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THE STUDY OF SUPERSONIC FLOW AROUND DELTA
WINGS WITH FORCED ANTISYMMETRY TAKING INTO ‘
CONSIDERATION THE PALLING OFF OF FLOW AT THE

LEADING EDGES i

ST. STAICU
BUCHAREST POLYTECHNIC INSTITUTE

This paper studies the supersonic flow around thin delts = .=
wings having forced antisymmetric distribution of

incidences, tsking into consideration the separation of

flow at the leading edges. Considering an imeginary
thin wing, equivalent to a real one from an aerodynamic
point of view, the distribution of pressure and aero-

dynamic characteristics are determined.

1. PRELIMINARY CONSIDERATIONS

In that which follows we will do a study of the supersonic

flow around thin delta wings having forced antisymmetric
distribution of incidences, taking into consideration the falling
off of flow at its subsonic leading edges. The mantisymmetric
distribution of the incidences or of the vertical velocities

corresponds to & forged antisymmetric curved delta wing according

1.
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to a liniar function or an antisymmetric deflection.

While the incidences are very small, the pressure on the
wing follows approximately the stability laws in the hypothesis
of small disturbances, outside the system in immediate proximity
to the leading edges, where the corresponding velocity and
pressure are finite, though infinite values would result from
liniar theory. We can say therefore, that outside this area limited
by the angle of the leading edge, this theory is valid for the
whole wing, such that the falling off of flow becomes hardly
felt and this influence is small on the whole contents of the

wing.

As the values of the size of the local incidences become
greater, the flow separates at the leading edge, as with the plane
delta wing with constant incidence, creating & vortex layer
which sits above and below the wing, producing an sntisymmetric
movement. The vortex layer, having sufficiently small thickness,
can be considered & vortex sheet which is rolled up in the form
of & horn, composed of a concentrated nucleus and & marginal

vortex sheet, starting at the leading edge.

The incidence being variable on the wing surface, the axis
on which the horn is wrapped will be & curse, and the vortex
generation intensity of the nucleus is variable along the axis

proportional with the square of the opening of the wing. For
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simplification, in that which follows, the axis on which the
nucleus of the vortex is situated is considered to be a
streight line. Thus the system of two concentrated vortexes,
of the smme intensity and sign, situated antisymmetrically in
reference to the axis of symmetry Oy, (fig. 1) at the abscissa
¢ and the ordinate t, will bring essential modifications on

the field of flow around the wing.

rig. 1

The resulting flow, which will become more complicated,
will be studied on the basis of the conical theory of motion

of the second order (1).

For this we will follow the direction used in prior works

(2) = (4), where solutions were given the the thin delta wing
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with constant and antisymmetric incidence, respectively, (forced
antisymmetry) in reference to the axis Oxjy, which led toward

conical motion by the first order (conical as a matter of fact).

We will allow that the effect of the falling off of flow
at the edge of the wing and the formation of the two antisymmetric
nucleuses consists of the modification of the field of vertical
and longitudinal velocities, having as a result the avoidance
of infinite velocities at the leading edge, &s results from the
classical liniar theory. But it can be allowed that the effect
of the longitudinal velocities of disturbance can be substituted
through a corresponding distribution of the vertical velocities.
By that we willl consider a distribution by incidences or by
vertical velocities, forced antisymmetrically, so &as to correspond
to a real case of an imaginary thin delta wing with variable
incidence, different on both its sides, having at the same time
finite velocities at the leading edge.

It will be allowed that the real thin wing, which has in
a certain way finite velocities at the edge through the effect
of the separation of flow, is equivalent from an aerodynamic
point of view with an imaginary thin wing, having the same

varistion of incidences which I defined earlier.

