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SUMMARY

OBJECTIVE
Determination of the first two moments of the ALE output detector statistics
for sinusoids in white noise.

RESULTS
Moments were determined for the output, short-term integrated output, and long-
term integrated output power spectra.

RECOMMENDATIONS

These results may be implemented on a computer to calculate ROC curves for the
ALE output detector and thus aid in the determination of parameters such as y, filter
length, and FFT resolution.
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INTRODUCTION

This paper consists, basically, of a computation of the first two moments of the
output distribution of the adaptive line enhancer (ALE) detector (figures 1 and 2). Its
primary motivation is to provide a means of determining the detection characteristics of
the integrated spectral output.

Previous results [ 1] have relied on assumptions regarding the output statistics them-
selves; i.e., that they be chi-square distributions. Although such an assumption greatly
simplifies the analysis, it introduces an artificial relationship between the first two moments,
which prevents a rigorous application even in the limiting Gaussian case typical of post-
detection integration. Ir: the present work we shall make only two assumptions; that the in-
put to the detector be a sinusoid in white Gaussian noise, and that the discrete Fourier trans-
form (DFT) length and ALE filter length be considered smaller than 7, the adaptive time
constant of the ALE filter.

We then compute the moments of the ALE detector for three cases: (a) a single power
spectrum; (b) a short term average of the output (integration time < 7); and (c) long-term
average (integration time > 7). The distinction between the two types of averaging is related
to the behavior of the converged ALE filter which is nearly constant over periods of time less
than 7 [2].

The above results are independent of any assumptions on the output statistics. If a
model for the distribution is known, for example empirically, the receiver operating charac-
teristic (ROC) of the detector may be computed. In particular, for second order distributions,
the ROC curves are determined by the first two moments as follows. Let pg and p; be the

normalized probability densities (mean zero and variance 1) corresponding to the output
under the hypotheses signal, absent and signal present, respectively. Also, let ug, uy, 0(2) and
of be their means and variances. Then the probabilities of detection and false alarm are given
by

8

it - n

For example, in the case of a Gaussian distribution (which occurs for sufficently
large integration times) for a given false alarm rate, the threshold, a, may be found in
standard tables. Then

w
w7
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which implies

T-wy _aogtig-¥)
Gl . Ol (3)

and Pp is also determined from tables.




MOMENTS OF INTEGRATED OUTPUT

Let y be the output of the detector pictured in figure 1 given by

y=13(w*x) @

where w and x are the weight vector and input vector of the ALE, * denotes convolution,
and ¥ indicates a K point discrete Fourier transform (DFT) at frequency w. For a sinusoid

input,

xg(k) = A cos w (k - ) + n(k) . (5)
The converged weight vector may be written [1,2,3]

wg(k) = B cos (wQ +9) + no(K) , (6)
where n(k) is a Gaussian white noise process and n'(k) is an independent sta(ionary'Gaussian

vector process with a correlation time of the order 7. The individual components ng are
independent identically distributed random variables.

x(k) fz\ S
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Z(k)

Figure 1. Block diagram of the ALE output detector.

The first moment of y was computed in [1]. The computation of the second
moment is straightforward, although extremely tedious, and has been relegated to the
Appendix. We therefore address ourselves here to a discussion of the effects of averaging.
To do this, it is convenient to separate the effects of x and w through the use of conditional
expectations.
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Let E(+|w) denote conditional expectation, given w. Define

v =E(ylw)

By = E(y) . @)
Then v is a random variable dependent only on w and

E(v) = E(y) = ny . (8)
It follows that E(y = v) = 0, and

(v(y -v) IE v(y -v)lw | E lvE(y-—vlw)I =0 .

Thus we may write

y=(y=v)*y
and

var(y) = var(y =v) + var(v) , (&)

where var indicates variance.

SHORT-TERM AVERAGE

Let y(m) denote the output due to the 2mth DFT.T The output is chosen every other
DFT because, as a result of the convolution in (4), it is independent with respect to x only
every other DFT (every K + L points for K <L). The effects of averaging every DFT or of
overlapping DFT’s may be computed after the manner of Appendix B, but in most cases of
practical interest will be inconsequential (cf(21)).

