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A;STRAcT

• A variant of Gauss ian elimination is presented for solving sparse
symmetric systems of linear equations on computers wi th limited core
storage, without the use of auxiliary storage such as disk or tape. The
method is based on the somewhat unusual idea of recomputing rather than
saving most nonzero entries in the reduced triangular system , thus
trading an increase in work for a decrease in storage. For a nine—point
problem with the nested dissection ordering on an n x n grid , fewer than

(
~3 nonzeroes must be saved versus ~ tt~log2~ for sparse elimination,

while the work required at most doubles. The use of auxiliary storage
in sparse elimination is also discussed .
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1. In t roduct ion

Consider the system of linear equations

(S) A x ~~~b

where the coefficient matrix A is a sparse N x N symmetric positive

definite matrix such as arise in finite—difference and finite—element

approximations to elliptic boundary—value problems. Direct methods for

solving (S) are generally variations of (symmetric) Gaussian

elimination: We use the kth equation to eliminate the kth variable from

the remaining N—k equations for k 1,...,N, and then solve the

resulting triangular system (the reduced system) for x. Unfortunately,

as the elimInation proceeds, some coefficients that were zero in the

original system of equations become non—zero (fill—in), increasing the

work and storage required.

As an example, consider the following model problem which arises

from the familiar nine—point finite—difference discretization of the

H Poisson equation on the unit square with homogeneous Dirich].et boundary

conditions. Given a uniform n x n grid in the plane (see Figure 1), we

associate a variable ujj with each mesh—point (i,j) and form the system

of linear eq ua tions

8Uij  
— Uj _ 1 , j_ 1  

— Ui_ i , j  
— Ui..l ,j+ l 

— Uj ,j.... 1

— Ui+l ,,~,.,.l 
— ui+I,j 

— uj+l,j...l 
— u1 ~~~~ 

— ~~~~ 1<i ,j < n

where

p

— ---- C—.
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1 0 , n+1 or j — O , n+1

There are N n2 unknowns U
j j  and , taking account of symmetry, 6n2

nonzeroes in A and b. But wi th  the nested dissection ordering of the

variables (7] (which is optimal to within a constant factor [8]), the

number of nonzeroes in the reduced system is ~~ n
2log

2n.

Our mod el problem illustrates the behavior one of ten encounters in

using Gaussian elimination to solve large sparse systems: The storage

required can easily exceed the core storage available for even

modera tely large N, even though the problem and solution (i.e., A, b,

and x) can be represented in core. Thus, al though we could store the

nonzero coeff icients, right—hand side, and solution for our model

problem in 7n2 locations, the reduced system would require an

add itional ~~n
2log2n locations.

In this paper we discuss variants of sparse elimination which can

solve (S) with minimal core storage. The methods are based on the

following assumptions:

(1) The nonzero entries of A and b are inexpensive to generate on

demand (e.g., they can be stored in core or computed with little

effort).

I
(2) There is enough core storage for the solution vector x , plus a

small amount of world.ng storage , but not enoug h to store the entire

red uced system .

$
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We count only the working storage required to solve (S) in stating the

storage requirements of such methods. All other storage (i.e., storage

fo r A , b, and x) is associated with the linear system rather than the

method of solution and is ignored .

H The standard solution is not to store the entire reduced system in •

memory, but to use auxiliary storage (e.g. , disk or tape) as well.’ An

alternate approach is not to store the entire reduced system at all

(cf. [4 J ) .  Instead, we throw away most nonzero entries and recompute

them as necessary during back—solution. The result is an algori thm

which can solve our model problem with approximately twice as much work

as sparse elimina tion , but which requires that fever than ~n
2 nonzero

entries be stored , versus j~n
2log2n for the reduced system.

In Section 2, we review the nested dissection orderIng (7 1 and the

“Disaster Strikes” algorithm for solving the model problem (3]. We

introduce an element model of elimination in Section 3 in order to

generalize the algorithm to non -model problems , and show how to

implement such a scheme in Section 4. In Section 5, we present some

experimental results , and in Section 6 the appl ications of these ideas

to auxiliary storage sparse elimination.

1 Vi rtual memory systens appear to have large amounts of memory but in
reality constitute a hidden use of auxiliary storage .

