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Short Pulse Propagation in the Submillimeter Region

éggtractz

The potential of high intensity pulses, in particular
socalled zero-pi pulses, is investigated for transmission of
submillimeter waves through the atmosphere. The water vapor
lines cause absorption which can be partly reduced via satura-
tion effects.

In the theoretical part of the paper, the inverse scattering
method as applied to selfinduced transparency of a lossless
medium is reconsidered, physical interpretations of the mathe-
matical steps are introduced, and some errors that appeared in
the literature are corrected., It is found that the zero pi
pulse "soliton" solution of a lossless medium (no collisioﬁs)
exists only for pulses with the spectrum centered at tﬁe medium
line center, and that pulses with phase reversal, like the zero-
pi pulse, but with the spectrum put off line center, break-up.

A numerical investigation of pulse propagation in the
presence of loss is made. The analysis is carried out in two

stages. First, we look at short pulse propagation with a carrier
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frequency at, or near, the 6.1 cm-l absorption line of H2°
with Tl = 'r2 = 183 psec. The line was chosen because it lies

in the low absorption part of the spectrum and permits propaga-
tion over the order of 100 km permitting a test of the stability
of the computer program for long distance propagation. This part
of the analysis shows that for the carrier frequency centered at
the absorption line the loss experienced by a pulse with phase
reversal may be reduced initially to 55% of the loss that

would be experienced by a small signal pulse of the same spectrum.
For a pulse spectrum detuned so that one of the maxima coincides
with the peak of the absorption line, the reduction is greater,

to 25% of the linear loss. As soon as an appreciable portion
of the energy is depleted, the linear limit of absorption is
reached. Typical intensities for this nonlinear effect to happen
are 8 MW/cm? for a pulsewidth of 100 psec.

Contrary to some statements in the literature, the zero-pi
pulse does not possess a small signal limit because it calls for
full inversion during part of its evolution. For this reason,
an optical beam of finite cross section that initially behaves
like a zero-pi pulse across its cross section is subject to
diffraction effects not unlike the 2m-pulse.

In the second stage of the numerical analysis the two H,0
lines adjacent to the methyl fluoride (CH3F) laser line (496 )

and D,0 laser line (385 u) are investigated. The level
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degeneracy is taken into account. The dipole moments are of

the same order as that of the 6.1 cm t

line and therefore
the intensity levels are comparable. The degeneracy counteracts
somewhat the nonlinear loss reduction, but not greatly.

Linear propagation of the CH3F line and Dzo line
achieves greater propagation distances (0.57 km and 1.13 km
respectively for the 1/e decay) than nonlinear propagation at,
or near, the respective absorption lines.

The report contains many computer plots which aid in the

physical understanding of nonlinear propagation.
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Short Pulse Propagation in the Submillimeter Region

Introduction

The use of laser radar as opposed to microwave radar in
tactical weaponry has the advantage of greater resolution. Ten
micrometer CO2 laser systems are under development for radar
applications. This wavelength does not lend itself to all weather
operation and can be countermeasured by dispersing aercsols. Sub-
millimeter waves would not be so susceptible to fogs and aerosols
but would still afford higher resolution than microwaves. In the
submillimeter region molecular absorption becomes a severe problem;
particularly absorption by pure rotational transitions in water.
Fig. 1 gives a sea level 1 km transmission spectrum in this
wavelength region.

It is known that intense pulses much shorter than T2 may
propagate through a resonantly absorbing medium without experi-
encing loss, This phenomenon is called self-induced transparency.

A pulse with an electric field of "area"

L‘-J Edt = 9 = 2n (1)
#

-0

where u is the dipole moment and # is Planck's'constant,

can propagate through a inhomogeneously broadened medium without
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attenuation. The pulse is so intense that it inverts the two
level system, initially in the ground state, and then returns it
to the ground state so that no net absorption occurs.

If one intends to utilize this phenomenon for long distance
propagation of intense pulses, one quickly finds that the natural
spreading of the beam diameter via diffraction changes the "area"
of the electric field assigned to different points in the beam
cross section from its value of 2w. When the beam spreads the
decrease in intensity causes a decrease of the field amplitude,
and hence a decrease of the "area" to less than 2w, When this
happens, an appreciable portion of the population of the two
level system is left in the upper level thus causing loss and
a rapid absorption of the optical pulse.

Socalled zero-m pulses (Lamb, 1974) have a phase reversal
so that 6 of Eq. (1) integrates to zero. Offhand one might
expect that zero-m pulses would be affected less by diffraction
effects than 27 pulses. The question then arises whether the
potential for low-loss propagation of zero-m pulses may be
utilized for transmission of millimeter-wave pulses through the
atmosphere, decreasing the effect of water vapor absorption.

Also, computer solutions have shown that zero-pi pulses
evaluated for nondegenerate two level systems propagate with
little loss in a level degenerate system (Lamb, 1974). There-

fore, particuiar attention has been devoted to the study of
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propagation of the zero-pi pulse.

To date, only the zero-pi pulse with carrier frequency
tuned to the center of a symmetric line of an inhomogeneously
broadened system has been treated in the literature. Let us
briefly review the principal findings and explain their importance
for the study of low loss propagation.

The zero-pi pulse changes phase by 180° in its "life-time".

The individual positive areas and negative areas of the electric

field as defined by the integral over time (1) are of the order

4 of 2m however, i.e. the E-field never becomes small in the

; | strict sense of the word. Contrary to popular belief (Lamb, 1974)

a small signal analysis is never applicable because the medium ex-
periences full inversion and returns to the ground state within the
lifetime of a pulse., (Remember, this is a discussion for the colli-
sion free case. The field has a longer time to act if the amplitude
is reduced.) Therefore, a zero-pi pulse of a given duration ceases
to be a zero-pi pulse when reduced in amplitude, i.e, it will

not leave the medium in the ground state, just like a pulse

scaled down in amplitude from a 2w pulse. Yet, the situation

{ is not as bad for the zero-pi pulse. Because of its phase re-

versal, part of the "damage" done in one part of the pulse is

undone during the phase reversal part, less population is left
in the upper state after passage of a "reduced zero-pi pulse"
than after the passage of a "reduced 27 pulse". One confirma-

tion of this fact are computations (Lamb, 1974) on a system with
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a degenerate level in which the differences of dipole moment
cause different time evolutions of the individual systems. A
degenerate system causes less loss to a zero-pi pulse than to a
2m pulse. For this reason, the effect of diffraction is to be
expected to be less on the zero-pi pulse.

The present work is an analysis of propagation of the zero-pi
pulse, with carrier frequency on line center and off line center,
in the presence of collisions. It consists of an analytic part
and a computational part. The analytic part is concerned with an
application of the Inverse Scattering Method (ISM) to the evalu-
ation of the zero-pi pulse. Previous work in the literature
(Lamb, 1973, 1974) has not made mention of a zero-pi pulse
solution in the offresonant case (carrier frequency detuned
from the center of a symmetric line). Offhand, one would expect
that in a medium with multiple lines lower loss is achieved when
the carrier frequency of the pulse is placed between the lines.
Therefore, it was necessary to apply the analytic theory of
zero-pi pulses to this case.

A reader of the literature on ISM, who is not a professional
mathematician, tends to be dazed by the seeming complexity of the
subject. This was the case with the author of this report. We
perceived it, therefore, to be our first task to cast the termin-
ology developed in the ISM into language familiar to the physicist
and electrical engineer. This topic is covered in detail in

Appendix I. Suffice it to state here that we succeeded in sim-

plifying greatly the derivation of the zero-pi pulse.




