
15323.1—P 
DAAG2Q—77— C

ASSIFIE~~ 
JAN 79 H A

U

-~~ 
- - p



- __________ -

/ 53 L3. ,-p

SHORT PULSE PROPAGATION IN THE SUBM ILLIMETER REG ION

H. A . HAUS

L

I

D D C
/ F~1E1~J?fIflj1~

~~ 
l2 AP~~~~

_ _ _ _  

UU~~~ uu~
DISTR~~UTION. E~ Th~ ~T
Approved ior public ::~~:

Disfrthutio~iUn1imitod

I

_ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

()

— __________________________________________________________________________________



• . 

.

_ _ _ _ _ _ _ _ _ __ _ _ _ _ _  

£1

~1 f 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (W7,.n Data Ent.r.4) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _4 

1 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

___________________________
READ U~STRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETI?JG FORM

I. REPORT NUMBER
12. 

GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

4. TITL E (end SubItU.) S. TYPE OF REPORT I PERIOD COVERED

SHORT PU LSE PROPAGATION IN THE Final
• SUBMILLIMETER REGION Sep. 1,1977 - Nov. 30, 1978

S.~ PERFORMING ORG. REPORT NUMBER

7. ALJTHOR(.) S. CONTRACT OR GRANT NUMBER(a)

H. A. Haus . DAAG29-77-C-0043

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
___________ I

4. PERFORMING ORGANIZATION NAM E AND ADDRESS tO. PROGRAM ELEMENT. PROJECT . TASK
AREA & WOR K UNIT NUMBERS

Research Laboratory of Electronics P 15323 ?
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 _________________________

It . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office January 31, 1979
P. 0. Box 12211 13. NUMBEROF PAG ES

Research Triangle Park , :Ic 27709 190
14. MONITORING AGENCY NAME & AODRESS(II dUl.r.nt from Cont,otllng Off ice) IS. SECURITY CLASS. (of tkf• r.port)

Unclassified
ISa. DECLASSIFICATION/DOVNGRAOING

SCHEDULE

L 

Approved for public release; distribution unlimited. ~~~~~~~ 0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  17 
_ _ _ _ _ _

W 1 t  k~I.,
IS. DISTRIBUTION STATEMENT (of thl. R.port) 

- -
~~~~ 

_ _ _ _ _ _ _

0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~

17. DISTRIBUTION STATEMENT (ot the ib.tr. ct .nt.r.d In Block 20. Il dli ferm I t~ m Report) 

-

IS. SUPPLEMENTARY NOTES

The view, opinions , and/or findings contained in this report are thole of the
author(s) and should not be construed as an official Department of the Armyposition, policy, or decision , unless so designated by other documentation.

19. KEY WORDS (co.illnu. on r.r.,s. aId. Si n.ce.aavy end Identify by block numb.,)

Zero-pi pulse
4 . Atmospheric propagation

Nonlinear propagation

• 20. A BSTRACT (Coniinu. on re..•ra. .id. ii n.c..a.rv and Sd.ntSiy by block number)

atmosphere. In the theoretical part of the paper the inverse scattering

The potential of high intensity pulses, in particular socalled zero-pi
pulses, is investigated for transmission of submillimeter waves through the

method is applied. A numerical investigation of pulse propagation in the
presence of loss is made. The report contains many computer plots which
aid in the physical understandin g of nonlinear propagation.

DD ~~ 1473 EDITION OF I NOV $~ IS O B S O L ET E
‘,;nclarsified 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~,r,’WsT v CS *4~ IFIC~AT If lw n F  THIS PAGE fIIS,m Dali tNlmr. fl 
_ _ _  _ _ _ _ _ _  

. 

~1 
- - - -

.

~~~~~~~~ • • 
— 

•

—~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~
. ,.



a

• 

. 
FINAL R.~PORT .

1. MW PROPOSAL NUH I3ER :

2. PERIOD COVERED BY REPORT: 
1 September 1~ 7? - 30 November 1978

3 TITLE OF PROPOSAL: Short Pulse Propagation in the Subniilli—

• meter Re~ ion

4. CONTRACT OR CRANT NU BER: DAAG29 77 0043

3. NAME OF INSTITUTION: Massachusetts Institute of .Technology

6. AUTHOR(S) OP REPORT: fi. A. Haus

7. LIST OF MANUSCRIPTS SUBIIITTED OR PUBLISHED UNDER ARO SPONSORSHIP

DURING .THIS P INCLUDING JOURNAL REFEEENCES

k 
• 

. . H. A. Haug, Physical Interpretation of Inverse- Scattering Formalism

• • Applied to S. I. T. (Rev. Modern Phys.) (acceptfd for publication)

8. SCIENTIFIC PERSONUEL SUPPORTED B! TillS PROJECT AND DEGREES AWARDED

DURING THIS RtPORTINC PERIOD: • 
•

IjI A. Haus (Pr tncipal Investigator )

F. A. Jones (Research Assistant)

P. L. Xelley (unpaid consultant)” .

P. L. Hagelatein (Hertz Fellow)

15323-P
• ~~~~. )loraann A. )fftus

C ~~~~~~~~~~~~ Institute of Technolo~~Deportment of F.1ect~rical l’.n8.incering .

a~d Cc~ putcr Science
C brid~o, MA 02139 . 

•

I •~~~-~~~~~~~~
• 

•
~~~~~ .• •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

..

,~~~~~~~ 
±~:



Table of Contents

Abstract I.

Introduction 4

PART I. Analytic Treatment

I. The Inverse Scattering Method 10

II. The Zero—Pi Pulse • 13

PART II. Computation

III.  The Starting Equations for Computation 17

IV. Differencing the S.I .T.  Equations 22

V. Absorption Coefficients 26

VI . Fourier Transform 27

VII . Results—- One Line , Resonant Case 28

• Run 1: Lossless 2w-pulse propagation 31
Run 2: Lossless Oir-pulse propagation 35

Run 3: Lossy Ow-pulse propagation 38

Run 4: Lossy short On-pulse propagation 40

Run 5: Lossy long Ow-pulse propagation 42

VIII. Results: One Line, Off-Resonant Case 43

IX. H~O Lines Adjacent to CH 3F and D20 Laser Lines 48

X. Propagation of CH3F Laser 58

_ _ _ _ _  • 

• 

_ _ _ _ _ _  . -•



ii

I
H 1

Conclusions 
60

Acknowledgments 67

~
ppendix: Derivation of Two-Pi-Pulse and Zero-Pi-pulse 68

by the Inverse Scattering Method4~ I
References 110

Figure Captions 113

- - - _____________________________



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L
--

•
~i I

Short Pulse Propagation in the Submillimeter Region

Abstract :

• The potential of high intensity pulses , in particular

socalled zero—pi pulses, is investigated for transmission of

submilliineter waves through the atmosphere. The water vapor

lines cause absorption which can be partly reduced via satura-

tion effects.

In the theoretical part of the paper, the inverse scattering

method as applied to self induced transparency of a lossl.ess

medium is reconsidered, physical interpretations of the mathe—

• matical steps are introduced , and some errors that appeared in

the literature are corrected. It is found that the zero pi

pulse “soliton” solution of a loss].ess medium (no collisions)

I exists only for pulses with the spectrum centered at the medium

line center, and that pulses with phase reversal, like the zero-

pi pulse, but with the spectrum put of f line center, break—up.

A numerical investigation of pulse propagation in the

presence of loss is made. The analysis is carried out in two

stages. First, we look at short pulse propagation with a carrier
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frequency at, or near, the 6.]. cm 1 absorption line of H20

with P3 T2 — 183 psec. The line was chosen because it lies

in the low absorption part of the spectrum and permits propaga-

tion over the order of 100 km permitting a test of the stability

of the computer program for long distance propagation. This part

of the analysis shows that for the carrier frequency centered at

the absorption line the loss experienced by a pulse with phase
N

reversal may be reduced initially to 55% of the loss that

would be experienced by a small signal pulse of the same spectrum.

For a pulse spectrum detuned so that one of the maxima coincides

with the peak of the absorption line, the reduction is greater,

to 25% of the linear loss. As soon as an appreciable portion

of the energy is depleted, the linear limit of absorption is

• reached . Typical intensities for this nonlinear effect to happen

are 8 MW/cm2 for a pulsewidth of 100 psec.

Contrary to some statements in the literature, the zero-pi

pulse does not possess a small signal limit because it calls for

full inversion during part of its evolution. For this reason,

an optical beam of finite cross section that initially behaves

like a zero—pi pulse across its cross section is subject to

diffraction effects not unlike the 2w-pulse.

In the second stage of the numerical analysis the two H20

lines adjacent to the methyl fluoride (CH3F) laser line (496 ii)

and D2O laser line (385 ~) are investigated. The level 3

I _ _  

_ _ _ _ _ _ _ _  

_ _ _ _

-~~~~~~ 
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degeneracy is taken into account. The dipole moments are of

the same order as that of the 6.1 cm~~ line and therefore

the intensity levels are comparable. The degeneracy counteracts

somewhat the nonlinear loss reduction, but not greatly.

Linear propagation of the CH3F line and D20 line

achieves greater propagation distances (0.57 km and 1.13 km

• respectively for the lie decay) than nonlinear propagation at,

or near, the respective absorption lines.

The report contains many computer plots which aid in the

physical understanding of nonlinear propagation.

I

_ _ _ _ _ _ _ _ _ _ _  —-~~~~~~~~~~~~~~ - - --~~~~~~~~~~~~~~~ 
•
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Shor t Pulse Prop~~ ation in the Submillimeter Region

Introduction

The use of laser radar as opposed to microwave radar in

tactical weaponry has the advantage of greater resolution. Ten

micrometer CO2 laser systems are under development for radar

applications. This wavelength does not lend itself to all weatner

operation and can be countermeasured by dispersing aerosols. Sub- • -

millimeter waves would not be so susceptible to fogs and aerosols

but would still afford higher resolution than microwaves. In the

submillimeter region molecular absorption becomes a severe problem,

particularly absorption by pure rotational transitions in water.

Fig. 1 gives a sea level 1. km transmission spectrum in this

wavelength region.

It is known that intense pulses much shorter than T2 may

• 
propagate through a resonantly absorbing medium without experi-

encing loss. This phenomenon is called self—induced transparency.

A pulse with an electric field of “area”

i~J Edt~~~9 2 ~ (1)

where ~ is the dipole moment and it is Planck ’s constant , J
can propagate through a inhomogeneously broadened medium without
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attenuation. The pulse is so intense that it inverts the two

level system, initially in the ground state, and then returns it

to the ground state so that no net absorption occurs.

If one intends to utilize this phenomenon for long distance

propagation of intense pulses, one quickly finds that the natural

spreading of the beam diameter via diffraction changes the “area”

of the electric field assigned to different points in the beam

cross section from its value of 2w. When the beam spreads the

decrease in intensity causes a decrease of the field amplitude,

and hence a decrease of the “area” to less than 2w . When this

happens, an appreciable portion of the population of the two

level system is left in the upper level thus causing loss and .

a rapid absorption of the optical pulse.

Socalled zero-ir pulses (Lamb, 1974) have a phase reversal

so that 0 of Eq. (1) integrates to zero. Offhand one might

expect that zero-ir pulses would be affected less by diffraction

effects than 2w pulses. The question then arises whether the

potential for low-loss propagation of zero-w pulses may be

utilized for transmission of millimeter-wave pulses through the

atmosphere, decreasing the effect of water vapor absorption.
)

Also, computer solutions have shown that zero-pi pulses
H evaluated for nondegenerate two level systems propagate with

little loss in a level degenerate system (Lamb, 1974) .  There- 
•

fore, particuLar attention has been devoted to the study of

• ~~~~~~~
••—-

~~~~~~~ -~~ 

.
• 

~~~~~~~~~~
• 

~~~~~_• -
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propagation of the zero-pi pulse.

To date, only the zero-pi pulse with carrier frequency

tuned to the center of a symmetric line of an inhomogeneously

broadened system has been treated in the literature. Let us

brief 1~ review the principal findings and explain their importance

for the study of low loss propagation.

The zero-pi pulse changes phase by 1800 in its “life-time”.

The individual positive areas and negative areas of the electric

field as defined by the integral over time (1) are of the order

of 2w however, i.e. the E-field never becomes small in the

strict sense of the word. Contrary to popular belief (Lamb, 1974 )

a small signal analysis is never applicable because the medium ex-

periences full inversion and returns to the ground state within the

lifetime of a pulse. (Remember, this is a discussion for the colli-

sion free case. The field has a longer time to act if the amplitude

• is reduced.) Therefore, a zero—pi pulse of a given duration ceases

to be a zero—pi pulse when reduced in amplitude, i.e. it will

not leave the medium in the ground state , just like a pulse

scaled down in amplitude from a 2w pulse. Yet , the situation

is not as bad for the zero—pi pulse. Because of its phase re-

versal, part of the “damage” done in one part of the pulse is

undone during the phase reversal part, less population is left

in the upper state after passage of a “reduced zero-pi pulse”

than after the passage of a “reduced 2w pulse” One confirma-

tion of this fact are computations (Lamb, 1974) on a system with

• .~~~~~~• - -~~~~~~~~ LJI~~~~~
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a degenerate level in which the differences of dipole moment

cause different time evolutions of the individua l systems. A

degenerate system causes less loss to a zero-pi pulse  than to a

2rr pulse. For this  reason , the e f f e c t of d i f f r a c t i o n  is to be

expected to be less on the zero—p i pulse.

The present work is an analysis of propagation of the zero—p i•

pulse , with  carr ier f requency on l ine center  and o f f  l ine  cen ter,

in the presence of coll isions. It consis ts  of an a n a l y t i c  pa rt

and a computational part. The analytic part is concerned with an

application of the Inverse Scattering Method (ISM ) to the evalu-

ation of the zero—p i pulse . Previous work in  the l i t e ra tu re

(Lamb , 1973 , 1974) has not made mention of a zero—p i pulse

solution in the offresonant case (carrier frequency detuned

from the center of a symmetric line). Offhand , one wou ld expec t

that in a medium with multiple lines lower loss is achieved when

the carrier frequency of the pulse is placed between the lines.

Therefore , it was necessary to apply the analy tic theory of

zero—pi pulses to this case.

A reader of the literature on ISM , who is not a profess ional

mathematician , tends to be dazed by the seeming complexity of the

subject. This was the case with the author of this report. We

4 perceived it, therefore , t~~ be our first task to cast the termin-

ology developed in the I~~1 into language familiar to the physicist

and electrical engineer. This top ic is covered in de ta i l  in

Appendix I. Suffice it to st~~te here that we succeeded in sim—

pl ifying greatly the derivation of the zero-p i pulse.

-

~ 

•- -

- •_ __.•
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The computational part studies propagation of pulses of

zero area in the presence of collisional deexcitation . The loss

of a zero-pi pulse is compared with the loss that would be ex-

perienced by an equivalent low intensity pulse . By this we mean ,

a pulse with the same spectrum and frequency dependent loss

matching the linear transmission characteristic of the medium .