- 
.
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2. The Nested Dissection Ordering

The wo rk and storage requi red to solve a large sparse systett of

linear equations clearly depend upon the zero—nonzero structure of the

coefficient matrix. But since this matrix is positive definite and

symmetric , we could equally well solve the permuted system

PAPt y _ P b , P x y

given any permutation matrix P [11]. The permuted system corresponds to

reordering the variables and equations of the original system, and the

net result can often be a significant reduction in the work and storage

required to form the reduced system. For the case of the nine—point

operator, George (7] has di scovered a nearly optimal ordering known as

the nested dissection ordering.

The easiest way to describe the nested dissection ordering is in

reverse order; that is , we shall describe the last group of variables

to be eliminated , then the second last, and so forth. The exact order

in which variables in each group are eliminated does make some

difference to the total work and storage required , but we shall ignore

this difference. Although George described his ordering in terms of

independent sets, we shall use the recursive description given by Rose

and Whitten [10].

The basic step consists of numbering the 2n+1 variables on a

central dividing cross (see Figure 2). These unknowns are the last to

be eliminated. When we delete them, the grid splits into four x 

~~~~~~~~ - — — -~~~~~~~~~~~~ ---~~~~~ -
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subgrids. Each of these subgrids is structurally similar to tLc

original grid so that we can number it in the same fashi on.

Theorem: (George [ 7 ])  For the nine—point model problem with the nested

dissection ordering on an n x n grid , sparse elimination requires

OND (n) — iOn 3 + O(n2log
2n)

multiply—adds , and the reduced system has

S~~(n) - ~~ n~log~n + 0(n 2)

nonzeio entries.

When the last variable has been eliminated , we have generated all

4 the nonzero entries in the reduced system of equations that remains , and

hav e merely to solve thi s system for the vector of unknown s x.  Yet

suppose disaster strikes and only those entries in the last 2n+1 rows

are saved. Then we could still solve for the last 2n+l variables, i.e.,

the values of the unknowns on the central dividing cross. But, given

the values of these vari ables , our n x n problem splits into four

smaller x j  problems of the sam e form . These subproblein s can now be

solved in the same fashion .

“Disaster Strikes” Algorithm [3]: ‘

(1) Solve for the unknowns on a central dividing cross.

(2)  The problem splits; solve each of the subproblems in the same

- 

- _ _ _ _ _ _
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fashion.

Of course , throwing away nonzero entries means that we will have to

do some additional work to recompute them. But how much more? The cost

- 
I 

of solving an n x n problem is just OND(n) plus the cost of solving four

I x ~j  problems. 1~etting OMS(n) deno te this cost, we have

°MS
~~~ 

0~~ (n) + 4

— ion 3 + ~ 0MS~~!~ 
+ O(n2log2n)

Thus,

OMS (n) — 20n 3 + 0(n2log2n)

and we are doing approximately twice as much work. But , as we shall

see , the saving in storage is more significant.

3. An Element Model of Elimination

How much storage is required to perform sparse elimination on our

model problem with the nested dissection ordering if we only need to

save the nonzero entries in the last 2n+i rows of the reduced system?

How do we generalize the “Disaster Strikes” algorithm to non—model

problems? How do we implement such an algorithm? In thi s section , we

introduce an element model of elimination which wil l  help to resolve

these questions.

I 
________________________________
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The element model emulates Gaussian elimination by a sequence of

transformations on a collection E of sets of variables called elements.

Initially,

H ~ (O)  
= 

~~ Xj~~X j  I a~~4O i
~

Corresponding to using the kth equation to eliminate the k
th variable

(k—i) (k)
from the remaining N—k equations , we transform E to E by

( 1) merging all elements in which con tain X
k to form a new

element Ek;

(2)  deleting those elements in E~~~’~ which contain xk;

(3) adding Ek .

As an example , consider Gaussian elimination as applied to our

nine—point model problem with the nested dissection ordering on a 3 x 3

grid (see Figure 3; the initial elements corresponding to the nonzero

entries of A are not shown). As each variable is eliminated , one new

element is created and the elements merged to form this element are

deleted . Since A is irreducible, the final element contains all the

variables in the grid. Note that some of the elements are equal.

