods will be needed in order to obtain practical an..wers.

I However , to date there have been no publications in the open literature which

• attempted to set up a formalism for the microstrip antenna based on a rigorous

‘ 
approach . It seems worthwhile to attemp t such an attack even though satisfac-

tory solutions may be difficult.

The analysis of the microstrip antenna may be facilitated by dividing the

radiation into an interior region and an exterior region. The interior reg ion

is a cavity formed by the patch , the portion of the ground plane under the

- 
patch , and the radiating walls formed by the p ro jec t ion  of the patch  perimeter

onto the ground plane . The exter ior  region is the rest of space and includes

the remainder of the ground plane , the remainder of the dielectric and the top

of the patch conducting sur face .  Pract ical  ground planes are usually several

wavelengths in dimension so that the assumption of an infinite ground plane is

I j u s t i f i e d  for purposes of computing the f a r - f i e l d  pattern shape over most of .#~~

the upper hemisp here . However , fo r  angles near the plane of the ground plane ,
edge diffraction effects must be considered.

The connection between the interior and exterior problems may be made by •

enforcing the boundary condition that there be continuity of the tangential

3 V
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f I
components of ~ and H at the radiating walls of the cav i ty .  This is an extremely
difficult problem and nas not to date been solved.

2.2 Notation

A notation is needed which explicitly identifies both interior and exterior

I fields. If the distinction between ijiterior and exterior fields is not obvious

from context , the symbol i used as a superscript will identify an interior

I field , i.e., ~~ or 1V. Similarly , (Ee , ]1e) are exterior fields .

‘ 
Subscripts are then used to denote either mode indices (vide Section 3.0) or
the value of a field at a particular location. In particular , the fields

I evaluated in the thin ribbon forming the radiating walls are denoted as

~i ). Fields evaluated on the exterior ground plane are denoted as (E , iirw gp gp
and exterior fields evaluated on the top of the radiating patch are denoted as

I ~~~ ii).

As in most other published literature , primed coordinates are used to denote

source point location and unprimed coordinates are used to denote field point

locat ion .

2.3 Formalism for the rnterior Problem

Consider the interior region of a cavity with radiating stde walls , as shown

in Figure 2.2. Since t << X , i t  may be ass umed tha t the in te r io r e lect r ic

field is entirely z-directed and is independent of z.

I
The interior fields must satisfy the wave equation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.la)

1 
~~x~~~xii~ ~~~~~~~~~~~~~~~~~~~~~~~~ (2.lb)

I where

I k2 w2 p~~~
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I

and

= c ’ - j r ” = c0
(r ’ - j c”) - (2.2)

I J is the electric current density (A m ) due to the coaxial feedline source

and may be written as

= ~ I (z ’) 
ô(x - x )  ô(y - y )  (o < a ’ < t )  (2.3)

1 a

I where a is the cross-sectional area of the coaxial current element which is
I —s _ 2

assumed to be e lec t r ica l ly thin . M is the magnetic current density (V m )
due to the m i c r o s t r ip  f eedl ine  source and may be wr i t t en  as

-; V(x ’ ;o) (x~ - < x ’ < x~ ÷

= ( < z’ < t) (2.4)

I 0 otherwise

I where w is the width of the microstrip feedline and V(x ’ ;o) is the voltage

between the patch and the ground plane evaluated at the feedline connection

poi n t .

For  an antenna fed only by a mic ros t r ip f eed l ine , ~~S 
= 0 ; s i m i l a r l y ,  fo r

an antenna fed by a coaxia i. feeline , M = o.

In addition to satisfying the wave equations (2.1), the fields must also
0

sa t i s f y  the fo l lowing  boundary condit ions~~:

n x ~‘ = o (on top and bottom conductors) ( 2 . 5 )

I —i —e 
(on radiating walls) (2.6)

n x H  n x E
• rw rw r

~This first boundary condition assumes that the patch and the ground plane are
p e r f e c t  conduc to r s .  Since a lmos t  a l l  practical microstrip antennas are fabricated
f rom copper , th is  is an exce l l en t  • i s s u m p t i o n .1 7

~: 
~~~~~~~~~~~~~ - 

-
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If the in ter ior  region were a non- rad ia t ing  cavi ty , then He 
= o so that the

tangent ia l  components of i~ at the radiating walls would be zero . In the

language of classical boundary-value problems , this is known as a Neumann con-

di t ion .

However , the p rac t i ca l  problem must contend wi th  rad ia t ing  wal ls  so that the

I interior fields must satisfy an impedance condition. A solution for the fields

then requires a knowled ge of the impedance presented by the radiating walls as
a function of location on the wall.

‘ 
The classical method for handling such cavities is to find a complete set of

eigenvectors which can be used to expand the general field. This is not diffi-

I cult for such simple geometries as rectangular and circular patches and has

been discussed at some length by Lo , et. al. [1977J . If a complete basis can-

not be found , approximation techniques such as the Ritz-Galerkin method , point

I matching , method of moments , etc., can be used to find the interior fields .

I Section 3 of this report describes an approach to the interior problem using

the method of f i n i t e  elements . This method , which shows great promise , requires

a knowledge of the impedance of the radiating walls or a reasonable approxima-

tion to it.

I

The balance of complex power fo r  the in ter ior  region may be described by

S Pifl = P
R
+ P

d
+ 2JW (W

m
_ W

e
) ( 2 . 7 )

I where

I = complex power supplied by source
• = complex power radiated through edge walls
F 

~d = power dissipated by conduc ting wall s and by the dielectric
w = a n g u l a r  radian  frequency

W = time-average magnetic energy stored in cavity

W = time-average electric energy stored in cavity

8
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2.3 .1  Comp lex Source Powe r

For microstrip antennas fed by coaxial lines , the input power may be computed

by 

= - ‘ T’ dv ’ (2 .8)

Using ( 2 . 3 )  for  J and assuming Ei = z E ” , (2.8) becomes

I
I Pc~ = - f E’(x , y )  I * (z 4 ) d z ~ ( 2 . 9 )

If  1(z ’)  is a constant , then ( 2 . 9 )  becomes

I = V I ?  (2 .10)

where

I v i = - f E
i (x , y )dz ’ = - t E 1(x , y )  (2 .11)

Because of t he ass ump t io n that was filamentary (c.f. eqn . 2.3) the reactive

input power computed as the imaginary part of (2.9) will be in error. This

will be discussed later.

For microstrip antennas fed by microstrip feedlines , ~he input power may beI computed by

J ~(rns) 
= - ‘ dv ’ (2 .12)

I U s i n g  ( 2 . 4 )  f o r  ~i and assum ing ]ii~ = ,~ H’ + 
~~

x + w/ 2 tI = f (H~)~ dx ’ dz ’ (2.13)

x - w/ 2 tw

1
- 

-
~~~~~~~-- -  ~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~



If the s t r ip  width is narrow , V(x ’ ;o) is essent ia l ly constant  and equa l to
V. so tha t  (2 .10 )  becomesI

p (fflS ) 
= iT V.  ( 2 . 1 4 )

where

I
I. = f H’ dz ’ (2.15) 

-

2 .3 .2  Dissipated Power

The power dissipated as heat can be subdivided into that associated with con-

I -
ductor losses 

~~~~ 
and that associated with dielectric losses

= 

~d 
+ 

~dd 
(2.16)

i
where [Kraus and Carver , 1973]:

- ~dc 
= Re Z~ ff  1H 1 1  2 ds (2. 17)

co nd.
walls

S and

I ~dd = WC 
f f fl E

u I 2  dv (2 .18)

cavi ty

2 . 3 . 3  Radia ted  Power

-
, I

The complex radiated powe r is obtained by integrating the complex Poynting

I vector ove r the rad ia t ing  wall sur fac e, i.e.

I ~R liT (~~ x W’~’ ) . d (2 .  19)
rad .
wa l l  10 •

I - ‘1
~~~~~~~~~~~~~~~~~ ~~~~~
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-i -iSince E is entirely z-directed , the only component of H which is of interest

is that tangent to the radiating wall and parallel to the local edge of the

patch; this component is designated as Hi. Thus ,

= - fv ~ H di (2.2 0)
wal l
perimeter

where V~ is the voltage across the radiating wall and Hi is the parallel com-

ponent of the magne t ic  f i e l d .  Hi is also related to the sur face  electric

current density at the edge , as shown in Figure 2.3 , by the boundary condi t ion

J n x H  (2.21 ’
S

where n is a unit  nor1,a l directed away from the conducting surface . If H is

entirely tangent to tne radiating wall , then the current on the bottom side of

the patch wi l l  f low around the edge and onto the top side of the patch , as

shown. The electric f ie ld j u s t  exterior  to the rad ia t ing  wall  w i l l  f r inge  arid

r e f r a c t  at the d i e l e c t r i c - a i r  in terface  in accordance with  Snell ’ s Law .