In order to study the flow more easily through the conical
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motion method, we will take apart the imaginary wing corresponding
to distribution of the above vertical velocities into three

wing components, in the same way &as in (2) - .(4):

1) the thin wing, heving a variation of forced antisymmetric
incidence suitably chosen in order to follow in some measure the
phenomena of the modification of pressures and of the vertical
velocities of disturbance on the surface of the wing nesar the
leading edge. Thus an imaginary thin wing is obtained with
finite velocitv at the leading edge, but equal and of opposed
direction on the two sides, higher and lower;

2) The wing of "symmetrical® thickness, having variable
slope in the same way &8 the incidence of the first wing. This
wing, combined with the first, will form & wing with different
pressures on the two sides, as it is in reality;

3) The third wing will have symmetrical "thickness®, with
variable slope and forced antisy':metry, however in such a way
that, combined with the wing from 2), & nought mean thickness
is obtained, characteristic of a real thin wing. Superpositioning
the flow =round the three wing components, we will obtain the
resulting imaginary wing, equivalent from an aerodynamic point
of view with the delta wing with the separation of the flow at
the edge.

2« THE DETERMINATION OF THE AXIS OF DISTURBANCE
VELOCITIES
5,
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In continuation we will follow the way of determining the

axis of disturbance velocities for the three wing components
with forced antisymmetry, being necessary for the determination
of the distribution of pressures and of the aerodynamic
characteristics of the resulting imaginary wing, which are
presupposed to be the same as real thin delta wings, having

the incidence defined by the relation

W=+ wor = F @ a;Uc. (1)

We will note further
Ve — il W~ i, (2)
7
the vertical velocities and the incidences wu.da respectively
on the higher surface, w{.0{ on the lower of the thin imaginary

winge.

The movement around the wing being conic#él by the second
order, we will use the same method used, considering in this
direction the physical plane Oyz (fig. 1) normal on the axis
Oxy; and having the coordinates

T

1[:--:f [} = T (3)

the axis Oy and Oz being parallel, with Ox, and Ox3 respectively.
Further we will make & similar transformation with that given

by Busemann (fig. 2):

6.




h ) l'"" -‘3 e m  w

I - £ )

(v = b} i 18)1 (1)

Fig. 2

obtaining & plane which has the property of keeping the
track of the wing (y = y, z =7=0) in the true maénltude.
In this prlare, the first derivative of the disturbance
velocities u, v, and w are harmonic functions sand can be
associsted to corresponding conjugated functions, in such a .i
way as to obtain variable complex amalytic functions:
Ty + s {5

We will study each wing defined above in turn.

2.1. The antisymmetric thin wing. As & result of the -
effects of the two nucleuses of the vortexes, the vertical
velocity on the real wing is modifiled, as well as the first

wing component, defined above.

Thus, for the points contained between ( -s<y<s ) for
the track of the wing contained in the plene x = y + 1y (5),

the vertical velocity will be considered constant for xj = constant
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4 I3 3 ¢ 7 .
w’ = [ £ ‘w',é' = f‘ \l'l alO'Umv (‘l,

(0

where the parameter wig) corresponds to the abscissa y = s,

and for the area y € [ -1,-sJU Ls.]l we will write

w = S £y 'w;')(.‘/) - 4 £y “;O(y)l‘yhv (7'

ot/

at
such that¥the leading edge (y =+41) will be obtained

wh = + rwy = F e Ue. L

This continuing variation of verticel velocities ( or,
more precisedly, of the paremeter w;o(y)) corresponds to the
continuing distributions of elementary edges, situated on
the wing in the interior of the considered space, which gives
each point y = 9| the elementsry drop.

However, taking into consideration previous works [ﬁ).
gﬁ]. the contribution of elementary edges situsted in the
point y = 7 in the expression of the axis of distunbance
velocity in the point x, applying the similar hydrodynamic
method, it will be

T+ —a

AU = q39 cosh ! 3y —5) dy. (9)

These coatributions of the edges in the expressions of
the axis of disturbance:zand vertical velocities on the wing

are realized placing on the trace of the wing from the plane

X =y + 19 (5) some singularities (sources) by order two.
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In this way we can get in calculation the effect of

the two nucleuses of the vortexes concentrated among the
continuing distribution of sources. This division will be
necessary to satisfy the conditions imposed by the problem
of obtaining concomitant axis of disturbance and vertical
velocities indicated above on the basis of observations
and the resulting experiments. From that we will chose
a linlar virlatlon of intensities of sourcess

q'(!l)l‘q.(l»f ‘?I) (e < 5 <), (10)
which, in the case of homogenous motion of the second order

(n =2), 13 written

/ . [ ; - [
Q20 = + ‘120(1 £ ?l')' qn = + ,‘121(1 - ;”) (11)