The investigation is divided into two parts. First we ignore

the orientational degeneracy and study nonlinear propagation in

a medium with loss. The parameters of the medium are picked so

as to model the water absorption line near 6.1 cm~~ where the

loss is relatively small and long distance propagation can

occur. This is one test on the stability of the computer pro-

gram . This part of, the study gave a great de~ 1 of insight into

the possibility of loss reduction by nonlinear effects. It was

found that the loss of a pulse of 100 psec duration of 8MW/cm

peak power could be reduced to about 20% of the loss experienced

by a linear medium . Of course this reduction lasts only for a

few l/e attenuation lengths after which the loss is that of

a linear medium . It was also found “empirically ” in this in-

vestigation that zero-pi like pulses tuned off-resonance tend

to break up under lossless propagation . This prompted the

analytic study to look for a general proof that detuned zero-pi

pulses do not exist which is reproduced in the appendix.

The second part of the study is concerned with a realistic

L~1 -
~~~~

••- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

• •— 
-• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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modeling of the propagation of pulses at resonance with the

absorption lines adjacent to the 495 u line of the CH3F

and the 385 ~ line of the D20 laser. Here we took the

orientational degeneracy into account finding that it changes

the propagation characteristics only very little. The penetra-

tion depths at these frequencies are discouragingly low however.

Greater propagation distances are achieved by small signal pro-

pagation of the CH3F and D20 lines proper, because they lie

relatively close to local absorption minima. 

~~~~~~~~~~ ~~~.•—
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Part I

Analytic Treatment

I. The Inverse Scattering Method

A large amount of literature has evolved in recent years

(see References) on the Inverse Scattering Method (ISM ) which

yields exact solutions to a class of nonlinear partial differ-

ential equations in two dimensions (time and one space variable).

The equations of self—induced transparency (S.I.T.) are a member

of this class, and the zero—pi pulse is a solution of these

equations that has - been derived by means of the method (Lamb, 1974).

j It seemed appropriate, therefore, to devote some effort to

the exploration of the method. It became soon apparent that the

research on the I.S.M. had been conducted exclusively by mathe-

maticians and had not been assimilated by physicists and engineers,

like circuit theory had been adapted in the thirties after its

original development by mathematicians. For this reason we set

out to develop an understanding of the I.S.M. Appendix I is the

outcome of this study. Here we suitunarize the principal issues.

The flow chart of Fig. 2 will help the reader in following the

• development.

—

- 
—-— -
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The I.S.M. associates with the original nonlinear differen—

tial equation a linear (quantum mechanical) scattering problem,

the solution of which provides the general solution of the non-

linear differential equation. This association is done ad hoc,

no general methods exist to find the linear scattering problem.

In the S.I.T. problem Lamb (1973) found the linear scattering

equations, the socalled Zakharov Shabat equations, after a series

of ingenious transformations of the Bloch equations. Because

S.I.T. is a quantum mechanical problem (so far as the medium

description is concerned) one would expect that the linear

scattering problem is naturally imbedded in the inverse scat-

tering method applied to S.I.T., in other words, is part of the

defining equations. This has not been generally recognized and

only McLaughlin and Corones (1974) have made the connection, but

not explicitly. We showed that the linear scattering equations

of S.I.T. are the equations of the two—level system before they

have been cast into the Bloch equation form.

Next we study the solutions of the Zakharov-Shabat equations.

Here we establish the analogy of these equations with those of

the parametric oscillator—— a well known problem in Optical

Electronics (Yariv). This ana]ogy is helpful in locating the

poles in the complex plane of the eigenfunctions of the Zakharov-

Shabat equations that give the “soliton” solutions of S.I.T.

These poles must be invariants of the S.I.T. equations if the

inverse scattering method is to be applicable. We give a proof

_ _ _ _ _ _ _ _ _ _ _ _
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of the invariance following a method of Ablowits et al. (l974a).

The invariance leads to a set of equat ions that are shown to be

identical with Hu bert Transforms of the Bloch Equations. The

invariance may be utilized to obtain the spatial evolution of

the pulse determined at one value of the spatial coordinate;

the entire spatial dependence is contained in the residues of

the poles, the location of the poles is invariant. Because the

residues may be shown to be independent of the time variable T

evaluation may occur in the limit t -. -
~~~ which leads to great

simplification.

In this manner we obtain the 2w—pulse and zero-pi pulse.

We can also show that no soliton solution with zero area exists

off resonance (carrier not centered with absorption line). In

this connection one should emphasize the shape of the spectrum

of a zero-pi pulse (or a zero degree, the terminology used by

Grieneisen et al., 1972, 1973, who considered small signal pro-

H perties of pulses with phase reversal). The spectrum of a zero-

pi pulse has a zero at the carrier frequency. This accounts for

the low loss observed with zero-degree pulses (Grieneisen et al.,

1972) when propagating through a medium whose absorption line

was centered with the carrier frequency.
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II. The Zero-Pi Pulse

The zero-pi pulse with a carrier frequency centered with

the symmetr ic line of a two level system distribution has been

derived by Lamb ( 1974) from the Inverse Scattering Method . It

is rederived in the appendix and has the following form in the

notation of the appendix :

cosh 28(r — r0)cos 2ci ( ’r — Ti) — 
~~~
. sinh 2 8 C r  — r0)sin 2ct(t 

— r1)
a

cosh2 28(r — ‘r ) + L. sin2 2 a(t  — t )
0 2 1

a

(2.1)

a and B are adjustable constants. ~
‘ is the normalized E

field

2
~12 .

~~- (2 . 2 )
iMQ

where is the dipole moment , 4~ is Planck ’s constant , and

2w&~ p12- 
_________  (2.3)

2t c

II - -  - -  
— 

• ----- --— . -- -~~~~~--



14

,
• 

) L
where

w - carrier frequency

N - particle density

- Planck’s conStant

C - dielectric constant of (nonresonant part of) medium

Further, r is the normalized space-time variable which refers

to a frame translated along the x—axis at the speed of light

— . (2.4)

The normalized spatial variable is

z = ~2x/c (2.5)

in terms of which one may write

= ~~~
. ~ 

B (2.6)
4 (~~— a )

2 + B 2

= ~:. z < 
— a - ( 2 . 7 )1 (~~~— a ) 2 + 8 2

Ph1’ ~~(1 I fl t I’d hr.,c’ke t- ~ I nil i ‘.~~ t-o an avor~ige (WI ’ r ~ 1 1 two I ~v~’ 1 sy st ~~~~~~~~

-~~~~~~~~~~ 

- 
---- - 

~~~~~~~
- ~- - -~~~~~~~ • - ~~•
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of different transition frequency (inhomogeneous broadening).

In the limit of no inhomogeneous broadening , ~ can be set

equal to zero in the above equations and the pointed brackets

can be omitted. This is the limit of particular interest,

because the lines of water vapor in the centimeter and milli-

meter region in the atmosphere are homogeneously broadened.

In this limit one finds that the zero—pi pulse consists

of an envelope traveling at less than the speed of light, and

a substructure with a phase velocity greater than the speed of

light. The inverse speeds are disposed symmetrically around

1/c.

Some features of the zero-pi pulse are apparent from (2.1)

• and also follow from its derivation via the Inverse Scattering

Method. The zero-pi pulse may be considered to be constructed

by a limit of two 2ir-pulses that propagate at the same speed,

are in antiphase and are made to overlap. This, of course, is

a construction in the “indirect space” of the linear scattering

prok~lem . riot in the “direct” space of the nonlinear differential

equation , in which superposition does not hold. An indication

of this “superposition” is the fact that the sech2 of the

two-pi pulse has the same scale parameter B, which also

appears in the amplitude of the pulse in front of expression

(2.1). This means that the individual “areas” of the zero-pi

pulse ~re of the order of 2w and not small. Therefore, the
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zero-pi pulse shares with the 2w pulse the property that ,

strictly, a small signal limit does not exist. In both cases,

appreciable inversion occurs during the time evolution of the

pulse. Therefore, the zero—pi pulse is susceptible to diffrac-

tion effects just like the 2w pulse. In other words, spreading

via diffraction that changes the field intensity while not

changing the time evolution will change the positive and nega-

tive portions of the pulse in different parts of the beam and

make it become different from the ideal zero-pi pulse. It is

important therefore to study propagation of intense pulses

other than zero—pi pulses by computer in order to ascertain the

potential of intense pulse propagation through the atmosphere.

In the appendix, an investigation is made of the existence

of zero-pi pulses with a carrier detuned from line center. The

requirement that the contributions of the two poles propagate

at the same speed imposes a constraint which is shown to be

equivalent to constraining the spectrum to be centered with the

material line.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
~-- - •

~~~~~
—• —.

~~~~~~~
— - -

~~~~
- - - -
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Part II

Computation

III. The Start ng Equations for Computation

For the computation of pulse propagation with loss, it

is necessary to use the Bloch equations, or density matrix

equations. The loss is introduced phenomenologically in terms

of the “longitudinal” and “ transverse” relaxation times

and T2 . In the slowly varying envelope approximation of an

electric field , E (x , t) exp — i(wt — kx), these are (Kryukov ,

Letokhov , 1973) (compare (1. 10), (1. 15) and (1. 16) of the ap-

pendix)

+ E(x, t) = i2w ~ P(x, t) (3.1)
- • ~x c~~~t c

+ — i~ w P(x, t) = N(x, t) E(x, t) (3.2)
~t T2

.1 N(x, t)  + 
N (x, t) - N0 

= ~ [E*
(x~ t) P (x ,  t) ; E(x, t) P*(x, t )j

1

(3.3)

with 

- - .
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where is the resonance frequency of the two-level system.

We use here cgs units. N(X, t) is the difference of the

population densities in the lower and upper levels,. N(x, t )
— of the appendix; P(x, t) is the polarization

density, 
~ ~= of the appendix) is the matrix element,

T2 is the dephasing time, T1 is the energy changing collision

time ; N0 is the equilibrium population density difference.

In the case of more than one line we have

+ ~ —
~~-. E(x, t) = E i2ir ~~~

. P. (x, t) (3.5)
ax c a t  j  c~~~

a 1 
_ _ _ _ _L — +  — i~ wj  P . (x , t) = — ~ N~(x, t) E(x , tY (3 .6)at T2~ 3

N.(x, t) — N0. . rE*(x , t) P.(x, t) — E(x, t) P.*(x , tfl—N•(x, t)+ -

~~ 
•-3 =~~- L - — i -at 3 Ph 2

H 
(3 7)

In the case of one single line , we normalize as follows:

t in units of to
x in units of Ct

0

E in units of

p in units of P0

____________  _ _
_ _ _ _ _ _ _ _ _ _  ~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _  -
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N in units of N0

where

to is arbitrary

E =~~ L-
o 

~4t0

With this normalizat ion , ( 3 . l ) — ( 3 .3 )  become

+ E(x, t) = - aP (x , t) (3.8)

+ — i~ w P ( x , t) — N(x , t) E (x , t) (3 .9 )
3t T2

N(x , t)  + N(x, t) — 2. E* (x, t) P (x ,  t) + E(x, t) P*(x, t)
at 2

(3.10)

where

• I T I
— 

• .H~~ 
- 

~~~~~~ ~~~~~~~~~~~~~~~~~~ 



rr’- ~~~~~~~

— 

~~

- - - 
~

-•-- - - - ~
-‘
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)
2itw

- . (3.11)
1~

In the case of many lines, the normalization is slightly different.

If we define

= Iii~I (3.13)

and express in units of 
~c ’ 

then we recover the following

normalized equations

A~ + .L E(x, t) = — E a. P.(x, t) (3.14)
ax at 3 3

+ - iAw~
] 

P~~(x 1 t) = - ~~~~~~ t)  E ( x, t) (3.15)

2 j

N.(x, t) — 1 rE*(x , t)  P . (x , t) + E(x, t) P.*(x, t)
—N .(x, t) + — - = 3
at ] T1~ 2

(3.16)

where

2wwt 2 j~ ~i .  N •

a.  = ° ° ~~~~~~~~~~~~~~~ (3.17)
3

and

-~~~~~~ 

, .  

i=~~~~~~~_~~ _ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.— 
-

~~ ~--•
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E(x , t) in units of E0 = ____

P.(x, t) in units of P0 =

t) in units of N0~.

Numerical values are

IEO I = 

~:~
= 6.5821 X 10 8(t0p0) 

1 VOl_tB (3.18)

27Twt0
2N0IU 12 4 t0

2 N0 I U 0 I 2
a = —o 

= 2.59 x 10 - (3.19)
A

• 
= 1. ~~ x = 2.65 x 1o~~ E0

2 Watts/cm 2 (3 . 2 0 )
4w J

where

is in eR (leA = 4 .80  Debye)

is in sec

N0 is in cm 3

A is in cm

E0 is in Volts/cm.

~~~~ -~~~~ .-• • 
~~• - -~~~ ~~~~~~~~~~~~~~
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IV. Differenci~g the S.I.T. Equations

In this section we develop the differencing scheme that

has been used in the computer program to evaluate the pulse

propagation. The S.I.T. equations in normalized units are g iven

by (3 .14) through (3.16). If the polarization is now split into

real and imaginary parts,

t) = PR i(x , t) + iP1~ (x~ t). (4.1)

then (3.15) and (3.16), se-para ted into real and imaginary par ts,

can be written in matrix form

N~ - 

~~~~ ~~E1 N~

= —n.E - —
~~~~~~ 

p . + 0 (4.2)
at J R  T .  Rj

2j

• P1~ —M~E1 
— —

~~
—_ 0

2 j

If we define

H
= p~~. ( 4 . 3 )

P .  ~~~~~~• 
‘Sri

I j  • 
-

L~ -
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1
—

lj

A. = 
~ u .E R 

- (4.4)
3 T2~

-)i.E
3 1  Tlj

= 0 (4.5)

0

Then

= . + (4.6)
at

- • where the j subscripts are omitted.

The strategy is to solve the polarization and population

equations at a given point in space for all time , and then in-

crement the space point and again solve for the populations in

time. The time difference equations are

1

Yo 0 H
0 H

• Y1 { _ A 1J {Yo
+_ A

0 .Y o
+ /~$)

_ _ _ _ _ _ _ _ _ _ _  
- -  -



-

24

~~~+ i
= {

~~
_ ?x

~~+1) ~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 2A • ~~
) + 2~tS} (n > 1)

where 
~ 

and A denote the values at the n-th time step.

The electric field is solved for in the moving frame . If

we define

T E t — x  and z = x  (4.8)

as the new variables, then (compare Section 1 of Appendix) the

derivative a/ a t  becomes a,’at and the “convective ” derivative

of E becomes a/ az at constant r.

t) = E a .  P . (z , t). (4.9)3z j  ~

This equation can be solved numerically using a predictor—

corrector scheme, where -the predictor is

-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ (4.10)j 3

• and the corrector is

+ 1 
= 

- 1 + C E  a . ( ~~ 
- 1 

+ 2~~.
i 

+ ~~1 + 
(4.11)

_ _ _ _ _ _ _ _ _ _  • 

2 j ~ ~~ 1 

- •



The algorithm works as follows: first the field is

predicted according to

E~ ~ = E~ + ~ 
+ ~~~~ ct .(P.)’ + (4.12)

The polarization and population is then computed by

—i + i 
= 

= 
— 

t~t =i + l)~~ f —i  + 1 L~t ~=i + 1 —i + 1
~‘n + 1  ~ 2 

A + 1j  ~~n — l ~~ 2 ~~~~~~~ ~~~n — i

+ 2 + 1 
• ~~~~~. + + 211t50). (4.13)

This is done for all the transitions yielding values for the

polarization. With the new polarization values, the field can

be updated according to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (Pj)~~~~~JJ .