2.3.4 Stored Energy

The tota l stored energy in the cavity is given by

W = W + We = ~ fff (~~lE i l~ + p 1 H 112 ) d v  (2.22)

cavity

Since the interior fields are independent of z, this can be slightly simpli-

j  fied to

~ I W = t f J ’ IE’I~ ds (2 .2 3)
cavi ty
a rca

I
-I,

W = -~- p t JJ IH i! 2 ds ( 2 . 2 4 )
m 

2
0 

cavity
area 11

. .‘

~~~~ _ _
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I
1 2.3.5 Input Impedance

‘ 
The input impedance to a coaxially—fed microstr ip antenna can be

computed by noting the P~, = ~Ifl
2
Z~ and using (2—9) to obtain

I Z~ = — 2 ~~~E~~~ 0 ,y 0)I~~~~’) d z ’ (2—2 5)

I - t int 0

where a z—directed filamentary probe has been assumed. Similarly,

I the input admittance to a microstrip transmission line—fed microstrip

antenna can be computed by noting that 
~in 

= t~~ (
2
Yj and using (2—12)

I to obtain

= 
1 [H~ (x ,y ) J * V(L) dL (2-26)in 1

~ 
~2 i l LI ~~in( 0

where the feedline input has been modeled as a thin strip of magnetic
— —
I surface current density M5 (z x a)(V/t) where n is a unit vector

normal to the thin radiating surface and pointing into the cavity. The

I strip is of width w. If the strip width is narrow, then V(,1) is essen-

tially constant and equal to V
in~ 

If t is small , then the input current

on the lower side of the upper microstrip transmission—line conductor

is I~ = [H i(x
1
,y
1

) ) w , so that

p 
*

- = (I~~/v~~) ( 2—27 )

( Likewise , from (2—25) , if a small value of t is assumed then both E1’ and r
I 1(z ’) are constant so that

z — v  /1 (2—28 )
in m m

I The usual procedure for a probe—fed cavity is to find V~ — _tE
~

(x
0,y0

)

by expanding E
~

(x ,y) in terms of a complete set of orthogonal modal

I vectors (eigenfunctions) ema (x ,y) and using the orthogonality property to
find the coefficients of the expansion in terms of the input current.

A similar procedure can be used for the microstrip—line fed cavity by

1 
13

~~~T ~~~~~~~
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finding I~, = [H1(x1,y 1) lw and expanding H~ .
In this classical eigenvalue problem , a denumerably infinite set

of discrete eigenvectors and elgenvalues are found by imposition of

either Dirichlet (E = 0 on boundaries) or Neumann (�E /èn = 0 on

boundaries) boundary conditions. The mode vectors are customarily

orthonormalized as follows:

e ~ 
.
‘

~~~ d v—  (2—29)
j j j  mn pq ma,pq

cavity
volume

where 
~m a p q  

= ~ if in = p and n = q; = 0 otherwise. Thus,

dv = 1 (2 30)

is the electric stored energy in the ma th mode . In a closed cavity, the

time—average electric and magnetic energies are equal. Therefore,

normalization of the ‘~~ vecto rs automatical ly normalizes the corresponding
h vectors.ma

When the cavity begins to radiate real and reactive power out the

radiating walls, several differences are noted :

1. The time—average electric and magnetic energies are no longer

equal.

2. The eigenvalues are no longer necessarily real or discrete.

3. Energy is cross—coupled between discrete modes.

4. Only a finite number of discrete eigenfunctions exist.

5. In addition to these discrete eigenfunctions , there will be

added a continuously varying eigenfunction with a continuous

range of eigenvalues.

The elec tric f ield E~ (x ,y) interior to a probe—fed cavity satisfies
the inhomogeneous differential equation :

____ ____ 

r
~~~~ 

+ 

2~ 
+ k2 E — j c

~p. I

i~~~~~
c (X — x)&(y — y )  (2—31)
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a

along with the impedance—type boundary conditions :

1
Z 

+ ~~~ E — 0 (on radiating walls) (2—32)

I ~~n

The partial derivative ~ /2~ n is with respect to an outward—directed

I coordinate and~~ is dependent on the impedance of the walls. The

complete set of functions required to represent any arbitrary E

I consists now of both the discrete modes e ( x ,y) plus a continuous

sPeccrum
~~

(x
~
Y;kx~

k
y
). Thus the solution is given liy

I 
E~ (x ,y) - ~JCdp I~ ~~ G(x ,y ;x ’ ,y ’)~ (x’-x)~~~(y’-y) dx ’

I cavity (2—33)

I or

E ( x ,y) ~Jt~p ‘in 
G(x ,y;x ,y) (2—34)

where G is the Green ’s function which satisfies the relation

— G(x
~
Ylx o~Yo

;kx~
k
y

) dk
~ 

dk~ 
~~~ ~~~ 

e~~ (x~Y)e~~ (x0~y0)

1’ 2

+ 

,~j  ~
(x

~Y;kx~ky ) 
~~~~~~~~~~~~~ 

dk
~ 

dk~

(2-35)

where the contour over k is determined by that over k according toI 2 2 1/2 x
the separation condition k

y 
— (k — k~) . The contour C1 

(or C2) is

taken around all singularities of the Green ’s function.  Equations (2—31)
- I through (2—35) are developed in the context of a rectangular microstrip

antenna ; a similar development for circular patches can be carried out -‘

using cylindrical coordinates. For both of these cases, the two—

dimensional Green ’s function is separable into a product of one—dimensional

t 
15

-r --



— - -

I
I

- 
Green ’s functions. However, for arbitrary microstrip patch shapes ,

this is not in general true .

Returning to (2—35), it is noted that for closed cavities, the

complete set of mode vectors is represented by only the discrete sum.

For open radiating cavities (waveguides) which satisfy a radiation

I condition at the walls, the complete set of modes is the continuous

eigenfunction seen in the contour integral on the right—hand side of

(2—35) . For the most general case, however, both discrete modes and

I continuous modes will be present, along with discrete and continuous

eigenvalues.

I Practical microstrip antennas usually have impedance bandwidths

which are small and of the order of 1%. This indicates a high—Q

I condition and that the interior fields are dominated by the discrete

modes. However, the continuous spectrum Q(x
~

Y ;kx~
k
y
) cannot be

I ignored since it is closely related to the radition admittance of the

walls.

These impedanc e considerations will be applied to specific

I inicrostrip patch shapes in Section 4 of this report .

‘ 
2.3.6 Impedance Bandwidth

Th e impedance bandwidth is given by

I 1~f = —i (2—36)

where 
~r is the resonant frequency and the total Q is given by

I 
Q = w (2 —37 )

R e P in

I 
with W — W + W being the total stored energy both in the cavity interior

and the near—field region of the antenna. The real input power is either

dissipated by the conductors or dielectric or is radiated as real power

I through the radiating walls. Thus

I Q - ~~L~ + ...L + (2-38)

where

16
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• 
~r 

u ReP (2—39)

WI Q w (2 —40 )c Re Z .I .Iktan
l 2  ds

I W
I Q • (2—41)d r~~u f f I E i

~ 2 dv

The total stored energy (both in the cavity and in the radiated fie ld)
can by computed by

w = ~~~ f f R c I E i I 2  + ~!H
u I2) dv + Im 

~r (2-42)

where “r is given by (2—20) .

1 2.3.7 Antenna Efficiency

I The antenna efficiency is the ratio of real radiated power to real

input power, i.e.

Re P

I r 
(2—43)

Re P .i-n

J 
Thus,

11 = 
~~~~ 

(2—44)

Also , using (2—20 ) , (2—43) can be writ ten as

= 

R (R~
2 + x~

2) 
x x J i v  2 di (2-45)

I R (R 2 
+ x2) t v 2

in w w in

where V — — E  t evaluated at the radiating wall , and where Z = R + jX
• 

is the wall impedance, assumed independent of perimeter position. 
w w

-p
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I
2 . 4  Formalism for  the Exterior Problem

The two object ives of the exterior problem are to f ind the fa r—fie ld
0 radiation pa t t e rn  ( including gain and polarization) and to describe the

near—field coupling behavior of the microstrip patch. The exterior fields

may be found from the equivalence principle if the tangential fields in

the radiating walls of the cavity and/or the tangential magnetic fields

on the exterior conductors are know-n ; the equivalent magnetic surface

curr en ts in the gap ar e given by

j~ =~~~ x~~~ 
- 

(2-46)

whe re E i: evaluated in the gap (radiating wall) and ~ is a unit vect or

which is normal outward from the gap . The equivalent electric surface

currents on the top of the patch and on the ground plane are given by

x H  ( 2 — 4 7 )

whe re H is evaluated on either the patch or the ground pla ne.

The exterior f ields are then found by the formalism

— 1--(VxVx~ — ~) — Vx~~ (2 — 48)
J uc

• ~e L(7XVX F — M) + VXA  (2—49)j

whe re A is the vector ma gnetic potential given by

1 1 J ~~~ 
~ik~~ 

— r ’
= — I ds ’ (2—50)

4~c -~ [~~—~~‘ 1

t 
and F is the vector electric potential given by

1 r ~ ~i (?) e_jkk - ~~~
‘ I

I F — f I ds ’ (2—51)
i i  — -~~4-n- ‘ ‘ Ir-

1
When the exact curr en t densities ar e known and if the conductivities of

the patch and ground plane are infinite, the fields satisfy the boundary

conditions: 

18
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on patch and on ground plane (2—52)• I 
z x : = j  Ln x H  n x H  •)

~

on radiating wall (2—53)

s

is finite

radiation condition (2—54)
• e

li-rn rH is fin ite

The formalism of (2—48) — (2—51) requires a knowledge of both J

and M , as shown in Fig. 2.4a. The fields can also be found from J
S 

— 
S

alone (Fig. 2.4c) or M alone (Fig. 2.4b).

For the M formulation , a per fec t  conductor is placed over the surface
bounding the interior region. Since a tangential 

~~ 
over a per fect

cond uctor produces a zero net f ie ld  in the exterior region , the field is

calculated f rom alone in the presence of the conductor.  The exterior
field is then found as

r E ( r ’) (z x ~‘) — —
‘

~~ (r ) = — I I z e_ 3k r — r 
ds ’ (2—50)

• 
~ ~ 4-n- r~

- —~
- ’ Irad .

wall

subject to the boundary condition

• n x = 0 on perfect  conductors (2—5 1)

This is an awkward equation to solve because of blockage introduced

by the conducting step j ump .

In Fig. 2 . 5 , addi t io nal equivalent sources are shown which produce

the same field in the half—space above the plane of the patch and a null
field below this plane. Fig. 2.5c shows an equivalence which takes advan—

tage of image theory ; in this case, the perfect conductor is removed and

19
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(Ee , He )
J J
S~~, —a-PATCH —p- DIELECTRIC

- • M ® ® M ’ - - J  
-

- 
-

• • s
1 ® NULL FIELD ~~~~~S ~~~ - 

• S~~~~

GROUND PLANE GROUND PLANE
(a)

(Ee , H e)

~ERFECT CONDUCTOR DIELECTRIC
- -

- 
- I~~ M - • 

-

- - - 
- 

- 
- 

• 
S~~~j  NULL FIELD . 

