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INTRODUCTIO N

Treatment of radiative transfe r for an isolated Lorentz line in the
Lindquist-Simmons approxima tion~

1’ 2) requires the evaluation of the
derivative function y(x, p) defined by

Z f  Zx dz
y(x,p )=; i exp - 2 2  2 (la)

10 1 + p z  1 + z

or , with the change of variable tan(9/2) = pz , by

-x( 1+cos9)
y(x , p ) = ~~~ f ~ 

e 
2 dO . (Ib)

0 (p + I) + (p - 1)c os9

This same function is us ed in the resonance absorption band model fo r-
mulation of Cobb. (3) In both applications , x is a measure of optical depth,
and p is a ratio of line widths . The range of both x and p is zero to infinity .

Prior work on the evaluation of y(x , p) includes the rational approx-
ima tion of Lindquist and Simnmon s~

1
~ (accuracy not stated), the tabulation

of Youn g~
2
~ (accuracy of one part in l0~ ), and the series expansions of

Cobb~
3
~ (accuracy of<  1% for 0.01 ~ x ~ IO~ , 10~~ ~ p ~ IO~ , and

10~~ ~ 
y ~ 1). The present work considers the efficient calculation of

y(x , p) to a relative accuracy of ~0. 01% for the entire positive quandrant of
the xp plane.

The general features of the fun ction are shown in Fig . 1. The function
limits are

i~~c~~t~~ P~~I ~~~~~ 
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Fig. 1. The Function y(x , p) .  From Ref. 2.
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x — ~~O

- 2xy(x ,p)— .. . e p _-4 0 (2)

e _*I0(x) ~~~~ I

~1

whe re 10(x) is the modified Bessel func tion of orde r zero .

The dramatic diffe rence in basic mathematical form that the function
assumes in different region s of the xp plane mak es It impractical to use
only one method of calcula’ion . Six approximation expansions are used in
the present method . These approximations are considered in the following
section , and the regions in which they appl y are indicated in Fig. 2 .

I I
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METHODS OF COMPUTATION

A. EXPANSION FOR SMALL x (REGION I)

For x ~ 1, an expansion of the exponential factor of equation ( I a )  is
made , and y(x . p) is written as

(3)

whe re

E~ (p) ~J (i + z2) (1 + pZzZ)hl 
(4)

Explicit evaluation of E~ (p ) by the method of residues for the first few
values of n leads by induction to the convenient recurrence relation

~~~~~ 

‘E~~~1(p ) P~~ I (5a)

~ ~~ [p C~ - E~~ 1(p)] 
p ~ I (5b)

p - 1

with

E0(p) I (for all p),

C - 2
~~~~

3 C - 
( Z n - 3 ) ~ (6)n - Zn - 2 n - I  - 

22’
~~

3(n - i) !(n - 2) 1

-- — 
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and

c 1~~~1. 

. .The explicit solutions for the f i r s t  five E~ (p ) functions are

E0(p) — I ,

E 1(p) = I / ( p  ÷ 1),

H E,(p) = (p + 2)/~ (p + 1) 2 , (7 )

E3 (p )  (3 p2 
+ 9p + 8)/ 8 (1 + p) 3 .

E4 (p) (5 p3 
+ 20p2 + 29p + 16)116(1 + p)4 .