(4.14)

I -

From the corrected value of the field, the populations and

polarizations are recomputed.

5 . T . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - —
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The code was originally intended to use a qu adrature of the
form

Yn + l ~~~~~n + ? (Xn l  Yn _ l + 4 A n ~~ ‘n + A n + i

However , this scheme when appl ied to the fie ld and populations
was found to be unstable.

V. Absorption Coefficients

In this section we give the definition of the absorption
coefficient and relations which will be relevant in the next
sections. The normalized wave equation is (3.14)

+ 1. E(x, t) = — E a P.(x, t). (3.14)ax at j J )

The normalized absorption nonlinear coefficient K ~~S the loss
of energy per unit normalized length

- -

~~

- J I E f 2 dt E a. J (E*P + Ep *)dt
K = 

3x —
~~~ 

— -
~~ 

— 
. (5.1)J I E~2dt J JE~

2dt



27

One can define a linear absorption coefficient by solving for

the linear polarization assuming that the normalized population

keeps its small signal value, and then computing K according

to (5.1). The ratio of the nonlinear absorption coefficient

to the linear absorption coefficient is a measure of the non-

linearity of the medium response. In order to get from normalized

to absolute absorption coefficients, one divides by (ct0).

VI. Fourier Transform

The Fourier transform of a function f(t) is

= J_ : e~~Wt f(t) dt (6.1)

and the inverse transform is - •

f ( t) = ~~~— f e~~
t 
~ (w) dw. (6.2)

We give results for the transform of the field in the following

sections.

-
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VII. Results — One Line, Resonant Case

We shall attack the numerical solution in stages. We study

first 2w pulse propagation with no loss and check the computer

solution against the analytic solution. In this part of the

problem, the choice of numerical values for the parameters is

not crucial. Indeed, the matrix element p and the number

density N0 jointly establish distance and time scales. A

change in the values of p and N0 is accomodated fully by a

change of the numerical values of distance and time on a com-

puter printout made for a particular initial choice of p and

• N .
0

When collisions are introduced , they introduce a rate

constant that must be normalized. A change of p and/or N0
calls for a change of normalized rate constant, a new independent

parameter has been introduced.

The same statements hold for the lossless 0-it pulse and

0-it pulse propagation in the presence of collisions (loss).

Hence one must be careful to use appropriate numerical values

for the physical problem to be solved. All this is rather ob-

vious, but there is additional complication. H20 is an asym-

metric rotor molecule and all levels of interest are orienta-

tionally degenerate; i.e. for a given angular momentum 3,

there ar~ 2J + 1 possible M eigenvalues (“ projection of
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angular momentum” into the spatial axis around which the angular

momentum has been quantized). Each value of M gives a dif-

ferent dipole moment. Thuø, a given pair of energy levels

interacting nonhinear]~y with an electric field must be treated

as 2J + 2. level pairs where J is the quantum number of the

lower level. Each level interacts with the E-field with its

own value of p and thu. ideal 2w-pulses or 0-it pulses do

not exist.

In order to break down the problem into stages of increasing

dif ficulty,  we consider first the case of no 14—degeneracy. We

shall first pick values for the 3.~ne strengths and widths from

the computer print-out of S. A. d ough based ~n work by L. S

Rothman and R. A. McClathey (Appl4ed Optics, 15, 2616, 1976)

in the low absorption regime around 6 cm~~ to test how the

program would handle long distance propagation. These compu-

tations will be useful in isolating the problems inherent in

2-it and 0-it pulse propagation in the presence of loss and

also ascertain the capability of the program to handle long

distance propagation. Then we shall pick the more realistic

cases of nonlinear propagation near the two submillimeter lasers,

methyl fluoride at 496 p and D20 at 385 p, using H20

line parameters for the two absorption lines nearest the per-

tinent laser line. Here, the full M—degeneracy of the lines

will be taken into account.

- -
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Table 7.]. gives the line parameters used for the 6.1 cm~~
propagation.

Table 7.1 Data for 6.1 cm 3
~ line of H20.

frequency w = 1.2 X io12 sec~~

relaxation times T1 = T2 = 0.094 cm~~ or 185 psec

matrix element p = 0 .2204 debye = 4.58 x io 2 eR

energy of lower level 131.2 cm~~

-

• 

quantum numbers 3, K 1, K~1

lover level 3 1 3

upper level 2 2 0

linear absorption 1.135 x io 6 cm~~

number density in lower level 2.77 x 1011

a = 9.18 x

E0 
= 1.44 ~ 1O

4 V/cm

P = 5.50 x 
~~ watts/cm2

• --
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Run 1: Lossless 2w pulse propagation.

In the first run we consider propagation of a 2w pulse

on resonance, comparing the analytical results with the numerical

results as a check on the computer program. In this problem we

take the following parameter values:

to = 100 psec A 1 
= 6.1 cm~~

N = 2 .77 x 1011 cm 3 
= 0 (7.1)

4.58 x io 2 e~ T1 = T2 = 10~~ sec

h. and for time and space steps we have

xmjn = 0 tmin = —1 nsec

x = 3 x ] .O7cm t l nsecmax max (7 2)
t~x 3 x 1 0  cm ~t 6 . 67 psec

nx = 100 steps nt = 300 steps

The input field is 2 sech t in normalized units. The time

axis was shifted on each space step such that the average

E t~((Re E)~ + (Im
<t> — 

i_ (7 3)
E ( (Re E)~ + (Im E)~~)~~ti 

— 

1 

- - 

-•
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was kept between the centermost two t ime bins. The column

marked Rl in Table 7.2 gives the distance in cm at which

the remaining quantities defined below are evaluated.

AREAR = E (Re E)
~ 

t~t (7.4)
I

ENERGY = E (E*E) ~ ~t (7.3)
1

VELOCITYC = 1 - (a<t>/ax)~~ (7.6)

Z a .  ~ (E*Pj + EP.*)~ ~t
KAPPA1 = 

3 
( 7 . 9 )

E (E*E)~ t~t

• The summation over j  in KAPPA1 is over the different transi-

tions, in this case there is only one cOnsidered. AREAR is the

trapezoidal rule integration for the real area of the electric

field and should be equal to 2w for the entire problem. The

error is seen to be of order 0.1% or less. The pulse ener gy

rises slowly, with an error of 0.28%. The pulse velocity is
6the speed of light to wlthln about one part in 10 , the corn-

puted value of VELOCITYC is accurate to about 0.7%, rendering
the absolute velocity accurate to 7 parts in iø9. The ab-

sorption coefficient analytically is exactly zero, the error is

such that the growth in energy is of the order of one part in

A-
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Table 7 .2
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Run 1. The 2w—pulse , error check.
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io6 over 3 x cm propagation.

Basically, the numerical errors introduced are of order

• l0~~ to ~~~~~ which are acceptably small for the calculation.

That is to say, the numerical accuracy is of order 99.0% to

99 . 9% .

- I -

~~~~~~~~~~~~ 
—-----

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___
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Run 2~ Lossless Ow Pulse Propagation

In this run we use the same parameters as given in (6.1)

and (6.2), however , the input field is now

t
cos(t/tf) COSh ( t/t

e
) - —f. sin ( t/t~~) sinh (t/t )

t
E(0, t)=~~!~ 

e
te cosh 2 -~. — +  (t

f
/ t ) 2 sin 2 t/t f sinh 2 (t/t )

(7.8) -•

in normalized units. Vaiues of te and t f are

te = ~~~~~ sec

(7.9)

tf = l0~~~ sec.

In Tabl e 7 .3 we give the same values of the parameters as listed

in Table 7. 2 , now for the case of 0-it pulse. The pulse energy
• is within 0 . 2 %  of its analytical value. The velocity is correct

to within 1% in terms of its deviation from c, and the absorp-

tjon coefficient is of order ± 5 ± i0~~~ cm~~ which is close to

the analytical result 0.

• — -— •—- 
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Table 7.3 .  Run 2 , Zero-it Pulse Error Check
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In Figures 3a—d we show , as a function of time , the pulse

f ie ld , polarization, population and power for the O w  pulse

considered. The frame .s 2 nsec wide in time and shifts from

one space po int to the next to keep the pulse center in the
.7

center of the frame . The points in space cover up to 2.67 x 10’

cm (267 kilometers) propagation. Of note is that the pulse

experiences a bit more than one period in its cycle by the end

of the distance propagated. In Fig. 3e we show the magnitude

squared of the Fourier transform of the normalized electric field.

The frequency is measured in cm~~. One observes that the trans-

form is periodic in space, “breathing” as it were while propagating.

In 4a-d we show “three dimensional” displays of the nor-

malized field , polarization , population and power for lossless

10 psec Ow propagation 1 in time (T) and space (R) .

- - ~~~~~~~~~
. - -

~~~ __________- -—— •- — - -  •
~~~~~~~k _ _ _
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Run 3: Lossy Ow pulse propagation .

In this run we use the following parameters for the case

of lossy propagation of a Ow pulse:

—l —1t0 = 100 psec X = 6.1 cm

N0 = 2 .77  x loll cnC~
3 Aw = 0 (7 .10)

= 4 .58 x io 2 e~ T1 = T2 = 185 psec

te = tf = 100 psec

and for time and space steps we use the values in (7.2).

The pr imary results are shown in Figs. Sa—d . Note that

the computer graphics omitted the very first values of the

function plotted. The pulse area is initially close to zero

and increases to slightly more than unity by 5 x 106 cm pro-

pagation . This is due to the absorption of the second lobe

of the electric field which has negative phase. As the pulse

continues through its cycle the area decreases and becomes

negative by 1.5 x 1o~ cm. The pulse energy is initially at

the 0—it value of 16 in normalized units, and decreases to

about 5% of that value by the end of the run. In Fig. 5c

the linear (upper curve) and nonlinear (lower curve) absorption

coefficients are shown. The linear absorption coefficient is

determined by solving first

- - - -~~~cL~~~~~ 
— •— --.r1~~ 

--- - .. - - . - -~~- -~ :. --
~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~

----
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—p- + — itiw . P.(x, t) = — u,. E(x, t) (7.11)
~t T2~

for the polarization (this is the linear limit of the equation

in (2.4)) and then computing the absorption coefficient through

(4.2) and dividing by (Ct 0) to get the result in absolute

units. Basically the nonlinear absorption coefficient is ini-

tially about 0.6 the value of the linear equivalent, and the

ratio increases towards unity as the pulse energy decreases.

The medium response becomes increasingly linear as the pulse

is attenuated. The ratio of the absorption coefficients is

- 

• 
shown in Fig. 5d.

• In Figs. 6a—d we show plots versus time, at different

spatial positions, of the field, population, power and the
• magnitude squared of the Fourier transform. The electric field

- - I is seen to decay, although it manages to cycle through more than

a period as in the nonlinear case. In 6b the populations are

shown , demonstrating that as the pulse propagates, the satura-

• tion decreases markedly. The pulse power is attenuated as

- ,  shown in 6c , and in 6d one can get a glimpse of what the at—

tenuation means in transform space , namely that the medium is

- 

chewing out the center of the spectrum. 

-~~ -• 

— 

- -~~~~~~~~~ •~~~~~~~~-•~~~~~~~
.
• ~~~~~~~~~~~~~~~ 

—
~~~
- -

~~~~~ 
-

~~~~~
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)

Run 4 :  Lossy short Ow-pulse propagation .

We now consider propagation of a much shorter Ow pulse

in the resonant absorption case. We assume the following para-

metric values

to = 10 psec = 6.]. cm~~
N0 = 2 .77 x loll cm 3 Aw = 0 (7 .12)

= 4.58 x l0 2 e~ T1 = T2 — 185 psec

te = t f = l O psec

and for time and space steps we use

Xmi 0 tmin -130 psec

Xmax = ~ x lO~ cm tm 130 psecax (7.13)
Ax = 3 x lOu cm At = 0.52 psec

nx = 100 steps nt = 500 steps.

In Figs. 7a—d the primary results are summarized . Fig. 7a

shows the pulse area which makes excursions between 0.04 and

-0.05. Since the pulse is shorter now than in the previous

runs, the loss plays a smaller role and the pulse area stays

much closer to zero. The pulse energy is shown in Fig. 7b, ii-

lustrating near- linear decay from 16 to about 9 in normalized

units during 3 x 108 cm propagation. The linear (upper curve)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and nonlinear (lower curve) absorption coefficients are shown

in 7c, illustrating a “ ringing” in the linear absorption

coefficient. This result is due to the fact that the Fourier

spectrum “breathes” as it propagates, and the different parts

of the cycle see different absorption coefficients. The ratio

of the nonlinear to the linear absorption coefficient is shown

in 7d. In Fig. 8a-d we give the field, population, power and

square of the transform for the run, as function of time, at

different spatial positions.

L

~

-

~

_

~

-- -
~~~~~~~

- 

-
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Run 5: Lossy long 0w-pulse propagation.

In this run we example lossy long pulse propagation , using
• the following parameters

to = 1 nsec = 6.1 cm 1

N0 2.77 x 1011 cm 3 Aw 0 (7.14)

U 4.58 x 1O 2 e~ T1 = T 2 = l85 psec

te = t f =lnsec

and for time and space steps we use

X .  = 0 t i  = —13 nsec

X = 3 x 10: cm tmax = 13 nsec 
(7.15)Ax = 3 x 10 cm At = 52 psec

nx = 100 steps nt = 500 steps.

- •

~ The results are shown in Fig. 9a-d in which plots of the pulse
• area, energy, absorption coefficients and ratio of absorption

coefficients are found.

I,

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - —- -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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VIII.  Results: One Line, Of f Resonant Case

Run 1: Lossless 2w pulse propagation.

In the first  run we consider propagation of a 2it pulse

off resonance, comparing analytical results with the numerical

results. In this problem we take the following parameter values

t0 = 100 psec = 6.1 cm~~
N0 = 2.77 x ~~~~ cm

3 Aw = —0.05 cm~~ (8.1)

~~= 4.58 x 1O 2 e~ T1 = T 2 = l O 50 sec

and for t ime and space steps

X~~ = 0 t .  = -1. nsec

Xm x  = 3 x lO~ cm ~~~~ = 1 nsec

Ax = 3 x 10 cm At 6 .67 psec

nx = 100 steps nt = 300 steps.

The input field was 2sech t in normalized units. The results
are given in Table 8.1. The real pulse area oscillates sinu-

soidally, the pulse energy is within 0.3% of the analytic

value. The pulse velocity is probably accurate to within 1%

in the difference between it and c. The absorption coefficient

- 
- - 

• - - - -
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is less than ~~~~~ cm~~ . The accuracy of the calculation is

sufficient for the purposes of the analysis.