- 
- 

- 
• -

PERFECT CONDUCTOR PERFECT CONDUCTOR
(b)

(Ec He)

• • - . • r ~~~~~~ 
— _

-

~~~~ ~
.. .. 

- 

D I ELECT R I C

_ _  _ _  

NULL FIELD 
_ _ _

PERFECT MAGNETIC CONDUCTOR PERFECT MAGNETIC CONDUCTOR

(c)

Fig. 2.4. Three source formulations which produce the same exter ior
field. (a) J and M ; (b) M alone plus pe r f e c t  electr ic
conduc to r ;  (c~ J al~ ng plus pe r f e c t  magnetic  conductor .
The ex te r ior reg~ on Includes the ha l f—space  above the
patch as well as the regic~n 4 nt e r ior  to the d ie lec t r ic .
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1
i’

I
(Ee , He)

I M J J -

~ .—~.PATCW-.. 
S S

I NULL FIELD NULL FIELD NULL FIELD

I
(E e,He) I

N

PERFECT ELECTRIC ONDUCTOR PERFECT ELECTRIC CONDUCTOR

I NULL FIELD 1 NULL FIELD NULL FIELD

I
) I

(Ee,He)
• 2M I 2M

NULL F IELD N ULL FIELD - NULL FIELD

I
I Fig. 2.5. Three additional equivalent source formulations which

produce the same field above the plane of the patch.
(a) J and M ;  (b) M alone plus pe rf ect co nductor ;

( (c) 2~ alone (magne~ ic image) .

_____ _ _ _ _  
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the magn etic  surface current density is doubled . Thus ,

I (~ x z) e
_
~

k
~~ 

— r’ I
= —V x J J ap 

ds ’ (2—52)
2-n- I r — r ’ I

I S-S
0

I where the aperture plane is S and the portion of S which represents

the patch is S
0

I Findin g an exact relationship between the tangential electric fields

in the aper tur e plane and those in the radiating wall of the cavity is not

a s imple task , as is illustrated in Fig. 2 . 6  where the electric f ie ld linesI have been determined by graphical field mapping procedures for the d.c. case.
In the immediate vicinity of the edge , these d.c.  field lines will be

I similar to those of a radiating cavity . Due to the dielectric/air
discontinuity , the field lines will refract according to Snell’s Law

I and the electric field in air will be larger than that of the same

line in the dielectric. Furthermore , the tangential component of E
ap

I is appreciable only very near the edge of the patch.

An approximate relation between the field z E in the radiating wall

I 
of the cavity and the tangential field E in the aperture plane may be

found by first assuming that the region of the aperture plane over which

ef fec t ive  magnetic currents exist is a thin strip of width w extending

f rom the edge of the patch outward. Over this region , 2—compo nents of

Eap tend to cancel, leaving only a tangential component. Let £d be the

length of a field line from the ground plane to the dielectric surface
and let 

~a 
be the remaining length of the line from the dielectric to the

I patch . Then assuming the patch to be an equipotential surface,

V —(E ~ + E £ ) (2—53)I p d d  a a

whe r e Ed is the elect ric f ield in the dielectric and Ea is the electric

I field in air , both evaluated on the same line. Furthermore, the electric

f lux densi ty is constant  over any one line so that

J D — c c E  c E  (2—54)
o r d  o a

- 
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GROUND PLANE

RADIAT ING WALL
- OF CAVITY

I
Fig. 2.6.  Illustrating the d .c .  f r inging fie ld

di stribution for the edge of a microstrip
.1 patch with c — 2.6, t = 0.0625” and a

patch conductor thickness of 0.002”.

I
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wher e E
r is the dielectric constant of the patch. Combining (2—54) and

(2—5 3),

E = V (  —
~~~ + ~a)

_1 
(2-55)

At the edge of the patch , 
~
e
~a 

is zero and E
a is entirely tangential so that

V
E~p (ed~ e) = C

r Er 
E~~ 

- 
(2—56)

I This is the maximum tangential field in the aperture plane. The e f fec t ive

‘ 
tangential field is less than this. For an aperture plade of effective

strip width w = t , the tangential field at the outer edge of the str ip
- *is essentially zero , so that the effect ive aperture tangential f ie ld is

I approximately half that given by (2—56) :

I E = —n —f-— E__ (over aperture strip of width t) ( 2 — 5 7 )
ap p 

2 
L W

I where n is a unit  vector ly ing in the aperture plane and extending out-

ward from the patch edge.

The far fields may now be computed by letting Ir — r ’ = r in the1 denominator of (2—52)  and by letting I r  — r’ — r — r ’ cos 4’ in the

exponential of (2—52)  ; these coordinates are shown in Fi g. 2 . 7 .  Then ,

the far electric fields are given by

E(~ ,~ ) = e E0(O ,~ ) + ~ E~~(8 ,~~) (2—58)

where

• E9 — —jk F~ ; E~ jk  F9 (2—59 )

*~fl~f~ is based on f i e ld  maps for the static case and assumes that

c is less than about 6.
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1 i PATCH

I
I . 

GROUND PLANE 

— 

dL —

/~~~~~~~~~~~~~~~~~~~~~ LINE SOURCE

•
1 

~s

Fig. 2 . 7 .  (a) Original microstrip ~~~~~~~~~~ p

antenna . (b) magnetic
line source equivalent. X

I
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r’c

~~~
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dZ’ (2-60)

perimeter

and where

1 M (~ x n )  —f— E (2—61)

It is emphasized that the magnetic surface current density in

(2—61) is approximate; more work is required to obtain bet ter

relationships between the magnetic surface current density in the

aperture plane and the z—directed f ield in the radiating wall of the

cavity . 
-

The corresponding far—zone magnetic f ields are given by

E E
H —i ; H0 = — --~- (2—62)

z z
0 0

where Z = 376 ~2 is the free—space impedance.
- Finally, it is observed that the real radiated power obtained by

integrat ing the real part of the power density around the radiating wall

of the cavity (eqn . 2—20) will be equal to the real radiated power

obtained by integrating the Poynting vector over a fa r—fie ld  hemispher e

I minus the real power appearing in the surface wave traveling in the

dielectric .

I
:

F

~ 
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3.0 NUMERICAL TECHNIQUES FOR THE INTERI OR PROBLEM

I It was proposed originally that the most efficient numerical method
for solving the interior problem was the tJn imoment—Monte Carlo Method
[Coffey , 1976; Coffey & Carver, 1977] implemented on a medium—size

hybrid computer. This technique was tested during the period 10 April ,

j 1978 — 30 June , 1978 and was found to perform quite well on simple

boundary value problems [Coffey & Carver , 1978]. However , it ha s been

i decided to abandon this un ique method in favor of more traditional

1 tec hn iques because (1) the hybrid computer at NNSU was being repaired

during the period 30 June , 1978 — 15 September , 1978 and was

I unavailable for research , and (2 ) one o f th e pr incipal investigator s

(ELC) term inated employment with NMSU and a mor e traditional technique

I seemed to be required which would not depend on his expertise in the

hybrid cotnpucer/Unimoment—M onte Carlo area . During the period 15 Sept.

I to 1 Nov., 1978 a search f or alterna tive compu tational methods was

unde rtaken with the goal of finding a method which would allow the goals

I of this study to be fulfilled while overcoming the difficulties listed

above. Three techniques were considered:

1. The method of moments [Harrington , 1968], which would be used

to ca lculate electric currents induced on the surface of the

patch , from which the far fields could be found using the

- 
• magnetic vector potential method.

2. The finite difference method , in which differential equations

are approximated by difference equations. These are solved for

the electric field at the perimeter of the patch , and the

far field may be obtained by using the electric vector potential.

3. The finite element method [Strang & Fix, 1973], a variational

method in which the minimization process automatically seeks

out the solution which is “closest” to the true analytical

solution. The far field is calculated by the same method as

in (2).

- i~! Of these three, the finite element method was chosen mainly because of

the generality of the technique (many different patch shapes may be

27
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I
considered) and the mathematical integrity inherent in the method

(u nlike the method of moments , which only ~~~~j  converge — and sometimes
to the wrong solution).

3.1 Mathematical Development and Numerical Implementation

Maxwell’s two curl equations may be combined to form the Helmholtz

equation (with zero charge density): - -

v2j + k2 ~E = j ul.J (3 —1)

where k
2 

= Zit/X ~i~i c  in free space. The Helmho ltz equation i tself

does not couple together the rectangular components of E, i.e.

V2E + E =

72E + k~ E: = jW~J (3-2)

V 2 E + k
2 E

~ 
=

However , the boundary conditions may coup le the rectangular components.

For example the radiation condition requires that the radially directed

component of E (Er) vanish properly at infinity . Since Er is composed

of (sine cos~)E + (sinO sin~ )E + cosOE , the components of E are coupled

through the radiation condition. If a vector problem is to be avoided ,

then the boundary conditions specified in the problem must contain only

one rectangular component of E. The report by Lo, et. al. [1977] assumed

that ~E / ~n = 0 (open circuit at radiating edges, or Neumann boundary

• value problem) and obtained fairly good results for a variety of patch

shapes. This present work assumes an impedance boundary condition on E
~

(Robbin boundary value problem):

Z
~~~~~

E O  (3—3)

Finally , it is assumed that E
~ 

does not vary with z. This is a

fairly safe assumption for the lower—order modes , but is risky for

higher—order modes. By making this assumption , it is possible to reduce

the original three—dimensional problem to a two—dimensional problem

I .
28
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of a partial differential equation (PDE) plus boundary conditions (BC):

+ -~~--r + k u  — j u ij J (PDE)

I 
ix~ z

+ i u — 0 (BC on patch perimeter)

I where for simplicity , the variable u has been substituted for E
z~

The equivalent variational formulation of (3—4) is to minimize

I the functional [Strang ~ Fix, pp. 70—71 , 19731:

( 1 2  2 ‘ 2  1 21(v) — I (v -
~ v — k~v + 2 i u~ J v) dA + (D ~z v dL ( 3—5 )

i i  x y zI interior perimeter

I *for all permissible functions v(x,v). The particular function v (x ,y)

which min imizes (3—5) is the “best ” solution to (3—’~). Details of this

I development may be found in Strang & Fix [19731.