LA LTI RE TET

The computational part studies propagation of pulses of
zero area in the presence of collisional deexcitation. The loss
of a zero-pi pulse is compared with the loss that would be ex-
perienced by an equivalent low intensity pulse. By this we mean,
a pulse with the same spectrum and frequency dependent loss
matching the linear transmission characteristic of the medium.
The investigation is divided into two parts. First we ignore
the orientational degeneracy and study nonlinear prbpagation in
a medium with loss. The parameters of the medium are picked so

1 where the

as to model the water absorption line near 6.1 cm
loss is relatively small and long distance propagation can
occur. This is one test on the stability of the computer pro-
gram. This part of the study gave a great deal of insight into

the possibility of loss reduction by nonlinear effects. It was

found that the loss of a pulse of 100 psec duration of 8MW/cm

peak power could be reduced to about 20% of the loss experienced

by a linear medium. Of course this reduction lasts only for a
few 1/e attenuation lengths after which the loss is that of

a linear medium. It was also found "empirically" in this in-
vestigation that zero-pi like pulses tuned off-resonance tend
to break up under lossless propagation. This prompted the
analytic study to look for a general proof that detuned zero-pi
pulses do not exist which is reproduced in the appendix.

The second part of the study is concerned with a realistic
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modeling of the propagation of pulses at resonance with the
absorption lines adjacent to the 495 u 1line of the CH3F

and the 385 u 1line of the D,0 laser. Here we took the
orientational degeneracy into account finding that it changes
the propagation characteristics only very little. The penetra-
tion depths at these frequencies are discouragingly low however.
Greater propagation distances are achieved by small signal pro-

pagation of the CH3F and D20 lines proper, because they lie

relatively close to local absorption minima.
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Part I

Analytic Treatment

; I. The Inverse Scattering Method

A large amount of literature has evolved in recent years
(see References) on the Inverse Scattering Method (ISM) which
| yields exact solutions to a class of nonlinear partial differ-

ential equations in two dimensions (time and one space variable).

The equations of self-induced transparency (S.I.T.) are a member
of this class, and the zero-pi pulse is a solution of these
equations that has been derived by means of the method (Lamb, 1974).
It seemed appropriate, therefore, to devote some effort to
the exploration of the method. It became soon apparent that the
research on the I.S.M. had been conducted exclusively by mathe-
maticians and had not been assimilated by physicists and engineers,
like circuit theory had been adapted in the thirties after its
original development by mathematicians. For this reason we set
out to develop an understanding of the I.S.M. Appendix I is the
outcome of this study. Here we summarize the principal issues.
The flow chart of Fig. 2 will help the reader in following the

development,
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The I.S.M. associateF with the original nonlinear differen-
tial equation a linear (quantum mechanical) scattering problem,
the solution of which provides the general solution of the non-
linear differential equation. This association is done ad hoc,
no general methods exist to find the linear scattering problem.
In the S.I.T. problem Lamb (1973) found the linear scattering
equations, the socalled Zakharov Shabat equations, after a series
of ingenious transformations of the Bloch equations. Because
S.I.T. is a quantum mechanical problem (so far as the medium
description is concerned) one would expect that the linear
scattering problem is naturally imbedded in the inverse scat-
tering method applied to S.I.T., in other words, is part of the
defining equations. This has not been generally recognized and
only McLaughlin and Corones (1974) have made the connection, but
not explicitly. We showed that the linear scattering equations
of S.I.T. are the equations of the two-level system before they
have been cast into the Bloch equation form.

Next we study the solutions of the Zakharov-Shabat equations.
Here we establish the analogy of these equations with those of
the parametric oscillator-- a well known problem in Optical
Electronics (Yariv). This analogy is helpful in locating the
poles in the complex plane of the eigenfunctions of the Zakharov-
Shabat equations that give the "soliton" solutions of S.I.T.
These poles must be invariants of the S.I.T. equations if the

inverse scattering method is to be applicable. We give a proof
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of the invariance following a method of Ablowitz et al. (1974a).
The invariance leads to a set of equations that are shown to be
identical with Hilbert Transforms of the Bloch Equations. The
invariance may be utilized to obtain the spatial evolution of
the pulse determined at one value of the spatial coordinate;
the entire spatial dependence is contained in the residues of
; the poles, the location of the poles is invariant. Because the
residues may be shown to be independent of the time variable 1
evaluation may occur in the limit 1 + -» which leads to great
simplification.

In this manner we obtain the 2m-pulse and zero~-pi pulse.

We can also show that no soliton solution with zero area exists
off resonance (carrier not centered with absorption line). 1In
this connection one should emphasize the shape of the spectrum
of a zero-pi pulse (or a zero degree, the terminology used by
Grieneisen et al., 1972, 1973, who considered small signal pro-
perties of pulses with phase reversal). The spectrum of a zero-
pi pulse has a zero at the carrier frequency. This accounts for
the low loss observed with zero-degree pulses (Grieneisen et al.,
1972) when propagating through a medium whose absorption line

was centered with the carrier frequency.

e
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II. The Zero-Pi Pulse

The zero-pi pulse with a carrier frequency centered with
the symmetric line of a two level system distribution has been
derived by Lamb (1974) from the Inverse Scattering Method. It
is rederived in the appendix and has the following form in the

notation of the appendix:

cosh 28(1 - ro)cos 2a(t - tl) -

R |®

sinh 28(t - ro)sin 20 (Tt - rl)
§ = 88

cosh? 28(1 - B ) * sin? 2a(t - )

Ql‘m
Sl

(2.1)

o and B are adjustable constants. ¢ is the normalized E

field

2p,, + E
£ oo it (2.2)
ing -

where 512 is the dipole moment, #i is Planck's constant, and

leplzlz
2 he

(2.3)
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where

] w - carrier frequency
N - particle density
i - Planck's constant

€ - dielectric constant of (nonresonant part of) medium

Further, 1 is the normalized space-time variable which refers

to a frame translated along the x-axis at the speed of light

c

EV TS Q[t o —] . (204)
The normalized spatial variable is
z = Qx/c (2.5)

in terms of which one may write

pr, =L g <o B > (2.6)
4 (€ = a)? + g?
atl = l z < E -~ a - ' (2.7)
4 (E=aa)® + gt
The pointed brackets indicate an average over all two level systems

ey s
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of different transition frequency (inhomogeneous broadening).

In the limit of no inhomogeneous broadening, £ can be set
equal to zero in the above equations and the pointed brackets
can be omitted. This is the limit of particular interest,
because the lines of water vapor in the centimeter and milli-
meter region in the atmosphere are homogeneously broadened.

In this limit one finds that the zero-pi pulse consists
of an envelope traveling at less than the speed of light, and
a substructure with a phase velocity greater than the speed of
light. The inverse speeds are disposed symmetrically around
1l/c.