The order in which the variables are eliminated determines the

elements which are created during the elimination process. We can

describe th. element merges that take place by an element mcrge tree:2

( 1) The nodes of the tree are the elements which were created during

- ~~~~~~~~~~~~ 
- - -  ~~:.
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the elimination process (however, if two elements are equa l , then

they are identifi ed with the same node).

(2) A node (i.e., element) E1 is a son of another nod e E~ if and only

if Ei 1~ E~ and E~ was merged to form when variable xj was

eliminated.

The merge tree for the previous example appears in Figure 4.

Note the following properties of element merge trees:

( 1 )  Every variable v corresponds to some node in the element merge

tree , namely the node identified with Ek; however , several

variables will correspond to the same node in the tree if the

corresponding elements are equal.

(2 )  If val ues were known for all the variables X
i 

whose corresponding

E1 is equal to the root element of the tree , then the problem would

split into subproblem (s), which could be solved in the same

fashion.

This allows us to generalize the “Disaster Strikes” Algorithm to

non—model problems.

Mi nimal Storage Sparse Elimination (MSSE) Algorithm:

( 1) Construc t the element merge tree corresponding to the given order

2 The element merge tree is actually a forest unless the matrix A is
irreducible. 

-
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of elimination .

(2) Solve for the variables corresponding to the root element in the

tree.

(3) The problem splits; solve each of the subproblems in the same

fashi on.

Moreover , there is no reason why we cannot solve for more than just

the variables corresponding to the root nod e at each stage. Instead , we

coul d solve for as many variables as we have storage for the necessary

nonzero entries in the reduced system. The result will be less work,

although , since the bulk of the work is in the first one or two stages ,

the savings will be primarily in bookkeeping operations rather than in

actual arithmetic. But how do we implement such a scheme?

-~ 
- 

4. An Implementation of MSSE

In this section, we present an alternate formulation of Gaussian

elimination [6), and show how it leads to an implementation of the MSSE

algorithm similar to the assembly approach for solving finite—element

equations [9].

Gaussian elimination can be expressed as a sequence of operations

on the coefficients and right—hand sides of the original system of

equations leading to the reduced system : 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
——---

~~~~~~~~~~~~
.. -
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SET ~~~ = a1~~ b~°~ = b1 1 < i < j < N

FOR k — 1, 2, . . . ,  N—I DO

(k—i) (k—i)

~~~~~ 
- :j~~~ 

k < i < j < N

(k )
a. .

13

(k—I)
a1 otherwise

(k—i) (k—i)

~~~~~ - -

~~~~~~~~~~~~~~~~~~~

—_-_ k < i < N

( k )
bi 

—

b otherwise

Here ~~~ and b~
1
~ are the entries of the partially reduced system after

x i,...,xk have been eliminated . The importance of this formulation lies

in the following result:

Theorem: If

a~~~~’pO , k< i < j < N ,

then there exists an element Em in such that

X
i ,x~ e Em~ k < i < j  < N.

If we exclude the possibility of exact cancellation, then the converse

is also true .
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This result suggests how to store the nonzero entries of the

partially red uced systems. Associate with each element Em ~ 
a

matrix Cm — (c~~~~~] and a vector dm = [d~~~] whose rows and columns

correspond to those x~ c Em with i > m; and whose values represent

correction s to the entries of A and b resulting from the elimination of

those vari ables xi c Em wi th i < ax. For the nine—point problem on a

3 x 3 grid , the C1, d 1 and C5, d5 corresponding to E1 and E5 are shown

in Figure 5.

To compute the corrections associated with a new element , we

perform an assembly and elimination process similar to that used in

finite—element solutions (see Figure 6):

(1) Set up a workspace with the rows and columns corresponding to those

variables X
i 

C Ek with i > k and an additional column corresponding

to the right—hand side; the workspace is initialized to zeroes.

(2) The initial elements merged to form Ek are of the form {Xk,Xj}

where a~~ ~ 0; replace the (x k ,xi ) entry in the workspace by a~~

and the (xk ,b) entry by bk.

(3) For those elemen ts Em merged to form Ek, add the correc tions

4 associated with Em to the appropriate entries of the workspace.

(4)  El imina te xk; the first row of the workspace is the corresponding

row of the reduced system; the remaining rows are the C,,~ and dk

associated with

~~~~~-“ 
_
~~~~~~~~~~~ -. — - - - -  - - -.-=--~~ ~~~~~~ —---~~~~~~-—- --- 

— 

—-- _

~~~~.
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If several variables all correspond to the same node in the tree , then

we eliminate them simultaneously.

