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INTRODUCTION

Treatment of radiative transfer for an isolated Lorentz line in the

Lindquist-Simmons approximaﬁon(l' 2) requires the evaluation of the

derivative function y(x, p) defined by ' 1

® &

2 2x dz T

y(x, p) = —f exp{- 1 (1a) <
" Jo 1+ pzzz 1+ ° i

or, with the change of variable tan(8/2) = pz, by

-x(1+cosf)
- de. (1b)

2 ™
yix,p) = £
% '/(; (p2 +1) + (pz - 1)cos®

This same function is used in the resonance absorption band model for-
mulation of Cobb. (3) In both applications, x is a measure of optical depth,

and p is a ratio of line widths. The range of both x and p is zero to infinity.

Prior work on the evaluation of y(x, p) includes the rational approx-

imation of Lindquist and Simmons (accuracy not stated), the tabulation

of Young(z) (accuracy of one part in 105), and the series expansions of

cobb!3) (accuracy of < 1% for 0.01 < x <10°, 10> = p =< 10>, and

10-3 < y <1). The present work considers the efficient calculation of

y(x, p) to a relative accuracy of <0.01% for the entire positive quandrant of :

the xp plane.

The general features of the function are shown in Fig. 1. The function

limits are
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Fig. 1. The Function y(x,p). From Ref. 2.
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(1 x—s 0
p/N2mx x— =
ytx, p)—s { e72% P (2)

e"‘xo(x) p—s 1

g p—» @

where Io(x) is the modified Bessel function of order zero.

The dramatic difference in basic mathematical form that the function
assumes in different regions of the xp plane makes it impractical to use
only one method of calculation. Six approximation expansions are used in
the present method. These approximations are considered in the following
section, and the regions in which they apply are indicated in Fig. 2.
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METHODS OF COMPUTATION

A. EXPANSION FOR SMALL x (REGION 1)

For x < {1, an expansion of the exponential factor of equation (ia) is
made, and y(x, p) is written as

L n
yoe,p) =3 ()P ELE (o) (3)
n=0
where
2 i dz
E_(p) = —f : (4)
5 BI0 (es)il vt

Explicit evaluation of En(p) by the method of residues for the first few

values of n leads by induction to the convenient recurrence relation

(2n - | =
3a En-1(P) p= (5a)
E (p) =<
L;2—‘_—1[|:>C,, “E__ ()] p#t (5b)

with
Eo(p) = 1 (for all p),

_2n-3c 5 (2n - 3)!
n 2n -2 n-l“zz

C v
%3 - 1)1 - 2)1

(6)

-T-
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(‘l = 1,

The explicit solutions for the first five En(p) functions are

Eo(p) - 10
E,(p) = (p + 207200 + 1, (M

E,(p) - (3p% + 9p + 8)/8(1 + p)>,

E4(p) = (5p3 + ZOp2 +29p + 16)/16(1 + p)4. i T

Additional properties of En(p) that can be derived are

(1 p—0
C./p p—>
E_(p)— < (8)
CnH s ]
({/py™m p—>=

| In practice, y(x, p) is computed from equation (3) and the recurrence relations
j equations (5) and (6). Since equation (3) is an alternating series of decreas-
ing terms, the accuracy of the approximation can be checked as each term
is added to the series by testing the absolute value of the term added. The
slowest convergence of equation (3) occurs for p = 0, in which case terms

through n = 11 must be retained for a relative accuracy of 0.01%. The

forward recurrence relation equation (5b) is unstable for p near unity, For

[1 - p| = 0.044, this stability sets in below n = 11. However, for this

| 3
|

2es
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condition of p and for x <1, y(x, p) may be computed to the desired accuracy
with only the first two terms (i.e., n = 0 and 1) of the Bessel function expan-

sion considered in the following section.

B. EXPANSION FOR SMALL p (REGION 2)

For this and the following three approximations, the starting point
(3)

is Cobb's expansion of y(x, p) as a series of modified Bessel functions.

The expansion is
y(x,p) = e [Io(x) * ZnZ:l ont“(x) (9)

where a = (p - 1)/(p + 1). For small p, o = -1, and we expand y(x, p) in a
Taylor series abouta = -1. At a = -1, the series converges( )to give

y(x, 0) = e-Zx. The first derivative of equation (9) evaluated at o = -1 is
d @
= B -2e"‘Z n(-1)71_(x). (10)
& = -] n=1

(4)

Use of the recurrence relation

L) = M1 ) -1 )] (11)

in equation (10) and shifts of summation indices such that the sums over
In-l and In+l are transformed into sums over L yield

% 5. xe Y ; (<11, (%) = xe ¥[Iox) - 1, (x)]. (12)

@
n=0 2

o= -




At G e

o b

4
|
4
!
1

Higher -order derivatives can be obtained by the same procedure. The

resulting expansion to third order in p for y(x, p) is

-2x 2 2 2 2 -
y(x,p) = e + (—l—‘-‘;Lp)Al + (1—-5—5) AZ + (-i—f;p) A3 (13)
where
A, = xe T (Ig(x) - I, (x)],
o e % i %e-?ﬂ"
and

Ay= e (@x - ) - @x - 201, x)] - Fe .