Some features of the zero-pi pulse are apparent from (2.1)
and also follow from its derivation via the Inverse Scattering
Method. The zero-pi pulse may be considered to be constructed
by a limit of two 2m-pulses that propagate at the same speed,
are in antiphase and are made to overlap. This, of course, is
a construction in the "indirect space" of the linear scattering
proklem. not in the "direct" space of the nonlinear differential
equation, in which superposition does not hold. An indication
of this "superposition" is the fact that the sech? of the
two-pi pulse has the same scale parameter £, which also
appeirs in the amplitude of the pulse in front of expression
(2.1). This means that the individual "areas" of the zero-pi

pulse are of the order of 2m and not small. Therefore, the

g

s
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zero-pi pulse shares with the 271 pulse the property that,b»
strictly, a small signal limit does not exist. 1In both cases,
appreciable inversion occurs during the time evolution of the
pulse., Therefore, the zero-pi pulse is susceptible to diffrac-
tion effects just like the 27 pulse. In other words, spreading
via diffraction that changes the field intensity while not
changing the time evolution will change the positive and nega-
tive portions of the pulse in different parts of the beam and
make it become different from the ideal zero-pi pulse. It is
important therefore to study propagation of intense pulses
other than zero-pi pulses by computer in order to ascertain the
potential of intense pulse propagation through the atmosphere.
In the appendix, an investigation is made of the existence
of zero-pi pulses with a carrier detuned from line center. The
requirement that the contributions of the two poles propagate
at the same speed imposes a constraint which is shown to be
equivalent to constraining the spectrum to be centered with the

material line.

e e i,
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Part 11

Computation

III. The Starting Equations for Computation

For the computation of pulse propagation with loss, it

is necessary to use the Bloch equations, or density matrix

ecquations. The loss is introduced phenomenologically in terms
of tne "longitudinal" and "transverse" relaxation times Tl
and .T2' In the slowly varying envelope approximation of an

electric field, E(x, t) exp - i(wt - kx), these are (Kryukov,

e o i b

Letokhov, 197J) (compare (1.10), (1.15) and (1.16) of the ap-

pendix)
A8 e LBl ey 120 L Bl 1) (3.1)
IX c 2t c
(
172
B iAw] P(x, t) = iful® N(x, t) E(x, t) (3.2)
ot T h
\ 2
N t) - N : ’
in(x, &) + (x, t) 0.4 [E*(x, t) P(x, t) - E(x, t) P*(x, t)J |
at : T n 2 |
1
(3.3)
with
bw = w = W (3.4)
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where Wy is the resonance frequency of the two-level system.
We use here cgs units., N(x, t) is the difference of the
population densities in the lower and upper levels, N(x, t) =
N(pll - 022) of the appendix; P(x, t) is the polarization
density, u (= 512 of the appendix) is the matrix element,
T2 is the dephasing time, Tl is the energy changing collision
time; No is the equilibrium population density difference.

In the case of more than one line we have

)
‘ Dy VAN e 6 = 1 d3r Dex, &) (3.5)
(39X ¢ ot 3 c 3
%‘t ra 1 il;l.- -
L <= 4+ —— - idw,| P.(x, t) = —d N(x, t) E(x, t] (3.6)
1 l3e.. 2, I3 ) J
‘ 3
A N. t) - H_. g * t) P.(x, t) - E(x, t) P.*(x, t)
{ 2w, by s 1B - Toy g [BT 0 Bi(x, ) - EGx, 6) ByALx,
at J Ty 5 n 2

(3.7)

In the case of one single line, we normalize as follows:

t in units of t

o
X in units of cto
E in units of Eo

P in units of P




N in units of No

where

to is arbitrary

E°=£ﬁ-_
uto
| Po = uNo. ;

With this normalization, (3.1)=-(3.3) become

Lo Ll Bx, t) =« aBix, &) (3.8) ?
3% 3t

Ty R
€ T,

3 N(x, t) + NX, t) -1 _E*(x, t) P(x, t) + E(x, t) P*(x, t)

it Tl 2

(3.10)

where
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21w t 2N _|u|?
o = L : (3.11)
n

|
|
|
E
|

In the case of many lines, the normalization is slightly different.

If we define
(3.13)

and express uj in units of Mg then we recover the following

normalized equations

‘, Bow Bl B, &) = o3 ay Bylx, t) (3.14)
= | 9% ot 3
d 1 8 =
je | — 4+ —— - iAw.| P.(x, t) = - u.N.(x, t) E(x, t) (3.15)
| 3t T . J J Iy
=
‘] | . N.(x, t) -1 Be(x, £) P,(x, £) + B(x, £) P *(x, t)
=N (x, £) + =y 2 ]
ot le 2




E(x, t) in units of Eo =

Pj(x, t) in units of Po
Nj(x, t) in units of No..

Numerical values are

w B o GL5R2) % 10T L)

(o Rilo}
uOtO

-1 Volts
cm

1

2 2 2 2
ot 21r“’to Noluo| 4% Noluo|

= 2,59 x 10
h A

3 E‘__,2 Watts/cm?

x ﬁ} = 2,65 x 10

=
4m

el (leA = 4.80 Debye)
om™>
cm

Volts/cm.
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IV. Differencing the S.I.T. Equations

In this section we develop the differencing scheme that
has been used in the computer program to evaluate the pulse
propagation. The S.I.T. equations in normalized units are given
by (3.14) through (3.16). 1If the polarization is now split into

real and imaginary parts,

L (x, t) + iP_.(x, t). (4.1)

Pj(x, t) = PRJ I

then (3.15) and (3.16), separated into real and imaginary parts,

can be written in matrix form

( 3 4 NS (
¥ ) i)
N. S E E_| [N, e
j o s = | gl 5
ij ij
SR W EORE o 1 TR e B (4.2)
ae | ™ IR T.. Rj
2j
1
P_. -u.E Aw - — P 0
\ IJJ \ uJ I T J \ IJJ \
2j

If we define

(4.3)




&oidko
le
A. = |-u.E
j H5ER
-quI
\
.
l/Tlj
b. = 0
J
0
\
Then
a - = -
— Yy = A o Yy
ot

where the Jj subscripts are omitted.
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(4.4)

(4.5)

(4.6)

The strateqgy is to solve the polarization and population

equations at a given point in space for all time, and then in-

crement the space point and again solve for the populations in

time. The time difference equations are

(4.7)

g o ek
e e s b g
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-1
- _ I= At = - At .= , =
fnser®™ 2- 2% L 1] [yn ad T T B« 80 iy
+ 2R - ¥+ 2At5} (n > 1)

where §n and in denote the values at the n-th time step.

The electric field is solved for in the moving frame. If

we define
T E k= x and z = x (4.8)
as the new variables, then (compare Section 1 of Appendix) the

derivative 3/3t becomes 3/3t and the "convective" derivative

of E becomes 3/3z at constant T.

L gha, €) » £ o, B .l2, t). (4.9)
5z i 3 |

This equation can be solved numerically using a predictor-

corrector scheme, where the predictor is

| R PR R (4.10)
PR I
J
and the corrector is
gl g1, 20 Iz o (Bt 5L, 2Ejl + ﬁ? b T (4.11)
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The algorithm works as follows: first the field E; I i is
predicted according to
i+1 i i
The polarization and population is then computed by
si+l_fp_stgi+l)7h (il b fpitl | si+l
Yn + 1 o n# 1 n -1 2 n -1 Yn -1
=i +1  =i+1 =
+ 2 A, £y ] + 2Atbo]. (4.13)

This is done for all the transitions yielding values for the
polarization. With the new polarization values, the field can

be updated according to

141, 4=1_48p i1 i i+1
o et il [g “j[(Pj)n +1 Y 2B, 4t By, 1)]*

(4.14)

From the corrected value of the field, the populations and

polarizations are recomputed.

s B it

I ———

i et
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The code was originally intended to use a quadrature of the
form

I
|
>

At
3

n An S yn + l)

However, this scheme when applied to the field and populations
f was found to be unstable.
x

V. Absorption Coefficients

In this section we give the definition of the absorption

coefficient and relations which will be relevant in the next

sections. The normalized wave equation is (3.14)

e e——— s

[-3_+ .2_] E(x, t) = - ayPy(x, t).