Additional properties of E (p) that can be derived are

1

C / p  ~~~~~E (p)—* (8)
n 

~~~~

1/p~J~~ p —.’
~~

In practice , y(x , p) is computed f rom equation (3) and the recurrence relations
equa tions (5) and (6). Since equation (3) is an alternating series of decreas-
ing terms , the accuracy of the approximation can be checked as each term - 

-

is added to the serie s by testing the absolute value of the term added. The
slowest convergence of equation ~3) occurs for p = 0, in which case terms

throug h n = 11 must be retained for a relative accuracy of 0 .01%. The
forwa rd recurrence relation equation (5b) is unstable for p near unity. For

1 - ~I 0.044 , thi s stability sets in below n = I i .  Howeve r , for this - 
-

-8-
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• condition of p and for x ~ 1, y(x, p) may be computed to the desired accu racy
with only the first two terms (i .e . ,  n = 0 and 1) of the Bessel function erpan-
sion considered in the following section.

B. EXPANSION FOn SMALL p (REGION 2)

For this and the foUowing three approximations, the star ting point
is Cobb’s expansion~

3
~ of y(x, p) as a se r ies of modified Bessel functions.

The expansion is

y(x , p ) =  e~~’[I0(x) + Z ~~~~c~~I (x)} (9)

whe re a = (p - I)/(p + I ) .  For small p. a-’ -1 , and we expand y(x , p) in a

• Tay lor serie s about a = -1. At a = -1 , the se r ies conve rge s~
4

~ to give
y(x , 0) = e 2’

~. The first derivative of equation (9) evaluated at a = -1 is

= -1 
= _Ze

~” E n (_ i ) ’1I~ (x). (10)

(4)Use of the recurrence relation

1 ( x ) = ~~ (I~~~ (x) — I~~~ (x)J ( 11)

in equation (10) and shifts of summation indices such that the sums over
In - i  and 1 +1 are tran sformed into sums ove r 

~~ yield

= ~5_x[j ..E}..1)
hux (x ) xe [I~ (x) - I~ (x)J . (12)

a =  -1 n=0 n=2

-9- 
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Hi ghe r -orde r d e r i v a t iv e s  can be obtained by the same procedure. The p -

resul t ing expansion to t h i rd  orde r in p for y(x , p) is

y (x , p e~~~ + (1
4
~ - )A 1 

~ (
-

~

-

~~~~~ 
)~~~2 + (ZP )

3
A (13)

wher ,-

:

and

A 3 -~~e~~[(2x - 3)10(x)  - (Zx - 2) 1 1(x ) ]  -

~~ The s lowest  r a t e  of convergence  of equation ( 1 3 )  occurs for  la rge  x.
In t h i s  case , t he c o e f f i c i t - n t s  A approach

A —~~~ ( 14)n

and success ive  coef f ic ien ts  decre  ~se b y the fac tor  two . For smaller x ,
the decrea se  is f a s t er .  Thus , a wors t  case estimate of the accuracy of
eq u a t i o n  ( 1~~) can be obt ained by subst i tut ing equation ( 1 4 )  into (13)  to obtain

y~~~e X +~~~~~~ [~~ + a 2 +~~
3 + a 4 + . . . ] ,  h

L2 
-10- 
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where a = p1(1 + p). If we retain only terms through a
3 in the sum, the

absolute error of truncation is

4
4 5 ae = a  + a  + - - • = 1 - r v

The largest  a that can be tolerated for a maximum relative error of 10~~
(in the sum) is given by

4
(a+a 2 +a

3
)~~~I0

4 a
1 - a

for which a’ ~ 0~ ~)47 (p ~ 0. 045) is the solution . Similar analyses show that

the term may be neglected for p ~ 0. 01, and the a
2 term neglected when

p
~~ 0• o0ol.

Computation of the 10 and I~ Bessel functions required to evaluate

A 1, A2, and A3 of equation (13) are handled with rational approxiznations(4)

that provide sufficient accuracy for 1 ~ x .~~ 20. Beyond x ~ 20, these rational

approximations are not accurate enough to yield the difference 10 - Ij ~~~~

sufficient accuracy. For x ~ 20 , use is made oi the asymptotic expansion

y e~~~’ + ~~ + .~~~~~ +~~~~~]~
.(i + ÷ 0.266or~). (15)

Up to the ~2 term, this expansion is obtained from equation (13) and the
- - (4) . . 3

asymptotic expansions for 10 and I~~. The coefficient 0.266 on the a

term was determined empiricall y so as to yield 0. 01% accuracy for all

x~~~20 and p~~~0.05.