Suppose that w(k + mK) is essentially constant fork <K, m=1, .., M and MK <.
Although this is usually the case, it is only necessary to assume that K <7. A more accurate
treatment appears in Appendix B. Define the short-term average variable z by

M
=5 ymy
m=1
M
2 y(m) v +v , (10)
m=l

'actullly m - max (2K, K+ L)/K
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which follows since v depends only on w and hence is independent of m. Let us determine
the variance of the first term in (10):

]
E(ﬁz (y(m)-V)z) =;{§ Z E (y(m) - v)(y(r) - v)

m,r

. MLZ E mzr E ((y(m) - vy -V)IW)]

=;w-]-25 Lmzr 6mE ((y(m)-V)zlw)]

=M1-E(y—v)2 , an

Since the first term of (10) has zero mean, and since E(v(y(m)-v)) = 0, equations (10)
and (11) yield

var(z)=#var(y-v)+var(v) : (12)
From (9) and (12)
" 1
var(z)—var(y)+(m—l) var(y ~-v) . (13)
VARIANCE OF y-v

We now express the second term in (13) in a form suitable for computation. Since
E(y-v)=0,

var(y - v) = E(y - v)?

=E IE ((y - v)2 Iw)l
= E[vary(r)] 14)

where r is equal to y, considered as a random variable in x with w as a parameter. Note that
the “mean” of r is E(ylw) = v, and both its “mean” and ‘‘variarice” are functions of the
random variable w. The subscript x is included to avoid confusion with expectation taken
with respect to the entire sample space.

From (4), we see that for fixed w, F(w * x) is complex Gaussian, and hence r is
chi-square (possibly noncentral) of two degrees of freedom. Let the mean-squared and one-
half the variance of the complex Gaussian process ¥(w * x) be given by




n? = [y Fw*x)l2
A2 =L (B3 -n?) . (15)

%
Then the mean and second moment of r are [3] (the noncentrality parameter is n;’/)«f)

a2 2
meanxr—v—2)\r+nr

, 9

var =4 At 4077 (16)
1t follows from (16)

varxr=v2—n‘: . (17)

Equations (14) and (17) yield
P 2 4
Efvar (y -v)} = E(v?) - E(m) . (18)

Also, from (9)

E[var (y - V)] = E(y?) - E(v?) . (19)
Adding these two expressions, we have
Elvar(y -v)] =S EoD -3 E@) (20)

In this manner, we have removed the variable v from our calculations. The substitu-
tion of (20) in (13) yields

=Evd) (L+ =& 2 a2 N
ar@) = B (5+ 33) —u, +E(m) (z-m) - s
To evaluate this expression we need to know the first two moments of y (E(yz) and "3’) and

E(n:). The first moment is available in [1] ,T the second is calculated in Appendix A, and we
proceed to determine E(n?).

'ln the notation of {1],E(y)= 0‘214# 034-32 +ve.




CALCULATION OF E(n#)

Let L be the length of the ALE. In order to simplify calculations, it is assumed that
the analysis frequency w is bin-centered, both with respect to the DFT and ALE; i.e.,
wK = multiple of 27 and wL = multiple of 27. This assumption only affects terms of lower
order in K and L (cf Appendix A), and hence will not change the final result.

For w fixed the mean of ¥(w*Xx) is given by

L K
Ex (I(W*X)) = EX z z wQ xQ(k0+n)e‘iwn
=1 n=1
K
= z z wo A cos (w(n_Q)+¢> e—iwn
=1 n=1
L K
= Z wQe'in Z A cos (w(n—Q)+¢)e—iw(n-Q)
=1 n=1
L K2
- Z“’ s Z A cos (wn’ + ¢) e71wn
2=1 n'=1-Q

Since K is a multiple of the period of cos (wn’ + ¢), the second sum is independent of £, and
E (3(w*x)) =3 (w) Fk(A cos (wn + ¢) . (22)

Thus, from definitions (15) and (22)

2_A%K2
My 4

3L(W)l2 . (23)

We now note that l3L(W)|2 considered as a function of w is a chi-square random
variable with two degrees of freedom. Let

¥y’ = E(n'g ) . i
Then expressions (15) and (16) apply with

3
a2 =LY
w

=T

-




Thus

EI?L(w)I4 = second moment

L294, 134282 LB

=873 8 16

Combining this with (23) we have

16 16

44 44
Em) =A% <2L272+L38272+L B>

LONG-TERM AVERAGE

Consider the average output over a time longer thanr

NM

e z

ZT\M Ye
=1

This may be rewritten, for MK <,

The random variables y are a function of x and w. Since the same x(k) do not appear in