Three tasks remain in order to solve the problem. First , a set of

I “permissible” v func tions must be determined. The goal is to choose trial

functions 4J l ,~~2 , . .  • ‘
~N ’ and from among their  linear combinations

to find the one which minimizes (3—5). In theory , there always

exists a set of trial functions which is complete , but it may be difficult

or even impossible to compute with them. The underlying idea of the finite

I element method is this: divide the patch into smaller pieces such as

triangles or rectangles. Then within each piece the trial functions are

I given a simple form: all trial functions are zero except one which is

usually a polynomial. Boundary (continuity) conditions are imposed

I locally, along the edge of a triangle or rectangle rather than globally

as in the classical Ritz method. The approximation of the solution may be

ref ined , if necessary , not by including more complex trial funct ions , but

by further subdivision of the patch. A digita l computer is ideally suited

to this task.

Second , the integrals in (3—5 )  must be computed for each trial function

in terms of still—to—be—determined parameters. For the case at hand these

F
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I
parameters are the nodes of the subdivisions, but for other physical

I problems , the parameters may represent other quantities. The integrals

in (3—5) are particularly easy to compute since each is zero except

I within one subdivision.

Finally , the problem must be put into a form that can be solved

by a computer, as hand calculation is too tedious and time—consuming.

I This form is given symbolically by [Strang & Fix, 1973, p. 32]:

I ~
T

K~~ - 2Q
T

F = 0 (3-6)

1 where Q is the column matrix of coefficients (the solution), K is the

finite element matrix arising from (3—5), and F is the forcing function

column matrix, the linear (in v) term of (3—5). Equation (3—6) has a
minimum for

= (3—7)

and (3—7) is the matrix problem to be solved .

The eigenvalue problem (with the eigenvalue A = —k2) may be set up as

= A K
2~~ (3—8)

where 
~l 

is obtained from

J J(v~ + v2) dA + 
2 (3 9)

I interior perimeter

- and 
~2 

is obtained from

I v dA (3—10)

interior

I Notice that the impedance boundary value a does play a role in the eigen—

value determination while the forcing term juUJ
~ 

does not. The eigenvalues

I and eigenvectors of (3—8) may be obtained by using standard subroutine

libraries (SSP or IMSL for example — see list of references).

The calculation of the K
1 
and K~ matrices for a general polygonal 

r

i 
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I
microstrip antenna has been implemented in the computer program MICRO ,

I a listing of which -can be obtained from the authors . The important

inputs to this program are (1) the number of triangular subdivisions

I 
made to the original patch , (2) the numbers of the three nodes which

define each triangle, (3) the total number of nodes , and (4) the

x—y coordinates of each node. From this data, the program calculates

I the and 
~2 

matrices for the Neumann problem. If certain nodes are

constrained to a field of zero (Dirichiet condition) thesc node numbers

I are also entered. The eigenvalues of the resulting generalized matrix

problem are computed and checked by IMSL subroutine EIGZF and printed .

3.2 Numerical Difficulties Overcome or to be Overcome

3.2.1 Matrix Calculation for Irregular Polygon Patches

To utilize the full power of the finite element method , the computer

programs written to implement the technique must be general enough to handle

a variety of geometries. For regular geometries such as the rectangle,

circle, etc., it is simple enough to devise computer programs that will

automatically partition the regular region into appropriate subdivisions.

On the other hand , for general polygonal inicrostrip antennas, such a program

would be unwieldy at best and not general enough at worst. This is

particularly important in the case of patch antennas because it is the

unusual geometry that is often so interesting. For example , there is a

five—sided polygon patch which can be excited at a single feed point to

give right circular polarization , at a second point to give left circular

polarization , and at a third point to given linear polarization [Weinschel ,

1975]. To make the MICRO program as general as possible the so—called

I area method [Strang & Fix, 1973, pp. 90—97] was used rather than the

node method more familiar to those who work with moment methods.

I The area method works as follows. Each triangular subdivision area is
I taken, one at a time, and the three nodes which define the triangle are

i determined. The integrals in (3—5) are performed with these three unknown

I node values as parameters . The resultant expression is a quadratic and

may be put into the form of (3—6) to determine what is called ~~~, the

I elemental K matrix. K is different for each area and contains at most

nine non—zero entries. The sum of all K matrices is the K matrix of (3—6).

I 
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‘ I
As an example , suppose one triangular area is bounded by nodes 1, 2, and

4. Then K has the form:-e

J
x x O x o

I 0 0 0 0

K = x x 0 x (3—11)

J

0 0

In thi s matrix , only k . .  ~ 0 for  i , j  = 1, 2 , or 4. A detailed comparison
between the area method and the nodal method is given in Strang & Fix
[1973].

The second mat r ix  computational d i f f i cu l ty was the evaluation of the
integrals of (3—5). These integrals are of the form

‘
~rs 

= J J ~r y5 dA (3- 12)

triangle

Holand and Bell [1969] have given explicit formulas for these integrals ,

keeping the origin of the local (x ,y) system at the centroid of the triangle.

F o r r + s < 6 , -

~rs 
- c~~~ A (X~Y~ + X~Y~ + X~Y~) (3-13)

where (X
1
,Y
1

) , (X 2,Y2
) , (X 3,Y3

) are the vertices of the triangle in the

centroid system, A is the area , and c = 1, c1 
= 0 , c2 = 1/12 , c 3 = c4 

—

1/30, c5 
— 2/105. Other possible coordinate systems and formulas are found

in Strang and Fix [1973., pp. 90—96].

3.2.2 Impedance Boundary Conditions

The impedance boundary condition is easy to handle numerically once
V the impedance parameter ci(x,y) of equation (3—4) has been determined

theoretically. This is related to the wall admittance per unit length.

I

i 
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I
Cotnputat iona lly, te rms are added to the K matrix corresponding to that

I portion of (3—5) containing a. If the patch antenna has been divided
into sufficiently many sections then c~ may be assumed constant over any
one section , and the integrat ion is t r iv ia l .  Otherwise the integration

I may be handled nume rically.

One s ignif icant  p roblem mus t be dealt  with whenever a is imaginary or

I complex (indicating that energy is being radiated from the cavity wa l l s ) :
the K or K

1
matrices become complex. For the radiation problem this presents

no difficulty since complex arithmetic may be used in the matrix inversion
routine. However , for the eigenvalue/t-’igenvector problem , only real arith—

I metic routines have been found . Hence, a conversion from an N x N complex

problem to a 2N x 2N real problem must be performed . Mathematically, this

I is trivial but such an increase in matrix size may require over times as

much computer time.

I 3.2.3 Eigenvalue/Eigenvector Computation

Up to this point all eigenvalues and/or eigenvector calculations have

I been made by using IMSL subroutine EIGZF. However , to increase the size

of the problems now being solved or tn include complex matrices in the

subsequent work under this grant , a different approach must be taken. The

most promising technique thus far found is called “subspace iteration .’

It is possible to compute the first p eigenvalues/vectors in about 8

iterations if the subspace dimension -~~ was

= min(2p ,p+8) (3—14)

Since only the lower few modes are of importance in microstrip antenna

work (and the higher modes are just numerical garbage) this technique seems

to be the most promising. Briefly, to solve A X = A M X , start with an

~ eigenvector guess of X , which is a matrix with ~ orthonormal columns .—n— i
Solve K Y = M X . Then solve the eigenvalue problem

— -—Ti

1 (~T K Y )  - v (!~ M Y )  (3-15)

The are the approximate eigenvalues and the new matrix X of approximate

elgenvectors is formed by multi p ly ing Y with the Lx! matrix of eigenvectors

of (3—15). Since equation (3—15) is : only dimens ion L , sub rout ine  EI CZF

I 
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I
may be used e f f i c i en t ly  here. For examp le , suppose the f i r s t  four modes
are needed in a microstrip problem . Then by (3—14), L = 12 , and only( about eight 12 x 12 eigenvalue problems need be solved.

‘ 
3. 2 . L~ Size of Matrices versus Core Memory

At PSL only about 140K bytes of computer storage are avilable for

I 
matrices 

~l 
and I(

2• This limits the size of 1(
~ 

and 1(2 to about 132 x 132

four—byte words. However , most of the entries in either matrix are zero .

For example , in a regular triaugular ‘-s -~rtition there are at most sevenI entries per row regardless of the size of the problem to be solved . To

utilize more effectively the available storage area , a linked list sparse

I matrix routine has been written following the guidelines of Wexier [1978]

and Zollenkop f and Reid [19711. This routine has been tested for the

simple case of the static Dirichlet problem within the rectangle. The

test , while verifying the integrity of the program , also illustrates the

I tremendous savings in computer memory that car, be obtained. For the

test case , a ten—to—one reduction in memory was achieved .

One of the advantages of using a sparse matrix program is the ease

with which the program may be combined with subsp~ -e iteration. Subspace

I iteration requires only LxL matrices (see 3.2.3) where -~~ is small. Thus

the and 
~2 

data may be kept in a linked list rather than in a full dense

matrix, and the storage requirements may be kept to on the order of tx!.
As an example , consider the finite element solution of the rectangular

3 interior problem for which one hundred (10 x 10) interior nodes have been

specified. The lowest three modes are desired. Using traditional matrix

techniques , two 100 x 100 matrices would have been needed to solve for the

eigenvectors and eigenvalues of the problem , or about 80K bytes of menor’i.

However , all but 460 entries in either matrix are zero. Sparse matrix

techniques utilize algorithms in which none of the zero entries need be

stored. Instead , two auxiliary tables are used. For the above example ,

less than 7.6 K bytes of matrix space plus 3.8 K bytes of table space

would be required , a savings of 86%. (In addition , solution times are

generally more rapid , offering further savings i~ computer resources.)

The use of subspace iteration gives a great reduction in computt~r time

1
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I
because only the lowest three modes are needed in this example. Using

equation (3—14), L = 11. Hence, eight 11 x 11 eigen—problerns need be

solved versus one 100 x 100 eigen—problem. Since solution times vary at

least on the order of N2, this represents a savings of 90%. On the

PSL IBM computer this represents a savings of 14 minutes for a 51 x 51

problem.

Finally , it should be noted that the method of moments generates

in general full , dense matrices , and sparse matrix techniques cannot be

used. This is because most moment method problems arise from integral

equations whereas most finite element method problems arise from partial

differential equations.

At this writing neither the sparse matrix routine nor the subspace

iteration program have been implemented ~~~ se into the MICRO program.

