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SECTION I
INTRODUCT ION

Widening flight envelopes coupled with increasingly stringent opera-
tional demands on military aircraft have ‘forced the use of more complex
stability and control augmentation systems. It is recognized (Refs. 1
and 2) that this trend has created problems in interpreting the applicable
military specification for the flying qualities of piloted aircraft, MIL-
F-8785B(ASG) (Ref. 3). For example, Section 3.2.2.1, which relates to the
short-period response, makes no provision for the dynamics of the aircraft
plus flight control system (FCS) if these are different in dynamic form

from those for an unaugmented aircraft. The specification assumes, in

essence, that the longitudinal dynamic response will have only two modea
(phugoid and short period) in the low and mid frequency regions, when in
practice there may be additional significant modes in these frequency *

regions due to equalization of the FCS feedbacks. Because of these addi-

tional modes, an augmented aircraft may appear quite different to the pilot

than an unaugmented aircraft which appears to have the same short-period .
dynamics (Ref. 4). That is, it may develop that the short-period mode ;
characteristics meet the specification and yet the aircraft actually |
responds as if it had short-period characteristics which do not meet the %

|

specification. This opens the possibility that it will receive low ratings
from evaluation pilots.

How should this situation be treated? Are new requirements needed '

which account directly for the additional dymamics, or is it possible to
develop lower-order mathematical models of the higher-order system that

can be reliably compared against the MIL-F-8785 requirements as presently
stated? Moreover, the criteria of MIL-F-8785 presume an analog augmenta-

tion system. There is now an additional concern for response characteris-

tics which are unique to use of digital augmentation systems. It is the
purpose of this study to identify those characteristics which are unique

to the digitally controlled system, and to review the quantitative tools

2 Wrtﬂ»“‘ldﬂnw»mn. W—— ‘



available which permit an assessment of the effects of these unique charac-
teristics relative to the MIL-F-878% requirements. The larger issue of
what additional rClying quallties eriteria are required 1s outside the scope

of this research,

The reaults of this study indicate that two important characteriatics
are introduced by digital control laws. Thoy are:
® The effective delay introduced by the A/D and D/A
process and the delay introduced by the digital

algorithms and computational trame time of the
computer cycle,

® The "control roughnesa" or Inter-sample ripple

Introduced when the digital computer ls coupled

to the control actuators using data holds,
The lrat characteristic is of great concern to the tlying qualities com-
munity since even relatively small delays are potentially fmportant in cer-
tain cloged-loop piloting tasks involving motfon cues and pilot-induced
oscillation possibilitles. Measures of the effective time delay introduced
by the A/D, computation, D/A converslion process can be computed using a
variety of analytleal techniques that apply at the sampling instants. For
example, w'-, w=, or g-domain analyses and discrete frequency response tech-
niques can be applied effectively to obtain both a quantitative and qualita-

tive evaluation of the delay introduced.

The second characteriatlic is of concern since alreraft response
resulting from control roughness (g in effect an additional disturbance
source, Moreover, the step=like control deflections caused by the use of
sero-order data holds can produce excesslive actuator wear and fatigue
damage, reducing service life and/or reliablility of the alrveraft system,
Thla second characteristlc ls more difficult to assess aince it Involves
the response of the contlnuous ayastem durlng the Inter-sample Interval,
Therefore, analyais tools such as the "sampled spectrum" (sampled frequency
response) are of little value. It ia this observation which prompted the
development., durlng this study, of' a basic analysis tool for computing the
spectral content of the continuous responses of a discretely controlled

gystem. We are tempted to describe this method of analysis as "frequency

J
:
|
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|
|
1
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|
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resnonse" evaluation since it applies equally for continuously controlled
systems as well as multi-rate discretely controlled systems., However,
this must be further qualified. This is necessary because of possible
confusion with the concept of the "sampled spectrum.” In computing the
sampled spectrum one finds the lowest frequency sine wave that fits the
sampled response at the sampling instants. The sampled spectrum is com-
monly, but incorrectly, understood to be the frequency response of a dis~
cretely controlled system, For this reason it is preferable to describe
the new method more precisely as the "continuous frequency response of a
discretely excited system." Once a method is in hand for computing'the
spectral content of the continuous response, then one has the means for
assessing both of the digital characteristics discussed above. The fre=-
quency response magnitude data can be used to quantify control roughness,

while the phase data can be used to quantify the effective time delay.