(3.14)
9x ot 3j

The normalized absorption nonlinear coefficient « is the loss

‘ of energy per unit normalized length
i

y

)

@

- _E.J [E[?dt £ a I (E*P; + EP%dt
‘ K = ax — = j- . i

- = . (5.1)
j |E| 2at j |E| 2at

1
]
l
|
s

i e e i
- BRSPS
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One can define a linear absorption coefficient by solving for

the linear polarization assuming that the normalized population
keeps its small signal value, and then computing k according

to (5.1). The ratio of the nonlinear absorption coefficient

to the linear absorption coefficient is a measure of the non-
linearity of the medium response. In order to get from normalized

to absolute absorption coefficients, one divides by (cto).

VI. Fourier Transform

The Fourier transform of a function £(t) is

F(w) = I T emiut £(e) at (6.1)
and the inverse transform is

£(t) = 2. I_: et F(w) do. (6.2)

We give results for the transform of the field in the following

sections.
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VII. Results - One Line, Resonant Case

We shall attack the numerical solution in stages. We study
first 2m pulse propagation with no loss and check the computer
solution against the analytic solution. In this part of the
problem, the choice of numerical values for the parameters is
not crucial. Indeed, the matrix element yu and the number
density N, jointly establish distance and time scales. A
change in the values of u and No is accomodated fully by a
change of the numerical values of distance and time on a com-
puter printout made for a particular initial choice of u and
No.

When collisions are introduced, they introduce a rate
constant that must be normalized. A change of u and/or No
calls for a change of normalized rate constant, a new independent
parameter has been introduced.

The same statements hold for the lossless 0-m pulse and
0-m pulse propagation in the presence of collisions (loss).
Hence one must be careful to use appropriate numerical values
for the physical problem to be solved. All this is rather ob-
vious, but there is additional complication. H20 is an asym-
metric rotor molecule and all levels of interest are orienta-

tionally degenerate; i.e. for a given angular momentum J,

there are 2J + 1 possible M eigenvalues ("projection of

if
|
|
|
{
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angular momentum" into the spatial axis around which the angular
momentum has been quantized). Each value of M gives a dif-
ferent dipole moment. Thus, a given pair of energy levels
interacting nonlinearly with an electric field must be treated
as 2J + 1 level pairs where J is the quantum number of the
lower level. Each level interacts with the E-field with its
own value of u and thus ideal 2nt-pulses or 0-7 pulses do

not exist.

In order to break down the problem into stages of increasing

| difficulty, we consider first the case of no M-degeneracy. We

% shall first pick values for the line strengths and widths from i
: the computer print-out of S. A. Clough based on work by L. S

Rothman and R. A. McClathey (Applied Optics, 15, 2616, 1976)
&

in the low absorption regime around 6 cm = to test how the
program would handle long distance propagation. These compu-
tations will be useful in isolating the problems inherent in
2-m1 and O0-m pulse propagation in the presence of loss and

| also ascertain the capability of the program to handle long

distance propagation. Then we shall pick the more realistic

cases of nonlinear propagation near the two submillimeter lasers,

methyl fluoride at 496 p and D20 at 385 u, wusing H20

line parameters for the two absorption lines nearest the per-

tinent laser line. Here, the full M-degeneracy of the lines

will be taken into account. :




|
|
|
i

Table 7.1 gives the line parameters used for the 6.1 cm‘l

propagation.

Table 7.1 Data for 6.1 cm"1 line of H,O.

2
frequency w = 1.2 x 1012 sec_1

relaxation times T, =T, = 0.094 em ! or 185 psec

matrix element p = 0.2204 debye = 4.58 x 10-2 eR
energy of lower level 131.2 cm ™}

quantum numbers J, K K

-1’ 41

lower level 3 1 3

upper level 2 2 0
linear absorption 1.135 x 10°° cm™!

number density in lower level 2.77 x 1011

o =9.18 x 10”’

E, = 1.44 x 10% v/em

5

P, = 5.50 x 10° watts/cm?
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Run 1: Lossless 21 pulse propagation.

In the first run we consider propagation of a 2m pulse
on resonance, comparing the analytical results with the numerical
results as a check on the computer program. In this problem we

take the following parameter values:

t, = 100 psec Mt sl ey
Ny =277 x 10t em™ pw =0 (7.1)
= 4.58 x 10”2 of T, =T, = 10°9 sec
and for time and space steps we have
Bpa 0 Yok, ™ -1 nsec
b 7 -
Xax ™ 3 x 10'cm tmax 1 nsec & i
Ax = 3 x 10° cm At = 6.67 psec
nx = 100 steps nt = 300 steps

The input field is 2 sech t in normalized units. The time

axis was shifted on each space step such that the average

2 2
; ti((Re E)i + (Im E)i)At

<t> = L (7.3)
L ((Re E)2 + (Im E);)At
i 1




T —

was kept between the centermost two time bins. The column
marked Rl in Table 7.2 gives the distance in cm at whi

the remaining quantities defined below are evaluated.

AREAR = I (Re E). At
i 1

ENERGY = % (E*E)i At
i

VELOCITYC = 1 =~ (3<t>/3x)‘1

. I (E*P. + EP.*). At
Ji( J J)l

L (E*E)i At

32

ch

(7.4)

(1.3}

(7.6)

£7.9)

The summation over j in KAPPAl is over the different transi-

tions, in this case there is only one considered. AREAR

is the

trapezoidal rule integration for the real area of the electric

field and should be equal to 2mn for the entire problem.

The

error is seen to be of order 0.1% or less., The pulse energy

rises slowly, with an error of 0.28%, The pulse velocity

is

the speed of light to within about one part in 106, the com-

puted value of VELOCITYC is accurate to about 0.7%, rendering

9

the absolute velocity accurate to 7 parts in 10°, The ab-

sorption coefficient analytically is exactly zero, the error is

such that the growth in energy is of the order of one part

in
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|y Table 7,2

Run 1, The 2w-pulse, error check.

ty% BLOCH P = CL.IEHB7  HOYCLE = 101

& |

~ ‘% varine uS IN SPIWE

o

s foERR ENERGY VELOCITYC  KAPPAI
£ 8 0 g )

J.2IBTHIE-O7 ~2.674433E~14
9, 2186Y7E~07 -2.660431E~14
3,218661E-07 ~1.850313E~14
2.218640E-07 B, 1515598~12
3.21863 ~2.7T5937hE~14
: ~4. 2 DITOE-14
E~B7 -4.200250E-14

9.7 1963

3.21864CE~067
9. 21B0AZE-G7
9.213647E-07
3, 21864357
3.21864cE~87

-4 204520E-14
-3.334156E5~14
-2.458672E~-14
~2.7E6428E~14
~3.640600E~14

4. A 8n47E-67 *4.183BJUE~14
“.ulSG1XL-B?
Z18647E~ar7
D.}i GA4E-B7 *3 6GZ G‘GE~ld
= 2 BLﬁxF ~a7 -3.23733
*3.1U96
"'3 . 45':6? " '
2 BAE~ ~3.913a"""~14 |
LABET AL ~4,0289 145~ 14
ﬂ 218673E-07 ~4,0234845~ 14 |
Q. 213607°E-07 -3.9807855-14 |
9. ‘lG(th—ﬁ( ~3.6937658~14
2.218719E-37 ~3.327246E~14
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106 over 3 x 107 cm propagation.

