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DVrRODU~’2I~~

Widening flight envelopes coupled with increasingly stringent opera-

tional demands on military aircraft have ‘forced the use of more complex

stability and control augmentation systems. It is recognized (Refs . 1

and 2) that this trend has created problems in interpreting the applicable

military specification for the flying qualities of piloted aircraft, MIL-

F-8785B(ASG) (Ref. 3). For example, Section 3.2.2.1, which relates to the
short-period response, makes no provision for the dynamics of the aircraft

plus flight control system (ES) if these are different in dynamic form

from those for an unaugniented. aircraft. The specification assumes, in

essence, that the longitudinal dynamic response will have only two modes
(phugoid and short period) in the low and mid frequency regions, when in
practice there may be additional significant modes in these frequency

regions due to equalization of the FCS feedbacks. Because of these addi-

tional modes, an augmented aircraft may appear quite different to the pilot - -

than an unaugmented aircraft which appears to have the same short-period

dynamics (Ref. 14). That is, it may develop that the short-period mode

characteristics meet the specification and yet the aircraft actually

responds as if it had short-period characteristics which do not meet the

specification. This opens the possibility that it will receive low ratings

from evaluation pilots. -

•

How should this situation be treated? Are new requirements needed
which account directly fcr the additional dynamics , or is it possible to

develop lower-order mathematical models of the higher-order system that

can be reliably compared against the MIL-F-8785 requirements as presently

stated? Moreover, the criteria of MIL-F-8785 presume an analog augmenta-
tion system. There is now an additional concern for response characteris-

tics which are unique to use of digital augmentation systems. It is the

purpose of this study to identify those characteristics which are unique

to the digitally controlled system, and to review the quantitative tools

- 
- -  

i



-- —‘5-.-,— — -•--—“
~r 

‘ - - -~~~~~~~~ - ‘——~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- —  — - -  - - — - .:. ~~~~~~~~~~~ ~ : :~~~~~~~~~~~~ ‘. -~ ~~~~~~~~~~~~~~~~~~~~

IV ’t  I lab It’ wIt I cli ~eV!n1 t ait Ssea$ntt’tt 1 0 r t itt ’ t’ t’ret’ t 5 0 t t - lWSt ’ un i que  e tn i  I~~~Ie —

I en t at  lea r~ I ~t I I ye I o t he M t 1~— I ’ —~~,’C~ ‘ r equ i rement - s .  (lie 1 ar~ er I astir o

what attd l I totta I r Lv I ttg t iwl I I tes t.r I I c’r I a are’ requl red Is out a I t t r  t he ~~~~~ ~pr

o 1’ t b  I ~ research.

The rea iii I -s it t .hi a a I-tidy I t t ~i ~‘~i to t.ha L t ,wo I mpo r t -ant .  t ’t1%r aL ’te r i  at  I ~‘a

ar e In t.ro~ttn’e.t by dig I tal eon t. r ot 1 awn . They a t’o

• Thc ’ 0 t ’t ’c ’t ’ I I ye LIC ’ I nv I nt r~ ltzt’ed by t .he A P ant I P ‘A
prt t ’eas antI t h e  do l ay  t n t .  rothit ’otI by t he’ ti I ~I t a t
at got’ l thm n awl ~

‘
~~ 1t1a it at  IL ’II %i~ .1 t’ramt’ I I me it  t. I it’

eoiu’pt t t .er ey e It ’

• ‘Vt te II . , t i  t - r i  I rotzghitieaa or lit to t’—a mtpIe r I ~p I
i t t t  r, ’dtn ’e~t when t . l t t ’ ti I g I ta I eomput.er I a eottp I Ott

I -i t Ii~ eottt rot ~~~~‘ t t u ~ ira tis I ug data Ito I do .

flit ’ r Inn t ~ttar’te t ~ r t a t  Ic is ‘t ’ great  e0 l t c~~- ru I o t Ite 1’ ly I h g  qua I It II’S corn—

muit It y a I tee t’ ve i t rc ’ ta t -  I ye ty ama I I cit’ I n,v a are pot t ’l t t  I a I ,v I 1IIJ IOV t i f i  ii Itt t ’ t ’  r —

I alit e leae~l —  loop  p1 tot lug tasks I uvotv lug nut Ion cue s anti p1 l o t  — i t t d u ~’e~i

I t  tat- I ot t  puss lb III ties. t~~aatn’es ~ 1’ t he e r t ’e~’ 1 1 Vt ’ I line de lay t a t  rut1uce~1

by I lit’ A -1 ’ , comput at t ot t , P ‘A t ’O t t V t ’t’S I o t t  process c a l t  P t’ ( ‘Ofl t 1t tl t I’d using a

var le t  v UI’ aita Lv t tea l t ech u I qttes t.tta t- apply  a t  t lie s~unp 11 tig Ins t -ant s .

examp ti’, w ‘ —
‘ 

W —  • ‘ ‘V ~—d~Mna-t ii aim l,ysea and U I aeret e t’reqtieney response t o e t t —

i t  Iqitea cati be appi  ted erret ’t lye ty t o  o b t a i n  Pot ti a qu ah i t -  I t a t .  lye and qua I t t  a—

I I ye eva tua t - I o t t  or t i  ~ ‘ tIe 1 ay I i t t  r~ ‘thiced

Titr at’ .,‘Uhtd t’IIa i.’i’ It ’ r •
~ I I I or ~~~~~ a I ~~‘~‘ a I Ve ra I’t, no ap~ at ae

rosu .t I I Itg t’rom e~ait .  i’o I r ougtua .aa I a III e t’t’t~t’t- nit add I t. I ~‘tta I ~t.l a t5iirl tnet ’

• t’~~reovcr • the a t  o p — l I k e  ~‘un t. l’O l ~t~’ 1.1 i ’e t. I otto t ’at iaett  by the  use o

~u’ ro— or~le r ~lat a hot ~ta t.aht p r~ Itict ’ ~~~~~~~~~ a a I ye at ’ t -ua t . ‘r won r and t’nt. 1gw’

damage • rett uc I ug aerv I ee l i t ’, ’ aIl~l ‘or t’t’ II ab I I I  I v  ol ’ (lie aircraft. a~’atem,

Ph i  a so eun~t eharne I.e r I a t .  t o I a niore ti I t’r I t’u I t . t o  ~u’ ’ot ’ a I nec It . Involven

I. lit ’ t.t’apoutao or the ciii I. h u t .  ‘i ts :tya t.t’itt cttir I ng t 1k’ ~t ut er— tII~~1e lu tE’ rvaT
Th ere t’ore , na lyn I a too l a aut’h an t h e  “tiample d apec t.rum~ ( sampled t’rt ’ lt t t ’lt& ’Y
response) a r~’ u t’ II t.t. it ’ value • It. is lb In ui_un’ rvn t. I on wh I ch prompted t h e

deve1oj~nent. , dur ing t h t a  atutty , ut ’ a baa It ’ an a ly sI s  t.oo~ t ’or comput ing i-lit ’
:;pt~ot  t~~i I ~‘trtt ~‘itt . ot’ t h e  eunt . liutoun t’eap~\htaes ot’ a dl  at ’ret .t ’ iy ~‘oti t - i’ul led

ova t.ent • We are ttimp t.ed t.o tiost ’ r I be th I a me I-hot! o t ’ ana lys I a as “ t’rcqucnoy

~

. -- _



. a,-’ ~~~~~~~~~~~~~~~~~~~ -.-—.—-—.. ,w .%-._ 

— 
, - -,-.-- ‘5

~~
.-,- - -

- .—
~~~~~~~~

—--‘-- .--—---— ---—.- -- -- —~----—---- ----- - - - — J 2 ~T: .

resl’lonse” evaluation since it applies equally for continuously controlled

systems as well as multi-rate discretely controlled systems. However,

this must be further qualified. This is necessary because of possible

confusion with the concept of the “sampled spectrum.” In computing the
sampled spectrum one finds the lowest frequency sine wave that fits the

sampled response at the sampling instants. The sampled spectrum is com-

monly, but incorrectly, understood to be the frequency response of a dis-

cretely controlled system. For this reason it is preferable to describe

the new method more precisely as the “continuous frequency response of a
discretely excited system.tt  Once a method is in hand for computing the

- 
~

- spectral content of the continuous response, then one has the means for

¶ assessing both of the digital characteristics discussed above. The fre-

quency response magnitude data can be used to quantify control roughness,
• while the phase data can be used to quantify the effective time delay.

There is another main objective of this study effort — that of giving

the practicing engineer working familiarity with three analytical tools we

consider to be well suited for the analysis of digitally controlled systems:

1) Analysis (and synthesis) in the w ’-domain.

5 2) Multi-rate transform domain approaches.

3) The continuous frequency response of a discretely
excited system.

The w ’-domain is related to the well-known w-domain by a scalar trans-

tbrmation and to the z-domain by a bilinear algebraic transformation. We

believe that those engineers skilled in frequency domain design procedures
will immediately feel at home with analysis in the w ’-domain, since all

H analog control system design technolo~ r transfers completely for digital

control system design.

The second item deals with a multi-rate transform domain approach that

has been developed into art effective tool for analyzing the transient inter-

sample response of discretely excited systems. That is, it yields recur-

sion equations describing the inter-sample performance to arty degree of

fineness desired without increasing computer storage requirements. A basic

understanding of this approach leads to the development of the third tool

3
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which gives the continuous spectrum of a discretely controlled system .
It is this third tool which we perceive as being of’ the greatest value to

those eng ineers working at the flying qualities , digital fl ight control
system interface.

In Section II , we will f i rst review the fundamentals of sampled data
control theory to the extent necessary to “refamiliarize ” the engineer
with its term1nolo~ ’ and background mathematics . No proofs will be given;
we will simply state results and give illustrative examples to demonstrate

viewpoints which will be needed at a later point in order to develop an

understanding of the three analytical tools mentioned above . This sect ion

will also serve to introduce a multi-rate terminology and give the reade r

a chance to gain familiarity with the notation (always a crucial factor in

how easily a report re I:’).

Section III is devoted to modest extensions of classical analysis and

synthesis t .eehni que s for digitally controlled systems . Emphasis is upon

analyses conducted in the w ’-th’tma In .  The w ’—dornain offers the advantage

that non—minimum phase effects ot’ the sampling and data—hold operations

and of sampling rate cart he diret’t.ly accounted for without approximat ion

while using conventional frequency domain design tools such as root locus

and Bode plots. These conventional frequency domain design tools cuw be

used to considerably greater advantage in  i-he w ’—domaln than in t h e  w— and

z— domain , because several more powerfu l analogies between I - I t ~ .~-~L~naii i  m it t

the w ’—dotnain exist. These analogies arc , in a sense , the key t o  exp l o i t - -

ing the w ’—domain for design purposes , making direct design in t In ’ w ’—tlc~m tiut

more attract i ye than either optimal procedures or the numerous utpprox iinnt .t ’

methods. First, the basic propert ies wh ich make the w ’-domaiii pret’erablt’

to the z-domain or w—domain arc revi ewed. Following th is , illuntrat,Ivi’

examples are iu5r’il to highi .lght t .h~’ analog ies Petweoti a and w • Final ly

we demonstrate the clear manner In wiil cli the auttat I t i i u tn u uu— p la t s e  t’ t ’t ’ec I S ut

sampling, data—hold opertit i otis • mid sample rate are evI d ent In the w ‘ —doma in

analyses.

Almo st all existing or contemplated digital flight control sy stem s are

multi—rate in nature . The predominant reason for th is  in the tiet ’eao i t y  t o

work w i t h i n  the basic r’st.r I ct . l ouia I mposed by computer word l en g t h , memo ry

71 1.1
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capacity , frame t ime , etc . Thus , it is typical , for example, to update
inner loops at a faster rate than the “slower” outer loops .

A basic transform domain approach, the “T/N method ,” which eliminates
a variety of dimensional and indexing problems associated with state tran-

sition (Ref. 5) and switch decomposition (e.g., see Refs. 6-8) methods , is

developed in Section IV. The approach is very efficient for comput ing the
response of discretely controlled continuous systems at both sampling

instants and at equally spaced times during the inter-sample interval. The
methods also requires a minimum of information to define the system for the

computer program.

The T~~ method discussed in Section IV is used as a departure point in

Section V to extend frequency response concepts to include the continuous

frequency response of a discretely controlled system. The discrete fre-

quency response concept (e.g., Ref. 7) has not been particularly productive

for the analysis of discretely controlled systems, since it is limited to
determining the amplitude and phase of’ the single sinusoid that fits the

output samples of a single-rate system at the sampling instants. Develop-

ment proceeds by first removing this restriction for open-loop systems and

then extending the results to single-rate closed-loop systems. Finally, the
solution for the multi-rate closed-loop case is developed using the results

of Section IV.

Although each section contains a representative number of illustrative

examples, an application pertinent to the flying qualities/flight control

system interface is not taken up until Section VI.

Section VII contains the conclusions and recommendations. The appendices

contain support material, much of which will be familiar to practicing engi-

* 
neers.

*But the computer program is somewhat restricted as to the form of the
problem that can be aceonmiodated.

S 
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. 

~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~

SECT I~~ II

It~T1~~(ATICAL PRZLD1D(AR~~~

A. ~~OBZ~ ( SCOPE

Systems governed by linear differential and difference equations with
constant coefficients are reviewed. This is a framework which can ade-
quately deal with aircraft nonlinear equations lInear i~ed abou t an opera-

t ing point . In the treatment of discretely controlled systems, “impulsive”
sampling op erations are assumed. All clevelopnents will. uSt’ vector nota-

t ion , although acalar examples will be used frequently for i l lustrative pur-
poses. In the I n t e r e st s  of brevi ty we will , wherever possible , pursue the

direct and remarkably et ’feet ive m eth ods of Aseltine (Ref .  9) in br inging the
basic issues to the fore.

8. •-D~~~~~ ~~ELDO~AR~~S

The part ial fraction expansion table-lookup approach for transferring
• information from one domain to another will  be used frequently in subse-

quent mathematical developnents. Although this is a familiar topic, our
viewpoint and approach is sufi’iciently different to warrant a earef\il

review .

A main objective of’ this section Is to produce a table of abbreviated

transforms that will permit one to transfer between the t , 8, ~~~, and w ’

domains in a relatively easy and straightforward manner.

We start by developing a transform table (from the time domain to the
s-domain ) using the Laplace transform of an exponential time function and
several properties of the Laplace transform. We will, then mimic this pro-

cedure in order to augment the tab 1.e with z-transform arid time-advanced

z-tranaform entrIe5.
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f ~~~ e
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dt = f e
_ (5

~~
)t 

dt

e~~
5
~~
)t

+ a) ~ + a

It Is conven ient to use the notation

e at
~~~==~ s + a  (i)

H to indicate that e~~
t corresponds to 1/(s + a) and vice versa. This trans-

form pair , coupled with two other properties of Laplace transforms, provides
the basic information needed to develop a table of transform pairs. The

first (trivial) property Is:

f1(t) + kf2(t) ~~~~~ F1(s) + kF2(s)  (2 )

The second property of interest is:

- - 

- 
tf(t)~~~~~~~-~~~~F( s) V)

Note further that “a” in Eq. 1 is a parameter which Is not restricted to
have real values . For example , let

a —
~~~ a + j b  (14 )

in Eq. 1 and obtain

e~~~~
j
~~

t 
= e t [cos bt — j  sin b tj  

~~~ ~s + + ib 
(~

)

- -
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Rationalize the right-hand side of Eq. 5 to obtain:

e~~
t cos bt — je~~

t sin bt ~~~~ ~ s + a)— jb (6)  •1-• (s + a) + b

Using the property of’ Eq. 2 now gives two additional transform pairs (one

for the damped cosine wave , the other a damped sine wave):

e t cos bt ~~~~ S + a (7 )
(s+a )  +b

e
_at 

sin bt ~~~~~~~~~ 
— 

b (8)
(a + a)2 + b

I

This approach for developing the table leads to a frequency domain descrip-

tion of’ a damped sine or cosine wave which describes the poles in terms of 
t 

-
~~

the wave damped natural frequency and an exponential damping envelope rather

than damping ratio and undampeci natural frequency. That is, the descrip-
tion is in terms of [(s + a)~ + b2} rather than [s

7 + ~~~~ + w~]. For the

purposes of’ this report, the form given in Eqs. 7 and 8 will prove more
usef’ul than the alternative description.

We may set a = 0 in Eqs. 7 and. 8 to obtain the transform of sine and

cosine waves.

cos bt <=~) ,
~~~~~~ (9)

s~- +b ’

• sin bt <__> b 
(10)

s +b

To continue, setting a 0 in Eq. 1 produces the transform pair for the

unit step function.

u(-t) <=~ 
—

~~
— ( i i )

8

— - ~~~~~~ .. ~~~~~~~~~~~~~~



Apply ing the property g i vt ’t . in Eq. ~ to Eq. 11 yields the transform pair

for a ramp 1 m ~’t ion :

t~~~=::~ 
_
~~

. (_
~
._) ! ( 1~’)

Repeat the application , this time to Eq. 1. ’, and obtain the transform pair

for t’ :

t’~~~~~~~~~~~(J~) = $ = ~~~ (i~~)

In a like manner , the application of this property to Eq. 1 gives :

te
at 

d (  1 )  
1 ( i n )

(s +a)’

By proce eding in this fash ion we have now bu ilt up Table 1 . This abbre-
v iate ~1 table is sufficient for most of our needs since the occurrence of

multiple poles in aircraft stability and control work is somewhat rare.

Later we will use the same approach to develop a table of z-transformns.

This will result in a third column for Table 1.

Consider next an efficient method for expanding a given rational poiy-

nomiztl function F(s) in terms of the entries of Table 1. since the entries
ci’ Table I constitute the set ol’ elementary time functions of interest- . t
makes good sense to expand F(s) in terms of these time functions. Tc- i l lus-
t.rat-e , gtven the proper rational F(s).

F(s) = 
1 - ’s’ I 4 

~~~
S~ -+ ~5 I ~~ 4 1 ‘~~

t hen i t -  .1 s ~onvcni  eat .  t~ expand the r ight —hand s ide  a t-eii~s ci’ pnrt  i a

fra’ t. ~i cn s  , viz .

I
0

- - -s —
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TABLE 1

AN ABBREVIATED TRANS FORM TABLE

f(t) F(s) =~~~[f(t)}

u(t)

a -

e at 1
s ÷ a

—at 1te
(s + a)2

b
sin bt

+ b2

cos bt 
s2 +b 2

e~~
t sin bt b

( s  + a)~ + b2

—at s + ae cos bt 2 2(s + a) + b

10
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• I - ~~
‘ 1 

~~~~ F’ ~~
- — -4 (it )

(~~~\~~ s • 1\ (~~’
. -.s • t ~~’ 

. . , ‘4 -

S

s 1~ (s • • (:- ‘ 4 .  ( 1 - )

~~~~~~
‘ ‘ t h e  p art  F ’t l  t’raction coot 1~~c i e n t  A , P , C . and F’ no known , ho ime

r~in t i on  can be writ en immediately as:

:‘, t ‘4 Au( ‘4 Pe ’ . o ’ ( C  sos A t  • P sin t ‘4 (1 ~ )

- n r  ‘ :  y or  ‘~ay s o find A • F’ . C . a nd fl . Ver ox :tt le • ~vslt ~p 1y

~i 1 i  :~ i~~ Ot i’F~. ~~ by and l~ t t o  ~‘in ~ A = 1. Ncxt . u~ t.~ p~ y onch
and let a — 1 t o  f in d  P = I . Next . malt iply each side of

he ‘i -n i  on by and le ‘ S = ~~~. c n i  L-mt I hat A F’ C ~~~, and the r~—V
:‘cr C I . .‘ nallv , p ok any c on v en i en t  ~- :tlue or and evaluate E~~. 1 - ’
ron he ro~ni a i ng unkn own . P ( P 1 also . This  ppreach is n eat  but - not
v e r y  ~~~~~ r U  . ~ e need a met hod hot t or suited ~or mao~t i n c  ~‘om~~it — i t - t on.  Such
a :nt hc•i i s  doscr ~bod next .

e t ~
‘ s ’ 4  be ii  p ron’ r rat ional t\mct ion of the form

a

wi th  a s imple pole . 1S a). AThv i ously ,

A - ~~~~ ~ n)N(s) 
-

D( s ) 5 = — a  (x~ )

however • I ~ (s a)  is not exp l i c i t l y  1’actcred out of the denominator , an

~n dot e rmina t e  form will result. when s is set equal to —a (0 ‘O). To resolve
~

-

2
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- - - -



- -  
-

-
‘ 

this difficulty, without explicitly dividing out (a + a), use L’H~pital’s
rule :

A — ~~~~ + a)N ’ + N 
— 

N (- 1)— 

D’~ s) s = — i  
— 

D’ 
s = — a

where D’ dD/ds . Equation 1 treats all simple real poles and , since only
polynomials :~re invol ved , is ideally suited to machine computation using
“ncsting procedures.T’ Moreover, the same polynomials are used. for all par-
t ial fraction coefficient evaluations involving simple roots.

Next, suppose F( s )  has a complex conjugate root at s = —a + j b .  That is ,

F(s)  ~~~~~~~~~~~~~~~~~~ - - •  (2? )

• Clearly , —

[(a + a)2 + b2 J 

~~ 
= Ab + jBb . ( fm .)

s=-a+ jb

Again, an indeterminate form results if f ( s + a)2 + b2J is not explicitly
divided out. L’H~pital’s rule permits one to avoid the division Step:

+ a)N + [(a + a)2 + b2]N t ~~~’4~ - Ab + jBb ( 
~~

)
5 = -a+jb

or
-

• 

- 
= A~ + j B~ ( :~ )

— D

_ _ _  - 
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This simplifies to

B — i A  = ( n6)
s = —a -I ’j b

and clearly

B = 2 R e~~ r 
( 27) —

s = — a 4 - j b

A = —2 Im~~ r (28)
s=-a+jb

Other expressions can be obtained for multiple roots. For example , if:

fl(s) = D = 
(s ÷a)2 ~ (s + a )  

+ (~ 9)

One can show (see Appendix D):

2N’ AD’”
A = , B = -~~~ - — ~~~~~~~ ( 0 )

s= - a

Some illustrative examples demonstrate the simplicity of the process.

First , let-:

F ( s)  = 
+ ~ ; 1  

= 
-s + : + 1 (~~i )

s(s + i )  s’ -i a

There fore ,

~ s A B C -.
= 

( s + i ) 2 ( s + 1 ) s

3ince D ’ ~~~ ~ ~S + I and D ” = 6s + ~~ . D ’” =

1 :

4

_ _ _ _ _ _
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C = 1 (33)
s= O

A = 
~~~s =- 1  

= 2(3s2 +2s ÷ 
= = —i (3k)

and

B = 
2N’ AD ’” — 

2(6s + 2) 
— 

(—2)6 
- 2 (3 )D” 3D” 

~ = -1 
- 

6s + 
~ = -1 (3)(6s + 

~~ ~ = -1 
-

As a second example,

2 2 _
~ 2 _

- 

(s+1)(s 2+2s+5) 
—

= 
A 

+ B(2) + C(s + i) ( )
:1 S + 1 (s + 1)2 + (2) 2

Since D’ = ~s
2 + 6s + 7,

A —  
N 

— 
s2 — 5  

— 
~~~ — — 1- D’ s= - 1 

- 

3s2 + 6s + 7 s=- 1 
- 3 6  + 7 - (38)

- ‘ and

C = 2 Re 
~ 7

~s=~~1+~2 
2 (

~9)

B = —2 
(3s + 6)s + 

~~s=-1+j 2 
—1 (~ O)

Those readers with pocket calculators having rectangular to polar conver-

sion features will have little problem in verifying the coefficient values I 
- -

for C and B.

- iI~
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Thus far we have dealt- on l y w ith “proper” rational functions wherein

the ~)rdo r or the numerator polynomials is at least one order less than the

denominator polynomials . In the event F ( s )  is not proper , it can be con—

verted (using synthetic division ) into two parts — the first is a poly-

nomial in s , the second part a proper rational function. For exan~pie,

4 - + ‘‘5~ + ‘ ‘t) 4 14 ‘ + ,‘
- ~ + S -t 1 + ( 14 1 )

5 -  ÷ -~~~ 
4- (a + i)’ 4 ( i ) ’

There fore

t’(t) = ~O ( t )  + b ’ (t~ ~ ~( t )  + e
_t

[sin ~ cos t

We assume t he reader is familiar with Laplace transform of impulse functions

to the ex t e n t  that is recognized as an impulse in t~ ne, t(t); a is recog—

nisod  as i t  “doublet,” ~ ‘(t); 
ii td is recognized as a “triple t-, ” ~i ’

Before proceeding to the development of a table of z~transforms (in the

next section ’l , we pause to review the concept of the system transfer flrnc-

tion. Given

k 

f(t) ~~~~~ F(s) ( 113)

we presume familiarity with the transform pair (or re fer to Appendix A )

df ~t )  
~~~~~~~ 

s~~( s )  — f (O) ( 1414 )

which, through repeated applicat:ion, enables us to transform the differen- -

L t ial system

+ :~~ = r ( t )

in t ime to an algebraic system in

A B C

~~
— —

~~~~~~~~

-

~~~
--- 

—
~
-
~~

4 . 5 + e ’ ) X ( t’.) [~‘(s) -t ~tx ( 0 ’4  i sx (O’4 ~(ofl ( h t ’4

_ _ _ _ _ _ _ _ _— ‘1 . ._. _ - -- 
~~‘ 
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This equat ion highlights three basic parts characteristic of all linear
systems:

A: The part related to the system

B: The part related to the response

C The part related to the input and.
Initial Conditions

Dividing through by Part A gives

X (s) F(s) + 2)x(O) 
~~~~~~~s~ + 2s + 2 s~ + 2s + 2 s2 + 2s + 2

or

X(s) = W1(s)F(s) +W~(S)x(O) +W 3(s)~(O) (14~ )

W1, W2, and W3 are the “transfer functions’t (or system functions) which
relate the transforms of the output components to the transform of the
input components. For example, let the Initial conditions x(O) and ~(o)
be zero, Then W1(s) can be written as:

(49)

It Is in this sOfl3e that transfer f~net ion~ characterize the system inde—
pendently of the input . The Laplace transform of the system time response ,on the other hand , can always be expressed as a ~um of products of system
transfer functions with the Laplace transforms of the various corresponding
input time functions and initial conditions.

C .

An abbreviated table of transforms was built up in the previous section,
- starting with an exponential transform pair. Here a similar approach is
taken with Z—transform pairs. Let ~ e

sT for the purpose of constructing

I i ’

_--

- - ~~~~~~-f ~~~~ -~~ i~~~~~h- ~~~~~, 
— ——--. --—-—-- — - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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this table. Then the following equation may be regarded as the definition
of the z-transform:

fT(t) f(o)~(t)  + r(T)~~(t—T) + f( 2r ) 8+ ( t—2T )  + ... (50)
The Laplace transform for delayed time functions (refer to Appendix A) can

be used to transform Eq. 50 into the frequency domain.

- 
p(s) = F*(s) = ~~~~ f(nT)e

_
~~
T 

= j  f(nT)z~~ = F(z) (51)
n=0 n=0

where z = eST.

Some comments on notation are in order. We use fT ( t )  <=> F’~ (s)  to denote
that the time function f(t) is sampled. at 1/T samples per second. pT(s)
denotes the Laplace transform of the sampled continuous time function, given

that the continuous time function has the transform F(s). While the tradi-

tional notation for i(s), which is F*(s), is perhaps better established,
we have elected to use the superscript notation because it permits an expli-

cit statement of the sampling rates involved in multi-rate systems (the main

concern of this report). This point is discussed further in Appendix B.

Let us now proceed to develop an abbreviated table of z-transforms. Let

f(t) = e~~
t
, so that Eq. 51 becomes

fT(t) ~~ F(z) = ~~ e
_
~~
T z

_fl 
(52)

—aT —i — 2aT —2= i + e  z + e  z -t- ...

• /e T \ / e T\
2

* 
1 + I—I  + I—I  + ...

\ Z /  \ Z ~~~

= 
—aT —aT1— ( e  /z) z — e

1 
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We now know that this continuous time function sampled at 1/T samples/second
gives the transform pair

(e t)
T 

~~~~~~~~ z _ e T (~ 14 )

Just as in the case of the Laplace transform we can let “a” t ake on (~~ 1\’eIii

ent ccmplex values. For example, let a ~~ a + jb,

_ (a+ib)t
]
T 

_____________[e 
— e~~

Te
_j
~
)’1
~ 

(

or

(e~~
t 
cog bt — je~~

t 
sin bt)T ~~~ 

Z 
(H’)

5 — e (cos bT — j sin bT)
Rationalization of the right-hand side of Eq. 5~ 

results in:

- 

- 

(e
t cos bt — je t 

sin bt)T 
~~~ 

z(z _ e_aT cos bT) — jae~~
T sin bT

(a — e cos bT) - + (e~~ sin bT) -

There fore

(e
t 
~~~ bt)

T 

~~~ 

z(z~~~e~~~ cos bT) 

~~Ta .—2e cos bTz -t- e ’’

and

(0 T sin bT)T 

~~~ 2 
~~—aT sin bT 

(‘~R)
—2e cos bTz -~~e

We now have the transform for the sampled damped sine and cosine pair. Con-

tinuing, let a = 0 in Eqs. 57 and 58 to obtain the transform for sampled

sine wave and cosine waves.

I

• 
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,.- ~~~~~~~~~~~~~~~ 
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(s- -~5 ht)
T 

~ -:~ 
z(z — cos bT) (~~~

)
— ~

‘ cos bTz -t 1

(sin bt)T <~~ 
sin bT (tdt)

~
‘ — :~~cos bTz * 1

Furt her, let a 0 in  Eq. ‘d~ to obtain the z-transl’
orm for a sampled-unit

step.

[u( t) 1
T ~~~ I 

(i~ i )

To complete the table , firs t - t ’i !ILI the t rans 1’.’rm ot ’ tf(t.):

[tf(t) 1
T [nTf(nT ) 1 

~~ E 
(nT)f(nT)z~~

n O

—zT 
~~ 

f(nT )
n:O

We recognize the term in  brackets as the derivative of :‘~~ with reapeet-

to .~~ . Therefore

[tf(t) 1
T 

~~ —aT ~~ f(nT)a~~ —zT ~~~ F( Z )  (o r)

n-- 0

Equation is completely analogous to the s—domain result. (Eq. 
‘i. With

it , we can complete our abbreviated table of a-transforms, 
since

~te~ ’~ 1
T 

—zT -~~- ( ~~

dz \ z_ e~~T/

- •  
—aT •

—zT 
— .~1t (fl c) - -

— 0 — _
~~

________ — 
-
~~~~

-
~~~~~~~~~~~::. 

I ~)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~
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Setting a’ = 0, the z-transform of a ramp is obta ined:

~~~ = — 
Ta 

(614)
(a — 1)’

We may now complete Table 2, showing the relationship between time and
the s- and a-domains. Strictly speaking there should be a “f(nT)” column
as well, but the manner in wh ich the table is presented is  su f f i c ient . It
forces us to remember that f(nT) can be thought of as the continuous f(t)

sampled at intervals of T seconds starting at t = 0.

Given an F(z), one can expand in partial fractions In exactly the same
manner as was done for F(s). We will defer demonstrating the process until

the additional considerations introduced by data holds have been reviewed.

D. ~~YIB~ TRA~NS1~~ J~~ CTI~~S MiD DATA HOLDS

The correspondence between a given F(s) and the associated F(a) from

the transform table is depicted in Fig. 1 from the transfer function point
of view. From Fig. 1 and the results of Appendix B:

C(z) ~ T(.)J (cT(.R T(S~ 
0sT G(z)R(z) (6’~ )

b ~~~~~~~~

Figure I . Correspondence Between Transfer ~inction and
Pulse Transfer F~iucti .~n
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TABLE ~~
‘

2
AN ABBREVIATED TABLE, F ( a )  ADDED

t’(t.) F(s) = £ F f ( t ) ]  F(a) = Z[t~ (t)}, ~ ~sT

- 

~~~~ 
_•—•- --_,_. .—‘ - _________________

u(t ) —
s a — I

t. L Ta
( a — i )

4 T ‘a (a + I )
s

_ 
(
~-~

— I )  

— - —

I 
________

S + a —aT—

..ft ~~ 
I —aT

te I 
___________

( a ( — 0~~~~ 
) 

-

-

~ 

- - — - _ - ——— - — — - - - . — —--———-

I) - S ~n
S t ~~ bt - - -

- t t  ( — cos bT )• ~ ~ sin bT 
‘
~

~~~~~~ ~t• 
I 

s(:~ — eoa hT)

I) 
( s  — sos bT)’ ( in bT 

-

- •  --- - -----_
~~~

- - - - — -

— - - - . -
. ~~ I ~~s t n t ’t —, — - ‘  - ,

S - L ~ 
- 

t ~‘ — e SOS t~1’ ~ ‘ 
~~ S i f l  Vt’

e a 
~ i ( — ~~~~ ~T 

- -

- 

- 
L 

(s  ~
) 1’ — ‘

~~~~~~~ .‘s t’T~ is t ’i’~
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( — .a’s t”[’ e~~
i ’I’ 
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‘
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That is, ~~~~~ that G(s) is isolated by samplers (and it is in Table :‘),
t hen ~i(s) san be written directly. However, if G(s) is the product of
several of the tabulated functions of 5, then a partial fraction expansion
of t i ( s)  must be made before G(z) can be found. For example , if G(s) 1
t :~~~+

• 
G(~~) 

Ts 
(~~~)

— 1)

However , if G (s) = 1 -‘[s- ’(~ a) J , then

= j A B  ~~~JT

or 

G (a) - 4 

~~~~I 
+ _______

?~k’reove r , the situation depiete~i in Fig. 1 does not represent the form of
t h e  proble~it w h ic h  Is usually of  interest since no data hold is included.
The form of interest is shown in Fig. . -

.

In Fig. ‘
, M(s) represents the transfer function of a data hold. Using

th e result s of Appendix B, we can write

cT 
(GM)TRT (~~) )

Data
Hold

-~--,~ ~~~~~~~~

j

~~~~~~~~~~~~~~~
_

~~~~~~~~~~~~~~~

JE

~~~/ 
c~~~

Figure . Typical Data HAd Configuration
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The data hold is a phys ical device tha t takes the samp les of the s ignal,
RT, and constructs a continuous signal which in turn forces the continuous
system represented by G ( s ) .  It is convenient to think of the data hold as
a coupler between the d igital computer and the control actuator input . This
coupler is usually inherent in the digital-to-analog (D/A ) converter device.

We will assume that the reader is familiar with the character ist ics of
various data holds. (Their properties can be reviewed in Refs. 7 and 8.)