Off-Resonant Propagation of “ Zero—pi Pulse”

As explained in the appendix , there is no zero-pi pulse

like solution for propagation in a collision free medium , i.e. a

pulse with its spectrum not centered at the material line.

Computer runs made with a zero-pi pulse with a spectrum corn—

• puted at resonance and then simply shifted off resonance show

break—up of the pulse into two separate pulses.

When loss is introduced, the pulse does not necessarily

break before linear propagation is reached due to the loss.

In this set of runs we consider the case of lossy propagation

at several values of the detuning Aw. In lOa-d we show the

Fourier transform magnitude squared of the normalized field in

space (cm) and frequency (cm~~), at Aw 0, .05 cm~~,

.10 cm~~ and .20 cm~~. Basically, when the pulse is chirped,

one of the lobes (this one which has more overlap with the lossy

line) is eaten away faster than the other.

In Fig. lla-d are shown the normalized field, polarization,

population and absolute power for a chirped Ow pulse defined

to Aw = 0.05 cm~~. Of note is that the pulse does not break

up-- a result which follows simply from the fact that breaking

up is a nonlinear effect, and the pulse does not remain nonlinear
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long enough to break up (te = tf = 100 psec) .  In Fig. 12a-d

are presented the normalized electric field versus T and R

at Aw = 0 , .10 cm~~~, .20 cm~~~, 0.60 cm~~~. One can see that

the nonlinear gyrations of the field are slower in the case of

deturted propagation ; when the line is detuned , the effect of

the line on the pulse becomes less .

In 13a—c are displayed the normalized real polarizations

(Imaginary polarizations are not shown). The effect of the

field on the medium is less off resonance. In Fig. 14 are shown

the populations (normalized) at Aw = 0, 0.1 and 0.2 cm 1.

The saturation is much less off resonance, and the “rippling ”

which is a nonlinear effec t is virtually absent of f resonance.

Fig. 15 shows the pulse power at Aw = 0 , .10 cm~~ and

20 cm~~. One observes simply that the rippling is less at

- resonance. The message is that as one gets further off-

resonance, the 0—it—like nonlinear effect (i.e. rippling) is

weaker. The difference between the linear absorption and non—

linear absorption is primarily a saturation effect rather than

due to any other special Oit property.

Figs. 16, 17 and 18 give plots versus distance respectively

at Aw = 0 , 0.05, and 0.10, for te = tf = 100 psec.

(a) pulse area (real and imaginary)

(b) normalized pulse energy

Cc) the deviation of the pulse velocity u from the

speed of light in terms of 1 - u/c

t ~~~ ~~~~~

- • 

~~T .  - -— 
-
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(d) the loss coefficients for linear and nonlinear absorption
(e) the ratio of nonlinear to linear loss.
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IX. H 20 Lines Adjacent to CH 3F and D20 Laser Lines

The Methyl Fluoride (CH3F) laser at 496 p and the

D20 laser at 385 p are two available submillimeter sources

whose radiations fall between main absorption lines of 1120.

For this reason we study speci f ically the two radiations and

represent the water vapor absorption by the nearest adjacent

lines.

Water is an “asymmetric-top ” molecule (Townes—Schawlow ,

1955). The energy levels of such a molecule are described in

terms of three numbers , J, K 1 and K1 respectively . J

is the total angular momentum and is a “good” quantum number.

and K1 are not “good” quantum numbers in that they do

not represent the angular momentum around one of the three

principal axes of the molecule. In general, there is no level

degeneracy for a particular set of values of J, K_1, K1.

There is, however, an orientational degeneracy.

We obtained line strengths from the computer printouts of

S. A. d ough. These line strengths contain information on the

dipole moment < I~~I 2 > averaged over all orientations of the

molecules. One may start with the two level system equations,

(1.15) and (1.16) of the Appendix , in the small signal l imit

in which — can be treated as constant. Then, one

— ~~~~~~~ ~~~~~~ 
- 

~~~
. . _________ - - - - -
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solves for p 12 on line center and puts the result into (1.10)

of the Appendix. The spatial rate of change of E may be

equated to the amplitude decay coefficient (a in the notation

of Marcuse , fl70 , p. 286 , not to be confused with the a used

here earlier). One finds, in agreement with Marcuse,

- • 
w ) p 1 2 T

2a = N(p22 
— p11). (9.1)

2ech

An orientational degeneracy forces one to take averages over

all M so that the average a, <a> , contains the average of

1~
I 2 , <1 u 1 2 >

The line strengths s, as used by d ough , are the <a>

integrated over the line width function

g ( v )  = 1 ( 9 . 2 )
2

1 +

where 2wAv = 1/T2, and expressed in inverse centimeters.

The conversion factor is

1 sec~~ 3 •34  x 
~~~~~ cm~~ . (9.3)

Combining all this one finds

_ _  
- 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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_ _ _ _ _  1/2
E / < 1 p 1 2 > = 

SA debye (9.4)
N b 7.85 x
NH O  - 

- 

I

with NabS/NH O  p
22 

- p11 defining the ratio of the popula-

tion density difference participating in the transition to the

total population density of water molecules.

Further ,

N b /N H Q  = 
g(2J + 1) exp _ {~~~~~~}[~ - exp - 

hv
~~

-hv]
~~ 

. (9.5)

Any molecule of angular momentum J can have 2J + 1 orien-

tations with respect to a fixed spatial axis (say the applied

electric field direction). These orientations are described

by the “ good” quantum n umber M where Z is the partition

function . For 1120 at T = 296°K, Z 174.83 (S. A. d ough ,

private communication).

The constant g is the statistical weight of the lower

level (Townes-Schawlow , Table 4-7)

g = 1 for symmetric level

g = 3 for antisymmetric level. 

~~~~~~~~~~~~~~~
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The symmetry or antisymmetry is determined from K 1 and K1,

depending upon whether K_1 + K1 is even or odd. Further,

hv0 = hVu 
- huL, where hv

~ 
is the energy of the upper level,

hv 2, that of the lower level. Now, <
~
p
~~

> gives the average

matrix element for absorption of a field, with fixed orientation

with respect to a spatial axis , say the z -axis. The z-component

of p has two different dependences upon M , one for a transi-

tion , ~ —‘- — J + 1, the other for J -~~ J’ = 3. In the

Fourier case (Townes-Schawlow , 1—7 3)

k~
12 ~r 4 ].) 2 M2; 3’ = 3 + 1 ( 9 . 6 )

- 

• In the latter case ,

~~I2 3’ = 3. (9.7)

We find by simple recursion

J 1E M 2 = — 3(23 + 1) (J + 1) . ( 9 . 8 )

The initial population difference for nonlinear interaction

wit-h arty one of the transitions of given M is

NH O  ~~
23+ 1) exp - 

[
~~ .&

} [l 
- exp - [hvu

_ h v
t} !~

_ _  

- 

- 
• 

- --~~~~~~~~~~--. ----- - - -j - ”•--
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)

where

= 1 for AJ = 0

= 
23 + l for AJ = 1.
23 + 3

The reason for this is that , in the absence of collisions,

a transition 3 -
~ 3 + 1, M ÷ M , reaches only the M ’ = M

states, and not the f inal  ones M ’ = ± (23 + 3) .  These states

are unaffected by the radiation and get filled only after M-

changing collisions have ocóurred . Such collisions cannot be

dipole-dipole collisions, and thus they occur at a much lower

rate than l/T2. We- shall ignore these collisions and hence

ignore the M’ = ± (2J + 3) states of the upper level in our

propagation studies.

The parameters used in the computations are summarized in

Tables 9.1 and 9 .2 ;  We studied resonant excitation of the four

lines at 18.577 , 20.704, 25.080 and 30.560 cm~~ , that

- - lie near the CH3F and D20 laser lines. The new feature

is that these lines are degenerate and therefore the different

M-levels are excited differently. There is no zero-pi pulse

solution in the loss—free case , strictly speaking. We picked

-

• 

a pulse that would be a zero—pi pulse- in a nondegenerate system
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Table 9.1

Summary of H20 Data on 4 Lines

E

Line (JK_1K1)iower (JK_iKi)upper g F
~ ______ 

(1 — e 
~~~~~) 

NabB 
—

cin 1 cur’ cm 1 x io~
5 x io 2 1014

18.577 110 101 3 23.794 42.371 9.04 8.62 7.79 H

20.704 532 441 3 488.1 508.1 3.48 9.56 3.33

25.080 211 202 1 70.091 95.171 4.01 11.5 4.61

30.560 422 331 1 285.219 315.779 2.54 13.8 3.51

Population density ’-of lover level: 
-

+ 1) e_E/kT 
-

- I - 
; Z— 174.83

z

- - Population difference:

-AE/kT
-
~ 

N b NL(l — e ) - -

Line 
N b /NH0 p S(N b )

cm~~ per molecule x cm x l0~ debye x io
_2 

per molecule x cm x

18.577 5.00 ~ io_20 3.95 2.95 1.27

20.704 5.65 ~ io— 22 1.69 0.454 0.0334

25.080 3.47 x 10 2° 2.34 2.74 1.48

30.560 1.43 x io_2 1 1.78 0.579 0.0803

The relaxation time:

3.34 x —l

L 

T2(sec) Av in cm . 
-

2Av



-
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Table 9.2

Summary of Input Data for Individual Levels

Case 1: 3 = 1, 3’ = 1.

Line p Nabs 
X density

cm~~ debye x ~~~ cm 3 x io14 sec x io~~
2

18.577 2.95 7 .79 155

= 1 4 . 4 3  5.19

Case 2: J = 5, 3’ = 4

Line p Nabs 
X density

cm~~ debye x io 2 cn(3 )~ 1013 sec x io l2

20.704 4.54 33.3 230

Ml  = 3 3.96 7.40

IM I  = 2 5.20 7.40

I M I  = 1 5.94 7 .40

I M I  = 0 6.19 3.70

-l
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Table 9 .2 (continued )

Case 3: J = 2, J’ = 2. 
-

Line p Nabs 
X density 

— 
T2 

—

cm~~ debye x ~~~ cm 3 x iol4 sec x io~~
2

25.080 2.74 4.61 164

J M J  2 5.48 1.84

IM I = 1 1.37 1.84

Case 4: 3 = 4 , J’ = 3.

Line p N5 density 
— 

T2
cm~~ debye x l0~~ cm 3 x 1014 sec x io 12

- - 
30.560 5.79 3.51 199

IM I = 2 5.79 1.00

IM I = 1 7.24  1.00

J M J = 0 7.72 0.500

- 
—

~~-- - 
- - -- —

~~ 
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with the same value of /<~p~~>. Note that the power in such

a pulse scales like 1/<IPl2 >te
2
~ 

Because the <~ p~~
2 > values

of the lines are not greatly different, we are dealing in all

cases with pulses of peak power of the order of 10 Mw/cm2 for

100 psec pulse-length-- comparable to the pulse power of the

6.1 cm~~ line analyzed earlier.

The 18.577 line does not represent much novelty. It

behaves like a nondegenerate line because only the levels

M = 1 interact with the radiation and they have the same

dipole moment. The only feature worth noting is that the pene-

tration dipole is very short. The distance scale terminates at

10 in-- the absorption line is indeed very strong. Saturation

has reduced the loss to 55% of its nonlinear value, but after

about 6 m propagation the loss has approached the linear loss

to within 85%-- the penetration has been improved, but very

little.

Figure 21 plotted for the 20.704 cm~~ line is on a scale

of 1.4 km-- a much weaker absorption . We note that the dif-

ferent M—levels are acted upon differently by the radiation ,

and the loss in each is reduced by different amounts due to

nonlinear effects. The transition is one with AJ = 1 so that

the strongest dipole moment is for M = 0. Figure 2ld shows

that indeed the largest reduction in loss occurs f o r  M = 0,

______
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~1

to about 4 5 % of the linear value . For the M = 0 line the

equivalent “average ” zero pi pulse used for the computation has

more energy than a true zero-IT-pulse would have for this level

of strongest dipole moment, hence the large reduction in loss.

Yet, after roughly a l/e decay length the loss reduction has

disappeared for all practical purposes.

Figure 22 is for a line with t~J = 0. The strongest dipole

moment is for ~M ( = 2. From Fig. 22c we gather that indeed

this level has the larger loss reduction, to about 60% of its

linear value. Note that the penetration depth is of the order

of 5 m, again this is a very strong absorption line.

V Figure 23 is for a M = 1 transition and qualitatively

duplicates the behavior of the M = 1 transition at 20.704 cm 1,

Figure 21. It is a weaker absorption line, the horizontal scale

extends to 450 m. 
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X. Propagation of CH 3F Laser Radiation

In the preceding section we studied pro-pagation of radiation

in resonance with the degenerate lines adjacent to the CH3F and

D20 lines at 495 p and 385 p respectively. The propagation

characteristics were not greatly different from those in resonance

with a nondegenerate line. As a final test, we study the propaga-

tion of 495 p radiation as it is affected by absorption via the

strongest adjacent line , the 18.577 cm~~ line . Figs . 24a ,b

show the propagation of a 10 psec pulse. The shape of the

pulse is taken as that of a zero-pi pulse on resonance with the

line, detuned to 495 p = 20.2 cm~~. Curve A of Fig. 24a has

the energy appropriate for a zero pi pulse, the others are of

-~~ higher energy . The l/e decay is roughly 500 m. Fig. 24b

shows several interesting features. Curve A is for a small

signal pulse. It showS a dramatic decrease of K-- the attenua-

tion constant, as a function of propagation . This is due to the

fact that the portion of the spectrum that lies on the high

absorption side of the line gets “eaten—up” initially. The

remaining part of the spectrum has smaller loss as it continues

its propagation.

Curve B of Fig. 24b corresponds to curve A of Fig. 24a.

The initial saturation effect  is very noticeable reducing K to

about 30% of its small signal value . As the pulse propagates,

___________ - - —~~~~~--~~ 
— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— ~~~~~~~~~~~~~ 

-
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the absorption coefficient exceeds the small signal ‘~a1ue

because the most “favored” part of the spectrum, nearest to the
line center of the absorption line, has a weaker saturation ef— 

—

fect after attenuation has occurred.

ii
I
~~
. 

-- - --- -— .- - -~~~~~~ _ _ _

__________________  — ------;~~~~~~
- — ---
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Conclusions

The zero—pi pulse as published by Lamb (1974) is a special

case of a self induced transparency solution obtained when the

spectral line of the medium is symmetric and the carrier fre—

quency of the pulse is centered with respect to the line. Fol-

lowing “ small signal” reasoning , we were interested in detuning

pulses from line center so that the loss is avoided at least

partially when the “center of gravity” of the spectrum lies

outside the absorption line. Generalized solutions have not

been published although the formalism of inverse scattering

theory can be applied to that case. Lamb, in another paper

(1973), gave a general formula which is wrong (his equation 16).

For this reason the analysis was redone to provide the starting

point for the computations presented in this report.

