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THE STUDY OF SUPERSONIC FLOW AROUND DEL TA

WINGS WITh FORCED ANTISYN METBY TAKING INTO

CONSIDERATION THE FALLING OFF OF FLOW AT THE

LEADING EDGES

ST. STAICU

BUCHAREST POLYTECHNIC INSTITUTE

This paper studies the supersonic flow around thin delta

wings having forced antisyametric distribution of

incidence., taking into consideration the separation of

flow at the leading edges. Considering an imaginary

thin wing, equivalent to a real one from a’~ aerodynamic

point of view , the distribution of pressure and aez o~
dynamic characteristics are determined.

1. PRELIMINARY CONSIDERATIONS

In that which follows we will do a study of the supersonic

flow around thin delta wings having for ced antisymmetric

distribution of inoidencea, taking into consideration the tailing

of f of fl ow at its subsonic leading edges. The.nttsy~~.trio

distribution of the incidenoes or of the vertio$l velocities

corresponds to a torssd antisycnaetrio curved delta wing according
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to a itniar function or an antisymmetric deflection.

While the incidences are very sn*ll, the pressure o~ the

wing follows approximately the stability laws in the hypothesis

of small disturbances, outside the system in immediate proximity

to the leading edges, where the corresponding velocity and

pressure are finite, though infinite values would result from

linlar theory. We can say therefore, that outside this area limited

by the angle of the leading edge, this theory is valid for the

whole wing, such that the falling off of flow becomes hardly

felt and this influence is small on the whole contents of the

wing.

As the values of the size of the local inoidences become

greater, the flow separates at the leading edge, as with the plane

delta wing with constant incidence, creating a vortex layer

which sits above and below the wing, producing an antisymmetric

movement. The vortex layer, having sufficiently small thickness,

can be considered a vortex sheet which is rolled up in the form

of a horn, composed of a concentrated nucleus and a marginal

vortex sheet, starting at the leading edge.

The incidence being variable on the wing surface, the axis

on which the horn is wrapped will be a cuj~e, and the vortex

generation Intensity of the nucleus is variable along the axis

proportional with the square of the opening of the wing. For

2.
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simplification, in that which follows, the axis on which the

nucleus of the vortex is situated is considered. to be a

straight line. Thus the system of two concentrated vortexes,

of the same intensity and sign, situated antisyametrically in

reference to the axis of symmetry ~~~ (fig. 1) at the abscissa

c and the ordinate t, will bring essential modifications on

the field of flow around the wing.

~x3

//

Fig. 1

The resulting flow, which will become more complicated ,

will be studied on the basis of the conical theory of motion

of the second order (I).

For this we will follow the direction used in prior works

(2) (li), where solutions were given the the thin delta wing

3.
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with constant and antisyimetric incidence, respectively, (forced

antisymmetry) In reference to the axis Ozi, which led toward

conical motion by the first order (conical as a matter of fact).

We will allow that thb effect of the falling off of flow

at the edge of the wing and the formation of the two anttsymaetrl.c

nucleuses consists of the modification of the field of vertical

and longitudinal velocities, having as a result the avoidance

of infinite velocities at the leading edge, as rebults from the

classical lintar theory. But It can be allowed that the effect

of the longitudinal velocities of disturbance can be substituted

through a corresponding distribution of the vertical velocities.

By that we will consider a distribution by incidenees or by

vertical velocities, forced antisymmetrically, so as to correspond

to a real case of an imaginary thin delta wing with variable

incidence, different on both Its sides, having at the same time

finite velocities at the leading edge.

It will be allowed that the real thin wing, which has in

a certain way finite velocities at the edge through the effect

of the separation of flow, is equivalent from an aerodynamic

point of view with an imaginary thin wing, having the same

variation of incidences which I defined earlier.

In order to stud y the flow more easily through the conical
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motion method, we will take apart the imaginary wing corresponding

to distribution of the above vertteal velocities into three

wing components, In the same way as in (2) ~~.(ii)t

1) the thin wing, having a variation of forced antlaymmetric

incidence suitably chosen in order to follow in some measure the

phenomena of the modification of pressures and of the vertical

velocities of disturbance on the surface of the wing near the

leading edge. Thus an imaginary thin wing is obtained with

finite velocity at the leading edge, but equal and of opposed

direction on the two sides, higher ani lower;

2) The wing of “symmetrical0 thickness, having variable

slope In the same way as the incidence of the first wing. This

wing, combined with the first, will form a wing with different

pressures on the two sides, as it is in reality;
3)  The third wing will have symmetrical “thickness”, with

variable slope and forced antisy~imetry, however in suoh a way

that, combined with the wing from 2), a nought mean thickness

is obtained , characteristic of a real thin wing. Superpositloning

the flow Rround the three wing components, we will obtain the

resulting imaginary wing, equivalent from an aerodynamic point

of view with the delta wing with the separation of the flow at

the edge.