The presence of the data hold in a single-rate system is only a mildly
complicating factor. This is especially so if we are using a zero—order
hold which has the transfer function:

-sT
M = 

i — a  (70) 
—

For example, let G(s) = a/ (s  i -a ) ,  M = ( i  — e ST )/ s , then

(GM) T { ( l _ e ~~ T
)aj

T 
= [(1 - e~~

T
) (+ - s ~ a)}

T 
( 7 1 )

But , 1 — e 5T 
(a — 1)/z and is unaffected by the sampling operator. There-

f ore ,

/ tT
(GM)T = 

- — 1 
~~~~~~~~ — 

~Z \5/ \5 +a,

a_ l i z  
— 

z
— 

z k a l z _ e ~~ T)

—aT1 — e
= 

(72 )
~z— e  -

As we shall see, this simple computation becomes more complicated when
the data hold and input sampler are working at a different sampling period
than is the output sampler. This situation will be encountered later in
the analyses of multi-rate sampled systems . For single-rate sampled systems

-
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j
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it can be appreciated that the partial fraction technique Is quite ade-

quate for computing overall pulse transfer functions (from the output of

a sampler to the output of the previous one). This result pertains whether

or not there is a data hold Involved , even though the data hold alters the I -

form of the answer dramatically.

Transfer functions for representative data holds are give n in Tah~ e
The dat- a holds of gr e at e st  I n te r e s t-  are the scm —order hold and t he slewe r

data hold. Their characteristics will he discussed at appropriate points i 
-

in the text- .

TABLE SOME REPRESFNTATIVE DATA HOLDS

DATA HOLD TRA.NSFEB F’JN~’PI0N

• —sT
• ore—Order 1 —

Hold ~~ -
‘
~

~‘irst- -Ordc r 1’I~ + ,
~) 

- -  — —

so ‘o t—O rde r -
~ 

A

Hold 
— .•

~~~ ‘ S -4 _
~~

Triang ls~r I - ~~~~

i
~
at  a noI~1 

- .
~~~

_

Slewer I~a~ a
h old I S l O W  T

E. AN ~ 4TBODUCTI~~ TO MULTI-RAT! SA~~ L~~G

~~u t i le  le n t ss .’cet.s of S i s~~1 o — r a t e  sampled Systems have been rc\ i

to t h p o i n t  that we nc~ now ~‘ons I der uis ly s I s  o t ’ a re st  m i s t - e d  ~-I aSs ol’

multi—rate sampled sy st e m s . :\ latsis multi—rate sampled Sys t em element- ot ’

1st ~‘rest is s hown i n  l-’.i

— — 
;—~
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Figure ~. Slow Input /Fast Output Sampling

It is required , in Fig. ~~ , that N be an integer so that. the output

H sample rat ’ is N times the input sample rate. Write the output equation

for t h e  cost i nuous variable C as - 
-

C GR’~ ( _ •
_

~~~)

so that-

~T ~N 
= IG RT 1

T /N 
~~~ i )

To further reduce Eq. ~. , we merely notice that Fig. ~i is equivalent
an input— output sense 1-s Fig. ~

- . The T input sampling operation in
Lig. ~ Is replaced by two sampling operations which are equivalent to the

C Tm

T T/N L.....J T/N

~‘L gure ~~~ . E q u i v a l en t  Mode l for 
~
‘jp. 

~

or i ~zisa 1 one. The time funet 1 OSS [R T 1T N and RT ire obviously equivalent  .

si nc i ’  t h e  ~nt ermediate samples of the new • hut fic t i t i o us , input [RT 1
T N are

• so re . This “trick” dot~ show that we may write

CGR T 1T ‘N GT “N [ET 1T tN = aT ~ R
T (~~

4
—5- - -.-~~~~~~~ ‘ !, - ,~~~~~~~~ ,
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which is the correct - r e su l t  (s~~ Appendix B). The rule is  for S:ullp J i : : ,
operat iOnS such as hess shown is Fi g. , that:

“The outer 5 tmpl - ~ 
opt ’ r a t or [. j~ 

‘N 
~~erates through 

• the
inner ones 1” ~a- 

r.-
~ I os of the I !lner sampling periods t o

the otz~ cm sampl I ‘-a per 1L\l , - r N • are in 1 e~ e rs •

Consider an cxanplc ‘imp 1 : tt ,  ~~~~ Let

r ç t )  . , 0sTN

Therefore

2I1 N 
)

r~N 
F ( t ~~~

L N

Re f e rr t  ng t o  Tah1~ 2, writs

1,T N  
— ~TN ) (:N _~~)

Note the  import -ant - points . Since isi s been defined •
~~~ ~ ~

ST, N the

pulse tran s fer function corresponding t o  ~i 1 ‘ ( 5  + a ‘I ntis t r epresent

the newly defined sample period . P ‘N. More ’vsr~ the s-t ~-ans fo rm for
RT = 11T ( t )  must be adjusted to re flect  the resamplthg with period T -N.

This adjustment is also required by the fact-  t h a t  a is d e fi n e d  as LS ST N

as a result of the resampling .* The a—transform for ,H T~~
’/N ET iS

obtained in t~o steps:

• Obtain the a—transform for RT in the usual manner
with a ~ e

5T

S Replace a ~ 0sT everywhere it- occurs in RT( a) by
• ~~~~ (e sT N ) N

‘In 11 5 regard . some rea~icrs s igh t -  f ind  it helpful to read the review
material of Appendices A sad B.

- ‘5’
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~;uppose th e problem is to find t continuous time response which when

sampled results in dr/N for the previous examples . The use of partial

fractions now requires an expansion c-f the right-hand side of Eq. 78 into

N + 1 terms, since the denominator now has N -~ 1 roots. This is not a

pleasant prospect , especially if N is large, say on the order of 100 or

more. When N is large, partial fraction expansion is not the best way te

proceed . A recursion equation approach is preferable. Rewrite Eq. 78 in
terms of the i nput RT:

cT/N 
— ~~~~~ 

RT , a eSTtN (79)

Divide Eq. 5) by a and write the corresponding recursion equation.

a—aT/N 
~~~~~

_ , + R
~ ,N 

(80)

where

0 if Frac (n/N ) /0

-~~~ 
R~~N (f~~)

~ R(nT/N) if Frac (n/N ) 0

The notation is i n te~~ ret-ed as follows . Form the ratio of the

index of the r-~ -a r - i o n  ‘ Isatlon , n, to N; and take the fractional part of

the number tha t results . It’ this is zero, then nT/N is a point in time

for which an input sample is taken. However, if the fractional part of

this ratio is non-core, we are it an inter—sample time point for the input.

Consequently , no input sample is taken , giving a zero input value for this

• sample point in time .

To illustrate , let T = 1 ~
_.uT 

= O.~ (a ~~~~~~~~ and compute the

transient response to a unit step input using

- U
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(5. 
~~
T/N c +RTn - e 

n-i n N

where

(0 Frac (n/N)/O

R
~,N = (83)

( 1 Frac (n/N) 0

The transient response is shown in Fig. 5. Notice that the absence
of a data-hold circuit forces the continuous output to be comprised of the
sunimation of a train of weighted impulse responses of the first-order sys-
tem i/(s + a).

The following is accomplished by implementation in terms of this recur-
sion equation:

S The inter-sample response can be computed with
any desired degree of time resolution desired by

I’ increasing N.

• Computer storage requirements are unchanged as N
is increased. The order of the recursion equation
(i.e., the number of states) is not affected by N.

-aT/ N 
÷ R~~~’ R~~ ~{? ~~~

01 

I ; 10T .5 ; N~~IO

~ii t11r . ~. 3t-’~p Respons”
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F. SLOd 11~P(7~/FA8T cx~rw r
WiTH DATA HOLD

The inclusion of a data hold In the slow Input/fast output sampling

problem introduces an additional consideration. Adding a data hold to the

block diagram of Fig. ~ gives Fig. t~~. The output equation Is

f cT/N (GM)Tm RT (~~~
)

f
where M represents the transfer function of’ the data hold. It Is important

to notice that the data hold is configured for a T second sampling period,
whereas the sampling operation on GM is for a T/N second sampling period.

An example will demonstrate the nature of the problem.

Pigure .,  Slow Input/Fast Output Sampling
with Data Hold

let.
p

—sT
M , G 

a 
:1 

sT/N

‘I’h ‘re fc ’r s ,

—sT T/N
, ., 1 -N (1 — o ~a

~GM 
~~~ 4 a’)

.1

-

H
- —~~~~~~~~ ---—-—--————-— 

-



Since z e5T/N, it follows that

e~~
T = e T/N)N = ~

—N (87 )
and

—sT 
_ _ _ _l — e  (88)

Ia

Moreover,

a 
- 1 1

-~~ ~~i -4- a) 
- s s + a

so that the transform table gives

1 \
T/N 

- z z 
— z (1 — e~~

Tm
)— 

s + a/ z — 1 
— 

~~~~ e~~
T
~~ 

= 

- 

(z — 1 ) (z  — e~~ThT~
’
)

There fore ,

cT/N = [5N — 1 z(1 — e~~Tm) RT (90)zN (z — i) ( z  — e~~T/N)

or 

cT/N 
= = :~ 

(~ ÷ ~~~~~~~ + + -(N-i 
RT (9 1 )

• Comparing Eq. 91 with Eq. 79, it iS Seen that the inclusion of the
zero-order hold has introduced an additional multiplicative fttnctiont

(1 — e~~
Tm) ~

N — (i — ~~~~~~ ~i + ~—1 + ,•~ + 5— (N- 1)
zN(z_ l )  Z

30
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Methods for treating this  additional complIcation when N is a given large
number will be discussed in Section IV.

G. FAST ~~~~~/SLW ~~~~~ sAIeLmo
The next funthunental multi—rate configuration of interest is the fast

Input /sLow output sampling configuration of Fig. (. This presents a more

Involved situation from a computational vIe~~ oint than does the slow lnput/

fast output ease studied previously.

~~~~~~_../ 
R T”

J N G
1/N 

_ _ _ _  L I I

Figure ‘ . Fast Input/Slow Output Sampling

As always,

= 0~~ T/N 
(

k) ’)

so that

cT = [G~~
T/N 1

P

In Eq. ~~~, the T operator can no longer “operate through” since the
ratio of’ the inner sampling period to the outer is not an Integer. However,
i t  is legitimate to replace Fig. 7 with the equivalent block diagram shown
In Fig. 8.

~~~RT
~~~ N 

~ 
G_k N I  

CT

Figure l~. Equivalent System

‘
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It is readily apparent that the output CT is not affected by intro-

duction of the “phant om” T/N sampler, since the T output sampler reject s
all the unwanted samples of cT/N . One can write the foliowing equation

directly, from Fig. 8,

• 

- - 

CT [GMRT/N }T [(GM)TmRT/NIT (~~~)

On the surface, this exercise does not appear to have been too fruitful,
since the T operator still cannot operate through. Nevertheless, Eq. 9L~
offers a significant computational simplification. This is so because the

following routine procedure can now be followed:

• Compute (GM) T/N and RT/N i-transforms in the normal •

manner, using z ~ e
ST/N .

S ~~~and the produc t- [(GM)T/N RT/N J in partial fractions
an d use the transf orm table to find the continuous
time function which, when sampled with period T/ N ,
results in [(GM)T/N RT/N ]

-
‘ • Find the z—transfcrm of this sampled continuous -

generating function, for a sampling period, T, :i-nd
z ~ cOT to obtain:

[G?~~T/N]~

This process is in the spirit of the c.m~ o l.ut i on  approach described in

Appendix B. The main difference is that we ivoid t h e  use ot ’ a

m yers Ion integral by subs t- it - ut - :i~~ the proc’eduro o 1 ~oi iig t h e  a — ~io ma in
[‘or a T /N sampling pen (51 ( i . . , w I a ~ 5sT/N ) to the t ime ~io ma in :tnJ then

back to the a—domain [‘or :1 T sampi lug period (i.e. , with a

- S Notice that in the previous sect ion .t’or the slow input- / fa st. output-
problem, It was possible to s ’p: rate out the transformed input from the

pulse transfe r f \ inct i on for t h e  system. Having done thIs , it is then pea—
sible to wri te  a re ’urs i o ~ • ‘,1 ii :tt . ion in terms of an arbitrary input . h ere ,

a recurs ion e~1uat.i on [‘or -‘V L .1 ‘~ntt ion ol’ Eq. 91t ~ uu~ot be written unt i l  a
spec i fic R is given • ilst t is , tti ~ recurs ion equation for CT must- be found

on a o : i ao — I ’v— e - i s ’ b- (~ - , N . - ~‘ ‘  rt  ho .l es s , [-lie baa I ’  method ~iese r I bo~l in th.i a 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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subsection will be valuable later for analysis of multi-rate closed-loop

systems.

An example Illustrates the computational method. Let

—sT/N

G = s~~~a , M = 
i — c  

— , R = sin bt

Fi rst , comput e (GM)Tm z-transform. This is straightforward, since the

sampling operation on GM and the data hold are for the 
same sampling period,

Tm. Then obtain RTm (Z )  from the z~transform table , and form the product

[(GM)T/N RT,NITm .

(GM)Tm = ft ~~:~~~~~~~
l

Tm 

= :~~ 
, Z 6 CSTm (~~

,) 

.
5

The refore ,

(GM )T /N ET /N = 
1 — e~~

T /N a sIn bT ~~~ (
~~ ~

-

z — e~~~~
N 

(a — con hT/M)
2 

+ (sin bT/N)’

~ cpand in 
partial fractions:

(GM )T/N RT/N

- 
Az 

+ ~a sin bT /N + Ca(a — eon bT/~~ ~~
- 

a — e~~
T/

TN (a. — cOS ST/N)’ (sin bT/N)’ 
- ‘ e

Compute r ( t )  ouch that fT/N ~~ PT/N

f(t) = Ac~~
t + B sin bt C coo bt (oo )

I

-5— 

5 -.5- ’ 

- -
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‘I
Compute ~‘r

FT = [(~~~)T 
1N RT/N I

T = A~ + 
Ba sin bT + — con bTi 

, es”
a — c  (c. — cos hF) I (stu bT~

i~ o)

Notice the clear resemblance of Eq. ‘)~~ to Eq. 100. The on ly ~h 1 f t ’ei ’ence
is that- T/N in Eq. 98 is replaced by T In Eq. 100. ThIs emphasiaes [-hat the

Intermediate step of computing the generat ing time t\tnet-h-on Is merely a cost-

venient conceptual step which may usually be skipped in the analysis of
single—rate systems. Howeve r , In a later sect ion we shall set’ that exo.’u—
t ion of this step can b~ quit c use t’ul in  sort Ing out de 1nye~i t inc fun ot I .nis

arising irs the analys is of closed—loop multi—rate systems.

To complete the example , it may be ~-e ri f led that :

A —{‘ = A0 sin hT~ N ( l O I s

~~~~~~ ~ 
,~.aT 4~ — os bT N l (I ~~~. 

‘~

~the re

i — c
—~~

(e~~
’ — (‘05 bT ‘~N

’t (sin bT/N ) ’

H. ~~~TOR BWCK DIAGRA~~

S As noted in the introduction , one object ive Is to present all r e su l t  s
- 

- - 
in a vector notation which is compatible with either degree-of—freedom or
state variable problem formulations. For example , consider the hlo~k
diagram of Fig. ) wherein the dimension of’ t h e  ~ and H matrices are corn —
patible with the dimensions of’ the C and E veetors. Ont’ can now develop

equations and pulse transfe r functions for th i s  cloned-loop system In an

orderly manner.

_____________ 

j

— — — — — —
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Figure 9. Simple Closed-Loop Configurat ion

E = R_ H G ET (10I~)

— so that

ET = RT — (~~ )
TET (105 ) 1 -

Thus ,

ET [I + (HG )TJ~~ RT (-1 06)

Using Eq. 106, write an equation for the continuous output vector C:

C G[I + (p~)T]~~ R
T (107)

One can now conceptually add a “phantom sampler” at the output C and obta in

cT/N GT/N[I + (~~)
Tf’lRT (108)

by using the results of Section II-E. Thus, values for the continuous out-
put C can be calculated at as many inter-sample points as desired.

Cons ider another example. Suppose the open-loop plant is formulated in
the first-order state variable form

X F~c + G u  (109)

y = lix (110)

35

__-- ~~~~
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where x is the state vector and y is the output vector. F, G, and H are

constant matrices of appropriate dimension. Laplace transforming, we obtain

X(s) = (Is — F)~~ [GU(s) + x ( 0 ) ]  = A (s)U(s) + B(s)x(0) (iii)

Y(s) = HX(s) (ii. )

In Eq. 111 , x(0) represents the initial condition vector.

The open-loop plant, given by Eqs. 111 and 11~~, might then be embedded

in the closed-loop configuration of Fig. 10 wherein W 1 and W - represent 1 

-

compensation matrices which may be selected to achieve closed-loop design
object ives.

Suppose the objective is to find an expression for the (continuous l

state vector x . First , write

U~ = W~R~ 
— w~ w~ [i-mx (0) + 

T 
1
T 

(i 1

or

W

~
R
~ 

_ W ~w~(r~~)
T
x(o) -w ~w~(HAM)T U~ ( 11~-~

There fore ,

= [I + (W~W~)(HAM)
T r ’ [W~~T 

— W~
’W’
~(HB)

T x ( O)  ( i i ’~’)

R E 
_ _  _ _  _ _  _ _  _ _ _

Figure 10. A Representative Closed—Loop System
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Thus , Is a ftnctlon of’ the input vector R and the m i t  lal c o n d it io n

vncter x((’~ .

To f’in~l the cont i nuous state and output variables, x and y,

X = Bx (0)  AM5J’~ (i1 ~-l

Y = l{Bx(01 + HAMU~ = ~bc (fl71

rh~- inter-sample response can be determined to any desired resolut i on:

x
T ’N 

l~
Tf~

N x (i) (AM)
T N 1r~

B
T ‘N 

~ ~ 4 (AM ~~~~~ N -
~ r (W~ W 1 

~~~~ )
T 
~~ Ew~ R

T 
— w~ w~ (HB )

T x (0)

(ii ~~) 

r - • t r.~~~tisi ~t ii t c~~- c-u’ t’ has been taken to develop all

1 ~ vect - ‘r uc t  - i ~ ~ . -r , ev en  t ough most of the i l lus t rat ive examples

are s. ’u.lcu’. Note that  t h i c  t r m s f o rnt domuin notation is applied just as

“icily t.e st ut.e vector problem t’ormulat ions as it is to degre e— of—t’reedoni

t ’cs~a-t lat. ions .

I. ~~~~~ DEcC~~~ ITI~~ C~~CEPT

The phantom sampler :ipp ro:sclt waS m t  r .’.ln ~’cd 1:1 ~‘ect io n Il—C in connec—

with the f as t  ~nput  1 cw cut put c unp 1 lug  t’cnii~ t- • Now that. vector

:~ S .‘n bus been Ii scus sed ( ~ ‘ct- icr IT —Il l  , we arc’ aSic’ to present. an

u 1 ‘ e rnat.i vt ’ description S l~u I in c  1 nd ’s S he phantom san~~ler us well as tin’

“T ‘N” ‘prc:l ch t- reuSed e ir lIt ’ r in ~l c& -t . io n II—~
’. This alternative approac li

c i  1 .1 eti “Owl t.cli let’ ,~mpcs it ion ” (R et ’. - I .

ess ence , swi t’h .lec. ’mpcs i t  I e~~. I. ’ a procedure wherein cy st  ,‘ms l i : tv i  ng

~-ai It i p 1’ samp l lug ope rat- ion s  ( - .‘curr I n c  - t t’lxod but. unc lisal sampling in ter— - -

v’t i , but wi th  a s:unpl Ing pat t - -rn wlii ch is r~’p~’ i t  ‘d ove r :t f I xe~l . l’i nit t ine

u t - r i  I ) ar ’  oonvt’rt.e t it1 t~’ u - . ; t i  l v . - t i , ’nt -~ M5~ i C ’ sample rut-c fo~~n. As on —

n-i I ly nt rc~hsced by Nr iuc , t b1 ’ u-I h o t  u c e l  - t cuming pe n t  net  n’de.l ogy



- 

-

~~~~ 

~~~~~~~~~

I - 
- re- . - ‘ I .‘ be extremo l:,- cum bersome wli .-rs the ratios cf the sampling

r I - I. ls~’- -~sr- ’ h i g h . - - -‘r It i s reason is - i d - 11S0 because evolving state tr an—

~~! jo~ ~ - - t  b r . f . r ~~~~~~~~~~ t - ’n i j ’ 1~— t ’  r ich trarisf’orm m ct h . ds in t ~- th e back~roust I ,
• ‘ e r ’~ - S i  ‘t  f - I - 

- Ii i s ’ . However , t~sere i s  m u c h  to recotrnnend the switch
i - ~n~’-~si i . ’. -c - - -

~~~- t for use tsr both t irne domain and transform domain analy—
c . I ’ . ‘s - ~~s c - I  ions thr: ~t. ~‘o1low we wil l  review the basic concept and

r -~m- -v- - S -
~ i - r  r ‘~ ri ~ ions by r ecast ing it in vector form . The vector

for ~u - - I tIc s :t ri x i-I . ‘c~ I I  igr run manipulat i on for multiloop, mult i—ra te  .5
s .rc - . - : : - ; - , 5 • - i s  we shrill Jet ’, the dimensionali ty of problems for—

u - a l -  -is lug t h is -ilmrc i ’h1 cast present a practical limitation.

3. ~~~~CH D~C~~~OB~~I~~

:-‘-o l I - r  - - cos t H-n-cc c i ,-tt’ i i shown in Fig. 1 Ia to be samnplc i at
A 

~i~p I - c  ~~c ’~~~ I . Tb Lr r~-cul  t s I ’  t h e  sample sequence shown in Fig. J i b .
1’h ’ c rtn m L~ .l values tsav ’ been mu~hered for easy refer ence .  Suppose now we

Ic In - c5 - s r t  nrsous s gstai w i t h  a sampling period , T. This results in

the srtmplc 50-  t i e r  ~‘ - costs I t i s - sc at’ 1 , , , 10 , 1 , . . . shown in Fig. l i e .
fle t’i Ut ’ this sample st’.pn’nee to be

Next , advance the continuous signal R by T - ‘~~~ . Then sample the advanced
signal with a sampling period , T. This results in a sample sequence con-
sisting of . ~~- , ~~~ , 11 , 1~i , •.. shown in Fig. 111 . Define this sample

sequence to be (e d l’ ’ R ) T . Finally , advance the continuous signal R by

- T ‘~~~, and sample it wi th  ri  sampling perici . T. This results in the sequent ’e

consisting of ~~~ , tj , 9, 1. ’, 1’ - , ,.. shown in Fig. He . Defi ne th i s  s i gn a l

sequence to be (e oT - R ) T

The significance of the switch decomposition concept resides in  its

ability to provide an alternativc expression for the original sequence ,

RT/3 This alternative expression for RT/3 consists of the sum of RT ,

(e 5T~~~R) T 
, and (e 5T/~~R) T each delayed by a time interval corresponding

• to the advance.

RT , / = RT 
+ ~~~~~~~~~~~~~~~~ + (e 5T

~~~R) T c
_ 5 T

~~ (n ~~)

Eiuation 119 has r i  simple factored equivalent which is the product of two

vectors and the scalar , B , I ’
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c ) R T
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7
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Figure 1 1  . Decompos it- I on of a Sample Sequence
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RT/~ = 1 e~~
T
~~ e~~~

T
~~ J 

{ F:::~] RI 
(110)

= w(w ~R) T 
( i~ i )

where

W A 
1 e~~

T
~~ e~~

5TR J (12-fl )

and

I 
~

_ 

I

A sT/~ (12~)

Th is ~~sult can be generalized for any major sampling period , T,
which is an integer multiple of the minor sampling period . That is,
whenever

T = N (T-’N)

vhere N is a finite positive integer and (T ’N) is the minor sampling
period. The result for arbitrary positive N is

R
T N 

= w(w ~ B l T 
(i -1, 1

where

W - W (sl A t~ 
,~~T’N e

_
~
5T
~~ e _ 1lc T h/

N I (1 ’ -)
-

~ m d

I’. = W,(c ) ~~~
‘ (—c ~~ (1 :~s~

Itt Fl i . 1 ‘s’ , the  prime denotes a t.r-tsispc . ’. . 

-

:- ,

—
.5 I ________ 

~~~~~ P~UdI~ 
*
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• Further generalization allows R to be a vector of continuous signals.

Equations 1 21k and 125 continue to apply. It is necessary to define a least

fc common sampling period, T, and a greatest common subinterval, T0, with
- respect to the R vector. The p elements of R may be sampled at different

minor sampling periods: T1, . . .,  T2, . . .,  T~ , respectively. It is further

assumed that the minor sampling periods are such that a finite positive T

exists such that -

T N 1T1 ... = N1T1 ‘.. = NpTp ( in )

holis for a set of finite positive integers :

N1, ...,  N1, ..., N~
fi

The minimum T for which Eq. 127 holds is the least common sampling period

(for R). A subinterval can be found for which

T I~T0 (128)

\j 
and N/N1 is an integer for all i = 1 , 2, ..., p. The largest value of T0

I satisfying these conditions is the greatest common subinterval (for B).

Equation 128 defines N for the greatest common subinterval. GIven values

for N, N1, p, and T, the p x ~ N1 block diagonal matrix, W, is

0

- W = W ( s )  = . . (129)
- Wi

0 
..

Wp

where

WI = ~i ~~T/N1 ~~
5(j_1)T

~~1 ... e 5 1_ 1) T
~~

j
~ ( i ~~o)

-

ii i •
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The operator matr ices W and W~ can be used to represent multi-rate
sampling operations in terms of a single-rate sampling operation in vector
block diagrams. This is illustrated in Fig. 12.

Consider an example. Let B be a vector with three components. Let
the first component be sampled with period T/6, the second with period T/3,
and the third with period T/2 . That is ,

= [R~/6, ~~~~ R~/2J (i~ i)

The otjective is to compute W in order to obtain an explicit expression for

R* via Eqs. 129 and 124 (which is equivalent to Fig. 12b). For this example,

P = 3

T is the least common sampling period

T1 = T/6, T2 = T/3, T3 T/2

N1 = 6, N 2 = 3 , N3 = 2

T/6 is the greatest common subinterval

N = 6

Therefore,

1 , e~~T/6,e~28T/6, e 33T/6, e’~~T/6, e 53T/6 o o

w = o 

— 

i , ~~~~~~ e~~
T/6 0

o 1 , e~~~~
16

(i~ n)

/
This example gives us some insight as to how increased dimensionality can

complicate problems in practical application. Consider the vectors B, R*, - 

-

and (W~R)T. These vectors have 
~~, 3, and 11 elements , respectively. The

vector (W~R)T will have p~~N1 element s in general; whereas B and R will

only have p elements each. This is signif icant in that analyses will tend

~42 j
I 

- -
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4 —“ _______ denote vector
* multi -rote sampling

a) Vector Block Diogram for
Mu/il - Rote Sompllng

-‘1 
_________ _________

R~~~~~~

7

~~~~~~ 
~~~~w ] ~~~~.r

b) Equivalent Single Sample Rate
Vector Block Diagram

I”igure 1 ..  Vector Block Diagrams for Mult i -Rate
Sampling Operations

t o  he conducted in tei~iis of vectors like (w~R) T in distinction to vectors
like R~ . Consequently, the potential  for expanded dimensionality in con-
nection wi th  analyses ot ’ multi-rate sampled problems .i s great. For example ,
consider a problem wherein there are two minor sampling periods , ~ ) ma and

ms . It is easy to verify that the dimnensionality expansion factor , N,

.15 l a O .

Fortunately, minor sampling periods which are so li t - ti m ’ different. art-

no t usually o t’ practical i sut-eres t . I”urtliormort-’, i t  is important t o  stress
the t’act that the increase in dimnensionalit.y affects i nput and output vee—

t ort ; , but I I, lees not. aft’ect the dimens I on o t ’ the system state vector .

On the more positive side , matrix operat ions are routine . Consider

the system shown in FIg. 1 ~ • Once the vector multi—rate samp) .1 ng ope r smt . .i om it ;

1mm Fig . 1 ~;t have be -n replaced by the sw.i tch decomposition equl valc’nt

Fig. 1 -cb ) , analyt i cal ‘titus i pui.1 mitions are rout. lim e :

(w l~R ) T 
— (w i~ 1 ) T (w .~~1 )T F~ ( i~~~

- - 
-

~~~~~~~~~~~~~~~~~~~~~~ 4
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( a )  ( b )

Figure i~~. A Multi—Rate Closed—Loop Systems

There t’ore

+ (W 10 1~~~
T(w~~Gw 1 ~TJ— 1 (~~1~ R ) T (i~~~)

- t imi d
I T N  T N TX GW 1 E1 or x (~~~~

) E 1 (1 - - . ’)

Notice that the dimension of the inverse in Eq. 1z ~I i is determined by the

soluxnmm dimension of~~1. If this dimensionality Is high, and If the column
dimension of W 1~ is lower, then we can develop an alternate equation having
lower dimension . the alternative equation is in terms of the X~ vector.

The dimension in  this case is determined by the column (limnension of \~~~~~~.

4 + (W~~~w 1 )T (w l~ I~~~)Th 1 (w 2~~~ i ~T (~~1 ~R ) T ( i - ~~)

X Gw l i ( w i.R ) T (w 1~~w : •~’ x~~ ( i~~’)

‘N 
= 

~~ 
~T N 

(W 10R ~
T 

— (W1 ~~~~T1T (l ~~ )

A more concrete scalar example is shown In Fig. 11i . The objective is to

develop t h e  pulse transfe r ftnction relating ET and RT.

..1
~ ~~~
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w J , e 5T
~
l2I T/2 Sampler

Figure i’~. A Scn,lar Two-Rate Example

To deveJop this pulse t ramis icr fu n c t i o n  • start by wri t I ng tin o~ i i ; m t I on
t ’or FT 1n te rms of RT tfl(j ET. 

-

= RT 
— J i ~~e l 

(i , e
~~

;1
~1 ) J T F ~~~

1

)(1 
_~~_sT

)J 
FT 

( i L; )

Coe t ’ t ’i ‘i omit s ot’ like terms in Eq. 1 - .) are collected . Next , t im e  var.i otis
t’;u ’t - ors are expressed in terms ol ’ the t —t . r ;msss f o rms  for sampled time t\mnc—

.5 t i one which L ’orr ’spond t o  t hst ’ i~q~1 ace t r a i t s  I ’ormt ; ins ide each or  1h ~’ stuim p i I
opt -r at e r s , ( . )I . The r - : i i i t .  i s  t - Ii~ m i s m p l i t ’ i t ’ Li t.o oht - :~ in

i -+ 
— 

‘

~~
- 

- 
F •

~~ • ~~~ FT 
, ~ 5T ( 1~~~

(s  — 

-

Iii- i’’ t ’o r ’

- 
• 

- I -  - — 
- H 1 I

(L_ .. — )
~ 

- •

— ~- - - .5
,
- -.5 — - -- .5— . -.5 _

~~~~ 4~~~4q~ ~~~~~~~~~~~~
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Once E’1’ Is kmiown as a funct ion  of HT , it Is a simple task to compute the

equat ions for the two continuous states:

(I 
—

~~~
‘
~~ ) E

T ( i 4 ~~)

auL-t.

—sT- .’ ~~T 
T/2

= (I_ e  
)(‘

—

~ 
) FT (il)

- - h owever , not e th at i t  was necessary to consider terms such as

1;T(~~ I i ~sT L esT/21 (1~~t)

iii .-rLtex’ to ~-t~t mm the s—transforme d functions required for Eq. lt iO . Thus

mm mne ttmod t o t ’ oht mining s—transforms for functions ol’ this form is needed it

t h is po :iim t . An approach using the so—called dvanced s.—transform is pre-

sent e~1 in t ho n ex t  smibsect ion.

X. ADVANCE z -TRA1~S YO~~~

Mn tri x ew it ch do L ’Omn ~ OS I tion requi ct-s the s—tran s - fo rm o t~ i\sncti ons

- 
- 

ad v:mnced i n  t ime  tty some t’ract  ~i ems , .~~ , o t ’ the .1 oust comnmnon sampling period ,

T . ~‘~tr examup it ’ ,

- 

- 

t ’~~ - e~~~ 
~~~~~~~~~ 

, ( t  1 AT~ ~ (t 4 ’I’~ (i~i ’ ~

i~y -~it~t’Int t i.~n ,

i: ~‘
‘
~~~ 

ms~~\~T —a

ml 0

-a ’  me’ im : t~ Wi’ i t ’

• 
-.5

~“lLU1’ , t1 (i 
~( )

m m 0

.•

- - - 

-
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The i n f i n it e  surwnat ion i~ rem ’ogmmIs~’d 
to; a geometric progression which

can he expr~-s SeLl jym closed fo rmn . Therefore ,

~~~~~
—~~~ for 0 .\ <

Equat ion 1~m~ cams be used to generate a table  of advanced s_ t ran sform s in the

same manner is t h e  - :—transl ’ormfls of e~~
t wer e  used to generate a t able of

ordina~~ 
s— t runs forms lit Soot - ion u —c.  Thus , we can let the ~~ rameter ~ in

Eq. 1! ~ t sko on new ~‘a toes t o  ~nio c it-c new n t - r i  ott for t ime table.

a a 4 ii’:

_____________ - 
~~L\T ( cos ~~~ — 

~ sin ~~~~ I

— (u - I I~~~ ~~mT 
. . 

(1- ~~
— c ‘ — , ‘ (sos hT — sni hT)

Rat io f l i l l i se  Eq. i~ ° by mult i p l y i ng  numnerator and denominator by the complex

conjugate of the denominator to obtain t im e 1 ate i~ CLl I at-c re sult - , F i (s ) :

F (‘) = 
ze~~~~

’ [eos b~~ — j s-i n b~~~ [( s  — 
mT sos itT) ~ mT hT~

- -  

15_ 0—aT ~~~~~~~ bT) 1~~
tT 

~~ bT1f (s_ e~~
mT sos bT) — 

•~~~t’1’ s i n  hTI

Multiply l r.g out f- t im ’ facto r and e qmma t -  I ng real and imaginary part s g I

i t ’t - e r a small amount ot’ t r i gonometric manipulat ion :

e~~~
t
~~~

) (cos b(t +~~
) — j  em b(t +~~

) ~~~~ l~~~~Z — ~~~~~ 
cos b( 1 —A)~j

— ~ —aT coa bTz + e”~~

— 
j~e~~~~[oin ~~ z + sin b~~~ t —~ )TJ

— cos bTz + e~~i
~
’r

This is  the  advanced s—transform for the exponentially damped 005 time and

s l i m e  wave S .

~~~~~~~~~~~~~~~~~~~~~~~~~~
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Next , let a = 0 in Eq. l t 1 ~ to obtain the advanced z-transform for mm
uni t  step funct ion :

= ( i ’~o)
Z — e’~~

T limn —

;m-~~0

This states the obvious fact that a un i t  step, advanced by ~~ seconds, has
the same s—transform as the step function itself. Next, consider the
r,— t r m - tnsform of the t ime function :

H (t + 0~~t (t~ L~~) e~~~~I’(te
_ tu 1 

+ ~e~tI (i~~i)

since we already know the s-transform of each individual term, a straight-

fo rward computation results in:

+ 
z~~ — ___ 

ze~~~~[~~~ + T( 1 —A)e~~
T

J (~~
, - )e 

—t iT - —aT —aT ~2 
- -

( s — c  ‘ t — e  (z— e ,,

Similarly,

(t + ~~~)~~e~~~
(t ~~~~ ft + ~~Tt + (~~~)~~)e~~~~~ [e~~~

t
] (i~~~) 

-

~ -

leads to the transform of the remaining terms needed in o~~er to au~~ ent
Table wi th  an additional column of advanced z-trausforms . Table 4 is an
abb revia ted tab Le ~hat is sufficient- for the purposes of this report- .

L. A CO~~ARISON OF VE~~OR SWITCH DECC~~~SITION
MD T1~~ PHAN~~~ SA1~~LER

We are now in a position to compare vector switch decomposition and
the phantom sampler . As already noted , the case of slow-input/fast-output

- - 

sampling poses no conceptual difficulties (re fer to Fig. i’ - ), since

cT/N = [G~~T 1
T/N 

- fGM IT/N {R T 1 ( l - ~ )

S 48
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F’igure 1~-. Slow-Input/Fast-Output Sampling

Thus , the output C~ ~ is represented as a product of two factors , one of
which describes the properties of the systemmi and the other describes time
i nput. Separation oX’ system and input charac ter is t i c s  is  cruc ia l  as fur
:ts ‘O i toep t tm:mi  c lose d— icop man ipuiti t I ens :1cc comicermie d. i - or  exumaple , it. i s
necessary for t i l e  USC of signal f low graphs , block diagram algebra . ct-c .
The st -ut -c  of affairs is s~ newhat different for the fast—input/slow~~utput
san~ l ing case shown in Fig. I ~~ . The out-put in Fig. Ic’ is e.xpressed as

= [GMRT ‘NJT f(L~tmI )
’l’ N pT -‘N 1

T 
~~~

-
~ R_~,, GM 

c_~~,__

CT

I/N I

Figure in . Fast-— Input- /Slow—Out.put Sampling

where the extreme right-—hand s I do is ~-bt n. limed by it s i rig the ph os mi t om sampler
‘o nc e-pt - (Eq. 0. ) No simple product- factor I sat ) ott for Eq. 1’ - ‘ ‘ in  ‘ a cyst em

pulse tra i t s  fer t\imm t ion and a trans form ci ’ t he  input - signal .15 apparent
While roc t r sw it oh decompos It Ion depicted is: i-i g • 

- -
. prov 1 ~It’~

; t im - scughit- —

~‘t~’r i’r~’- ms mc~ t ’:mst o r  -at tot s • t - ) i i  5 i s  :I t -  t in’ expense of to m i ‘isr ~’as~’ i i i  t h e
‘t est s ien:tl i t  i -~~~~ t in’ prim l oin s .i msc ~—

w i ’  ( l - - t - \

I-
-’
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- - ____________
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Figure 17. Vector Switch Decomposition Model ;
Fast -Input/Slow-Output Sampling

Specifically, the row dimension of [W~RI
T and the column dimension of

[GIVW 1T are N for the fast—input/slow-output sampling case in Fig. in .

On the other hand, if G(s) and R(s) are known prescribed functions .

the evaluation of Eq. 1~ 5 can be carried to completion using either the
vector switch decomposition or the phantom sampler concept.

Consider use of vector switch decomposition for analysis of the slow-

input/fast-output sampling case (Eq. 1~~4 and Fig. i’~’). The equivalent

block diagram is shown in Fig. 18.

= W[W~G~~TI
T 

= wtw~GM I T RT ( i ’y~) - 
-

Not~.ce that system properties are separable from the input as is always the

case for the vector switch decomposition formulation . Also notice that
from an input/outpu t viewpoint [i.e ., considering (W [W~GM I T ) ]  there is no

T/N Sampler Model

~~~~~~~ R T( 
GM 

~ 

w ,~ 

~ 

D ,~~~ 01

1 
~ 

I 

~~~~~~~~~~

Figure 18. Vector Switch Decomposition; Slow-Input/
Fast-Output Sampling
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imm ~’retise i i i  t h e  dimension of the pulse transfer function matrix . if the

~ v e ct or  has mu elements and the P vector  has p elements , then (W [W~GM
1T )

is a im ts; ‘< p matrix. However , one should also notice in connection w i t h
E~ . p~; that  sin I itt crmnedi :mt ’ vector . ~T, has been de t’lned (commcep tmmal ly,

it least- ) wh i ch has N elemnent-s . It is frequently the case that time an:m lyst
ins ito i t t - crest  i ~ 

pT When this it; so , a~~ l i cation of vector swi tch  dccc m n—
A O5~~i lot:  does net  result in I m icre as e d dimensions for slow—input / f ~~~j —outi’ut

sampi itsg ci omen t like that shown in F.i • 1 ~~~ .

c cc, ’ with a c i ec  1’ c nu t t i er  cad ex:u:a) to to demcitstrat the  u t i l i t y

o X ’ :aiv:mn ’ed - — t r: ,t:s t ’o rm tms l:~ oms ju imc t  ion with swi t cli deccmm~ cs it let: • Cctmc i Jer
10, 5 c t up lit a p11: tilt ems s:m ’.smple r l’ormmm at.

L~\~ ~~ .i cIt .i~’c omt~~~:: i tt -ott ,

-1
[uw 1
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Figure 19. Illustrative Example

Note the manner in which w, written in terms of delay factors in Eq. 1~59
Is converted to advanced factors in Eq. 160. Equation 160 is in a form

suitable for the use of the advanced z-transform

~~~ ze~~~~
s + a  —aTz — e

Equation 160 becomes
.5,

‘-aTZ — e

—flbT /~ —bT/~T — 
Z e - e - ze 1-iC - —bT ’  —bT ’ —bT —aTZ — e  z — e  z — e  

- 
z — e

—2aT/’-

—aT
— e

Therefore ,

—flbT/~ —nT I~ —bT /~ — ‘u T - ’~cT z[z + e 1 (in ’)

Next , repeat the problem using the phantom sampler (Eq. ‘v - ) :

= 
S 

. GT 
= 

: 
,
~~ 0 sT~~ ( 1 s - ~~—aT - —bTs — c  n — c

‘-0:

‘ . 5 —
.

