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I. INTRODUCTION

The U.S. Navy’s impact acceleration research program being conducted

• by the Naval Aerospace Medical Research Laboratory (NANRL) Detachment is

engaged in experimentation concerning dynamic response of the human and

simian head/neck system as a function of anthropometric and acceleration

parameters. NAMRL is accumulating data on dynamic response of the

head/neck body segment for both humans and simians. Research on the

development of a model of injury probability based primarily on information

in the data is contained In three Desmatics technical reports [3, 4, 5].

The development of a model of injury that utilizes an experimenter’s prior

knowledge about injury probability in addition to the sample information

may allow f or more accurate inferences to be made concerning the likelihood

of injury as a function of dynamic and physical variables.

This technical report describes procedures for incorporating prior

knowledge with the statistical information. Because this report is an

extension of the inference procedures found in a previous technical report

(2], it is suggested that report be read before proceeding further with

this one. The logistic models and simulated data used in the present

report were discussed previously [4]. Since the data was simulated, the

true underlying model parameters are known. This allows an assessment of

the accuracy of the inference procedures derived. As with inferences

previously discussed (2), the inference of foremost importance in this

study is the prediction of threshold levels which allow for only a small,

prupecif Led chance of head/neck injury .
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II. BACKGROUND

Many times a researcher may want to quantitatively incorporate his

or her own prior knowledge about an experiment with data to be generated

by the experiment. This can effectively be accomplished by the Bayesian

approach to statistical inference. Through this approach, the experimenter

also determines the importance his prior information should have with

respect to the future sample information. The Bayesian approach uses

subjective information before the experimental data is gathered to help

prevent any subjective bias that could result due to observation of the

data. For further discussion on this concept, see [6].

Bayesian inference quantitatively incorporates prior information with

sample information by the use of a prior probability distribution. This

distribution can be used to quantify the experimenter ’s prior beliefs

and expert knowledge about the experiment. Once a prior distribution

is chosen, the inference procedure follows from Bayes’ Theorem in a

straightforward manner. The problem of assessing the prior distribution

for probability of injury is treated in the following paragraphs, which

discuss how to effectively combine an experimenter ’s prior knowledge with

the sample information in the form of maximum likelihood estimates obtained

previously [2).

The assessment of a prior distribution for the parameter(s) of

interest must be done in such a way as to quantify the experimenter ’s

knowledge and intuition as accurately as possible. The prior distribution

should not be too complex and should be experimentally interpretable. For

—2—
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the multiparameter logistic model, it is unlikely that the experimenter

will be able to accurately choose a multivariate prior distribut ion

for 8, the vector of coefficients. However for a given critical

vector of experimental conditions, the experimenter should have an

intuitive idea of the value of the probability
1 
of injury, p (~~

). The

Bayesian inference procedures in this technical report employ a prior

distribution for p(~~
) with ~ j  given. If p (~~

) is to be considered the

outcome of a random variable , ~~~~~~~~ then it is reasonable to assume that

the outcomes of ~(x~) should be distributed smoothly around some prior

estimate of p(~~
). This suggests the use of the beta family of prior dis-

tributions for j(x~). The beta probability density function is

g(p) — r(n’) ~,r’ 
— 1(~ — p) fl

t — r ’ — 1 a p <

r(r )r(n — r )  
-

where r is the gamma function and r ’ and n’ are experimentally interpretable

parameters. For future clarity all parameters of prior distributions will

be primed .

1
For grea ter clarity in algebraic expressions , this probability is

denoted by a lower case p rather than an upper case P , as in previous
reports (2, 3, 4, 5).

-3—
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III. ASSESSING A PRIOR DISTRIBUTi~!1

There ar e several ways to choos. the proper parameters for the

be ta prior . For example , see reference (6]. This paragraph describes

a method that is both intuitive and lik.ly to lead the experimenter

into giving the proper weight to his or her prior information. If

has a be ta distribution with parameters r ’ and ri , then

— r ’/n ’.