The axls of disturbance velocity for the thin wing 4
component will be obtained through the addition of the
contributions of all the elementary distribution edges and

of the subsonic edges [1] under the form

1 Azl xr 20 s 1 l’
— — _—— 4 =05, v cosh SR
R U, = Uy Vit — a2 + 1: o1 T cosh o j

2' . . - ( + n)(l . i
+ _ﬁgn(l = 11?)((120 | xq3,) cosh IV :-”—("] S I‘) o

o ! ) I |
- ZS.(‘ o 7)((1;0 ~ :r’lzl) (‘l)ﬂl}‘lVJl :t[ 7})( ) r) s

T

UZL

which, after the accompllshment of the calculatlona, becomes

\7(.:.— ——r—— s df “‘I)zl x cosh™ IV e Lo 1

T%

12 gr

9.




2 ; S
— (@30 — q;lar) (8 .7')([ - ’»—Ql—m)oosh‘l;’.‘ 1 8z

8 ot |
+ atad 20t con 1 g/ Y 1] (13)

\ 4
in whichA;baku’;°,$g, are some constants which will be

determined belov.-:‘—QL being the intensity of a source sitting
in the origin (x = 0), due to the central edges which appear

at the wing with forced antisymmetry.

2.2. The wing of symmetrical thickness having equal
slope with the incidence of the first thin wing. Through
the introduction of this wing of symmetrical thickness, the
accentuated peaks of pressure on the lower side of the wing
is removed, where the distribution of pressure obtained through
the superpositioning with the first wing component will be
different from that on the higher side. Following the general
method of conical motion {1}, for a wing of symmetrical
thickness with the variation of slope given by the same
distribution of sources (11) we will write the following

expression for the axis of disturbance velocity:
¥ g & f & e et /(0 4 By) (1 — Ba
, U, = U, - S!(l l )(‘l:n [ wgly) cos V Jl)’(l} . l) ’ d’:

ol == v = =
=2 bl — Al — st i eosir AR + Bal
= S(l / )(q._,l, Tis,) cos h 5By + ) dn +

B g 2 1
b - Q3 @ cosh ‘V Bra il 1 (1

Accomplishing the integrals above, we will find

I . - + ¢ 21y
l/‘ {(q:u by [(l = .l') (] — ¢ F J‘J cos h™1 ] e _l“,['l G
= 2l B(l — «)

1

£y

10.




— {5 — J')(l 2 ‘11 fl-;J(:Ob‘ Wt 1 ‘;,Bzi“J__

— (45 ~ q:.-r)[(t ¥ w)(l ., e f)co.; 1 1t By
2l

Bl +x)
S ( ok f) cosp-1 L1+ Bhz]
21 B(s + x)
a1 — B2 [, . _
= _“_y,-,m & [(sm "Bl — sin"'Bs) (g3 — 2q51) —

— S TR, 2 o i
5 (V1= B2z — = stz)”+ — Qi cosh"‘V—Bil;z +L, (15

where L represents the contribution of the subsonic edge

having the slope equal wlth0¢y

X, » 8nd the term which presents
the coefﬂcient% Q;‘; appears only in-the case of forced

antisymmetry.

2+.3. The wing of symmetrical thickness compensates
for slope. The introduction of the effect of the wing from
point 2.2 makes the resulting wing have "symmetrical thickness".
In order to compensate this work, we will introduce & new
distribution source of a certain form, which will restore the
wing to & mean nought thickness. The variation of the vertical
velocities w” given by these sources will correspond to &
*compensating wing slope®, having still a symmetrical thickness
in reference with the axis Oxj, and antisymmetric face for

O0x,. This wing, having at the edge of the wing the velocity

(1))

WX, will cancel the mean slope‘snd the effect L of the
slope of the edge of the wing 2.2. The distribution of sources

of intensity q” will be necessary to create on the lower side

11.




of the wing a distribution of pressure without accentuated

pesks, approximately liniar, with the exception of the points

nesr the leading edges.

To simplify, we will take the following expression of
the distribution of the intensities of the sources:

‘ho—*q;v:‘?’y @~ q ’l’ (=T 52 0. (16)

We thus obtained two “large winge" 1in order to form

a single one, having the glope variable in such & way for

the mean to be nought.