3.3. Handling the Feedpoint

A microstrip antenna is usually fed in one of two ways : (1) coaxially

from beneath the ground plane , or (2) on the edge of the patch by a micro—

strip transmission line. Each method of feeding may be handled within the

framework of the present mathematics. -

The coaxial feed may be modeled as a point current source at (x ,y)

[vide Sec. 2.3.5]:

= J cS (x — x )  
~
(y — y )  (3—16)

and may be treated as a forcing term in equations (3—4) and (3—5). The 
•

integrals for the F—matrix of (3—7) are simplified because of the Dirac

delta functions . It has been assumed that has no z—dependence due to

the relatively small spacing (much less than a wavelength) between patch

and ground plane on most microstrip antennas. This assumption may not be

valid for feeds placed near an edge or horizontal metallic struction. In

these cases, a more rigorous feedpoint attachment theory must be used

[Newman, 1978].

The microstrip line feed may be handled via the boundary conditions.

Over the width of the line , assume that

E ( x ,y) E (3—17)
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I
and elsewhere use the impedance boundary condition discussed in Sec . 3.1.

‘ 
The effect of (3—17) is to constrain one or more unknowns to the value
E ;  this has been discussed previously in Sec . 2.3.5. These node values

are then removed from the K matrices and transferred to the F matrix

as equivalent constants (knowns). While this formulation requires that

the boundary conditions be mixed (a rather intractable theoretical

I problem), mixed boundary conditions are not at all difficult to handle

numerically.

1

I -.

I
I
1 
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4.0 NU!~ERICAL RESULTS

4.1 The Rectangular Patch

I 4.1.1 Closed Cavity Formulation (Neumann Boundary Condition)

Consider a rectangular microstrip cavity of length a and width b ,

I 
as shown in Fig.  4.1. If there is no radiation out the side walls , the

H component of the ma gnetic f ield will be z ero on the y = 0 and y = b

walls; the H components of the magnetic field will be zero on the x = 0I and x = a walls. The mode vectors (c.f. Sec. 2.3.5) are TN to z and

for this Neumann boundary condition are given by

1 — 

= 
____ 

cos cos 
~~~~~~~~ (4-1)ma / b avrabt

I 1 ‘~tnn mu nu~x nur . nirxh = —  x — sin cos — — y—cos sin —mn • / b b a b b a jjuii vcab t

(4—2)

where

( 2 i f m # 0 a n d n~~~O
y = 1  (4—3)mn 1 1~~L V 2  if m = O o r n = O

which sat isf ies the orthonormality condition (2—29). The corresponding

resonant wavenumbers k are given by

1 k /(mur/b)2 + (nu/a)2 (4 4)

from which the resonant frequencies may be obtained by

k -

I = ma (4 —5 )
I 2urv ,ic

• The magnetic current distribution at the four edges is computed from

(c.f. eqn. 2—46):

I M z E  x n  (4—6 )
5 z

wh ere E is the z—direc ted  e lectr ic  f ie ld at the rad ia t ing  wal l .

~ I
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~~ 
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E~~~~~~~~~~~~
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b 
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~M 

-
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0 

E 
E

a X

Fig. 4.1. Rectangular microstrip patch geometry showing
electric fields and magnetic surface current
distributions in w.~l1~’ for TM100, TM010 and TM020modes.
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The resonant wavenumber k may also be computed numerically, using

the f i n i t e  element method outlined in Section 3 of this report. To

il lust rate the compa r ison , consider a rectangular mic ros t r i p  cavity wi th
a = 10 cm and b = 20 cm; the intErior dielectric is assumed to be air.

Tab le 4—1 compares the resonant frequencies calculated using (4—5) to

that computed from the method of finite elements using 100 square

subdivisions. Two points are noted :

1. The resonant frequencies computed by finite elements are

greater than the true values.

2. As the mode number becomes higher , the error becomes greater.

Table 4-1

Compar ison of Computed and Theoretical Resonant
Frequencies for Rectangular Microstrip Cavity

- w i t h b = 2 a = 2O cm.

Mode Number Resonant Frequency
(m , n) True Finite Elements Apprcx.

(0,0) 0 0

(1,0) 750.00 MHz 750.48 MHz

(0,1) 1500.00 1502.26

(2,0) 1500.00 1503.76

(1,1) 1677.05 1720.83

(2 ,1) 2121.32 2211.62

(0,2) 3000.00 3268.77

Both phenomena are characteristic of the finite elements method . However ,

for the microstrIp antenna problem , neither is of concern because (1)

sufficient subdivisions can be taken to insure that the computed resonant

frequency Is precise enough [Strang & Fix, 1973, Ch. 21 and (2)

only the first three or four modes are of practical interest,

Since there is no radiation , the mode vectors (4—1) form a complete

orthonorma l set of discrete eigenfunctions (c.f. Sec. 2.3.5) which can be

used to represent any arbitrary interior electric field , i.e.

I
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I
I
I E = Z Z A ~ (4-7)
T z mn inn -

m 0 n=O

• 1 This double Fourier series has coefficients which may be found using

I the orthonormality property of the modal vectors; since this is a

straightforward ex2rcise in mathematical physics, only the resul t will
be given . Assuming the cavity is fed by a z—directed filamentary current

‘ 
located at (x , y ) ,  the tot al interior electric f ield is given by

—

— J u e  
—

= 

m,n — J I (z ’) e
n
(x ,y) dz ’ (4— 8)

m a O

If th e cavity thickness is small, I(z’) = I . ;  furthermore , the input

voltage is V
1 

— t  E~ (x ,y) so that the input impedance may be calculated

from (2—28) :

V . e
2 
(x ,y )

in . 2 inn o oZ = - -—-— = — Jut E (4—9)£n J, 2 2in m ,n u — u ma

- Thus, for the rectangular cavity
2 m~~o 2 n7r x

cos — cos
. wt 

~- 2 b a -Z = — j — E ~. ~~ 
— (4—10)in cab ‘inn 

~ 2r n 0  n O  w ’- — wma

The input impedance is purely reactive since no allowance for dissipated or
real radiated power has yet been made. This will be considered in the next

section.

It should be remarked that the shape and polarization of the far—field

• pattern can be fairly accurately predicted using only the magnetic line

I source model , i.e. eqns. (2—58) through (2—61), with magnetic surface currents

computed from (4—6) and (4—1). This simple approach works well for predicting

the pattern shape for discrete modes , as has been pointed out by Lo, et. al.

[ 1977 ] .

I
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4.1.2 Radiating Cavity Formulation (Impedance Boundary Condition)

Since the microscrip antenna cavity radiates real and reactive

power, the interior fields must satisfy an impedance—type boundary

f condition at the radiating walls. If the wall admittance is purely

susceptive, then the eigenvalues k (similar to nv/a for the discrete

case) and k
y 

(similar to mu/b ) will still be real—valued and discrete.
However , for the radiative condition , the wall admittance is complex.

It may be shown that the eigenvalues are given by the coupled trans—
cendental equations :

2 k  ax x
tan k a = (4— 11)

X 
k2 — a 2

x x

2k a
t a n k b  “ ~“ (4—12)

“
y y -

where

k2 = w 2
~ c = k2 + k2 (4-13)

and

2urZ t

a j 0 Y — (4—14)x A wx
o b

t2urZ
— i —

~~~~ 

‘
~
‘
w~i a 

(4—15)

with Y being the wall admittance taken on the appropriate wall; Z = 376 Q

and A is the free—space wavelength.

In the dominant TM
100 

mode, effectively only the y = 0 and y = b

walls radiate; furthermore , the electric field in the radiating walls is

essentially independent of x so that the wall conductance may be approximated

y that  of a para l l e l—pla te  TEM waveguide opening onto a large ground plane;

the resulting conductance is given by [Harrington , 1961, p. 183]:

Gw 
— 

376 ~ — 1.645(t/ ~~)2][ a/ A ] (tT ) (4—16)

For electrically small substrate thicknesses , this becomes

41
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C — 0.00836 ( a /A 0
) (U) (4—17)

This is plotted in Fig. 4.2 along with the conductance of a slot antenna

I radiating into half—space (Derneryd, 1976); it is seen that the conductance

computed from (4—17) is roughly double that used by Derneryd for a slot

I antenna .

The wall susceptance may be computed from an expression for the

I 
capacitance of an open microstrip circuit [Hammerstad , 1975; Derneryd , 1976]
and may be written in the convenient form

~2 a
Bw = 0.0 1668 -

~
-— -r— c (U) (4—18)

where

- r~ + .3OO1~~! + .2621
— = 0.4121 e I (4- 19)

L~ 
— .258j a 

+ .813J

and where is the effective dielectric constant given by [Schneider , 1972]:

—1/2e + 1 c - i r  ~1
= r 

+ 
r I 1 + ~~~~~~~~~ (4 —20)

e 2 2 L a j

Fig. 4.3 is a graph of both the susceptance computed from (4—18) and that of

the parallel—plate waveguide radiating into a half—space; both are for an

assumed air dielectric.

For the TM100 
mode, k = 0 and the resonant frequency may be computed

I from
k

f = 4 .775  ~ (GHz) (4—21)1 r

-‘ where k (in cm~~) is obtained from a solution to the transcendental equationy

J (4—12) and where a is computed from (4—15). The effect of the impedance

boundary condition is to produce a dependence of the resonant frequency on

the dimension a; this is not found in the Neumann condition (c.f• eqns. 4—4

and 4—5 with n — 0). This theory produces good agreement with experimentally—

I
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I SLOT WIDTH / WAVELENGTH tlx

I Fig. 4.2 Conductance as a function of slot width for a slot
antenna radiating into a hal f—space (Dern ery d , 1976 )
and for a parallel—plate TEM waveguide radiating
into a half—s pace (Harrington , 1961).