In a binomial experiment , if n Independent , iden tical trials are con—

duc t.d and r “successes” are observed, then the estimate of p is tin.

The expression,

— r ’/n’,

has th. interpre tation that the experimenter feels his or her prior

information is worth n’ experimental trials and that in n’ trials at

r’ injuries would be expected . In other words , the experimenter

feels that his or her information is worth ri’ sample data observations

and expects the true probability of injury to be r ’/n ’ at ~~~ . For

example , if the .xp.riaenter feels , in a par ticular case , that prior

informa t ion is worth 10 sampl. observat ions and the prior estimate of

p (~~) is .1, then a beta prior with parameters r ’ • 1 and n’ — 10 should

be used.

Suppose th. exper iment is conducted at N independent t imes.

Let y be the ni b.r of injuries in the N trials. Then y has the binomial

—4—
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probability distribution. Using a beta prior for ~~(~~
) and the binomial

distribution for y it is easy to compute E[~
(x0)Iy], called the posterior

expectation of ~(x~), which is an estimate of p(x~) that employs both

sample information and prior information. E[~ (.~~)Iy1 is computed from

the posterior probability density function, which in turn is computed

from the binomial distribution for y and the beta prior distribut ion. The

fact that y has a binomial distribution and the prior density is beta

implies tha t the posterior probability density for ~(x~) is beta with

parameters r” — y + r’ and n” — N + n’. (See [6].) Throughout this report

posterior distribution parameters are double primed . Thus ,

E(~ (~~)fy] — r’/n”.

Of course, the experiment is never actually repeated at ~~~. The

sample information is scattered over the region of the x—apace. Let the

sample size used to form the binary regression estimate, ~~~~~ be N. Had

the experiment been repeated N times at ;, more information on p (~~)

would be available than is contained in

— (1 + e*p(—~~~))
1
,

whet. B is the maximum likelihood estimate of ~~. (For further discussion

on estimation of p(x~) by the maximum likelihood method see (21.)

Thus, the variability of y/N should be less than that of p (~~
) if the

experiment were in actuality repeated N times at

-5..
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IV. BAYESIAN INFERENCES

The posterior distribution could be approximated by substituting

for y in the expression for r”. However, then the amount of sample

information would be over—represented because the sample information in

is less than that in y obtained by repeating the experiment N times

H at ~~~. To adjust for this over—representation of sample information at

a number, N*, can be found such that the sample information obtained

by replicating the experiment N* times at will equal the sample infor-

mation represented by p(x~). N* in this technical report is referred to

as the effective sample size. 

* * 
1i_

To compute such a number, N , find an N such that

Var(y/N ) — Var[~ (3~)].

— Both variances cannot be found exactly, but reasonable estimates can be

found for each. By expanding

— (1 +

4 
- 

in a first order Taylor series about and then substituting ~ for ~~, I
an approximate estimate for Var (p(x)] can be found . Thus, since