(25)

(26)

27

(28)

y(ky) and y(k») for k # k», and since the time dependence of w(k) is exponential with a
1 2 1 2

correlation time 7, z(s) has a time dependence of 27 (w is squared in equation (4))

E (z(s])z(sz)) ~ E(zz) e—2|sl—szl/'r :

10

(29)




Consequently, if N = T/r >> 1, where T is the processing time,
var () ~ 3 var (2) . (30)

Roughly speaking, the long-term average may be considered an average of the short-term 4
average, with independent samples at intervals of 7. A more exact treatment is found in
Appendix B.




SUMMARY OF RESULTS
Let us write the weight update algorithm for the ALE in the following form

Wolk+1) = Wo(k) + 2u (k) xg(k) | (€2}

where Xo(k) is defined in (5), and e(k) is the error at time k as pictured in figure 2. Define
the following quantities

vl = input noise power = E(ng)
SNR = total signal power/v2

*_L SNR
a b N R e

1 +2£5NR

¥ =E@'?)

~ur? (140 -a") SNR) (32)

where n and n’ are the noise processes of equations (5) and (6), and SNR is the input signal
to noise ratio.

x(k) e(k)

-A

2 _‘ » rik)

Figure 2. Block diagram of the Adaptive Line Enhancer (ALE).
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It then follows [2,3] that wg has the form (6) and

AZ=2v2SNR

E(n;lz) =92

B2= 56’ (33)

1
¥ a2 (1 +12‘-SNR)

where
L = ALE filter length .

Let K be the DFT length in the ALE output detector pictured in figure 2 and
assume that max (2K, K + L) << 7. Then a single output of the detector, y, with no
averaging has mean [1]

uy = E(y)
2421K2 2R2Kk212
=72v2LK+7A LK +A BK°L® . g2,2p
4 16
where
KL K3
5 i
D= (34)
Lk L3
% "1 K=L
Its variance, as computed in Appendix A, is
var (y) = E(y?) - 3%

y

where
E(yz) & 74 szz D] + 74V4D2 + B4 Az Vz D3
+B414D,+B272A2,2 D5+ B2y204 D¢

+74A%D,+B2y2 A% Dg+B4A%Dg | (36)

13




K2[2KkL2 -L3/3] ,

=
n

K2[KL2+K2L-K3/3] .

( 4
212 443, 00
4K°L°-3KL° + 5,

|~
()
n

4
k212443 _K°
k-KL+3KL i

KL 2 .13
5o IKL*-1°f3] ,

22
l‘(‘ilé_ (K2L-K3/3] .

\

r
%[KLZ-L3/3]2

Lk -x3a°

LTKZ [4KL2-13)

‘ %(—2(3 K2L+KL2 - K3)
(2K2L3-KL4+ L 15

5
'%U KL +3K2L3 13

=)
=)
I

| L2k3+2k4 -S|

3 30

D,=K4L%/8

Dg=K*L3/16

Dg = K4 L4256

K>L

K<L

K=L

K<L

K=2L

K<L

K=2L

K<L

K=L

K<L

32 &_J
Kl.+3LK i

37

(38)

(39)

(40)

(41)

K=>L

K<L<2K

2K<L (42)

(43)
(44)

(45)
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Now, suppose the output is averaged over a processing time T

N
el 1 . i !
=7 fydt"NZ)'(n) ( |

0 i=1 |
where |
N=T/max(2K,K+L) . (47) ‘
Then

var () = 3k (B -E))

1 pev2 2 . lecd
+a(TEOD - uy? +3E@D) (48)
where

E( n?) is given by (26)

Emh =14 A%D;+B2y2 A% Dg+B4A%Dg (49) ‘]
and q is, from (B-8),
alX T 2T/t
= T+ (e -D] . (50)
q ‘p 3
Note that for large T
T
Q~T T>>r1 . (51
If we write
=1
No 1
M =N/Ng (52)
15




then
A R aidl. Ly .2 41l &
var(z) Ny [E(y )<2+2M> “y*E("ir)<z 2M>} (53)
which is (30).
SIMULATION

M. Dentino [5] provides several Monte Carlo simulations of the ALE for a sinusoid
in white Gaussian noise and plots their ROC curves. Figure 3 contains the results of one of
these simulations, for which the conditions max (2K, K+L) << 7 and 7 << T are satisfied. The
corresponding ROC curve, computed using the formulae of this report under the assumption
of a Gaussian output, appears in the same figure. The results are in excellent agreement.
Note that in this case K= L and 7/K ~ 72 and T/T ~ 8.5.