2. THE DETERMINATION OP THE AXIS OF DISTURBANCE

VELOCITIES

5.

- --f- - -  — ~~~~~~~ - -f - ~~~~~~~~~~~~~~~ _i .~~.: . 
- 

~~~~~~~~~.



— 

—.--— —— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—--- -

In continuation we will follow the way of determining the

axis of disturbance velocities for the three wing components

with forced anttsymmetry, being necessary for the determination

of the distribution of pressures and of the aerodynamic

characteristics of the resulting imaginary wing, which are

presupposed to be the same as real thin delta wings, having

the incidence defined by the relation

4: “ io ~ i T ~~ 
(1)

We will note further

— — ~ U~, w~’ = — 
~~~ 

(2)

the vertical velocities and the incidencea w~
’, ct~ respectively

on the higher surface, w1,Qt on the lower of the thin imaginary

wing.

The movement around the wing being conio*i by the second

order, we will use the same method used, considering in this

direction the ~ z~stoal plane Oyz (fig. 1) normal on the axis

Ox1 and having the coordinates

z —  
~~
, (3)

~ 1

the axis Oy and Os being parallel, with Ox2 and Ox3 respectively.

Further we will make a similar transformation with that given

by Buseaann (fig. 2):

6.

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .



-
~ liuiiiJ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~—-~~~~~

---
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~ ~~~~~~~~~~~~~~~~~~~~~~~

— 
y zVj~~~~B2(y2+ z2)— 1— B2:2 6 — -

~~~~~~~

—

~~~~~~~~~

-— (.r = is), u,

Fig. 2

obtaining a plane which has the property of keeping the

track of the wing (y y, z “ )-— D ) in the true magnitude.

In this plane, the first derivative of the disturbance

velocities u, v, and w are harmonic functions and can be

associated to corresponding conjugated functions, in such a

way as to obtain variable complex analytic funct ions:

~
• .+- j3.

We will study each wing defined above in turn.

2.1. The antisyasetric thin wing. As a result of the -

effects of the two nucleuses of the vortexes, the vertical

velocity on the real wing is modified, as well as the first
wing component, defined above.

Thus, for the points contained between ( ..S(7cB ) for

the track of the wing contained in the plane x y + i~ (5),

the vertical velocity will be considered constant for xi constant
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where the parameter oorrespon4s to the abscissa y = a,

and for the area y ~ ~ _l,-sJU [.p,)j we will write

± 
~ 
w~ (y) — ± L,

i ~ o(Y ) ~~~~~ (7~

~tJsuch that the leading edge (y =~f~
) will be obtained

= ± .r~ w~, — -F .z’~ i~U~ -

This continuing variation of vertical velocities ( or,

more prec is~ly, of the parameter w~0(y)) corresponds to the

continuing distributions of elementary edges, situated on

the wing in the interior of the considered apace, which gives

each point y q the elementary drop.

However, taking into consideration previous works (1),

~2], the contribution of elementary edges situated in the

point y — in the expression of the axis of disturbance

velocity in the point x, applying the similar hydrodynaisic

method, it will be

Q~
,, COSh ~~~ ~~~~1 

~ 
(9~

These oo~trIbutions of the edges in the expressions of

the axis of disturbaree~a~d vertical velocities on the wing

are realised placing on the trace of the wing from the plane

x • y + 1) (5) some singularities (sources) by order two.

8.
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In this way we can get in calcula tion the effect of

the two nucleuses of the vortexes concentrated among the

continuing distribution of sources. This division will be

necessary to satisfy the conditions imposed by the problem

of obtaining concomitant axis of disturbance and vertical

velocities indicated above on the basis of observations

and the resulting experiments. From tha t we will chose

a liniar variation of intensities of sources:
q’(y)  = - ki) (

~ <~~ < 1),

which, in the case of homogenous motion of the second order

(n — 2), is written

q~0 = -
~ ~;o(I .kI.)~ q~ + — kI) ( f l )

The axis of disturbance v~locity for the thin wing

component will be obtained through the addition of the

contributions of all the elementary distribution edges and

of the subsonic edges ri) under the form

= 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ .r (O Sh ~/- ‘ - +

+ -— ~ )~q~o rq~1) cos h ’l/ ~ 
i )  

(t v) —

— 

‘

~ 

— - 
~ 

xq~1) 21(~~~-(- r ) 
(1 1), 

(12),

which, after the accomplishment of the calculations, becomes
= -_4~-~- - _ + ~~~~ r eos !~~ ] /  ~‘ —