L~
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C. EXPANSION FOR LARGE p tREGION 3)

The expansion for this case Is obtained exactl y as for the small p

expansion , except that the Tay lor expansion is made about a = 1. The
result to third order in p 1 is (3)

y(x , p ) =  I 
~~~ 

~~ )BI ~~~ 
~~)

2
B2 ~~~ ~~ )B 3 (16)

where

B 1 xe *[I0(x) + 11(x) 1,

Bx 1B2 =~~~- -~-- ,

and

B3 ~ e ”[(2x + 3)10(x) + (2* + 2)I 1(x)) -

As for  the small p ex pan sion , the worst case of convergence of

equation (16)  occurs for large x. In this case, the first  four coefficients

approach

,. .,

B2 =

B3 ~~~~ (2x )3~
’2 ,

- 12- 
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and

1 2B4=
~~

-
~
.(2x)

Substitution of these coefficients into equatIon ( 16) yields

2a1
~
’2 

4 3/2 a2y 1 - —
~~~~

.=-— + a - ~~~~~~~~~ a + -~~
- - .

where a = Zx / (p  + 1) 2 . Since the series alternates in sign , we can be
assured that the maximum absolute e r ror  incurred by truncating equation
(16) at the cubed term is less than or equal to a2 /2 . The condi tion for
re lative e r ro r  less than 0.01% is

a2 4 1 Zcv h / ’2 8~ 3/’21
T 1 °  

~~~~~~~~~ J
from which we obtain a ~ 0.01328 or

p 12.3x 112 
- 1.

In addition , the third; second; and first-orde r terms of equation (16) may
be neglected , respectively, when

p ~ 28.Zx
l’2 

- 1,

p ~ 142x ~~’2 
- 1,

and

p � 16000x~~
2 

- 1 .

-13- 
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As in the small p approximation, the func tions I~ and I~ required
to compute the B coefficients are obtained from accurate rational

• (4)approximations.

• D. EXPANSION FOR LARGE x (REGION 4)

Substitution of the asymptotic expansions~
4

~ for I~~(x) into equation (9)
and a collection of te rms on like powers of x yields

y(x , p) “- 
~~~~~ 

+ ~~f 2)  + 
2~(8x )2 + . • •J (17)

where

F(p ) 
~~~ 

‘) ii  - 9a - 9a’2 +

G(p ) = ~~ 3(3 - 25a + 150a 2 
+ 150a 3 

- 25a 4 
+ 3a 5J,

and ~ (p - l ) / ( p  + 1).  For p ~ 1 .225 , F ( p )  is negative and decreases
monatonicall y to F - -2 p 3 as p -. ~~~. Similarly, G(p)  is positive and
increases  monatonicall y to G 24 p 5 as p ~~. The next higher coefficient
approaches H = -720 p ’ for large p. Thus , the worst  case of convergence

• for p ~ 1 .225  appears to the al ternating series

1
The absolute er ro r of truncation at the ~

_ 2 
term is less than 15(p 2 /2x ) 3/8,

and the condition for a relative accuracy of less than 0. 01% is

-14-
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-(
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) j ,
which yields the condition p 2/2x ~ 0. 0375 or

x 2 13 . 3 p 2 . (18)

Comparisons of the results of equation (17) with exact calculation s~
2
~

• . . . . 2.22 .confi rm this bound by predicting the less stringent bound x 2 7 .2 5 p for

20 ~ x ~ ~~~~~~~~~ In addition , these comparisons show that x must be greater

than -
~~~ 20 in order to obtain the desired accuracy of 0. 01%. This result is

consistent with equation (18) and the lower bound p = 1.225 set on p for this

• analysis.

For p < 1.225 , the preceding error analysis doe s not apply because

the series is not an alternating series. Here , comparisons with exact
calculations confirm that equation (17) is accurate to the desired accuracy

for x ~ 20 and p down to at least the upper bound (p = 0.045) of Region 2.