- -  — — . 5- . 5- .
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T/~ T 

‘
~~ A: B:C - = G R = 

—uTT~ —hT~~ 
(lt’4 )

n — c

It is readily determined that

_b T A  —aT ’
— 

e 
- 

—e ( i t ”)
L —bT ~~~ ‘-nT 7 A ‘ —FT ~ -~mT ~

A
c — e  e — e

Equation ii ”- implies a continuous “ge nerating ’t t ime funct ion of the form

c( t )  = Ae t 
+ Be bt ( 1 c ~~)

so that- upon resampling i i i  the T frame time we obtain

CT - - 
A: 

+ 

~~_ e~~
T ‘ 

z 0sT ( 1 r i7 )

S u b s t i t u t i ng  for A and B and then clearing gives

—mT - - 

~ —aT ~ —bT ~~~ —2aT -~~~

= 
4: + e e + e - e ] (1t ’~)—uT~,.(z— c’ .~ — e  ,,

E~;u:mt ion 1 n8 is in :mgreesttcm: t with the  switch deccmmposit . ion result of
Eq. ic’ ’.

i’mri e may oormc ~ mmdc that- the phantom sampler approach is macre ct’l’!c I em it.

4 
thin-i t he vector swi to l l decomposition approach whemm both approaches apply
On the other hand , vector switch decomposition always provides a mneam :s for
analyzing s ys t em  properties independently of system input signals which tire

ti s-ispecified or when various input signals are of interest.  The coinputa—
t i o n a l  approach one uses for any given problem should he select -ed en the
bus is of t hose cons iderat ion s ,

— _ _ _
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We may also not .e that the vector switch decomposition tool can be used

to model the computat ional throughput delay of the computer . This topic is

treated in Appendix F.

M. SECTI~ i

A table of abbreviated transforms has been developed usinc the transform

for an exponential function of time together with several transform domain
properties. This table , coupled with partial fraction expansion, enables

us to move back and forth between the t-, s-, and a-domains with relative
ease, Basic background material for analysis of multi-rate sampled systems

was also deve loped. Included were discussions of the “phantom sampler,”

vector switch decomposition, and the “T/N ” transform approach . Examples

have been used to demonstrate the strengths and weaknesses of each tool and
to call attention t o points which will be developed in greater depth in the

t ex t whi ch follows .
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SBCTI(Ii III

ANALYSIS Di TI~ w ’ -DC~AIN

A. E~ R0DUCTI~ I 
—

Diii- I mig the I 0’ ‘O’ t: and I ‘ s the need for imulmmt .imm 1 ~ open~ amid closed—

I cop t i  i rcra ft respom i— ten fmu ’mi ished an mipprec I able :Ltm ~ c tus for the devel op—

men t. amid re fi nement of d iso r ete  tm .l~ eI’.I thins for the s imaultit ion of cotit I mucus ,

‘

systems u sing  di alt-al computers: (e .g. , PcI ’s . 1 1 — i A ) ,  Thus , t h e Tustimm

trans fo~ mm met-hod and other climmilmir techn I mpi en for time :ipproximnsite ci iscr,- —

t.i :-. sm t - ion of contlimimous systems in side it feas I blo t o  rep] ace su i smi  o~ compute r~
w i th d i  i t-al computers for time s immilat:i cmi phases of a design e tt ’ ert . Now,

t im i s  :ippma ~: mchi  itt also commonly applied to design digitcil ccmit ~rci ]awmm for

t’3 y— b y— w i rc ai rcr a f t . F.t m’s t si cciii. ] nuous control law is syptimen i-ned, mind

then I 1 1 adapted for digital implementation using one ci’ the approximate

~h I cc m ’~ 
- t I sum t; m u  met hiods or igi nally do i’eioped for s imnulmit ion (e • g. , Re fs. 1~4—

I i  ) . ‘rids procedure is ,‘sm .1 I ed emmmlsi ti in.

T im ] :; uppi i cation of emulsitiomi for ti me des; I gm m o ~‘ mm di g.i i-a.] control]  er .1 :;

met 1 v:mtod both by a ñmndcunentmd r e l i a mmee  on system design cr1 ten a developed

for : m m n m 1 o t ~ systems and the justi t’i tthle des ire t~c preserve the large body ot’

shes i gn exper icl ice built up over  l iii ’ past twenty—fi ve years . ~nulmmtion is simm

approximate procedure when the Tusti mm tr;utsfonn or other “direct nmmbst i t u —

1. len ’’ methods tire used. Iii gt - m mt - i -s m , emulat 1 cmi procedures fall i i ’  s i cc o im mi l -

for mult t J)lexer/datmm bits e f I ’et ’t-s and , muore importamitly. require usc ’ ol’ hi gim

update r:m t e s t  (short counput at- I cmi l’ramne t I mmmcc iii order that time i nimererit-

:mpprox I mat ions be v ;U . 10. Thus there i s a  need for a di rect ci I I t. st.I des: i~ mm

prcwemIimre wh I elm iii exact (in cii t I ito L i tin to mipprex i mate ) , ta -com m it  I 5 1cr time

effects ci’ data holds, computational delays, etc ., mmmiii yet precerves t 1i1 ’

cxpe r I ‘i i ( ’e and physical .i mis - i i-~hmI - developed eve r the years mis -i tig convent- I

igmi procedures . The main pu rpOc~- of timi a s e ct - i  cmi i s - t-c ii i  gu i  I i-t im I th e

pro-perth’s ot’ a design domain wherein these  out ,leotivc s ire reali :;ed,

I fi emi ly, attention in f t i e m m n e d  ott the W ‘—domain — a dc~naium related

t o  the well—known w—domain ( R e f .  8) by an ;i.1A — irnp o~~ m m m l  scni .e fact-or. It

I —— 

- - —
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-



~~‘~V ’ W  ~~~~~~~~~~~~~~~~~~~~~~~ ~~~

.5 -~~~~~ -~~~-~~~~~~~ -
~~

---_1__~ -- - —-- 
. - - -  -I-- .

is a donma l m t where iii t im , - m ien—m i tm i mnum pimmisme effect-s ci’ the ~suui i pl  I rig mind dat a

hold operat lo r i s  cs ui i  be directly account-ed for u s in g  con vent- I orm;t i fre imit ’ ri ~’y

domi m In design I eels such its m ’ ’ot 1 coi m s mind ilode plois . These - c i t y - n t  I c m i i ]

t’re~ mme m m~’y dem mu iii des igim tools can be misemi to ~-ouis  I der;thl y it rest  m m ’  s t i  c an t  age

In t he w ’ —donimi In than ‘in the w— or ~—domaa In~ bee s i l t s ,- so y e  i ’ m I itt~ n- - l’owerfiul

mumsu  .1 ogles be tweemi the s —dommu iii t u mi d the w ’ —donu t In cx I s ;  I- . Ti m e t  - - e I I -

s i re • Itt a s ; e m i s ; t ’ , I lie key to exploit i i t g  the w ’ —tio ma in l’cm ’ 1—s I g im p m mm’ po:  -;

m;ik lag ill r ec t -  dos- i gui I mi thm ~’ w ’ — itommm;t in tin s i t  t ract I ye alt erntmt ive I ci do: ; I

1w emmuml i t t  I on,

In t h e  se ct -  ions  w h i ch  follow , Wi i’i m t  review b a s i c  properties wh ich

make t~iie w ‘ —miomna in p re t e  rattle to t h e  :‘—dom;i l i t  or w —dommi in, iou OW ii ig 1 m in

ill miS t-rn I - i vf’ t’xs mmlmr h-si are USOd t~o hi gui I gilt t i m e  analogies het-weeim .s mind w ‘ •

Next; we demons r a t e  tha t s ; s m l  i s ;  t ’tm ct om ’v des; i g r in  can  he ohs-I mu ned i i i  rm g conv ert—

ti ou st  I den gut su t pm’ es i c ime s ;  evem m for I ow dsm t s i  rat-es whe re m ipprox imamit c - Ii sc m ’ c —

I - at ion techn i ques su r e so seri -’mmsly iii error s in  to be I n v ;m i  Id . Herein lies

i-he- mami in c on I c  i l-mi t i ciii :  m’ , -c~igr1 it I Sifl t-hms tt f lit ’ W ’ — dCt m f l i i f l  models t ime n;mnip l i rig

ammO ds -t - s i  ho] 0 
~
‘
~~

-
~~

- m~tm t om i :~ ox- c’ I I y , regsi mat I t ’s; s ci’ tim e sanip lim ig r at  e crimp ] eyed

timid t h a t .  I lie w ’ — v a t ’  s i t - I -  I :~ I o ’mi s ; t o  t he  s — v s i m ’ i s m b l e  in  the semis -c t h a t

till t’;mm i 1 iso ’ fr equen cy donm :m 1mm ~l - ;  i g m m cs-mi ct -pt S in’ocedl ire s , and i n  to rpre i s  —

1 0115 ‘an ‘ice carried over cilia - I- ly

3. RZIATI~~~~~~8HIPS 3E~~~~~~E~~~~~ z , w . AND

r im t ime s i m i s i l ysi:; of I. i msc s ir ssmi;m ~’L-i I t t  a :~y ;t t e umms ; , mi s c c i t ’ 5- ~

m’e t tml h is in t tamn~ tot’ t’ummc t- ions wit I c t s t ur ’e r : t t  I ontO pcm lyimctmi ;ml t’m~ ii ’t- l o u t s ;  cit s’

Th I s; i s ;  In d i n t  I m m c l - i ciui t . i  t ime ‘ct’ i’ - : s p .  - u t - I  mt ~t I m ’ a m t : s  for  t’um o t i cnn m m : s — t i ’t t t s i  itt

t e r m s wim I ci m mire tr;mmise em id , ’ rm t si 1 t ’tm m me t lo ut s of s t , ‘it, is - alSo tim ~- cs l: se I Intl

I lie 1 c i i  list it ’ cii ’ ti re :;—p I si m m - in n t — t i - p  - 1  - s t  hit I mi t - c r i  or of t i  m u m I c I i’c le

Iii hi ,~ -
- — r I t mn ~- • A d m ’mmwb:ick el I he - — ic m m m sm ii: is I l i s t  ccii v - m t  1 I oim ;ui , j a; i g mt

cr1 I —m’ ~ a , s ; t m t lm is ;  cool I ‘,- it - - ; su m - I 1 , 1 , - ~‘l ’t s , - - ma ’ mic ra— h i ill - ‘ ii i  t t o  m l  o r —

pr- . Mc m - ’ ’~~ - r • s i t  b igh t  s i~;t ~ ’ I liii — i ’ -  e: ; , )tt~ . :—pi mi ne pci1 es- m in d -e m ’c ;t

- c ci u i s t t  - m ’ on t Ime i m ir It - ‘ I r t ’ le • ci ’~ - m g n itrite r ’i c-il prols- lt ’~t;; of si  ; ;iil ’s ; I - i t —

1 : 1  I s m s t g t  I i i i  - , l I t ’ — m’ -g i ott of I s —  — 1 - 1  s l t t t ’ com’i ’,— :;3t om t~h I i i 5 ~ I c  5; ( ml ’ Ic -a s t  551

he h m s t v  l o t ’  i s  I tO  ‘rio t ’ I o I l i t s t - i t  - ‘ I rc 1, ’ wh i I ‘hm pr ev cmi t s li t ’ ~1 t reel app I I

I join of R eui t - i m ’ :m s t  -ii ’ I I I  ty c r 1 1  em ’  a , }I1 -t cr 1  -s m l i v  (~‘ .g . , nee R et ’. ~ 1 , l i m i t ; 
- ]

~1
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fact prompte d the appli cation of an additional bilinear transformation
which maps a function of z into a domain where the region of stability is
once again the left half plane . This is the so-called w transformation
defined by the equation :

w ‘
~ ( 1 69)

One may use root locus and Bode plot methods in the w-domaj n w i t h  more
facility and insi ght than would be possible in the z-donmain , even though
each doma in cont ains exactly the same Information .

However, the w-domain still lacks other desirable properties. Moat
important of these is the property that w approach s as the sampling
interval approaches zero. This property is not provided since

= 
n — i  esT _ i sT+ (sT)2/~: 

~~~
‘ ‘ ‘ _ (170)z + 1 e5 + 1 ~ + aT + (sT)-/:~ ÷ . ..

mind in the l i m i t , as T 0, w approaches zero rather than s, A simple
scaling of the w-plane changes this situation dramatically, Define

-V 

w ’ ~~~w z = (i - i )

as tim ,- no-called “w-prime ” transformation wherein

— 1  :e 5T~~- I 
— 

‘ sT~~ (s T ) - /~~~+ . . . 
(i~’’)

- 

T I - 

T eST + i T -~~- s T  -t (sT)- /- - ’ ~

In l ime lim it s in  P —
~~~~ 0 in Eq. 1(: , w ’ approaches s,

Thi s ;  property is i g m m i f  1 ‘ m it .  i n t h s u t -  it  e st mmhlj sh ,’s thet - o n c e p t t i t u l  hum ; is for defining a quantity 1mm time w ’ — dctm: m it i— 

w h i c h  in s i nai  ogemt s ;  t c fi ’ ’ tn t -us -v in the s; — d o m su l i t .  
~ mrt hmer—more , the s u u m - m i o g y  la - on t ’s  - m i t  Identity in tile limitin g oti s-c,

a - “
~~~

‘-
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We are unable to cite a readily available reference for the transformation

given in Eq. 172 even though the relationship is well known to many prac-

ticing control engineers.

One may, of course , use root locus and Bode plot methods in the w ’-dornain

as well. However, the relationship between angular frequency, u , and the
imaginary part of w ’, v , is

v = ‘.,~~
- tan wT/2 (v  w for ~~ < (173 )

The approximate relationship between v and ~ is significant in that the

designer/analyst may regard v as angular frequency (for lv i  < 2/T ) during
qualitative phases of design development. Conversion to actual angular

frequency units is almost always unnecessary. Moreover, (w ’)’~ itself is

the trapezoidal integration operator analogous to s”~ for continuous systems .

Finally, the unit delay, z’
~

1 , whe n expressed in the w ’ -domnain , has break

parameters which are a function of sampling period, T, and has the form of
a first-order Fade approximation for a transport delay in the s-domain.

-

- 

= - 
w - 2JT (1 7~~~ )

To illustrate another basic relationship which exists between the

s-domain and the w ’-domain, conside r the z-transformn for a continuou s low-

pass f ilter sect ion

H(s) = + a  ( 1 75)

obtained assuming the input signal to the filter has been reconstructed

using a zero-order hold (ZOH). The result is —

- —sT 1T —aT
-

~~ H(z) = 
1 — e a ( 1 — e (176 )s s -4- aj —aTz-e

59 



. 5 - -~ -- -~ ’— -——- - -~ ’-.’ -~~~~~~~- - -  
_____

‘- -.5 - - - - .5.— .5__ _~~~~~~~~~~~~ -
— -- - -  —--_____ . ___ --  - - - 

_ _
~~~.T T .:~~T

-T—T -
~~~~~~~~

Applying Eq. 171 to Eq. 176 gives

-i
-

~~ H(w’) = — (T/2)w ’ + 1 -~ 2 1 — e’~~
T —( T/ 2~w ’ + 1 ( 177)

- 

- 

T 1 + e~~
T T 1 + e~~

T 
, 2 1 — e~~

T
— w + 1  w + ——aT —aT2 1 — e  P 1 -m- e

The equal-order over equal-order nature of Eq. 177 is, of course, a direct

- 

- consequence of the use of Eq. 171. At first one may feel that the analogy

between the s- and W V _domains is weak, since a proper rational function of

s will always map into a rational equal-order over equal-order ~‘unction
-
~~~ of w ’ . However, this is not the case if zeros at infinity in the s-domain

are considered , for then the s-domain zeros at infinity correspond to the
I V et (tra V V f in i te  zerom in the w ’-plane . For example , Eq, 175 shows that H(s)

- 
‘ has a pole at s = —a and a zero at infinity . In the w ’~plane the pole at

$ = —a is mapped into

‘-
‘ 1 —aT -~ -

W = 
— e  

T ~~ 
a 

~~~~~ for al ~ ~/;~r )  (17 8 )
T 1 + e

whil - the s oro s i t  m; = ~ is mapped in to  r u zero at w ’ = :‘/T. Obviously, as

T 0, w ’ s, the w ’-domain pole goes to —a and the w ’ -domain zero

approaches infinity, its proper s-plane location . This is a general result:

every pole and zero in the w ’-plane has its counterpart in the s-plane , an

long as the zeros at infinity in the s-plane mire counted.

Notice now the clear resemblance ci ’ Eq. 177 to its s-domain counterpart .

This is in distinction to the z-domain counterpart (Eq. 17i~) which ha-; a pole

that approaches t.}m ~ unit circle as T 0.

The zero at w ’ = 2/T is especially significant. This zero is introduced

by the ZOH used to reconstruct the input to H ( s ) .  It provi des a ruoiunirmimunm-

- •  
phase contribut ion which is the effect ct the data hold samp ling cs-i .e ~ms u ra-

meter.  This provide s another major advantsige of the w ’domain in comnp ar i s cu

to the z-domair-r since the effect  of the dat a  hold and sample r ;ite t~i i L  be

quite apparent in root locus or Bode p l.Qts . To emphani c th i s  point , let
the input to thc cont I n t t c t i s -  f i l t e r  be reconst ructed w i t  Ii - m s - c t  It - - r ( yl’c ci ‘

~ 
-
~~

s O  
L

~

- --- -

~

, - - -— - - -
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data hold called the “siewer data hold.” The slewer data hold results in

constant rate o u tp m t t -  between sampling inst-ants and has no discontinuity

s i t  the sampling instant . U simmg the slewer , one computes

.5’,

-sT 2 1
T

11(z) 
(1 —e  ) 

— 
a ( 1 — ) )

Ts’~ 
S + a -

- -  k~-+ ~
aT1 

+
~~~~~~~~~~~~ 

~~~~

Tz (z—e )

Or , u s in g  Eq. 1(1 ,

— 2/a) - I- (T~~~2/a)e
_aT 

~~~~1 
~ i1l_ ~ 

W V 
+ ii

H (w ’)  
2( 1 — e 

—aT 
— 

— (i8i ~

[i.. w ’ + 1 4 w ’ + 1
t2 1 ~—ai -

Obse rve that~ the slewer dmi t - mm hold has both tu pole and nero in the w ’ —plane

model. Thus- it is - seen that the use of a zero—order hold introduces a non-

mninitrmum phase zero sit w ’ /1 (refer to Eq. 177), whereas the slewer intro-

duces both a pole and zero . Fim -ially . note that Eq. 181 reduces to

ilium , a

~ 
_

~ -o H(w = + tm 
(ift )

sin wt ms - ti m e ot is -c  wi th  t i m e  - se  r e—ord er  l id  d .

Table - sr~nmstrizes the m ’ci s i t -  1 o imsl i  i ps; betwee rm the var -i otis- plammes for three

di f l ’ ’ ren t -  f i l t e r s - o c t - i  ciii; su n  sumnimig t ime min e o t’ a so ro—or de r iiol d. One may

o vtu I m s - u t - c t I m e s - c  t ransfer funct i cmi i ;  us i ng T t i n  a paranmeter , to obtain a feel

for  I I i ’  relati Vt’ ps-n i t - i  cit lmi ~ of ps-i ’s- and se ron lii Lii , t hree dommi ins.

Thus fa r , t - imr ce important propert ies-  of t h e  w ’ —domain l i t i V i ’ bees-i enu—

mneriited : 

t i  ~

- 
—
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• w’ —~ -s as T -~.O.

• The nonininimum-phase effects of data holds become
clearly evident .

• Conventional methods for stability analyses continue
to be applicable since the left half of the w ’-plane
corresponds to the left half of the s-plane .

A most important property of the w ’-domain which remains to be shown

is:

S Conventional frequency domain synthesis methods (both
scalar and vector ) continue to be applicable , even when
the sampling rate is so low as to cause large differ-
ences between s-plane and w ’ -plane pole and zero loca-
tions for a given plant,

This property is the topic of the next two subsections .

C. ILLUSTRATIVE DESIGN PROBL~~ —
SHOE-PERIOD AIRCRAFT MODEL

Conventional frequency domain design methods are directly applicable

in the w ’ -domain. This will be demonstrated in two stages. In this sub-
section we first consider the design of a stability au~nentation system

using a representative model of a short-period aircraft.* The use of the

second-order model will allow us to illustrate clearly the manner in which

the non-minimum phase contribution of the data hold affects closed-loop
system properties and responses. (Furthermore, these effects are different

for a disturbance input than they are for a command input .)  The short-
period model will , however , tend to have modal frequencies well below the

fo lding frequency even for data rates as low as ten samples/second. Thus ,
the most dramatic effect that folding (or aliasing) may ha ve upon the plant
w ’ transfer functions will not be evident . Therefore , in the next subsec-
tion we consider a fourth-order aircraft  mode l which includes a high fre-

quency, lightly damped bending mode for which the effects of folding mire

dramatic. This will enable us to demonstrate that the w ’-domairm continues- - 

-

*The technical details of the models used in this subsect i omm and the -~ -

next are contained in Ref. 17.
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o ~ b i d  s - s i t .  i ;  !~t u ~ t .t ’t’ V ci Osted—i001) designs oven when the differences between

In’ —dots-s il m s s-md w ‘ —~i o m m m si  j i m  modal representati cnn t ir e large

Comi :t I dor fi s-nt the simplified aircraft model ci ’ Eq. i8~:

[ 4 1  1— 1 —37 1 1~1 F-~1 1—37
1 1 1  I I  I~~ I I~ e ’~I 1 °~ 

(~~~~ )

~~~a ]  ~~ 1 ‘ ] L ~ J ~°J I_ — 3 1

In Eq. ~~~ ~~ 
is - the control input, ag is the gust disturbance input , and

1 ( body ax i s -  p i tch ra te )  ni-id a ( inert ial  angle-of-attack component ) are the

at ~mtes of he s v s l e m n , Suppose lie cont inuous control ler  is designed us im ig —

he m u t t  i Loop 511151 I~,-s is  t echni que of Het ’s. )~ t i s id  ~~ ) .  The block diagram of

l-~~~t~~. 0 d ef i n e s  the closed-loop configuration wi th  postulated compensation

networks H i ,  I t - , and H~. In Fig. ‘0 , H 1, H :’ , and H~ are to be determined

(d esign ed) .  R is the conmmnand inpu t , and x 1 and x are used to represent the

S t t t .t e s -  q and a, r espect ive ly . App lictu t ion of the mntilt iloop analysis method

I I
y
~~~~I n-i~.I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
H3 ~

—-
~~

-
~ 

A / C  I
— 

or n z )

H?

— 

!- i p m m r ~- ‘O, i m l L ’ -k D i : i g r - m s s m , Ilimms - t~rmttive Exammiple ,_ t 
-

_ _ _ _ _ _ _ _ _ _  _ _

jj i
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-
‘ y ields the matrix of closed-loop transfer functions directly . The theo-

retical details s— f the nmultiloop analysis method sure documented in Chapter

of Ref.  R~. 
-

I x  I x-~ x’~I N~- H , ‘ N - 4 H 1 1 1 -N  ‘ .
~ 

‘

L_ ‘-~~,-‘ - I cg I ~) tl t L ’c~ - — l - __ 
C- ’ ’

A -i l1~~I i~ N~~~ It 1I[3N~~~ 

- -

The various n~umme r at or S of Eq. 1~~m are fothid usin g Cramer ’s rule suppl ied ic  
1 -

the Liup ituco t r amm sfo r m of Eq. 1 ~~ (nec  Eq. 1 
~~~

‘) .

[ 4 1  
s 4 3]  [:] [.-

~

o ] [:1
• 

N~~. for examp le , is found by substitut I ug the ~~~~ column on the right—hand

side of Eq. 1 ~~
‘ ‘ into I-h e x~- column on the left—h~utd s; ide ot’ Eq. 1 ~ - mind

k eviuluat I n~ the determinan t of the array t hum t  results-. A is the cim sirti ct or—

1st . j o  o~~’ mm ~ locp polynonmis-ul t u t d  i s  t Im e i.tetenninant of the left—hand mati’ ix

in Eq. 1~~- . To i l lustr ate

-4- 1 .5 •-) 0 -~~~~~

A ‘-‘ a ’ 4 1~s- + I t ~~ (a - -  7)’ -u (in)’ ( i s - - )
— 1  15 -

~ 
“,~

—: -~ o ( i ~

= —‘50(s ~
) (1~~~

1~ 
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bode plot,~ ~v q mmj ~~ d~ mi~~.~~125 root 100
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Figure ‘1. Di gital Control Block Diagram

~ I by a sampler. All the remaining elements of Fig. 1 are to b~ iin~mlenienmt .ed

on a di gital computer. For simplicity of presentation, the d at - s t  hold I n

as-sunned to be a zero—order hold; however , the synthesis prc’ct ’dsmr e we sure

about to cxi’’ nr e will be direct ly zmppl i cable for other ty’pes of Wm t  s s holds

tm s well ,

Tak lag the  —trans form of the fi i’s-I —order net ci ’ d i f f e r e m m t .  1 0 W i t i  i 01ts~

I von in Eq. 1~~

$ 
I

.7r ,~~7760 C9 I 2 . 0 7~~~-~) 1~ x 1 ( z )

x ( z )

J 
~~~~~~~~~~~~~~~~~~~ —2.8 ~ 1 F ~~~~ 1L I ‘

— . 212 7 19’~ 0 , 1-iO 1’7L. ~( 10

E -~s-~ t. 1 055 10 ~ may i~ devo 1 0Th’d t’rom Eq. 1 ~ ‘ ‘  515 1 I1I ~ C’ I t .Iim ’r t i me -Io:st s i 111 or

fre .lsmt ’msc y d~’mst -~1 m- - cn1-’r ’st~- ims ’s- ret ’ci’ t o  A~’m ’ets d ix 1’ ’. ~~~~
- have -i~~ s - sm~d she gust
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inp ut is sampled at 1/T smuimples/second amid h e l d . This is s o m m m t - w I s m s  it Vtti’ - 
C

C min ce wi th  the physical realit y ci ’ t.he problem since the plant is ac ’ u t I l :,
excited by si c osm t im m uous  disturbance . This assumption has bees m -td t s:mt re

because it has su s impl i fying effect-  upon this illustrative prob~ csn. It  ~s
not cssesstial .

Bec s suso  of the sanq-mling assun~ tion 0 m m ag, one can proceed com a -ep ~ s m - J I y

in terms of a conrpletely discretized system; the state vector has bocss
sti mpled and fed to the digital computer , as has the scalar input R . One

may think of Fig. 20 (and Eq. 1811) in terms of the :- and w’-domains tm s

well as in ternms of the s-domain. That is , in Eq. 1811 consider x 1( s )  to

he repltuced by x 1( z ) ,  N~~ ( s )  by N~~ ( z ) ,  etc. Thus , one can proceed to

~em ie r t mt - o the Z-clomain equivalent of Eq. 1~~. , given a sampling rate (assume . 

-

10 s-summp les ‘secend). and up-on making co~~ ut t mt i ons  of the characterist ic poly—
nomial and numerators ci’ time f i rs t  and second kinds .

z-Domaln

~ ~
y
~~ii~ (—2.~i’1~ 4- 2.8~ 1) ~ FV1I~-,(—1 .196~1 ~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I o~~(Z~ C

x- (z) (z2_ 1 ~~~~~~~~~~~~ ~ .~~ o5) -l H~~5
(_ .212(:-s _ , 1859) 4 H1 Ii3(~~1 .im91: 4-

Time closed-loop z-domain equation is not easily interpreted by methods use-
C ftl for interpreting the closed-loop s-domain equations . To facil i tate

- ‘ interpretation ; it is our assertion that the w ’-tran sform should he applied

to Eq. 1911, i .e., z = [1 + (T ’ ’)w ’J / [ l  — (T / f l )w ’}. The result is give n in
Eq. 19~’. The reader should con~ are the numerical values for the gains and

break frequencies in Eq. 19’~ wi th  the corresponding quantities in Eq. 19. .
Close correspondence for many of these numerical values should be noted.

w ’ -Domain

~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 lal

• lx i i - 
~~~~~~~~~~~~~~~~~~ + t) g

,(m
_

~~~~~
) 

~~_ m . o~~~o~~~o51(1 ~~~23)+ , .7 .,H l~~~( m _ ~~~)2j L~i
[x4 

- 

ii ’ + 1 ) _ 1 . 2,oooo 
~~~~~~~ 
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_
~~ )_3.75csoooi59(, 

~~~~~~~~~~ 
i) i o ~3 (i _

~~~)

(10”)

-

~~



—__.5--~~~ - ‘I - ~~~~~~~~~~~~~~~~~~~ —-‘ .5 - —‘ .5-- - - --—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -—.5 ---.5-- --- —-—.5 —- -- .5 

.5 

. 5— - - 

r -‘ ~~~~~~~~~~~~~~~~~~~~~~~~ —— -.

It is our contention that the  effects of the sample/hold operation, the
data r - tt .e , etc. , are readily apparent in Eq. 19~. Comparing Eqs. 19~, and

19. it is seen that :

• Numerators of the first kind pick up additional zeros at
2/T in such a way that they have the same degree as the
character is t ic  polynomial.

• Numerators of the second kind pick up additional zeros
at ~1T in such a way that they are equal in degree to the
characterist ic polynomial .

• Every entry in the s-domain equation can be considered to
be equal-order over equal-order if the zeros at infinity
are included.

• Every - rmt ry  in the w ’-plane equation is equal-order over
equal-order. Zeros at infinity in the s-plane move to
either ~T/T or some other location , for example :

— 1,~~~H~ ( s )  ~~~_ 1.?’5(~~7 + ~)(~ _~~~)H~(w I )  ( 196)

• The numerical values of gains and time constants in the
w ’ -plan e are very similar to their s-plane counterparts.
(Although not demonstrated in this example , this obser-
vat ion ho lds only for modes having an s-plane modal fre-
quency which is well below the folding frequency (2Ws
equals 11n/T~. The fact- that this observation ho lds true
only under the stated conditions does not limit validity
of the w ’ -plan e analysis techniques in susmy way whem i the
stated conditions are not satisfied. That tu is  is so is
demonstrated in the next subsection.)

Thus , one may proceed in the w ’ -doniain us ing all the familiar synthesis
tools of the s-domain . The direct digital design in the w ’ -domain , however ,
proceeds with additional explicit knowledge of the mios -tminimuin-phase effect-s

introduced by the A/D and D/A conversion through the zeros introduced at 2/T
(equal to 20 rad/sec for this example). If these noimminirnunm-phase effect-s
become significant (the zeros move closer to the origin as the sampling rate

is decreased ) then they can be regarded in exactly the same manner and

treated using the same techniques as are used in the s-domain,

The actual synthe~m i s will not be carried out since the prime o~ je et ive

was to highlight the analogy between the closed-loop transfer functions in

b9 
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the s-, z-, and w ’-domains. A synthesis will be carried to completion

for the more complex aircraft model used in the next subsection.

D . SHORT-P~~IOD A~~CBPJT WITH ~~ !D~~~ ~WE

It remains to demonstrate the utility of the w ’-domain in the face of

substantial folding effects . This can be done by modifying the example of
the previous section to present a more realistic design situation . Speci-
fically, the aircraft model is modified to include a lightly damped bending

mode at 25 rad/sec (this will be close to the 10 samples/second aliasing
frequency of 31. 11 rad/sec) and to include accelerometer and rate gyro out- ¶

put equations . Thus, we will have one control input, one disturbance input,
four components in the state vector, and two components in the output vector.
The details of the model are given in Ref .  17 . For our present purposes , it
is suf f ic ien t  to modify our Immterpr etation of the block diagram of Fig . 20.
Let the bending mode state be called xb, the output of the accelerometer (n C. )
be x 1, and the output of the rate gyro (qg ) be x -,. The open-loop transfer
functions are given in Eqs . 197 and 198:

s-Domain

—11 7 .72 [.1~ 1 , 35.2J{— .03111, 26.357 ]

x 1 ( n )  nz 
- ~‘~975 13.i~o~ + ii [.0152, 211.3116} 

-

x:(s) ~g 

- -  — 

[.355 , 6.67~ ] [.oi . ~~ ~e

w ’-plane (T ~
- 0.1)

• 
_ 12~~.5(_ 27.53 

+ 
1)(13~~O 

+ i)r .i , 32.nfl J

X l (W ’)  

= -- 

—3.79711 + 4 [.0 0 , 10 . 2;’]

[.3789 , ~ .86 11]f .O 1117 , 6O. 137 f

( 1- )~
’’) 

C

0

j .~~~~~ d A.A .
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In these equations quadratic factors [s 2 + 2~w1-~s + wj 1] ha ve been shown
in the shorthand form [~, w~- 1]. Comparison of the corresponding numerator
and characterist ic polynomial roots iii Eqs. 197 and 198 leads to the
following observations:

I The short-period quadratic is essentially the same in C

either the s- or w ’-domains.

• The bending mode at 25 m d/sec s-domain has been shifted
upward to 60 rad/sec imm the w’-domain. (A a t - i l l  lover
sampling rate could shift it downward.)

• The n 2 numerator , which is equal-order over equal-order
in the s-domain does not have the zero at w 1 = ~/T.

Clearly, we now have a design problem where the folding effects are signi-
f icarmt.  However , the closed-loop desi gn can still be synthesized using
conventional multiloop frequency domain techniques. The following comnpe mm-
satiomi was sm rr ved at using ma-Lnly root locus techn iques.

H 1 H3 0.006 (109 )

.5 

H. -~H3 = 0.0085 ~~~~
- 

~~~~~~~~~~~ 
( 200 )

This t ranslates back into the z-domnain (and give s the required recursion
e~lu a t i c -im1 fo r i- li e discrete control law ) as:

H 1H~ = 0.006 ( ,  oi

= 
00 1X) : - 

( t ~

The ci t~sed— lcs -Cp rC’lat I onships arc- gi von by Eq. 1 ~~~ w h i c h  is vail ~i L’or
b .’ tIm the s— or w 1 —domains . Rather t han g I ye numerical comparison between
55 tn  I w ’ us I ng Eq. 1 I ( sits W 5I t done 1mm the previous sic et i cm -s ) , it is our
preference t o si m o w Bode plot s for t he ei~ 5o~l—lo op sy s t e mm m in I lie s— tim id
W ’ — l o m u s m  i m i s t . Time Bode plots for t ime tram-is Icr functi Ou ts of i m i te  r e s t  sirelot 1- ~~~~I in  rigs . , - 

‘
~~~ , st u d  - I I . Net- Ice in psirt. I cular the e t1 ’ e t - of time

s n  ISIS  I - 5 ismmmm — ~qm smse Zero on I l ie  magum it mude amid phase p l o t s
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At this point we come face to face with the central question , “Are
s—domain design procedures and concepts effective in the w ’-domain?” We -

proceeded ‘with the design in the ‘w ’-domain on the hypothesis that these

design procedures and concepts are effective and with the knowledge that
the w ’-domain transfer functions for the plant properly and conxprehen-

sively incorporate all the effects of the data hold and sampling rate for
C all modes. To demonstrate that this hypothesis is correct we must check

the time responses for the discrete controlled system to see if they are
acceptable. This is done for the q variable in Fig. 25. Notice that

there is no basis to conclude that the performance of the digitally con-

trolled system is infer ior to that of the cont inuously cont rolled one or

vice versa. In fa ct, the use of an accelerometer feedback gain of 0.006
has resulted in a lower q/ag amplitude ratio at lower frequencies for the

digitally controlled system.

.4

0 I 2 3 0 I 2 3

(deg /sec) 
~ ~10 ~S~~~~~~~~~~~~~ I0s /s~~s/s

a) Ideg Sfep,R 8 ~~,H3,~s)~~iO

5 . Time(sec )

(cieU /secL
.5 

~~~~~~~~~~~~~~~~~~~~~~~ 

: 

~~~~~~~~~~~~~~~~~~~

b) iodegStep a9

Figure 25. q Transient Responses of Continuous and
Di gitally Controlled Systems
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Analogies between system formulation s in the s- and w ’-domains havebeer-i drawn . To arr ive at the w ’-plane formulatj om one must first discre-tize the problem by means of a valid mathematicaj techni que if the effectsof data holds are to be represented exactly. This leads to a statement ofthe discretized problem l i-i the z-domaj n . The z-domaj n statement of theproblem is then converted t~ a w ’ -domain statement by means of a bi l inearalgebraic transfomnmation

It has been demonstrated that direct digital control law sy m - t i i o ~~~5~ inthe w ’-domain is a viable and practical  alternative to desi gn by emulsitj onof a cont inimous systems . Key properties of the w ’ -domain have ho ess SttitC.5j,and the “visih il i t \” of datst hold timid sampling rate mion-minjimmi phaseeffects in the w ’—domain has bc-en demnommstmated. Most import:sntl~ , it  li st sbeen pointed out. t hat convemstiomi sli frequency domain design procedures
as multiloop min sd ys ts i , Bode plots , root locus . etc . , arc valid tm nd  e t - u ~procethires in the w ’-domajn even in the presence of sign if ie~~~ al it i s ing .  CFinally , there is the convenipm ce resulting from the fact  that the im:1ginar~part of w ’, ~- , approximulates angulmir frequency, a~, for Ju~ ~ or - 

- ‘T.The impact of this is that  the control desi gner can now s3mthes[:e digit:lcontrollers using  comis iderably lover sanmplim-mg rates than are required whcnan emu1atjo~ design approach is used. ~ irthe~~ ore , the direct di git al  con-trol law s~~ thesj s approach presented here requires no new sm m I t i J ~~~ic~t1 te- Th-ni ques beyond those class ies -i1 freCpmemiey domain procedures required by the- 
5 emulation desi gn n~~ roaeh. The ana~ \~~icsil techniques are merely appliedand interpretetl in the no~~l manner w h i ch  we have descri bed lit this section .
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SECTI~~~ IV

!‘VIJrI-RATE TRA1~SP0RM D~~~ 4A~~~~~ APPROACH

A . ~~TRODUCTI~~

The existing state of affairs with regard to the multi-rate problemC 

(introduced in Section II) can be reviewed with the aid of Fig. 26. It
may well be that our major interest in Fig . 26 is the response of the con-
tinuous output C in response to the input r ( t ) .  This can , of course , be
computed , sin ce

C ( s )  G( s ) R T (s )  (:~~ )

fl ~~~ J C
T/N

T/N

____________  L
Figure 6. A Basic Multi-Rate Configuration

For exar~~le, if G(s) = 1/ (s -i-2) and R(s) = 1/s , then we may write , setting
z = e ST,

C ( s )  = 
(a + 2) (z ~ + + + ...) ( 20k )

There foro ,

c (t ) = e
_ t

u (t) ÷ e
_ (t_T )u(t. — T) + e

_
~~

t
~~
T
~u (t — 2 J ’

~~ 
• . .  (:0’-)

I C i i i  2C’- , while correct. , is not very i l luminat ing.  We ca m s g:iin mcr c
insight s~ m - 1 n. r - s m t -  - - cmp mi t s  LI  o m i t t j  c-fI le  l o m i c y  by looking -it t h e  intt ’r—sistmp i

.5 77
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response at a f ini te  numbe r of points. This is indicated by the use of a

sampler working in a T/N frame time. The basic property of the transform

domain , discussed in Section II, can be invoked to give

I
= {GRT] T/T

~ = GT/N RT ( :06 )

Letting z = 0sT /N gives , for our i llustrative example ,

T ’N - 
z RT - I \/ zN

C — 

— e~~
’r
~~ 

— 

— e—
~~~~ Az N — 1

We could pursue a cp~~~e of action that would yield a “closed form” answer

by finding the N + 1 poles of Eq. 07, expanding in partial frictions and

invert ing the  result hack into the time domain. However , t his “ in creased

dimension ” approtich is computationally burdensome , especially if t he orde r

of N is high.