Var [~ (x~ )]  ; (~~ç30) [l  —

where Z denotes the estimated covariance matrix of ~~, and

Var(y/N*) ~(~~
) ( l  —

—6—
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this implies that

N —

N represents the amount of sample information that can be utilized in

a binary regression set up by specifying a prior distribution for the

probability of injury only at 

~~~~~

. 

*
Since the effective sample size is N and since y is approximated

by N*i(x~), the posterior distribution (which is beta with parameters

— y + r ’ and n” — N* + n’) can be approximated by a beta distribution

with parameters r” — N*j ( x ~ ) + r’ and n” — N* 
+ n ’. Thus

* *E[j (~~)Iy] ~~ 
(N + r ’)/(N + n ’)

is the Bayes point estimate of ~~~~~ Through Bayesian theory , it can

also be shown that E[~~(~~)~y) is the probability of a future injury at

~~ given the present effective sample site and prior information.

A. INTERVAL EST IMATION

All Bayesian inferences are made by using the posterior distribution .

To compute a Bayesian 100(1 — cz)Z credible interval’ for p (~0), c1 and

c2 must be found such that Pr[c1 ~ ~~(~~~
) < c~ Iy) — 1 — i.~i. As previously

shown, the posterior distribution can be approximated by a beta distri-

* *
bution with parameters r” — N p(~~) + r ’ and n” — N + n ’. Thus, by

using a beta distribution with parameters r” and n”, approximate values

for  c
1 

and c
2 
may be calculated . Computation of c

1 
and c

2 
involves

evaluation of the inverse incomp lete beta function. This function is

1
The analog of a classical confidence interval.

—7—
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tabled in  [6), for  examp le. The values of c1 and c2 can also be computed

from percentiles of the F—distribution , as described in [1). Figure 1

gives examples of Bayesian credible intervals and their corresponding

maximum likelihood estimate confidence intervals for models A and B using

sample sizes 100 and 1000 for each model. See (4, 5] for a description

• 
~nd discussion of these models . The critical vector used in these

examples was:

— (—0.0862 , —0.2621, 0.9114, —0.7660, —0.1363, — 0.4655).

B. HYPOTHESIS TESTINi~

There is no standard method of Bayesian hypothesis testing . This

technical report will use a Bayesian hypothesis testing technique that

employs the ratio of posterior probability of the null hypothesis being

true to the posterior probability of the alternative hypothesis being

true. The hypotheses will be restricted to the form

H
0
: p(~~) P~

versus

H1: p (~0
) 
~ 

p
0
.

4 To test the null hypothesis . H0
, against the alternative hypothesis , H

1
,

compute the posterior probability that p
0
, and form the ratio

p0IyJ /Pr[j(~~) 
-‘ p0~ y ] .

This represents the posterior odds ratio of H0 to H1. Suppose a criterion

value of I) is used for deci~ ion—making . If the odds ratio is less than

—8—
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~I, H~ is rejected ; if not , then H0 
cannot be rejected based on the

value IL The probabilities used to form the above odds ratio can be

approximated using a beta distribution with parameters L
11 — N*~(½) + r~

and a” — N* 
+ a’. Figure 2 contains a chart of hypothesis testing examples

using models A and B with sample sizes of 100 and 1.000 for each. The

critical vector used in these examples was:

— (—0.7770, — 0.3436, 0.7804, 0.5683, 0.0975, —0.5476).

t C. CRITICAL COMBINATIONS OF TIlE VARIABLES

-
~~ An inference of much importance in this study is the assessment of

the true probability of injury for a given set of conditions

in relation to some small probability, p
0
. Such inferences can be made

by the prediction of critical envelopes and by testing hypotheses concern-

ing p(~0). To see how to  best use Bayesian hypothesis tests for making

inferences as stated above, see [2] and substitute Bayesian tests for the

‘

~ classical procedures given there.

A critical envelope can be defined as the set of all combinations

of independent variables for which the predicted probability of injury

equals some given value. However, in this case variability in the pre-

dicted probability causes variability in the prediction of the critical

envelope. To predict safer critical envelopes, such variability must

be accounted for. As shown in [2], a safer critical envelope can be

formed from the set of x vectors such that the upper end point of a

100(1 — a)Z righ t—sided confidence interval for p (~
) equals p0. A

Bayesian analogy of this is formed by using Bayesian credible intervals

-10-
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to incorporate sample and prior information into the prediction of a

ritlcal envelope.

An exact Bayesian critical envelope requires prior estimates of r’

and n ’ for each These estimates are likely to be difficult to acquire.

However , it is reasonable to assume that the prior distribution for !~
)

ts the same for all x’s in the critical envelope. A practical choice for

a prior distribut ion is a beta distribution with parameters r’ and a ’ such

that (r’/n’) — p
0
. The value of n’ can be chosen to represent the strength

of the experimenter ’s prior convictions. For example, if the experimenter

feels that his or her prior information is worth ten sample data observe—

tiona , then the choice would be n’ — 10.

To compute a right—sided Bayesian 100(1 - ci)X credible interval for

a number c must be found such that

Pr[0 — ~(x) -. c~y) — 1 —

Here ~~~ has a beta distribution with parameters r” and n” wh ich , as

defined previously, incorporate both the prior and sample information. To

construct a Bayesian critical envelope, all x ’s which satisfy c — p0 must

be found. Methods of numerical analysis are required since c, as a function

of x, has no closed functiona l form.

Although there is no closed functional form for the equation describing

the Bayesian critical envelope, it is possible, using a digital computer ,

to find an approximate closed form for the Bayesian critical envelope. To

do this , first store (in core or on data records) a grid of points roughly

spanning the x—space . For each point on the grid , compute the corresponding

upper end point of the right— sided 100(1 - ci)Z Bayesian credible interval .

Then use multiple regression to find a beat fitting prediction equation

L. - 

-12-
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for the credible interval end point. Let be the upper end point

of the right—sided 100(1 — ct)Z credible interval for p (~). Then the

approximate equation

a
- - p (& b (cz) + 

~ 
b
i
(c4)s

i
(!)

U 0

• results from the regression analysis, where b
1

(a) , i — 0, l,...,m are

the regression coefficients and where z
i
(x) is the i’~~ term of the best

fitting multiple regression equation. Notice that because 
~~~~ 