The axis of disturbance velocity Uy for the third wing

will be the following:

1
:f;;’”e=f?/h:r—n ;; (cmh V“— Bu)(1 — Br) _

2B(n — )
_mrn&ﬂ@iﬂw) : (1 +By) (1—Bux)
2B(n + x) iT“an vmh‘V ZE&Q;T)Q
L)/ UFBn (14 B
+ cos A1 (1+By ’) 2l Haue
2B(q -+ o) dn + - Qu"@ cos h™? ”272 L (17

In the course of the calculations we are led to the

1 1 . — B2l
expression Y, = —— B — 7?)[(q20 + te NCosH i e
P o o le{ ( )[(q;o - qu @) cos Bl — )
. B? lr
— — x) cosh 1 - —toed
(g6 — ¢21 @) R(l 5 r) ]
+2BI[('12;sin-'m k"“l 1-yi= f’m)V [
+ g2t Ba? cos h“'l/ ]l 4 = Qatwcos ht V g 3 A
! {er! I}2J2

12.

(18)



” ey
where the term#@u corresponds only to forced antisymmetry.

Superpositioning the three wing components, the resulting
imaginary wing is obtained, equivalent from an aerodynamic
point of view with the real wing, for which the axis of
disturbance velocity has the expression

Uy = Uy + Uy, + Uy, (18)
which will be the antisymmetrical face of the axis of symmetry
Oxq and continues in the origin O. We will observe that the
velocity Uj; on the higher surface 1s equal and of tha opposed
sign with that of the lower surface, as corresponds to.the

thin wing.
3. DETERMINATION OF THE CONSTANTS
For the determination of the constants (1'20 and qgl which

appear in the expression (13) of Uj;, we will start from the

following conditions:

= i3 dq{") ' dw;y
= P, — PR LS d.n = —— (20)
Im (_Sa Vl B2x dz ( an dn
"Im(.s J1- B2 a* (Q%L)dw.:o, (20')
s x da? \ dny

deduced from the theory of conical motion [ﬂ, the integration

being made on:a semicircle ¢ of very small radius around a certain

13.




point y =7 on the wing, contained in the interval (y=s, y=1)

(fl.g. 2)0

Thus we will obtain the relations

, _ dwj, n(@2— B o, dw, 1 9
=" a =By BT T4 @ B ' o i

which stabilize the dependence from among the intensity of the

sources and the variation of the verticsl velocities on the

thin imaginary winge.

Starting from these relations and keeping in mind (11),
we will put the conditions at the 1imit in the points n = 8
and | = 1 for the parameter “'10 of the vertical velocity:

g2 (' (=) (1 — B
1), 42— By

(1 anl0)
wiy — wig =

dn, (22)

*

i
Wiy — wig' = — "1;’ S (=) (L — Bx*)"dy, (22')

from where we find the first relations among the constants

+ 4
%20, 931, W,(g) and Ws?:

3 -
~2— q;o[Vl — Bt — Vl — Bt — cosh™! —1— + cos h™? __l__..__
Bl Bs

’ — o e—
._(1 - _l-)Vl — Bt ifl_l. (sin~! Bl — sin~! Bs) —




M S SOSR Tp——

—l(sin“ l‘:_lil_&’g__} 1Bz 1 Bs)2
V2 — Bl V2 + Bl y2 — Bs
—g8in~} !_;F__Bii_y_é_)_,_ q.;1-_ ( in~! l___'_':_Bl Vé o
V2 + Bs V2 Bt /2 — Bl

1+BJ3 _ i 1= B V2 4 sin-1 11 Be V2
V2 + BI V2 — Bs Y2 | Bs

= wif — wiy, (23)
9;,1_ 3 {sin'Bl — sin~'Bs + Bl J1 — B%® — Bs |1 — Bis?
8B B
4+mnu1—3mwuﬁmu-mﬁw)+—§(u-mm%—
5Bl
— 1= Breys ) | = ot — . (23)