80.0 L

PROBABILITY OF DETECTION, PERCENT

0.0 | 1 i |
~40.0 -38.0 -36.0 -34.0 -32.0 -30.0
SIGNAL TO NOISE RATIO, dB

Figure 3. Comparison of computed ROC curve (solid
line) to Monte Carlo simulation (X) for Pg = 104,
T=629,760, uv2 = 7.6 - 10-6, and K = L = 1024.

16




MOMENTS RATIOS — NOISE ONLY

For noise only, we have

_ 3.9
By =77V LK
4K2L2-%KL3+L4/3, K>L
E(y2)=74v4
2K2L2+%K3L—K4/3, K<L .
Thus
L gl
3
2
u
vy L ¢
ary - |2 =L
L1 K<<L .

Since this ratio is 1 for a chi-square distribution of two degrees of freedom, the output
distribution is in general not chi-square as hypothesized in [1]. Nor is it K (ratio 1/3) for
K = L as maintained in [6].




APPENDIX A: E(y?)
Our starting point is equations (5) and (6)
Xog = Xg(K) = A cos w(k - 2) + n(k - 2)
E (n(Q) n(m)) =p? Som
Wg = wg(k) = B cos (w8 + ¢) + ng
E(n;2 n'm) = 72 Som

E(nn)=0

where wo(k) is assumed independent of k for max (2K, K + L) << 7 (see (B-2)).

Note that
K L

Z(W‘ X)= z e'i“’k z G‘IQ ;k-Q
k=1 =1

z z e-in “:’Q e—iw(k-Q) ’;k-Q
E £

K-¢

L
Ze-iwﬂ ;2 Z e-iws ;s :
=1

s=1-%

Thus
E(y2) = EI3(w* x)12

L

=E z \VQ WQ WQ WQ e
’ I i 4
Ql.Qz.Q3,Q4=| ’

K-¢, K-8, K-83 K=&

b e R

Xsl Xs2 Xs3 Xs4
8‘31-21 52‘-‘1—92 53""-93 S4=|—Q4

. ei(s 1 -sz+s3-34)w

19
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The products of w and x each have three non-zero types of terms.
type 1: cos cos cos cCOS
type2: cos cos n N (6 terms)
type3: n n n n . (A-3)

All terms containing an odd number of noise terms are zero since E(n) = E(n") = 0. An even
product of n’s will produce a delta function. The second type will contain 6 = (2) terms.
We shall denote the product of a “‘w term” of type i with an “x term” of type j by (i; j).

TERMS OF TYPE (w:2)

An x term of type two contains the sum

K-2, K-
) .
+ +s.
z z K= Sj) - i(sy sj)
Sk'—' —Qk Sj"-‘l—Qj

+i(s, +
-2 A2 z z (cos 5 w)(cos s w) € i(sp*sm) ©

Snn Sm

K-min(&;,%.)
K2 ¥k +i(sp £51)
222K z o a8y
K—max(Qj,Qk)

=9

The exponential is zero only for (3,k) = (1,2), (2,3), (3.4) or (1, 4). For a non-zero ex-
ponential the sum is of the order 1, otherwise it is max(K - IQj - .1, 0). Thus

_2A2K2 o(), Gk)=(1,3)0r(2,4)

(w;2) 3

(A-4)
max(K - le ~ l, 0), otiter

TERMS OF TYPE (w3)

The fourth moment of the Gaussian process is E(n4) =34, Let B be the number of

terms for which sy =8y =53 =34 (can be shown to be K — max !Zi + min Qi). Then
i i

20




(w3) = z 6(s| '52) 8(53 -s4) 4
Sl*53

+ z 5(sy —s4) 8(s3 ~s3) v*
S1#$2

iz B0y <83} By =sp it P04

$1¥s2

+384 (A-5)

As will be seen in the final results, individual terms give contributions proportional
to powers of K and L. In any sum such as (A-5), terms of lower order may be neglected.
For example in (A-4), after summation over w (i.e., & and ¢} ), the upper term is of order

K2 whereas the lower is of order K2LorK3. In particular, oscillatory terms such as the
third term of (A-5) will be of lower order. (The reader should see [1] for more informa-
tion.) In what follows, lower order terms will be pointed out and discarded without further
comment.