Suppose we elect to proceed via the recursion equation route. What

additional complexities are introduced by the multi-rate nature of the

problem? Suppose, in Eq. O ( ,  that N is unity so that the recursion equa-

tion becomes

CflT = e
_ T

C ( f l _ l )T + rflT ( . o ~ )

In practice , one usually makes a mental note of the frame time and sup-

presses the use of i t -  in the recursion eqimat ion :

C~ = C Ca_ i  + r~ (O9~

In general , t he basic requi rement  is  tCs r  four storage registers (r1 .  C~ _ 1 ,

• - •  ~‘T- ’N 
/Crm) . Letting N be non—unit y , dot tue S e~ 

- and suppress the r- N

t’rammmc- t- rio :

—:i~ N T -C~ = e C~ _ 1 + rn , N ( IC~

.5 - -
~1-~

-— - . 5-

IL ~ -- - 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~



But , r~ ,N 
mere~~ immdi cates that r( t) is he I mig sttm ssy 1- ‘d ev ery T seconds and

there fore uen—Ser e values result only for every N tlt occurrence . Tlmeret’ere ,

0

r~ ,N a = 0, N (1 1)

r(t)

It is sec -mi t i- m at the memory requl remnents ci’ Eq. ~‘10 mire bus I eally unchanged L -

¶ f’rom Ec.  - 0’. There is~ of course , the csilculat ional .1 og ic needed t.o imp le—
mac-nt - Eq . ‘1 I .  For ti m e example .

0 n1-’N integer
— T N  I

= 
~mm — i ~ ‘

~ ( ~ 
‘
~ C

1 n ‘N - i nt ege r

W h i l e  t im i s  pleasant. s t - t i t - e  of a f t ’si rs remmmains essentially unchanged when :-orc—

order holds sire used as ccmzp lers , th ’ m ss~’ of  hi gher—order dat- a I t o ]  do ( smici m

:55 he s 1 ewor ‘1 does i gui 5 ’ i c s sss  t I ~ ‘ ‘t i~e 1-he msmode 1 u~ comple x i t y .  These

c sms es  are di scmmssed in su cceed ing sect i -no ,

B. t~ E OF Z~~O-ORD~~ HOI~S AS COUPIRRS

Mcd i 1~ lug 1 .1 g. ‘
~~‘ t o  Include a :-ero—order hold (~

.
-01I~ g ive s  1-1g . -

- . As
we s}i :sil 1. see • t h e  use ci ’ t h e  :e r o—or dor lso.1 d will cause mm o .1 s sc m ’e :n s , ’ : m i I ito

d i rss~’tis ou t I it y or st ox’t i~ e re~l um I r ons eui i - s .

~~~~/ 
R T

~~~~~~~

] ~~ 
C

. erc~~,i m~C l e r  ib id Csnt ,-

‘
s- i

.5 - . 5’-- 
~~~~.• :~:T _

~~TT~ ff~~ 
- 

_ ___

~~~~~ ,-~~~~~~~ -i_~~5

_ 
-
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From Fig. - ‘7 ,

C = G(s) Li 
:~~

-
~~ 

RT 
(:i~~)

— 

Evaluate Eq. ‘1 at a sampling interval of T/N :

-T T/N
cT ’ N 

f~~~~~

e

~~ 

)E G (suj  ET 
(~~i.. )

Let a — c-s T N  so that Eq. :-i~ become s

cT/N = ~~~~~~ 
1

~~~~,1T/N RT

CT/N (z~ 
~~~~~~~~~ f~~

_ 
e~~

T ’N
)[G(sll1

T
~~ 

RT
-

~~ 1) ~ 5

In Eq . .. 1 we have “ inserted”

a 
_ _ _ _  - 

a 
— ~~T/N

)
1 = 

~ 
___

~~ a — 
( i

in O~~er to give the bracketed term t u e  same fo rm as the Single_r atc- case(see Eq. :1~s) .

Equation - 1’~ Si mp lifies to:

~T ’N 
= Ii + + 

, (N-1)
3 ( i _ .  e

_5T
~~ )fa(sJj 1 

- 

RT (‘i~~
)

Let the power series in z~~ operate cmi the input RT :

- —‘.5-— ~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~ ~~~~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘

_(~-1)~ 
(-17)

—1 + ... -~

-~ N 
~~~~~~~~~~I~~~o s \  R 

nsf0~~ 
of s(s), 

on

he . inter
a~ ti-te ~~ 

50~pling

~ at term i~n E u .  :17 
ero_ 0~~ c-T hO1~~ 

at 
that the T result iS

the~~~~~~ 

of Smoot 
~~~~~~ 

~~~~~~~ 
rnanfl~~ _1).~ has a part

tt ~S 

~ 
that

the t ime
comp~tC 

~ 
1~oret~t~~

u iti (218)
T i\

larlY ~~~~~~~~~~ 
+ . . . + 

~ n-(~~ 
/

_(~ -1)~ 
-~~~~~ 

R~ 
+ Rn_i

—1 • I - - 

index taice
S On - -

‘-ten the n 
~~ fore

o valUc- ~ time
5

oflly has a 
~he T valuC ~~ e we ca~ 

no e

~ tor -‘i8 
T 1lerefor

C ~ sign~
nica

~~ 
of ~~~~~ 

-

~~ 
~ ~

Lk :~~°’1 ~

- 
,~~~10~~ 1~g:

tao 
_ (N- 1)~ ~~(nI~~~T~—1 (-~1Q)a R’~_ 1 ,~

-1 ••  ~~~~~~~
_i
RT~ 1 +~~~~ 

I

÷ 
~~i)~

er vai~~ 
take~

.

and the ~~teg
divided bY s ~~~~~~ 

b~ T.
deX ~~ . n~ 

th~- iir0’~in 
b~ 

mu1t~P
l
~~ ‘th Y ~~

C In 
~ the ar ~~ mte 0t ~s fow~~ 

~~~~~ follow c-sSc-n~~~ equatiom~
.5

• - ‘1~tte valuC 0 
curs~

0 eqU~tbon 
re seek -~~ 

the 
~ ~~~~~~~ 

would give

find the re If one we 
a tabic- 100 1. ~~ 

in a
~ fra~~ -°~ id be ~i.-~’

smure as when ande~ 
in ~t5rt~-~ 

~ se 
co P0~~~’~ 

won 

~~~ 
:~:o (assume

d. he c-~~ thcf l en ~~won 
omponentS~ 

an 
b of the form 

gi

the imidiv~~’~~ 
c 

~~c- result 
would. c-

• 
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CT (i — e~~T)JT RT = 
a z ~

1 
+ ajz

m
~~ + ... 

~~~~~~~~~ R(z) (2:0)z + b1z + ... +

From Eq. 220 the recursion equation is written directly (let nT , the t imeindex, be represented by a):

= b1C~_ 1 — b~C~~0 
~~~
. bmCn m  + a0R~ + a 1R~~~1 + ... + 

~~~ n m  (:21)

The recursion equation for cT/N has identically the same form as Eq. 221 , -

- -

Simply recompute the a’s and b’s (the coefficients ) uSing a T/N samplinginterval . Now let the Index nT/N be a and write :

= b 1c~_ 1 — b~~~~2 — •. .  — bmCn_ m + 
~~~~~ + a l R~~ l N  + ... +

( 222)
In Eq. 2 2  the only noticeable change for the T/N case is the input notat ion 

-
.5

(refer to Eq. 2 19).

We illustrate with several examples.

Example 1

Let 

G ( s)  = 
( . ‘:~~)

The P recursion equation is

= 0~~T~ + (i — e~~
T ) R ~~ i , a = e5T

whereas the P/N recursion equation is

Cn = e ttT
~~~~~1 + (1 _ e

~~
T

~~~~R~ _ l ,N , z = e~~~~ (~~~‘~

- - —.~~~~~ 
- - - - .

~~~~~~~ — —
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Example 2

G(s) = (226)

so that

CT/N = 
z — [i ; (b/a) + (b/a)e~~

T/N] 
RT[1 + + + ~—(N-1) (227)

The T recursion equation is

= e~~
TCn_ , + R~ + (+ — 1 — ~~ e~~ T)R n_ l  , z = ~~~ (228)

whereas the T/N recursion equation is

e~~
T/N Cn_ i  + R

~,N 
+ — i — ÷ e~~Tm)R~_l ,N , z = e~T/N

( 229)

In the next section , these basic ideas will be extended in a manner

that permits the analysis of multi-rate closed-loop systems containing

zero-order holds. Before proceeding, it will be instructive to exercise

Eq. 225 for a cosine wave input . This is done in Fig. 28 for the case

where T 1 , thus causing a sampling frequency of 2n~ rad/sec. The input

frequency in Fig. 28a is mt/2 rad/sec , which bears an integer relationship
to the sampling frequency. On the othe r hand , the input frequency in

Fig. 28b is 1.5 Tad/see, giving a ratio of the sampling frequency to the

input frequency which is an irrational number. The effect of this on the
“steady state” response is clear . In the steady state , Fig. 28a has

acquired the additional attribute of periodicity, whereas Fig. 28b shows

the modulation caused by the non-integer relationship between the input

frequency and the sampling frequency.

The concept of the cont inuous frequency respon se of a discretely exc ited
system will be developed in Sect ion V. This will provide the tool for iden-

tifying the spectral components of wave forms such as those shown in Fig . °.
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5 - 
r cos(,r/2)t ; a I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

b) r = cos I.5t

cm 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 28. Response to a Cosine Wave Input

C. *JI~ I-RATE FORI,1ULATI~ T

The type of recursion equation developed in the previous section can

be used to advantage in the analysis of closed-loop systems. To develop

the basis ideas, we note that the transform approach states that if

C(s) = F1(s)4/M(s) (230)

then

cT/N = F~/N F~
/M (231)

• given N/M is an integer (see also Appendix B). The impact of this can be

appreciated by considering Fig. 29.

The output equation Is, letting z = e5T/~,

— ~~~~~ 
1T/N RT/M (232)

CT/N = ~ G(s)
S

8’~

~

-.• ~.-~~- -. .--
~~~~~~~~~~ --~~~~~ - .•
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_ ._.,.,RI
j~~~~ ’T1~M~ 1Ii..J G(s) 

_
~~ _c

~~
TIN L~~ I I TIN

Figure 29. An Open-Loop Multi-Rate System
4

or 

CT/N = (z
~VM

_ 
i) 

1

~~~~
j

TfN 
RT/M (~~ 3)

t i
Rearranging gives

cT/N zN/M _ 1 
• 1 11 

- e~~T/N 
G(s)] RT/M (2~~)

Agai n , let the power series in z 1 operate on the input RT/M

cT/N 11
—sT/N 

G(s) J  RT/M [l + z~~ + ... + 1— [(N/M)-1] (~~3r )

and then interpret the time domain inTplications

RT/MIl + + ... + ~—[ (N/M
)
~

1 ~ -
~~~~ R~m + R~’~ + ~~

•. + R
~
/
~(N/M) 1 J

(~
r

~C )

ror example, only has a non-zero value when the n index takes on a
value which is a multiple of T/M. Thus , the T/M value is “held” N/M t imes
before It is updated. Therefore, we can write

I 



---7- 
-

RT/M(l + ~—1 ~~~~• • •  + ~
_ [(N/M)_1] 

R 
~~~ ~ \ T 

~ 

= R 
~ \ T

[i~W7~i/~~ TJ kW7~1n~~

- 

= Rflc/M (;:~~ )

In Eq. 237, T/M is the sampling interval of the input, n is the running
index of the recursion equation, N/M (which is an integer) is the number

of indexing periods for which the input is held constant before updating.

D. A CLOSED-LOOP MUIlU-RA~E APPLICATI~ I

The type of recursion equation develcmed in the previous section is
very useful in the analysis of closed-loop systems. To illustrate, con-
sider the problem given in Fig. 30. From Fig. 30 we can write the trans-

formed equat ions

1 — e 1
~ ~~ 1 —sT/2

x = E ,3 , = 
— e  

1) 
xT/~ (238)

Applying the results of the previous section:

xT/~ = ~
T
~~1 E

T/3 It + z 1 
+ •.. + ~

—
~~~

/3)_ 1)J 
, M = 3 (239)

yT/N = 
~ ::~~~~ xT/2 11 + ... ÷ ~~

_ /2)_1 }J , M = 2 (2140)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .fi J ~
I -I

Figure 30. Multi-Rate Example
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-. 
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Any desired integer value of N can be used which is commensurate with

3 and 2 ( for example , 6, 12, 18, ... , etc.). The difference equations can

be written directly from Fig. 30. Noting that z -~ e8T/N and E = R—Y

gives

T T/3 T T/3
t Xn X~_ 1 T~~n-1,N/3 + T Rn_ 1 ,N/3

• (2141)

~
._sr /N ‘i~_ 1 + (i — e

1r
~
’N ) )Cn_ i ,N/2

where, for exar~ple ,

RT/~ ~ = R = R ( 2142)

Note that these two recursion equations completely define the system no

matter what value of N is selected. The response of this closed-loop

system to a sine wave input is shown in Fig. 31. Since the sampling fre-

quencies (T = 1) and the input frequency of n~ are commensurate , we see that
the “steady state” in Fig. 31 takes on the additional property of periodi-

city. This would not be the case if the periods of the input wave were not

commensurate with the sampling frequencies.

0

~~~~~~~
i
~~~~~~~~~~~~~~~~~~~~~~~~~~~Aj

Figure 31 . Transient Response, Cos ine Wav e Inp~it

___ __________  __________
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As mentioned previously, means for identifying the spectral content

in response to sine and cosine wave inputs will be developed in Section V.

It Is important to note that the basic simplicity of the multi-rate
results Is critically dependent on the use of zero-order holds, An indi-

cation of the type of complications which result from the use of more

sophisticated couplers will be given In the next subsection, where we

treat the slewer data hold.

E. TH~ 8I~W!R DATA HOLD

The impulse response of the familiar idealized triangular data hold

is show n in Fig. 32. The transfer function, In the s-domain, is

—aT 2
= 
(1 — e  ) e~~ (2143)

Ts2

Figure 32. Impulse Response of Triangular Data Hold

If the impulse response of Fig. 32 is delayed in time by T seconds, the
unrealizable triangular data hold becomes physically realizable and is
called the slewer data hold , a description first coined by doff (Ref. 10).
Since a time advance of T seconds Is introduced, the transfer function
becomes 

- 

-

—aT 2 2
= 

T:2 
) 

= (21414)
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Thus , the transfer function of the slewer data hold is simply the square
of the transfer function of the ZOH divided by T.

In the presence of no additional dynamics , the Implications of Eq. 244
are clear — one simply samples the input waveform, advances this value
T seconds, and ramps (“slews”) to it (refer to Fig. 33). The basic property

of the slewer is that It provides ramp-like waveforms, with no jump discon-
tinuittea at the sampling instants. An inherent lag of one frametizne is
in troduced. This additional effective lag of one-half a period, when corn -
pared with the ZOK, must be ~aken into account In the synthesis of closed-
loop control systems.

It will be helpful to review the development of the ZOH recursion equa-
tions in order to place the differences and similarities encountered in the

use of the slewer into perspective . The basic open-loop equation

cT/N = (GM)T/N RT (24~)

reduces to

(i _ :~~T G) RT (2146)

Continuous
Input

Reconstruct .dI Input
0

I 21 31 4T 5T 6T

Figure 33. Reconstruction Via the Slewer
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it M is permitted to be a ZOH and N Is set equal to unity. More specifi-
cally , rewrite Eq. - as

cT (a~ l]T (i — z’t ) R~ (~ 147)

where 1 — z~
1 Is constrained t~ operate wi th in  the “curly” brackets . This

constra in t is exercised because it Is recognized that the [G(s)/ s ]T con-
ta ins the pole ( 1 — ~

_1
)• Failure to recognize this by Implementing the

recurs i
~

n equation via

cT = 
(

~~~11T RT(1 — z~~ ) ( V ~~ 8)

an add it ional ~ t.~tt .c which is (eventually ) cancelled out by a “zero”
opera t ing  on the i nput.

In the T/N ~‘~t~~c 1’or the :‘~ ii , set z = eST N and write V

= 
f

~~~~ 1TN (1 — R~ 
1 

=
The 1 — :~~

1 i~i~~i~h’ the curly bracket takes care of the pole of
at I , : t t i d  the term

: :—~ 
+ + + ~~

— N—1 (. “-~o) V

Ic’perate~ on the input , y I c1~i ng t he tnterpretat I on

RT ~ : ~ ~~~ 
R~~~ (“ i)

Tht t I • t ih’ t’r~—or~h’r it~~ I ~1 resu lt.~ in t hc “T” ~ t i~picd f’uncti on being heLl
a ‘~~~~~ t ~~~t vuiu~’ ov’r the ‘ tHr ’ “T” frame t ime.
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Now consider the slewer where a similar situation pertains. Setting

M = M3 and N = i glve s

cT = 
~

[

~~~~
JT - z

_1
)
2
~ RT (252) 

V

V In Eq. 252, the term (1 — z 1 )2 is constrained within the curly brackets 
V

because [G(s)/T52IT will always produce a second-order pole at z = 1 , and
hence should be cancelled out at the onset. Letting N be non-unity gives

cT/N = 
G( S) T/N 

( 1 — z
_1
)
2 

RT Ji — 

, z = ~~~~(T/N)s2 N[1 _~~
_i

j
2 

(2~~)

Now the term In curly brackets is simply the “T” transform recomputed
with a T/N frame time. That is, if we know how to compute the pulse transfer

function using a slewer and a T frame time , then a recomputation for a T/N
frame time is ~ straightforward operation . The term operating on the input
can be rewritten as

1 [i — z~~ ]~ = ~1 + z 1 
+ ... + z

_(
~~

1)
i
2

N [1 — z~~]~ 
N

The f irst f i  + z ’
~ + ... +~ .~0~ .1)i operates on the input creating the con- 

V

stant value over the T frametime, Now the additional [i +z~~ i . . .

factor no longer operates on Inter-sample points that are zero but rather
sums the previous constant value with the present constant value . The only

V 
complication is that not all the previous N — i  constant values are in the
same T frame; we now span values taken from two adjacent fra mes. The situa-
tion is depicted in Fig. 3~ for the case where N = 5. Setting z = e5T~~ ,
we f i rs t  construct R~ ~

, . Two cases will demonstrate the additional logic

~ 
j  required. In Case 1 we add three constant values from the frame where

V 
.~r ~~ t < ~T and two constan t values frori the fra me where T < t ~~. ~.‘I. In

V 
Case 2, we add five values from the frame 14T ~~ , t < 5T. Thus it is seen that

91 V

V ~~

L A ILV. ‘ —--~~~~~~~~ —V



V — - V ~~~ V=V~~~S~ ~~~~~~~~~~~~~~~~~~~~

N :5
1’

- 

~
.— R ,~,5

~ ( 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
V

if n is here if n is here
ca se I case 2

1’i gure ~~!4
• Slewer Sampliug Logic

the additional cc~aplieat i on troduce~i is the need fcr an indexing register ,

V 
call it k, which keeps track of numbers summed in the present frame and

t ito~ e sun~ned t’rom the past. frame . We ~ Icp t t ile !h~~t V a t V iOfl

V 

R
T[I + i ... ~ 

~_ (N-i1 

~~ ~~~~~ +* (R~,N
_ R

~~N,NJ

where

T k T T SRn_N ,N ~ T Rn,N 
— 

~n-N.N 
R

V n~r

I 1N(~) T 1  (.~~
)

3
0

— V--V - - ~
-V

~
-V 

V
~~

V=

~~~~~

.

~~

-’-

~~~~~~~~~

’ ~~~~~~~~~~~~~~~~~
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The index k varies between 1 and N and Increments in unison with n , the
running index of the recursion equation . It is reset to uni ty  whenever

takes on a new value . That is ,

V k -
~~~~~ I if (n/N )~~~ = Integer (:~~7)

5-’r e4uivalently

k 1 If (fl/N ) Fp~c 0 (258)

In Eq. ~~~~~~~~ R
T

N N  is the ~~rst “back value”, while R
~~N 

— represents

the first back difference.

The render should bear in mind that the pulse transfer obtained using

the ~ilewer will always contain a free z in the den~ ninutor which will even-
tually end up operating on the input ; hence , it is prudent to point out that

V ~~~~~~ R~ [1 + ÷•~~ + ~— (N-
1 

R
T 

+ 
k 

RT — RT q)
V N ~~ n-(N+i),N N n-1 ,N n-(N-4-1),N

F, ILWSTRATIVE ~ CA)~ LE

An example will serve to bring the details of the discussion into focus.
Let

G ( s )  = s~~~ i z = e ST/N

so that

cT/N 
1 T/N i i  1 ( ~~ 1)

) (flo)
N

V 

- 
9-; 
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Therefore ,

G (z )  = 

~ 
— ÷ ÷ 

~~ 

(1 —

= ~~~~~ _ _ _ _ _  
- 

z 
+ 

z ~~~~~~~ -

Z~~~~~ z — e ~~7~ J z 2

((TIN) - 1  + e~~~
/

~~~ (i- e~~
/
~~(TIN) + i)

~~V 
= ____ ~~JN / \ T/N 

(261)z ( z _ e ~~~/N )

or
V a z - ~-~~~1G(z) = 

- a~ y (262)

The output , cT/N, is then V

cT/N = 
5~ Z + a 1 z~~ RT [1 ÷ + ... + ~~ ( N 1 ) j

2 

( 263)z a 2 N 
V

The recursion equation is written directly as

C~ = a2C~_ 1 + a
0 ~-(14~ ),N ÷ ~~ ~~~~~~ 

— R
fl (1÷N),N)] 

V

(26’~) 
V

T k2 /T  T+ a1 Rfl_ (2+N) ~ N ~
Rfl_ 2,N 

— Rf l ( 2÷N) ,N)]

B

/  
V 

V -

~~~~~~~~~~~~~~~~~~~



In Eq. 2k. , the indexes k1 and k~ vary between 1 and N :

-
~~~~ 1 when [(n  — 1)/N J F~p~ c = 0

~~~~
k -

~ 1 when [(n — 2)/N J~~~c = 0

An actual computation of the terms in Bracket B is unnecessary , si n ce

Bracket B is Bracket A delayed by the factor e~~
Tm 

. ii’ N is set to un±~y 
V

V 
( r ~~~ l tha t •

~~~~ 
V~ 1 • ~i~~d ~~~~ :~r~ ~~~u 1ct  oE~3 of N ) ,  we ~~~~~~~ the “T” recur— V

si..~n equat ion as a check: 1;
C~ = V j  Cn _ i  + a0R~_ 1 + 

~ ~~~~ 
(:~~)

V V

a sit ~e wave input , the open-loop characterist ic  of the slewer can - V

be ~~~~
- ‘ V~~ r-~~ -~.1 ~~

- tin~~t the 211. Thi: is ~ione in  F ig . ~~~ ‘. Note tIi~ :~dded

at t enuat ~ ori .In i phase sh i f t  introduced by the slewer. On the ~tl1er hand , V

the output is considerab ly ~~oother.  We remark at this p oint that the
“strength” of the slewer lies wi th  its magnitude plot , whereas its weak-

linkcd w i t h  the phase char~.cteristic.  This point will become
clea rer i’~ ~3e:tion V.

1. 0-
ZOH R = i sin (w / 2 ) t  1:1 V

Slewer

. 5 -  1
I ~ 

I..
’

/ t / \ / V

C(t) / / \ / \ /
/ / /

0 
/ I I ‘I I ’~1 I \-f t / ’i I \ 4  I / I  i

‘ 5 /  / 1 0  ¼ / 15
/ /\ / t— ’- /

_ ,

-.5 -

~ig.l r~ “. Comparison Between Slewer and ZOH

V 

-

V . V ~V~~~ k V ~ ~~~
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We have now deinonstx~ated the application of the T/N approach both to
open- and closed-loop systems and to multi-rate systems . The primary
advantage of the technique is that the inter-sample response of multi-
rate systems is obtained without a signif icant increase in the complexity
of the defining recursion equations . The importance of being able to

compute the inter-sample points will be demonstrated with the use of a
“motivating” example . We use this part icular adjective because, even V

though a step response is discussed , our true intent is to interest the
reader in the idea of finding the “cont inuous” frequency response of a

V 
discretely controlled system.

‘I Consider the block diagram of the single-rate closed-loop system shown

in Fig. 36. In Fig . 36, let

V G(s)  = 
~ + ~~ 

or G(s) = —,
~~ V

so that the open-loop plant is either strongly stable or unstable. Let
M be either a slewer or a ZOH. As one of our design objective~ we will

V -

V

Figure 56. A Closed-Loop Single-Rate System
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require a closed-loop pole in the z-plane that has (a +0.5) as its s-plane
counterpart. The other objective will be to force a unity steady-state

step response. In addition, a 1 see frame time will be utilized, forcing
a sampling frequency of ~‘,t rad/sec and a folding frequency of ,t m d/sec.
Hence , the folding frequency will always be lower than the modulus of the
open-loop characteristic equation.

The details of picking the compensation networks G1 and Go which
achieve these objectives are discussed in Appendix H. The actual design

can be easily carried through in, among other domains, the w’-plane. The

resultant compensation is given in Table h. (Note that the slewer des ign

was carried, through for only one value of the open-loop root, since the

inter-sample response is quite smooth and therefore very similar for either
V 

case.)

V 
TABLE ~~~. C~~~’ENSATIQN NL’1MORKS

DATA 0P~~-LO0P
HOLD POLE G 1(~~) Go(z)

ZOff (s — 1
~) _ c y,~7314 137 .~

Zoff (s + 10) .393 —

.1t372zSlewer (a + 10) z+ .111 1.5J
~1

The step responses are shown In Fig. ~7. Note that at the sampling

instants all three closed-loop des igns give exactly the same performance.
However, the inter-sample responses present quite a different picture.
There is a very noticeable roughness or “ripple” in the ZOH designs,

- 
1 whereas the slewer response is smooth and well behaved. In addition, 

V

notice that it wes possible to overcome the additional phase lag, intro- V

duced by the slewer, through the use of a lead filter for Gj(s).

Suppose this system was excited with a sinusoidal input signal. In

the next section we will show that the  classical sampled spectrum of V

z-trans form theory would, like the step response evaluated at the sampling

V . ~~~~~~~~~~~~~~~ ~ 
-

I V V -V
I• I • ~~ V
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t(sec )

Figure ~7. Closed-Loop Step Response’s V

H
instants , be unable to different  late between the three de: i gns. Thin i n

so because the sampled spectrum c .~ns Iders only the ingle s d that

matches the output at the samplthg instants . Our o bj eet i  Vp In sect i en V

will be to develop a tool t hat can define the speetr~ l content  for the

cont inuous states of the system. ~i i i , ’ t i  a t,ooi would have a capab I .1 t . \ V  t o

clearly di f f e rent  late between th e  three c Ioned~ ioop systems of Fig.

H. SEC~I~~ s~~I~~~y

A ci ass i cal property et ’ sampled d at a  con t rol theory has been ‘~p 1o t ‘d

in order t o  d - ’v e i  op a cr ed i t ab le  tool for t he  : i i ia iy~ i s of  the I ni e v—s:imp 1
V responses of multi—rate systems under the in 1,1 ne~icr  of d .1 sorete cont ro i i  ens *

In particular, it was show~ that the use -~f ~f1II ‘ S i(’ads j V ~~~ recurs 1 ‘n e~pni —

Lions capable of defining the I utci ’— sample response w.i th ~~1I ~~ Ion i t ’e~I degree

of fineness — yet the order ot ’ the rocursi on equat ion in  n~ t I ‘reased

The charac I or I st i en o t’ the  s .1 ewor data Ito ]  d ~cre t i  no devr l oped .

a f l Ot V  I e( ’:ibi c ’ ncr ea se  in the I o~~ I c re~pi irc’mel 1 I S  W~ 5 I ~eeded • ( ‘\“OI1  t.h V~ l 1~~ 1t 1. he

V order o I ’ t } i ~-’ recurs ion e~piat. I on i not Increased l~ wlic t -t c otnparo~i o I

I ngi c—r ate  recurs ion equal i on )

I
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A. ~~ R~~UCTI~ T

When a continuous (stable) linear system is excited by a sine wave,

the steady-state waveform is comprised of’ a single wave at the same fre-

quency as the input. It differs from the input wave only by a phase angle

and a magnitude factor. Moreover, it is unnecessary to compute the actual 
- 

V

V trans ient response of the system when the behavior for large values of time
is of interest, since both the magnitude factor and phase angle can be read
from a Bode plot. V

• As we shall see, a similar but more complex situation pertains to a

discretely excited system. Given that the system is stable, the cont inuous
output waveform will contain more than just a wave at the fundamental fre-

quency; it will consist of the fundamental and all of its aliases. Thus, if

the system is forced with 1 sin bt, 0 ~ b < 2it/T; the output will contain

terms at frequencies b, b+(2it/T), b +(l~~/T) The relative amplitudes 
V

and phase angles will depend on the data hold employed as well as the sys-

tern transfer function. Nevertheless, given a data hold and transfer function,

the magnitude and phase angle of each and every component can be read from 
V

a particular “Bode plot.” Note that this concept of frequency response is

more comprehensive than the traditional concepi~ of the “sampled spectrum,”
which is limited to determining the single sinusoid that fits the system
output samples at the sampling instants.

In the subsections to follow we will first review the Bode plot con-

cept for a continuous system and then proceed to the frequency response of
a discretely excited open-loop system. We will conclude with demonstra-

tions of the manner in which closed-loop systems (both single and multi-

rate) are analyzed.
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B. C~~PD~IJ~~ 6Y3T~( ~~~ P101’S

It will be he lpful to first review the Bode plot concept for continu-

ous systems . Let R in Fig. 38 be a unit input sine wave with frequency

w0 md/sec. The output, in the frequency domain, is:

C(s)  = G(s ) E(s )  G(s ) 2 2 (26y)
S

R H i  ~ V
Figure 

~~~~ 
Continuous System

Equation 267 .~an be expanded in partial fractions as:

[Te~~ associated 1
C(s) 2 2 + 2 2 + with characteristici (268)

S + (frJ $ + U~rj ~ polynomial of G(s)  J

Given that all poles of G(s) are in the left half platte , the bracketed
term in Eq. 268 represents t ime functions that vanish as t ~~~~~~~~~~~ Thus ,
the steady-state behavior is completely determined by the partial fraction
coefficients A and B, since once they are known the steady-state time
response can be written directly as:

c(t) A sin a~ t + B cos u~ t

H 
_ _ _ _

= ~ A2 + B~~sin (w,~,t + p) ( 269)

where p = tan 1 (B/A).

p 

100

,1



- -  
~~~~~~V~~~~~~~~~~~J~~~ T V V  -

~

The details of solving for A and B clearly show the relationship between
the Bode plot and the steady-state waveform . To solve for A and B, one
imiltiplies Eq. 268 by [s2 + o,~] and evaluates the result for s =

Terms associated
= (Mk + 

~~~~~S=ju~~ 
+[;ith characteri~t~cj 

~~~~~~~~~~~~~~

(270)
or V

= + BJ~~ = ~4~T+B2 ejta~~ B/A (271 )

To stinmarize, we see that a sinusoidal input at frequency u~, produces a
steady-state waveform of the same frequency. It differs from the input
only by a magnitude factor and a phase shift. Both the magnitude factor V

and phase shift for any given input frequency, we,, can be read directly

from the Bode plot for G(jw). That is, for any given input frequency u~ ,

A + jB = G(s)
)5_~~ , (272)

In the subsections that follow we will expand this “frequency response”
viewpoint to encompass discretely excited systems .