Basically, the numerical errors introduced are of order

107 ko 10-2, which are acceptably small for the calculation.:

That is to say, the numerical accuracy is of order 99.0% to

99.9%.

e —————————
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Run 2: Lossless Om Pulse Propagation

In this run we use the same parameters as given in (6.1)
and (6,.,2), however, the input field is now

t

cos(t/tf) cosh(t/t ) - £ sin(t/t.) sinh(t/t )
e £ £ e
E(0, t) = & 2
t
® cosh? £ + (t_/t )? sin?(t/t.) sinh? (t/t )
£ £/ “e i e
e
(7.8
in normalized units. Valiues of te and tf are
i =10
te = 10 sec
(7.9)
i -10

In Table 7.3 we give the same values of the parameters as listed

in Table 7.2, now for the case of O0-m pulse. The pulse energy

is within 0.2% of its analytical value. The velocity is correct
to within 1% in terms of its deviation from c¢, and the absorp-
tion coefficient is of order + 5 + 10° % cm™! which is close to

the analytical result 0.
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In Figures 3a-d we show, as a function of time, the pulse
field, polarization, population and power for the Om pulse
considered. The frame :s 2 nsec wide in time and shifts from
one space point to the next to keep the pulse center in the
center of the frame. The points in space cover up to 2.67 x 107
cm (267 kilometers) propagation. Of note is that the pulse
experiences a bit more than one period in its cycle by the end
of the distance propagated. In Fig. 3e we show *he magnitude
squared of the Fourier transform of the normalized electric field.
The frequency is measured in cm-l. One observes that the trans-
form is periodic in space, "breathing" as it were while propagating.

In 4a-d we show "three dimensional" displays of the nor-
malized field, polarization, population and power for lossless

10 psec Om propagation, in time (T) and space (R).




38

Run 3: Lossy Om pulse propagation.

In this run we use the following parameters for the case

of lossy propagation of a Or pulse:

t, = 100 psec LR A
N_ = 2.77 1 o3 - 7.10)
| o = 2- x 1077 cm Aw = 0 (7.10)
w=4.58 x 1072 R T, = T, = 185 psec
te = tf = 100 psec

and for time and space steps we use the values in (7.2).

The primary results are shown in Figs. 5a-d. Note that
the computer graphics omitted the very first values of the
function plotted. The pulse area is initially close to zero
and increases to slightly more than unity by 5 x 106 cm  pro-
pagation. This is due to the absorption of the second lobe
of the electric field which has negative phase. As the pulse
continues through its cycle the area decreases and becomes
negative by 1.5 x 107 cm. The pulse energy is initially at
the O0-m value of 16 in normalized units, and decreases to
about 5% of that value by the end of the run. 1In Fig. 5c
the linear (upper curve) and nonlinear (lower curve) absorption
coefficients are shown. The linear absorption coefficient is

determined by solving first
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) 1 ;
— + — - iAw.| P.(x, t) = - u, E(x, t) (7.11)
3t T . J J J
23

for the polarization (this is the linear limit of the equation
in (2.4)) and then computing the absorption coefficient through
(4.2) and dividing by (cto) to get the result in absolute
units. Basically the nonlinear absorption coefficient is ini-
tially about 0.6 the value of the linear equivalent, and the
ratio increases towards unity as the pulse energy decreases.
The medium response becomes increasingly linear as the pulse

is atteﬁuéted. The ratio of the absorption coefficients is
shown in Fig. 5d.

In Figs. 6a-d we show plots versus time, at different
spatial p&sitions, of the field, population, power and the
magnitude squared of the Fourier transform. The electric fiel&
is seen to decay, alﬁhough it manages to cycle through more than
a period as in the nonlinear case. In 6b the populations are
shown, demonstrating that as the pulse propagates, the satura-
tion decreases markedly. The pulse power is attenuated as
shown in 6c, and in 6d one can get a glimpse of what the at-
tenuation means in transform space, namely that the medium is

chewing out the center of the spectrum.




40

Run 4: Lossy short O0n-pulse propagation.

We now consider propagation of a much shorter Om pulse
in the resonant absorption case. We assume the following para-

metric values

t = 10 psec A7l = 6.1 em™t

N, = 2.77 x 10*t em™ a0 = 0 (7.12)

uo=4.58 x 1072 &R T, = T, = 185 psec

te = tf = 10 psec

and for time and space steps we use
X tn" 0 tmin = =130 psec
8
; Xay ™ 3 x 10" cm tmax = 130 psec
| 6 (7.13)
‘ Ax = 3 x 107 cm At = 0.52 psec
nx = 100 steps nt = 500 steps.

In Figs. 7a-d the primary results are summarized. Fig. 7a
shows the pulse area which makes excursions between 0.04 and
-0.05. Since the pulse is shorter now than in the previous
runs, the loss plays a smaller role and the pulse area stays
much closer to zero. The pulse energy is shown in Fig. 7b, il-
lustrating near- linear decay from 16 to about 9 in normalized

units during 3 x 108 cm propagation. The linear (upper curve)

WP




E
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and nonlinear (lower curve) absorption coefficients are shown
in 7¢, illustrating a "ringing" in the linear absorption
coefficient. This result is due to the fact that the Fourier
spectrum "breathes" as it propagates, and the different parts
of the cycle see different absorption coefficients. The ratio
of the nonlinear to the linear absorption coefficient is shown
in 7d. 1In Fig. 8a-d we give the field, population, power and
square of the transform for the run, as function of time, at

different spatial positions.

b bl e i 8 O tead 046 Sl
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Run 5: Lossy long On-pulse propagation.

In this run we example lossy long pulse propagation, using

the following parameters

t, = 1 nsec AP w6k ot
N,o= 2.77 x 101t o™ 4y w (7.14)
b= 4.58 x 1072 &R T) = T, = 185 psec
te = tf = 1 nsec
and for time and space steps we use
Xodn = 0 tmin = =13 nsec
6 -
Xoiax ™ 3 x 10" cm tmax = 13 nsec
4 (7.15)
Ax = 3 x 10" cm At = 52 psec
nx = 100 steps nt = 500 steps.

The results are shown in Fig. 9a-d in which plots of the pulse
area, energy, absorption coefficients and ratio of absorption

coefficients are found.




43

VIII. Results: One Line, Off Resonant Case

Run 1: Lossless 2 pulse propagation.

In the first run we consider propagation of a 2m pulse
off resonance, comparing analytical results with the numerical

results. In this problem we take the following parameter values

t_ = 100 psec 27! - 6.1 e

N, = 2.77 x 101 em™  ap = -0.05 cmt (8.1)
po=4.58 x 1072 &8 T, =T, = 10°° sec

and for time and space steps
Xoin ™ 0 tmin = =1 nsec
= 7 =

g ™ 3 x 10" cm tmax = 1 nsec o
Ax = 3 x 105 cm At = 6.67 psec
nx = 100 steps nt = 300 steps.