The third and fourth terms of (A-5) are of lower order. Also, the effects of setting
sy #83 and sy # sy in the first two may be neglected. Her-z,

(w3) =v* [max (0, (K - 10 - (K - 103 - 24)

+max (0, (K = 10 - LK - 18- 230)| . (A-6)

TERM 3. 2)

There are three significant non-zero terms of type 3 in w. Consider first ) =25,
R3=104, 4 #43. This gives rise to

\’ 22
7 i (2K +2max (0,K - 1t - 23 ) A5=02
Q]¢Q3

which contains (see (A-4)) four contributions from x-terms plus two contributions from
x which are of lower order and have been ignored. The term £ = €4, €9 = £3, & # R, is the

same as above, whereas the term Ql = 93. QZ = 94. Ry # 22 is

i(22,~2¢ 22
¥ 2 @ 2% 4 max (0, K - 18 - 01 | AK= )2
Q|¢92

21
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This is of lower order and may be neglected. The two contributing terms are identical,
hence,

4,22w2.2

(3,2)= AR [ . (2K +2 max (0, K- 1¢;-30))] - (A7)
21,83
We note that A
)
Z (K-12) - 230) K>L

max(O,K-IQl—Q3l)=1 z

21,23 (K-12;-23D K<L
| 19)-231<K
Also,
L 2,

S>> @-gp+ PRCRY

_z (L-0QUL=-+1) (2-1)8

ot 2 L

2
= 3L L2 2
5] T (-2 2420
L)
3 13 43 3
=L2-—l‘2- +L3- +lowerordertenns~—lé— : (A-8)
Thus,

) (K-12; - 3D =K L2~ L33
21,83

The situation is somewhat more complicated for K < L. We first calculate some
identities. Ignoring lower order terms, we have for L 2 K

22




2 K 4R

AR e G e

|Qj—Qk|<K Qj,2k=l Qj=K+l QI(:Qj—K Qk=K+l Qj=Qk—K

L L
=K2+ 2K+ z K

=K+l =K+l

= K2+ K(L - K) + K(L - K) + lower order

=2KL-K? (A-9)
K L K
2 |Qj_Qk| = Z |Qj-le +2 Z z (Qj -Qk) + lower order
IQJ—QKI<K QJQk Qj=K+l Qj'-Qk=0
3 ~ 2
:% +2 S -K—; + lower order
Qj=K+l
AU RN SR MR B
== +KL-K" =KL-3kK" . (A-10)

Substitution of these expressions in (A-7) yields

5 2KLZ-13)3 o
(3, =74A%2K2 . ; (A-11)
KLZ+K2L-K3/3 K<L

TERM (3,3)
As in the previous case we consider the separate W terms. For2,=¢,, 3= 24,
€y # €, we have
1 3
¥4 4 Z [K2 + (max (0,K ~ £ —Q3|))2l
¢ 19*93

For Ql = 24; 22 = 23; g # 22, the result is the same. For Ql = !23; 22 =04 # 22, a factor

iw(Q-L
of e21w( 1=%2) enters, and hence it is of lower order.
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Let us evaluate |2, - €31 For K > L, we have

S ry-ggt= Y @ -2

2).83 21,83

bl
-

)
= Z Q]—le Q3+Q3

€193
4 2\ 2
=2-I-‘3- -2<—1-‘5~> + lower order
T L
—L4<3—§> - (A-12)

and forK <L

K L K
V 'Qj_Qkiz = Z {Qj_lez +2 E Y (Qj—llk)2 + lower order

&t et

IQJ-Qk|<K Q]Qk Qj=K+l Qj—Qk""O

K4 3
iy 2(L - K)(K-/3) + lower order
I U o R
bt e T £ S T (A-13)
Thus
X
B3 =2yH" K2+ z (K2 - 2K1ey -850 + 12; - 231%)
|Q|~Q3I<K
r 4
| akM2-Sxde o K>L
| =yh? , (A-14)
L 4
| k23 -A K<L
|
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TERM (1, 2)
The type 1 terms contain four cosines. The summation over two of them gives
B2 Z(cos €,,,w)(cos £,w) cos (&, £ )w = B2 L%/4.
From (A-4), we see that only four of the type two terms are significant. Each of these gives

a contribution of (from (A-4))