C. I4AT1~~1ATICAL PE~LD~~IAB~~8

Let R be a sinuqoid of unit amplitude with fre quency b rad/sec. If R
is sampled at 1/T samples/sec and then described in terms of a N/T samples/
sec model , we obtain

RT = 
zN ~~~~ z = eST/N (~~3) 

V

z _ (2cos bT)zN + 1  V V

For later use, it is necessary to find the N factors of the denominator of

Eq. 273 in a form which will permit a partial fraction expansion containing

terms for which corresponding time functions are known. For example, if
f(t) = sin bt, then

101
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fT(t ) = fain bt)T ~~ F(z) 2 
~ sin bT 

(~~V7I4 )z — 2 c o s bTz + 1

but we do not know the time function corresponding to

F(z) = 
z 

(~~ 5)+ 2 cos bTz + 1

which ‘will also occur among the N factors of the denominator of Eq. 173~~

This situation is remedied by adding it to the argument so that F(z) in
Eq. 275 becomes recognizable in the time domain. For example, Eq. 275
becomes:

F(z ) = 
—z sin [b + (IT/T)]T 

~~ f(t) _sin(b + ~~)t (.276)— 2 cos [b + (n/T)}Tz + 1 T

The reasons for adding it , when obviously kit (k is an Integer) would also V

V 
work, will become apparent at a later point . Consider the denominator of

V 
V Eq. .275 for the special case of N = 2’: V

.2 cos bTz2 + 1 — 2 cos z + 1)(z
:’ 

+ ~ cos z +

V Remove the positive coefficient of z in Eq. 277 by adding IT to the argument

— .2 cos bTz” -4. i (z2’ — 
~ cos + i) (z~ — .2 cos f ( b + j

~) j_Jz + 
V

(:78)

Thus , for N = 2’, the part ial fraction e~~ ansion of the output will require
terms which account for not only the sine and cosine terms of the input fre-
quency b but also for the first alias, b + ( 2it/T), of the frequency b as

V 

well.

Now repeat this exercise once more, for N = 1~. After this the result
for arbitrary N will be apparent by induction.

102’
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z8~~2 cos bz
4-f 1 = (z

4 _2 cos ~~ 22 + i)( zul ÷2 cos ~~ z2+~) (‘
~79)

= 

~ 
— 2 ~ + ~) (z

4 — 2 coB 
[(b + 

~ 
_
~

_j z2 + i) (280)

+ In turn , write

z~ — 2 cos z2+ = (Z
2 _ 2  ~~~ ~ + 

~)(~
+
~ 

cos z +

= (Z
2_2 cos ~~ z+ 1)(2

2_2 cos[(b +~~L).fJ 2*1) (281)

t~ . and

V z~ + 2 cos ~~ z2 + 1 = z~ — 2 cos 
[~
b + 

~
) +122 + 1

= (z 2 _ 2  cos t(b + 

~
) 
~ 

+ i)(z
2 + 2 cos I(b + 

~
) 4Jz +

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(282)

Substituting Eqs. 281 and 282 into Eq. 280 gives:

— 2 cos bTz 1
~ + 1 = ~ (Z 2_ 2  cos 1(b 

.f.~~~~
) +jz 

+ i) (283)

From Eq. 283, the result for arbitrary N is apparent by induction :

z~~~— 2 cos bTZN + 1 = :~ (z
2 — 2  cosl~(b +

~~
) -~ _J z + ( 28I~)

= 

:~~~{z ~~
cos Rb

\
~, f})

+ (sin[(b +~~~~) +1) 1 ( 285)

10V~
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- V..-,- - V 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~q~~ tion ~~~ is true for arbitrary N even though the develoj aent ~~~
in teims of even N. V

Thus, the b rmd/sec sine wave, which is actually sampled on a T inter-
val, can be th~~~tieally described in terms of a function having sinu-
soidal et~~~onents at frequency b r&d/sec and its first N — i  aliases (using 

V

a TfI interval).

D. ~~~~ -L~~~ P.~~~~r ~~~~~~ — n~ixi N 
.

~~~sider the system of FIg. 39 where G(s) represents an arbitrary V

transfer function and M represents an arbitrary data hold. Suppose R is
a unit amplitude sine wave and we wish to sample the output with a T/N 

V

fr~~~ time.

= (GM)T/N RT = (GM)T~~ 
.~N sin bT 

N z = eST/N ( 286)
z — 2’ cos bTz + 1

Expand the right-hand side of Eq. 286 in partial fractions:

cT/N 
= 

~ A~z sin UM(T/N ) + B~z[z — cos u~ ( T/N ) ]
— 2’ COS w~(T/N)Z + 1 V

+ [Terms due to modes of (GM )T/N] ( 287)

Assume that responses in the modes of (GM)T/N approach zero as t -~~~~ ~~, i.e.,

that all modes are stable. In Eq. 287,

R Y R H 1 . ~i J C J CY’Pl 

H

Figure 39. Open-Loop Case 
V

1
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~~~~~ 1

= ~~~~~~~ , n = 0 , 1 , 2’, ... , N — 1

For the present, we assume that b ~~ . 2it /4r .  The steady-state waveform, at

the sampling instants, can be written as:

c (t )
~~ 

= E (An Sifl u~~t + B~ COS %t) ( 288) 

V

To solve for A~ and B~ , multiply each side of Eq. 287 by

[ z ~~ — 2 cos u~ (T/N)Z + I , 0 £ k ~ (N i)

and evaluate for z = 1.~a~~(T/N ).  Since the only term which can survive on

the right-hand side occurs when n = k, the ~ will, of course, disappear.

Then , if we so choose, the k notation can be changed back to a. To illus-
trate ,

(~],4)Tm z~ eth bT (z2_ 2 cos + J V

* — 2  COl t f t z $ + i  Z~1Zw k(T/N) V

- 
~~~~ (A~~* eth ca~(TfN )) +!~*(z—cos ~~(T/N)J (t 2 _ 2  coe oi~( Tf N) *  + 1]
n-O z2— 2 col a~ (T/NJi i~~

( .289)

For any n ~ k, the right-hand side of Eq. 289 is identically zero siace

— 2’ cos u~~(T/N )z + 1 = [z — cos u~ (T/N)12’ + [sin ci~ (T/N ) ~2’ (2 ’90 ’

vanishes when

z 1.4(J)k(T/N ) = cos u~~(T/N ) + j  sin nt,~( T/N ) ( .29 1 )

10,
~

-
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Specifically, we obtain 
V

fcos wk(T/ N ) + J sin ~~ (T/N ) — cos u~~(T/N)} 2 + (sin w~(T/N) }~
. 0 ( 9V )

For n = k, the cancellat ion of the common factor guarantees the survival
of an n = k term. Factoring out a common z gives

Z ~A~ç sin u~~(T/N) + Bk[CO5,~~(T/N) 
— cos 9~~T/ N ) + j  sin

= (Ak + jBk)z sin a~ (T/N)
Z=1.\sk(T/N) ( V -tv

) I V

The refore, Eq. 289 becomes V

~in b ’r) [z2_2 coe wi~(T/N)z+1Jz sin W~(TfN)(A~~+JB~) = - 

z~~ — 2  cos bTzN +1 
= 

I

Z l4w~ (T/N)

( 2 ’ 9~4 )  I

At this point , let k revert to a.

A + — (GM)Tm ~N —1 sin bT Z 2 — 2  cos ci~ (T/N)z+1 
V

n - 
z 14w~(T/ff ) Sin a~(T/N) z~~~— 2 cos bTz N + i L 141~(T/N) (

~ V

The last term on the r ight-hand side of Eq . . ‘9~ is indeterminate (0/0) when
V Z 1Sw n ( T/N ) .  Therefore , apply L ’H6pital ’ s rule once and obtain

= (GM )T
~ I .  

~~~~~~~~~~ 
~~~~~~~~~~~~~ 

( 9 )

A + 1 ~cos u~~(T/N ) + j sin uh (T/N)—cos cjj~(T/N)] sin bT 
V

r~ 
J8~ - 

N ‘ 
zx1~~~ (T/N) (co8 w~T+j sin w~T—cos bT) sin u’~(T/iY

(~~~~ )

V I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A direot s u b s tit u t i o n  for ~~~ b + Pim/T qui ckly shows that the last part

of the pr~”du ’t in Eq. ~~~ Vf  is un ity . There fore ,

1 
z~e8T/N

A~ 4 = ~~~ (GM )~~~ 1.~~ (T/N)

V 

The superscript notation in Eq. 298 is for the purpose of calling OUt the

det’init ~0U 01’ 2 bei ng used in the evaluat ion .

To review the sit uat ton , the sys t em is forced W~ tV h the sth b t ;  then the V

steady-state output wave form, sampled wi th  a T/N fr ame t ime, has the form V

~ 
A~ sin ~~~ + B ~~~ ~~~~~ 

N 

( V \
~~~~~)

u -O

wt i ’ re V

, n~~~~O , 1 , 2’, .~~~, N— 1 ( c ~~~ )

ri~ ~
S V ’I S 1’r i c ~~ t ~ 

and are con~ uted u~; I ag Eq. 98.

For ex:~np1 ~‘ • let

—sT
M I ~‘

- • G(~~ = 
‘
~

S ’

V —nT N —
~~~ VI T N  1 — c  c l — ~~ )

— n, r,~, ( ..c~. )
N N(~ ’V — ~~~~~~~~VIV , V I’ ’ ) ( 1  — ~— 1

V 

It  i~ ~n~ t r u ~ t i  ye t t~~ the Bode p lot t ’or Eq. ~~
)V~ using N as a

e r. F’~r t he sake o t’ .‘ I r 1 ty, we w 1 11 p1 ot ye rsus ~c rather t han I o~
Ia tddl  t Ion • w 11 omi t t he phase ~n~~I.e plot . Also, for x’~~~~~a~ or 

V

I an t.y . tV hC o rdinat e  ;¼ ’ ie~ w I lVl l~e d sp.I a~’cd for t h e  di t
’

t
’
er c nt V  values

V N ( re  fe r t o  F’ I g . )~ 2 ’ ) . Not e t V h a  t • oV\~ r I I~e p1 ot ted range o I’ 2’ • I he

N I ~‘ase re1x~~t o  I t s e l t ’ tim es . In a 1 l~e mantier t l t V ’ N V V

~ I I w I • W hereas I he N ~
. goes t ~~~~~~~~ ~~~~ 

~~~\V ~~ 

V

~~~~~
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I ~~u e  ~~2’. Magn tude Flot t ’o i’ N = 1 . 2’.

Imagine that a u n i t  amplItude s i n e  W~~Ve is input with a frequency of

~ ~~ In the N = 1 c ase • our only I~~,t cr est .  is n\atV cl\ing the sampling points
w i t h  a s in g l e  In c wave . The magni tud e  and phase angle (not shown in

Fig. I~ \) could he read frc~n this plot at. a’ ~ 
‘2’, ~ 

‘2’ + it • V

V r n , . . . ; each po ut gIves the correct values . Assume next that t VhC

V i nput has a frequency b ( ~t .~ * I~ ~~~~~ Clearly , if the ol~Ject lye  is to

flkatCh the sample points with a single sinusoid, the frequency of the out-
put could be b plus any .‘ it ‘T multiple; the sampler cannot tell the differ-
ence .  In fact , the “sub” ni iases at. h — :~ 

IT 1 “ 
V~~ will  also work . These 

V

“sub” aliases are t.l~e di ff erence terms so prominent in modulation theory .

Figure ~I depicts this situation for a steady-state response given an
input frequency of b vt ‘2’ rad 1sec and assuming the system used i n corn-

puting the Bode plot of Fig. ~2’. For the sake of clar i ty ,  only two of the
many wave s which f it the sample points  are shown — one at~ n ‘ . ‘ rad V ’sec , the
other at [( 

~ 
‘

• ) — ( V ~~ T) 1 ra .t Sec •
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0 Sample P oint s ~
-V1

—~~~~~ A sin [(p ’/ 2 ) ] t ’ i 8c 0 s [(v / 2 )) t

A sIn [(w / 2 ) - ( 2 r / T ) I t + 8 cos [(v/2)-(2v/ ’T)j t

6 A : -2 0 4 8
B : - .5568 I’

5 . P 1 ’  1
. 4 .  13 . 1 ‘IlCT( t )  1 / 1  i Vi l l  ~

V 

I .  1 / i  1 1’
1~5~’ 1 6 1  J~P~ 8

-‘I - I! I t I ~ t (sec )

-.2

-. 3 -
/

V -.4 .  /
-. 5 -

-.6 -

~~ F~~~Vrn .~~ hi • Two COfl tVIf lUOUS Sine Wnves which
Match the Sample Points

T h e  N 1 oJ ot I ‘~ Fl g. ~ corresp ends to t h e  “sampled spectruri” V3f

sampled da t a  ceat roJ  theory. iurn  now to t h e  N 2 case wherein the obje c—

i ’ e  is 10 oat  c l i  one i at er— samp le p o i n t  as well as the sample poiu t ~s . Let
I hi’ i ~put fr equency be it 2’ and f l O t V C  ~ha t the points at a1 = it , ii 2’

give I he correct answers • as would I he points it ~ V 
4V Vh 

~~~, . * ~ n. Suppose

aext th at he i nput t ’r equency i s  h It ! ~ ~~ . C e a r ly ,  the  second r e i n  reJ 
V

c V l: eaea t  con I t  he rea l from t h e  “ t ’i ret  al ias ” at b + 
V~~ or t h e  f i r s t  sub—

I I  ii — V it 1’ (or  • t ’or t h at  mat. t or • a whole ho s t  01’ oth er  f requen c ie s

V i t ,  t h e  N case , fou r s in e  waves V r11 re~ u I r e l  to f i t  three i n t e r —

sample P. 1 s is  well as t ho sampled pola t  If the inpu t I r e q u e n ey  wer e 
V

b ~~V
, :~n ’ V t l t ~ p l ot  of F i g .  ,g w I t h  i t s  l i m it e ~i range ot ’ I~ it were I 

V
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the only one available, clearly it would be to our advant age to use the

“difference” frequency points at w = b — 2 ,r/T, b — 14 ,t/T, and b — 6it/T to

establish the magnitude and relative phase of the three remaining sine

waves.

This brief discussion serves to point out that the aliases and sub-

aliases can be associated with the sum and difference fre quencies of rnodu-

lation theory. One should not , howe ver , think that both sum arid difference 
V

components must be simultaneously present in the output. Clearly, only V

N components are needed. We can now remove the earlier constraint that

b ~~, 2it/T. If b is less than 2~ /T , it is certainly true that

b , fl = 0, 1 , 2, ... , N-i (303)

Howe ver , if b > 2ic/T, let w3 = 21f/T and use

no = 
(
~~~~INT

to restate Eq. 303 iS

b + , n = n0, n0+ 1 , ..., 0, 1, 2, ..~~~, N — n 0 — 1  (305 )

For our previous example where N = i4~~ Suppose b = + ir/2 . Then

= — (6~ ( I ) )  = 3 (
~~

)
It

Thus ,

= b ÷ ~~~ , n = — 3 , —2, —1 , 0 (307)

and we use three sub aliases. If b = ~/2, then

no = _ (i~~~
) 

= 0

110 V
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and we use

2 nri
= —~~— , ri = 0, 1 , 2, 3

the “positive” aliases.

Keep in mind that all this represents a convention which the reader

may not neces sar ily elect to follow. What is important is a clear under-

standing which will permit one to pick a cons3stent set of N points from

the Bode plot .
V 

Of interest is the case where N is extremely large. In fact, let

N •‘ after  evaluat i ng Eq. ~02’ i tt  z = ~~o~,(T/N): V

1 — e_aT/N 1 — 
—N (1  — e~~~/’N )( l  — 14- r~T) V

N(z — 0~~TJN ) — N[~4u~ (T~~) — e~~TT~~[l — 14~~~(TfN)J
z’14w~(T/N) Urn

An indeterminate f or m is obtained. Therefore , use L’H&pital ’s rule twice

(subst i tute 1~ it~1(T/N) = cos a~~(T/N ) + j  sin w~(T/N), e t V c . )  and obtain (see

Appendix I ) :

1 11 — e~~T\ T/N 1 1 — e~~
T t

T \s(s + 1)/ jw~T 1 +j u~ 
= sT a + 

( 09) V 
V

z 1~Sui~ (T/N ) u r n
~~~~ V

That is , i s  N ~‘ , one sim ply dir ides GM by T and evaluates the coeffi-

cie nts at ii j ai~ . This is represent ative of the general result discussed

in the next ~ubsect ion .

E. OPEN LOOP 1~E~U~~TCY BESP~~SE —

C T ~~U~ J$ ~ 72PUT V

In the prev iou s  sect ~ou it. was shown that

z4eST/ N

~ 
I (c~M ) T/N (31 0)

5 1\L ~~(T/N ) 
V

i l l

V V V 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ V V ~~ ~~~~~~~~ ~~~ V
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To deduce the behavior for infinite N, rewrite Eq. 310 as

~ j.. (GM) ’~’~ T k ~~~~~

‘ 1’~N k’~io 
(GM) 

~ 
(31 ~

)

The TIN ’s cancel , and as N gets very large only the k = 0 term contributes
st~ ce all the “aliased” spectra have moved to infinite frequency. There—
fore,

A sT/Nu r n  
~~ 

(GM) T/w z-e 
= (3i~~)N 

~~~~~~~~

“ 
z=14~~(T/N) s=jwh

= b -f~~~i , fl = no, no .4- i , ...
where

lb ~no

The f i n i te  N example of the previous section can now be studied for the I
’

case of infinite N — therefore the “continuou s” frequency response. Thus

—sT1 — e  1A~1 + i~ n = 
sT 5 + 1

S

This is shown in Fig. is . ’ where the components for inpu t frequencies of
b 0 .1 , 1 .0 , h .o , 1 .0 m d/sec have been indicated wi th  different symbols . V

V The interpretat i on of Fig. h~ is as follows. Su~~ose a unit  sine wave
at . I m d/ s e c  is input to the sampler . Then , if  sine waves at 1 , 1 ~

are added together , the resultant wave form will he an exact
V m a t c h  of the actual steady-state output wave form . One would expect this

waveform to be relatively clean, since the f i rs t  alias is down by something

~m the order of 40 dB, relative to the Input component. However , the

111’
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V Figure 1 4 : . Frequency Response and Spectral
Components of Outpu t

transient response Itself does not bear out this conjecture as can be seen

In Fig. Y’. The reason is that . the hI gher terms are important. They do

not represent “harmonic” terms but are rather modulation components which

must add together properly in order to match conditions at the T t ran si-  V

t ion point s. As mentioned earlier in Section IV, it. can be seen that the
“steady state” does not necessarily take on the additional attribute of

periodleity . This occurs only when the i nput frequency and the s’unpl ing V

frequency bear an Integer relationship with respect to one another. As

another example , the “frequency response” for a higher-order system is
shown in Fig. ~~ In this example, the sampling frequency was deliber-

ately picked to suppress the bending mode responses.

li z’
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Figure ~~~~. “Steady-State” Transient Response
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Figure . A More Complex Case
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F. EIWI’ 8~~NAL WITH PHASE S~aFr

It’ the input signal has the form

r(t) = sin bt + cos bt (~~il4 )

the results of the previous section are changed only by a complex constant .

Following exactly the procedures of Subsection D, except for using the more

general input given in Eq. 3i4, gives (see Appendix E): V

1 / z~e5T/N
A~ + jB~ = -~~- (GM)T/N • (ic + jko) (3l~~)

z=14s~ (T/N )

Limit N - ~~ °° 
V

An + jB~ + GM I (Ic 1 + jk2) (316)

S j0�n

G. SDIGLE-RATE CLOSE-LOOP 1~E~T.~~fCY ~~8PON8E

The closed-loop results will be configuration dependent. However, the

mathematics are quite tractable and. can be followed through on a case-by-

case basis . Thus it is more important , for the present , to have an insight

into the mathematical structure and the particular simuplifications that sum- 
V

face in a closed-loop analysis.

Consider the (vector) system shown in Fig. ~I ’ . The procedure we now

follow will be typical . First, solve for the vector component at the inpu t
I 

V of the data holds .

E
T 

= GT RT _ G T GT (GM) T ET (~~17)

Therefore

= [I + G~ G’~(GM)T ]~ G~ RT (31 8)

Next , solve for C ( s ) :  
V

c = (GM)[ I + G~~G
’
~(GM)T]

’
~ G

’
~ R

T (~~19)

1 1~1 V

I 
_ _ _ _  

_ _ _ _

_ _ _  
-— ~ V V -V - V r -— V V  - V

V -V a~~~~ V a s~sS~~~~~ . - 
V -
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Figure ~5. Illustrative Vector Closed-Loop Configuration V

The spectrum of’ C(s) is what is really of interest; we seek it by finding
first the spectrum of CTIN and going to the limiting case of N ~~~~~~~

V 

Let the input be a sine wave at frequency b rad./sec and let the delay
operator be

= e_STIN (3~~)

so that V

P — zN sin bT 3~~ )z’ —2co s bTz + 1

Therefore

cT/N (GM) T/~ [I + G~
’G’
~(GM) Tr’l GiRT (~ :~~)

For the sake of brevity write Eq. ~I : 1 :1  ~ts

cT/N G~IN G~ R
T (z ’  ‘~~

.)

~~pand the right-hand side of Eq. ~~~3 in partial fractions:

~ I1.~ T/N ~
N 

V
C V  = G A G8 2N ,~ N

— cos hTz + 1

N 1  sin U~-~( T N ~ ~~B~zfz  — cos

Z — ~V COS ,c
fl~~ P N ~~ 7V ~ 1

[to rn~ ~it (~~ t o mc~h’~; of G~ ~~ I (
~ V 

V

11 (1 

J V ~~~~

, .
~~ ~~~

. — - ~~~~~~~~ ~~ V V
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Assume that responses in the modes of G~/NG~ a~~roacb zero as t ~~~~~~~~ i.e., 

V

that all modes are stable. In Eq. 3214. ,

= b +~~~~~~ , a = 0, 1 , 2, . .. , N-i (32~ )

tt.tre generally, a = no, no + 1 , . . . , N— n0— 1 , where n0 = ~(b/ws)1~gvj~I.

Note that Eq. 3211- is exactly the same as Eq. 287, except (GM)T/1~ has

been replaced by G~mG
’
~~. Hence we can write a crucial result using

Eq. 298:

An + jBn = + G~/NG~ (326)
z= 14%(T/N )

But 

I

V.

~ G~(z
N) (327)

Therefore , using V

[l4u~~(T/N)]
N 

= 14~~T 

V

= cos o~T + j  sin u~ T

= cos [b + (2~~/T) ]T

+ j  sin [b + ( 2,cn/T ) ]T

= cos b T + j  sin bT 
V

we obtain 
V

G~ 
G[1Za~(T/N)I

N

i~u~ (T/N) 
L -

G[14wr~T } = G[i4bT] (328) V

Thus, we can replace zN in G~ with z and evaluate it at z l4bT . At this

point we have

1 1 4  -

-— ~~~~~~~~ ——- 
-V 

~~~~~~~~~~~~~~~~~~~~~~~~~~ V 
V — V V -

- — 



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _  - V . 
~~~~

--—
~~~~

- •-- - --‘-- - -

~~~~~~ ~~~~~~ V

• ~~ (J+ T 

~
) 

~~~~~~~~ NJ  (I~-~1:~ T ( A ~~~~)

Equation ~~. ~) i s  the has [ C  result for the Vi n i t  e N ease. ‘l’o rei te rate , to

l ’i’’ t ~s ’ •
~~~~~ ~~~~ d e n t s  of t h e  N si no w:~ves t’or th e  ‘1’ N sampled output of C ,

we . oupst.~ ho rinsi “T ” t cans for  t ’uncl  I o n s  for

I It (“i G~~~M) r 
(

for

I \hT ~~ 1

N ’ x t  • n~’nt.o t he normal T,N pulsed I rsns t’er fun ~ t~ on for ~~~~ o v : L I  izs t . o  it

I ‘. . T  N ’I where ~~ = . in T

‘!ss~ 
~~~ 

per iod c in ~~ . ui 1’ md It  is superfluous to use ~~~ 
V
N):

.a i t ’f ~ n ’s t V V ’ ’ V i s o  ~T. Moreo\ ISr . only ln’ a ñin ct Ion ol ’ N ; th i s
-~ up! ! I ‘s t ho 1ro ~’~n 1ur~’ isv,’! ve,1 in  tVhP VIAmI ting ~‘:l5c tremendously. F’or

l ie c: se ~
‘ C N ~“ . t he cent i I S R S I O  ise , We ob tain

~~~ I )( (a~~~.- 1z
beST )

,~~~ \ . i.’~bT

F~luat on -
~ .‘ Is the des roil r estIV l t. for the i von .‘io sc’il— locp conf i gur a—

on • ~ H~~eve r, t lie na I iea:l I I c:i  1 ideas are ’ wlia t Ci ’IL~~ 05&’ C L S  i c  low
let : ij  is t hro ’~~h for  ot tier con Cl ~~~~~~~~~~ O I I S  ,p i it o  ens I ly .

*.\cou~r : I t  0 n umerIcal detertu inat ion of 
~~ I 1$bT may prove difficult at

V 
V high sampling rates. This is the  result. of s’ud t differences between Utrge

n umbers which occur in the coinputat Ion s as potes and zeros approach the unit
c i rc le .  Is this event , one Is well advised to  carry out equivalent compu-
a I ions is a domain where nunier I I ceiid It ioning is much improved (e • g. , In

terms of w ’ or
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Recall the single—rate design problem of Section IV wherein a closed-
loop system was designed to have exactly the same step transient response
at the sampling instants even though the open-loop parameter took on two
different values . For convenience, the step response is repeated iii
Fig. ~• ‘ .

Using the result of the previous subsection, we are now in a position V

to exani.the the frequency response. The magnitude plot Is given In Fig.
( the magnitude Is plotted against rather than log w).

C(t )

S /
I — I I _~~~.L 1 1

0 I 2 3 4 5 6 7 8 9
t(sec)

Figure 1e ’~ Closed—Loop Stop Response

Note that th I S ‘‘samp.lccl spoctrun ~, “ the N I case  • 10 a~~ h l e c d i
V ‘ ‘~~ to as to who tho r the o~’es— I oo-o -n. ~r:une I or is it ! ’ r V i  — .‘ :i 1 C.

• the d i f fe rence i n  the  fre quency content ,  ~
V V t

S t he S t e  niy V~~~ whe n
* t .he V~OU is used cannot . be di st i~i~~ i l  shod f rom t i n  is hen t he  tower

Certainly (at least for this ox .  imp 1 t h~’ ,‘1: s sal “ snnn’led sr.’ rV u a ’’ is  
V

of limited SSO. ~~‘i t h e  .‘ther h:s .1 , th e cost m uons sp~~’t m r  ~N V~ case

clea r~y displays tVSO d ffo resces in t he c I coed— i cop .tes ~g ia; . Not 0 ,

part I ct t l :t r , the added w h of is’ n o t c h e s  wh en the s l ow e r  I • ‘ .1; 1 he 
V

~0H notches tm1’ very sharp i’V 5.’m~~~ ’ I son . I’int ~ , one won Li \ r S V  * V

~.. ~~~~~~~~~~ 
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Equation ~~~~~~ in d i c a t e s  that the value of the wave at the sampling instants
is oI’ i n t e r e s t , Howe ve r , for expository purposes , we have shown a complete
cyc le  I n  th e  figure .

Next , consider the (N - case wherein the desire is to f i t  not anl y
t h e  sample po in t  hut one inter-samp le point  as well , This case is shown
in Fi g. ç .  The T V  response equation is

sin ~~~ t + b
0 cos 4 t \

T/’ 
V

C(t~~ ~~‘ f ( *
~~~~

)\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.3. 

a

V 0 -i--i- — I  —1 -4
V 20 g 22 24 26 

V

I I ~ 
t(sec)

—‘I - 

‘I ~~PS

V
/

I ’

Figure V C . Steady -~ tiit e Sinu soida l Components , N — 
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Again, for expository reasons we have shown the continuous wave form which
results from sines and cos i nes at ~ ~~ / V  and i ts f i r s t  alias :it
w = (n/I’) + (:4T). A half period f or the N 10 case is shown in !‘V~~I

1
• 

I
~1

The reader is reminded that the steady-state wave of this exan~~1e is
pe riodic and free of modulation effects  simply because the s ’lected inpu t
frequency bears an integer relationship to the sampling frequency. In

general , the expansion of the steady state in terms of aliases is a non- V -

orthogonal series. For those special cases where the steady state ~s
per.! od i c , it is readily apparent that the N = case degenerates to a V

F ourier  series.

I

N to

V

t
~ .3 -  

T~~~~I

~~~~~ 2~I 
1 

2~ 
I 1

t (sec )
—

‘~~ 
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-.2-

Fi~ ure ~ ) 
- ~te:tdy-St st e Sinu soidal Component s , N = 10 , Half Per iod
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It is also important to bear in mind that we are “matching” the sample
points; thus the a0 term for N = 1 will be unequal to the a0 term for
N = 2. This is demonstrated in Table 7 for N = 1 , 2, and 14 (let b=it/2).

TABLE 7. COMPONENT COEFFIC IENTS N = 1 , 2, 14 
V

N = 1  N = 2

aO —0.17141468021 a0 -.0.0148579760 a0 0.002998683
b I 

V

b0 —0.2876149137 b0 —0.506381976 b0 —0.502606086

2~t 
a1 —0. 125888261 a1 —0.046197029

b + —  V
b 1 0.018732839 b 1 -~0.01435148018 

V

14 a2 —0.05157814143
b + - ~~

____ 

b2 —0.003775889

6 a~ —0.079691232
b + —~~T b3 0.062280357 

V

I. A PA~~ICULAB MUl1TI-RA~’E C~~FIGURATION

As with the analysis of closed-loop s ingle-rate systems , the analys is
of the multi-rate closed-loop case is configuration dependent . However ,
the mathematics remain quite tractable , as we shall attempt to demonstrate
in this and the succeeding subsections . Here we consider a particularly

simple multi-rate configuration; the next subsection will treat a more
complex confi guration. V

Consider the two-rate system shown in Fig. 2. In Fig. 5C , W 1 and W~
are compensation networks , M is a data hold, and G represents the open-
ioop system dynamics . One may consider these to be matri ’ec of the proper

dimensions . 
V -

The objective is t n  f ind  the “frequency response” for the output
vector C .  /~s it t h e  sing le—rate  :tse , WE shall rt , :sunLL that C undergoe s

________________________ 

/
- 

~~~~~~~~~~~~~~~~~ I— - 
V
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V 

Figure - . A ~3p ’c i fle Two—Rate Closed—Loop Configuration 
* 

V

a phantom T/N sampling operat ion and then seek the l imit  as N ~“ . i’r~ ‘n~
Fig. it is  seen that

or 

Q~~T~~I (~~~‘)

‘N 
= (GM ) T/N ~T/M , N / M  an I l t t ~egt ’ r V ~“ 

*

Thus, the ii rst task is to solve t’er ET/M . ‘flt is is t t  nen—tr ivi tU t ask;

~~ the details naist he followed w. iL h  care .

F = W 1 RT — w 1w~ (Gt€T/M )T 
( : . V )

Therefore,

ET/M = W~/M RT _ w~/M wi~(G~~T/M)
T

Pre-multiply Eq. ~~~ by ~GM and sample at a T interval .

(GMET/M)T = (Gt+l’~/M)
TRT — (G /M)Tw~,(a?€T/M)T (~~~))

Solve Eq. £
*

VZ~
9 for (GMET/M)T: V

(GMET/M)T = [I (GM4~/M)
TwTflh 

(rn4*,T/M~ R
T

I
V _ *~~~~ (*~~~~~,
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V th s t. 1 Lute Eq. ~ t t  nto Eq - ~~~~ and ~~~V t I ~~tU’ through . The re su I t i s

FT V
M W~~ V M 

~I — ~~ [~ 
(Q~~ T/M t~ 

~~ J
I (o~~/~~ FT

- - — 
er ii~ €~ V t t y  , le t.

w~/~ ~~~~ (~~~t t * )  
- 

V

- •1~The e~ a 1 k t a t t : ~t 1 e t~ is n a r t _ t ~ ’iv 1a1; for extunple , t ill ’ ( (~r4~ ~) ~‘ieinent ~~~

w l~ I have te he computed using ~‘.i t h e r swi t c t t  ~c* lmIlos 1 t 1 nt er the ptnutt.om

sampler. Via the phantom sampler ,

(~~ 
!~~~l’ [( G M ) T .~~I W~ M ~T 

(~~!~

~~o t ’ar , the t w o— r at e  l ’x tmple  y e  Ms

(G M) T/N w~~M 0T F 1 ( i i

we 5 , t ’ that  t h ’  V
( element a~hIed over t,ht’ single—rate case is the

i io n of’  a term sampled on a T ’N interval and t h e  ad~ii t V 1 oita I cc ’ s ( r n  1
V l ila t NV ’M he an i ntegt ’r

1~1 ’

* * 1l ‘N ( * t 1~~ ,

so that a unIt amplitude i nune PS dal I nput R t V b rad/ sec has the t runs form

FT .N 
~~~ bT

N — ‘ ces bT~ N

I V  
V~

‘ V
V L.

~~~— ~~-.--- ‘ V_~_~ _t~~~~~ *
1,I’—.-
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As in the single-rate case, substitute Eq. 3146 into Eq. 3144:

cT/N = (GM)T/Nw~
/M Gi 

7N sin bT (
~~

)
z’ _ : cos bTz + 1

Expand Eq. 347 into partial fract ions*:

cT/N 
- 

A~ Z sin u~ (T/N ) + B~z [z — cos u~ (T/N)J Terms due to 
(3143)

- 

n=O z 2 —~~ cos u~~( T / N ) z + 1  (GM) T/~~~~
MG~

where

b + 
( ‘  9)

(Keep in mind that we can no longer pick N arbitrari ly. Thus, if M = ~~ , we
cannot look at cT within the pres1�nt problem structure ; however, we can look
at CT/~ , cT/ 1~, cT/9 , et c., Since N/M is an integer. Tittis , as we let N
we would have to do so in multiples of 

~ . )

* Assume that the ter~ns due to (GM) T/N w~ /M G~ vanish as t ~‘ . Thus ,
V the steady— state response , at the Sampling lnstants, is gi ven by:

c ( t ) I t  ~~ A n 5th (t~ t ~~ 505 ( t
~1IV ( n O )

To f ind An and B~ , multipl y Eqs . and ~~~ by [
~ 

— ~ sos *k ( *f *N ) s  f I I
(note thc dummy index),

*A IV this  point we may fall b ack on tho results of previous ~it hses t  V

and proceed directly to Eq. ~~9. I[owc’ver, it is a worthwhile exercisO tocomplete the proof t f l  order to gain familiarity with the notVa tj ot .

-- _V~~~~ V~ V 
~V *  

V V 
-
~ fl~~

A
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(GM)T~~~~~~~ 
~N sin bT[z2_ 2 COS w1~(T/N)z + 1]

z — 2  cos bTz +1

- [z 2 cos u~~(T/N)z + 1 ]  
A~ z sIn a~~(T/N ) +B~z [z — c o s  u~~(T/N)J 

V

n~~ Z — 2 COS a~~(T/N)z + 1

+ [z2._ cos cnj~(T/N)z + 1]{(GM)T1~ 41~
’MG~ ] - V (35 1) 

V

Evaluate both sides for z cos w~(T/N ) + ,j sin ~~(T/N). Thus, the only
term which survives in the sunination on the right-hand side is when a k.

We may as well drop the k notation and retain a (the choice is ours). V

So far ,

A~z sin u~ (T/N) + j~~ z sin u~~(T/N )

(GM) T/N wT/M GT Z sin bT{z2 — 2 cos a
~ (Tm)z + 1]

1 A z~~ — 2 cos bTz N + 1 
- 

V 
*z _ 1Z S%( T/N ) (~~~2)

+ jB~ (GM)
T
~~~

T/
~~
T ~ sin ~~~~~~ 2 cos u~~(T/N)z + 1)

sin u~~(T/N )( z  —~~~ cos bTz + 1) 
z~ 1~~~ (T/N ) V

Note :

141c~~(T/N ) cos u~~(T/N ) + j  sin ui~(T/N )

The right-hand side of Eq. ~~~~~~~ is indeterminate when z = 1~Sw,~(T/N ) .
Therefore , use L’H6pital ’s rule ,

1 I l

- - - 
~~~~V V VV V - 4M4~~~ .