V12~~~x2 7~ V 3 2

q;1 3’ iR ~r)(1 — 
R -~ . r)  ( f i s h 

72 ~~
27

9.
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• ‘ I ~~~~~3 \  12 1
— q2~3)(~ I- ‘)i I — -- - -  I cosh ’ . .

~~~~~~~~~~~
- +

21 / l( * -f- ,r)

-4-- ~~~~~~~~~~~~~~ 1 q 1 7J~/1 - — ;: ~1’ (1 3)

in whiohAL,,Q~ ,Q~~, ~
‘ , are some constants which will be

determined below,~~~ , being the intensity of a source sitting

in the origin (x 0), due to the central edges which appear

at the wing with forced anttsymmetry.

2.2. The wing of symmetrical thickness having equal

slope with the incidence of the first thin wing. Through

the introduction of this wing of symmetrical thickness, the

accentuated peaks of pressure on the lower side of the wing

is removed, where the distribution of pressure obtained through

the auperpositioning with the first wtng component will be

different from that on the higher side. Following the general

method of conical motion (i), for a wing of symmetrical

thickness with the variation of slope given by the same

distribution of sources (ii) we will write the following

expression for the axis of disturbance velocity:

~~ 
.,. f - I~i )  (1  - -

II , -c.— 
)~~

I - 
j 

I •~- J ~~) ’ ~~~ii 
~ 21J ( - 1 ——— r )  

111

2 ~
( 

~ \ ~/([~ 1~i~~( t  f - I~.r)

~ 
— 

1 j ( i ~ —— rq~1)cu.~ /i 
I7 21~~ —f— .r (‘~

F (I 1 t 0 s h 11J ~~~~ 
I L .  ( I l ’  4

Accomplishing the integrals above, we will find
- i/ ~~~) { ( 1  

1 ± 
~ ~~ ,~

-i T —

~ i 11(1 —

S 
10. 
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— — S 1- 1cosh ’ -~ ~~~~~~ —21 )

— (~~ 
— q~1 j ) { ( 1 -

~ 4i — 
— 

~f lco~ ‘~~ l + 1 i2 1 . c  
—21 ) l i ( l + J )

— (~ —I -~) ( i  — 
-- 

—~~CO~~h ’  
I } B 2 ~u~ 

—21 ) B(~~± .v)

~V’ ~~- ~ 1~~~~~[(~izi ‘iii — s i&~ (q0 — 2q 1 1) —

— -
~~~~

‘ (Vf ~— W1~ — Vf ~7~ 2 ] J  + ~~
- Q~~x cosh-t~~-,~ ±L, (1

~
)

where L represents the contribution of the subsonic edge

• having the slope equal with~~,~X, , and the term which presents

the ooefficient~~ Q~ 
appears only tfl~the case of forced

anti, symmetry.

2.3. The wing of symmetrical thickness compensates

for slope. The introduction of the effect of the wing from

point 2.2 makes the resulting wing have 0symmetrical thickness0.

In order to compensate this work, we will introduce a new

distribution source of a certain form, which wi]l restore the

wing to a mean nought thickness. The variation of the vertical

velocities w” given by these sources will correspond to a

compensating wing slope0, having still a symmetrical thickness

in reference with the axis 0x3, and antisymmetric face for

Ox2. This wing, having at the edge of the wing the velocity

, will cancel the mean slqpe and the effect L of the

slope of the edge of the wing 2.2. The distribution of sources

of intensity q” will be necessary to create on the lower side

11.
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of the wing a distribution of pressure without 
accentuated

• peaks, approximately lintar, with the exception of 
the points

near the leading edges.

To simplify, we w il~l take the following 
expression of

• the distribution of the intenBit~.eS of the sources
:

— a. •v) ., •s — —

q20 —- q20 , q21 — q21 , (-  - I • •~ ~~. (~ 
(1)

We thus obtained two large wings in order to form

a single one, havtng the slope variable in such a way for

the mean to be nought.

The axis of disturbance velocity U10 for the third 
wing

will be the following:

= = ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~0 2 1J(~ a)

cos h_hl/(~~~~~~~
T±

~~
T)) (t~ -~- ~r -  ~~~~~~~ ~ ~ ~~~~~ 

+

-f- c-os 1L ’ ~ 1- (~~~ r cos h 1  j/-~--~ ~ L. ( I T )

In the course of the calculations we are led to the

expression -~— -71~= 
_1-_-~_~~t~2(12 — x2) 1( q ~~ -4 q~ ~r) (OSh ’ 

l _ T R _ Lr 
—

2i~ J3 2 I 1 17(1 — 3’)

_ (q~~ — q ~~x) cosh. -~:~i÷
+2Bx[(q~ sin~~J77 F ~~ (i—Vt -• -I-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1/ ~~~ - - L, ( IS)
V J 72x2

J J  ~~ ~
‘ J ? ’ r 2
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where the term~~Q~ corresponds only to forced antisymmetry.