E. EXPANSION FOR LARGE x AND p (REGION 5)

The large x expansion equation (17) is restricted by the condition

p ~ 0.274x h / ’2 , whereas the large p expansion equation (16) is restricted
by p ~ 12. 3x1/2-1. The following method provides a means of computation

in this excluded reg ion. In equation (Ia) ,  we make the transformation

I
U = 

~~ +

to obtain

y(x ,p) =~~2f 
f(u) du (19)

Ji -~~
2 

—- - - — - - .-— —~~~ - - -
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where

1( u ) -  2 ~1 + u ( p  - 1 )

When x Is large and p >  1, 1(u ) peaks sharpl y at u = 0, and most of the

contr ibut ion to equation ( 1 4)  wilL come from this region. This ~ ienomenon

suggests that not m uc h er ro r  will result 11 we set the upper limit of integra-

tion to In f in i ty  and expand the square root term of equation ( 19)  in a power

ser ies .  This latte r expansion is

-

~~ 

- ~~~ B u 2’
~. (20)

n - 0

The expansion coefficient B Is

- 
(2n) ’.

n Zn 2 ’2 (n .)

which , for computational purposes, can be written in the recurrence form

13 (Zn - l~~3 (2 1)n ,~ Zn ~v n - I

with

1.

Substitution of equation (20) Into (19), an interchange of the orders of

Integrat ion and summation , and setting the uppe r limi t of integration to
Infinity yields

-16- 
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~ 2n -Zxu2

• 
y(x~p)=~~~~~~ B~f 1 + u 2 (p 2 

-

With the transformation z = u’1p2 - i , this become s

~ B F ( a )
y(x , p ) = P

1~~~~(p 2 1)n + 1/2 ’  (22)

where

and 

F (a) = ~~~~~~~ (23)

1 2x
a = 1 2

‘s I P  - 1

A recurrence relation can be obtained for F (a) as follows. Differentiate

equation (23) with respect to a to obtain

dF
• F~~(a) = - i--. . (24)

From the solution~
5
~

= e~’ [1 - erf( a)], (25)

I
-17-
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equation (24 ) can be used to evaluate the f i r s t  few F~~(a) functions , from
whIch , by Indu c tion , we can obtain either the explicit solution

F (a) (~~~ )fl 

[F 
(a) ~ 

( . I ) t (21 - 
zI~

(Zi
~

l) (2, - 1 )  
~~

or the recur rence  relations

F (a ’) = C (or ) - F 1(a) (26)

and

Zn - 3C ( a) = C (a)
2a’ n - i

wi th

C 1 (~b )  ~~~~~~
- .

In a ppl icat ion , y ( x , p )  is computed f rom equation (22 )  with B
~ 

evaluated by
equation ( .~l )  and F~~~~) by equations (2 5)  and (26) .

The accuracy  of this expan sion was determ ined by compa rison with
exact calculat ions.  In the region x ~ ~ and p -, s,.’2 , the approximation
yields the desired accuracy with onl y a few terms In the expansion . Near
x - -‘ , p -~ ~~~~~~~ about ten terms are  required , whereas for x ~ I O~ or

.~ \ 10~ (and x ~ 1), onl y the f i r s t  term of equation (22 )  is required , i . e . ,

y -
~~ e~ [j  - e r fa J

— 18 —
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~
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~ 
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In practice, the sum is terminated when the relative term contribution to

the accumulated sum is less than io 6 .
Computation of the function F0(a) defined by equation (25) is made to

a relative accuracy of S ~
( I o 6 by using the approximation of Matta and

Reichel.~
6
~

F. INTERMEDIATE x AND p (REGION 6)

For inte rmethate values of x and p, none of the methods ‘con sidered
to now can yield the accuracy desired in y(x , p). For this excluded region
(Region 6), we resort to the Bessel function expansion equation (9)

N
y(x , p) = ~~~ ‘o~’~ 

+ 2 
~ 

(P ; ~~~I (x ) . ( 27)
n = 1

Although this expression (with N - .)  is an exact solution of equation ( 1),

its use for efficient computation is limited , especially for large x, unless
p is ve ry close to unity . For large x, the functions I~ (x) fall off very slowly
with n , and , consequentl y, a very  large number of ter ms must be included