212
3

Z (cos w Qj)(cos w Qk)(cos w(Qj - Qk))
Qj,Qk

2 2.2
A K<v
*max (0, K - lSZj - le)“—T-

We now use the identity

o) + 2b
(cos a)(cos (a£b))(cos b) = % +208 ;(a—* b) + °°Zza °°z : (A-15)

All terms but the 1/4 will be of lower order. Thus the above becomes

D B P

B<A“v K~“L- 1 §

e e (O,K—IQJ--le)
Qi,Qk

which with (A-9) and (A-10) yields

3 23
WA edid P L3, k=L A
(=B AERL . (A-16)
K2L-K3/3 , K<L
l TERM (1.,3)

Proceeding as for term (1,2) and using (A-6), we get two terms of the
form

2
ph Z (cos € w)(cos L3w)(cos (2] ~2p)w max (0,K - |2} - 251)
0,8
182

2

- z (cos ¢ jw)(cos Hw) sin (21 -29)w max(O,K-lQl—QZI)
2,2
12
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since
Ccos w(Ql - Qz + 23 - Q4) = Ccos (Ql - Qz)w cos (93 - 924)w

Because of the sine, the second term is of lower order. Also, according to (15), the first
term equals 1/4 plus terms of lower order. Thus

i 2
a3=28%4 (L > max© k-1 -50)
91‘22
(KL2-13/3)2 K>L
pdy?
e i . (A-17)
(KL -K3/3)2 K<L

TERM (2,2)

As a consequence of (A-4), we are only concerned with the sets of indices j,k = 1,2 or
1,4 or 2,3 or 3,4. There will be four terms in which the indices of the two cosines in w
coincide with j and k, four terms in which they are disjoint, and sixteen terms in which one
index coincides and the other does not. We note that

(Qm'qn) 2

"
ve=Ly*

> ba,-1)e
Qm'gn

Thus (2,2) will contain

A2K2,2
3

4 z (cos We)(cos Y w) cos w(¢j~¢y) max (0, K- €= ) Ly?B?

ik

+2p2

22,2
+4 Z (cos £, w)(cos £ w) cos (L, L Jw 6(Qj-9k) max (0, K- Ulj—!lkl) A K4v

€€y L Ly

+16 z (cos ij)(cos Qmw) cos (!Zj - Qm)w max (0, K- &J—le) S(Qn— ) cos(!Zn tQ)w
Qj,Qk,!lm.Qn

2K 2,2
LK )




From (A-8) and (A-15), the first term is

KL2-13/3 L<K
B242A22 KTL : (A-18) |
K2L-K3/3 K<L
The second term is
B2y2A22k2 3
—-7——4— KL . (A-19)

The third term yields

16% z (cosszw)max (0,K- IQj—le ) 8(R,—Ry ) cos (, * Qk)

Qj,Qk.Qn
2 2
A 4K 22 p?
2 ACK2 o 24
= 8L z (cos"'ij)max(O,K— IQj—QkI)cos(QkiQk) a v 1 B< .

¢

Since those terms containing a plus sign are of lower order, four terms remain:

2¢2
4L 2 (cos2 ij) max(O‘K-IQj-!ZkI)A z( v272 B2

Qj.Qk
Also cosz(ij) =1/2 + (cos 2ij)/2); so that neglecting lower order terms, we have

o JIS 25
5 [KkLZ-1L33 K>L
B2y2A2,2 -K—zL ; (A-20)
KL-K3/3 K<L

Equations (A-18), (A-19) and (A-20) yield

2.3
3KAL+KL2-K3 K<L
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TERM (2,3)

There will be four terms in which the cosine terms of w match at least one pair
of indices in (A-6) and two terms in which they do not. The first four give

4B2 72 2 z (cos €) w)(cos LHw) cos(2) - L)w
21,209,803

‘ . | K max (0, K- lQl-Qzl) + max (0, K- IQl- Q3I)max(0.K-— |22—23|)

The usual identity (A-15) yields

B2y2p4 z LK max (0, K- 12,-2))
QI’QZ

+ z max (0, K- IQl-Q3I) max (0, K - |92—923|) : (A-22)
21,29,23

The other terms are

2 B272v2 z (cos Ql w)(cos Q3w) cos (Ql + 93)w cos (292(.))
QI,Q2,923
. ‘ max (0, K - IQI - 922l) max (0,K - |Q3—92|) + max (0,K - lQl -Qzl)

*max (0,K - 1¢;-23])

which is of lower order because of the cos (222w) factor.