There is another main objective of this study effort ~—— that of giving
the practicing engineer working familiarity with three analytical tools we

consider to be well suited for the analysis of digitally controlled systems:
1) Analysis (and synthesis) in the w'-domain.
2) Multi-rate transform domain approaches.

3) The continuous frequency response of a discretely
excited system.

The w'-domain is related to the well-known w~-domain by a scalar trans-
formation and to the z-domain by a bilinear algebraic transformation. We
believe that those engineers skilled in frequency domain design procedures
will immediately feel at home with analysis in the w'~domain, since all
analog control system design technology transfers completely for digital
control system design.

The second item deals with a multi-rate transform domain approach that
has been developed into an effective tool for analyzing the transient inter-
sample response of discretely excited systems. That is, it yields recur-
sion equations describing the inter-sample performance to ary degree of
fineness desired without increasing computer storage requirements. A basic
understanding of this approach leads to the development of the third tool

v NSl Sl i imen i u




which gives the continuous spectrum of a dlscretely controlled system.
It is this third tool which we perceive as being of the greatest value to
those engineers working at the flying qualities, digital flight control

system interface.

In Section II, we will first review the fundamentals of sampled data
control theory to the extent necessary to "refamiliarize" the engineer
with its terminology and background mathematics, No proofs will be given;
we will simply state results and give illustrative examples to demonstrate
viewpoints which will be needed at a later point in order to develop an
understanding of' the three analytical tools mentioned above. This section
will also serve to introduce a multi-rate teminology and give the reader
a chance to gain familiarity with the notation (always a crucial factor in

how easily a report re dio),

Section III is devoted to modest extensions of classical analysis and
synthesis techniques for digitally controlled systems. Emphasis is upon
analyses conducted in the w'-domain., The w'-domain offers the advantage
that non-minimum phase effects of the sampling and data-hold operations
and of sampling rate can be directly accounted for without approximation
while using conventional frequency domain design tools such as root locus
and Bode plots. These conventional frequency domain design tools can be
used to considerably greater advantage in the w'~domain than in the w- and
z=-domain, because several more powerful analogies between the s-domain and
the w'-domain exist., These analogies are, in a sense, the key to exploit-
ing the w'-domain for design purposes, making direct design in the w'-domain
more attractive than either optimal procedures or the numerous approximate
methods. irst, the basic properties which make the w'-domain preferable
to the z-domain or w-domain are reviewed. Following this, illustrative
examples are used to highlight the analogies between s and w', Finally,
we demonstrate the clear manner in which the nonminimum-phase ef'tects ol
sampling, data=hold operations, and sample rate are evident in the w'=domain

analyses,

Almost all existing or contemplated digital flight control systems are
multi-rate in nature. The predominant reason for this is the necessity to

work within the basic restrictions imposed by computer word length, memory

4
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capacity, frame time, etc. Thus, it is typical, for example, to update

inner loops at a faster rate than the "slower" outer loops.

A basic transform domain approach, the "T/N method," which eliminates
a variety of dimensional and indexing problems associated with state tran-
sition (Ref. 5) and switch decomposition (e.g., see Refs. 6-8) methods, is
developed in Section IV. The approach is very efficient for computing the
response of discretely controlled continuous systems at both sampling
instants and at equally spaced times during the inter-sample interval. The
methods also requires a minimum of information to define the system for the

computer program.*

The T/N method discussed in Section IV is used as a departure point in
Section V to extend frequency response concepts to include the continuous
frequency response of a discretely controlled system. The discrete fre-
quency response concept (e.g., Ref. 7) has not been particularly productive
for the analysis of discretely controlled systems, since it is limited to
determining the amplitude and phase of the single sinusoid that fits the
output samples of a single-rate system at the sampling instants. Develop-
ment proceeds by first removing this restriction for open-loop systems and
then extending the results to single-rate closed-loop systems. Finally, the
solution for the multi-rate closed-loop case is developed using the results
of Section IV.