Superposittoning the three wing components, the resulting

imaginary wing is obtained, equivalent from an aerodynamic

point of view with the real wing, for which the axis of

disturbance velocity has the expression

= (M1~ + 
(I4~ + ~~~~~~ 

(19)

which will be the antisyametrioni face of the axis of symmetry

Ox 1 and continues in the origin 0. We will observe that the

velocity U11 on the higher surface is equal and of the opposed
sign wi th that of the lower surface, as corresponds to~the
thin wing.

3. DETERMINATION OF THE CONSTANTS

For the determination of the constants end which

appear in the expression (13) of’ U11, we will start from the
follow ing conditions:

(20)

— Im ~~~~~~~~~~~~~~~~~ 

aA (d(141\ dx 0, (20’)(.3 x d3,2 t,, d~

deduced from the theory of conical motion (I) , the integration

being made on-s semicircle ~~‘ of’ very small radius around a certain

13.
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point y •q  on the wing, contained in the interval (y.s, y.l)

(rig. 2).

Thus we will obtain the relations

— 
dw , (2 — B’-V~’) , 

— 
dw~0 ______ 

1 
_____

q20 — —i--— ii è~~ ’ ’ 921 — — 

~~~~~ (1 .—. B’-i~2)”s 
(21)

which stabilize the dependence from among the intensity 
of the

sources and the variation of the vertical velocities on the

thin imaginary wing.

Star ting from theee rel~tiofls and keeping in mind (11),

we will put the conditions at the limit in the points ~~ 
= $

and fl - 1 for the parameter i4~ 
of the vertical velocity:

— W~o’ 
q~ ç( 

~~~~~~~~ (22)
1 3. -~ 2 — B1-v)’)

w~j ~ — — ~~~ (1 — 

~) (1 
— B’i~’) ” d~, (22’)

from where we find the first relations among the constants

1~ * , ~~~~~~~~~ .~d ~~~~~~~~~~~

_(1 — Vi —B ’s’ -) - -~— (sin ’ Ifl — sin 1 Us) —

/ 4~I •

• .•~~~~~~ 
-
~~~~~~~~

“ 

.
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1(8 1 1 B 1 ~~ + ~~~~~ 

1+8~~ — -

2 ‘~ V2 — R i  ~2 -f- RI —

— sin_ i -~~~~ ~~~ ~~~ ~+ ~~~~~~~~ (
~~~-‘ I — B !  

~~ —

V2 + Bs I ~2 1U — RI

1 + B1 
— sin ’ ~~ + sin ’ ~~~~~~~~~~~~~~~~~~ ~1

~2 + Bi — 17.? )J 

-

= ft’~ — w~’ (23)

9u_ [3 (sin_ IB_  sin ’Bs -1-- ~~~~~~~~ — I?. Vi +

+ 2 (P1( 1 — B’l ’) ” — B.~ (1 — B2s’) ” .)  + 
~~~ 

(u — 172j 2)1(. —

— (1 — B’s’)” ) J = — w~. (23’)

However , for the other parts, the mean ver tical vlsoci ty

w101j or the mean incidence at.10~1 of the real wing, 
equal with

that of the first wing components or of the resulting

imaginary wings, is obtained taktng into consideration the

two large wings 2) and 3) compensating reciprocally creating

* mean nought slope and we will, be able to write 
the relation

(24)

only for the thin wing 1.1 Accomplishing the integral,

we obtain

— — 
8 . ~ 18 ~~

-
~~

- [ 8  ( 1  — 5u) (1 — B’s’) ”

15.
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Por the determination of the constants A21 aM

which appear in expression (13) of the axis velocity, the

variation of vertical velocity w~0xi, will be taken into

consideration from a point on the wing to the one of nought

ve$ttoal velocity ( for example on the Nach circle). As in

previous work £21 - C~7, in order to avoid the difficult
calculations which appear, we will consider that the lintar

distributed sources in the interval (s,l) are concentra ted in
— s for intensities 

~2O aM q2i,, in such a manner that we

have
5’ =~~ 

X
• •  

~~20 =
~ ~!~ q;~1 ( i  — s)2  (121 -

~~ 
-
~~ Q~L 1(1 —

Proceeding in this way, we will write the relations

— Ian ~~ W.ch Vt — J72~ .1 (I~ 1(~ d~c ~— 0,
I 

—

..~ur.,ul Mach I

Itii~ V t  ~~~~~~~ ‘~“d,t _ u’~ ,
atlj.~ (I .t ~

where V11 is the axis of disturbance velocity for the simplified

cass of sources concentrated in y a s given bp the expression
+ ~~ (Q,0 + (122a)cosh_ 1 j/(’ +x ’) ( l  —