The slowest rate of convergence of equation (13) occurs for large x.

In this case, the coefficients An approach
n

and successive coefficients decre.se by the factor two. For smaller x,
the decrease is faster. Thus, a worst case estimate of the accuracy of

equation (13) can be obtained by substituting equation (14) into (13) to obtain

y_»e'z‘x+vz-—lm[a +az+o3+a4+---].

-10-




where @ = p/(1 + p). If we retain only terms through a3 in the sum, the

absolute error of truncation is

-4
The largest « that can be tolerated for a maximum relative error of 10

(in the sum) is given by

404

2 3
(e +a +a ) 210 T

for which @ < 0. 9547 (p < 0.045) is the solution. Similar analyses show that
the a3 terin rnay be neglected for p < 0.01, and the az term neglected when
p = 0.0001.

Computation of the I0 and I1 Bessel functions required to evaluate
Ay, A, and Aj of equation (13) are handled with rational appro:dmations(4)
that provide sufficient accuracy for 1 < x $20. Beyond x = 20, these rational
approximations are not accurate enough to yield the difference Ip - I3 io

sufficient accuracy. For x 220, use is made of the asymptotic expansion

oot oo S8 ol 2 “ :
y=¢€ +m-x[1+8x+l—z—8;z]2(l+2+0.2660>. (15)

Up to the 02 term, this expansion is obtained from equation (13) and the
asymptotic expansi0n5(4) for I and Il' The coefficient 0.266 on the 03
term was determined empirically so as to yield 0.01% accuracy for all

x 2 20 and p < 0.05.

-1~




C. EXPANSION FOR LARGE p (REGION 3)

The expansion for this case is obtained exactly as for the small p

expansion, except that the Taylor expansion is made about a« = 1. The

result to third order in p'1 is )
2 3
4 2 z o
V‘X'P)_1'<1+p)81+(1+9) BZ'(HP) R 8

where

B, = xe 'x[lo(x) + Il(x)],

B, =% !

2R Te

and

B, = ’i—e'x[(Zx +3)Gx) + (2% + 2)1 (x)] - ’E‘

As for the small p expansion, the worst case of convergence of

equation (16) occurs for large x. In this case, the first four coefficients

approach
ags 1/2
By ~ &)
B, = x(2x)
2 g

S 3/2
By ~ gvg &x1'",

-i2=




and

e | 2
B4 = "3—2-(2)() .

Substitution of these coefficients into equation (16) yields

~1-201/2+a- “
y T IVH

where o = 2x/(p + 1)2.

assured that the maximum absolute error incurred by truncating equation
(16) at the cubed term is less than or equal to 02/2.

relative error less than 0, 019 is

2 1/2

m™

from which we obtain a < 0. 01328 or

3/2

Since the series alternates in sign, we can be

g _ 2«
3 10 [l o~

p 212,312

In addition, the third; second; and first

be neglected, respectively, when

28.2x 112 _ |

©
v

p 214212 _

and

p 2 16000x!/% - 1,

-13.

-order terms of equation (16) may

The condition for

ey




By 4,3 0 i 5

As in the small p approximation, the functions Iy and Il required

to compute the B coefficients are obtained from accurate rational
approximations. (4)

= D. EXPANSION FOR LARGE x (REGION 4)

‘ Substitution of the asymptotic expansiona‘“ for In(x) into equation (9)
' and a collection of terms on like powers of x yields

1 F(p) (p)
y(x,p) ~ m[p + Bx +2'C('8x)2 T e (17)

'1 where

1\’ g
Fip) = (B2) 1 - 90 - 90% 0%
: y 1) 2 3 2
8 G(p) = (P-Z—) 3(3 - 250 + 1500° + 150a” - 250" + 3a”],
-l

and @ = (p - 1)/(p +1). For p >1.225, F(p) is negative and decreases

monatonically to F = -Zp3 as p * », Similarly, G(p) is positive and
increases monatonically to G = Z4pS as p »®», The next higher coefficient
? -
¥ approaches H = -720p' for large p. Thus, the worst case of convergence

for p 21.225 appears to the alternating series

t[p® 3&‘7‘_2 15253
y“”ﬁ=wxl'i(2x+z(2x)_—8.(?.x 5

The absolute error of truncation at the x"2 term is less than 15(p2/2x)3/8,

and the condition for a relative accuracy of less than 0.01% is

-14.