The input field was 2sech t in normalized units. The results
are given in Table 8.1. The real pulse area oscillates sinu-
soidally, the pulse energy is within 0.3% of the analytic
value. The pulse velocity is probably accurate to within 1%

in the difference between it and c. The absorption coefficient

o St sl il etk
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Table 8.1

R = 1.B11E+97 NOYCLE = 181

VARIABLES IN SPACE

R1

2. 1RE+B6
3.30E+86
4.LBE+BG
5.78E+36
€.38E+06
8. 1BE+86
9.38E+06
1.05E+87
1. 17E+Q7
1.29E+37

L. 41E487 .

1.53E+07
1. GC:["U(
l.f(t
1.89E
2. LIETE?
2.13E+ﬂ?
2.29E+87

2,43E487
’ €1[+B?
: X 2arg

; €407
g W.h'U?

AFEAR ENERGY VELOCITYC
8 8

5.961888E+832
S5.5992465E+00
4.875769E+60
4,880944E+039
‘3. 150434E+48
2.114616E460
1.80726EE+0G
-1.35891CE-a1
-1.27414935E460
C =2.3726D4E+50
-3, 301639E+08
-4, 20867 2E+60
-5.0625421:+80
-8 . 65¢H96EHI0
-6.,863974E463
~6.,268262E+89
-6.263863E+80
-65.0512321E+8D
-5.637¢73E+99
-5.837567E+ED
=4, 270845E+38
-7 AGIAVEESE
-2 . 345095E--90
-1.248829E+60

..

[ o
LS

H L

SHL0DAAMDDL

DAL DAIDBANDL

KARPAL

b4l

6.2698347 1
l‘e‘f.

4,02
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is less than 10713 cm™l. The accuracy of the calculation is

sufficient for the purposes of the analysis.

Of f-Resonant Proragation of "Zero-pi Pulse"

As explained in the appendix, there is no zero-pi pulse
like solution for propagation in a collision free medium, i.e. a
pulse with its spectrum not centered at the material line.
Computer runs made witp a zero-pi pulse with a spectrum com-
puted at resonance and then simply shifted off resonance show
break-up of the pulse into two separate pulses.

When loss is introduced, the pulse does not necessarily

break before linear propagation is reached due to the loss.
In this set of runs we consider the case of lossy propagation
at several values of the detuning Aw. In l1l0a-d we show the

Fourier transform magnitude squared of the normalized field in

1 1 |

space (cm) and frequency f(cm ), at Aw =0, .05 cm ’ :

.10 cm~t

and .20 cm-l. Basically, when the pulse is chirped,

one of the lobes (this one which has more overlap with the lossy

.
S - r—

line) is eaten away faster than the other.
In Fig. lla-d are shown the normalized field, polarization,
population and absolute power for a chirped O0Om pulse defined

to Aw = 0.05 cm L. Of note is that the pulse does not break

Lt et W e ol B Rt

up-- a result which follows simply from the fact that breaking

up is a nonlinear effect, and the pulse does not remain nonlinear
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long enough to break up (te i B 100 psec). In Fig. l2a-d
are presented the normalized electric field versus T and R
at Aw =0, .10 cm-l, .20 cm_l, 0.60 cm™l. One can see that

the nonlinear gyrations of the field are slower in the case of
detuned propagation; when the line is detuned, the effect of
the line on the pulse becomes less.

In 13a-c are displayed the normalized real polarizations
(Imaginary polarizations are not shown). The effect of the
field on the medium is less off resonance. 1In Fig. 14 are shown
the populations (normalized) at Aw = 0, 0.1 and 0.2 cm_l.
The saturation is much less off resonance, and the "rippling"
which is a nonlinear effect is virtually absent off resonance.

Fig. 15 shows the pulse power at Aw = 0, .10 cm™*  and
.20 cm™t. oOne observes simply that the rippling is less ¢
resonance. The message is that as one gets further off-
resonance, the O0-w-like nonlinear effect (i.e. rippling) is
weaker. The difference between the linear absorption and non-
linear absorption is primarily a saturation effect rather than
due to any other special Orn property.

Figs. 16, 17 and 18 give plots versus distance respectively
at Aw =20, 0.05, and 0.10, for te = tf = 100 psec.
(a) pulse area (real and imaginary)
(b) normalized pulse energy
(c) the deviation of the pulse velocity u from the

speed of light in terms of 1 - u/c

e ———————
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i ' (d) the loss coefficients for linear and nonlinear absorption

, (e) the ratio of nonlinear to linear loss.
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IX. H20 Lines Adjacent to CH_F and D20 Laser Lines

The Methyl Fluoride (CH3F) laser at 496 p and the
DZO laser at 385 p are two available submillimeter sources
whose radiations fall between main absorption lines of H20.
For this reason we study specifically the two radiations and
represent the water vapor absorption by the nearest adjacent
lines.

Water is an "asymmetric-top" molecule (Townes-Schawlow,
1955). The energy levels of such a molecule are described in
terms of three numbers, J, K_1 and Kl respectively. J
is the total angular momentum and is a "good" quantum number.
K_l and K1 are not "good" quantum numbers in that they do
not represent the angular momentum around one of the three
principal axes of the molecule. In general, there is no level
degeneracy for a particular set of values of J, K-l’ Kl'
There is, however, an orientational degeneracy.

We obtained line strengths from the computer printouts of
S. A. Clough. These line strengths contain information on the
dipole moment <|u|?> averaged over all orientations of the

molecules. One may start with the two level system equations,

(1.15) and (1.16) of the Appendix, in the small signal limit

in which

p11 - 022 can be treated as constant. Then, one
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solves for P12 o©n line center and puts the result into (1.10)
of the Appendix. The spatial rate of change of E may be

equated to the amplitude decay coefficient (a in the notation
of Marcuse, 1970, p. 286, not to be confused with<the o used

here earlier). One finds, in agreement with Marcuse,

L N ( ) (9.1)
& e P - P . .
% ool 22 11

An orientational degeneracy forces one to take averages over
all M so that the average o, <a>, contains the average of
lul®, <Ju]?>.

The line strengths s, as used by Clough, are the <o>

integrated over the line width function

g(v) = (9.2)

where 2mAv = l/Tz, and expressed in inverse centimeters.

The conversion factor is

1 sec-1 = 3.34 x 10"11 cm-l. (9.3)

Combining all this one finds

Sl

et L b L e
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1/2
up = /<|u|?> = L debye (9.4)
15

-abs . g5 x 10”

N

HZO
with Nabs/NH20 = Pa2 = P11 defining the ratio of the popula-
tion density difference participating in the transition to the

total population density of water molecules.

Further,
hv hv  ~hv
Nabs/NH o= (27 + 1) exp - e 1l - exp - i Sk 3 (9.5)
2 2 kT kT

Any molecule of angular momentum J can have 2J + 1 orien-
tations with respect to a fixed spatial axis (say the applied
electric field direction). These orientations are described
by the "good" quantum number M where 2 is the partition
function. For H20 at T = 296°K, Z = 174.83 (S. A. Clough,
private communication).

The constant g is the statistical weight of the lower

level (Townes-Schawlow, Table 4-7)

g =1 for symmetric level

3 for antisymmetric level.