~~~~~) _

V i  — 21(s ’ — a ’)

— 

~~
- (Q8u Q21I)(~o~h ~~~~ ~~Q i ~~eo~a 1 ’ 1j / ~~ ’ (~ 8)

16.
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Through the accomplishment of the integrals which appear
above on the axis ofth e ordinates (y — 0, x ~ tb) between the
limit. 0 and 00 for (2?) and on the axle of the abscissas

( y —  0) between the limits 1 and 1/B for (27~, result

(2 13’l ’) E (k )  — R ’I ’K(k) 9 (~ — 
~~‘~~ 2 V l ’ — s ’ 1(1A11 

- f 1
q20~ 1 )  

~~~~ 
— 172 ~ ‘2)  ~

— B’s”) E ( k )  — J72j2 (K (k )  — II (q, k) ) ]  _
~~

_ iq~, (i —

R2U 12 g’21 1 9 1
x - -~~ —a— -- 1 (2 — f l ’s”) H (p, k)  — K ( k )  I + — Q~,— 

>:
1— B ’ s ” I .  J ‘~ I

~ [17~i~~~~ 
— 2 E (k) }  =0, (29)

Q2l +
2~~~~

-
(~~~~2~~2 [nti~ (i +2L)(i -- 4 31(1 —

..- -f)2 q
~ij  = — w~•~,

/ (29’)

in which K(k), E(k), rI(p,k) represent the complete eliptical
integrals for the first, second and third instances respectively,

having the module k and the paramster p given b~ the relations

11(p,k)= K(k)+ — K ( k ) E ( p 0 , k’)  4 - ( K ( I ~) —

— E ( k ) )  
~~~~ 

k’
)I. 

(30)

k~~r VU_ i ~ !~, p-= /l’s” —-- l , k’ --- l?l , p,—s in ~~~~~~ (30’)

17.
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Due to the separation of flow at the edge of the wing

and as a result or the presence of vortexes on the higher side,

finite velocities are achieved in those points. Imposing

this condition, we will be able to write the relation

A 21 — 0. (31)

El iminating w~ , w~J ~~~~~~~ Q~~1 among the equations (23), (23’
~,

(2 5) ,  ( 29) ,  (2~~ and taking into coneider~t1on (3 1), we

obtain the constants q~0 and q 1  :

V J~)O •
~ 81 — - - - -

~~ 
—- — — — W~~, ~ —

— j 20 j ,1 — 1 ,1J ,. 
w10, 921 — 

j ,~
j81 —

where we made the following notations:

‘II) 217 J~2~~Vi __ Bhl2 — ( 2  — — 172~~2 — cos h ‘~~ -j +

+ ~~~~~~ + L12 (~in~~ 131 — sin~~ B )  — (17 1 — V2)  ~
BsJ Jil l

• ( . _
~ 
1—B 1 V2 .

i sin — — —- — Sin — 
~~

— -—— —

V2 — Bs

— ( Ill + V~n (~
i~

_’ l -f- 171 V2 
— ~~~~~~~ 

~~~ 
) I }‘
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~~~~~

- - • ---- -- ---

V

I~. - :l(sin-1 B! — Slft ’’ 178 BI ~i _._ f72j 2 — Bs V ~ - iø.v8)  +

-
~~

- 2 ~ LII (1 — 17212)1/ i — IIs (1 — J72 ~‘>,‘j ~~ .~~~~~~~_ 
1(1 —

5131 1

— - W12) ’” — (1 — B’s’) ” j , (33 ’~

J - _ _ _  

±(1 _ .~i)~ 
- ~~~~~

~ ( B 2 I 2 K ( k ) = 2,bJ ( k ))  V t  
_B2s’2 ~

‘ i~~~~B2~
i8[~ 

—

— B’s ’2 ) E ( k )  — J 1 ’1 2 (f f ( k)  — 11(~~k))} — B2u ’2 (17 2 1 ’K(k) — 2 E ( k ) )  .

(33”)

—

9 1 
~~~~~~