depends

upon a, the br
’s must also depend upon a. Once the regression equation

has been fo und , set Pu — p
0
. An approximate Bayesian critical envelope

is then given by

c ,~(p0
) — (x: p0 — b0 (ct) + E b

~
(a)z

1(~
)}.

This approximate critical envelope yields a simple closed functional form

and is thus useful for theoretical purposes.

A revealing way to study a critical envelope is to make 2-dimensional

plots of one of the X j variables versus one of the other x1 
variables with

p
0 
and the other x~ variables fixed at given values. This was done in a

p revious Deamatics technical report (2] for the classical inference situa—

tion. The approximate or exact Bayesian critical envelope may be used

to create these plots. For example, with p
0 

and x3,...,x6 satisfy the

critical envelope equation. Then it can be graphically seen how x
1 

and

should vary to keep the probability of injury below p
0 

for f ixed

Obviously to plot x
1 
versus *2 

one must assign values to x2, say, and then

solve for x
1
. For the exact Bayesian critical envelope a numerical analysis

computer routine would be needed to do this since no closed functional form

• —13—
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exists. The approximate Bayesian critical envelope may also require the

use of a minerical analysts routine depend ing upon the complexity of the

resulting multiple regression equation.

r

-14-
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V. SUMMARY AND DISCUSSION

-4

The incorporation of prior information , through the use of Bayesian

techniques, may improve upon the inference procedures described in a

previous technical report (2]. It should be recognized though, that

large differences between the Bayesian and maximum likelihood procedures

may be due to bad sample information or gross misapecification of prior

information . Thus, if large differences occur , both inf ormation sources

should be rechecked thoroughly. Further improvement in inference procedures

may possibly be achieved by utilizing preinjury data. This is briefly

discussed in [3].

In constructing inference procedures for the assessment of injury

probability, all available information should be used. The utilization

of more sample information can be based on observed preinjury data. As

shown in [3], preinjury data should increase the accuracy of the logistic

regression coefficient estimates. This aspect of the injury probability

prediction research is extremely important , since it is imperative that

• the most useful information be gained without subjecting human subjects

to injury. Research on methods of employing preinjury data is now under

way.

—15—
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“~Research on the development of an impact acceleration injury prediction
model based primarily on information in the data has been discussed in
previous technical reports. This technical report describes Bayesian
inference procedures which permit the experimenter to combine his or her
prior beliefs and exper t knowledge with the data observed in the experiment.
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