However, for the other parts, the mean vertical vleoclity

w, xq or the mean incidence & ,x4 of the real wing, equal with

t;gt of the first wing components or of the resulting

imaginary wings, is obtained takhng into consideration the

two large wings 2} and 3) compensating reciprocally creating

@ mean nought slope and we will be able to write the relation
1, wion) dn =, (21)

only for the thin wing 1.1 Accomplishing the integrsl,

we obtain

q.
1 21
W, w’w’ R ...}

8 »
4syqa{g[“wl—5nu._thwm

15.
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— Bl - B"l")"'] 3{’“” ~ W~ Bl = Ma)y.]~

—3(BW1—J#P 1uvl-un*y9u'M~sm*uqr

(=)

For the determination of the constants A, amd d;l
which appesr in expression (13) of the axis velocity, the
variation of vertical velocity ';0‘1 will be taken into
consideration from & point on the wing to the one of nought
vettical velocity ( for example on the Mach circle). As in
[ previous work [2] - (4], in order to avoid the difficult
calculations which appear, we will comsider that the liniar

distributed sources in the interval (s,l1) are concentrated in
y = 8% for intensities Qyp and Qzy, in such a manner that we

have ’ T y P ha o
¥ me 3 = Qzu’—zl"l'.'ll(l . 71) : Qzl“‘?q“l(l — I—) '

(26)
Proceeding in this way, we will write the relations

~cercul Mach Vl — B2rd g2y
- lms = —— = =Yg =0, (27)

ariph & A

~cercul Mach d’(”;( . o -
3 de = wyy, (27)

lms V1 — B2z
ariph

dx

where U{l is the axis of disturbance velosity for the simplified

case of sources concentrated in y = l: glven by the expression

v 1 A,x 2 N
WUy = — Y = 2 545 - 0., @) cos k-2 I/ =1 S |
u F U Vi — aa + 3 (Qq0 + Qo ) cosh Siv =i

(st a)

e '::—“(on — Q) cosh! A + x)—

g I
4+ — @z, x cosh! V—— . (29)
w at

- 16.




Through the accomplishment of the integrals which appear
above on the axis ofthe ordinates (y = 0, x = 13) between the
limits O and o© for (27) and on the axis of the abscissas
(7 = 0) between the 1imits 1 and 1/B for (27§, result

(2 — B E (k) — B*CK (k) _f) g [
T 12(1 — B2 +1nq20 ga | B 1(1—1;2 '2) (1
[ s \*
— B E(k) — B (K (k) — 11 (q, m)] | l—lqm(] — T) x
i
Lo [(° — BT (p, k) — K(k)] +2entx
1 — B2 ‘2 !
x [mlzK (k) — 2E‘(k)] —o, (29)

RS S— [B’lz(l -{-21)(1 - f)zqzn + 31(1 -
o) = Br(l +2s)2 1 l
—1)2%] = — iy, (29°)
!
in which K(k), E(k), IT(p,k) represent the complete eliptical

integrals for the first, second and third instances respectively,

having the module k and the paramster p given bp the relations

1 — B% 8 T = y o
T (p, k) = K (k) + —V» i [—0- - K (W) B (g, k) + (K (k) —
— E (k) I (pq, k’)]. (30)
k= Vi_‘:ﬁiiiv p=DBW*—1, k' = Bl, gy —sin"" 3—. (30")

17.
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] Due to the separation of flow at the edge of the wing

and as a result of the presence of vortexes on the higher side,
finite velocities are achieved in those points. Imposing

this condition, we will be able to write the relation

Eliminating wy, wil | ¢j, among the equations (23), (23},
(25), (29), (29) end taking into considerstion (31), we
obtain the constants ‘1‘2’0 and q;1 :

1 -
: B e s S L o
997 7 gdn — Inda i BT foedn — Inda

where we made the following notations:
bf = :l:{z[V'f; B (z k: -‘;—)Vn Bt — cosh ‘Ilf_l ¥

+ cosh TH . ﬁ[z (sin~! Bl — sin~! Bs) — (Bl — J2) %

$

e 1T 1B .Vi)
3 — Bl V2 — Bs
PR TS I+B«V'-f‘)]} 3
- oIl 1 ol /1= QS | [ Saibells ot ' 33)
(BL+V2) (sm Ve Y2 B .

18.