Although each section contains a representative number of illustrative
examples, an application pertinent to the flying qualities/flight control

system interface is not taken up until Section VI.

Section VII contains the conclusions and recommendations. The appendices
contain support material, much of which will be familiar to practicing engi-

neers.

*But the computer program is somewhat restricted as to the form of the
problem that can be accommodated.
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SECTION II
MATHEMATICAL PRELIMINARIES

A. PROBLEM SCOPE

Systems governed by linear differential and difference equations with
constant coefficients are reviewed. This is a framework which can ade-
quately deal with ailrcraft nonlinear equations linearized about an opera-
ting point. In the treatment of discretely controlled systems, "impulsive"

sampling operations are assumed. All developments will use vector nota-

tion, although scalar examples will be used frequently for illustrative pur-
poses. In the interests of brevity we will, wherever possible, pursue the
direct and remarkably effective methods of Aseltine (Ref. 9) in bringing the

basic issues to the fore,
B. 8-DOMAIN PRELIMINARIES

The partial fraction expansion table-lookup approach for transferring
information from one domain to another will be used frequently in subse-
quent mathematical developments. Although this is a familiar topic, our
viewpoint and approach is sufficiently different to warrant a careful

review,

A main objective of this section is to produce a table of abbreviated
transforms that will permit one to transfer between the t, S, z, and w'

domains in a relatively easy and straightforward manner,

We start by developing a transform table (from the time domain to the
s-domain) using the Laplace transform of an exponential time function and
several properties of the Laplace transform. We will then mimic this pro-

cedure in order to augment the table with z-transform and time-advanced

z-tranaform entries.

6




B e =

To begin, compute Jz[e-at]:

o [+ |
L% f oottt f o—(s4a)t o
o o

1o

o
: e—(s+a)t : :
T =(s +a TS + @&
It is convenient to use the notation
-at 1
e == S +a (1)

to indicate that e % corresponds to 1/(s + a) and vice versa. This trans-

form pair, coupled with two other properties of Laplace transforms, provides
the basic information needed to develop a table of transform pairs. The
first (trivial) property is:

£1(t) + kfo(t) &= Fy(s) + kFy(s) (2)

The second property of interest is:

t8(t) &= = 3= F(s) (%)

Note further that "a" in Eq. 1 is a parameter which is not restricted to
have real values. For example, let

a -—+» a + jb (%)
in Eq. 1 and obtain

e-(a.+jb)t.

a‘t‘[cos bt = j sin bt] & m (%)




— e L E A sl ]

Rationalize the right-hand side of Eq. 5 to obtain:

F i cos bt - Je_at sin bt & Abta)= b (6)

(s +a)® +b°

Using the property of Eq. 2 now gives two additional transform pairs (one

for the damped cosine wave, the other a damped sine wave): i

~-at S +a
e cos bt & e el (7)
at b

e "~ sin bt ¢ (8)

(s +a)2 + b2

This approach for developing the table leads to a frequency domain descrip-
tion of a damped sine or cosine wave which describes the poles in terms of

the wave damped natural frequency and an exponential damping envelope rather

than damping ratio and undamped natural frequency. That is, the descrip-
tion is in terms of [(s + a)? + b°] rather than [s® + 2tays + w§]. For the
purposes of this report, the form given in Eqs. 7 and 8 will prove more

useful than the alternative description.

We may set a = 0 in Eqs. 7 and 8 to obtain the transform of sine and

cosine waves.

cos bt (& — £ -~ (9)
S
b
sin bt & — — (10)
s© + b“

To continue, setting a = O in Eq. 1 produces the transformm pair for the

unit step function. ;

u(t) & —

S
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R o o T s e

-—i

Applying the property giver. in Eq. 3 to Eq. 11 yields the transform pair
for a ramp function:

te= - (1) - 5 (12)

S

Repeat the application, this time to Eq. 12, and obtain the transform pair
for t-:

/7]

"i (13)

m:‘| b

$2 ‘adg(%) 2

S

/7]

In a like manner, the application of this property to Eq. 1 gives:

-at d
R (

w
4+
=

1 )
) S R S

By proceeding in this fashion we have now built up Table 1. This abbre-
viated table is sufficient for most of our needs since the occurrence of
multiple poles in aircraft stability and control work is somewhat rare.
Later we will use the same approach to develop a table of z-transforms.