0
]
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The symmetry or antisymmetry is determined from K., and K,
depending upon whether K-l + K1 is even or odd. Further,

= hvu = h“z' where hvu is the energy of the upper level,

hv, that of the lower level. Now, <|u|?> gives the average

2
matrix element for absorption of a field, with fixed orientation

with respect to a spatial axis, say the z-axis. The z-component

of p has two different dependences upon M, one for a transi-
tion, J +J' = J + 1, the other for J =+ J' = J. 1In the

Fourier case (Townes-Schawlow, 1-73)
fi b E e T S = J' =3+ 1 (9.6)
In the latter case,

lu 12 = m%; J' = J. (9.7)

We find by simple recursion

J
rM2=L g0+ 1)+ 1), (9.8)
-3 3

The initial population difference for nonlinear interaction

with any one of the transitions of given M is

H,O

2 Z kT kT

h, hv = hv g
R o [__z][lp [___9-] s
9

i s
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where

(]
=

gz/gu for AJ =0

23 + 1
23 + 3

90/9, for AJ = 1.

The reason for this is that, in the absence of collisions,
a transition J >+ J + 1, M+ M, reaches only the M' = M
states, and not the final ones M' = ¢ (2J + 3). These states
are unaffected by the radiation and get filled only after M-
changing collisions have occurred. Such collisions cannot be
dipole-dipole collisions, and thus they occur at a much lower
rate than l/Tz. Wé shall ignore these collisions and hence
ignore the M' = + (23 + 3) states of the upper level in our
propagation studies.

The parameters used in the computations are summarized in
Tables 9.1 and 9.2. We studied resonant excitation of the four
lines at 18.577, 20.704, 25.080 and 30.560 cm-l, that
lie near the CH3F and DZO laser lines. The new feature
4 is that these lines are degenerate and therefore the different
L M-levels are excited differently. There is no zero-pi pulse

solution in the loss-free case, strictly speaking. We picked

a puise that would be a zero-pi pulse in a nondegenerate system
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Table 9.1 }
Summary of HZO Data on 4 Lines
ol
Line (JK-IKl) lower (JK-IKI)upper E F!. Fu NL (1 -e kl_rl Nabs
o O B e SRR T x 1014
18.577 110 101 3 23.794 42.371 9.04 - 8.62 7.79 {4
20.704 532 441 3 488.1 508.1 3.48 9.56 3.33
25.080 211 202 1 70.091 95.171 4.01 11.5 4.61
30.560 422 331 1 285.219 315.779 2.54 13.8 3.51
|
Population density of lower level: 1
| g (23 + 1) o BIKE i.
o N = - : Z = 174.83 |
L X |
Z - 4
Population difference: ’
-AE/KT
Nabs NI..(1 e )
: i
: ; N_. /N : i
Line s abs H20 u S(Nabs) { |
cm—l per molecule X cm X 10.3 debye X 10.2 per molecule X cm X 10-17
18.577 5.00 x 10”20 3.95 2.95 1.27
| 20.704 5.65 x 10722 1.69 0.454 0.0334 |
‘l 25.080 3.47 x 10720 2.34 2.74 1.48 |
] s |
‘ L 30.560 1.43 x 10721 1.78 0.579 0.0803 ;
A
The relaxation time:
-11
Tz(sec) w330 %10 Av in cm-l. 1 ' |
2Av |




Case 1:

Line

cm
18.577

M| =1

Case 2:

Line

cm
20.704

| M|

|
w

=
]
N

M| = 1

Table 9

.2
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Summary of Input Data for Individual Levels

J =

1' J. = 10
y Nabs x density
debye x 107! em™ 3 x 1014
2.95 7.79
4.43 5.19
5, J' =4
u Nabs x density
debye x 102 afi > x 1ot
4.54 33.3
3.96 7.40
5.20 7.40
5.94 7.40

sec x 10-12

230




Case 3:

Line

cm™1

25.080
M| = 2
M| =1
Case 4:
Line
cm

30.560
M| = 2
M| =1

M|

(]
(=]

Table 9,2 (continued)

Jd=2, J".» 2,

M

Nabs X density

7.72

debye x 1071 em™3 x 1014
2.74 4.61
5.48 1.84
1.37 1.84

J=4, J'= 3,

& Nabs density

debye x 1072 em™3 x 104
5.79 3.51
5.79 1.00
7.24 1.00

0.500

55

T,

sec x 10712

164

sec x 10712

199
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with the same value of /<|u|?>. Note that the power in such

a pulse scales like 1/<|u|2>te2. Because the <|u|?> values
of the lines are not greatly different, we are dealing in all
cases with pulses of peak power of the order of 10 Mw/cm? for
100 psec pulse-length-- comparable to the pulse power of the
6.1 cm L 1line analyzed earlier.

The 18.577 1line does not represent much novelty. It
behaves like a nondegenerate line because only the levels

M =1 interact with the radiation and they have the same

dipole moment. The only feature worth noting is that the pene-
tration dipole is very short. The distance scale terminates at
10 m-- the absorption line is indeed very strong. Saturation
has reduced the loss to 55% of its nonlinear value, but after
about 6 m propagation the loss has approached the linear loss
to within 85%~-- the penetration has been improved, but very

little.

Figure 21 plotted for the 20.704 cm.1 line is on a scale
of 1.4 km-- a much weaker absorption. We note that the dif-
ferent M-levels are acted upon differently by the radiation,
and the loss in each is reduced by different amounts due to
nonlinear effects. The transition is one with AJ = 1 so that
the strongest dipole moment is for M = 0. Figure 21d shows

that indeed the largest reduction in loss occurs for M = 0,
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to about 45% of the linear value. For the M = 0 1line the
equivalent "average" zero pi pulse used for the computation has
more energy than a true zero-m-pulse would have for this level
of strongest dipole moment, hence the large reduction in loss.
Yet, after roughly a 1/e decay length the loss reduction has
disappeared for all practical purposes.

Figure 22 is for a line with AJ = 0. The strongest dipole
moment is for |M| = 2. From Fig. 22c we gather that indeed
this level has the larger loss reduction, to about 60% of its
linear value. Note that the penetration depth is of the order
of 5 m, again this is a very strong absorption line.

Figure 23 is for a AJ =1 transition and qualitatively
duplicates the behavior of the AJ = 1 transition at 20.704 cm
Figure 21. It is a weaker absorption line, the horizontal scale

extends to 450 m.

1

’




. Propagation of CH3F Laser Radiation

In the preceding section we studied propagation of radiation
in resonance with the degenerate lines adjacent to the CH3F and
DZO lines at 495 p and 385 u respectively. The propagation
characteristics were not greatly different from those in resonance
with a nondegenerate line. As a final test, we study the propaga-
tion of 495 u radiation as it is affected by absorption via the

strongest adjacent line , the 18.577 cm !

line. Figs. 24a,b
show the propagation of a 10 psec pulse. The shape of the
pulse is taken as that of a zero-pi pulse on resonance with the
line, detuned to 495 p = 20.2 cm 1. Curve A of Fig. 24a has
the energy appropriate for a zero pi pulse, the others are of
higher energy. The 1/e decay is roughly 500 m. Fig. 24b
shows several interesting features. Curve A is for a small
signal pulse. It shows a dramatic decrease of «k-- the attenua-
tion constant, as a function of propagation. This is due to the
fact that the portion of the spectrum that lies on the high
absorption side of the line gets "eaten-up" initially. The
remaining part of the spectrum has smaller loss as it continues
its propagation.

