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I. INTRODUCTION

The U.S. Navy's impact acceleration research program being conducted
by the Naval Aerospace Medical Research Laboratory (NAMRL) Detachment is
engaged in experimentation concerning dynamic response of the human and
simian head/neck system as a function of anthropometric and acceleration
parameters. NAMRL is accumulating data on dynamic response of the
head/neck body segment for both humans and simians. Research on the
development of a model of injury probability based primarily on information
in the data is contained in three Desmatics technical reports [3, &4, 5].
The development of a model of injury that utilizes an experimenter's prior
knowledge about injury probability in addition to the sample information
may allow for more accurate inferences to be made concerning the likelihood
of injury as a function of dynamic and physical variables.

This technical report describes procedures for incorporating prior
knowledge with the statistical information. Because this report is an
extension of the inference procedures found in a previous technical report
[2], it is suggested that report be read before proceeding further with
this one. The logistic models and simulated data used in the present
report were discussed previously [4]. Since the data was simulated, the
true underlying model parameters are known. This allows an assessment of
the accuracy of the inference procedures derived. As with inferences
previously discussed [2], the inference of foremost importance in this
study is the prediction of threshold levels which allow for only a small,

prespecified chance of head/meck injury.
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11. BACKGROUND

Many times a researcher may want to quantitatively incorporate his
or her own prior knowledge about an experiment with data to be generated
by the experiment. This can effectively be accomplished by the Bayesian
approach to statistical inference. Through this approach, the experimenter
also determines the importance his prior information should have with
respect to the future sample information. The Bayesian approach uses
subjective information before the experimental data is gathered to help
prevent any subjective bias that could result due to observation of the
data. For further discussion on this concept, see [6].

Bayesian inference quantitatively incorporates prior information with
sample information by the use of a prior probability distribution. This
distribution can be used to quantify the experimenter's prior beliefs
and expert knowledge about the experiment. Once a prior distribution
is chosen, the inference procedure follows from Bayes' Theorem in a
straightforward manner. The problem of assessing the prior distribution
for probability of injury is treated in the following paragraphs, which
discuss how to effectively combine an experimenter's prior knowledge with
the sample information in the form of maximum likelihood estimates obtained
previously [2].

The assessment of a prior distribution for the parameter(s) of
interest must be done in such a way as to quantify the experimenter's
knowledge and intuition as accurately as possible. The prior distribution

should not be too complex and should be experimentally interpretable. For
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the multiparameter logistic model, it is unlikely that the experimenter

will be able to accurately choose a multivariate prior distribution

for 8, the vector of coefficients. However for a given critical X,
vector of experimental conditions, the experimenter should have an
intuitive idea of the value of the probability1 of injury, P(!o)' The
Bayesian inference procedures in this technical report employ a prior
distribution for p(!o) with xy given, If p(go) is to be considered the
outcome of a random variable, B(go). then it is reasonable to assume that
the outcomes of 5(50) should be distributed smoothly around some prior
estimate of p(go). This suggests the use of the beta family of prior dis-
tributions for 5(50). The beta probability density function {is

slpd = Pn') ' - lp | W -2t =] .
FGEN T = © Q p)‘ » 0<p<l,

where [' is the gamma function and r' and n' are experimentally interpretable
parameters. For future clarity all parameters of prior distributions will

be primed.

1

For greater clarity in algebraic expressions, this probability is
denoted by a lower case p rather than an upper case P, as in previous
reports [2, 3, 4, 5).




III. ASSESSING A PRIOR DISTRIBUTION

There are several ways to choose the proper parameters for the
beta prior. For example, see reference [6]. This paragraph describes
a method that is both intuitive and likely to lead the experimenter
into giving the proper weight to his or her prior information. If 5(50)

has a beta distribution with parameters r' and n', then
E[P(xg)) = x'/n'.

In a binomial experiment, if n independent, identical trials are con-
ducted and r "successes”" are observed, then the estimate of p is r/n.

The expression,
E[(xy)] = r'/n’,

has the interpretation that the experimenter feels his or her prior
information is worth n' experimental trials and that in n' :trials at
Xy r' injuries would be expected. In other words, the experimenter
feels that his or her information is worth n' sample data observations
and expects the true probability of injury to be r'/n' at Xg+ For
example, if the experimenter feels, in a particular case, that prior
information is worth 10 sample observations and the prior estimate of
p(go) is .1, then a beta prior with parameters r' = 1 and n' = 10 should
be used.

Suppose the experiment is conducted at Xge N independent times.

Let y be the number of injuries in the N trials. Then y has the binomial
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probability distribution. Using a beta prior for 5(50) and the binomial
distribution for y it is easy to compute ![S(x0)|y]. called the posterior
expectation of 3(50), which is an estimate of p(go) that employs both

sample information and prior information. 5[5(50)|Y1 is computed from

the posterior probability density function, which in turn is computed :

from the binomial distribution for y and the beta prior distribution. The
fact that y has a binomial distribution and the prior density is beta |

implies that the posterior probability density for 5(50) is beta with | &

parameters r" = y + r' and n" = N+ n'., (See [6].) Throughout this report 4

posterior distribution parameters are double primed. Thus, §

E[‘ISQO) ly] - r"/n".