~~~~~



*~~~V~~V*V V VVV~~~VV V 
___________ V V ~~~VVV V V _VV_ *_ V_ ._ *VVV__ _V_V_.~~~~V;~ ~~~~ 
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t V ~

An + = (GM)T ’t
~~ 

N 1 .~~~~ 

~~~ _ :os iirz
N_ l

) J~~n (T/N) 
V

= (GM) T
~~Si~~

’
~’b~ sin w~(T/!~) 

~~~~
“
~~z~ — cos bT) 14~~(T/N ) 

~355~ V

A~~+ j B~ = (GM)T/NW~/MG~
14w~(T/N )

sin ~r [c~~ ~r7i~) + j  sin m~ ( T / N ) — c ~~ ...~~ (T71) ] (356) V

~sin m~~T/N) JN( cos o~T+j sin w01’— cos bT) ; V

Therefore ,

A~~+ j B~ = J.... (GM)T/NW
~

/MG
~ I / )  

V

(sin bT)[j~~~~~-qj (~ /N ) }  V

X [s i~~.fT7 )](cos w~T+j sin m~T—cos bT] 
-

but, V

[14~~(T/N)}
N_ cos bT = l4wnT— cos bT 

V

= cos w~T + j  sin w~T — COS ~ff 
V

= cos [b+ (2ltn /T)JT + j sin {b + (2im /T)JT—cos bT

= cos bT +j sin b T—co s bT

j sin bT

Therefore,

A~~+j B ~ -
~~
- (GM)T~~4~/~~~ (358)

129 V

- ~~~L~~V+~~~~~~V * ~~ V V *  V V V~~~*~~~~~~ ~~~~~~ *
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Next ,

GA ZN

Therefore, 
V V

GA (ZN) = GA [1.~~~(T/N)}
N

V L~So~~(T/N )

= GA ( 1~~~ T) GA (14bT ) (359)

That is, take the “T ” z-transfortn of GA, and evaluate at z = 1~ bT. Now, V

the “new” element, w~ /M :

‘ w 1(zN/M) (00)

V Therefore , 
V

W 1( Z N/M
) 1 = w l f 1~~~~(T/N) }N/M 

(~~~i )  
V

= W 1 f 12~~~(T/M) J (~62)

That is , take the “T/M” Z-transfo~~ of W1 and evaluate it at z = 1&~ (T/M) .
At this point , only GM depends on N and we can go to the limit of 3 VN ~~~~~~~~~~~ 

I

zAesT/N z~e
5T/M 

z~e~
T+ 

~~ {(GM) T/
~~ J1W~ = 1Z(

~~(T/M)Jk Z l4bTJ 
(~ n~)

This is the desired result for finite N (remember N = M, 214, etc.). As 
VN ~~~~~~~~ the coefficients of the continuous spectrum are given by

1 r / z~e8T/M I f  z~e~T 1A~ ~
- .

~~
.. (GM) w~f/

M IIG~ I (~o14)Z~~14~t~~( T/M~ij [  Z V 14bT J

I ~O

- 
— VV V V  

~~~~~~~~~~~~~~~~~~~~~ — 
V 

V ~~~_ V~ ~~~~~~~~~~~~~~~~~~~ ~V V V 
VV VV
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An example which illustrates the use of Eq. 36~ is given in Fig. ~~~.

This frequency response (which is plotted on a linear scale rather than

log a)) can be contrasted with the single-rate results shown in Fig. 514. In

each case, the design objective was to force unity DC gain and a closed-loop
short period at L~ = (s  + 2)2 1. (2)2  when the open loop was D = (s + 2 )2  + (6)2 .

Note that the two-rate configuration requires a sign if icant increase 
V

in the feedback gain. Also, the first “notch ” does not occur until
0) = 100 rad/sec.

J• A PAST flqNE~-LOOP, SLW CUTER-WOP PROBLDI
1~‘/V The vector conf iguration of Fig. 55 is typical of the “fast sampled”

inner-loop, “slow sampled” outer-loop format. This type of configuration

is particularly easy to analyse; closed-form analytical solut ions can usually
be obtained. This will be demonstrated using the configuration of Fig . ~~~~~.

C 1 = G1M1E~ — HG~~ 2c~ /M (~6~’)

The re fore

c~/M 
= (a 1M1) T/M ET _ (J~~~ 4 ) T/M cT/M 

(

~~~~~~ 5 )

or 

+ (HG~~~)T/M]
_1
(G 1
Mj/M E

T

Let -

G~ /M 
= [I -4- (HG 2M2)T/MF

I
(G 1M1)

T/M 
(

V~~~~~~~~
)

S~~ that

= G~’M ET 
( V  ~9)

Next , solve for ET in term s of RT :

E = R — C

~~~~
. = R — G M ~,C~~M = R — G4~.~~

/M ET

1 1

* 
~V _ V V VV_V *

V_ V V
V V V 

~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - V V V VV ~_V V_ V_ V

___ 
V ~~~~~~~~~~~~ VV~ V_ ~~~~ V — 

-

V -
~ V~~~~~~~~V * V ~~~~~~~~~~ V —

L V VV *~~~ V~~~~ 
—-
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Therefore

ET = RT — (G 2M2G~/M)T ET V

and we can solve for ET

ET = [I + (G~~~~~~/M)T } 1 R~ (37 1)

Since

C G2M2C~ /M = G~M2G~
/M ET (372) 

V

we can use Eq. 371 to obtain a closed—form analytical relationship. for’ the

continuous output vector C. The result is

* 

C = G2M~~~~M[I + (GM~~~
/M)

T
f

1RT (373)

V where G~/M is defined by Eq. 368. Notice that either vector switch decom-

position or the phantc*n sampler concept must ~~~~~. used to evaluate (G~M,4/M)
T
. V

Let
V 

G’
~ = (I + (G2M0G~/M)

T
F~ (y~’14)

so that

C ~~~~~~~~~~~~~ (~~
)

1 ~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V 
_ V _ V _ V V V -V V V V V V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.
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N eXt we use the T/N concept to obtain 
*

cT/N (G~ 47)T/N G~/M G~ RT ( : V *
)

which requires than N / N be an integer. For finite N the spectVr:2 coo i’f i—

d ents are given by

/ G M ~~T ’N
A~ ~ 

¼ .
~~ 

~~~~~ 
GTV41GT ( W V . . , )

‘
~

whore

b •
~ (

~~~~ V V 0 ~~

Lfl LI.

r ( t~ = sin ht (~~~~~ V
V
~~ ) )

In the limit • as N ~~~ , w~’ obtain the cont lnuous signal spectrum coc I i i  —

V cients

r
~ T IM z~eST/ M 

T Z O
A~ jB 11 = GA GB ( ‘

~~~~~~~~s V V JUV,
rI a =1.*\ ( ( 1~1*r ~ z~r14bT

T ” M z~eST/M
As u su al , the notation G / means c~~npute the a — t r an s f or m  oiV 

~ t 2 - 1O~(L\V1 (T/M)
wit~i respect t.~ a T V ’N see~~~J frame time and evaluate it at a = ~: ‘s ~~(T V

M
S
,

V + ~ si*~ (L ~~( T V M ) .  In a similar fashion the ~— t r un s t’erm ot ’ G B ~~~~ L~OIflI~Ut,V?d V

w i th  respect to a P frame t in~ and evaluated at a = cos bT + S i l l  bF

V To this point in the development , all results apply o~ a rdiess of ’
whether Fig . 55 is a scalar or a vector block diagram.

It is worthwhile to go through a sin~~le scalar illustrative example

In order to bring the mathematical details sharply into focus.

Example

Let 
*

1 —sT M
= , H = — 1 , M ’  = 

1 è ( ;~~i~V s + 1  -

—sT V
* 1 — e

= ~~ V 

*

V 

— 

* *
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V_ __________

Rev owing ‘
~ l ie o~luat  VIOflS it is seen tha t  we must compute

1 ~ (HG ~~~)T V
M

‘ V

~~~~ (ti 1 M 1 
p

/ — 1
-~~ [I I (HG~M~) I

M [I + (HG .~~~)T M1 1 
(01M 1 )

T “N

“
~~ ~~~V M~G~ 

M~r 
V

~~ ~T f i  (G~~~q ~j)
T 1—1

c t .  u~ iiow ‘onrpiit .e It-ems 1 ~ t * n o t i ng  is we go the “ t r icky  points ” that one V

V 
may have a tendency t o  stumble over.

It cm 1

V 
V T N  

V

M 
—~T N V

V ( i  k~ ~ )‘I’ 
— V 

L
V V s(s 1)

S

This i s  a trivi al computat ion since the frame time of the san~ li ng opera—

ion tflLI the frame t ime of t he d:it a hold involved are the same . Let
V 5 - (

V
*

V T  
*M : V

(HG~~t ) T M  
- [ ( : V

_ 

1)[L _ 
s 1 JT~~~

J 
_

V

~~ ::~ 
(V ~~~~~~~~

‘

V 
t t e i f l

V (G I M , )T M  f V ( f _ 

~~~ J~
1M

We pr~’L’ee/1 a I i  It le more care filly W I t h  this computation siuce the frame

t line o t’ the sampling  ope r:t t - .1 cii 1 s s l i  ~V*rter tha n tVhO t’rame t line ot ’ the ~in tn

hold. Aga in  we u s e  sT, N

1 ~ 
V

_ _ _Lit- ‘ V



2( 1 — e’
~~~) — ~M 

— 1 1 1 T/M
s(s + 5) jM s

- 

z — 1 Z — e

- ~M — 1 — e~~T/M)
~M — i)(z —

Therefore,

(G 1M 1)T V /M 
= (~~~~4)

Item~~

V -~~/M 
1

+ (j ~~~~,.~)T N j —i Ii — = :~1
~~ T

V
M 

V

- 
Z — e  I 

V
( V V~~~ *~~~~

Item ~

V 
T ‘N 

— 
— V N N — 1 1 — C

V ~~~ N 
*GA 

- 

I M- 1 - 
‘~~~ 

r~~

Steps A and ii were straightfo~~ard . The next st ep is the “hardest .” To
evaluate it we resort to the phantom sampler concept .

Item “

(G,M.~~ ~M )T 
= I~~,M V *) T M~ T V N J V r

L V V V V~~~ 
V V V
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~ V~~~~~~~
y

~~~~~~~~1 V -

~~~~

-
~~ Since

(G )T/M 
- 

l _ e ~~~
M

2~ 2 - 

z — e Tu’M

we obtain

‘1 

(G~~~ )T/MG~ /M 
= ~1 _ e

_T/M
)(1 _ e ~~~~

M
~(z

M _ i )  ( 387 ) 
• 

V

Rewrite Eq. 387 in -~ mor€ illuminating form: 
V

(G~~ 2) T/MG~ /M 
= 

( 1  - e
_T/M) ( l  _

_
~~~~/M) 

~ + + • •,  + ~~~~~ )J (38~)( z — 1 ) ( z — e  ) 
V

The incentive for rewriting Eq. 387 in the form of Eq. 388 is simply that
we recognize that this system only has two poles; the other poles, 3M 1 ,
have been forced on us by the difference in the frame time of the sampling
operation and the frame time of the computer.

Next , recall that a function of z has a corresponding continuous time
function which we can visualize as being the “generator” of the sampled
function . For example , we can say that the function

—~r/M V

F(~~) - 
z (1  - e 

- ___ Z 
(~ 89)- 

(z  — 1 ) ( z  — e~~~~~) 
- 

Z 1  
— 

~~~~~~

was generated by sampling f(t) at intervals T/M where

f(t) = ( 1 - e~~~~)~~( t )  V

t 
V

and ~t ( t )  is a unit step function. This insures that f(t) 0 for t < 0.
We can find [G2M2 )T/M G~ /M J

T by taking advantage of this observation; simply V

• fi:id the continuou s t ime “generator ” for (G 2M2 )T/M G~ /M and resample it using
a T sampling interval Thus we can rewrite Eq. ~88: $ 

*

IA
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We are now ready to evaluate Eq. 380. V

Ii — e~~~m 1 [z — e
_T
~
l’M 

~
M — 1 i —A~ + 

ST S + 1 s=j % [ ( z  1) 2 
~
M.1 

Z — e~~~~~Jz=i~~(s~T/M)

V (z - - e~~~~ 
(~ o i )

V 

z 2 
+ a 1z + 

~~~~ a- -1 ~ bT
V 

where b + (2~n/ ’r).

One must remember that the terms in Eq. ~01 do not cancel. For example ,
the z — i  in the numerator of the last term does not cancel :~ z — 1  in the
denominator of the second term , since each bracketed term is be V ilu ~~ evaluated V

V at a different value of z .

For comparison purposes , we can define :i reference “analog” system by
removing the sample and holds from Fig. “ . The transfe r function would

V I 

then be

G2r 1 + 1~2r ’ G 1[I ~ G~ (I  V I (~ o2)

For this scaliir illustrative example the reference transfer function becomes

£ = (~ o~ )R 5 ’ + ‘S -I- ‘

V The Bode plot obtained us ing  Eq. ~i03 can he compared against those obtained
* 

using Eq. 1401. Some comparative results arc shown in Fig. for the ease V
whe re M V ~ Note that for rates as low as 10 samples/second (T =~ 0. 1 ’)4 
that there is no discernible difference in the magnitude plot — at least

- 
V in the portion of the f i rs t  fold that is shown in Fig. ‘# ~~. However , the

difference in the phase plots is noticeable . Of course , the difference
* becomes quite large when the frame time is set at 1 second (T I ) .
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IC. GENERAL RESULTS 
V

V It is WOrtliwhi Le at t h i s  p o i n t  t o  ~Ul Vl together in a compact form the

general results of Sect-iou V. The reader m ay be a little apprehensive

over the prospect ot’ ~‘ra.et ~ca1ly applying the detailed techni ques out h u e d
in t h i s  section for ob ta in in g  the frequency respon8e coefficients (A ~~+B~j).
I t  may appe al- t hat. each l ime a new sy s tem configurat. ion is encountered , V

4101 :0 led a lgebra ic  and 1 I m i t V i m I g  process using part ia l  fract ion expansion

V mu st. he carried out  t o  formula te  the t’requency response expression t ’or a V V
V

discretel y coat-rolled syst em. I ” or t uu:m:u te l y ,  some genera l i t ies  exist . t ha t

4 allow us t.o bypass much ct  this dot a I led derivation process :uud replace it

with a simple subst 1 tVUt-1ON procedure.

V The first  observat ion we make ~s that the vector algebraic expression

t ’or I ho output. cT/ 1’~ (see FIgS.  3k) , ~ ~‘ , and ‘~~ 1 is confi guratV ion depeu— V

dent but c : u m m  t ake cit t hree forms :

V Clpemi—Ic ’cp * V

V 1*/N 
= (GM~ 

1/N H ( i ~~~ 14

Ciosed-Loo~ i m u ~ lt - ’-Rate

= (~Vi M ~~~ 
V !N GiR T

CV 1o sed-Lc~ p M ult i - R a t e

0T/N (aM ~T/N G~ fl ~~~ ~ 1’

N/M k = integer ; k — 0, 1 , :~, ~I , . - -

The number of terms in the product- expression equals the n umber 01’

different .  sampling rates in the system (excluding the “T” sampling ra te) .

~‘or example, i t’ a particular system has samplers operating at T , T/1I~
). ‘r/~~

’0 .

: trt#I T/’-0 (N — I00~

C
T; tOO 

~GM~
T/100 

GiG~~
10 1,T/:0 T/ ’ ’O RT ( t 1o--~
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V 
With the CT/N expression formulated using block diagram algebra, the 

V

following identities allow the frequency response expression (A~ +jB~) to

be written directly from inspect ion of each term in the cT/N vector equa-
t ion.

Finite N

z~e5Ti~
(GM)T/~

hI 
+(GM)

T/N(z) 
Z=1Z% T/N) 

( 1~o8)

z~e
8T 

*

G~ 
—

~~~
- G~(z) z=l4bT

zg~8T/Miç V

G~/~~( z)  (4 io )  
V

V 

z=1~w~(T/Mk)

[ ~~sT/N 11 ~~sT 
V

A~~+ j B ~ = I~~ (G M) T N (z)  LI G~(z )  x 
V

z= 1~ u~~(T/N)]~ z~r 14b T

[k  z~e
8T
~
”
~~ 1 V

I i i  GT~~c(z) (Iii l) Vk z= 14~fl(T/Mk)j V

(GM)T/N ~~~ }(GM)(s) (~~12)

T T A e8T V

GA GA (z) Z ( 1413)
z=l4bT

4 sT/M~
GT/~~ GT

~
’
~~ (z)  

z-e
k k z= 1 (T/Mk) IV

1
1

*
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VV

V _ _  ________________ 
V _ V _-V ~~ _V -V V__~ -V~• 

~~_ - V V _ _ 
TV

V VZ ~~~~!V
_

~~I-V~ __V , V

z~eST 1
A~~+j B~ = -j- (GM)(s) G~(z) Ix

S~~ V1U~~ - z=l4bT J

1k z~e8T # ’~~ 1
H Ifl GT~~~(z~ I ( 14i~ )V I  k 

z=1~w~(T/M k)J

V n =  n0, n0 ÷ 1 , ..., 0, 1 , 2, ...,

V n0 = — (b/ws)1~~

V 

The notation used in these identities indicates the definition of ‘z”

to be used in calculating each z-tra nsforxn expression and the subsequent

evaluation performed tO calculate coefficients for the fundamental and alias

V terms in the output waveform (An + jB~ ) .  That is , V

Take the T/N z-transform of (GM) and evaluate at
V z = 14o~ (T 1’~~~. 

V

Take the Vj ~~~~~~ rar sform of GA and evaluate at V

z = l 4 b T .  V

Take the T/Mk ~z- ’ r:msfornj of each Gk term and
V evaluate at t.~ n~ (T/M~ ) .  V V

Then , for the (GM) term. directly calculate the normal z-transform expres-

V 
sion via the partial lraction expansion/table lookup approach of Sect ion II

and then replace each “T” in this expression with “T/N .” Follow the same

procedure for GA and Gk with “T” replaced with “T /Mk” in the resulting V

z’-transform expression for the Gk terms. Now with (GM) , GA, and Gk in V

z-transform form, each term is individually evaluated at the appropriate V

value of “z” as indicated by the notation.

V Even though the tables of Section II essentially assume z = e
5T, these

tables can be used for any sampling period T/N, T/Mk, etc , by simply replac..
ing “T” In these tables with TIN , T/Mk, etc . The definition of “ z” is then

completely arbitrary (as far as sampling rate is concerned) and, must be
Vixpljcjtly ind ic - O~’41 with each pulse transfer function , i. e . ,

-~~ V*~~V~ -~ --_ -V V 
V

V 
V_ __ V V __ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V 
V
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~~~~~~~~~~~~~~~~~~~~ 
V
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-
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-

~~~~~~~~~~~~~~~~~~~~~~~

(GM)(z) - - , z = eAT/N

GA (Z)  ,

Gk ( Z )   , z = e8T/’~~

Example:

( GM) n/b00 G~~G~ /b0 G r0 G~~~
0 RT 

(~~~1 t V ~

V 

* 
z4e8T t **~ z~e

5T z~e
8T/10

A~~+ jP ~ (GM ’ft°(z~ G~ (z) G~
’9/’10( z )

N V 1~u~1(T/1OO ) ~~~~V l4bT z= ~~~ T/ 1C ’~

£ sT /~0 z 4 ~sT “0z-e - T/r0 -V t- V 
V\ u,,, (z ’ G3 

V (z) 1, 4 1  ~ 
V

I 12S41t~(T/2O) z 14u~~(T ,~14 O)

i t  ito, i t 0 + 1 , . . - 0 . 1 , ’, . .. ,  N — n 0 
—

— (b ’a’~ 1NT

V Thus it is not necessary to carry OUt the  de ta i l ed  algebraic n d  V

l imi t ing  process each t ime a new system colll’igur a tV ioll Is encount ered . Once

t he  cT/N expression has been de t.ermined for the system, simple substitut ion

produces the exact frequency response express ion for e i t h e r  the  f i n i te  N V

V case or the Limit.ing case of’ N ~~~~~~~~~ Using this expression , the ,. V f I *~~~

cient- s (A u iB 1~) t ’cr the  f’undam f ltV i l l  and it V S aliases present In the cm Put V

waveform can then be determined . A summary ot’ the steps required 0: as V

follows : V

1, _
V

* 
‘ V V V V V V V _
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• Obtain t h e cT/N expression using block diagr:un/
signal flow algebra.

• Apply the iden t i t i e s  ou~t li ned in this subsection
tO each t erm in the cT/N expression.

• Calculate the individual z-t ram s form expressions
using the  appropriat~e definition of “z. ”

• Evaluate each z-tVranst’orm expression at t h e  appro- V

n r ia t c values ot ’ “Z.”
‘ V

As a fina Vi remark , i t  ShOU Ld be noted t hat these simplil’icat ion s  still
V do not rel ieve us front the no n — IV i’ivi :i I nature -~i o b tV a i  n i u ig  z — t V r a n s l ’or :r

expressions such as ~GMW~
4 , T . Thi s t ype ot ’ expression w i l t  require t h e

use ot ’ e i the r  5W~ tVCh decomposition or t h e  phantom sampler as illustrated

in preceding subsections.

V 

L. ~~CTION SUb~4ARY

The “sampled spectrum” concept of sampled data control theory is eon-

eern~’d w~ tli determining the s imple sinusoid that l’its the output samples

of a single—rate system at the sampling instants . In this section , the

frequency coneept has been extended to encompass the continuous spectruni

of the continuous variables in a discretely controlled system. Moreover .
the theory considers the f inite N case wherein one is concerned w i t h  the

group of N sinusoids that matches the data not only at the sample points V

but at N —  1 inter—sample points as well. This  is an important aspect s ince
bench ~ilidation of digital hardware is often specified in terms of an end-
to-end “frequency response. ” Simi co output data are taken at a finite number

V of points , it will he important to compute f inite N results ; the coeffi-
cients will d i f fer  significantly from the continuous (N ~~- c~) values .

The result s for the closed-loop cases have been configuration depen—
dent ; io w ev— r , the ba~ e t -eclm i - m o  V I s roLi I. ively clear . One starts at  the

* continuous state vector and writes the system equations back to the fi rst

input point . The next fundamental step is to convert that input i n t o  an

equation which contains the sinusoidal input as the basic forcing ñmct on.

Then one may always invoke the basic equationS which apply to the open—loop

‘as ’, The ~‘ lu n i  ~‘tis w I t  e l m s lunJn :mr inc  Lime c m - ’e ’ con si d er e d  in this s o t  tom:

yen in TV dV~~lO 0— 11 .

• ~

V V * ~~~~ V V  -~ V

k_A V V~~~~~ V V
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V r (  ~~
V ,

V

~ 

~~~~~~~ 
(

N _ I  

~~ 
ej~ ~~~~ ~f ~~~n O

4 • f l  0 , 1 . ..~~, N-i *

P~~~fl ~~~~t VO

z~e5T/N+ (GM)T~~(~~~~~~
= 1V\r ~1( T / N )  = (‘OS Lt\fl(T/N ) + j sin

t ,im N ~~~~~~~~~~

GM
~iB~

S

Not’ c : Li ’ r ( t  k1 ~~~ ~ t + Ic 008 ht

V Finite N

z~ e8T/N
+ 

~~ 
(G M ) T 

N1 n V V I~~~~~ (T /N )  
- (k 1 ~ jk~~) 

V
Lim N -~~~

+ i13n 
. ~ (Ic 1 + j k~~) ‘HS :V 1tL ~~
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TABlE 9. A Sfl~GLE-RATE CL~~ED-LOOP CONF]flIJRATIC1j

/r(t) = sin bt

IN— i N T/N -V
cT/N~ = ( 

~~ 
A~ sIn w~t + B~ cos cim~t )  ‘

~ 

-

\ n=O /

~~~~~~

= b + ~~~m~~
-_ fl 0, 1 , • . . , N-i

Finite N

z~e5T/N sTAn + j B1~ = 
(.

~~

_ (GM)T/rhI) . z=e
z=i4bT V

where

G~ = [I + G~ G~ (GM)Ti~ G~
’

Infinite N

V 
* 1GM~ T z4e5T

V A~ + j~~ = 

~¼ T )  . GB(~~)s=j ~~n z~- 1j ~f~

~~~~~ M + * V  ~~~~~~~~~~~~~~~~~~~~ 
V
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TABLE 10, A PARTICULAR MULTI-RATE CONFtGURATIC~

~~~~~~~~~~~~~ RT E T 

-

r(t) = sin bt

N-i T/N(
~ 

A~ sin m~t + cos cant)

2im V

: 

I= b ÷ - . ~— ,

Finite N

/ z~e5T/N \ / z~e5T/M \ / z4e5T ~ V

A~~+ j B ~ = 

~~~ 
(GM)~

/N ) ( w ~/M )
~~ z=14i>.,1(T/N)1 \ z= 1~~~ (T/M) / \ z=l4bT /

where V~

GA = I - w~ [I + (G~~~/M)
T
w~ J

_1 
(a~~T/M)

T

Infin ite N

GM ‘ T1M z~e
5T/M 

~ 1 T z~e5T ~A~~+jB~ = -~~- • 

~ IG A
~~~~~ z = i~~~1(T/M)/ \ z=l4b T V

- 

I V V
~~~~~

V

~~~~~~~~~~~~~~~~~~~~~~~~~~
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SECTION VI

FLYfl~G QUA.LIT~~S APPLICATIONS

A. INTRODUCT ION

V As noted i t t  S e c t i o n  i , increa singly stringent operat ional demands on

military aircraft have forced the use of more complex stability and control

augmentation systems . An augmented aircraft may have , for example, short -

period characteristics that apparently satisfy the MIL-F-878~t B specification
and ye t., because of the additional modes introduced by the flight control

system, the aircraft actually responds as if it had short-period character-

is ics which do not meet the specification . 1’xamples of these anomalies

are given in Ref. L , one of which is used here . 
*

The purpose of the ( specially constructed ) examp les in Ref .  ~ was to
point out possible loopholes in interpretation of the short-period frequency

requirements of MIL-F-878~B ( Para. 3 . 2 . 2 . 1 . 1 ).  The problem stems from the
fact that, although the specification refers to “short period response in

~~ angle of attack , ” the requirement was based on configurations for which this

response was defined by a natural short-period mode . The specification does
net consider additional mode s which might be introduced by the FCS. Since

V the pilot senses the total response (sum of natural airframe modes plus FCS

modes), specification of the short-period roots alone does not necessar ily V

define the physical situation or insure acceptable flying qualities. Now,

the trend towards the use of digital flight control systems gives the flexi-

~~~ bility which tends to yield additional FCS modes, but also introduces addi-

ional effe cts due to the digital implementation.

One mnethod proposed (e .g. , Ref s. 1 and iJ~~ to treat such situations is

~~ t.o develop lower-order models of higher-order systems that can be compared V

V against the MIL-F-878~’B requirements as they are present ly stated. To see V

how this method works , we will review an example from Ref. I~ which deals

with the  effects  of FCS modes on the MIL - -F .. ~~~ 
V V B I B requirements. Th is  con- 

V

trived example considers a tactical fighter which requires some type of

f l ight  con tVro ]V system (~~cs~ t o  maint ain t I l e  s i m o r t V -period frequency w i t h i n

V 
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accep table limits at low speeds . P i tch  rate feedback Is intentionally used

to I llustrate the possib le p ltVt ’aLls  in designing a control s y s t e m  to meet

M1L-F-8’(8~~ requirements using an equivalent low-order system. It -  w i  L 1~
V become obvious that p i t ch  rate feedback alone can not . increase the eul ’ec-

t.Ive umla ug merlt V ed short—perio d frequency .

V The subsequent dig i ta l .  implement ation I 1  t h i s  example t’rom Re t’. I~ wi 1.1
not . a t  t empt t o  cure t V h C  ObVIOUS Vl~ inadequat.e tu in  log design , b it t ,  w i l l  a t t e m p t

t o  bring I m t . ~ sharp t ’& ’ emis  the m : m : m m l e r  in which the  equiva Le nt ~ I ‘w— or de r mode I. 
V

Sho uld t ’k V’ mod I’ led l i t  orLie r t t a -co u n t  l ’or t lie add i  ( 
V
j  ona I ar t  1. I ’IiVCtV S i t t  t r ’  —

duced when the  mula log e o i t t  ro I . ! er is replaced wIt~h a digi t a l  imp lernentVntV j O t

H I t -  is our i t i t . e mi t .i on t o  I h i t s  t Vr a t V e  how h u e  t V t ’ C l I l i l  aue s developed in I hi t :  r , ’m ~~’r t

can 1w used I I no I ude t h e  o I t e t ’ I ‘ d ig I t a  I 1 111111 emnem i t  i t i o m i  i i i  t hi’ par ’un~’ I Ira

of ’ a wo t- -~ ir der  mode 1 I ’ :i rp I V V I V t I O  d~ymia. rni c s and not d i g  i h a l  1 y des .i g i t  I ’ r 501 ‘LI

t ’ ly  i m t ~-’~ qua L i t  I es. Time Same ~-‘cIRt’ :t I f ’ t y  lug  qua l i t  (V~ ii(s S i g l i  t I L _ h i M l que s and
p h i  iL l tn p l i i e s  used t ’ur  analog o o m : t  i ’ ’ I  I cr  d e s i g n  :Lpp l .y eqLiti 1 l y aS w e l l  i t t  a

val Id 1 isc ret.e domain synt lie s i s such as itt t he w ‘ —doma i i i  t~t’c ( V ion I I! •

V 

I t. i s  read i ly c om i c  l uded t h at . , t. o use t hi ’ t ’qn i va 1 c a t  m~’di’ I concep t . t i n

I
V i ’x a c t -  Itot to ~~~l 0 h V  (‘or I li ~ C I L 1 5 ( V I l _  l0~~ II i gi t : t i SV S t V C I S  w i t  m c I t  includes a l l  t h~

e t t e e t . s  01 t V h l t ~ I11~ i t  i 1  a r t - I  t~t i t ~ t V tt ( e . g .  , s a m p l i m m m ~ , d a t  V~ 1 1 1 1  1V(1S~ - m d  i’ornput

I i o m i : t l  mh ’lm \ y~ is tRa Il ed.  ‘l ’lt , i ‘ I t :  ( I t ’ obt ~ IV I1Cd t ’or t h y  s i  m i g i e  - r a t e  et’ mu! I ~i —

ra t V t V’ s y st e m  us i ng I i to  d igi I a I I’ r V (V i t I ( ~ I 1I~ \r ros ) I I S C  m et Imod s o f ’ St-c t I  on \V *l~he,:(.

met hods are V I M  con t  r a s t V  t o  t h e  t l ’ a tj j  I V  l o an  I ( on I~li l 1 t V 11 ’ ‘‘ s:unpt i ’d  spct ’t rum ’’ of  V

5i U fl f)  1 ~‘d mi:i I a 1 itcory which is I im.i t ed 1 o determining I Ia~ amp I V I tiide mid phi :isr

‘f ’ t l ie  s i n gl e  s i n u so i d  I l i n t  f ’I IS t he t t t V p n I  S i Uf l ~ It ’s t ’ 1 ’ a si mmg i c _ r i  I i ’ SyS t (V ?11 V

4 tV t ho SIUSpI lag In st - an t s .

‘Vito ex :unp  It’ used i n  t im is se ’t -  ion  wit I V ho I V’ I osed I oop Wi f-h a wt i s1 io t ~t a’ 1 —

work I t i  t h e  p it elm r a t e  I ’eod l’tu’ k loop . ‘ l I me  l u s t - l i t  I t’tums I ’u rm s used I ’  oh m  i t :

a d i g i t a l  i mp l e m e n t - a t .  i on  ot ’ t Vi ’ I C :ua Ll ’g W 1 I S h O I V I t V  I I  I t  or t o  i t lus t - r a t e  1- l it ’ u s —  V

adv:ui I V IgI V’ I ‘ I ’ t im is emimmi In I i o n  p rm ’la ’ L I u V I ’’’ I . c. , 1 h i t s  t In t r an s  t ’orm 101 - 5  t o t

:tt ’c ’ i i t t l  t ’or  I I n -  11 4 5 1  l t i ~—t i t t  rodmu ’t ’ i I)\V t l i t ’ I l \ ‘ a ve r s  11 11 11 — V I T h V  ( l i t ,  C l  ~ 
V
I I

: 1 1 0 1 1411 ~ t l  V to l i v  wi 1 V t 14  I S ‘ hc ‘ i t ’ ’l’pI ‘tat  I ed j i t & ’ I h i V f f lI~) vs ~~~ V ‘i’i m I a is domie

In orde r V i t  id i Ca I - a p ~~~ 
10, 11 fl’ t ’  l’or nmode h i  c~ ‘ntpt  i t  t t  i ‘ ‘ i - il d~ I ny ~ ‘ I a  vt’v 1 or

sw i t t - t m dci’~ nipo~ t i o t t  (~ tcc I V h - I l l  I t  : m m t d  I I I I st~ h I d  C I a t h e  o t ’I ’e ct -s 1 ’ I i m i ’  V

do I : iv  i H  I to 1’ 1 1 ‘5( 1 1 V - i  I~ 1~~ ~~ ‘h  ; ‘ l  01

1’

V 
V V VV V V 

, ~~~~~~~~~~~



• V - V f l V V - V V V - V - V V - V V~~~~~~V V V - V V  ~~- V V V~~~~ V V~~~~
V V & -- V 

— V V 

-
~~~

-
~~~~~~~ : 

-V

Even though the washout t’ilter is emulated for illustration purposes ,

it should be noted that direct digital syi thesis in the w ’ -domain (Sec-

tion iii) would produce lead compensat ioit to uI ’fset - the t hroughput- delay
and nunzninimum phase A/D, D/A effects. ‘i’imIs is asswning that a match of ’ ,
the already establi shed lrm8dequate analog dea Igit is wanted . As covered itt

detail in Section i i i , direct digital design In the w ’—dornain Is straight—

t’orwarii following the same procedures as an analog s-domain design. It

V should be noted that  i-he power of ’ a w ’ —d omain direc t d i gi t a l  design is that
( h i  et ’fects ot’ digi tal  imp lementation ( e . g . ,  smun p l l t ig ,  data holds, and corn-

put -mt t. lonal de Lay ’h is direct ly and nat ural ly account -ed for in the resui t -ing

V w ’ —111 ’mtm i i i  coat rol law. Tha t is, the result- lug design in the w ’ —domain Is

V exact in (-he same sense as the analog cont ro l  law is in the continuous
s —donom in  syn the s is - Then • from a prn t ’ t~ I cit I arid realist Ic s tandpo int - , a

V complete redesign of’ t h e  cont rol law ( ‘or t he  example in t h i s  sect-Ion using
V 

d i  ft ’e rent - I ’redla ll ’k schemes (e .g.  , ang I o— oI ’ — n I  t V a I V ’k t’eedback ’h should be done
either in t im e S — I t -  ‘main t o r  t h e  ana log  system or i t  t h e  w ’ —dom ain for the
d ig i ta l  system . J

B. TACTICAL FIG~~EB — ANALOG CONTROLLER

Cu r r e n t-  trends i i i  1’Ight.er design Crequent ly require some t ype t ’f ’  FCS
t o  nai n ta, in the short —pe r ~~I ILi t’req uency w i t h  h i  acceptable l im i t - s  at  low
speed. The a lrp l ane char act e r  i s t i e s  used i t t  I-hi  is example are typic-ad of

modern t ’i gh t er a I rcrttl ’t in I h it ’  p~ ‘WI ’ 0 app r o ach  con t’1 gur atV ’Ion . The 1 t t .  VI l.ude
raits t ’er t’unct  ion is g i veti as
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the pitch damper from receiving low -frequency signals which might sat urate
the system. The example FCS is shown in Fig. ‘ - T  along w i t h  a system survey

V to indicate the effect of gain ( K ~”~) on the system. Since the phugoid fre-

quency is only 20 percent of the short period , the two-degree-of-freedom

constant-speed approximation is used for the sake of clarit y. Closing the
loop at K~’1 = — 0 . 13  results in short-period poles at 1.3” rad/sec. The aug- V
mented atti tude dynamics are then given as:

- 
—l.6(o.6)(o.~~)( 2.o) (Imiol 

V

— 

s(O.68)(O.2)[O.86, i.3~’]

From Fig. Y’( it appears that the FCS increases i-he short- -period undamped

natural frequency and , apparent ly , specification compliance has bee mi achieved . V

V However , an equivalent lower-order system which gives approximat ely the same
frequency response is:

( 1 l
\ = 

— 1 .  I m ;(o . ’ -I  ( I .

s[ 1. 0. a] V

V This effective second-order system fitted to the actual System has a natural 
V

frequency of only 0.~’ rad/sec and is cr i t ical ly damped. Plotting the appar-

V I  ent augmented 
~sp 

and the “effective IL \sp ” on the MIL-F-878”~B requirement

illustrates the danger in considering only the short-period pole for speci-

~ fica tion compliance when a FCS is employed (see Fig . ‘~
8’. Note that even

V 
though the FCS apparently increased LI sp from o.~ to 1.  3” rad/sec . the  eft’ec-

tive response indicates that pi tch rate feedback only increased d :unping .