In order to complete the evaluation of (2,3) we need some additional summation
identities. For K 2 L, with lower order terms omitted,
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TR

4
Som-itg-tgl= > | D @3-ty -4

21,22,23 Ql,23 22=l

L

+ z (2 - 23)I8) - 23
=43

= > -e31(L) (L2-2Ley+ 2¢2)
21,23

=y %(L2—2L23+2Q§)2
%

4 952 T 3
(L4+8L20+ 403~ 41303 - 8L03)

wd 1154815, 4:5_S5_u5
4(L+ LS+315-21 2L5)

S (A-23)

(Note that these summations are easily performed using the formula

b
z Qn = rﬁl_l o1~ am*ly 4+ jower order terms |
0=a

which may be proved by considering integral approximations.)
For K<L, let ) - €3/=sand 5 - ¢3/=m.

Then, since the factors max (0, IQi - le) restrict the summations to |s|<K, |m|<K, for
g = 23 s ranges from O to min (K, L - 923); and for Ql < {3 it ranges from O to
min (K, 23~ 1). Thus
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o i

min(K,L—Q3) min(l(,23—l) min(K,L-R3) min(l(,23—l)

L
R o ) B
s<K 23=l s=0 s=0 m=0 m=0
m<K

L /min(K,L-03) min(K.23-D)\

z + Z . (A-24)

L 3=1 s=0 5=0

We now must consider the two “sub-cases,” 2K <L and K < L <2K. For 2K<L,
we have from (A-24)

K 23-1\? LK+l

s.3(3-5) 3 (33

s<K Q3=l s=0 s=0 Q3=K+l s=0

m<K
L fidy BV
N
=LK \ s=0  s=0
K L-K L
= z (K+3)2 + 2 (2K)2 + z (L-23+K)?
Q3= 1 Q3=K+ 1 Q3=L—K
K
= 2 K2+ 2Key + €5 + 4K (L - 2K)
Q3=l
L
+ Z (L-23)2 + 2K(L - 23) + K?
Q3=L—K
| CP T U e T e
g =K3+K3+ 55 +4KIL - 8K + S+ KO 4K
=4k2L- K3 . (A-25)
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Also,

M
w
n
=
/\
)
+
Y R )
\_/
=
+
~
L
+
Mk
B
~
(]
[\)
-

<K #5I 23=K+1
m<K
(L-23)? g2
¢3=L-K
5 g
5 (e, K f_;)
E < 5 15583t 5" +5
Q3=

L
(-89 (L-29? g2 X3
+2K3(L-2K) + z [ 5 t 77 K+ A+,
Q3=L“K

4 4 4 4 4
K K KD LKY L opdp apd K KKK
= += + +8+2KL 4K+8+6+4+2

= 2K3L -2 ¢4 (A-26)

and

K 3 2 2 LK D <(L—Q3)2 o >2
D, = Z(—5+7)+ e e e e

<K 23l 03=K+ 03=L-K
m<K 2
K
z k4 K2g§ Qg> 4
= b G Tk - + K"(L-2K)
Q3=l
L 2
S (-2 KHL-23)" g4
S 3 2 K]
93=L—K
BB LK Lt oS B LK LE L1k
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Thus for 2K < L, from (A-25), (A-26), and (A-27),

z (K-s)(K-m) = 4 K%L -‘-39 K5 - 4k4L+ 2 K5 + k4L~ 1§k’
s<K
m<K
17
=K%L-35 CI (A-28)
Similar techniques are used for K <L < 2K:
L-K 8-\ K /Ly 851\ 2
Z 2 2 E e )
23=1 s=0 s=0 23=L-K s=0 s=0
L Aty Kyl
b R
Q3= s=0 S=
z (K+93)2+ 2 L2+Z (L+K-23)?
=t3-kH+ LK -+ a3 -k
=212k -13/3-3K3 . (A-29)
Also,
L-K 2 K 2
£ ~0.) &
% K2 "3 (L-23)° 3
2 g= z —2-+-i- (K+Q3)+ z 5 +T L
‘ | s<K 23=l 23=L—K
. m<K
- 2
L-23? g2
Q3‘-‘K