We have , therefbre, applied the Inverse Scattering Theory

to obtain an expression for the qeneralized zero-pi pulse . In

the course of this work we found it necessary to cast the

formalism developed by mathematicians into language and models

understandable to the physicist and engineer. A paper on the

first version of this work will appear in Reviews of-Modern

Physics. The appendix of this report is a further simplifica-

tion which avoids entirely the use of the Marchenko equation

of Fourier transform space and thus gives more rapidly results

L ______ 
-
~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~

-- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - .- -—.-
~~~~

— --
~~~~~~~~~~~~~~~~~~~ 

-
~~~
--

~~~~~~~~~
- --
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useful to the evaluation of the zero-pi pulse. One important

outcome of the analysis is that there exists no zero-pi pulse

detuned from line center. Any pulse of the “breather type”

(such as the zero-pi pulse is called because it changes shape

as it propagates) breaks up when its spectrum is not centered

with the line of the medium. Therefore , we used in the computer

analysis in the off-resonant case an electric field envelope

evaluated from the on—resonant case , and shifted off resonance.

Such pulses are found not to break up when sufficien t loss is

introduced so that the intensity of the pulse is decreased to

a sufficiently low level before the break—up had a chance to

occur.

The numerical studies proceeded in two stages. First, we

looked at 2ir and 0-it pulse propagation in the absence and

presence of loss at and near the 6.1 cm 1 line of H20, with-

out including the degeneracy of the level so that ideal 2n

pulse and 0-il pulse propagation in the absence of loss was

possible. This numerical study showed certain features of

zero-pi pulse propagation in the presence of loss in the simplest

possible context. The analysis also enabled one to test the

program for its potential of predicting long distance propaga-

tion (up to 3 x ~~~ cm) , in this case of low absorption. The

following specific findings are of interest, but note that

level degeneracy had not been taken into account-- thus the

beneficial effects of saturation are exaggerated.

k _ - 
-

~~~~~~
_   - - - -

~~~~~~~~~~~~~~~~~~~-
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( a)  The attenuation of the 6.1 cm~~ H20 line is reduced —

to .6 of its linear value for a z ero-pi pulse over

a distance within which the energy has not been greatly

depleted. After that the pulse propagates in essentially

a linear manner. For a 100 psec pulse , the required peak

intensity is 8 MW/Cm2. Typical propagation distances are

20 km.

(b) The off—resonant “zero—pi pulse” can lead to a further

reduction of loss to .25 of its linear value, if one

peak of the double-peaked spectrum of the zero-pi pulse is

made to coincide with the absorption line. This is an in-

dication of a saturation-bleaching effect, the bleaching

is more effective when the spectrum has greater net

intensity within the spectral response width of the

- med ium.

(c) Further detuning of the “zero-pi” pulse spectrum from

the absorption line gives less loss reduction.

- 

~

- 

(d) As a pulse is detuned from line center , the loss is

reduced as one would expect from a linear analysis be-
- . cause less of the spectrum coincides with the absorption

line. In fact, a “zero pi” pulse of 8 MW/cm 2 intensity

as defined for on resonance propagation , when detuned by

more than a linewidth, interacts with the medium in ~ n

- - _ _ _ _
~

__
~
...

~~
__ - 

~~~
- _ — -- ----~~~~~ — — —  ——- —-- - - - -—----~~ - - — - -—--—~~- —- -- - - ~~ -- — -- ..~~~~l è  -.~~~
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~1most linear fashion . This is because a relatively small

pors ion of the spectrum interacts with the medium.

(e) The zero—pi pulse has no small signal limit. Accordingly,

diffraction effects will have an effect on zero—pi pulse

propagation within a beam of finite cross section similar
to that of 2-n pulses.

( f )  The CH 3F and D20 laser lines lie in the wings of very

strong water vapor absorption lines. These lines connect

degenerate levels and hence S.I.T. solutions do not exist

in the lossless (collision-free ) case (except for the

18.577 line). Using on resonant propagation at any one

of the four lines of “equivalent” zero-pi pulses with

(+ -) areas chosen to correspond to the average matrix

element of the transition, one observes reductions of

absorption due to saturation very similar to those of the

nondegenerate case, of the order of 55% of the linear

loss. The penetration depths are now much shorter; of

the order of S in for the two strong lines , 500 in for

the two weak lines.

• (g)  The peak power of the equivalent zero-n pulse scales like

1/1p 12 te
2 • Hence the peak power one needs to experience

nonlinear loss reduction is of the order of 10 Mw/cm2 for

all the lines-- their dipole moments being all of order

0.5 debye .

-- — ~~~~~~~~~~~~~~~~~~~ - - - c-S ————

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- -~~~~~~~ r~~~~ T ~~ ir -
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(h )  The CH 3F and D20 laser lines lie in a regime of

relatively weak absorption. Fig. 1 shows that the linear

loss exponent 2ciL0 within 1 km is 9.5 and 16 re- - -

spectively, corresponding to l/e decay distances of

105 in and 62 in respectively .

(i) On-resonant propagation on the 20.704 cm~~ line produces

1/e decay distances of the order of 360 in which is

much greater than the 105 m distance of linear propaga-

tion read off the graph. The discrepancy is due to the

fact that the wing of the strong adjacent line at 18.577

influences the linear loss at the 20 .02 cm 1 line of

the CH3F laser reducing the 1/e decay distance ap-

preciably .

( j )  Off-resonant propagation , at the frequency of the CH
3F

line , of a zej~o—pi—like pulse of 10 psec duration shows

the following characteristics : In the small signal limit,

the spectral component of the pulse on the high side of

the absorption line gets eaten up and the attenuation

coefficient decreases with further propagation . An in-

tense pulse achieves appreciable initial reduction of

attenuation (to 30% of small signal limit) until the

absorption has reduced its intensity.

. -

~

- -

~

-
-

~

- - -
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(k) In the case when the pulse energy is several times the

on-resonant zero-pi-pulse energy , the pulse breaks up

into a series of pulses traveling at different speeds.

( 1)  The zero-degree pulse propagation with low loss as observed

by Grieneisen et al. was a linear phenomenon, associated

with the peculiar spectral distribution characteristic of

a zero degree, small signal pulse (which is also character-

istic of the zero—pi large signal pulse). The spectrum

has zero intensity at the carrier frequency. Hence a zero-

degree pulse with the carrier centered at the line exper-

iences reduced absorption because the “bulk” of the spectrum

lies outside the absorption line . There are other subtle

effects  in the limit of inhoTnogeneous broadening, that

were discussed by Grieneisen et a l . ,  but do not concern

us here because 1120 is homogeneously broadened at atmo-

spheric pressure.

(m) The overall conclusion is that lower loss can be achieved

in the linear regime when the spectrum is moved away from

the frequencies of maximum absorption. The use of carrier

trequencies that are far from the peak of the absorption

l ines  are equally or more effective. The zero-degree

pulse would be useful  only in those cases in which the

use of a laser frequency coincident with an atmospheric

absorption line were required , e.g. when a CO2 laser

_ _ _ _  
-- 
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is used and absorption by atmospheric CO2 is to be

reduced .

- - - .~~ -
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~ppendix _I

Derivation of Two-pi-pulse and Zero-pi-pulse

by the Inverse Scattering Method

_____________Abstract:

The Inverse Scattering Method (ISM ) as applied to Self-

Induced Transparency (SIT) is reviewed. It is shown that the

- 
- - - ( Zakharov—shabat) scattering equations follow directly from

the two level system equations. The analytic continuation of

the Zakharov Shabat equations into the complex plane is inter-

preted by an analog: the excitation of a parametric oscillator

by sources growing exponentially in time. This model gives a

“physical feel” for the behavior of the eigenfunctions of the

scattering problem. The spatial invariance of the eigenvalues

is proven following a method outlined by Ablamovitz et al. (1974).

The 2w pulse and zero—pi pulse follow immediately and concisely

from the preceding analysis. It is shown that no zero-pi-like

solution exists with a spectrum centered of f the material line . 
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In troduc tion

The inverse scattering method (I.S.M.) is one of the very few

general methods of solution of a class of nonlinear differential

equations in one spatial dimension and time (Gardner et al., 1967 ;

Zakharov and Shabat , 1972; Whitham, 1974; Ablowitz et al., 1974a;

I:.amb, 1973). In the application of the I .S .M. a linear scattering

problem of quantum—mechanical nature is associated with the nonlinear

differential equation (Whitnam , 1974). The sought-for solution of

the nonlinear differential equation at the initial time t = 0 plays

the role of the scattering potential or “well” of the linear scat-

tering problem. The initial conditions of the problem to be solved

prescribe the transmission and reflection coefficients of the linear

scattering problem from which the scattering “well” may be determined

by standard techniques of (inverse) scattering theory. The evolution

- - in time of the scattering problem , which may take several forms

(Ahlowitz et al., 1974a ,b), then prescribes the evolution in time

of the solution of the nonlinear equation—— or alternately—- the form

of the nonlinear- differential equation associated .with this particular

scattering problem (see Fig. 2).

In 1973 Lamb showed (Lamb , 1973) how one may associate wi th the

equations of self—induced transparency (S.I.T.) one of the standard

equations of the I.S.M., the Zakharov—Shabat equations (Zakharov and

Shabat , 1972). He proceeded through a set of variable transformations

with, no apparent physical interpretation. In fact , one of the in-

triguing unsolved probl~ ms of the I.S.M. is the development of a 

— - 

—- 
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procedure to find the scattering problem associated with a par ticul ar

d i f ferent ia l  equation .

In many cases the scattering problem of quantum—mechanical char-

acter will have no physical interpretation. It is to be expected ,

however, that in those cases in which the physics underlying the

nonlinear differential equation is based on quantum mechanics the

associated scattering problem must have a direct physical meaning .

In the case of the Josephson transmission line and S.I.T., this has

been pointed out by McLaughlin and Corones (McLaughlin and Corones ,

1974). The physical interpretation of the scatter ing probl em ob-

tained after Lamb had reduced the S.I.T. problem to one amenable to

the inverse scattering method is but one example of various develop-

ments presented by different authors in the course of time. The

present author attempted to gain an understanding of the I.S.M. by

uncovering physical interpretations for the mathematical steps. Ev en

though most of the specifics have appeared in the literature (Gardner

et al., 1967; Zakharov and Shabat, 1972; Whitham , 1974; Ablowitz et

al., 1974a,b; Lamb, 197 3 ; McLaughlin and Corones, 1974; Ablowitz et

al. 1973; Faddeyev , 1962), this paper may serve as a guide for the

physically inclined to an important mathematical method .

The Zakharov—Shabat equations written as differential equations

in normalized time it with the electric field ~ - ( t , z)  as the

scattering “well” define the linear scattering problem associated

with S.I.T. The spatial variable z plays the role of a parameter.

In Section I we show the direct connection between the Zakharov-

Shabat cquat i.on~; and t-he eqila t j ~~n ’:  of t h ’  t w , — 1  t ’vol ~~~~~~~ !~ t

L ~~~~~~~
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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acting with the electric field i n- S . I . T.

The nature of the solutions to the Zakharov—Sha ba t equations

m a y  be anticipated by recognizing their similarity with a well

known physical problem: the parametric interaction of two waves

via a nonlinear medium excited by a pump wave (Yariv, 1976). This

is done in Section II. Ira particular , it is known that “unstable”

solutiorts growing in time are encountered in parametric interactions.

This f a ct  may be used to predict the location of the eigenvalues

of the Zakharov Shabat equations in the complex plane.

The exploration in Section III of the behavior of the Zakharov-

Shabat equation in the complex plane leads directly to an equation

for those solutions of the Zakharov-Shabat equat ions that correspond

to a ref lect ion—free well , and the shape of the well.

In Section IV we show that the assumption of independence of

z of the eigenvalues of the Zakharov—Shabat equations leads to a

form of the Maxwell-B].och equations of S.I.T. In Section V we

obtain the 2w-pulse and zero-it pulse solutions.
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I. The Zakharov—Shabat Equations as the Ecluations of the Two-

Level Systems

The Zakharov—Shabat equations are central to the inverse

scattering method appl ied to self induced transparency. In this

section we review briefly the equations of a two level system

excited by an E—field and show that the resulting equations are

equivalent to the Zakharov—Shaba t equations (Zakharov and Shabat ,

1972) arrived at by Lamb (Lamb, 1973).

In the slow envelope approximation , the wave equation for the

electric field envelope ~(x, t) of a plane wave propagating in

the x—direction is in mks units (compare (Lamb, 1973))

(1.1)~x c~~~t 2 c c

where w is the “carrier ” frequency , c the speed of light , ~

the dielectric constant, and P the polarization in the medium .

P and ~ are parallel to each other and transverse to the x-

direction. The polarization of the medium is obtained from the

analysis of two level systems with a distribution of energy-level

Spacings. Denote the amplitude of the wave function of the upper

level (1) by a1, that of the lower level (2) by a 2 . One may

write down two differential equations for the ampl itudes a1 and

a 2 as Coupled by the ~—fie1d (Vuylstcke , 1960). Factorinj out
the natural time cLeperidences and retaining only the slowly time
vdrying portions of the var t I 1 1 ( ’~~, Of lC  I I ~~~F
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a1 • p12 ~~~~ a~ 
(1.2)

= ~~ . ~~* • ~* e~~
6
~ a 

(1.3)
~ri

where 6 — w12, and is the matrix element between the

two levels. If we define

-

~~~~
2 — 

-

a1 e v1 (1.4)

+~~!~~2 —a2 e ~~v2 (1.5)

we obtain

dv1 E . pa .)
— + i — v1 i v 2 ( 1.6)
dt 2 h

dv2 6 E * .p ~2 
—

— — i — v2 = i — - V1. (1.7)
dt 

- 
2

These are already the Zakharov-Shabat equations, except for a

normalization. The density matr ix p is the statistical average

of the products of the amplitudes a1, a 2 or v1, V2 and their

- - 
- 

~~~~~~~~~~~~~~~~
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complex conjugates. Since we are dealing here with a pure state

(no collisions) no statistical average need be performed .

= v1 v~ *. (1.8)

The positive frequency portion of the polarization P is g iven

by

P < N 1  P 12> = N ~ 21<v1v 2*> (1 9)

where N is the particle density and the brackets indicate an

average over all two-level systems. One obtains from (1,1) and

(1.11) by dot-multiplication of both sides by ~12/i1%

c a ~l2 a • E 
- *— — - + - ________ — > (1.10)~~2 3x ih Q2

~t

where

2 
________

(1.11)2 f~e

The equation for the electr ic field (1.10) completes the
sysiem of equations; the solution of the Zakha rov— Sha bat o u ~ttio~~

L - -—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—==
~~~~
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appears directly as a drive in the equation of the field . The

system of equations is nonlinear in that the drive is nonlinear

*3.fl V1, V
2

Through the use of the normalized variables

2~ 12 • E
___ — 2~~~~ 6/~ihc~

z c ~x,ic,

the equations (1.6), (1.7) and (1.10) assume the form

= <2v 1v 2~ > (1.12)
az -

av1 1
— + iç v1 = — ~~ V

2 
(1.13)

2 -

av
(1. 14)

These equations are already in one of the standard forms of

inverse scattering theory. McLaughlin and Corones ( 1974) have

pointed out the relation between the linear (Zakharov-Shabat)

problem and the quantum mechanical equations of the Josephson

_ _ _ _ _ _ _ _  

—
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junction. They also touched on the problem of S.I.T. without

making the connection of the V ’s with the wave function ampli-
tudes.