Curve B of Fig. 24b corresponds to curve A of Fig. 24a.

The initial saturation effect is very noticeable reducing «k to

about 30% of its small signal value. As the pulse propagates,
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the absorption coefficient exceeds the small signal value
because the most "favored" part of the spectrum, nearest to the

line center of the absorption line, has a weaker saturation ef-

fect after attenuation has occurred.

shaciandinlnecio St T hls ol G
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Conclusions

The zero-pi pulse as published by Lamb (1974) is a special
case of a self induced transparency solution obtained when the
spectral line of the medium is symmetric and the carrier fre-
quency of the pulse is centered with respect to the line. Fol-
lowing "small signal" reasoning, we were interested in detuning
pulses from line center so that the loss is avoided at least
partially when the "center of gravity" of the spectrum lies
outside the absorption line. Generalized solutions have not
been published although the formalism of inverse scattering
theory can be applied to that case. Lamb, in another paper
(1973) , gave a general formula which is wrong (his equation 16).
For this reason the analysis was redone to provide the starting
point for the computations presented in this report.

We have, therefore, appiied the Inverse Scattering Theory
to obtain an expression for the generalized zero-pi pulse. 1In
the course of this work we found it necessary to cast the
formalism developed by mathematicians into language and models
understandable to the physicist and engineer. A paper on the
first version of this work will appear in Reviews of Modern
Physics. The appendix of this report is a further simplifica-
tion which avoids entirely the use of the Marchenko equation

of Fourier transform space and thus gives more rapidly results

e s duid
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useful to the evaluation of the zero-pi pulse. One important
outcome of the analysis is that there exists no zero-pi pulse
detuned from line center. Any pulse of the "breather type"
(such as the zero-pi pulse is called because it changes shape
as it propagates) breaks up when its spectrum is not centered
with the line of the medium. Therefore, we used in the computer
analysis in the off-resonant case an electric field envelope
evaluated from the on-resonant case, and shifted off resonance.
Such pulses are found not to break up when sufficient loss is
introduced so that the intensity of the pulse is decreased to
a sufficiently low level before the break-up had a chance to

i occur .,

2 The numerical studies proceeded in two stages. First, we

looked at 27 and O0-m pulse propagation in the absence and

presence of loss at and near the 6.1 cm.1

line of H,0, with-
out including the degeneracy of the level so that ideal 2n

: pulse and O0-m pulse propagation in the absence of loss was
possible. This numerical study showed certain features of
zero-pi pulse propagation in the presence of loss in the simplest
possible context. The analysis also enabled one to test the
program for its potential of predicting long distance propaga-
tion (up to 3 x 107 cm) , in this case of low absorption. The
following specific findings are of interest, but note that

level degeneracy had not been taken into account-- thus the

beneficial effects of saturation are exaggerated.




(a)

(b)

(c)

(d)
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The attenuation of the 6.1 cm"l

H,0 line is reduced

to .6 of its linear value for a zero-pi pulse over

a distance within which the energy has not been greatly
depleted. After that the pulse propagates in essentially

a linear manner. For a 100 psec pulse, the required peak

intensity is 8 MW/cm?. Typical propagation distances are

20 km.

The off-resonant "zero-pi pulse" can lead to a further
reduction of loss to .25 of its linear value, if one
peak of the double-peaked spectrum of the zero-pi pulse is
made to coincide with the absorption line. This is an in-
dication of a saturation-bleaching effect, the bleaching
is more effective when the spectrum has greater net
intensity within the spectral response width of the

medium.

Further detuning of the "zero-pi" pulse spectrum from

the absorption line gives less loss reduction.

As a pulse is detuned from line center, the loss is
reduced as one would expect from a linear analysis be-
cause less of the spectrum coincides with the absorption
line. 1In fact, a "zero pi" pulse of 8 MW/cm? intensity
as defined for on resonance propagation, when detuned by

more than a linewidth, interacts with the medium in an
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almost linear fashion, This is because a relatively small

portion of the spectrum interacts with the medium.

The zero-pi pulse has no small signal limit, Accordingly,
diffraction effects will have an effect on zero-pi pulse

propagation within a beam of finite cross section similar

to that of 271 pulses.

The CH3F and DZO laser lines lie in the wings of very
strong water vapor absorption lines. These lines connect
degenerate levels and hence S.I.T. solutions do not exist
in the lossless (collision-free) case (except for the
18.577 1line). Using on resonant propagation at any one
of the four lines of "equivalent" zero-pi pulses with

(+ =) areas chosen to correspond to the average matrix
element of the transition, one observes reductions of
absorption due to saturation very similar to those of the
nondegenerate case, of the order of 55% of the linear
loss. The penetration depths are now much shorter; of
the order of 5 m for the two strong lines, 500 m for

the two weak lines.

The peak power of the equivalent zero-m pulse scales like
1/|u|? tez. Hence the peak power one needs to experience
nonlinear loss reduction is of the order of 10 Mw/cm? for

all the lines-- their dipole moments being alltof order

0.5 debye.




(h)

(i)

(3)

The CH3F and Dzo laser lines lie in a regime of
relatively weak absorption. Fig. 1 shows that the linear
loss exponent 2a2° within 1 km is 9.5 and 16 re-
spectively, corresponding to 1l/e decay distances of

105 m and 62 m respectively.

On-resonant propagation on the 20.704 cm-l line produces
l/e decay distances of the order of 360 m which is
much greater than the 105 m distance of linear propaga-
tion read off the graph. The discrepancy is due to the
fact that the wing of the strong adjacent line at 18.577
influences the linear loss at the 20.02 cm-l line of
the CH3F laser reducing the 1l/e decay distance ap-

preciably.

Off-resonant propagation, at the frequency of the CH3F
line, of a zero-pi-like pulse of 10 psec duration shows
the following characteristics: 1In the small signal limit,
the spectral component of the pulse on the high side of
the absorption line gets eaten up and the attenuation
coefficient decreases with further propagation. An in-

tense pulse achieves appreciable initial reduction of

attenuation (to 30% of small signal limit) until the

absorption has reduced its intensity.




(k)

(1)

(m)
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In the case when the pulse energy is several times the
on-resonant zero-pi-pulse energy, the pulse breaks up

into a series of pulses traveling at different speeds.

The zero-degree pulse propagation with low loss as observed
by Grieneisen et al. was a linear phenomenon, associated
with the peculiar spectral distribution characteristic of

a zero degree, small signal pulse (which is also character-
istic of the zero-pi large signal pulse). The spectrum

has zero intensity at the carrier frequency. Hence a zero-
degree pulse with the carrier centered at the line exper-
iences reduced absorption because the "bulk" of the spectrum
lies outside the absorption line. There are other subtle
effects in the limit of inhomogeneous broadening, that

were discussed by Grieneisen et al., but do not concern

us here because H20 is homogeneously broadened at atmo-

spheric pressure.

The overall conclusion is that lower loss can be achieved

s

in the linear regime when the spectrum is moved away from
the frequencies of maximum absorption. The use of carrier ;
trequencies that are far from the peak of the absorption |
lines are equally or more effective. The zero-degree 3

pulse would be useful only in those cases in which the ;

use of a laser frequency coincident with an atmospheric

absorption line were required, e.g. when a CO2 laser

> J
e e . LI T i i A e i e s (b sl
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‘
is used and absorption by atmospheric CO2 is to be
reduced.
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