In the summation . The numbe r of terms (N) that must be included within
Region 6 for a relative accuracy of 0.01% are tabulated in Table 1. Even
for x onl y as large as 20 , as many as 27 terms must be included for the
desired accuracy.

In practice, the number of terms used in the expansion is dete r mined
by the worst case of p 0. 05, for which

N ~~~~~ 393

The Bessel functions [~ (x ) are computed with a backward recurrence
algori thm ~

7
~ initiated at order - 

-

0. 307

to ensu re ~~~~ relative accuracy I: !~(x) through n N. 
S
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Table I .  Numbe r of te rms required in Bessel function
expansion of y(x , p)  for 0 .01% accuracy.

x
p -—

1 2 5 10 20

20 9 13
10 7 9 12
5 7 8 11
2 6 7 8 10 11
1 1 1 1 1 1
0. 5 6 7 9 10 11
0..~ 7 9 12 15 19
0.1 8 10 14 18 23

r 

0.05 8 10 15 19 26
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LA SORATORY OPERATIONS

Tb. Labo r atory Operations of Th. Aerospa ce Corporation Is conducting
exp.r4 m.u~ aI and theoretica l Inv est igat Ions necessary for the evaluat ion end
appl icati on of .cieatif%c advances to new military concepts and systems. V.r-
satali ty and fl ex ibil ity have b.en d.v.Iop.d to a high degree by the laboratory
p.rsonn.1 in dea Ling w ith th , many problems encoQnt .r.d tn the nat ion ’ s rapidly
d.v.loplng space and miss il . systems. Experti se in  the latest scient ific d.v. l.
opment s I. v it a l to the avcomp l ishna.nt of sit s relat.d to these problems. The
laborator ies that contribute to th is r .s.arch are:

Ae ro p hy s acs Laboratory : Launch and reentry aerody namics, heat trans-
fer reentry phye ics . cla.mical k inetics , structura l mechanics , fl ight dynamic s .
atm osp her ic puflutton, and hig h-power gas lasers.

Chem istr y and Phys ics Laborat o ry : Atmosph eric reactions and atmo..
p h er ic opt ics. clien ilcal react ions In  polluted atmospher es chemical reactions
of e,,cite d s peci es In ro ck et pluna~ s. ch emical thermodyn amics , plasma and
laser -ind uc ed reactio ns , laser • tie ns istr y, pro pulsion chem istry, space vacuum
and radiation ef f ects on mater ia l . , lubrication and surface phenomena , photo.
sens it ive mater ials and sensor s , high prec is ion laser ranging , and th. app li.
cat ion of physics and chemistry to problems of law enforcement and biomedicine,

Electroni cs Research Laboratory : Electromagneti c theory, devices, and
propagat ion phenomena , includ ing plasma electromag net ics ; quant um electronics ,
lasers, and ele t ro .opt ics ; commun icati on sciences , applied electronics , semi -
conduct ing, superconducting, and crystal  dev ice physics, optical and acoustic al
imaging ; atmospheric po llution; millimeter wav, and f ar - infrar ed technology .

Materials Sc ienc es Laborator y : Development of new materials ; metal
matr ix compos ites and new forms of carbon; test and ecaluat ion of graphite
and ceram ics in reentry; spacecraft materials and electron i c com pon ents in
nuclear w eapons env ironment ; application of fracture mechan ics to stress car .
rosi on and Iatlgu.- indu c,d fractures in structural meta ls.

Space Sc iences Laboratory: Atmos pheric and ionospheric physics , radia-
tion from the atmosphere, densit y and compos ition of the atmosp here, aurora.
and si rg iow ; magnetosp heri c physics , cosmic rays , generation and propagation
of plasma wa v es In the magnetosphere ; solar ph ys i cs , studies of Po lar magnetic
fiel ds ; spec. astronomy. * .r ay  astronomy; the effects of nuclear exp losions .
magnetic storms , and solar activity on the earth ’ s atmosp here , ionos phere , and
magnetosphere; the effects of optical , electromagnet ic , and particulate radia .
Sons in space on space systems.

THE AEROSPACE CORPORATION
El Segundo , California
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