_ 
-~ 

~~~~~~~~~~~~~~~~~~~~ 43

iIL~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



--h.-. W — - - - - -- -

I 
-

I
t .03

I MICROSTRIP EDGE AIR DIELECTRIC ASSUMED

- 
~~~~~~~~~~~~~~~~~~~ 

WAVEGUIDE END EFFECT 

-

.02 - 

~~~~~~~~~~~~~~~~-:-

0 

- 

~~~~\~~~~
\ a/x = .50 

MICROSTRIP

0 .01 .02 .03
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‘ Fig. 4 .3  Susceptance as a function of slot width for  a microstrip
open circuit and for a parallel—plate waveguide radiating
into half—space. An air dielectric is assumed for both

I cases .
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I
measured resonant frequencies at both L—band [Lo , et.al., 197”] and S—band ,

as is shown in Figs . 4.4 and 4.5. In both cases , it is noted that as the

dimension a is increased the resonant frequency decreases ; this can be seen

more clearly in Fig. 4.6 which is a graph of both left— and right—hand

sides of (4—12). The solution for the TM
100 mode in the Neumann condition

is k b = ii; however , with an impedance condition , this becomes slightly less ,

typically 96% to 98% of ur .

The values of a are complex , although the real part is normally

much larger than the imaginary part (because of the susceptance being larger

than the conductance) . Thus , in solving (4—15), only the real part of a is

used and the eigenvalues are approximately real.

The interior fields and input impedance may be calculated using a

modification of the Fourier series expansion presented in Sec . 4.1.1 by

letting the resonant frequencies become complex [Harrington, 1961, p. 435]:

= w2 (1 + J~) (4-22)
mn r Q

where ~ is the TM resonant frequency . In the vicinity of resonance ,r mno
(4—10) becomes*

mirv nuix
2 

- o 2 °ut y cos cos
= — 

inn b a (4—23)
in L 

cab u 2 _ w 2 ( l + I )
mn Q

where X
L 

is the series inductance of the probe feed connected to the micro— *

strip patch , i.e.

376
_____ 

2ir t
— tan — ( c2 ) (4— 4)A

The second term of (4—23 ) is of the sane form as the input  impedance to a

pa rallel R:C circ~ 1t :: s::: ~~~~~~~~~~~~~~~~ 

(4—25)

i x2 t rn-Tr y nux
mn ~ o 2 ~ /L — cos cos 1 ’ 4 — h D )
cab b a P

* It is assurn:d here that only one resonant mode is excited , i.e. no
closely—spaced modes or degeneracies.
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Fig. 4. 4 A comparison between experimentally—determined
resonant frequencies and theoretical values
based on an impedance bounda ry condition.
L—band microstrip patch fed by microstrip
t ransmission l ine {Lo , et. al., 19771.
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F ig. 4.5 A comparison between experimentally-determined
resonant frequencies and theoretical values
based on an impedance boundary condition.
S—band microstrip patch fed coaxially ; experimental
values include compensation for probe series
inductance effect.

-

~~~~~~ 

:- 
47 

I;

- 

~~~~~~~~~~~~~~~~~~~~~~~ 

_  
;-~~~~~~~~~.



• —
~~~ 

w- — --- - — - -  —

I
I

A

I J
~V

- c•-~•--
-

- 

~~~ &~ \\ i~
~~~ 

-!~‘\

I

48 

___ i_ _ :• _ _ _ _ _  

~~~~~~~~~~~~~



—•—-,__. w~
- — — .- — •— —

~~~

- —

~~~~

-

~~~~

-.--- —

I
- 

-

I

I
L~

I R~~ L~~

I
I

L~ 
= SERFS INDUCTANCE ASSOCIATED WITH PROBE FEED

R RESISTANCE ASSOCIATED WITH RAD IATION AND
HEAT LOSSES

I L = I NDUCTANCE ASSOCIATED WITH ENERGY STORAGE IN
CAVITY

C CAPACITANCE ASSOC I ATED WITH ENERGY STORAGE IN
CAV I TY I,

Fig. 4.7 Equivalent circuit model of microstrip cavity
fed by coaxial probe .
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cab rn-Try n -Tr x
C = cos2 —p- ccs 2 _~~~~~~~~ I (4—2 7)

p 
t L 

b a ]

I
I Also it is noted that

1
— (4 —28 )mn 
L C

and

Q = w R C  
- 

(4— 29 )

The resistance may be computed by noting that at the resonant frequency
(where the second term in 4—23 becomes purely real), the input resistance is

R . = R  + R  + R  (4-30)in c d

where R is the equivalent resistance associated with dissipative losses in

the conductors (c.f. eqn. 2—17) and Rd is the equivalent resistance associated

with dissipative losses in the dielectric ; R is then the reciprocal of twice

the conductance of one slot (eqn. 4—17) , i.e. for the dominant mode

R = 59.8 (A / a) ( Q ) (4—31)

The first term in (4—27) will be recognized as the d.c. capacitance of a

parallel—p late capacitor of area ab and thickness t.

It is emphasized that in (4—23) the series inductance term is

I associated with the coaxial probe and results from coupling to the TM field.

For a microstrip antenna fed by a microstrip feedline this term is not

I present , and the input impedance is given by the second term of (4—23) .

Fig. 4—8 compares the input impedance of the present model with the

transmission—line model of Derneryd [1976] for a microstrip—fed patch with

a = 6.858 cm, b = 4.140 cm , t — 0.1588 cm and cr = 2.62. Two significant

I differences are noted . First , the input resistance at resonance from (4—23)

is 118 l~ whereas that from the Derneryd model is 220 l~; this results from

the different models used for the slot conductance. Second , the resonantT I
t__i 50

- - - 

~~~~~~~~~ 

;-
~
.,-T



• -
~~~~~~~~ w — -• --- - - -

-
I
c I

I
* - 

~~~~~

/
‘/ ‘ 

~~~~~~~~~~ / 
\~~

I A / - / • / - 
- 7- - - - -~~~~~~~~~ 

-, — 
~~~~~~~~~~~~~~~~~~ 

\ \

I / / ~~~ / >*v 
~~~~~ ,/~~ 

~~~~~~ 
-

~~

I 

_ _ _ _  _ _ _ _

______ ~~
-

I - 
r— h— F~ ~~~~~~~ 

22(~ ~• i_ I -h~___ - - ~~~~~~~~~ ~~~~ . .—~
-— I — — ‘h - -

~~1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
r

\ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ;;oo4t E~PAN s ION flODEL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - :1 
-

(eqn . ~—2 3) ~~~~~~~~ 
‘ ‘~~ 1~~~~~

_
’ ,

_
~~~

_ I -

~~~~~~~~ 9 Z220 
- 

-
~~~~ 

/-~ -‘

~ \~~~
-
~ 

— a— —— ~~~~~~~~ TRA t~S~4ISSION-.LINE TIODEL ~~~~~ ~~~~~~~~~~~~~~~~ - 
,
j

L~~ ~~~~f

- ‘ 
-
~~

— - (Derneryd , 1976) >
~ 

- ~~~~~~~~~~~~~~~~~~~ I— •
•• /I \

\ ~~~~~~~~~~~~ 

/ 

/
/

/‘~ ~~~~~~~~~~~~~~~~ ~~~~~ 228O~~~~~~~~~ 2220

• Fig. 4.8 Comparison of Modal Expansion Model and Transmission

I Line Model for a microstrip—fed patch with a — 6.858 cm,
b 4.140 cm, t — .1588 cm, and = 2.62.

1
I
1 51

_ _  -~~~~~ 
_ _



- w —~~~
- - -  — - -  —

frequency for the modal expansion model is predicted to be 2194 MHz,

whe r eas the De rne ry d model p r edicts  2172 MHz. The measured resonant

frequency for this antenna was 2195 MHz, in nearly perfect agreement with

the modal expansion model.

For the mode , the impedance is predicted to be independent of

the probe position x ;  this is verified by experimental data [Weinschel &

Lanphere , 1973] for feed points ranging from the center to near the corner.

When the patch is fed by a probe (coaxially), the inductive term must

) be retained in (4—23), which has the effect of moving the impedance circle

toward the induc tive side of the Smith Chart. For a typical substrate with

c = 2.62 and t = 0.1588 cm, XL = 7.7 ç2 at 1 GHz, 15.5 12 at. 2 G1-lz, and

80.1 ~2 at 10 GHz. Since practical impedance measurements are often made

with coaxially—fed patches , it is important to correct such measurements

for the inductive effect , particularly at S—band or higher.

As the feed—point  y is moved inward toward the center of the element ,
the resistance decreases in accordance with ( 4 — 2 5 ) ;  the capacitance increases

but the inductance decreases in such a way as to maintain the same resonant

f requency and the same Q .
Figs . 4.9 — 4.12 compa r e measur ed impedance data with theoretical

values (based on 4—23) for a patch with a centered feedpoint at several

inset distances ranging from 0 cm (edge) to 1.524 cm. The agreement is quite

good , and seem’3 to validate many of the preceding assumptions . Fig. 4.13

compares experimental [Dunn, 1978] and theoretical impedances for an edge—fed

L—band patch and again the agreement is good.

One restriction on the present formul~tton , which assumes a single

well—isolated resonant mode , is that it  becomes less accurate as the

dimension a becomes less than b. Thus, the second term in (4—23) includes

only one mode; future formulations will include multiple modes and provisions

for estimating the effect of feed probe slight positioning errors on

degenerate modes (e.g. TM
0~~ 

and ‘1’
~~~~ 

for a square or nearly—square patch).

I

~ I
I
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The power dissipated in the rectangular patch may be divided into

a portion associated with conductor losses and the remainder caused by

die lect ric losses , as desc ribed in eqns . (2—16) — (2—18). By using the

p r eceding modal expansions , it is easy to show that at a well—isolated

resonant frequency, the power lost as heat in the conducting walls

(assumed to be copper) is

~ dc = I
i ~~R (4—32)

where -

R = 0.00027vT ~- Q2 ( 12 ) (f = frequency in GHz) (4—33)

The power lost as heat in the dielectric is

= Ii . 12 R
dd I in d

where

Rd 
= 30 tan ~ ~~o 

~
2 ( 12 ) (4 —35 )

r

where c ’ is the raal part of the relative permi t t iv i ty  and tan ~ is the

loss tangent. The input power is

= II 2 R . (4—36)
in in in

The radiation resistance referred to the input is therefore

R = R . — R  — R (4—37)
in c d

( where

R = 59 .8  (X /a) ( 12 ) (4—38 )
Also , ~ ~r 

= wW/ (Re P
r
) where Re 

~r 
= and W = 

~~T~ ’’ and where

CT includes both the patch and edge—effect capacitance. This gives

= 
~~~~~ 

+ (2e t~Z/t) (4— 39)

Thus, the antenna efficiency is
P + P  R + R

= 1 — 
dc dd 

= 1 — 
c d (4—40)

P Rin in
*tt is assumed that the patch is fed on the edge and in the mode.