1, (,,m VBl — sin) By | BIJ1 = B2 — Ble—B”a’)-;-

2[BL(1 — B*2)'h — Bs(1 - - B2g?y'h] 4 - Bl [(1 -

= 32[2)'1, . (l e B’a’)"’-

i(l_“_"
e S 8 l

PP

8 (BX2K (k) — 2K (k) Y1 — B®

(33)

AL
22
el [(1 -
1 — B

— B%'*) B (k) — B2 (K (k) - 11 (p, k))] — B2 (BUK(k) — 2B (k)[»

oJ oy = _?. i e ._I..(l-.— 1 { V -)
"8 (B R(k)— 2E(k)) |1 — Bts? i — Bzw i

— B%?) 11 (p, k) — K(k)] 4 2E(k) — B li’(k)} *

(33")

1

48 B*l’{*‘m‘" —~ Bo) (1 — BttP* — Bll — BUY |

— 2[BI(1 — B*)*2 — Bs(1 — B%?)"?

— 3BV - BB - Bs |1 — B

a® e
The constants dz2 and Q4 which appear in the expression

Uie, given by (18), are determined taking into considepation

the rolé of the third wing component, which will have the

mean slope: - wiox,. Similarly with (24), we will write

]
-'»S wisln) dy = — 10yq, (31)
1),

19.
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from where, taking into consideration (16), we deduce

e T
pp | —— a7 . B 4 — —
“’lo“‘“"l‘!"_‘ Q20 {Eugzgzvl — B2 —2(1 yi )] 4 "

B%1?
9 4 Bly2 s
1 [in1 1-— Big + sin ! l, - B )"' (35)
T2\ V3 — B ya + Bl
1 J
0 g §L 0 peyiE o — 1 — BYYE —
Wy — Wio = 2Bﬁ{3“ B?) ]2(
L (g 4. SN ’”)'\. (35')
' —E(V‘"—Bl’ Fm

Teking into consideration the relation (25), we will
L 2

obtain from (35) and (35') the constants q;; and qzix

e q;l I‘l ( 8 2 P >
o= TG — 5 =1 — B2 — (1 — B2z
0 { 5 [ . )( 4%) ( ) ]

2B
i 1_]3[8“1 — BApE — By(1 — Bpa] —
1 e . ) '
iR (BLY1—B21* — Bs|1—B2?s* - sin~? Bl — sin~! Bs)} X

(B2f1—B212 — 201 — }1—-B212)) 4

|-

g

1 . - 2 4 2!
5 ZI(% — gin-? 1 - Blj2 _ sin~1 1+ B2 )l :

K Ve — Bi V2 + BI

-

(36)

oo ‘l-:;. Bl (6 B "‘) (1 — B2y — (1 — Be2pe) —
- { 15 [ !

—— i]—. [Bl(l e B’l")axz — Bs(l — B282)3/'.’] il %(Blvl———_——l}z,li A

. 1 .
— Bs |1 B2g? 4 sin~! Bl — sin™} Bs)} [E (1 — BHH)S? —

! Bz ,‘ T BAE - ?i__n:.fl_il)]_l-
-l2(l B12) 8Vl Bz B

(36°)

al.
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The constant Q,, 1s deduced immediately from (29),

making Apq = 03

Q;l = — wiy. (387

For the determinration of the constents 6‘2'1 and 3,‘2"{ we
will write, similap with (27’), the following relations:

e N
Im CS,‘II — B2 2 dﬂl dz = wl, (38)
2 o 12(” "
Imd V1 — B2p2 (~(-15:2"(1x = wy”, (38")
ki

which will be integrated on a quarter circleY of very small
radius around the origin. Proceeding in this way, we obtain
Qi = —ul®, (39)

Qi = — s, (39)

in which w{p(0) 1s the vertical velocity at the middle of
the wing compensating for slegpe which 1s obtained starting
from the relations (16) and (21):

VL) P g _‘_(| — B2y _‘.(1 — B2 |

s o B2 15 12

5 (10)
. sin'BlY 2 :

+ —(V\ == )— r”]—‘"m-

®|=

4. THE DISTRIBUTION OF PRESSURE AND AERODYNAMIC
CHARACTERISTICS

21,




We have shown above that the axis of disturbance
velocity of the real wing results through the superpositioning
of three imaginary wing'conponents, obtaining formula (19).
For the calculation of the distribution of pressure, the total
axis velocity given by (19) (fig. 3) will be considered:

= —2Re(”‘ .