This will result in a third column for Table 1.

Consider next an efficient method for expanding a given rational poly-
nomial function F(s) in termms of the entries of Table 1. Since the entries
of Table 1 constitute the set of elementary time functions of interest, it
makes good sense to expand F(s) in terms of these time functions. Tc¢ illus-

trate, given the proper rational F(s),

F(s) = T 2 = (15)

then it is convenient to expand the right-hand side in terms of partial

fractions, viz,,




TABLE 1
AN ABBREVIATED TRANSFORM TABLE
£(t) r(a) = Lle(t)]
u(t) -
t -
SC
2 ~
t =
A
é-at 1
S +a
te—at 1 -
(s + a)
s b
sin bt
82 + b°
s
cos bt
s2 + b2
-at b
e sin bt
(s +8)° + b
e_at cos bt g +2a 5
(s +a)“ +b
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S + 48 313 = (s + 2)e 4 {5) (I'{)

Once the partial fraction coefticients A, B, C, and D are known, the time

function can be written immediately as:

/ —t -2t . s -
(%) Au(t) + Be = + e (C cos 3t + D sin 3t) (18)
There is u variety of ways to find A, B, C, and D. For example, mult iply

each side of Eq. 16 by s and let s = O to find A 1. Next, multiply each

side by (8 + 1) and let s = =1 to find B 1. Next, multiply each side of

the equation by s and let s = @ to find out that A + B + C 2, and there-
tore ¢ 1. Finally, pick any convenient value of s and evaluate Eq. 16

for the remaining unknown, D (D = 1 also). This approach is neat but not
very general. We need a method better suited for machine computation. Such

a method is described next.

Let F(s) be a proper rational function of the form

v N(S\ § A oL
F(s) Bls) =~ T +a (19)

with a simple pole, (s + a), Obviously,

s + a)N(s
D(s

i
!
o]

(20)

However, if (8 + a) is not explicitly factored out of the denominator, an

indeterminate form will result when s is set equal to=a (0/0). To resolve

(&




this difficulty, without explicitly
rule:

dividing out (s + a), use L'HOpital's

PN (s +a)N' + N
: D'(s)

- o (1)

S = =8

where D' = dD/ds. Equation 21 treats all simple real poles and, since only
polynomials are involved, is ideally suited to machine computation using
"nesting procedures." Moreover, the same polynomials are used for all par-

tial fraction coefficient evaluations involving simple roots.

Next, suppose F(s) has a complex conjugate root at s = —a + jb.

That is,
N(s Ab + B(s + a) okl
F(s) = = s + oo (22)
D(’s (s +a)e + b°
Clearly,
[(s +a)2 + b2] g = = Ab + 3Bb- (23)
S)ls ==-a+jb

Again, an indeterminate form results if [(s + a)° +

b°] is not explicitly
divided out.

L'HOpital's rule permits one to avoid the division step:

2(s +a)N + [(s + a)2 - bQ]N'fs\
D'(s)

= Ab + jBb (24)

I's =-a+jb

or

= A¥ + JBY (25)




This simplifies to

N
B= = ¥¥ (26)
s = -a+jb
and clearly
B = 2Re %L (21)
= -a+jb
A = =2 Ingr (28)
s = -a+jb
Other expressions can be obtained for multiple roots. For example, i
N A B
“‘(S) o — = + + esee ("_‘9)
D (s o5 a)? (S + a)
One can show (see Appendix D):
m 2Nl AD!" “
A = oW s B = == B (30)
5=-a S =-a