I
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As a numer ical examp le , let a = 6.858 cm, b = 4.140 cm , t = .1588 cm,

I c~ 2.62 and A = 13.6 cm. Then , from (4—33), R .38 12 and from
(4—38 ) , we get Q = 37 , R =119 Q. Table 4—2 shows the e f f e c t  of various
loss tangents on both R

d and the antenna efficiency

- 
Table 4—2

Antenna Eff ic iencies  for Microstrip Patch

Loss Tangent Equiv. Diel. Resistance Efficiency (Loss)
tan s R

d -n

0.0001 0.12 Q 99.58 ~, 
(.02 dB)

0.0005 0.60 99.18 (.04 )

0.001 1.19 98.68 (.06 )

0.005 5.96 94.67 (.24 )

0.01 11.92 89.66 (.47 )

Fig. 4.13—1 is a graph of the antenna efficiency as a function of substrate

thickness for several loss tangents and for the microstrip patch in the

above example.

I
I
I
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4. 1. 3 Multiple Mode Effects

In the preceding formulation of (4—23) for the impedance of a

rectangular patch , it was assumed that there was essentially one resonant

mode whose bandwidth was much less than the frequency separation to the

next adjacent modes . However , for some microstrip antenna designs , this is

not necessarily the case; for example , a square patch fed at a corner

can excite both the TM
100 

and TM
010 modes in phase and at -he same

resonant frequency.

Consider a corner—fed rectangular patch where the dimensions a and b

are approximately the same . The total input impedance is the sum of the

impedances of each mode; neglecting the inductive reactance of the probe and

using only the second term of (4—23) with x = y = 0, the input impedance is

Z~ = Z100 
+ Z 010 (4—40a)

where

— 2 j w t
Z = . (4—40b)100 2 2 1cab [w — u10 (1 + ) ]

10

—2 j u t
Z = . (4—40c)010 2 2 1cab [u — w,.,4 (1 + ,, ) 1

~0l

It is assumed that all other nodes are short—circuited .

This model raises the possibility of increasing the bandwidth of the

oatch by stagger—tuning the modes . The resonant frequency j
~~ is determined

primarily by the dimension b and the resonant frequency 
~~ 

is determined

primarily by the d imension a.

Figs . 4—14 a,b , and c show this effect by comparing the impedance

~ehavio r  of square and nea r ly—squa re  patches , all w i t h  a = 4.14 cm ,

0.1588 cm and Cr = 2.62. Fig. 4—14a shows the plot for b = a 4.14 cm

(square patch), which is the degenerate case. Fig. 4—14b is for b 4.328 cm

T 
and shows a 1oop which is associated with the frequency band where Z100
and are about the same. Fig. 4—14c is for b = 4.500 cm and the loop is

seen to become larger at the same time the resonant frequency decreases.

This multiple—mode excitation technique may hold promise fIr some in~ rlven ~ent

in bandwid th .
60
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Multiple—mode excitation can also produce various polarization states

of the antenna . For a squa r e corner—fed patch , the polarization is linear

with the E—p lane oriented along the diagonal containing the feed . For

corner—fed rectangular patches with a ~ b , however, the possibility exists

of producing circular polarization with a single feedpoint.

By using (4—8) and (4—122), the interior fields of a corner—fed

rectangular patch may be written as

mit mixjut cos cos —
E(x ,y) = 

in E E b 
(4—40d)

cab m ,n — W 2 (1 + 1)
mn Qmn

For a patch with dimension a slightly less than b , the TM
100 and TM010

modes will have closely—spaced resonant frequencies so that only two terms

of the series are retained :

/ ,TXjul . I cos cos —
— in I b aE (x ,y) = . +

- 
cab u2 - w2 (l + ~~~ ) - w 2 (1 +

(4—4 0e)