-
~~

-
~~~~~~~~

--- 172 12 V - - 

j2 

~~~~ 
—

8 ( f 7 ’I ’K ( k ) - —  2 E ( k ) )  Vt — Il ’s” I --7~
2s ’2

— il’s”) II (p, k)  — K(k)1 -4 2 E ( k )  — 1?’!’ K ( k )  -I -

+ 
48 ~$p { -

~
- !l(*;1 — r~s) (1 — U2s2Y~2 -— !71( i — i7 ’l ’y ’~ I

— 2[ Rl( 1 — R2 1!)h/2 — Rs(I — R’s’) ’~

— 3( fl 1V 1 — Il~!~ — fix Vt I?2 a2 sin ‘ 171 —~~in~~ (33’’~)

a.
The constants q22 and q21 which appear in the expression

Ui~ , given by (18), are determined taking into considematlon

the rolö of the third wing component, which will have the

mean slope: wjox1. Similarly with (24), we will write

~;~,(~1) di~ sr,0, (3$),.
19.
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from where, taking into consideration (16), we deduce

— 
Q29 J~~~~~~ J 12j 2 Vi ~ 

~~2 ~ — 2(1 — 
—

— ~~10 B’ I’ ~ 3

1 ( — 1 ~ — BI Y2 
~~~~~~~ 

1 
~
L’1!Y

~~~ ~~ 
(3’~)

— ~ in - 

Ill ~2 + RE II

— 
q21 

~ — fl272)I )2 — _!~ (1 — I7 ’1 ’)~~ —

WI. 
—- W10 — 2 8 2 1 1 3  12

~~n
1 171\ (3’s’)_

~‘~(Vi_
Il2 i2 -1- - 

~~~~ i

Taking into consideration the relation (25), we will

obtain from (35) and (355 the constants q and

~‘‘  { ~~ [(tt — 5 -
~
--)

~ 
— B2s’) 5 ’2 — (1 — B2 12) h12J_

— {Bt( 1 — 13212)3/2 — Bs ( 1 — 17~82)h/2 I —

— J~_ (Bl tJ’ 1—B ~ 
j2 . .  B8Vi~~ B2s

2 + sjii —~ B! — sin~ B .) ]  x

x ~~-~-- [B2 12 !j i __B2 12 — 2(1 — Vi~~ B2i2)1+

± -
~~~~~~~~~ 

— sin~ ’ — ~~~~~~~~~

2 I. 2 V2 —  BE V2 ± BI JJ
(36)

fit [(~ ~ 
““) (1 fi2~~2)5/ ’ — (1 — 132 l2) 52 1

171 L 15 1~ 
I I

-— ~— ff l t( 1 — 138j2)3!2 — Bs( 1 — Ji2~2)3/2] — I (B! j/i~— J32 12 —

— 17x I~~’ /72~ 2 ± sin~~ I ll — ~jn ’ Rs) } [ 1 (1 — 13212)5/2 —

I I ~~
—— - - - sin 1 RI 1_ i

— 

12~ 
- 17212) 3:2 — 

—(v
i — B2!2 -4- —h- —li

(36’)

~D.
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The constant is deduced immediately from (29),

making £21 — 0:

= — ~~~~ 
- 

(37)

For the determinstion of the constants and we

will write, similip with (2’f), the following relations:

dx = w~?j ,  (38)

m a  (~~ V~~~~ i~ ~~~ dx = ~~~~~~ (38’)

which will be integrated on a quarter cireleY of very small

radius around the origin. Proceeding in this way, we obtain

(39)

= — w~0’ , (39’)

in which w?o(O) is the vertical velocity at the middle of

the wing compensating for sippe which 10 obtained starting

from the relations (16) and (21):

Si I
— — q2’ I — ’— (I — f 7 2 f 2) r ~r -z — - - ( I  — f72~~2) - — F-
— - 

°17’I 115 12 (- 10)
- sin ’R i  \ 2 

~
+ (Vi — 172 ~

2 -

~~ 
3— j  

— I’

1i. THE DISTRIBUTION OF PRESSURE M4D AERODYNMI IC

CHARACTER ISTI CS

21,

_ _ _ _

~~~~

:

~~~~~~~

-

~~~~~~~

-
-- -

.-
~~~~~~

.-
-~ ~~~~-- -~~~ ~~~~~~~- 

~~~~~~~~~~~~~~~ 

- 

-
.
• -  

- ~~~~~~~

...



____ 
—

We have shown above that the axle of disturbance

velocity of the real wing results through the superpositioning

of three imaginary wing components, obtaining formula (19).