For later reference , and to make connection with the Bloch

equations , we also list the differential equations for the density

matrix elements ( 1.8) . They follow directly from (1 .6)  and ( 1 .7)

dp12 + i6p12 = 
- 
l~ ( p 11 — p22 ) (1.15)

dt iii

dt ~~~~ 
— = — 2 ~l2 

— 

i4’•i 
(1.16)

After introduction of the variable it and the def init ions

A E 2p 12 
= 2v1v2 *

N E p 11 — p 22

one obtains the normalized Bloch equations:

+ 2i~ A = (1.17)
at

= — ~:. ( i ~~*~~ + t A * ) .  (1.18)
at 2

_____________ ______________ ~~~~~~~~~~~~~~~~~
---—
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Lamb ( 1973) used the Bloch equations, and the field equation

<A> - (1.19)
az

as the defining equation of S.I.T. Lamb had to go through a series

of transformations to derive the Zakharov—Shabat equations. our

way of deriving the equations shows , much more simply, that the

Bloch equations are implied by the Zakharov—Shabat equations. 

-
~~~~~~

- - -  — -- - -
- . 

- 
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II.  The Scattering Problem

We have shown that the nonlinear self induced transparency

equation is cast naturally in terms of a set of linear differ-

ential equations for the amplitudes of the wave functions of the

upper and lower levels coupled by the electric field . These were

the equations of Zakharov arid Shabat (1972) central to their formu-

lation of the inverse scattering problem for the nonlinear Schroe—

dinger equation and derived by Lamb (1973) from the densi ty ma tr ix

equations of the two level system by a set of variable transforma-

tions. In this section we shall elaborate on the significance of

the Zakharov-Shabat equations.

We consider them to be a set of equations of mode coupling
in space, treating it as if it were the distance coordinate , ~

the propagation constant (c is real by definition); the amplitudes

and are then wave amplitudes. The function - ~.( -r ) plays

the role of the coupling coeff icient. In the absence of an C—
field , 

-

v1~~~ e x p — i C T  (2.1)

and

v 2 exp + i~ -r .  (2.2)

T~e i~~ V(  V
1 

l)r(~~~)q at- t --s in ihe — t  direction , Lh~ wave v i i

L __________ -~~~~~~~ - ~~
-
~~~~

- --  ~~~~~~~~ : --~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ ~~ - -- -—— -
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the +t direction (assuming the physicist ’s definition of phase-

delay as represented by the factor exp iCt (C > 0)). The ampli-

tudes ~nd v2 are functions of C and T. Consider briefly

the Fcurier transform

dC e~~~
’ v1(C, i t )  = V1(y, it ) .  (2 .3)

If C is taken to be a propagation constant, C = ~/u with u

the phase veloc ity of the uncoupled wave , w the frequency, then

y may be interpreted as a time variable (y = Ut). This further

interpretation endows the waves v1 and v 2 ‘with dispersion-free

propagation at group velocity u , in the absence of t. The

original self—induced transparency problem involving in teractions

of electromagnetic pul ses with the nonlinear medium requ ires that

~ (t) has to vanish at l it i ~~- 
~~~~. Hence , equations (1.13) and (1.14)

describe coupling of waves in an interaction reg ion extending from
-~~ < it < +oo , with vanishin g interaction in the l imi t l i t i  -

~

In the region where ~~. ~ 0, the forward and backward waves

are coupled. The coupling is lossless in the sense that (for real C)

~~~~
— ( 1v 1(C , i t)  2 + 1v 2 (c , i t)  J 2 ) = 0 (2 .4 )

as can be demonstrated easily from Eqs. (1.13) and (1.14). In

~



(2 .4)  waves (1) and ( 2 )  may be assigned powers 1v1(c , i t)  1 2  and

1v2(C, i t)  2
. According to (2.4), both waves carry power in the

same direction-- say the +t direction. Because they hav e oppo-

sitely directed group velocities, their energies must be of oppo-

site sign (Pierce , 1974).

The concept of negative small signal energy is widely used

in plasma physics (Sturrock , 1961). Negative energy commonly

occurs in energy conservation princ iples derived from the linear ized

equations of motion of a nonlinear system which contains an ener gy

“reservoir ” (such as the kinetic energy of a moving plasma or an

electron beam (Pierce , 1 9 7 4 ) ) .  Excitation of a wave (usually a

socalled slow wave (Sturrock , 1961)) may lower - the overall energy

of the system, a fact that manifests itself in terms of a negative

energy attributed to the wave.- The energy is quadratic in the

- - excitation amplitude of the wave. If a negative energy-wave is

coupled to a positive energy wave, both wave amplitudes may grow.

The growth of positive energy is balanced by the growth of the

negative energy,  net smal l signal energy is conserved . One example

of such a system is the Backward-Wave oscillator (Kleen , 1958).

More familiar may be the example of parametric interaction

(Yariv, 1976) of two waves of frequencies w,~ and with a

pump wave of frequency w~ , so that + = w~ . The phase

• matching condition of the (colinear) propagation vectors and

Ic 2 is then = + R2. In the steady state , when phase ma tching

is not realized, one may define

- 

- -
~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~
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The equations of parametric coupling between the two waves as a

func tion of the spatial coordina te ( i t )  are of the form of
(1.13) and (1.14) when the “fast” spatial variations of the waves

are removed and only the Slowly varying variations of Itenvelopes~

are considered. The energy densities must be reinterpreted as

-photon number densities, the power flows as photon number flows

and energy conservation as photon number conservation. To be

more specific , in a parametric process of the type where a pump

pho ton produces a “ signal” photon at frequency w1 and an

“idler ” photon at frequency w2, the number of signal photon s

generated either spontaneously, or by induced emission , must be

equa l to the number of idler photons. The wave amplitudes, v1
and v2 may be so normalized that ~v~j2 and lv 2V are pro-

portional to the number of photons per unit length in the inter-

acting wave (1) and (2). Then (with it taken as the distance

variable)

_ IV l I ± ~~~~IV 2 I _ 0
a t

are the Manley Rowe conservation relations applied to this para-

metric process (Manley and Rowe, 1959; Weiss , 1957). A parametric

instability occur s with the + sign in the above equation , when

the group velocities of waves (1) and (2 )  are oppositely directed.

The waves v1 and v2 have further properties somewhat 

=~~~~ ---- --- 
~~ - — ~~~~~~~~~~~~~ - 

‘ — —
~~~~~~
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—
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analogous to lossless coupling of electromagnetic waves that obey

reciprocity relations. Indeed , f rom (1.13) and (1.14 ) it is

easily shown that , given a solution (f is treated as a column

matrix of components f1 and f 2) -

f 

-

then

~~~~~~~~

_f
1* -

is also a solution for the same ~ (if ~ is real) .  Further ,

these two solutions are physically different. Indeed, have f

describe the coupling of wave v2 to v1 via ~~( t)  with boundary
conditions as indicated schematically in Fig. 25a. The solution

? is the one shown in Fig. 25b. The function f in relation to

f is like the time reversed solution of electromagnetic wav es
used to demonstrate reciprocity.

One may generalize ( 2 . 4 )  to show conservation of “cross power ” ,

i.e. prove the conservation law

~~~~~~~ 

~~1g1* + f2g2*) = 0 (2 .5)

where f and g are any two solutions of (1.13) and (l.l~~). Usinq

— —-~~~~ 
—.-~~~~
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the proper ty that 
- 

-

-

g =
_g

1*

is a solution , if g is one , ( 2 . 5 )  becomes

-
~~

— ~~1g~ 
— f2g1) = 0. (2.6)

dt

This is known as conservation of the Wronskian (Gardner et al., 1967).

Thus far we have studied general properties of the scattering

problem. One may use (1.13) and (1.14) to find solutions and

V2 for given ~~~~. More relevant to the solution of the self-induced

transparency problem is the inverse scattering pr~b1em: given v1
and v2, what coupling func tion F ( t )  produces this particular

v1 and v 2 .
The S.I.T. problem calls for a very special kind of solu-

tion v1(C, i t ) ,  v 2 ( C ,  i t ) .  indeed , C is the parameter describing

the detuning of the two level systems from the carrier frequency

If there is to be no loss, Iv1(~, i t)  I = 1, 1v 2 (r , i t)  I ~ 0
for it + 

~ ; i.e. every two—level system hae to start from the

ground state .before the arrival of the pulse and must return into
- the ground state af ter  passage of the pulse. - Tl?41 ~equi~~meht

t
in

turn calls for a sca tteri.ng ~~~l1 1~41 which t~O ~ef1ec-

ti~~r~ - ‘ 0) for ‘ 
V (~ , t) 1~~or~ ~ny~ 

- 

-

~~ ~~ ~~~ ~~~~~~~~~~~~~ ~~ 

c~’- ’ 
~ ~~~ 

_

1

_ 

‘
~~ ~

I ! ~ 

r , r 
I 1 

! T C~ • 

I )  
c

- ~~~ ~ E- ~~~~ 

- - 
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‘1

- ~~~~~~~~~~~ 
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There are wells that are capable of doing this. The Schroedinger

equation for a secant hyperbolic well has a continuum of eigen-

states that are traveling waves outside the well and experience

only a phase shift  as they pass through the well (Morse and Fesh-

bach, 1953). In the next section we set up a method for obtaining

the shapes of reflection-free wells for the Zakharov-Shabat equa-

tions. 

- . -~~~~~~~~~~~~~~~~ -- - -~ - -- - -~~~ - -~~~~~~-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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III. _ The Inverse Scattering Problem

We have pointed out that the solution of self-induced trans-

parency calls for the determination of a reflection-free well. The

inverse scattering theory determines the shape of a scattering well

from the scattering data. The requirement that there be no ref lec— —

tion is suff ic ient  to find shapes of reflection—free wells.

We shall develop the method of inverse scattering by simple

physical reasoning. Consider a given scattering well ~~~(it ) with

U the particular solution fCC, i t )  that approaches the limit as

it + —
~~~

- 

- - lint f(C, T )  = [ )  e~~
CT. (3.1)

- 
- 

T~ie function f (C, T) represents an experiment in which a

wave v1 is incident from it -‘- +~~~, partly coupled to the re-

flected wave v2 and partly transmitted.

- — 
Next consider ~ defined by

~~

_f
1*

which is obtained by time reversal of f. It is independent of f 

-
~~~~

_______ — ~ — - —-‘---—-- -----——- -
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because it is the solution to a different boundary value problem.

Finally, introduce a third solution g(C, it) defined by its

limit at it + +00 :

u r n  g ( C ,  i t )  = e~~ t . ( 3 . 2 )

Figure 26 shows the experiment represented by g. A mode (wave)

is incident from the left  upon the interaction region , part ly re-

flected (coupled to the backward wave v1) and partly transmitted.

g(c, -r ) may be written as a linear superposition of the two inde-

pendent solutions of the (second order) Zakharov-.Shabat equation

system.

g(~~, t)  = a(ç) f(C, T )  + b(C) ~ (C, i t ) .  (3.3)

The inverse scattering theory enables one to construct the scat-

tering well from the information on b(C) and a(C). We shall

now go through the derivation in a “physical” way, Consider the

scattering experiments represented by g, f, and f. Remember

.~~, 
F(<~~w/v) is interpreted as a propagation constant of a disper-

sion free wave and hence is proportional to the frequency. g (C, i t )

is , at first, defined on the real C—axis—— for a steady state

scattering experiment. For a given well, the function g(~ , T) 

-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~ - 
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may be continued analytically into the upper nalf of the complex

C—plane. This can be interpreted simply in terms of an experiment

using a wave source (of v2) on the lef t side of the well with an

amplitude growing exponentially with time. Each point in the upper

half of the C-plane may be thought to have associated with it the

space ( T - ~) dependence of the incident transmitted and scattered

waves. We show such plots schematically in Fig. 27. Fig. 27a shows

g(C, it) for a point in the upper half of the C—plane . Shown are

the space ( i t - )  dependences of (cL) the well E ( i t ) ,  (
~ ) the

exciting wave g2 of dependence u r n  exp iCT , and (y) the reflected

wave g1 which is caused by re f lection of the well and is confined

to a finite region of space.

As Im ~ is increased , the incident wave decays sore steeply

with increasing -r , and as c i + 00 the reflected wave g1 van-

ishes. Indeed , the fa ster the increase with time, (the greater

Im C), the shorter the duration of the interaction and the weaker

is the excitation of the reflection g1. In the limit of Im(C) +

the reflected wave g1 decreases to zero. The same can be said

about a spatially very rapidly vary ing wave , Id very large. The

reflection vanishes not only for Im(C) + ~ but for RI  in

- - general. Fig. 5b shows an analogous schematic sketch of the exper-

iment described by fCC, it ) a wave incident upon the well from the

right. Like in the case of g (c, T), the reflection f 2(C, i t )

becomes weaker and weaker as Id becomes larger and larger and

vanishes in the limit id + 00 

—~~~~~~ -: ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~ --.-~-- -~~~~~
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If the well ~i-r) is chosen “deep and wide enough ”, the

feedback provided by the well will permit trapped solutions growing

with time at a characteristic rate Im Ck (> 0), where CIc may

assume one or more discrete values, depending upon the depth and

width of the well. A trapped solution is one for which there is

no external excitation g2 
- -  0 as T -‘ ~~~~~~~ The excitation within

the well decays away from the well in both directions. With a fixed

amplitude of g2 
on the right hand side of the well , the amplitude

of the excitation within the well remains f inite for C +

Indeed , in order to keep the excitation amplitude of tne well

f ixed when the “resonance ” , represented by the trapped solution ,

is approached , the source amplitude has to decrease until it vanishes

at C = dIc. The trapped solution is shown schematically in Fig. 6.

Power is carried out of the well to supply the increasing energy

storage outside the well-- the energy being supplied by the growth

of positive energy in g2 at the expense of the negative energy in

via the instability within the well. The same applies to

f ( C , it) and indeed g(r , it) and f(d, i t)  cease to be linearly

independent at C = because they both describe the same trapped

solution .

— 
Finally consider ?( c ,  it). For rea] ç, the function i s the

time reversed version of f (compare Fig. 25b) . Before we con-

tinue it analytically into the upper half plane we must understand

the physical situation represented by the solution f. Accouding

to Fig. 25b, waves are incident from both sides of’ the w i- li. PhI- 

~—- - - - - - - -~~~~~~~~~ - -- --- U— - j~~~~
- 

~~
- - 

~~~~~~~~~~~~~~~~~~ -~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~
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well is excited by two sources. The sources are so phased that the