~

Of course, the experiment is never actually repeated at Xy The
sample information is scattered over the region of the x~space. Let the
sample size used to form the binary regression estimate, 6(5). be N. Had
the experiment been repeated N times at 50, more information on p(!o)

would be available than is contained in

Blxy) = 11+ exp(-g;,é))".

i , where B {s the maximum likelihood estimate of B. (For further discussion
on estimation of p(x,) by the maximum likelihood method see (2].)

Thus, the variability of y/N should be less than that of ;(50) if the

experiment were in actuality repeated N times at Xg°
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IV, BAYESIAN INFERENCES

The posterior distribution could be approximated by substituting
Nﬁ(}o) for y in the expression for r'". However, then the amount of sample
information would be over-represented because the sample information in
6(50) 1s less than that in y obtained by repeating the experiment N times
at x,. To adjust for this over-representation of sample information at
Xy @ number, N*, can be found such that the sample information obtained

by replicating the experiment N* times at will equal the sample infor-

X
~
mation represented by p(ﬁo). N* in this technical report is referred to

as the effective sample size.

*
To compute such a number, N*, find an N such that
* A
Var(y/N ) = Var[p(x)].

Both variances cannot be found exactly, but reasonable estimates can be

found for each. By expanding
a Lo |
P(x) = [1 + exp(-x,8)]

in a first order Taylor series about be and then substituting B for B,

an approximate estimate for Var[;(g)] can be found. Thus, since

Var[B(xg)] & (Blxgd[1 - Bl Dxsix,

where I denotes the estimated covariance matrix of B8, and

Var(y/N") 3 Blx) (1 - Blag) I,




this implies that

VR Gl - Pl laglxg)

*
N represents the amount of sample information that can be utilized in

a binary regression set up by specifying a prior distribution for the
probability of injury only at X,
Since the effective sample size is N* and since y is approximated
by N*ﬁ(go). the posterior distribution (which is beta with parameters
"

r" =y +r' and n" = N* + n') can be approximated by a beta distribution

2 *
with parameters r'" = N*p(§0) +r'and n" = N + n'. Thus
= 5 * . *
E[P(xp) [y] = (NB(xy)) + ")/ (N +n")

is the Bayes point estimate of p(go). Through Bayesian theory, it can

also be shown that E[ﬁ(ﬁo)ly] is the probability of a future injury at

X, given the present effective sample size and prior information.

A. INTERVAL ESTIMATION

All Bayesian inferences are made by using the posterior distribution.
To compute a Bayesian 100(1 - a)X credible 1nterval1 for p(;o). c1 and
€y must be found such that Pr[cl < 5(50) < czly] = 1 - a. As previously
shown, the posterior distribution can be approximated by a beta distri-
bution with parameters r'" = N*p(go) +r' and n" = N* + n'. Thus, by
using a beta distribution with parameters r" and n", approximate values
for cl and ¢, may be calculated. Computation of c1 and €y involves

evaluation of the inverse incomplete beta function. This function is

1
The analog of a classical confidence interval.

-7-




tabled in [6]), for example. The values of € and ¢y can also be computed
from percentiles of the F-distribution, as described in {1]. Figure 1
gives examples of Bayesian credible intervals and their corresponding
maximum likelihood estimate confidence intervals for models A and B using
sample sizes 100 and 1000 for each model. See [4, 5] for a description
and discussion of these models. The eritical Xp vector used in these

examples was:

X" (-0.0862, -0.2621, 0.9114, -0.7660, -0.1363, -0.4655).

B. HYPOTHESIS TESTING

There is no standard method of Bayvesian hypothesis testing. This

technical report will use a Bayesian hypothesis testing technique that

employs the ratio of posterior probability of the null hypothesis being

true to the posterior probability of the alternative hypothesis being

true. The hypotheses will be restricted to the form
Hyt P(Xg) 2 po
versus
le p(éo) < Py
To test the null hypothesis, HO' against the alternative hypothesis, H

1)

compute the posterior probability that 5(50) < p., and form the ratio

0
Prip(xg) > poly)/Pr(p(xg) < pylv].

This represents the posterior odds ratio of Hy to H). Suppose a criterion

value of 2 is used for decigion-making. If the odds ratio is less than

“fa
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cannot be rejected based on the

Q, Ho is rejected; if not, then H

0

value Q. The probabilities used to form the above odds ratio can be

LN
approximated using a beta distribution with parameters i' = N p(§0) + ¢!
*
and n" = N + n'. Figure 2 contains a chart of hypothesis testing examples
using models A and B with sample sizes of 100 and 1000 for each. The

critical X, vector used in these examples was: P

X, = (-0.7770, -0.3436, 0.7804, 0.5683, 0.0975, -0.5476).