For the calculation of the distribution of pressure, the total

axis velocity given by (19) (fig. 3) will be considered:

U,,, U,,,,

Moving along to the calculation of the coefficient of

lift of the wing, we will make the observation that the wings

of symmetrical thickness do not give lift, so that only the

coefficient of lift given by ~the wing liftW will be taken

Into consideration:

(•1, = -
8

- —~~~u~ (11/ . ( - I I )

Taking into consideration (13), we will obtain the following

expressions of the coefficient of lift o~the wing:

7-” + q~o[( ~ 
— 

~~~ 

-
~
)
~ 

-— — -

~~~~~~
°

~~~~

‘ 

~~~ 

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . !y’ ~—
~:

l ’s. 3 1 /  a ]  1 2 1

_~J! — 4. (-$2)
1 ~3 I 1 J k ~ 

- p p s ) j J
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The coeff icient of the moment is

-- 

~~ S0 u~ y d y = 

~

-- {~
- ~~~~~ 

-
~

- 

~~ 
[( .
~ 

(1 — 

~
-) —

— 

~
— (1 — co~~ -~

-J + ~~~ i 
2 cos-’ ~ — (4 3 )

82 ( 8  •f -!_~~~(I+2~~~~(2 —

y P$~5 3 1~ . l~f l .  5 l ) ) JJ

BL ~~ O.67O /
020 ~~~~~~~ -- --/_- —__ _ _

Dirtw i~wt,ovi ,f 
preuure

It

--040 --- — - -- —-—______ - _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _

1 1 g. 3

where H is a length of reference, which can be taken equal

with the unit.

As concerns the parameter which enters in the above
1

expressions and which determines the limits of distribution

of sources, we will observe that It depends on the position

23.
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of the center of the nucleus of the vortex. In previous

works (2), (3) we analized in detail the problem of the

position of the nucleus of the vortex. In this manner, taking

into consideration the experimental results obtained by

various authors on the plane delta wing with constant

incidence, we will allow for the position of the nucleus of

the vortex the following approximate formula of variation

sith the incidence:

1 (44)
I ~~~

in whieh~~ represents the incidence of the wing in the point

which would represent the center of gravity of the aerodynamic

•ffects:

x1 —~~~. (k 5 )

As has proceeded and in previous works, we will consider

the following relation between c and a:

e = s+~~—( !— 8); ~~~~~~~~ 
_
~0~9). ($6)

5. THE PLANE DELTA WI NO WITH FORCED ANTISYMNETRY

In this case we will analize briefly the flow around

thin delta wings with the incidence aL equal and of opposed

sIgn on its two halves, taking Into consideration the

24.
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the separation of flow at the edges.

The formation of vortexes has the direct result of

producing a complex field of vertical velocities, which

will modify the flow in such a way that the pressures will

be finite at the edges.

Proceeding as above, we will chose for the distribution

of sources the following itniar functions:

( — 8 <  ~ < s),

I r ( I? )
:}: q,, (i n ) , ‘~~~ r - -- i, — 

~ U [x , 1],

in the case of the first two imaginary wing components, and

~ (~ 
1 <~~ <1), (-I~4)

for the wing of symmetrical thickness compensating for slope.

Applying the stability formulas in the exercise of conical

motion ~i), the axis of disturbance velocities of the three

imaginary wings will be the following:

(~~~~~~ A II .t 
~~~~~[(s 

— .v)I1 —
~~~

— ‘V I ‘a. 21 ) 1(s — x)

— (s -f- ~i(1 —- cos /~~~I 
12 ± 8X 

+ 
~~~~~~~~~~~ 

t.ow

25.
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+ ~~~~ [8
2 

~~
‘
~~ cos 14~’ 

!_ _
~~‘~_ cos/I~~

_ ±
~-_I+

21 ‘a. I ( s  — x)

-4- 
(19)

for the thin wing, and

(U
‘a,, 21 J B ( l — c)

1 1 —  — I + B2 l~— ( 1 -F r ) J  1 — - — J  cos h ‘ - -- ---———— —

‘a. 21 ) b~t+x)

( 8 + X \  l—B2 sx
— (s — .r) Ii — — -— I COB —--—--—----— +-

I,. 2! 1 B( ~~— x )

( 8—X \ — 1+B2 8x
+ (8 -4- x) I1 — ------- -— $ c o s h 1 —

‘a. 2! J - 17(8 + x)

— —i— (sin ’ BE — sin~’ Bs) J Vf ~~ W~ 2] + (50)