“reflected ” wave on the left hand side is suppressed . This is

the solution that is to be continued analytically into the upper

half plane. A sketch is shown in Fig. 27c. In the lower half

plane ~(c , it) represents an excitation of the well by two sources

decaying exponentially in time , again phased so as to cancel the

wave as it - ‘- -°°. (See Fig. 27d.) Trapped solutions exist in

the lower half plane. Indeed solutions of the Zakharov Shabat

equations occur in complex conjugate pairs. Therefore ? must

contain the trapped solution decaying in time , at c = Ck* in the

lower half C-plane . f2 is constrained on the left hand side of

the well , when c approaches Ck* ; no singularity occurs in f

because a decaying trapped solution receives power from the energy

in the collapsing tails outside the well and the condition

* ~~~~~~ in the limit ~ + —~, imparts the tail with a

finite amplitude.

We are now ready to exploit the scattering (thought) experi-

ments represented by g, f and ¶, through the use of complex

function theory. The function g(C, i t )  exp - icr is well behaved

throughout the entire upper half C-plane ; as i d + it ap-

proaches (~]. b (z) in turn approaches lim b(d) = 1, because
- 

RHo -

in this limit no reflection occurs and f becomes equal to g

asymptotically. We multiply (3.3) on both sides by

L 

(exp — iCT)/b(d). (3.4)
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In the upper half plane , the left hand side has poles at d = dk
in the upper half plane and approaches [

~
] in the limit H ~

Because the left hand side is equal to the right hand side, the

latter has the same poles and same limiting behavior in the upper

C—plane.

Next, we define the function ?( c ,  it) exp — i Cr  in the lower

hal f plane. This function in turn approaches [~ ] as -
~~

and has no singularities. The discontinuity between the two

functions in the two half planes on the real C-axis , C =

is:

a(~ )
f(~~, T) exp — i~ T .

b(~ )

We appeal next to complex function theory. If a complex function

is well behaved throughout the entire complex C-plane with the

exception of a finite number of poles and a discontinuity on the

real axis then the function can be written in terms of a sum of

contributions of the poles and in terms of an integral representing

the discontinuity along the real axis. This property of complex

• functions is in one to one correspondence with potential theory

in two dimensions. If a two dimensional electrostatic potential

p has a f in i te  number of point (line) charge sources and has certain

- 
I discontinuities along a curve (surface), these discontinuities

- ~~~—~--—-—-----———~~~~ . - ~~~~~~~~~~ - —~—~ - —~ - - - -- —~~~ - - —4
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being produced by surface sources, then the potential may be found

using the appropriate Green ’s function.

The formal evaluation is presented in Zakharov—Shabat (1972).

Here we shall confine ourselves to the special case of a re flection

free well , a(~~) 
+ 0. Then

~ (C, it) exp — 1CT = ~(c , i t)  exp — icr (3.5)
b(d)

everywhere. Strictly speaking , a(~~) cannot be set equal to zero,

it can only be made to approach zero, because otherwise the two

sides of (3.5) cannot be balanced when RI + ~ as can be seen

from the asymptotic behaviors of g(t~, it), f(
~~, i t)  and r ( c ,  it).

The on ly singularities lef t are the zeros of b(C ) where

t )  becomes proportional to Ck f(Ck, it). Suppose g(d, it)/

b(C) has simple singularities at Ck~ 
so that it may be written ,

taking advantage of the fact that ~~~~~ i t)  f(C ks it) at C = ‘k’

N C f ( t, , T) 0

— 

g ( ç ,  ‘-~~ exp — iCT  
k k exp — iC

k
T + . (3.6)

b ( r )  k = 1 — dk 1

Then , from (3.5)

N 
~k ~~~k’ 

i t )  ( 0 1
- — exp — id k

-r = f(~~, i t )  exp — icr — 
-

k = l  C
~~~ Ck
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If we set t we obtain 2N equations for the 2N functions
f1(~~.,  T) and f 2*(~~.*, r)

N Ck ~l~~ k’ 
t)

exp — 

~~k
t f 2*(c 4 *, r) exp — (3.7)k=]. 

~~~~
i —

~~~~~

N Ck*f2*(ck
*, t)

E —~ exp + = — f~ ( c . , i) exp + ~~~~~ — 1.k = 1 ) )

(3.8)

The unity in Eq. (3.8) takes care of the fact that exp - i tt  f 2 (t , T )

approaches unity for RI ÷

From f one may evaluate the scatter-flee well 
~. ( i )  by

comparing results in the limit ç + 
~~~~, From (1.14) and the assumed

asympt~~j~ behavior of f (Fig. 27b) we have in the limit of large
= 

~ (real)

— j~f — ~ * f — ~~~* 

~~~~~aT 2 1 2

or

f 2 = — ~~- exp i~ t I E* (t) exp — 2 i r d T ~~~
..
~~J....exp

_ 
~~ E*(T)2 T 4i~

Thus

— 4i~ exp — i~ r u r n  f2*(ç, r).

_ _ _ _ _

~
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From (3.7) we evaluate f2*(~~, t) in the limit of large ~~, by

replacing t by ~:

N Ck ~l~~k’ 
T)

11 exp — i~ r = E — exp — 1CkT (3.10)
k = l

and thus

N
= — 

k = ~ 

C~ ~l~~ k’ 1) exp — (3.11)

In concluding this section one should mention one subtlety

of the approach that is often not explicitly brought out, but which

our approach helps to illuminate. We have pointed out that f(~~, t)

exp - ir ~t and ~ (ç, t )  exp - i~t do not behave properly in the

complex plane, but only in concert , in the sum (3.5). To cancel the

singularities of the individual terms the coefficient a/b is essen-

tial. When analyzing the reflection-free well, although a(~ ) + 0

on the real axis , we have not set a(C) equal to zero, because that

would make it strictly zero in the entire complex plane and lead to

a breakdown of the analytic continuation. Physically, this means

that the conditions of causal excitation as utilized in construction

of the solutions of a scattering well and a reflection-free well

are compatible only in a limit, the limit a 0. 

. 
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IV. Invariance of ~ with z

In the preceding sections we have reviewed the solution of

the Zakharov—Shabat equations and given physical interpretations

to the mathematical steps. We recognized that S.I.T. implies

the existence of a reflection free “well” ~ (r) so that the lower

level amplitude v1(C, t) starts with unity magnitude at T +~

and returns to unity magnitude at t 9 -
~~~. Such wells exist and

one of them is the well known secant hyperbolic to be reviewed in

section VI. it is not obvious, however, that such reflectica-free

wells £(t) are consistent with the propagation equation (1.12),

which has not been used as yet. When Lamb (1973) solved the 2i~-

pulse problem using the Zakharov-Shabat equations he did not prove

consistency in general , but only by substitution of the solution

into (1.12). Later, Ablowitz et al. (1974a) provided a general

proof. The proof will be presented here in a slightly modified

form.

The Zakharov-Shabat equations were shown to be the direct

consequence of the two-level systems equations. The parameter ~
was the detuning parameter, obviously real. When solutions were

sought for “wells” E (t) of given reflection characteristics CE—

fields that excite the upper and lower level by a given amplitude)

the z’ parameter was extended analytically into the complex plane.

This meant the study of responses of the well to “waves” v1 (c, r)

and v2(r , t) excited by exponentially growing the decaying sources.

_ _ _ _ _ _ _ _ _  __________ 
—~~ ~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1
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No physical connection can be made between the responses v1(~ , r)

and v2(~ , ‘r) and the two level systems. Indeed, for complex r

the responses grew exponentially with r~. This finds no counter-

part in the two level system for which the normalization holds

1v112 + 1v 2 12 = 1, a normalization not maintained for ccetplex ~~.

This means, however, that the analytic continuation into the ç-

plane of the Zakharov—Shabat equations is a mathematical procedure

which cannot be interpreted physically in terms of the two level

system, even though the parametric oscillator analog permits —

“physical pictures” to be associated with the mathematical pro-

cedure. The complex ~ has a new significance, not directly

apparent in the two level system equations or the Bloch equations.

A reinterpretation of these equations is, therefore, in order.

The Zakharov-Shabat equations for any given complex ~ define

the well F(t) in terms of v1(C, t) and v2(~ , r). Conversely ,

a given well E (t) and boundary conditions at infinity define

v1(~~, t) and v2(r~, t). The propagation of the well, i.e. its

r , z dependence are then reflected in the r, z dependences of

V1 and V2. Nonlinear differential equations that are soluble

by the inverse scattering method have the remarkable property

in common that the solution of the scattering problem for a

particular value of one of the independent variables (z in our

case) implies the solution for all its values. Mathematically

this property is demonstrated by showing that ~ is independent 

— — —.—— — - - 
. 

~~~~~~~~~~ 
- .j 

- . - , 
~~~~~~~~~ 

.— .— 
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H of this variable (z). Ablowitz et al. proceed as follows .
They assume that v1 and V2 evolve with z as follows.

- 
-

. 
-

A (~ , z , r)v1 + B(~ , z , T )v 2 -: (4.1)H i -

L av 2 .I 
— = C(~~, z , r )v 1 + D(~ , z, r)v2. :- (4 .2 )

- 
—
.. - -

I In order that (4.1) and (4 .2)  be consistent with (1.13) a~d
(1.14), cross derivatives ~

2/3taz must be equal to 32/azar.
From the requirement that t be independent Of z one find s

A = —D 
- 

. (4.3)

where an integration constant has been set equal to zero , arid

— {L~ c - ~. E*BJ . 

-

~ ( 4 . 4 )

(4 .5 )

-

~~ 

~~~~~ 2iCC _
~~~15* _ A * . (4 .6 )

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—-- 0~~~ _•~~~ 

~~~~~~~~~~~~~~~~~~ ~~
-
-

~ ~~~ 
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These equations must correspond to the equations of the system,

if the hypothesis of invariance of ~ with z is to be proven

correct. To cast the equations of the system into the form of

(4.5)-(4.7) we take a Hilbert transform of the Bloch equations

(1.17) and (1.18) i~ the following manner. The parameter ~ used

in those equations is the real detuning parameter. To distinguish

it from the generali-zed ç, we use the symbol ~ for it. Further,

we introduce the line shape function of the two level systems g(~)

normalized so that

J g (~ )

The filbert transform of any function f ( ~ ) with respect to the

line shape function g (F) is then defined as

H ( f )  
~

where ç is assumed to be in the upper half plane and proper

indentation of the contour is implied when C approaches the real

axis. By transforming (1.17) and (1.18) and the complex conjugate

of (1.18) we find

— [!rc _ !~r*al (4 .7 )
2 2

- -



_ 
-
~~-~~~~ -~~~~ -.-.
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.-

(4.8)
2

— 2iCC + <X*> — (4 9)
aT 2

where A , B , and C are the Hilbert transforms of N U ,  z , r ) ,

A ( F , z , T) and A * ( ~~, z , C) respectively. Comparison of ( 4 . 7 ) ,

(4.8) and (4.9) with (4 . 4 ) ,  (4.5 )  and (4 .6) shows that the two

sets of equations can be made identical through the use of the

field equation:

This complete s the proof of the invariance of C with z.
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-- 

99

V. The Spatial Dependence

In the preceding section we have shown that the complex para-

meter ç is an invariant (independent of z). The solution of

the problem being described fully by -the constants Ck and the

eigenvalues 
~~ 

The latter being z-independent, the z-dependence

is contained entirely in the constants Ck*. The Ck’S in turn are

independent of T ! Using this fact, equations for Ck(z) may be

obtained very simply in the limit -r ~ -
~~~. We need to evaluate

f 1(i , t )  and f 2 *( C ,  i) and then use the field equation (1.12).

In this limit , we find from (3.1) for f 1(
~~, t)

u r n  f1(i , r )  = e 1Ct . (5.1)
t ~~~~~~~~

t) follows directly from (3.5) in terms of fl (Ckl t)

N C
urn f2*(C, -r) exp — i~t = E k~~ exp — 2iCkr. (5.2)

• T~~-~ k = l ~~~
_ C k

Next we need the asymptotic expression for ~ from (3.11)

u r n  ~~ = — 4i £ Ck exp — 2
~ Ckt~ 

(5.3)
k = 1

~lJ
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Introducing (5.3), and V
1 

f1 of (5.1) , v2 = f 2 of ( 5 . 2 ) ,
into (1.12) we get the following differential equat ions for the
Ck ’S~

N 3C N . 1E —
~~~~ exp — 2iCk t E 

~ C~ < > exp - 21Ck T.
k = l  a z k = l 2

(5.4)

Equating terms of the same t dependence one obtains a simple

differential equation for Ck which has the solution

Ck ( z) Ck (O) exp . (5.5)
2 ~~— c

This result, along with (3.11), allows one to construct the ~~~
-

field for any assumed distribution of poles. We consider first

the general case and then apply the result to the 2ir-pulse and

zero—pi pulse.

Combining (3.7) and (3.8) we obtain an equatian for f1 (? ., -r)

exp ~C j t which is

E D1~ f 1(C~ , -r ) exp iç~ r — 1 ( 5 . 6 )

with

t ~~~~~~~

-- 

-— 
- 

- 
~~~~~~~~~~~~~~~~

-

~~~~

-

~~~~

— -  
- 

~~

•- -__
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Ck ( Z )  C (z )
D .  - S . + £ exp i(2 CL. * — C. — c.)t. (5.7)

1) 1] k ( C  _ C *) (C * _ C )  1
1 k k j

When ( 5 .6 )  is inverted and introduced into (3. 11) we find

r (T , z) = — 41 Trace [MD~~ 1 (5 .8 )

where

—i(C . + C.)T
M~ . E C~~(z )  e 1 (5.9)

Equation (5.8) looks like ~q. (16) of Lamb (1973) but his defini-

tions of M and D are wrong.

I
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VI. Solution for 2iT-Pulse

The number of assumed singularities determines the complexity

of the solution. We start by assuming the existence of only one

pole j  and find the corresponding solution from (5.8):

= 4iC . exp — 2(ic~r — 
~T) 

• (6.1)

1 +  ~ exp 4~ t
12 8 12

From (5.5) we find the z—dependence of C~ to be

C. (z) = C. (0) exp 1 
> • (6.2)

2 ~~— c z — i 8

Introduction of this expression into (6.1) gives

E(r , z) = 4~ exp — 2ia(-r — r1) sech 28(t — t
~~
)

where

at 1 = 
— a 

(6.3)4 (~~ — a ) 2 + 8 2

= ~~. <— (6.4)0 
~ (~~ — ct)2 + 8 2

~~~~~~~~~

— - - -  .—.—, — --• 

~~~~~~
. -— 
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VII. Solution for Zero-Pi Pulse

We assume now the presence of two poles

and

a + i8

located symmetrically around the imaginary C-axis. The usual

expression for the zero—pi pulse result (Lamb, 1974) when the
- -

envelope of the pulse propagates at a well defined velocity. For

symmetr ic location of the poles, this is not possible in general

as follows immediately from the z-dependence of the coefficients

Ca and Cb as given by ’ 
(5.5). Indeed, the speed of the enve l ope(s)

is determihed from the t , z dependences of Ca(z) exp - 2IC
a
T

and cb (z) exp 
— 2iCbT which are obtained from (5.5).