Some illustrative examples demonstrate the simplicity of the process.
Mp mp

First, let:
352 4+ 25 + 1 352 4+ 25 + 1 -
F(s) = %) LT ) (31)
s(s +1) S/ + 28€ + 8
Therefore,
35° 4 2s
f +2’\+‘ L A - + B +_C_ (-.-\;)
s’ + 28 + s {8 « 1) (8 %1) s
Since D' = 3s° + Us + 1 and D" = 6s + 4, D™ = 6,

e —————————

i i " e o SR




L/

ol i

2 Sl - caaaia
BRI VS

C = g—' = 1
8=0
2 2(2 5
&= 52?, = 2(Bs6s++28h+l) = 25 = -0
S:-] S:-]
and
1 m
p o & _a" R N ) B
D 510 e 6s + U i (3)(6s + 4) o
As a second example,
2 [~ 2 (= ? [~
= S o SSi= 9 - SEe
Bie) = — = = =

s? +3sS+7s +5 (s+1ﬂse+23+5)

(s +1)[(s +1)2+(2)2]

b e B(2) +C(s + 1)

& # 1 (s +1)2 + (2)2

Since D' = 352 + 6s + T

i :-i—5__ __.z__-h LR
L PR 352 + 65 + T|s =1 e BB
and
s2 =5
G = 2
2 Re (3s + 6)s + 7 8 = =1+j2
s€ =5
B = —2 I = -
- (3s + 6)s + 7|4 =-14§2

Those readers with pocket calculators having rectangular to polar conver-

sion features will have little problem in verifying the coefficient values
for C and B.

14

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(ko)




Thus far we have dealt only with "proper" rational functions wherein
the order of the numerator polynomials is at least one order less than the
denominator polynomials. In the event F(s) is not proper, it can be con-
verted (using synthetic division) into two parts — the first is a poly=

nomiai in s, the second part a proper rational function., For example,

‘!' e oz‘ 5 2 4@ 4 ) - ™ oY
p(s) - g o 5vﬁ e BOS . Bl b A o B i 8 i ¢ = (41)
8= +gs + 2 (s +1)= + (1)
Therefore,
£(t) s(t) + ' (L) + 5(t) - e_t[sin t + cos t) (42)

We assume the reader is familiar with Laplace transform of impulse functions

to the extent that ! is recognized as an impulse in time, &(t); s is recog-

nized as a "doublet," &'(t); and s is recognized as a "triplet," B (t).

Before proceeding to the development of a table of z-transforms (in the
next section), we pause to review the concept of the system transfer func-

tion, Given

f(t) & Fs) (¥3)
we presume familiarity with the transform pair (or refer to Appendix A)

Af(t) oy sR(s) = £(0) (44)

which, through repeated application, enables us to transform the differen-

tial system

f+2x+2x = f£(t) (45)

in time to an algebraic system in s:

A B C

[s€ + 25 + 2)X(s) = [F(s) + 2x(0) + sx(0) + x(0)] (ho)

Ndud e




This equation highlights three basic parts characteristic of all linear
systems:

A: The part related to the system
B: The part related to the response

C The part related to the input and
initial conditions

Dividing through by Part A gives

Xe) = cpudill s+ 2)x(0) | %(0)

L
S + 28 + 2 s€ 4 2s + 2 s2 4+ 25 + 2 ( 7)

or

X(s) = W (s)F(s) + Wa(s)x(0) + Wz(s)x(0) (48)

Wy, Wpo, and Wz are the "transfer functions" (or system functions) which

relate the transfoms of the output components to the transform of the

input components, For example, let the initial conditions x(0) and x(0)

be zero, Then W, (s) can be written as:

- Lx(t)] X(s
Lo (l: f(t ~ F(s (49)

It is in this sense that transfer functions characterize the system inde-
Pendently of the input.

The Laplace transform of the system time response,
on the other hand

» can always be expressed as a sum of products of system
transfer functions with the Laplace transforms of the various corresponding
input time functions and initial conditions,

C. 2-DOMAIN PRELIMINARIES

An abbreviated table of transforms was built up in the previous section,

* starting with an exponential transform pair,

Here a similar approach is
taken with z-transform pairs,

Let z 2 5T for the purpose of constructing

16
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this table. Then the following equation may be regarded as the definition

of the z-transform:

() = £(0)8,(t) + £(T)o.(t=T) + £(20)54(t —2T) + --- (50)

The Laplace transform for delayed time functions (refer to Appendix A) can
be used to transform Eq. 50 into the frequency domain.