p 1t~
2 — x 2/ 

— l— B ~s~ _ 3 1+B2 s~v\
+ ~i~ -—— - — — I  cosh’— --——-----— — COS h — — 1+

~~ 
1 2! ‘a~ B (s  — .z) B ( s  + x) J

+ ~~~~~~~~~~~~~~~~~~~~ si11 ’B8j ±L ,

in the case of the wing of symmetrical thickness. For the

third wing component, ‘compensating for slope’, we will have

the velocity
k 1 — B2 Lv I 4- 132U

= .1
~~B2![~~~ 

— x2) (  cos !L 1 — cos IL 
1 ( 1  ~~ +

4- 217 j ~( 1_  J72~~2 5j fl I m i .  (51)
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We will determine the constants q0, p0, k0 in a similar

way as has proceeded and in previous work (2) - Cal~3. Taking

into consideration the relation

— - 
alu” , (52)q - 

— J~1~~
.2 I~

known from the theory of conical motion, and by the relations

(47), (li8), we will put the conditions at the limit for the

the vertical velocity of the first wing component:

— = ‘
~: 

çV i~~~~~24~, (53)

— ia’0 = q0ç (i — 
yF~~~ 7~~~~ 2 

(53’)

where w0 and w1 represent the vertical velocities at the

middle, the respective edge of the wing.

Defining a mean vertical velocity equal with that

corresponding to the incidence of the real wing, we will write

for the thin wing the relation

I (w ’i~1 ~ 
u” 7~

’ 
ç i w ’ 5~ ~~a itv ’) . ( 5 1 )

The constant A11, which we determine taking into consideration

the variation of the vertical velocity fro m a point on the

wing to the one of the nought vertical velocity (the Mach circle),

27.
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as in previous work 1�1, (37, we will cancel it, imposing

in this way the condition of nought velocity at the edges.

By accomplishing the integral remains
Macli c i R,~o) V i _ ~

_ R 2
~~
.2

I in ——-- -——— (11/, Wj
(0 . 1) X

where ~~ is the axis of disturbance velocity in the simplified

case of a concentrated source in y — s’on the thin wing.

Through the accompfl.skment of the Integral ( 55)  on the

axis of the abscissa between the limits 1 and 1/B results

~
J1ii ~ 

~ !(Y1 _ 
B2*.

~~
_
~ 1/l~~~~~~)]i 

(56)

in which s’and 
~c, 

are given by the relations

~ 

1 q0(1 
‘(1+2~~)+~~~~ (57)

1= 3
qo (I

_~~~
)

2
+p o~~~

[ q~(l — ~~ + PO 82L (57’)

Similar with (54 ) ,  we will have in the case of the wing

compensating for elope
I / ~

w = — - -- ( w” ~~ 
— ~ ~dw ”J.I ~ ~o U

Integrating the equations ( 53) ,  (535 , (54 ) and (58),

we will obtain an algebraic system of equations from which

the constants q0,p0, k0 will result:

28.
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-— - (i  — 8)2  +q~~= ~~~~~~~~~~ 
8 ’2 

_____ 
I q~, 1~ -

~ U 2 ‘a~ V 
12 

~ — — -)‘ (i + 2 -
~) 

+

(SOj

— - - i - . [B1Vii~~-B2 Li_
~
_ Bs ~/ [~~~~132~~2 H- sin ’ LII — ~ii11 1 138

—I

+ 
3

~~~
1
_ ( ( 1_ B~~12)1 2 _ (1_ B2 82)h12) _f 

~~~~ 
~~~~ (I. — (1 — 172 82) 2

2)1

= 2 117(1 _s)V1 _ B282 4~ sin~’ B1—s in ’ Bs ~- (( 1 -— B2 12)*~~
_

‘Jo 1 3131

— (1 — B282) 312) + Bl ( COS IC ’ -_ — CO B ~~~ ~~) ] [
B8 }‘i - - -  B8 82 +

(59’)

2 • l-1

+ sin~~ iIt~ — -- ------— (1 — (1 — B2 82) 812) J

— q~1 ((I — 17212)2/2 — (I — 13282)2/2 + -~~ - RI F BE (1 — 172 12) 1/2 —

— R a(l  — 132 ~2) 1/2 
~4- sin ’ RE — sin ’ Ba]  + (59”)

+ ~~ fi — (1 — B2 89~/2J} ft — (1 — 17! 12)2/2] 1

The coefficient of lift is given only by the first

wing component:

29.
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~~ {1~! [~~~~
_ 1 _~~ + ~

8
.(

’

2 ~~~ cosh ’ —F U Jo ~v 
~ 
3 I. I I $, l~ a

1/2 1 1 a 2 1/ 2 1 a_ (i —- ,~-) )] +~~o{~i _-j.~~)(1 
—

~~~

--)  ——cos

_J 12( 1  — — —
~~ cosh~ (f lu)j 2~~ 3 i i  a JJ

and the coefficient of the moment will be

- —  — —~~ - - i~J~

— {~4( -
~

-(
~ 

— — 

~~~~~~~ 

— 2 
8

2)) (
~ 

— 
R2

)h/2 
—

g q2 82 1/2
— 

~0[~ (1 —2 ,2) (’  

— 

12)  

— sin i
_J}

. (61)

Concerning the position of the nucleus of the vortex
In the case of plane delta wings with forced antisymmetry,
the lame formula is taken as in previous works:

a’ 
c~/ 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
, (62)1 1 + 1,7(~~)I’2

= 1,2 -~~
- — 0,2. (62’)
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