L-K 2 o3

= z k3 KZQ +.IE.Q_3+.Q_3 2\ K3 - (L-K)3 - (L-K)3 + K3
0g=1 T 2
3=

L (L-2%  (L-27 (L-29K? g3
¢ F TR T S,
23=K

which after more calculation,

K4

=-1k3-K +11 LZK" - SKL3+L43 (A-30)

Finally,

L-K 2y 2 K 2\2
o (L-2)% %
L 2.2 e &
D sm= b (2* 2> . ( :. 0
=] Q3= K

s<K 0= L-
m<K
L
z (L-23)? g2\
*’ gl 3 '
Q3=K

which after some computation yields,

5 5
24 8K _7.2.3. 1312, 1 4 L
ZSm LK -y - 2K+ KL 45 LK - (A-31)
s<K
m<K

Combining (A-29), (A-30), and (A-31), we have for K < L < 2K,

LS KL4.9.2.3 19,32
Z (K—SXK~m)--6—O——6—+6K L -GK L
s<K
m<K

+3LK4 - -173 kS . (A-32)




s

We now substitute (A-9), (A-10), (A-23), (A-28), and (A-32) into (A-22) to get

( 2K2L3—KL4+-676L5 : K>L
Qn=p2y24 | 60 6 2 6 3 0™ * a3
K>L>K
L2K3+%K4L-%K5 : L>2K

TERMS (1,1) +(2,1) + 3,1)

We note that since the cosine function is periodic, the summation in (A-2) for x of
type 1 may be rewritten (see (22)) so that the product formula for the convolution holds.

Thus,

(L) + (D) +(3.1) = E|3wW)* 13(A cos wk)4

The second factor is (AK/ 2)4. The first is given by (25). Consequently

4y 4nd
(|.|)+(2.1)+(3,1)=A—|'%- <2L374+L38272+L—l%-> ; (A-34)

RESULT

The final result is given by

FJ(yz)=(l.l)+(2.I)+(3.l)+(l.2)+(2.2)+(3,2)+(I.3)+(2,3)+(3.3) ;

all of which have been computed above.
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APPENDIX B: TIME AVERAGING THE WEIGHT VECTOR

At low signal-to-noise ratios, the eigenvalues of the correlation matrix of the input
to the ALE will be approximately equal, and the system of linear difference equations (31)

will exhibit a single time constant 7 given by (33) [1,7]. Then, with equation (6) as an
initial condition

() = ng (0) ™7+ ¢ (B-1)

where ¢, is independent of nQ(O) since it depends only on inputs after t = 0. Since nQ(t)
differs from wo(t) only by a non- -random quantity (6), and since EnQ(t) =

E(n;Z(O) n'Q(t)) =E <ng(0)> e~tT =42 tIT >0 . (B-2)

This dependence is also mentioned in [6].
Let us now consider the time average of w,

"

T
|/ we(t) dt
0

The variance of q is given by

) S |
var(q')=_l“‘|-2 E / / ng(t) ng(s) dsdt
0 O
2 g .
=% / fe""sl/f ds dt
0 O
i’z P (T+reTT- 1) (B-3)
For large T
lim var(q') = 2T- (B-4)
T—o0

Note that the variable v appearing in equation (7) i 1s homogeneous in wj of order 2
(i.e., depends on w; wk), and thus by factoring out (e™ ~t/r)2 we have

E(v(t) V(0)) = E(v(0)) e=2V/7

(B-5)




Also, relationship (11) is valid for all M. Hence, if

=k Dvw . (B-6)

var(Z) = - var(y = v) + q var (v) (B-7)
where

a= —’—2 T+$ @ 2Tr-1) (B-8)
and

T=N-max(2K,K+ L) (B-9)

since y(n) is output every max (K, L + K)/K DFT’s.
Combining equation (B-9) with the results of this repoit’s second section, we have
a more accurate version of equation (30):

var(2)= <E(y2)—E(n ))

-
2N
(%E(yﬁ-u +3E @ )> (B-10)
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