Note that as long as all variables corresponding to descendan ts of

a node are eliminated before variables corresponding to that node , then

the “same” operations are done during the elimination process. Thus,

instead of eliminating variables in a bread th—first or bottom—up order ,

we could equally well eliminate them in a depth—first order (see Figure

7). This Cut s the amount of storage required and greatly simplifies

storage management [2] .  It is st ra ight—forward but tedious to show that

Corollary: For the nine—point model problem wi th  the nested dissection

order ing on an n x n grid , at most n2 nonzero entries have to be

stored at any stage of the elimination.

5. Ex perimental Results

In this section, we present the results of some experiments with a

code [2]  which implements the Minimal Storage Sparse Elimination

algorithm , and discuss the advantages and di sadvantages of such a code

versus a good sparse elimination code.

Tests were run on the nine—point model problem with the nested

dissection ordering on a 31 x 31 grid. As a base f or comparison , the

same problem was solved using the symmetric codes from the Yec Sparse

Matrix Package (TSMP) (5]. The times3 are presented in Table 1.
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In the table , Full Recur sion refers to solving for only the

variables corresponding to the root element at each stage ; No Recursion

refers  to saving the entire reduced system in core , and solving for all

the variables in the first stage ; and Partial Recursion refers to

saving as much of the reduced system as possible at each stage , and

solving for the corresponding variables.

As the times show , the MSSE impl ementation is nearly competitive

wi th YSMP when the amount of storage is suffici ently large , but less so

when the amount of storage is reduced. The differences arise both from

the additional bookkeepi ng required to impl ement sparse elimination in

this manner and the additional work required to recompute discarded

values.

The principal advantages of the YSMP code are speed and the ability

to solve eff iciently additional system s wi th the same coeff icient matrix

but different right—hand sides (since the entire reduced system is

retained). The principal advantages of MSSE are the ability to solve

problems in significantly less core, and to trade off an increase in

execution time for a decrease in core.

All experiments were run on a DEC KL—20 computer with the FORTRAN—20
optimizing compiler .

-- _ - ~~~~~~~~~~~~ -~~~~~~- _ -
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6. Applications to Auxiliary Storage Sparse Elimination

In this section , we examine how the ideas underlyi ng MSSE can be

applied to auxiliary storage sparse e l iminat ion.

• Auxiliary storage devices are characterized by long access t imes

and high transfer  rates. Therefore it is important to transfer as many

words as possible as infrequent ly  as possible , consistent with carrying

out the elimination process. Unfortunately, neither of the standard

approaches to sparse elimination —— the row—by—row approach (5] and the
outer—prod uct approach (!] —— allows auxil iary storage to be integrated

in this manner. Both would be characterized by excessive input/output

to random—access storage. Thus input/output could easily dominate

computation in the total run—time. However, by using the f undamental

ideas of MSSE , we can avoid this problem.

Assume that there is enough storage to perform the MSSE algorithm.

Recall that MSSE must generate the entire reduced system while solving

for the set of variables corresponding to the root element. Clearly it

suffices to output these values to auxiliary storage instead of throwing

them away, and then read them back in during the back—solution process.

Since each val ue is read and written once , the minimal amount of

input/output is per form ed and, by appropriate buffering , this can be

done efficiently.



- 1 6 —

But what  if the amount of storage is insuff ic ient  to carry out

MSSE’ It seem s likely that interposing a paging scheme to simulate a

larger amoun t of available core would be a promising approach.
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Figure 1:  
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Figure 3:
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Figure 4:
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Figur e 5:
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Figure 6:
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Figure 7:
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• Table 1: Nine—point operator on a 31 x 31 grid

Additional
Time (seconds) Storage

YSMP
Preprocessing 0.309

(symbolic factorization)
Numerical facrorization 3.291

and solution
Total 3.600 29198

MSSE (Full Recursion)
Preprocessing 0.547

(element merge tree)
Numerical factorization 10.624

and solution
- 

I 
Total 11.171 7426

MSSE (No Recursion)
Numerical factorization 4.178

and solution
Total 4.725 32169

MSSE (Partial Recursion)
Numerical factorization 6.814

• and solution
Total 7.361 8124
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