2 . 2 2
15 B 1 3
T(%) ol z("u—) # z(%;) :
which yields the condition pz/2x < 0.0375 or

x 2 13. 3%, (18)

2)
2.22

Comparisons of the results of equation (17) with exact calculations
confirm this bound by predicting the less stringent bound x 2 7.25p “for
20 =x = 104. In addition, these comparisons show that x must be greater
than ~20 in order to obtain the desired accuracy of 0.01%. This result is
consistent with equation (18) and the lower bound p = 1.225 set on p for this

analysis.
For p < 1.225, the preceding error analysis does not apply because
the series is not an alternating series. Here, comparisons with exact

calculations confirm that equation (17) is accurate to the desired accuracy

for x 2 20 and p down to at least the upper bound (p = 0.045) of Region 2.

E. EXPANSION FOR LARGE x AND p (REGION 5)

The large x expansion equation (17) is restricted by the condition
p = 0.274x1/2
by p 2 12. 3x! /2.1, The following method provides a means of computation

, whereas the large p expansion equation (16) is restricted

in this excluded region. In equation ({a), we make the transformation

to obtain




-quz
e
f(u, 2 2 .
1 +ui(p” - 1)

When x is large and p > 1, f(u) peaks sharply at u = 0, and most of the
contribution to equation (19) will come from this region. This phenomenon
suggests that not much error will result if we set the upper limit of integra-
tion to infinity and expand the square root term of equation (19) in a power

series. This latter expansion is

Z B u L (20)

\/l-u n-0

The expansion coefficient Bn is

B - (2n). :
n N, il
27 (nl)

which, for computational purposes, can be written in the recurrence form

2n - 1
o i 2n )Bn-l 155)

with

Substitution of equation (20) into (19), an interchange of the orders of
integration and summation, and setting the upper limit of integration to

infinity yields

-16-
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. . 2 |
~ : v(x.p)-—-QZB f u.i)du. ;

0 l+u(p

With the transformation z = u pz - 1, this becomes

s BnFn(a)

Y, P) =P ) T3 (22) A
n= (P = 1’ﬂ

where

2 A
°zz“e'°' z .
f ——z—-dz (23) &

0 1 +2 p

ajn

i F_(a) =

and

A recurrence relation can be obtained for Fn(a) as follows. Differentiate

) i equation (23) with respect to o to obtain
1 an_l(a)
Fala) gt e, (24)

From the solution

Fyl@) = e [1 - erf(a)), (25)

|
]
| 3
}
|
|




equation (24) can be used to evaluate the first few Fn(a) functions, from

which, by induction, we can obtain either the explicit solution

n
= 2 1 - 1)(21 ~3) v .. 8., 3.1 |
F _(a) = (-1)"|F  (a) x (-1) :
n 0 77?_; zia(Zl-”(Zi . 1
or the recurrence relations b !
|
Fn(a) 2 Cn(cx) - Fn_l(a) (26) 1
and ’
!
~2n - 3
Cn(a) = -E:z—cn_i(a) i
[
with i
C. (o) = —L—
1 Vra ©

In application, y(x,p) is computed from equation (22) with Bn evaluated by
equation (21) and Fn(a) by equations (25) and (26). | 3

The accuracy of this expansion was determined by comparison with
exact calculations. In the region x =5 and p > V/2, the approximation
yields the desired accuracy with only a few terms in the expansion. Near
X 5 p V2, about ten terms are required, whereas for x 2 10‘ or

pz2X 103 (and x 2 1), only the first term of equation (22) is required, i.e.,

y ~ ¥ [1 - erfal.

-18-




B 4 o i P =

In practice, the sum is terminated when the relative term contribution to
the accumulated sum is less than 10'6.

Computation of the function Fo(a) defined by equation (25) is made to
a relative accuracy of 5 X 10'6 by using the approximation of Matta and
Reichel.®)

F. INTERMEDIATE x AND p (REGION 6)

For intermediate values of x and p, none of the methods considered
to now can yield the accuracy desired in y(x, p). For this excluded region

(Region 6), we resort to the Bessel function expansion equation (9)

yox, p) = e *l1560) \*22:(p =11, 0. (27)

Although this expression (with N = @) is an exact solution of equation (1),

its use for efficient computation is limited, especially for large x, unless

p is very close to unity. For large x, the functions In(x) fall off very slowly
with n, and, consequently, a very large number of terms must be included
in the summation. The number of terms (N) that must be included within
Region 6 for a relative accuracy of 0.01% are tabulated in Table 1. Even
for x only as large as 20, as many as 27 terms must be included for the

desired accuracy.

In practice, the number of terms used in the expansion is determined

by the worst case of p ~ 0.05, for which

N ='8"0. 393.

The Bessel functions I (x) are computed with a backward recurrence
algorithm( ) initiated at order

M = 14x¥ 307

to ensure 10-4 relative accuracy in In(x) through n = N.

-19-
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Table 1.

Number of terms required in Bessel function

expansion of y(x, p) for 0.01% accuracy.

x
P

1 2 5 10 20
20 9 13
10 7 9 12
5 7 8 11
2 6 7 8 10 11
1 1 1 1 1 1
0.5 6 7 9 10 11
0.2 7 9 12 15 19
0.1 8 10 14 18 23
0.05 8 10 15 19 26
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