C (z) exp — 2i~ t = C (0) exp - 2i(cx + i8) -r  exp — a + i8 >a a a 2 (~~ — a )2 + 8 2

(7.1)

and 

~~~~~~~~~~~~~~~~~ -~ .—
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Cb (Z) exp — 2iCbt Cb (O) exp — 2i(—a + i8)t exp ~~ + a) + iB >
2 (~~+a)

2 + 8 2

(7.2)

The speeds of the functions responsible for the envelopes are

obtained from

28dt =~~.< 
8

2 (~~~~~a) 2 + 8 2

respectively.

The speeds will be different, un less

H 1 
= 

1 (7 3)
( , ~ — a)~ + ~ 2 (~ + ct)~ + 82

which is true only for a symmetric line function centered with the

carrier frequency of the pulse. When the line is symmetric , then

the speed of “phase propagation ” determined from

H ± 2 c s d t = L <  > d z
2 (C~~~a)

2 + ~~

is also equal for both constituents. In this case , one finds from

(5.8) after some algebra

I~~
.

., 0~~~~~~~~~~~~~~~~~~~~



105

~~~~
(T , z)

cos 2a(t — Ti) cosh 2 8 ( r  — t
~~
) — .

~~~ sin 2 c ( r  — -r1) sinh 28(t 
—

= 8 8  a
2

cosh 2 2 8( - r  — T ) + L sin 2 2ct ( r — tl) sinh 22a ( r  —

a2 . 1

(7 4)

where

~ 
8 > (7.5)

4 (~~ — a ) 2 + $ 2

at ~~
. 

~~ 

— a 
— > • (7.6)1. (~~ — a ) 2 + 8 2

This is the same result in a simpler form than the one obtained

by Ldrub (1974).

When the poles are not picked symmetrically with respect to

the Im (C) axis, new solutions may be generated. In particular,

one is interested in finding solutions that do not split up into

2w pulses and possess a spectrum not centered with the material

line. Whether such solutions exist may be decided with the aid

of (5.8). In limit t -~- 
~~ , the expression for ~(z, t) contains

t - z dependences only in the combination C~ (z) exp - 2iC it or

its complex conjugate. This combination gives a very special

- ~~~~~~ 
• - . •-

a rcr ~~-..~~ — f l  C~
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I - 
•,

propagation velocity of the envelope exp 28~-r. The propagation

velocity (or rather its inverse) is given by (compare 7.5)
t.

1 >~~

~z 4 (~ 
— a.)~ + 8

2

If the solution is to describe a pulse that does not break up,

the envelope speeds of Ca exp 28aT and Cb exp 2BbT must be

the same. This requires

1 1 
>
~~~ (7 7)

4 (
~~~~ c*a)

2 + 8 a
2 (

~~
— a b

)2 + 8 b
2

-

, I If we are considering a sharp line, with detuning 
~c~’ 

the above

may be written

aa
2 

+ 8a
2 - 2

~o
aa 

= ab 
+ 8b

2 - 2
~o

ab (7.8)

Equation (7.8) puts the eigenvalues Ca and on a circle

centered at The exponentials exp - iCkT obtained for the

case of no detuning , 
~~, 

= 0, are simply multiplied by exp - II
Ø
T.

Equations (5.7) and (5.8) show clearly the effect of such ..t multi-

plication ; ~~~ does not change , is mul tiplied by exp -

21& t —— ~: simpic frequency shift. The speflt rum is s h i f t e d  by i I

_______________ 

- - 
— -
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precisely the right amount to center it again with the line of the
material medium. The assumed detuning has been removed by the

requirement that the two envelopes propagate at the same velocity.

~

- • -

~

•

~ 

~~~~~~~~~~~~~~ --
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Conclusions

We have shown that the Zakharov—Shabat (Z-S) equations are

identical with the two-level equations of the S.I.T. problem.

In order to be aided by physical intuition in the general solution

of the equations we showed that they are analogous to the spatial

differential equations of the parametric amplifier—oscillator

problem, where the C-parameter of the Z-S equations plays the

role of frequency. The “time” variable t o~ S.I.T. is inter-

preted as a spatial variable in the analog problem.

The analytic extension of the scattering functions into the

upper and lower half planes and their properties were made under-

standable by the physical intuition developed for the excitation

of a given “twoport” from transmission lines connected to the
I twoport by exponentially growing or decaying sources. The occur-

rence of zeros of the reflection coefficient in the upper half
- 

C—plane corresponded to the growing oscillations of the parametric

oscillator.

The analytic continuation of the scat tering equation con-

tam ing the zeros of the reflection coefficients as poles enabled

one to find the shape of the scatter-free wells, the r-dependence

of the E-field of S.I.T. at one value of the spatial coordinate

z of the original S.I.T. problem. It was shown (following

P~blowitz et al.) that the position of the poles is z-independent.

This fact, and the fact that the residues are independent of the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
— ~~~~~~~ - —-~~ 

- • . -  — -~~~~~~- - ~~~~~~ -
-.

~~~~~~~~~~~~~~~~~~~
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time variable t was used to get simply the spatial (z-) de-

pendence of the E-field. 2w- and 0-ir pulse solutions were

obtained very directly. We also showed that there is no soliton

solution corresponding to an off-resonant zero-pi pulse.

I 
• 

. J 4- -

~~~~~~~~~~~ ~~~~I -
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Figure Captions

Figure 1 The linear absorption over 1 km path in the atmosphere

(due to H20) as a function of frequency (cm~~).

The curves were calculated by S. A. d ough using AFGL

Line Parameter Compilation.

Figure 2 Flow Chart for Inverse Scattering Method applied to

S.I.T.

Figure 3 Zero-pi pulse propagation for te = tf = 100 psec as

a function of time, with space as parameter.

- 4 

- 
(a) normalized E-field

:-
~ 

(b) polarization

-
~ - Cc) population

Cd) intensity (watts/cm 2)

(e) magnitude squared of Fourier spectrum.

Figure 4 Three-dimensional displays of zero-pi pulse propagation

for te = tf = 10 psec as function of time and space.

(a) normalized E-field

(b) polarization

(C) population

Cd) intensity (watts/cm 2 ) .

_ _ _ _ _ _ _ _ _ _  - .
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Figure 5 LoBBy propagation of zero-pi pulse versus distance

(cm) ; t
e = tf 100 psec; values given in (7.10).

(a) pulee area

(b) normalized pulse energy

(c) linear and nonlinear absorption coefficients

Cd) ratio of nonlinear absorption coefficient to

linear value.

Figure 6 Lossy propagation of zero-pi pulse, with distance

(cm) as parameter; te 
= tf = 100 psec ; values

given in (7.10).

(a) normalized electric field

(b) population

(c) intensity (w/cm2)

Cd) squared magnitude of Fourier transform.

Figure 7 Lossy propagation of zero-pi pulse versus distance

H (cm); te = tf = 10 psec; values given in (7.12).

(a) pulse area

(b) normalized pulse energy

• (c~ linear and nonlinear absorption coefficients
•1

(d) ratio of nonlinear and linear absorption coef- 
—

ficients.

_ _ _ _ _ _ _ _ _ _ _  _ _
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Figure 8 Lossy propagation of zero-pi pulse with distance

(cm) as parameter ; te = tf = 10 psec; values given

in (7.12).

(a) normalized electric field

(b) population

(c) power (w/cm 2)

Cd) squared magnitude of Fourier transform.

Figure 9 Lossy propagation of zero-pi pulse versus distance

(cm); te = tf 1 nsec; values given in (7.14).

(a) pulse area

-
. 

(b) normalized pulse energy

Cc) linear and nonlinear absorption coefficients

Cd) ratio of nonlinear and linear absorption

-
~~ 

- coefficients.

Figure 10 Lossy on- and off-resonant prcpagation; te = tf =

100 psec ; Fourier transform magnitude squared as a

function of frequency (cm~~) and space (cm).

• (a) on-resonance case

(b ) t~w = 0.05 cm~~

(c) t~w = 0.10 cm ’

Cd) ~w = 0.20 cm ’

_  

-

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -
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1

Figure 11 Three—dimensional displays of propagation for off-

resonant pulse versus time and distance te 
= tf =

100 psec; t~w = 0.05 cm 1

(a) normalized electric field

(b) polarization

Cc) normalized population

Cd) pulse intensity (w/cm 2 ).

Figure 12 Three-dimensional displays of normalized electric

field versus time and distance; te = tf = 100 psec.

(a) t~~ = 0
(b) ~~ = 0.10 cm~~

(c) ~~ 0.20 cm 1

(d) Aw = 0.5 cm~~~.

Figure 13 Three-dimensional displays of normalized real polari-

zations (imaginary parts are not shown) versus time

and distance; te = tf = 100 psec.

(a) ~w = 0

(b) ~w = 0.10 cm~~
—1Cc) 1~.w = 0.20 cm

$1

Figure 14 Three-dimensional displays of population versus time

and distance; te = tf = 100 psec.

-
~~~ Ca) t~w = 0

(b) Aw = 0.lG cm 1

—1Cc) Aw = 0.20 cm



117

Figure 15 Three-dimensional displays of pulse power versus time

and distance; t
e 

= tf = 100 psec. -

•

(a) A w = Q

(b) t~w = 0.10 cm 1

—1(c) Aw = 0.20 cm

Figure 16 Lossy propagation versus distance of on-resonant

zero—pi pulse for te = tf 
= 100 psec.

Ca) pulse area (real A and imaginary B)

(b) normalized pulse energy

Cc) deviation of the pulse velocity u from the

speed of light in terms of 1 - u/c

Cd) loss coefficients for linear and nonlinear

absorption

(e) the ratio of nonlinear to linear loss.

Figure 17 Lossy propagation versus distance of off-resonant

(Aw = 0.05 cm ’) zero—pi pulse for te = tf = 100 psec.

(a) pulse area (real A and imaginary B)

(b) normalized pulse energy

Cc) deviation of the pulse velocity u from the

speed of light in terms of 1 - u/c

Cd) loss coefficients for linear and nonlinear

absorption - -

Ce) the ratio of nonlinear to linear loss.

4 
S — - - - -

~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
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Figure 18 Lossy propagation versus distance of off-resonant

(Aw = 0.10 cm 1) zero—pi pulse for te 
= tf = 100 psec.

(a) pulse area (real A and imaginary B)

(b) normalized pulse energy

(c) deviation of the pulse velocity u from the

speed of light in terms of 1 - u/c

Cd) loss coefficients for linear and nonlinear

absorption

Ce) the ratio of nonlinear to linear loss.

Figure 19 Lossy propagation versus distance of off—resonant

(Aw = 0.15 cm 1) zero—pi pulse for te = tf = 100 psec.

(a) pulse area (real A and imaginary B)

(b) norma lized pulse energy

(c) deviation of the pulse velocity u from the

speed of light in terms of 1 - u/c

Cd) loss coefficients for linear and nonlinear

absorption

(e) the ratio of nonlinear to linear loss.

Figure 20 Lossy propagation of zero-pi pulse versus distance ;

18.577 cm~~ line; te tf 
= 100 pse.~.

(a) pulse area

(b) normalized pulse energy

(c) linear and nonlinear absorption coefficients

Cd) ratio of nonlinea t- to  I in o ~~r .~b~;orpt ~ ori coufficients.
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Figure 21 Lossy propagation of zero—pi pulse versus distance;

20.204 cm 1 line ; te 
= tf = 100 psec.

(a) pulse area ; A, B, C, D corresponds to IMI =

3, 2 , 1, 0

Cb) normalized pulse energy

(c) linear (B, D, F, H) and nonlinear (A, C, E, G)

absorption coefficients for IM I = 3, 2, 1, 0

Cd) ratio of nonlinear to linear absorption coef—

ficients; A, B, C, D corresponds to M ! =

2, 1, 0

Ce) linear and nonlinear absorption coefficients

averaged over all M-levels

(f) ratio of averaged nonlinear to linear absorption

coefficients.

Figure 22 Lossy propagation of zero-pi pulse versus distance

25.080 cm~~ line; te 
= tf = 100 psec.

(a) pulse area ; A , B corresponds to IMI = 2, 1

(b) normalized pulse energy

(c) linear CA, B) and nonlinear CC, D) absorption

- 
I coefficients

H Cd) ratio of nonlinear to linear absorption coef-

ficients A , B corresponds to IMI = 2, 1

- -- . S___
~~~~~ J_- _ -
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Ce) linear and nonlinear absorption coefficients

averaged over all M-levels

(f) ratio of averaged nonlinear to linear absorption

coefficients.

Figure 23 Lossy propagation of zero—pi pulse versus distance;

30.560 cm 1 line; te 
= tf = 100 psec.

(a) pulse area ; A, B, C corresponds to IMI = 2, 1, 0

(b) normalized pulse energy

Cc) linear (B, D, F) and nonlinear (A , C, E)

absorption coefficients for IM I = 2 , 1, 0

(d) ratio of nonlinear to linear absorption coeff i-

cients, A , B, C corresponds to IMI  = 2, 1, 0

Ce) linear and nonlinear absorption coefficients

4 averaged over all levels

(f) ratio of averaged nonlinear to linear absorption

coefficients.

Figure 24 Propagation of CH
3F line in presence of absorption

of 18.577 cm 1 H 0 line.

(a) energy as a function of distance

(b) the absorption coefficient.

Figure 25 “Experiments ” defining f and f. 

— -— ~~~~ ~~~~~~~~
-
~~~~~~~~~~~~~~~~~~

•- - --  
- _ _ _ _ _ _ _ _ _ _
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Figure 26 “Experiment” defining g.

Figure 27 The functions f C C ,  r ) ,  g (~~, t )  and ~(C, t) in
the complex C-plane.

Figure 28 The trapped solutions at C = and C = Ck*.
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Figure 3e. Magnitude squared of the Fourier transform

of normalized field.
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Figure 4a. 0-n propagation: 10 ~ S - t
e 

= t f ;

normal ized electric field ; T in sec,
R in cm.
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Figure 4b. Lossless 0 — n - polarization (normalized) .
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0
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10

0

1*10-Il

~1~

~igure 4c. Lossless 0— it  propagation t
e = t f = 10 ps;

normalized N .

- - 

- 

- . --  
-



--- -5—---- - ‘---- 5 - - - -- ----- •-- —5-5—-S.----- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ss~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

132

0

L.

- 

3 0’

~~

II~

I

1*1 O~

Figure 4d. Lossless 0—it propagation te = tf = 10 ps;
absolute power (W/cm2).
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Figure 21. Lossy pro~~ gation of zero—pi pulse versus dis tance;  174
2 0 . 2 0 4  cm line ; te = t f = 100 psec .
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Figure 22. Lossy pro~~gation of zero-pi pulse versus distance ; 176
- 25.080 cm line ; te = tf = 100 psec.
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Figure 23. Lossy pro~~gation of zero-pi pulse versus distance; 178
30.560 cm line; te = tf = 100 psec .
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Figure 24. Propagation of CH3F line in presence of absorption

of 18.577 cm 1 H2° line.
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of group velocity. The reflected wave stops abruptly
at end of well as indicated.
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