CF(s) = F*(s) = fi f(nT)e-snT = f& f(nT)z © = F(z) (51)
n=0 n=0

where z = eST.

Some comments on notation are in order. We use fr(t) = Fm(s) to denote
that the time function f(t) is sampled at 1/T samples per second. M (s)
denotes the Laplace transform of the sampled continuous time function, given
that the continuous time function has the transform F(s). While the tradi-
tional notation for FL(s), which is F'(s), is perhaps better established,
we have elected to use the superscript notation because it permits an expli-
cit statement of the sampling rates involved in multi-rate systems (the main

concern of this report). This point is discussed further in Appendix B.

Let us now proceed to develop an abbreviated table of z-transforms, Let
£(t) = e Y, so that Eq. 51 becomes

fI(t) & F(z)

E e—anT T (52)
=0

=

- —— — (53)

- - . NE— . . el 5 A A R T




i s STy Sy

We now know that this continuous time function sampled at 1/T samples/second
gives the transfom pair

(e—at )T & ——E-:anr (5h)

2 =8

Just as in the case of the Laplace transform we can let "a" take on conveni-
ent complex values, For example, let a == a + ]Jb,

[e-(a+3b)t]T o

"_" s (A‘b‘)
S - eJe JbT

or

(e'ﬂt cos bt = Je-at sin bt)T & Z

lnl
z - e—a*(cos bT = j sin bT)

(56)

Rationalizatlion of the right-hand side of Eq. 5¢ results in:

—-aT oo=aT _
(e-at N Je-at o bt)T PN z(z2 —e " cos bT) = jze sin bT

(z = e cos b'I‘)Q + (e-aT sin bT)Q
Therefore
T
-at _ b :
(e cos bt)T & == z(z_ﬂ S =08 T)_W (57)
2 = 2e cos bTz + e =
and
-aT
T o e sin bT
(e-e' 8in W) &5 (58)
2° = 267 (o5 BT + e'-:'&r

We now have the transform for the sampled damped sine and cosine pair.

Con=
tinuing, let a =

0 in Egs. 57 and 58 to obtain the transform for sampled
sine wave and cosine waves.

18




z(z = cos bT) (59)

(cos bt )T & =

25 = 2 co8 bTZ + 1

2z s8in LT ((;0)

- 2 cos bTz + 1

(sin bt)T & -

<
»

Purther, let a - O in Eq. 54 to obtain the z-transform for a sampled-unit

step.
T s
(U—M‘u..O) WHl S g2 (61) !

To complete the table, first find the transform of (6]

[t.t‘(t)]T = [nTf(nT)] & i (nT)f‘(nT)z-n
n=0

~2T f: £(nT) [=(n)e{ )]
n-0

ol i,

We recognize the term in brackets as the derivative of 2™ with respect

to z., Therefore:

T d < -n d A
; =T — 2 - - I e 1
[tf(t)]" & =T 5 2 f(nT) el = F(z) (62)
n=0
: BEquation 07 is completely analogous to the s-domain result (Eq. 3). With ‘
it, we can complete our abbreviated table of z-transforms, since ;
T - l
[t(‘-“tl 2T 4 ___l‘_-rf
dz \z - e_ﬂ ]
| 4
e (‘—uT = 2T _~aT '
-2T = - — . (63)
- -aT ¢ -aT bl
(2=e¢ ") (z=e )
Ri
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Setting a = O, the z-transform of a ramp is obtained:

Fto . IR (64)

(z = 1)°

We may now complete Table 2, showing the relationship between time and
the s- and z-domains. Strictly speaking there should be a "f(nT)" column
as well, but the manner in which the table is presented is sufficient. It
forces us to remember that f(nT) can be thought of as the continuous f(t)

sampled at intervals of T seconds starting at t = 0.