9 o

~
!
!
S
l

Moving along to the calculation of the coefficlent of
1ift of the wing, we will make the observation that the wings
of symmetrical thickness do not give 11fit, so that only the
coefficient of 1ift given by "the wing 1ift" will be taken

into consideration:

8 (!
C,=— -\ u,dy. (11)
LU \,

w0

Taking into consideration (13), we will obtain the following

expressions ofthe coefficient of 1ift ofjthe wing:

22.




The coefficient of the moment is

S ol ? (8 8 82
HC, = ~~Su dy = - —d—OQn+q|[—=(1 —=]|—
) uydy 8U. {3 Q21 + qw[(s( l’)

020 —
Distribution of pressure
DISTRIBUTIA Lt PRESIUNI

T 04 06 08 Y

B | S it

Y| NN s gl o
Fig. 3

where H 1s a length of reference, which can be taken equal

with the unit.

As concerns the parameter o which enters in the above
expressions and which determlnei the 1imits of distribution
of sources, we will observe that it depends on the position

23,
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of the center % of the nucleus of the vortex. In previous

works (2), (3) we analized in detail the problem of the
position of the nucleus of the vortex. In this manner, taking
into consideration the experimental results obtained by
various authors on the plane delta wing with constant
incidence, we will allow for the position of the nucleus of
the vortex the following approximate formula of variation

sith the incidence:

L & PIREITE.. e (44)

4
in which ot represents the incidence of the wing in the point
which would represent the center of gravity of the aerodynamic
dffectss

xl '-3- . (’4'5)

4

As has proceeded and in previous works, we will consider

the following relation between ¢ and s
c==s4-%41-s); (:-f-u2»;—noz)- (16)
5. THE PLANE DELTA WING WITH FORCED ANTISYMMETRY

In this case we will analize briefly the flow around

thin delta wings with the incidence & equal and of opposed

sign on 1ts two halves, taking into consideeation the
24,
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the separation of flow at the edges.

The formation of vortexes has the direct result of
producing & complex field of vertical velocities, which
will modify the flow in such a way that the pressures will
be finite at the edges.

Proceeding as above, we will chose for the distribution

of sources the following liniar functions:

m%’- (— 8 <17 <s),
v,,]f
im(l~“lynqﬁ‘h—8HJBJL
in the case of the first two imaginary wing components, and

) =k (~l<n<D, (4%)

for the wing of symmetrical thickness compensating for slopee.

Applying the stability formulas in the exercise of conical

motion [1), the axis of disturbance velocities of the three

imaginary wings will be the following:
fll:;‘—".A"I *“q—“[(ls—-v)(l«‘f‘+ TL»‘)(:osh“l-zn-"’f'f—
yez — a2 1 21 (s — )

e 2 5 ——
=(& = “)(l ~= T) b hﬁl”l T + @ /1 =2 (-mf‘:‘i 1
20 l(s + x) )
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2
Bef8 — % h-l B—ap ool ol
e L e I(s+)
e A (19)
+ mvl_d-l-zrsm . l]
for the thin wing, and
49 __l+w "_11—13211»__
d(,_ﬂ[(l w)(l = ._.)CObt B —

— _ R2lr
— (I -+ J’)(l o o :1:) cos h7? LS

B (l 4 x)

s t+x .1 — B2s»

— o e Sl h 1 ST AR

O s ) o b2 L= B0

T _, 1 + B2sw

bt e S T heanet 1

+ (8 x)( )005 W~ s

_'éi““r‘Bl_s“r‘Bﬂle—-Bfﬁ]+ (50)

1] L B (s — x) B(s 4 @)

2 __ 2 =y 2 om i }2 /
3‘1[»8— 5 i (cos Rt ¥ Soret. ﬂ'— cos h"l:t—l—ﬁ) +

+ 73{1 J1 = B2a? sin™! Bs] + L,

in the case of the wing of symmetrical thickness. For the
third wing component, "compensating for slope”, we will have

the velocity
— B2lx + Ble
= ko 2(12 — 2 y )-l _! __,,Ij_.z{:l.l N h_l _,l ‘t,“_._.._) +
(l{,_—z—;hn—[l} (l .L‘)(LOSL B — ) B+ )