The sluggish characteristics 01’ the  augment-ed a i r t ’r :une are indica ted  i t t  t he

pitch rat e time history to a step input ol’ as shown in  1”i g. ~
). No t e

that the time responses (‘or t h e  a c tV u a VL mmd e f fec t ive  t ransfer  functions are

in close agreement.

The above augmentation scheme is obviously unsat is 1 ’:tt~’tory , making a

sluggish response even worse. It- still serves our purposes t o  consider t l i t ’
d ig i tV al V mechanizat b i t  o~ this svs I cm. V

V 1
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C. T&CTICAL PTGIfI’ER — D~~1!AL C~~TR0LIVZR

Consider a possible model for one implementation of a digital controller V

for the tactical fighter shown in Fig. 60. The associated timing diagram 
V

is shown in Fig. 61.

In Fig. 61 the timing events are: V

is sampled and stored in buffer register; q isV 

sampled and stored for cc*nputat ion of the feedback Vportion of the control law.

® Computation completed; control algorithm output tocontrol actuat or through a zero-order hold.
- 

V In Fig. 60 advantage has been taken of the fact that a sampling operation
which is delayed with respect to the sampling operation of a reference sampler
by T0 seconds can be modeled by switch decomposition (refer to Append ix F)
as shown in Fig. 62. From Fig. 60 the equations which pertain can be written:

u~ = (eST0M)T~~ — (e 5T0M) T~~~(~~ e_5To)T~~ (~ 2 1)

But

(e ST 0 M) T 
= [e

ST O (i  
_ e_sT)J

T 

(~~22)

- V 
and the table of advanced z-transforms (Table I~, Section II ’, shows that

— e~~
T

) (~_~~~
)J 

= ~~~~~ 1 
~ 

1 .0 (423~

given 0 ~~. T0 < T.

I

V 

V

1 
~7

• - -~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~i . .
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Input sampled and ‘ I 
V

stored in register for I I V

- 
V T~ seconds before use ~~ e 

STQ M HI In summing operation T I I

I
q sampled , algorithm computed

L w ith throughput delay of T0 sec J -

V Figure eQ. Digital Implementation of FCS
V for Tactical Fighter - V

cD
V T0 T ÷T0 •’. V

T

V Figure ( 1 . Digi tal FCS Timing Diagram

V 
_ _

~

,‘ 
R* 

~~ 

~-+IF~-+IHSam es taken at
T0 , T + T 01 2T+T0 ...

Figure 2. Model of a Non-Synchronous
Sampling C~~erati on
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or V 
V

= 
it 

+ HT (G~
_sTo) TI l

The out put  is then given by

I) ( G!4~~
T0) Ii + HT (GMe~

bTo ) l  ~~

(GM)e~~
To G~~~

The “con t I nUOUS “ spec t runt, give n t hat  is a S i i  to wave input - , ca~i be

obtained , u s ir tg  the tools ot ’ Sec t-ion V ’t by a limi t in g procedure ott qT~~

qT/N (0~~~ sTO~ T/N (~T~T ( 112 10

The spectral coefficient-s for the  c response . t~ ~ a(sL c~~ 
then be com-

puted using :

1 ~ M~~
;T O\

An + j B~ 
- -  

e

z l4bT

The procedur€~ is as follows:

i) Compute (GMe~~
To)

T
, ~

2) Compute HT via Tustin transform. 
V

~
) Evaluate [I + HT ( GMO 3TO) T ] G~~. V

~
) Evaluate V

V I /GMc~~T0\ T

~ / , 
V

S V
1 V  t~~ z 141,T

‘ V
s 

V ~
-V__ 
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Step 1

e~~
T0 ~~~~~~~~ = e~~

T
e~~

T 
; 0 .~~ ~ £ 1

T I i  — e~~T\ { i 6  — .Q6]e~~
T T

(G~~~~T0) = ~e~~T k ~~~~s ) s(s 2 
+ .7s + .25)

- 
z — ft—1.6s — .96)e~~T 1T

— 

z [s 2(s 2 + .7s ÷ .~5)j (V

- 
z —  1 1~~~~aiz

:) 
+ aoz + a~ )z V

- 

~~~ 
[(~~ 

— 1 ) ( z - ’ + b~z + b~ )

or

—‘$T T a 1z + aaz +( GMe 0)  = — 
-
~~ -

+ b.-~z + b~ )

Values for the coefficients of Eq. ~~~~ are tabulated as a function of ~ inTable 12 f~ (P — T0)/T].

TABI~ 12 V

C~~ FFIC~~~~ S OF (GMe~~T0) T V

I

V 

-

0 0.1 0.5 
— 

0.7 0. 9 1.0
V 

a1 O.oooooooo~ -0.006596716 -0.031967618 —0.044736233 —0.057494098 —0.0638689~~a2 .063868954 .05 1226119 .000694195 0.024540610 O.O4~~549~~ o.o62~~4~06
a, ~~~~~~~~~ 0.056108192 0.03111e7 68 o.ol868o9~’8 O.0o6224s~7 o.ooo0000oo

t ote : b2 1.971993926 ; b, 0.972388367V 

I

1 -  F~
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Step 2

The Tustin tran sform of the washout network Is a direct substitution

technique wherein one substitutes

2 ___5 = — ___

V 
T z + 1 V

into the s-domain transfer function, H(s). The result for T = 0.04 sec

(25 samples/sec) is:

06s a0(z2 — 1 )  
V

H(s) = — 
(s + 2)(s + 0.~ J ~~ H(z)  = 

z2 + b0z ÷ b1

p
a0 Vr _..O.011995

b0 = — 1 .903277
b 1 = 0.904798

Step 3

The computation of could be carried out on a point-by-point basis

since the problem being considered is a scalar. However, it is illuminating,

even if somewhat disconcerting, to examine the numerical expression for
wherein polynomial coefficients are rounded to three-place accuracy:

a’ — ~5.87~,z
4 

+ ~.615 z 3 — 3.7~5z’ + O.880z

a- T 3.875a4 + 5.63z 3 
— 3.636z2 + O.880z

Thus, even when using a sampling rate as low as ~~~‘ samples/second, it is

impossible to distinguish between the characteristics of the open— and V

closed—loop systems with only three-place accuracy for the algorithm coef-
ficients. This example serves to warn one of numer ical roundoff problems
that may be encountered in digital systems even at moderate sampl ing rates ,

V 

and indicates the need for at- least double precision computation at- higher

sampling rr tt c . 1 .

i i  1
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The frequency response is computed with respect to e rather than q.
t:liace ~l q/s, the computation is carried through us ing ( 1/ T ) ( G M e _STO/s st

rather than ( 1/ T) G~v~~~ T0. The result is shown in Fig . e3. Notice lit the

relat ively slow sample rate of 2~ samples/sec that the difference between
the magnitude plo t for the “continuous ” washout network and the discre - V

tized version only becomes significant at frequencies above ~‘O rad/sec.
There is, however , a substantial difference between the phase angles ci ’

the cent inuous washout- and the discretized version at frequencies above V

2 rad/sec. This result is a typical one when the Tust in tr ansform approach
is used. The only recourse for decreasing the difference between the  phase V
responses when the Tustin transform approach is used is to decrease the

sampling period. This is the case because t-he Tustin transform does not
accoun t for the phase ‘Lag int roduced b y the A/P . P/A conversion proct~~s V

V ( i.e . . the dat a hold s’ .

The phase for the discretely controlled system is shown for three di f-

ferent values: T0 = Q (~ = 1 ’t , T0 = O.~3T (~ = O .7~ . and T0 T (~ =

Clearly, the closed-loop phase characteristic is sensitive to  the through - V

V 

put de : ay of TL) seconds . The accuracy with which the lower-order syst-c :n
-‘ models the higher-order system would be improved by inclusion ef a pure t ime

delay term. However, specificat ion of acceptable delay is not presently par t

of MIL-F-878~ B. Therefore, further adjustments of the effective short-period

damping and natural frequency in the lower-order model are req uired if t he
V “digital” phase angle artifacts are to be account-ed for In the format of

V MIL-F-3785B . The result will be an increase in the effective danping and
a decrease in the effective short-period frequency. Ei ther  in this  form
or considering the lag shown in Fig. 63 the result is further degradation
of flying qualities due to the digit-al mechanization .

V As discussed in the introduction to this section , an exact- digi t al

iiap letneatatiot-i would require an independent direct- digital  design in a

valid discrete domain such as the w ’ -domain (Section I I I ) .  The resulting
digital control law would in general differ from the simple Tust-in trans-

form of the analog control law, because the w ’-domain synthesis would

1 (’2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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produce additional lead compensation to offset the throughput delay and

noriniinimum phase AID, D/A effects. The approximation procedure using the

Tust in transform cannot account for these digital artifacts.

D. L~’1ER-ORDER ZI~DEL8

No effort has been made herein to define a rationale for modifying the

parameters of the lower-order model in order to account for the digital
artifacts. The reason for this is that several n~deling procedures for the
generation of lower-order models already exist (see, for example, Befs. 1

and 4). In general, the frequency domain modeling procedures define a fixed-

form model arid then use machine-implemented “fitting” algorithms to numeri-

cally determine the parameters of the model. The input for the optimization

program is obtained by reading magnitude and phas e angle data from an appro-

Vi priate Bode plot. Typically, ten frequencies between 0.1 and 10 rad/sec are

selected . This range is, of course , well within the first fold of any digi-
tally controlled system using sampling rates on the order of 25 samples/sec.

It is apparent that these existing modeling procedures do not have to
be drastically changed. It is only necessary to read the input data from
Bode plots which already include the digital artifacts. These Bode plots
can be generated using the tools of Section V.

E . CONTROL R0U~~~~ SS

No assessment of control roughness (ripple ) has been made for the

illustrative example . The reason for this is that the short-period fre-

quency of the aircraft model is considerably less than the sample frequency

of 157.1 rad./sec, insuring that the ripple will be small. However, if the

methods in the report had been used to their extent to minimize sample rate,
it may have been necessary to consider control roughness. This can be done

with the approach of Section V.

7. SECTION SUMM~BY

An illustrative example was used to demonstrate the application of the
digital tools developed in this report towards lower-order system modeling

of aircraft and control system dynamics. This example highlights several

H
-V—

~~~~~
- -V-1--1

~~~~
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salient features of the digital analysis/synthesis techniques dealt 
with

in this report :

• The Bode plots generated using the frequency response V

tools of Section V contain all the information required

to assess the effective t ime delays and control roug~i-
ness resulting from digital implementation. The phase

plot quantifies the effective t ime delay and the magni-
tude plot the control roughness.

• For assessing MIL-F-8785B requirements, the effects of
the digital artifacts on the equivalent low-order model
can be accounted for exactly using the digital frequency
response techniques of Section V.

• Although a single-rate example was used, the frequency
response methods of Sect ion V are also applicable to
multi-rate systems . This is in contrast to the trad.i-
tional concept of “sampled spectrum ” of sampled data
theory which is limited to single-rate systems.

• A direct digital design is needed if the phase lag intro -

V duced by the throughput delay and A/D, D/A conversion
process is to be offset through proper control law design.

The w ’-domain synthesis methods of Section III accomplish

this , whereas the emulation procedure using the Tustin

transform neglects these digital phase angle artifacts . 
V

• The procedure for modeling computational delay is easily
handled using vector switch decomposition coupled with
the advanced z-traosform methods of Section II.

-
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SECTION VII

SUI~~ RY, CONCLUSIONS, A1.’D RECQ~ff€NDATIONS

A. S~M4ABY ~~ D CONCLUSIONS V

The criteria of MIL-F-8785 presume an analog augmentation system.

There is now an additional concern for response characteristics which are

unique to digital augmentation systems . The purpose of this study was to

identify those characteristics which are unique to the digitally controlled

system, and to review the quantitative tools available which permit an 
- 

V

assessment of the effects of these characteristics relative to the MIL-F-

8785 requirements.

Two important characteristics are introduced by digital control laws :

• The effective delay introduced by the A/D and D/A
process and the delay introduced by the digital
algorithms and computational frame time.

• The “Lontrol roughness” or inter-sample ripple
introduced when the digital computer is coupled
to the control q.ctuators using data holds .

The first characteristic is of great concern to the flying qualities

community since even relatively small delays are potentially important in

certain closed-loop piloting tasks involving motion cues and/or pilot-

induced oscillatiDns. The second characteristic is of concern since air-

craft response resu lting from control roughness is in effect an additional

disturbance source.

Measures of the effective time delay introduced by the A/D computation,

D/A conversion process can be computed using a variety of analytical tech-

niques that apply at the sampling instants. For example, w’-, w-, or z-domain

analyses and discrete frequency response techniques can be applied effectively

to obtain both a quantitative and qualitative evaluation of the delay intro-

duced.

The second characteristic is more difficult to assess since it involves

‘
~~~~~~ response of the continuous system during the inter-sample interval . V

1CC
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l ead i t  i Im a  m a  i V y s is I ro is such as the ‘sampled spectrum ” (d.iscret e l~ e —

que!I1’y response are Of l i t  t i c  va Inc Icr this assessment because they gener—

:tL v ignore rout i nuous s y s t e m  re~pon~e between S aflip tes .

Il~his Leads to the ot her main objective ci ’ this study — to encourage

the ni ’ :i~’ t ir i n g  eng i lee r  to  gain working familiarity W j t V h t hree analytical
V I e ch t i  ique s wel I SU V I t e d  for t h e  analysis ot ’ Vt igital ly L’otlt-ro Lied  sy s t ems : V

• AnaLy sis (and synt hes is)  in t h e  w ’ —do main. V

• Mui t -  I ~r :it e t ran sform domain aiialysi S.

• -~va 1uat ion of’ cont inuous sys tem I
V
~requeucy response V

V to Iliscrete excit at-ion .

I l l  w ’ —domain (Sect ion I TI I s re I at ed t o  the wel L—known w—domain b~~
V • 1

sca ‘v I ni st ’orrnat ion and to t l a z — d om a i i i  by a bi l in ear algebraic tr a i i st ’or~
mat io~.. We be lieve ha t  tho se  engineers skilled iii t’requency domain desi gn 

V

p~’ocedure s ~ i L I V  imnie d i at  ely i ’eei it  home w i t h  aim-i y s i s  in the w ’ — d o r n : I V I I I  
- V

s I  t l ~’e :111 analog con t roT system design t -echno to~~r t ran sfers (‘o~I lp l ct . e  1 y t ’or
V d i g i t  :1 1 coat  ro V L sys tem design. in the w ’ —domain , the “an aLog ” con t l’Ol

sys t em de s i gner is t r a i t s  fo rmed instant Ly in to  a “d ig i t -a l  “ control sys tem
designer.

The second it-e m dea l s  wit -h a m u L t i — r a t e  t ransform domain approach t hat

V we deve l oped (Sect ion i v)  in to  an effect ive tool for anal yzing not on ly

multi -rate sampled closed-loop systems (Section Iv). but- also the transient

inter-sample response of discret ely excited systems (Section v ) .  That is ,

i t  yields recursion equations describing the inter-sample performance t o

any degree o t ’ t’ineness desired without - increasing computer storage require-

me nt - s .

The latter use is a depar t ure po in t  ( t ~e ct i o t i  V ) to extend I’requeticy
response concept-s t o  include the con t inuous frequency response of a dis-
o r t i V e ly  con t rolled sys tem.  The discrete t’requency response concep t has

r I o t  been part icularly product lye for the analysis ci ’ disc re te ly  controlled
s ys t e ms , since it is l imit-ed to determining the ampl i tude and phase ot ’ t h e

s i n g L e  s i n u s o i d  th a t .  f i t s  I he OUt V ~~~UtV samples ci a single—rat-c system a t  the

samp ling inst-ants. Development ,  proceeded by f i r s t removing I -h i s  r e s t r i c t  ion

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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for open-loop systems and then extending the results to single-rate closed-

loop systems. Finally, the solution for the multi-rate closed-loop case
V was developed using the results of Section IV.

B. RECOII~~NDATIONB

There are two specific recommendations. First, there is a need for 
V

portable, general purpose software to support the frequency response analy-

sis of Section V. The basic requirements for one implementation are: 
V

‘i) Compute the matrix of open-loop transfer functions,
in the s-domain, given equations in either a state
variable or degree-of-freedom format.

2) Partial fraction expand each element(s) of this
matrix, compute the advanced z-transform of each

V term, and then combine the individual terms to
obtain a polynomial in z. The result is a matrix
of tr~~~fer functions in z for the discretized
system .

3) Given the matrix of tran sfer functions in z , corn-
put e the v’-matrix of transfer functions.

An alternate irnple~~~ntat ion might replace the transform domain computations
— in Items 1 and P with state transition computations which produce equiva-

lent results. These requirements are easily satisfied. It is primarily a

matter of integratir~g -existing codes in a manner which will permit easy

V interaction between the user and program.

The second recommendation deals with the application of switch decom-

position to model data skewness and throughput delay effects in digital corn-
putations. This approach to modeling multi-rate, multiple order, throughput-

V delay arid data skewness effects has vast potential for the effective analy-

sis of complex systems exhibiting these phenomena. Only a hint of the power

switch decomposition teamed with the continuous frequency response concept-

is given by the simple illustrative example of Section VI. Specifically,

the switch dec’mposition/frequency response techniques in combination can

(and should) be developed into an analytical approach for pinpoint ing error

sources that arise because of digital effects  in the control and simulation
of continuous systems .
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APPZNDD( A

PROPERT~~S OP T}~ LAPLA.~~ 
TRAIfSPOBM

I1~TRODUCTION

Some of the more important propertie s of the Laplace transform that

were not discussed in Section II 
will be reviewed. here . Of particuJ~ar

interest are the properties of “translation in time” and. “periodic func-

tions.”

LAPLACE TRA~SPOBM OP T~~ DERIVATI~~
OF A TIb~ I’UNCTION

The definition of the Laplac
e transform of a time function f(t) 

is

- 

- 

~~[ f(t ) )  ~ i(s) = f f(t)e
_St 

dt (A-i)

Given F(s). the transform 
of df(t)/d.t is found using integration by parts.

u = e
_St 

, dv = dt (A-2)

so that

V fu  dv = uv — fv  du ~ f(t)e
3t
~ ÷ s f f ( t ) e St dt (A-3)

Therefor e

= sF(s) — r(o) (A-u )

giving the pair

~~~~ sF(s) — f(O) (A-n

171

A~
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INITIAL AZC FINAL VALtZ T1~ O~~M V

The pair given in Eq. A-5 can be now used to prove the equalities

f ( t ) = f (O) = sF(s) 
(A-6) 

V

f ( t )  = f(~~) = SF(s) , poles of s F ( s )  (A -7)
in LHp

Since

~~ e~~~ dt = sF(s) — f(O)  (A-8)

we may Write

t
sF (s) — f (O )  

~~~~~~~~~~~ 

f ~~ e~~~ du (A-9~

so that let t ing S -~~~~~ ~ immediately gives

SF ( s )  — = 0 
( A-1o~

which proves Eq. A-t~.

- I Next , let s 0 in Eq. A-9. giving

SF(s\ — r (o ~ = 
~~~ f

t 
~ du {r(tl — f ( o ) }  ( A - 1 i \

proving Eq. A-a’.

The existence of the limit- as s o requires the restriction on thepoles of sF(s). The limiting procedure of Eq.. A-~ may give a “nonsense”answer if this restrict ion is not observed. For example , 
V
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sin b t ~~~ b 
2 (A-12)

+ b

so that

f(~~) = 
~ sF (s) ‘

~~ S~~~~O s2 + b 2 
= o (A- 13)

Since the poles of sF(s) are not in the left-half plane (they are on the
V imaginary axis) ,  the restriction is not satisfied, and the result of Eq. A- 13

is meaningless. This is as it should be, since no one knows the value that V

the sine wave, although bounded by ± 1 , takes on when t = ~~~.

HIG~~R DERIVATIVES

V The results of the second article in this appendix. page 171 are suff i-
4 cient for f inding the transform of higher derivatives. Consider V

= (A_ 114 ’

V 

where g ( t )  is set equa l to d f/d t .  Therefore.

~~~ s G ( s)  - g( O) (A-1~~

- 
which gives. upon substitution for g,

~~~~~~ ~~~~~ — 
~~~~~~ 

— (A- 1~~

or 
V

~~~~~ S~ F~ s~ — s t ’~0~ — i ’ (
~~~~~ (A- 17~

H 

~~~~~~~~~~~~~~~~ 

l ’ ~ 

~~~~~~~~~~~~~~~~~~~
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For example ,

~~ 
= 

~~~~~~~ 
— r ” (o)  = s3F ( s ~ — s~~t~~O) — sf (O) — t”(o) ( A — 1 7 I

~ L~ I = S~~~~ 
— f ’” (0) ~~‘ I’( ~1 — s3f(0) — s2t” (0)  

V

— s f ” ( O)  — 1”” (o
~~ 

(A-  1o~

As ui a p p Uc at i o i ~. consider the t ime domain di f fe ren t ia l  equation

+ LX + 11~ ~ LX = 0 ~A— ?0~

where

= n . ~~~ (o) = —L , ~ (o~ = no

This t r a r s t ’c’riiis I V I I C  i:i :ilgebraic funcUon of s

[s -
~

(s) - s-~x~ o) - si(o~ —

+ ~I f s ”X ( s~ — sx(0) — ~ ( o ) J  + 1i[sX (s~ 
— x ( 0 l ]  t~~~( s )  0 (A-7 1~

or

[s 3 -f + u s  + n ] X ( s )  = s2x(0) s[i(o)

+ [~~(o~ ~~ (~~l ~ 1 1x(0~ 1 ( A — f l ’~

Subs t i tu t ing the initial conditions and dividing t hrough by t~~it ’ character-

1 S t V ~~~’ equat ion gives

f s  + + -8 4 4 -
= - 

(A-: “~
+ t s ’  + u s  + - ( s  -

~ 1 l ( s  fl ’4 (s -+ 3’4

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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art  V i a l  i ’rac t ion expansion gives

X ( s )  1 
— 

n 
V + (A -n 2 ~)V s * 1  s + 7  s + 3

so that the t line solu t ion , v i a  table lookup , is

x( t l = (e
_t 

— 7e~~~
t 

+ 3e 3t~ u ( t 7

TRAI~SLATION IN TI?€

Given t ’~~t~ u( t l , the transform of t h e  translated funct ion cai . be eas i ly

- V 
found :

~ [ f ( t — a ~ u ( t — a ) ] = f f ( t - — a )  u ( t  — a ~ e~~
t dt (A-n -~

= 
fa~ 

f( t — a )  e
_5t 

dt . a � 0 (A-2’() V

Let x I — a so that

Co Cof f(x ~ ~~~~~~~ dx = e as f f(x)e~~~ dx = e as F(s~
0 0

Thu s.

f ( t — a ~ u ( t  — a) ~~~~ e as 
F~s~ ~A— 7~-)~

Given that a ~ 0 , the applicat ion of Eq. A_ n O is neat- ni-id strai ght-fo r-
ward I’ur ~ i t i d i n g  the t ransform of a delayed t ime  func t ion .  However . gi ven 

- 
V

a ~ 0. the transform 01’ an advanced time funct ion must- be t reated wi th
greater care . Using the sane procedures as above u!ie l’i nds :

~~~~ ~~~~~~~~~ ~ i ’ u( t ‘
~ I = t t + a ’ie~~~ dt ( A — ~~ )



-
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Let t + a  = x, so that dx = dt and t = x — a .  Substituting into Eq. A-30
gives :

~~[f(t + a)u(t)J = 
fCo f (x )e~~~~~~~ dx

• V V~ 
V

= eas f ( x ) u(x~~ a)e~~ dx V

~ e~~ ~ . [ f ( t ) u ( t — a ) ]  (A-3 1)

Comparing Eq. A-31 with Eq.  A-29. we see that the advantage of using the
translation theorem has disappeared. Namely, in Eq. A-29 we need not recom-
pute the transform of the delayed time function. It is sufficient to know

the transform of the unshifted function since a simple mult iplication by

e
as 

gives the desired result. However, in Eq. A-3 1 , a premult iplication
by eas does not remove the necessity for recomputing the transform. Indeed.
we may as well use i~q. - ~-30 directly when computing the transforms of time
advanced functions, since no advantage accrues from the use of Eq. A-3 1 .

PERIODIC FUNCTIONS

~~ By definition , a function satisfying

f ( t )  = f ( t  + T) (A-3n )

is periodic with period T. This definition is adequate even if f ( t )  0
for t < 0. Begin by defining a function equal to f(t) in its first period

and zero elsewhere (see k’ig. A-i).

f ( t )  0 it ~~~ T

f 1 ( t )  = (A~33\

0 Elsewhere V

H
•1

V 
V

V V
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c) f(t)

b) 

2T 3T 51

Figure A- i . A Periodic Function V

L -

From Fig. A-i we see that f(t’~, Fig. A-la. can be described in terms of

f 1 ( t ) .  Fig. A — l b .

V 

f(t) = f 1( t ~ u ( t~ + f 1(t —T) u(t — T ~ + . . .  (A-3~~

Taking the transform of Eq. A-3~ gives 
V

— TF(s ’) = F 1( s )  + F1(s)e + F.’~(s
’
~e 

- 
+ ., .

—sT ~~~ S V V~~V V
= F 1 ( s ) [ 1  + e + e + . . .3

F(s ) = —sT (A-~ ~1 — e

‘1 In using Eq. A- 3 . it is important t o  develop the transform 01’
V 

over its entire first period , taking caret’ul note of the ‘0 elsewhere”
restr ict ion in Eq. A-~~~. We de fer making an applicat ion ot ’ Eq. A-~~- ’ ut-it i

the Laplace of the impulse function has been introduced.
I.

1 ( 1

‘ V ~~~~~-~~--- - 
V
- -~~
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~~~ I~~ULSE FUNCTION

By def in i t ion,

~(t—a ) 0 t ~ a (A-38)

and

J ~(t— ~~) dt = 1.0  € > 0  (A-39 )a-c V

There fore

~~ [~~( t  — a ) ]  fC o  
~(t_a )e 5t dt

‘4

dt 

~ja:€ 
0

- (A ~~ o
V There fore V

a+ c
~ {~~( t — a ) J  e

_5t
~~(t_ a) dt (A-- .1)

a-~ LitsI
But , as € - 

o , e~~~t _ e a5 
and can be removed from underneath the V

integral sign. Therefore,

, a+ €I e~~
5
~~( t — a )  dt (A— ~e 2 )

,. a+ c
V e~~

5 J ~ ( t  —a ) dt-
a-c

—as
= e 

(A -4 f l

.1~~ l V .
~

_
~

- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~V V V  
VV
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We observe the  convention that  ~( t )  = Lim s(t —a ) and is therefore inc Ludeda ~~ o
with in  t h e  limits of integration . Specifically,

5( t )  ~~~~~~~~~~~ 1 (A-44~

An example is given in conjunction with the previous subsection. We wish
t o  f ind the transform of the “periodic” string of 5 functions shown in

~~g. A-~~. Since the Laplace transform of a periodic function is

F 1( s ~F ( s )  = 
—sT (A-~~-)1 — e

i t  is -o n l y  necessary to find the t rans form over one period. With the not a-

t iCIn

= m~ (t) + s~ (t — T )  + ~~ ç t  — na- ) + . . .  ( A - - ~Lr V~

to indicate a limiting process towards the left in time .

F 1( s )  = 1

and we have

F(s) = 

1 ~ —sT ( A _ L 7 )

as the transform of a “comb” of S functions.

I

‘
V 

Figure A- ’ . The D ir ac  Delt a Comb Funct ion

~~ V V 9

IIi.â~ 
— -V.- - -—
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TIlE TRMSIOBZ4 0)’ TIm PRODUC’rs

The inversion integral for Laplace trans forms is

c+j c~
f(t )  ct~~

1 [F (s))  = j
~j  

f F(B)e~ d.s (A-~i.8)
c-joe

To find the Laplace transform of the product of two t ine functions proceed
as follows:

1 c1~4~ico
£.[f1(t)r2(t)) = f ~2(t)~~~ 

~~~~ f (Fl (p)e
Pt dp] dt (A-49)

Interchange the order of integration and adjust the contour

c+jo o
£ [ r1f2] = 

~~~~~~~~ J~ F1( p) d~~f 
f2(t)e

_
~~

_
~~
t d.t (A-~o)

Therefore
c+j co

~~[f 1(t)f 2( t )]  = ~~~ f P 1(p)F 2 ( s — p )  d.p (A-51)

For example, let f 1(t)  s_at and let f2(t) be the Dirac ~ comb function

of the previous section, so that the product of f 1f 2 has the general appear-
ance shown in Fig. A-3. The periodic property gives

F 2 (s)  
1 e ST (A-52)

and since
F1(s) = s +  a (A-53)

Eq. A-51 gives

c+j~ F (p ’s 1 
c+j~ d.p

£ r 1f2) 
3 Lj~ 1 e~

T( 8
~P) 

dp = 

~~~ £~ jco ( p + a ) [ l — e ~~~~~~~~]

(A-~~~)

i8o

-~
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b ) 1 f I t  I i  t ’
c)

1 4 4 a

Fi~~re A-3. Product of e~~
t with Co~~ ~ inction

Closing the contour to the left gives (see next subsection)

— _ _ _ _ _ _ _ _  (A ~~~~~“~~~~
- 1 2~ 

— 
—T(s+a)1 — e

and we see that the use of the Laplace transform of a product, taken in con-
junct ion with the Laplace transform of a particular periodic function, is
a sufficient tool for finding the transform of an impulse modulated waveform.

The next subsection reviews some of the fundamentals for evaluating Eq. A-~ 1

when one of the time functions in the product is the Dirac delta comb function.

PZV~~W CO~*ENT8 ON CONTOUR INTEGRAT ION

The properties of sampled systems have been developed directly in terms
of the delay operator in Sect ion II. It has now been shown that the
Laplace transform properties associated with periodic functions and with
the product of two t ime functions can be used to develop an alternative
frequency domain description (by letting one of the product functions be
the Dirac delta comb). Representation of the product of a continuous t ime
function with a Dirac delta comb is cast as an equivalent “impulse modula-
tion ” model in Fig . A-1~. It has already been shown that

BT ( ) - ~~~~_ 
ç c+JoQ R(p)  dp 62,~j  Jc_j oo 1 — ~~~~~~~ 

(A-~ )
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Figure A-u . Representation of Impulse Modulation

If the poles of R(s) are finite, one can say that RT(s) is the summation

of the residues of R(p) by closing the contour of integration to the left.

On the other han d , if the contour is closed to the right, enclos ing the
po le s of the ~ir~Lc delta comb , one obtains

RT(S) + n~~oo 
R( s  — ~i~~~) (A-~ i)

Equations A- I and A-77 are useful in investigating the properties of

multi-rate systems, and it is thus worthwhile to gain some insight into
the “mechanics” of evaluating Eq. A-56.

First , some review points. If a pole is enclosed with a counterciock-
wise contour giving a residue k1, then a clockwise enclosure gives the
residue —k 1. That is , a counterclockwise contour gives a value equal to

2nj ~ Ree , whereas a clockwise contour gives a value of’ —2,~j ~ Rca . Also,

if the integrand is represented as the ratio of two polynomials, N(p)/D(p),

then the residue for any simple factor (p—p0 ) is given by )

Res = 
N(p0) 

(A- ’~8)
• P~Po D’(p0)

where the prime denotes differentiation with respect to p. In the interest

of brevity, the discussion will be restricted to systems containing simple

poles (no multiple poles). F’requent use will be made of the identity

1 
— 

1 (A-~9).J X —2nnj - 

1 — e ~~
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Given the integral vanishes on the !lfinite contour C~ (see Fig. A-’~)

enc losing the poles of’ R ( p ) ,  we may say that RT(s) is equal to the sum of
the residues of R ( p ) .  If the path is closed to the r ight, the infi nite 

- ‘

1. t r+j ’-i

C I ~~~~~~~~ 

• 

C 2

—
I, I

*
I 

~ ~~~~~
-a--

~ 
—z t

I 
* 

Po~.s ol

~o~es ot itp ~ a 

~~~~~~ ,
~:

a

~~~~‘-.... A .--. -

Figure A-5. The Complex p Plane

set of poles at p — a—2 ,mj /T, n 0, ±1 , ±2 , ..., of’ 1 — ~~~~~~~ are
enclosed. First, complete the contour to the right , enclosing the singu-
larities at p — a—2 ,inj /T . Let

- 
1 ~~~~~~~~ 

(A-60 )

where it is assumed that R(p) I. a proper rational polynomial in p.

Res
~c2 

— 
~)‘(~~ 

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(A-61)

183

_______________ - —.

——~~— —k.- .. _.~~.‘— ._..—_ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_________________________ _r-_~- 1

But,

1 — e~~~ = 1 — e~~~ 21~’hui’T)
p = s-(2imj / T)

= 1 — cos 2,in + j sin 2,tn a 0 (A-62 )

so that

Rea I~ 
= — !4~1 (A 63)

2 p = s-(2~njtr)

n = O , t i ,

Since the contour was closed to the right, —2,cj ~Rea gives

RT( S) - 4- 
~~~~~ R (s — (A-64 ) -

n— -~~~

which was to be shown. We therefore have the identities

c+j~RT( S) = ...L. f 
1 — ~~~ ~

— 4- j  B(s 
— (A-6~s)

For example, let RCa ) — i/ (s +a)  and close the contour C1.