C. CRITICAL COMBINATIONS OF THE VARIABLES

R -

An inference of much importance in this study 1is the assessment of
p(go). the true probability of injury for a given set of conditions 50,
in relation to some small probability, po. Such inferences can be made
by the prediction of critical envelopes and by testing hypotheses concern-
ing p(go). To see how to best use Bayesian hypothesis tests for making
inferences as stated above, see [2] and substitute Bayesian tests for the 4
classical procedures given there,

A critical envelope can be defined as the set of all combinations
of independent variables for which the predicted probability of injury
equals some given value. However, in this case variability in the pre-
dicted probability causes variability in the prediction of the critical

envelope. To predict safer critical envelopes, such variability must ;

be accounted for. As shown in [2], a safer critical envelope can be
formed from the set of x vectors such that the upper end point of a
100(1 - a)X right-sided confidence interval for p(x) equals Po* A

Bayesian analogy of this is formed by using Bayesian credible intervals

i
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to incorporate sample and prior information into the prediction of a
critical envelope,

An exact Bayesian critical envelope requires prior estimates of r'
and n' for each X These estimates are likely to be difficult to acquire.
However, it is reasonable to assume that the prior distribution for 3(5)
is the same for all x's in the critical envelope. A practical choice for
a prior distribution is a beta distribution with parameters r' and n' such
that (r'/n') = Po* The value of n' can be chosen to represent the strength
of the experimenter's prior convictions. For example, if the experimenter
feels that his or her prior information is worth ten sample data observa-
tions, then the choice would be n' = 10,

To compute a right-sided Bayesian 100(1 - a)X credible interval for

p(x), a number ¢ must be found such that
Pr(0 < p(x) < cly)l =1 - a.

Here p(x) has a beta distribution with parameters r" and n" which, as
defined previously, incorporate both the prior and sample information. To
construct a Bayesian critical envelope, all x's which satisfy c = pp must
be found. Methods of numerical analysis are required since c, as a function
of x, has no closed functional form.

Although there is no closed functional form for the equation describing
the Bayesian critical envelope, it is possible, using a digital computer,
to find an approximate closed form for the Bayesian critical envelope. To
do this, first store (in core or on data records) a grid of points roughly
spanning the x-space. For each point on the grid, compute the corresponding
upper end point of the right-sided 100(1 - a)X Bayesian credible interval.

Then use multiple regression to find a best fitting prediction equation

alfe
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e e
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N for the credible interval end point. Let pu(i) be the upper end point
’; of the right-sided 100(1 - a)X credible interval for p(x). Then the

‘ approximate equation

m
- P, = bO(a) + I bz X

| R {=1
E |
F
£| 4 results from the regression analysis, where bi(a), i=0,1,...,m are

' the regression coefficients and where 11(5) 1s the 1B term of the best

fitting multiple regression equation. Notice that because pu(l) depends
upon a, the bl's must also depend upon a. Once the regression equation
has been found, set Py " Pp° An approximate Bayesian critical envelope
is then given by
m

Ca(po) - {x:po = by(a) + 151 bi(a):i(g)}.
This approximate critical envelope yields a simple closed functional form
and is thus useful for theoretical purposes.

A revealing way to study a critical envelope is to make 2-dimensional
plots of one of the X, variables versus one of the other X, variables with
Po and the other xi variables fixed at given values. This was done in a

previous Desmatics technical report [2] for the classical inference situa-
. tion. The approximate or exact Bayesian critical envelope may be used
to create these plots. For example, with po and X3y e sXg satisfy the

critical envelope equation. Then it can be graphically seen how x and Xj

1
should vary to keep the probability of injury below Po for fixed XgoeeesXge

Obviously to plot x1 versus x,

solve for X For the exact Bayesian critical envelope a numerical analysis

one must assign values to Xp» say, and then !

computer routine would be needed to do this since no closed functional form

-13-
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| exists. The approximate Bayesian critical envelope may also require the

) use of a numerical analysis routine depending upon the complexity of the

resulting multiple regression equation.
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| V. SUMMARY AND DISCUSSION

The incorporation of prior information, through the use of Bayesian
techniques, may improve upon the inference procedures described in a
previous technical report [2]). It should be recognized though, that
large differences between the Bayesian and maximum likelihood procedures

may be due to bad sample information or gross misspecification of prior

information. Thus, if large differences occur, both information sources
should be rechecked thoroughly. Further improvement in inference procedures
may possibly be achieved by utilizing preinjury data. This is briefly
discussed in [3].

In constructing inference procedures for the assessment of injury
probability, all available information should be used. The utilization
of more sample information can be based on observed preinjury data. As
shown in [3]), preinjury data should increase the accuracy of the logistic
regression coefficient estimates. This aspect of the injury probability
prediction research is extremely important, since it is imperative that
the most useful information be gained without subjecting human subjects

to injury. Research on methods of employing preinjury data is now under

way.
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