4-21&wVITITB2xign-’lu]- (51)
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We will determine the constents Q0 Pps ko in a similar

way as has proceeded and in previous work [2] - (¥). Taking

into consideration the relation

e nAm ; dw’ g (—r))

1 V‘ = lﬁ;ﬁ dq
known from the theory of conical motion, and by the relations
(47), (48), we will put the conditions at the limit for the
the vertical velocity of the first wing component:

Wy — W = pl"s V1 — Bq2dy, (53)

0

Ny (53")

1 — 1322
(l__ﬁ)yl_ Bn? |

1
wy — Wy = (los ! 9

where L and w, represent the vertical velocities at the

middle, the respective edge of the wing.

Defining & mean vertical velocity equal with that
corresponding to the incidence of the real wing, we will write

for the thin wing the relation
] iU L ! "
w = o (w'nl + w' | **S 7 dw' —S ndw ) (54)
l o ls 0 s
The constant A11’ which we determine taking into consideration

the variation of the vertical velocity from & point on the

wing to the one of the nought vertical velocity (the Mach circle),

27.




as in previous work [2], [3), we will cancel it, imposing
in this way the condition of nought velocity at the edges.
By accomplishing the integral remains

cercul Mach (1/B,e0 .J_V:——?_z -
Im S | B )KL e Au; = w,, (55)

aripd (0, 1) &
where U{ is the axlis of disturbance velocity in the simplified

case of a concentrated source in y = s’on the thin wing.

Through the accomplishment of the integral (55) on the
axis of the abscissa between the limits 1 and 1/B results
A [u», + Q?(VT— Bﬁs"i—l/ 1 _,?2)]' (56}
3

12

w

in which 8’and Q, are given by the relations

8\ o 8 52
w(t-7) (1+29) 2
A e e

e
qo(l — —l') + Do l’,

8 1 (57)
e

¢ = 511_ [, (0 — &)* + Pos*]. (67)

Similar with (54), we will have in the case of the wing

compensating for slope

l " { . .
= — — (w" 0| — S fdw 'J- (98)
l ‘ ()

Integrating the equations (53), (53%, (54) and (58),
we will obtain an algebraic system of equations from which

the constants Qg+Pgs ko will result:
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D__ .ﬁ(vltﬁa"é_ LS B U T
GU. 2 @ ( _i)‘(l _*_‘)_8 _i_li!’ 8_,
l 5 1) g 03
(59)
o -2%’»-[1;:;/?:‘3’225— BsY T= B¥s® + sin~ Bl — sin~? Bs +
-1
[7) D}
4+ S ((1—Bpyi_(1—B2e2y = Poy 1 _ preypyl,
ol e —( M s s))]

Le 2[8(! —s)J1 = B2s® 4 sin"! Bl—sin~! Bs | s (1 — B2ps=—
9 3Bl

Sl N N s
— (1 — B2y Bz( cos Tt — cos ! -é-)][BsVl B+

8
(59)
; 2 -1
sin"!'Bs — = — (1 — (1 — B2g2)s2 ;
+ sl s il ( ( 82) )]
By i e qo{(l — BBy — (1 — BRs?)? _';- BL[BL(1 — Brieye—
— Bs(1 — B2s?)"2  sin~!' Bl — sin™! Bs] + (59"

oS Po 1—@a- B:,z)m]} [1—@Q — Byt .

o

The coefficient of 1ift 18 given only by the first

wing component:




T

{
0 = .LS u dy = A
u_Je U

§2\1/2 1 s 2\12 1 9
Sabdia gl — = Py AT A
( 12) )]"l q“[( 3 t)( Sl
——j—z-(l - Ei)cosh“‘ —l—]}- (60)
2 3 1 ]

and the coefficient of the moment will be

]
By o e S wydy =
. 0

U ; § 3 92 _,f_ _0_83 ]2\ 1/2 Y
oo (50 =)= -2 ) (e - 1) e )
.2 1/2
- I’o[;'(l 8 ;’2)(1 - ;’:)' i sin-lﬂ}- (61)

Concerning the position of the nucleus of the vortex
in the case of plane delta wings with forced antisymmetry,

the gSame formula is taken as in previous works:
e e (62)

=12 =02 (62")
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