The magnetic surface current on the y = 0 wall is thus given by

/ 1TXjul ( 1 cos —
= in 

- ± 
a 

(4—40f)
SX c ab - + 

~~~ 
) - +

and the magnetic surface current on the x = 0 wall is given by

/ itt
jul I cos 1

= ~ in j  b 
+ . (4—40g)sy cab l~u

2 _ w 2 ( l + 1 ) u2 _ u 2 ( 1 + l )

The second term in ( 4 — 4 0 f )  and the first term in (4—40g) have no net effect

on the pola r i z a t i o n  in the broadside direction .

To achieve circular polarization , M
SX I = ~M5 I and t ieir phases must

differ by 90°. -
By using (4—40f) and (4—40g) it is found through trial—and-e::or

numerical evaluation that a corner—fed patch with b/a 1.029 should produ’ e
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app roximately circular  polar izat ion in the broadside direction. A similar

prediction has been made by Kaloi [1978) although no ratio of b/a was given

and no computed or measured axial ratios were presented . The numerical

procedure for the prediction of circular polarization is to enforce the

above conditions , i.e.

1w 2 
- 

~4o (l ÷ ~~~ = - w~~ (1 + n—) (4-40h)
10

and

— 
. 2 ,—

~ 
. 2 / - ~

-l ju
l01 ‘<10 -1 ~~~~~~ ‘<01tan — tan = + (-rr/2) (4—40i)

— 
—

As an approximation to the resonant frequencies w10 and u01, the Neumann
boundary condition can be used so that w

10 
Tr/bv~~ and w

01 
7r/ av~1C.

Then Q
10 

= cLJ
10
R
10C10 

where R
10 

59.8X /a and C
10 

= sab /2 t ;  s imilarly,
Q01 

= w
01

R
01

C
01 

where R
01 

59.8X /b and C
01 

= C
10

. These equations are

easily solved by iterative means using a programmable calculator.

As an example, let a = 4.14 cm and b = 4.26 cm. The predicted on—axis

axial ratio vs. frequency is shown in Fig. 4—15. If the patch is fed at

the x = 0, y = 0 corner , the polarization is left circular; if the patch

is fed at the x = 0, y = b corner , the polarization is right circular.

The computed polarization bandwidth (defined as the frequency spread between

axial ratio values 3 dB greater than the minimum) is 22 MHz.

A corner—fed nearly—square patch with the above dimension was constructed

to test the validity of the above theory . The dielectric constant was 2.62 ,

the thickness was 1.588 mm and the patch was fed at the x = 0, y = 0 corner

by a coa xial p robe (SMA connector). The measured axial ratio vs. frequency

is shown in Fig. 4.15. The measured impedance diagram is shown in Fig. 4.15—i

First , the agreement between theoretical and experimental axial ratios

is very good . Second , it is observed that the excitation of t ie two modes is

in evidence from the presence of the cusp (small loop) at 2200 MHz. It is

also noted that the cusp occurs where the axial ratio is minimum. The extensi

of this principle relating polarizatIon and impedance for multi—mode micro—

strip patches is straightforward.
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Solid line is theoretical and dashed line i < measured .
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4.2 The Circular Patch

Consider a circular microstrip cavity of radius a and substrate
thickness t, assumed to be electrically small. The orthonortnal electric

field mode vectors , which are again assumed TM to z, satisfy the Neumann

condition for a non—radiating cavity and are given by

Xn J (k ’ 
~~

- ) cos n~ (4-41)
aV’2cir t A

nr

where
if n 0

Xn (4-42)
i f n l

and

(J(k’ ) if n = 0

I I o o r
A = -

~ (4 —43 )nr ‘
~ 2 1 1/2

~ 
(n+l+2k) 

~n+l+2k~~nr~ it #n r k O

and where the eigenvalue k’
r is the r

th_ranked root of the Neumann condition

J ’ (k ’ ) = 0 (4—44)
n nr -

Table 4—3 lists in ascending order of frequency the eigenvalues for a

few of the lower—order modes [Abramowitz and Stegun , 1964].

Table 4—3

Eigenvalues of J ’ (k’ ) 0n nr

Mode Eigenvalue

(n , r)

0,0 0
1, 0 1.84118
2,0 3 .05424
0,1 3.83170
2 , 1 4.20 119
1,1 5.33144
2 , 1 6.706 13
0,2 7.01558
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The resonant wavelengths ar-fl ~~~~~~~ ca lcu la ted  by

2ir v’T~a- 

0 
= 

k’ 
(4 45)

Radiation patterns for the TM
010 mode have been measured and calculated

by Carver [1976] and more recently and completely by Lo , et. al. [1977].

The dominant mode has a resonant frequency given by
- c (1.84118)
t f = (4—46)r 

2ita v ~~

where c is the speed of light in vacuum . The normalization constant A
10

for this mode is computed numerically from (4—43) to be 0.33887. The

mode is zero at the center of the patch and has a maximum amplitude

at ~ = 0 and ~ = it ; however, the electric fields in the edge walls are

I 180° out of phase at these diametrically opposite points. Such a mode

produces a broadside pattern at the resonant frequency and has been used

I successfully in practical array designs [Parks & Bailey , 1977]. This mode

may be excited by either a probe or a microstrip transmission line feed at

I 
the edge .

As before , the total h eld of a probe—excited cavity can be expanded

in terms of the mode vectors. For a radiating cavity with a finite Q,

this becomes

r e (p ,~ 
) e (p , -~)

) E (p ,
~~
) = — I ( ju )  E ~ nr 0 0 flt~ (4—47)z in 

n 0  r=0 w2 — w2 (1 + ~~ )

whe re (p ,
~~ ) is the feed—point lo:ation. The input im:edance is then

I ~ t e  (p,~~~)nr o o
Z j u ~ Z ( — )
in 2 2 1

-
- n .Onr u — u  ( 1+  )

nr Q

In the vicinity of a resonant frequency, this becomes

t e2 (p ,~~ )
Z j L — j u  — nr 0 0 (4 49)
in L u 2 — u2 (l
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Using A ,,.~ = 0.33887 along with eqns. (4—41) and (4—42), the mode vector

for this dominant mode is

ii ,

e
10

(p,~~ ) = ~~~~ J
1
(l.84ll8 2. 

~ cos (4—50)

The first term in (4—49) is the series inductive reactance associated with

the probe and is computed from eqn. (4—24). For a circular patch fed by

a microstrip transmission line this first term is not present. The second

term is of the same form as the impedance of an RLC circuit , i.e.

ju/C
z = . (4—51)

- w 2 (1 + 1)
nr Q -

where

2 
= l/ (Lc)  (4-52)

Q = R/ (uL) (4—53)

Thus, substituting (4—50) into (4—49) and noting the analogies (4—51) —

(4—53) , the following relationships are obtained :

Q 2.775t 2 
p

R — J (1.84118 —i) (4— 54 )
-~ ~a 1 a
nr

1 2.775t 2 
p

L = —— 
ca2 

J1
(l.841l8 —i) (4—55)

ca~ p
C = J~~ (l.841l8 

_2__) (4—56)
2.775t 

a

I At resonance , the input resistance is equal to the reciprocal of the total

effective wall conductance C . An exac t solution to this theoreticalw
problem of the wall admittance for this geometry has not been found ~‘y the

auth or;  however , an approximate form will be given in a subsequent paragraph.

For a radiating cavity, the Neumann condition is not satisfied ; the

impedance boundary condition means that (1) thL eigenvalues and eigenvectors r
I
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are no longer purely real , and (2) the resonant frequencies will be slightly

less than those obtained for the closed cavity case. The transcendental

equation for the eigenvalue of the TM
100 mode can be shown to be - -

J~ (k~0) = - a J1(k~ 0
) (4-57)

where
z y  t

0 W

A a  
- (4— 58)

and where differentiation is with respect to p , Z = 376 0 , and Y is the

wall admittance. If Y~ = 0, then (4—57) reduces to the Neumann condition

(4—44) for a = 1. By use of a recursioh relationship, (4—57) can be written

in a more convenient form as

k
1~ 

J ( k
1~ 

) = (1 — cia)J
1
(k~0

) (4— 59)

To solve this equation for the eigenvalue k~0 , it is convenient to use

the polynomial approximations for and -
~~ 

as given in Abramowitz and

Stegun [1961]; the appropriate value will be slightly less than the Neumann

condition value, i.e. 1.84118. Table 4—4 lists both the elgenvalues and

the fractional reduction in resonant frequency for several values of aa.

Table 4—4

Eigenvalues for Impedance Boundary
Condition and Fractional Reduction

in Resonant Frequency

cia ~~k~0 ~r ”~~ro
- 

0 (Neumann condition) 1.84118 1.00000 :~— .01 1.83345 0.99580
- 

— .02 1.82567 0.99158

— .02025 1.82567 0.99145

— .03 1.81780 0/~~730

-.04 1.80988 0.98300

— .05 1.80190 0.97867 r
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The relationship of the values from (4— 58 ) to the values tabulated can
be made directly if it is assumed that the wall susceptance is much greater

than the wall conductance; this is usually the case.

Since the power in the radiating walls varies as cos2 I~ for the TM100
mode , the effective radiating length is half the circumference. Thus , if

a is not too small , the relationships fo r a planar paral le l—plate  TEM
guide radiating into a half—space (eqns . 4—17 and 4—18) may be adapted to

the circular patch , replacing a (in the previous equations) with -ra in

the present case, so that the wall conductance is

C 0.00836 - ( U )  ( 4—60 )
. 

°

The wall susceptance is adapted from the open ended tnicrostrip capacitor

(eqas . 4—18) and is thus 
-

I B 0.00834 £ (if ) (4—61)

a where 1~ /c has been taken as 0 .5 .

As a numerical example , consider a circular patch with a = 6 . 7 5  cm ,

r t 0.1 5-~~ cm , and c = 2.65. The resonant frequency for the Neumann

condition can be found from (4-46) as 800.0 MHz. From (4—61) , B = .01251.5

and / r -~rn ( ._ ~ I)) , C = 0.00178 1.5. From (4 — 58) , ci = — .003 cm~~. A solution

to the impedance boundar’, condition , with ~a = — .02025, gives

k~0 
1.82567 as shown in Table 4—4 . This corresponds to a 99.145%

reduction in the resonant frequency, so that the predicted resonance is

793.2 MHz.

This example was chosen to correspond to measured data for a patch

of the ~-i~ e size [Lo , et. al., 1977 , p. 36]. The measured resonant

• frequency was 794 M1-lz, which is in nearly perfec t agreement with the

above ca lculation. This appears to confirm that  (4—6 1) is a good

app roximation . Fig. 4 .16  is a comparison between the theore t ica l

input impedance , based on eqns. 4—49 (without the probe inductance)

through 4—61 , and experimental values measured by Lo , et .  al. There is

generally good agreement , except  t ha t  the measured input resistance at

resonance is slightl y larger than the theoretical value.

j
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Fig. 4.16 Comparison between theoretical and experimental input
impedances to a circular microstrip patch with a = 6.75
cm, t 0.1588 cm, and = 2.65.
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4. 3 The Pentagon Patch

In Sec. 4.1.3, it was pointed out that circular polarization is

theoretically possible from a microstrip antenna with a single feedpoint ,

if two spatially orthogonal modes were excited in phase quadrature.

A practical example of such an antenna has been reported by Weinschel

[1975] who obtained circular polarization over a 1% bandwidth from a five—

sided microstrip patch , shown in Fig. 4.17. This ant nna has been used in

an S—band cylindrical array producing circular polarization [Weinschel , 1975]

and in a UHF scanning array for buoy or ship communication to a satellite

[Weinschel and Carver , 1976].

I\ typical impeda nce plot for an S—band pentagon micros t r ip  patch is

shown in Fig. 4.18. The loop at 2279 MHz is evidence of the existence of

two modes , as discussed previously in Sec . 4.1.3.

The modal expansion for  the interior f ie lds  of such a pol ygon cannot

be carried out by the classical technique of separation of variables since

the boundary conditions canno t be imposed in a simple fashion. The method

of finite elements can be used , however , by application of the principles

discussed in Sec. 3.0. In fact , this antenna serves as an illustration of

the true power of the finite element method .

Table 4— 5 lists the computed eigenvalues (using program MICRO ) for

the first eight modes of a UHF pentagon patch whose first non—zero resonant

frequency was measured to be 469 MHz. The grid and nodes used for

computat ional  pu rposes is shown in Fig. 4.19.

Table 4—5

Results of Finite Elements Computed
Values of Lower Eigh t Eigenvalues
and Resonant Frequencies for Penta—

gon Microstrip Antenna

n K fn n
1 0 0
2 0.1046 cm

1 499 M1-Iz
3 0.1112 531

f 4 0.2902 1384.4
5 0.4595 2062.2
6 0.4799 2153.6
7 0.7733 3470.2
8 0.8672 3891.3

S
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I
The resonant  f r equenc ie s  were computed assuming a Neumann boundary

condition (open circuit at walls) so that the computed values are

expected to be a few percent high . The measured if
1 resonance is 0 .94

times the calculated value .

F ig. 4.20 is a graph of three of the computed modal e fields

(eigenfunctions) in the radiating walls of the pentagon patch . Since

the open—circuit wall impedance condition was used , the mode vec tors are
entirely real. The eigenvalues and eigenvectors for modes 27 , 28 and 31

2 2are show-n . It is noted that eigenvalues 
~
‘28 

= = 0.1203 and A 27 = k
27

= 0.13605 are closely spaced , indicating the possibility of a multiple—

mode condition being produced by a single feed.

Fig. 4.21 illustrates the individual magnetic currents in each wall

for modes 27 and 28. The net effect is that mode 28 is vertically polarized

and mode 27 is horizontally polarized . The relative amplitudes and phases

of modes 27 and 28 would be determined by the feedpoint location and the

frequency. However , these preliminary results point strongly toward a

theoretical prediction of circular polarization for the pentagon patch , if

the feedpoint and frequency are properly chosen.

f

I
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* 5.0 CONCLUSIONS

This report has presented a method of analysis which can be applied

to inicrostrip antennas. The primary emphasis to date has been on the

prediction of the interior fields, since this is a more difficult problem

than the prediction of the antenna pattern.

For formulations based on a cavity model with open—circuit walls

(fields satisfying a Neumann boundary condition) both the interior mode

vectors and eigenvalues are real. However, the Inicrostrip patch presents

a wall admittance which is complex, with the capacitive susceptance

usually being several times the conductance. Thus, the mode vectors are

nearly real and the eigenvalues are nearly real. Solution of a trans-

cendental equation can very accurately predict the resonant frequencies

once the appropriate wall admittance is known.

The problem of finding the wall admittance of an arbitrary microstrip

patch shape has not yet been solved and emphasis should be placed on finding

solutions. Ho~ever, an approximate formula has been found which uses the

conductance of a TEM parallel—plate waveguide and the susceptance of an
open—ended microstrip capacitor. This gives good agreement between

measured and calculated input impedances for the rectangular and circular

patches considered . The input resistance at the resonant frequency is

dete rmined by the wall conductance , --‘~- -_reas the resonant frequency is

primarly related to the patch dimensions and the wall susceptance.

For a patch fed by a coaxial probe, the input impedance to the patch

proper will d i f fe r  from the measured input impedance to the coaxial

connector by a series inductive reactance term, given by eqn. (4—24).

This term must be know-n in order to correct measured impedances with a

probe to the true input impedances seen by a microstrip transmission line

used in an array design.

When a corner—fed nearly—square patch operates in a two—mode cortfig—

uratlon with two closely—spaced resonant frequencies, it is possible

-

. 

1 theoretically to obtain circular polarization over a 1% bandwidth . This

multiple—mode ef fec t , discussed in Sec. 4.1.3, has been experiment—

ally confirmed at PSL .

The method of finite elements has been applied to the analysis of a

‘/ I
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five—sided patch which, when properly excited , can produce circular

polarization. This analysis, which is in a preliminary stage, confirms

the existence of two spatially—orthogonal exterior fields at broadside

and at two closely—spaced resonant frequencies. - The feedpoint problem

has not yet been solved for this geometry.

Both the classical expansion analysis and the numerical analysis

approaches will be continued. The finite elements program (MICRO)

will be expanded to include (1) sparse matrix algorithms to decrease

computer storage requirements and (2) subspace iteration to decrease

execution time.

0
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