ETC.) = 
~~~~ (p + a)(1~~ e~~

(1 P) ] 
-

— ~~~~~~~~~~~~ — ~~~~~~ 
(A-66 )

i8I~

— -
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~
. Note that the substitution z = e8T then gives

• R(z )  = RT(s) = 

z _ e ~~T

• Equation A-66 was arrived at using conventional residue theory . The
N(p) / D ’(p)  approach also works, since N(s) = 1 and (again closing the con-

1’ tour on c1) gives

- 
1

— 

D’ p=-a 
— 

[i—e~~~~~~~) +

= 

1 — ~~~~~~ 
(A-67)

.

as before.

This result can also be obtained with the C2 contour,

D’(p) = [1 — e ’
~~~~~] + (—T )(p + a)e ’

~~~~~~ p s-(2~tnjtr)

(A-68 )

Therefore, taking due account of the clockwise contour, we obtain

RT (a) = E T ( s + a ) — 2,tnj = 

1 — ~~~~~~ 
(A-69 )

t where Eq. A-59 has been used to place the infinite summation in closed form.
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APPEIIDDC B

T~~ PUL~~ TRANBflR FUNCTION

~~TROD~~TION

The identities

RT(s) 

~3 ~~~.jis i ~~~~~~~~~ 
= + £~ 

R(s — (B-i)

were derived in Appendix A. In this appendix , use will be made of’ Eq. 8-1
in order to deduce the properties of the two-rate system shown in Fig. B-i.

We ‘were reluctant to introduce Eq. B-i in the main text since its use
would not be in keeping with the elementary and/or review flavor of Sec-
tion II. However, its use here will serve to clear up some notational prob-
lems that surface in the multi-rate sections , as well as to provide insight
into multi-rate systems . We first investigate the single-rate system.

‘C” 

~—~:‘1~I :~ ~~

Figure B-i • An Open-Loop Two-Rate System

Bfl~ IZ-BATI PUL~~ TRANSIIR FL~ C1”IO&

In Fig. B-I , let T1 — T2 T and write

cT 
- (o(s) RT(.))

T 
— 

~ I~” ~~~
- 4- 1 a(s — ~J~L1) RT(a — ~~~1) ( B-2 ) 

S

1~--~ S i
iR~

—
I - . ~~~~~~~~~~~~~~~ — - - — — - - -
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Now, let us look at RT[s — (2nnj /T)) , via Eq. B-i ,

RT(s - = 
~~~ 

1-  
(B-3)

, c+j co
— 

1 R(~ )dp (B a)— 2nj Jc-j0~ 1 — e ’”~~~~ e
2
~~~ 

-

But, e~~~i = (cos 2nn — j sin 2 ,tn ) 1 for n, an integer. Therefore,

R T(S ~.~ii) = RT(s)  (B-~ )

Substituting Eq. B-~ into the right-hand side of Eq. B-2 gives

4- f ~(a 
— ~~~~)RT(S — = i~- ~~~~~ G — ~~~~~~T(5) = GT(s) RT(s)

(8-6) ‘

Since RT(S) factors out of the summation, we see that the remaining term

is the transform of the g(t) “impulse” response. Therefore, it has been

proven that

cT(s) = [G ( s ) R T ( s ) J T 
= GT(s)RT(s) (B-7)

At this point, it is convenient to discuss (using Eq. B-i) two other
points occurring in Sections IV and V which the reader may find trouble-
some . The first concerns the use of the notat ion RT(s) rather than R(z).

8UPLR8CRIP~ NOTATION

The superscript notation has been adopted as a matter of convenience
since at times it will be expedient to redefine the delay operator z 1 .
For example, it will often be to our advantage to define

~ ‘1

- 

‘ 

‘ - 5  
:-~~~~ -~~~~~~~~~~-
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- - -  - L-~~~~ -~~~~~~

e~~
’
~
’
~~ (B -8)

so that

e~~~ = e T ’N
~~ = (e

_sT /~~)
N 

= ~
—N (8 9)

Equation B-i  offers ~ rat ionale for the superscript notation , given that -
5

we desire to keep our options open on the definition of z. To demonstrate .
we seek the pulse tran sfe r f’unct ion of i / ( s + a )  using Eq. B-i (closing the
contour t o  the left):

1 T (C+ioo dp S
= 

Jc_ ico ( p + a ) [ i _ ~ _T~ 5~~ Yj

S = ,, (~~ — i o ~
— e°~~~~~

Note ha’. ~q. B — 1~ ~‘o~: s n “ z ’ s ” ; the  only ‘ s nmp l ~~ par ameter ” is T

~tSe~~f .  ly w~ t I -  h~- SU~~i , t ’C1 lye decis ion o Je:’~ ne z = ~~~~~~ ~q. 13 — i C ~
be wri t ten  as: S

• z = e~ c~~- 1 i )

r z had bee’ . defined nccc’rd i~~ t o

z = eST!N

the n

T , 1’;I 
— _ _ _ _ _ _ _ _ _  — 

Z (— 
rr s+,~~~\ 

— N — i T S

1 — c  — e

Next . suppose one seeks t he pu ~se r~t~sfe r t’unc l  io~ ot ’ 1 ’(s n ‘I ~ h
respect t o  ‘i T N framet i ne . Th ,~n .
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T/N .

~ 
(c+ioD dp

a+a — 
2nj 3c-Jo~ (p+a) [l_e

(8_ 1~
T
~~] 

= 
i_ e _ (8~~

)T7
~

( B - i a )

so that defining z = e8T/N gives

1 1 1 T / N  = 

z — e~~Tm z = e8T/~ ( B 15)

In the text the prevailing definition of z will be omitted when it is felt

that the meaning is clear.

The implications of Eqs. B-il , B-13, and B- 15 are as follows. Proceed-

ing according to the partial fraction/table lookup approach of Section II
essentially assumes

z = e8T (B- 16)

8
since the table wa.~ written with that definition in mind. However, use of’
Eq. B-i gives answers in terms of e8T or e8T/!~ (whichever is appropriate),
so that one can assign z at his convenience. If we wish to continue to use

the tables of Section II, and yet keep the def inition of z an opt ion, then
one proceeds as follows. Suppose that it is convenient to define z = e5T/N. 

S

Then GT/N is computed directly from the tables using partial fraction expan-

sion. Simply replace (mentally) T in the tables with T/N. On the other

nand . GT is computed , by table lookup/partial fraction expansion in the

usual maimer, retaining the T in the transform table. When the overall

pulse transfer function has been computed, one simply changes z to ~~

T)~ )~JLTI-RATE ~~~~

A logical point has now been reached to derive a particular relationship,

pertaining to multi-rate systems, that will be of value in Sections II , IV.

and V. Consider the two-rate system of Fig. B-i . Write

U

C(s) G(s) RT1(s) (B—i? )

•

— - .— — —5-- I,, .. j d~~~*-~ I Ilh,~,. -O~~~’
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so t hat

c T
~~ s) [G( s )  RT I ( s f l  (B-1 8)

Using Eq. B-i , one may derive a relationship between T 1 and T2 which ,

when satisfied , permits the simplification

cTh ( s )  = rG(s) R
T1 (s )  = GT2 ( s ) R T 1( s) (B- 19)

Applying Eq. B-i to Eq. B- 1~ gives

[G( s ~ RT 1( s ) I  = 

~~~~~~~ 

f 
i e TP P )  

dp

= -

~
- E G(s - ~~~i\ RT1( - (B-2o)

T.~~~ ~ T2 ,  - ‘

fl =~~~~~ 
-

Now , t ake a close look , via Eq. B-i , at RT 1 (s — 2,tnj/T2). By definition,

[
R(8 - 

~~~~
)JT

l 
= 

~~~ - ~~ i [s (2~~ j /T2 ) P ]  (8-2 1)

1 ~ c+i~ R(p) dp (B ~~= 

~~~ ~ c-j co 1 — e~~ h t 8
~~~ e

_2 7mjT h , ’T2 
- S S

But

S e2~~
jT 1~I’T2 1 if T 1tT2 is an integer (8-23)

Let TltI’2 be an integer ,

RT1(s — ~~~i) RT1(s) (B-~~)

--5 
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Equation B-20 becomes

cT2 = 

~~~~~~~ 

E~~(s 
- ?i~~)]R

T1~~~ = GT2(s) RT 1 (s)  (B-2~ ) 

S

It has thus been proven that

cT2 = [G(s ) RT 1 ( s ) J T2 
= GT2 ( s ) R T 1( s)  , T~/T2 = integer (B-26) - -

giving the “rule” that the outer sampling operator moves through the inner
one when the ratio of the inner to the outer is an integer.

For example , let

s a ‘ 
G(s ) = s + b (B-27)

When T 1/T2 is an integer, we expect

cT2 

ti — e~~
2
~~~~~]

’

[i — e~~
1(5

~~~j 
(B-28) 

S

as can be verified using Eq. B-i.

~ c+jco dcT2 - ._L. I p 
( B 2 )— 

2it j  3c-j co ( p + b ) [ 1 _ e ~~ 1 ) ) [ 1_ e T2(5_P) ) 
-

Therefore ,

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(8-30 )
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Closing the contour to the right, enclosing the singularities at

p - s — (2,a~j tr2) , gives

T2 
- 

1
— ._Sj~2(2~nj/T ) — ~~ it s + a_ ( 2n n j ,Ar2)] B 3 1

a = 0, - 1, ±2, ... S

But

e~~2(2~~ j t22) i , eT~~21~ uhl’T2) 1 (B-32 )

so that we are left with

1 ( 3 5 .C — 

— e~~
1(5

~~
)j ~~~~ 

T2(s+b) — 2,tnj B-3 )

Using Eq. A-~9 gives

cT2 
— 

1 
(B3~)— 

( i  — e~~
1(5

~~
h jt i — e~~

2(8’
~~ ] 

- 

S

If T 1/T2 is not an integer , we are stopped at

cT2 
= E 

Ii — ~~~
1(s+a) e2~~

iT1/T2) [ T2 (s+b) — 2~~ j ) ]  
( B-35)

If T2/T1 is an integer, an answer can be obtained by clos ing the contour
to the left. Doing this enc loses the singularities in Eq. 8-29 at p = —b

and p = a — (2anj /T 1) [poles of 1 — e~~
i(
~~~
)j .  At p = —b, using Eq. B-30

gives

Rca = 

[1 _ e~~ 1 a_b
j~ i _ e~~

2(8
~~~j 

(B-36)
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The Rca at p = —a — (2*njtri )  is S

- 

Ti(b a (2 i) [ l ~_ e T2(5+a+(2~~itn 1) ] 
(B-37)

S I = ~~, ii , ±2,

Since

1 — e~~2[5 2,mj tr i ) ]  
= — 

~~~~~~~ e~~~~jT2I~ 1 = 1 — e ”~
2(8

~~
)

(3-38)

if T2/T1 is an integer,

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _

i _ e ~~
2(5

~~J 
~~~~ 

T 1 ( b — a ) — 2 , t n j  = 

i _ e ~~
2(5

~~~ , — e ~~~~~’~~ 
(B 39)

S 

The final result is

T2 i / i e T i (~~~~
)
i 1/[ 1~~~-Ti(b-a) ]

1 — e~~
2(5

~~J 
+ 

1 — e~~2~~ ’~~
) (B-~O)

Equation B-40 highlights the fact that it Is not really necessary to
use the phantom sampler approach when T2/T 1 is an integer; a direct evalua-
tion via contour integration is feasible . S

I
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APPENDDC C

ILLUSTRATIVE EXAI”~LE — MSTHODS FOR
FINDING TRE CONTINUOUS RESPONSES

OF DISCRETELY E~tCITED SYSTEMS

INTRODUCTION

An example is used to demonstrat e various techniques for finding both

the discrete and continuous response or a discretely excited system. The 
S

example is a scaLar one and hence will not make the dlmensionalit.y con-

siderations associated with , for example , the state transition approach S
overly clear . However , our objective is to expose the reader (or remind S

him) of the large number of methods ava ilable for computing transient

S responses. All the me thods demonstrated can be applied equally as we l l.

when the system description is in a mat r ix  format .

ILLUSTRATIVE EXA~~LE ~~DEL

The mode l i’or the illustrative example is given in Fig. C-i . For

numerical conven ience let

r ( t )  = e~~
t 

, e~~
’ o. ’ , T = 0. ”

and

e~~
T 

=

so that

a = I’. 7~’fl’ ~1~~(fl~’

b = 1.386291t 5n1

Although the tables used In the “lookup ” process will be In t erms of e_bh1T

etc., for convenience of’ presentat ion, we ask the reader to keep in mind
that e~~~1T 

= (e~~T ) ’~ = ii . ~~~~

1~~~~~~

5 — 5-.~ — __5--55S~ S5-~~~ 5 -
-—- -5———-—- . 6 

— —~~~ ----—.. ~~
— -~-S __

~~ 5

— -~~~~~ - — -~~ - ~~~~~~~~~~~~~~ ~:e~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S
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Figure C-i. Illustrative Example

The fundamental equations describing the responses are

x = ~ 4(1 
— e 

)B
T ( c - i )

S xT = 

~ 

a(1 —  
~~ RT = 

~ ~ (~ ~ . 
(c -7)

First we enumerate six methods for finding the discrete time response , X ( n T ) .

DISCRETE TI~€ RESPONSE

Method I, Partial F’ractl.on Expansion

51 This is an “analytical” method , in that the response is given in closed
form for all values of’ n. The technique is basically partial fraction expan-
sion coupled with table Lookup .

Expand Eq. C-2 in partial fractions:

(z — .2~ )~ z — .5) z — .5 + z — .25

‘ I .75 
-S A — 

— “~~~z= .5 
-

S (c-3)
- B = =j

X ( z )  = 
3z 

— 
3z

S — . ’ z — .25

S 19~

U ~~~~ -5- 5- —-5 
-

--—---

~~ 
-
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Via table lookup :

X(nT) = 3( 5)fl — 3(•25)fl - 3f .5 fl — .25flJ (c4)

Method II, The Inversion Integral

The inversion integral approach is essentially a residue theory method
which eliminates the need for table lookup. For all intents and purposes, S

this method is identical to Method I in that the eolution is defined for
arbitrary values of’ a. Using the relationship:

f(nT ) = J.. 
fz

t1~ 1 f( s)  dz = E Residues (C-5)

we obtain

1 ~n~ l .75z .73 ( .5) ( .~5)~~~ ,7s(. 2~ ) ( . 2~ )~~~1
2,~j (z— .25)(z — -~ -dz = . 3 —  .25 + .2~~ — .3 

6

or

X(nT ) = ~~~ — (c-6)

Method III, Continued Fraction Expansion

In this approach, write X ( z )  as a ratio of polynomials in z and divide
the denominator into the numerator , interpreting the negative powers of z
as suitably shifted delta functions in t ime . To demonstrate :

.7~z 
— .75z

(z — .5) (z  — .2 3) z2 — .75z + .125

= .75z~~ + .5625z 2 + .328125z 3 
+ .1757812’~z~~ +

Therefore

5

,; 
x ( t~ = .73~ ( t — T )  ~ . r

~~~2~~~~ ( t _ 2 T )  + .37R12’~~( t — 3 T~ + ... (c- ’~ 5S 
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Method XV, Recursion (R(z) Given Analytictl1~r)

SuppoRe a closed form is given for B(s), as in Eq,. C-2. Then we may

write

or 

(~2 — 75z + .125)x1(z) .75z

X(nT) = .75Xfn — 1 )T] — .125X[n — 2)T] + .75~ (n — i ) (c-9)

Method V, Recursion (R(e) in Sy~~olio Form]

Suppose we retain the Input as B(s) without taking e(~~t)T . Then,
S again from Eq. C-2, one may ‘write 

S

xT = 
.7~ RT 

S

or

X(n + 1)T] .25x(nT) + .75R(nT) (c-b ) S

Method VI, State Transition

State transition can be used to find the total response. Using state

transition concepts we may write (refer to Fig. C-2):

= t: :11;~
] + 
[

]R(nT) - ~~~+BR

1 
;~:H.cTJ ::;~:~ I ~ S

Figure C-2 . Illustrative Example Relabeled
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Let
—?L Te

—1
a 

~~~ t I ~ — Al =
U I

~o that

x(n T ~p( t) ~.(nT ) + J q~~ )B d~,R (n T ) (c—U)
0

gives, for the x 1 component (Note: x.(nT) — R(nT) )

x 1 (aT + ~) = ( 1  — ~~~~~ ~( aT ) e~~~
T x 1 ( uT) , U ~ ~ T

Let r = T and obtain the dI t’t’ereuee equation

s i)T] = (i  — e~~
T) R(nT) + e~~T x i ( n T ~ (c - in  S

or

xjf (n s i)T) .(‘‘R(nT) ~~~~~ x 1(n T )  (c— i ~) S

Equation C-13 is, of’ course , in agreement- with Eq. C-h).

8U)I~ABY OF DISCRETE RESPONSE ~~TEODS 
S

Method I, Partial Fraction Expansion

S(65~~~ 3z 
_____

5 
X(z) ( i— .~~ )(z — . ‘-) z—  .~~~~ z —

There fore

X(nT) - 3[(~~~,) f l  — 

~~~~

I,

S 
~~~~~~~~~~~~~~ 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- Method II. Inversion Inte gral

U— I

~~~ itt .
4~~~ ‘~~-~

— 
4’t 5 .‘‘‘~ 1 

,~~:~— I  — ‘~ .:‘ ‘ ~ ~

— • 
• -~~ — ~,

Method III, Continue d Frac tion Expansion

— ~~~~~~~~~ 
• 

- .

Method IV. Recursion tR(s~ Given Anai.yticsi.ly)

— .~~~~: . I ” ~~~~X ( .~~ . . 
S _ S
I

• ~~~~~~~~~~~ t ort’

X ( n 1 ~ — . x f ~ -- I ~‘i) — . L” -X [ rs — .
~~~ J s . -~~n — 1

Method V. Recursion (R( i)  in 8y~~olio Form)

r ttere t~~rt ’

k 1 \r) . ~
‘ -E~ u!~ . .~“X ( nT)

Method VI, State Trana ition

Fva I uat .e t h~’ S t a t e  I rat ta I t  ton equal ion at — T t o  g~ t d i scre te  rans I —

- t Ion e’quat too :

6 
X~ n~F * — ~ I —e~~~) R(nT) + e~~~

1x ( n r )  U ~ -I-

x f ( n  + I)T ]  - (1 _~
—aT

~ R(nT~ .

— . E ( or ~ . :“‘ -x ( ~fr ’~

1’ ) ’ )

_____ — -5 
-~~~~~~‘

-~~~~~~~~~~~ S S 
_____- — —

‘ 
- - 

-5-  - -

I • — .
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S~~~sr3r Tabl. of Ti Response

Using any of the six approaches we arrive at the euimnary table given
in Table C- I .

TABLE C-I .  DISCRETE TRAN S~~!f1~ RESPONSE

n X(nT ) n X ( n T )

0 0 6 .O~61I42578
1 .75 7 .O232514 39~ 

S

5
. 

2 .5625 8 .ot1672971~
3 .328125 9 .OO58~47931
I~ .i7~7812~ 10 .oo2926826 

S

3 .090820313

ccm~nwue RZSPON~~

We will illustrate two basic methods for finding the continuous

- : response of a discretely excited system:

I. State Transition
II .  Contin ued Fr action Expansion

A third method , the TIN approach , is t re ated in the text.

Method X, State Transit ion

The state transition equation is

X(nT+ v) • ( 1 _ e_aT
) R(nT ) 1- e

_aT
X(n~r) , 0 ~ £ T (C- 1l~)

This is, in a strict sense , a recursion equat ion. That is , we must

know R(nT) and X(nT) in order to compute X(nT + r) where 0 .~~ ~ T. How-

ever , if R(nT) is given analytically (as in this example), then one may

use the “closed form” discrete results in conjunction with Eq. C-1~ to

7UC’

________________________

- -
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“ju mp ahead” in time and compute the continuoua response for nT S t .~~ (n + 1 )T.
To illustrate, a “normal” application of Eq. C-14, starting at t — 0, would
give the results shown in Table C-2.

TABLE C-2. CONT INI.~)US RESPONSE 
S

t X ( n T + T )  
S

0 0

.1 .2I~214177

.2 .~ 2565O823

.3 .5&472~e718

.14 .67012)022 5

.75
.6 .6891464571
.7 .64 3~87294 

4
.8 .6088 ,882 1
.9 .~ 8246924cs
1.0 .~ 625

Now, if desired, we could skip ahead to, for example, t — 14~ rs since

t = nT a 9(~~~) a 14 . 5 sec

R(9T) a ~~~~

x(9’r) = ~~( r ~9 — ~~~~~

Therefore 
5 

-

X (~~ + - ( 1 --e~~~~) ( . 5 ) 9 
+ e~~

T[)(.~ )9 — ( .25)~~]

a (I_e ~~
T)(.oornr~3l25) + e~~~

T(. OOc84~~ 3l)

This gives Tab’e C-3 .

:~U1
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ -&—-- S



5- -  .— -- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ —~~~ s .-—- - 5S55_5~~, ~~ , , 5 ~ -_ s

— - _____ - 
--—f—-.- 

_
_L.__:—-----_-- _- --- -- -- - 

_—~~~~~~-

TABu~: C— 
‘

~

S 

CONT iNUOUS RESPONSE — “JUMPING AHEAD”

t X ( O T * T )

I .

UU~ i~)OiU~
~~~~~~~

~~~~~~~~~~~
U) ~~~~~~~~~ 

S

Method II , Continued Fraction Expansion

The coot inue d fract ion expansion meth od is easi ty extended to cover

the  continuous response of a discret.oty excited System. Consider Eq. C - i :

—sT
S = 

a 1 — 
~ ‘ (c-i -~S + a  a

Wh i c’h has t he t’orrn

X = F1(s)  i~-4 (z )

Expand F2(z) in a cont inued fraction expansion :

X = F 1 (s)fa0 
-4 a 1 Z~~ 4 9~~~ Z + . .3 ( c - i n

Therefore

1

x(t) = a0f 1 ( t )  u (t~ a 1 f 1 (t  — T ~ u ( t  —T ~ + a.-.~t’1 (t - — 2’r) u( t  —~ ‘T) .. .
For our example

a z — i  
_ _ _= s ( s + a l  i s — . ’

= 
a J ~~ 

— ~~— l 
— ~, —2 

— ( i ~ )
fl~~~_f l  

— ... S

s(s + a) -

—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 5- 5 5 5~~~~~~~~ __~~~~~~~~
5-

~~~~~~~~~~~~ - -~~~2~;~~4 -~ ~~
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There fore

x(t) = ( i  — e
_at
) u(t) — .3 [i — e

_a(t T) j u(t  — T) 
S

— .25[1 — e
_
~~

t_2T)] u(t — 2T) — ... (C-20)

Equation C-20 gives the same numerical values shown. in Tables C-2 and C-3.

SU1’*(ARY

There are a variety of methods for finding the continuous response of a

discretely excited linear time invariant system. They can be roughly cata- S S

loged. as:

• State transition.

• Continued fraction expansion . I ~• Higher rate sampling in conjunction with either : F~ •
~

— Partial fraction expansions.

— Recursion equations.

_ _ _ _ _ _ _  — 
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APPENDDC D

PARTIAL FRAC’IION COEFFICIENTS FOR
~~COND-OR~ZR REAL POIZS

~~press~ons for finding the partial fraction coefficients for real second- 
S

order poles , Ia terms of the numerator and denominator polynomials (and the ir
h igher derivat~ ves ’I , ar~ derived . If’

F(s) ~~~~~ 
A 

+ 
B 

+ ~~ ( D - t )D (a + a)’- (a + a~

the A coefficient• is found by multiplying each side of the equation by (s +

and apply ing L’ H~pital ’ a rule twice . Thus

~~~N 0A = (s + a)’ T = -
~~
-

is Indeterminate if (s a)~ is not explicitly factored out of’ the denomina-
tor and canceled wit.h the numerator factor of’ (a + a)~ . Applying L’H6pital’s
rule once gives

+ N’Cs+a) 
= —

~~
- (D-3)i” 6

Applying the rule only once leaves an indeterm.inat.e form, since each nuinera-
S 

tor term contains free (s + a) factors and the denominator, D’ • now contains
only a simple pole at s = —a.

Us ing L’H~pital’s rule a second times gives

A = ~‘(s + a )N ’  -+ :‘N + (s n)’~N” + 2(s + a)N’ S

Therefore

A =

- 5~~~~~~ 5 5~~~~~~~~ 5 
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will give the correct value for the A coefficient, since D” is now free
of the double singularity at a = —a. This verifies the result stated in
Section II.

To find B, subtract A/(s + a)2 from each side of Eq. 1)-i and use
L’}l6pital ’s rule three t imes:

N A N (s 4- a)2 — A D  B
D — 

(s + a)2 
= D( 8 + a)2 = s + a + (D-5)

Multiply by (s + a) and evaluate the result for a a —a : 
S

B — 
N ( s + a ) 2 — A D  

— (D6~— D( s + a )  ~~~ 0 /

Since D contains (s+a)2, both numerator terms are zero ( as is the denozai-
nator) when s = —a. Using L’H~pital ’s rule for the first time gives

2(s + a)N + N’(s + a)2 — AD’ 
— 

0 
‘D 7’D~~i + a )  +D 

~~~~~~~~ 

— 
0 V - /

since every term in the numerator still contains a free (a + a), as does each

term of the denominator. Use the rule for the second time: S

+ (s+a)2N” + (2N—AD”) — -
~~
- (D 8)D” ( s + a ~~+ 2D’ s= - a  0 -

• Again, each term of both the numerator and denominator is zero when a = —a

by virtue of containing a free (a + a) or the definition of A itself. That

is, the last term in the numerator of’ Eq. D-8 is identically zero at a = —a

because :

2N — AD” I 
= -a 

= 2N — D” 0 (D-9) 
S
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Using the rule for the third time giv~s:

B — ~#N”(s + a) + ~~N’ + 2N ’ + (s + a)2 N” + 2(s + a) N” — AD” 
S

— D” ( s + a )  + 
~~~~~

“ 
S 

8=-a

6N — AJ) ‘ ‘‘ 2N ‘ A])’”
— 

3D” 
— 

D” 3D”

which verifies the result stated in Section II.

I
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APPE~WEC E

SIXW WAVE INPUT 07 ARBITRARY PHASE

I1~TBODUCTION

The frequency response of a discretely excited system was developed,
in Section V. for a “zero phase ” sine wave input . However , it is a
straightforward exercise to extend the development to encompass a sine
wave input ot ’ arbitrary phase. This will be done first for the finite N
case followed by the Umiting process (N -~~~ -o~ ) which gives the continuous
result-s.

FINITE N CASE 
S

In Fig. E - i , let the input be

r ( t )  = k 1 sin bt + k2 cos bt (E -~ )

with the s-plane representat ion

k1b k~,s+ (E-~)
s -s- b s + b

using z e8T/N gives the z-plane representation

RT 
= 

k 1z ’~ sin bT + k0z N (Z N 
— cos bT) 

(E-3)S z~~ — 
~
‘ cos bTZ N 

+ 1

R / cr/N

• L
Figure E- 1. 0pen-L~ op System

~~~~~~~

,
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so that

T/N T/N k1zN sin bT + i~ç~zK(s~ — cos bT) Sc = (oi’)
a — 2 c o s bTz + 1

A~a sin w~(T/N) + B~Z(a — cos w~(T/N)]
— 2 cos a~ (T/ 1)z + 1

[Terus due to]
+ I the a~~dea °~I 

(E-l~)
[ (~~~)T/N j S

In Eq. g.J4 ,

= b + , n 0, 1 , 2, ... , N — i  (E-5)

so that the “ate~~y state” output waveform is given by 

TmIc(t ) 1Tm = ( 
~~ 

(A~ sin w~t + B~ cos u nt)~ (E 6)
[ t -s’-csJ \ n=o /

We can now follow the same procedure as in Section V in order to define

the partial fraction coefficients An and B~ in terms of the system GM.
First , multiply each side of Eq. E-~ by (~

2 — 2 cos u~~(T/N)z + 1) and
evaluate for a = l4wk(T/N). As in Section V, the only surviving term on
the right-hand side of Eq. E-14 occurs when n = k. Therefore, we obtain

( letting k revert to n):

An +j B n = (GM)T/N ZN-i 
sin b T +  k2(zN_  cos bT)

j

— 2 cos u~ (T/N)z + 1~SI (E-7)
a — 2 cos bTz 4 1 

‘z =  14a~~( T/N)

208 
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The last term on the right-hand side of’ Eq. E-7 is indeterminate at
a - 14n~(T/N), so that L’H~pital’s rule has to be used once:

T/N N-i k1 sin bT + k2(ZN — cos bT)IA~ +jB~ a (GM) a sin u~ (T/N) j X

S 2z — 2 cos w~(T/N)
S 2Nz 

- (a — cos bT) 
~~ = 1~ W~(T/N) 

S 

-

A B - S9M) Ik i sin bT + k2(coa w~T + j sin cü~T — cos bT)~- 

N sin cn~(TfN) j
X

cos u~ (T/N) + j sin u~~(T/N ) — 
cos u~ (T/N)

cos w~T + j sin u~ T 
— cos bT

(GM)T/N k1 sin bT + k2J sin w~T j  sin w~ (T/N )
= N sin wn(T/N ) j  sin w~(T/N) (B-to)

zàe8T/N

S An +j B n = 
N 

(k 1 + jk2) (E 11 )
z= 14 o~(T/N )

CONTINT.~ US CASE

As in Section V, let N —a-~~ and obtain

A~~+ j B ~ = + G M  (k 1 + j lt2 ) (E- 12)
5 jU)~

209
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APPENDDC F

NON-SYN~~ ONOUS SA~~LING 
. 

S

Non-synchronous sampling is a basic tool. that can be used to model

dis t rIbuted computation architecture, data skewness in the A/fl and 0/A
conversion processes as well as the internal computational delay of’ the

digit a l  computer. By defini t ion , non-synchronous sampling occurs when all
t h e  systems’ sampling operations are repeated at- the same rate but occur
at different instants of’ t line . This is depicted in Fig . F - I .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

x 2 ,4

Figure F- 1. A Set of Non-Synchronously Sampled Signals

In Fig. F-i both continuous signals, x 1 and x2, are sampled at

1/T samples/second , but the x,  sampler is “out of sync ” wit h the x 1 sampler
by T0 seconds. The sampling operation for x~ is depicted syn~olically in 

S

Fig . F-7a and for x~ in Fig. F-2b (* notation on x~ indicates that an “uncon-
vent ional” sampling operation is be ing carried out). S

In Fig. F-Pb we indicate that the non-synchronous sampler can be modeled

S 
by a synchronous sampler ii’ we precede the sampler with the operation W~ 1LI followed by the operator W. That is,

St 

I

L.   _ _  _

S --  - 
__

~~~~__. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
• _______
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(a) (b)

) Figure F-2. Sampling Notation

I
4 W(W~x2)

T 
(F-i)

where

w e 5T0 = e5T0 (F-:~
-
~)

S 
If we proceed according to Eq. F-?, one advances x”~ by T0 seconds,

samples at the 1/T rate, and then delays (W~x2)T by T0 seconds to obtain
the desired time sequence. This is demonstrated in Fig. F-) . Note that
the non-synchronous sampling operation on x2 can be modeled in terms of’ a

S acalar t’actor~ thus the dimension of the equivalent single-rate sampled
signal , (W,x2)

T, is not increased .

Th is mode l readi~.y extends to the case where x is a vector.

(,IT. 
*2)

51’ 

— ~~~~~~~~~
•

-Iro(,s1o 52)
T

Figure 7-3. Advance, Sa*ple, Delay

H
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APFLNJIX G

CONVERSION FROM ANALOG TO DISCRETE
STA~E EQUATIONS*

The development of Eq. 193 in Section III is outlined using a cothined

frequency arid t ime domain approach (page 648, Ref. 20; page 1’~5, Ref. ~ i 1 .

This method assumes that the discrete input to the continuous element is

reconstructed using a zero-order hold ( zOH) .

Consider the simplified aircraft model of Eq. G-1 : S

[:1 
= [: ~~~

][q] 
+ 

[

~~0]~~e + :

The continuous state equations exist In the form:

= Ax(t ’) + Bu(t) (o-2~
S 

y = CT x( t ) + D u ( t )  (G-3~

• The discrete state equations are given by (assuming a

Xk+1 = q~(T)X ~ + h(T) U(k~ (G_14 )

S q’(T) = cp (t)  (G_ 1’~
t=T

h(T~ = J cp(a)B dcx. ( o— ( ~)
0

*~~~j 5  appendix was prepared by Capt. Dennis G. J. Didaleusky.

S 
P1~

_ _ _ _ _ _ _ _- S 
~~~~~~~~~~~~~~ j  ~~~~~~~~~~~~~~ - 

S

5_p_~5 ~~~~~~~~~~~ _~• . ,,J ~~~~~~~ ~~~~~~ 
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The continuous state transition matrix, p ( t ) ,  is an n x n  matrix describ ing
the fundamental characteristics of the continuous aircraft n~del (Eq. G-1)
and is not influenced by the inputs to the system. The state transition
matrix is obtained via the s-domain by

~(t) = ~~~~~~~~ - A)~~ I 
S

= £ 1~~~~i~~
I = A .~

} (G-7) 5

For Eq. ~ - 1, 
S

s+3 —37 1

1 s + 1 J
S 

q~(t )  = ~._ 1) 
2 2 (G-8)

k (s+2 ) + (6)

Rearranging produces

(s+3)+ ( 1/6)(6) L -(37/6)(6)

1 ( i/ 6 ) (6 )  (s + 2) -(1/6)(E)
cp( t )  = c~ . (G-9)

(a + 2 1 + ((~

S Equation G-9 is now in a form that enables us to  use Tab le 1 in Section II 
S

directly . Taking the inverse Laplace transform of Eq. G-9 produces:

C
t cos t~t- + (1/6)e

_2t 
sin t~t I ~ (35(/6 )e

_ 5
~
t sin t~t

=
• S ( 1 ’ e sin i~t. e co~ ~4, 

— (1 /(~)e sin t .

(a — 1 c~)
Fc’r a smp l ing period of T = W i , the transition matrix becomes

~~~~ 0. (‘~2’( ftO1o _2.8~ Q-78q30r~
— 

~~~~~~~~~~~~~
— — — — -  (G- i i~1~~~• 1 

~~~. ~~~~~~~~ ~~~~~ ~~ W S
I

~ 1

5~~~5 5 5 5 _ _  5 5 5~~ ~~~~~~~~~

—~‘ .—~ 5 5 5  ~~ ~~~~~~~~ ~~~~~~~~~~~~~ I
~~ - ‘ _ _ _  

5 ‘5 • S ‘5
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_
_

—‘ ~e
t cos ( t  — ( ‘  5 )  

~ sin I _55*e 2t cos (- t  + ( ~~ / ~ 
S 

~~~ sin t
— — I_ _ _ _ _ 

— ( S~~/~S~ e t 
Sin ( 1  _ (34/(~)e~~t sin -t — cos i t

(~;-i~ 1
in t e g r a t i ng  produces T =

—
~~ . 

S
~~~ i ~~~~~ I _~i~ ~~ ‘ s t ~~~~~~~~) ’ i~~

h~I~ = 
I — — -  —

—0. ~i~~~1O’-~~ ~-0.501 320710

l m d  h ( i’~ can be ob~ a fted :i I e rna l  lve i5y by making numerical e~ iluat i~~-s
of the Tay lor series expansions :‘~ r eAT and t’or 1T ~~~~~~ b dcx . The dis-
crete stat.e equat ions can now be directly wr i t  ten using F qs .  G - . . ~- 1 1 , ant -I

>~ 1 k~ 1 ~~5 1  ~~~ i~ 5 —; .~~~~‘~~ _) ~~~~ ~

S 

1 
= 

~~~~~~~~~~~ ~~~~~~~~~ ~ S ’~~~’X~ Xpk

~4~~~ I,~~
’ ( - i~~~;)~ ~~~~~~ ~~‘ is 1 ~1~~ (’ih ek

+
~~~~~~~~~~~~~~~~~~~ ~0. 40 1 ~;

-
~

--i ‘ 1(5 )

Taking the z-tranaform 01’ t.his flrst-arder set- of di fference equat ions

S gives:

4 4
Z — . T(00~

) ~.8~078930l4 x 1 (z)

—~) . 0t ~~0i~~~~~ ’ I a — . ‘ ‘-)~~~
s
~~9?~

) x-,( a)

—4. 49o~76~97 1 —f’. 8r,O 7895014 
~~ 

S

= — — -  — — — 4 — — — --- — — — (o-i~~—0 .212719559 —o .4oi3~~7io (I
g

Not ice that Eq. G-15 reproduces Eq. 193 in Section III.

• S I
1 

— ~~~~~~~~~ ‘5 
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AP~~ DDC H

A PARTICULAR DESI~~ PROCEDURE 
S

S Several closed-loop designs were presented in the text without detailed

comment on the manner in which the compensation networks were synthesized.

For the most part , a pole assignment technique was adequate to meet the

design requirements posed in these simple illustrative examples. The use

of the pole assignment procedure will be outlined using the “motivating ”
example of Section IV-G.

From Fig . 36, we may write the output equat ion as

c = (GM){I + G~ G~ (GM)TJ 
1 G~ R~ ( H- i )

3r~e design objective was to force a closed-loop response, at the sampling 
S

instant, dictated by

dettl + G~
’G~ (GM)T] oc a + a (11—2)

where a is determined by the a-plane pole at s = —0.5.

The second requirement , a uni ty steady-state response to a step input,
was forced by applying the final value theorem to Eq. H-i. These two con-

ditions are sufficient to determine the free par ameters of G 1 and G2.

I

S

— 

1 
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APPE~IDU I

I’RE LIIGTING FORM FOR A PARTICULAR EXA1~ LE S

The steps in obtaining the limiting form given in Eq. 309 are contained
in this append ix. Specifically, we show

i (i—c )aI 1— c  a
N s( s+a ) j aT s+a ‘ /

‘a”  I4u~~(T/N ) Lim
N -~~~~~~~

For the example we wish to evaluate

¶
~~~~T/N 1 ( l _ e sT)a]

T/N 
1 i _ e ~~

T1~~ i~~i~~ (1 2) 
5

N N s(s+a) j = N z_e~~
T
~’N 1— a

1 
- 

S

at a = 14w~(T/N ) = cos wn(T/N) + j sin ~~~T/N) = ej (T/N)

(GM)
T
~~ (i - e~~

Tm)(l - e~ ”~j  ( 3)U - 
N( e~~>~~T’~~ — e~~T~’i4) f i  — e~~~

(Tuh1~hj 
5

For the sake of brevity, let 1/N = u, so that u —..-O as N ~~~~~~~~~~~ and consider

/ —aThN UI,1 — e  )F = -
~~~

- — 

t e~~~Th 
— e’~~’j Ii — e

_i
~~

TU ) 
( I  - )

Here F represents the part of (GM/N)Tm which is “troublesome ” as u 0.
Clearly, F becomes indeterminate as u --O ; therefore , use L’H6pital ’ s
rule (for the first time) :

~ 16 

-5 - 

- 
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_ 5 5 5
~~~~~~~~~~ 

- 
5 — 

-
~~~

_ _ _ _  
- - 1

dNjdu - (1 — e~~”) + aFue~~
Th

dDfdu 
- 

(jw ~T) ej
~~TU 

+ aTe~~Th 
— T(jco~ + a)e~~~~~~~~~~

As u - .0 , the form remains indetermin ate ; therefore , use L ’H~pital’a
rule for the second time:

d2NJ &2 
- aTe~~~~ + aTe~~Th 

+ u[—(a T ) 2e~~
Th ]

d2D/du2 
- 

(jwnT) 2ei0~1Th 
— (aT ) 2e~~Th 

+ T2(j u)~ + a) 2e~~uhi ~~1+8~ u=O

( 1-6) 5¶ S 2aT
= 

(jo~ T) 2 — (aT)2 + T
2
(jw~ + a) 2

T
2
[(jo~~)

2 
~~~~~~~ ( j ) 2 

+ 2~~u~ +/) ~ S

= 2 
2aT 

= 
a 

(1-7)
2T j~~fju~ + a) jw~T[jw~ + a]

Finally, reintroduce the (i — e i~~
T
) term to obtain

1 — e j~~1
T a 

— 
1 — e~~

T a 
(i 8)Ju~ T jo~ + a aT s + a s=j~~ 

-

U

This ver ifies, after setting a 1 , Eq. 309 of’ Section V.
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