Given an F(z), one can expand in partial fractions in exactly the same
manner as was done for F(s). We will defer demonstrating the process until

the additional considerations introduced by data holds have been reviewed.

D. PULSE TRANSFER FUNCTICONS AND DATA HOLDS

The correspondence between a given F(s) and the associated F(z) from
the transform table is depicted in Fig. 1 from the transfer function point

of view, From Fig. 1 and the results of Appendix B:

o(z) IcT(s)I”sT . lcT(s)RT(s*esT = G(z) R(z) (65)

I-— Glz) ——*l

T

Figure 1. Correspondence Between Transfer Function and
Pulse Transfer Function
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TABLE 2

AN ABBREVIATED TABLE, F(2z) ADDED

F(s) = L[£(t)] Mz) = Z[fT(t)], =z & esT

ol ot B 1 KOs PG 30 5
L)
—
~
S

P e e e T, o———
| <
1 ll(t) ? r.:—-:-—‘-
A PR o “”'l"“ AT TR T:" ERAES:
t — - )
s¢ (2 =1)°
S S T<z(z + 1
i t s
: = (z = 1)
el | el g EEIANA TN B SN L TS
A0t ‘ 1 .
s + a S t‘—a’I‘

P R ST e R
.

1 Tz
; (s +a) (2 = emal)"
* -
b 2 sin bT
s° + b° (z = cos vr)e (sin bI)"
T | 2 S ;V_A...\AA._A._“_.,_._T._ S b 70y TN el s ol T 3N 0 SRR ARTE A et

(2 = cos bT)

cos bt ——- | 2( - .
* + ¥ | (2 = cos BT)" + (sin bT)
4

| i aT 3
k| =1t b | .':‘,ql sin BT

sin bt

R

=AT aT

(¢ = e oo h‘l‘\' 4 (‘\—‘

sin bl)

22 - 2T cos bT)

-7 -l

|
J e a) +%b ‘l (2 =8 cos bT) (e sin o)
1

Note
a ) : aT o \ m ~2aT
(2 =€ T cos 01)° + (e~ sin b1)° = 2° = 2707 cos vz + @ s
“
4
‘ l




That 1s, given that G(s) is isolated by samplers (and it is in Table 2),
then G(z) can be written directly. However, if G(s) is the product of
Several of the tabulated functions of S, then a partial fraction expansion
of G(s) must be made before G(z) can be found, For example, if G(s)=1/s",
then

Tz

BlE) = e (66)

(z =1)"

However, if G(s) = 1/[s%(s +a)], then

k 5P g It
l(») :—- t :— + —-——S e \t )
or
G(z) SRR e v B ¢ D o~ (68)
( =} \ - 0 = 9—.

Moreover, the situation depicted in Fig. 1 does not represent the form of
the problem which is usually of interest since no data hold is included.

The form of interest is shown in Fig. 2.

In Fig. 2, M(s) represents the transfer function of a data hold. Using

the results of Appendix B, we can write

¢t - (am)TRT (69)
Data
Hold
R RT 8 ¢ ¢t
T-- M(s) —==1 G(s) '-—/T—'—-

Figure >, Typical Data Hold Configuration




The data hold is a physical device that takes the samples of the signal,

RT, and constructs a continuous signal which in turn forces the continuous
System represented by G(s). It is convenient to think of the data hold as
a coupler between the digital computer and the control actuator input. This
coupler is usually inherent in the digital-to-analog (D/A) converter device.

We will assume that the reader is familiar with the characteristics of

various data holds. (Their properties can be reviewed in Refs. 7 and 8.)

The presence of the data hold in a single-rate system is only a mildly

complicating factor. This is especially so if we are using a zero-order

hold which has the transfer function:

. (70)

For example, let G(s) = a/(s+a), M = (1 — e—ST)/s, then

- o-em - @

(z = 1)/z and is unaffected by the sampling operator.

-7, 1T
e’ - [Qs‘(_t‘e;é')')&]

Bub, 1 = o 7%

There-
fore,

o - 25| - ()]

(72)
& =g -

As we shall see, this simple computation becomes more complicated when

the data hold and input sampler are working at a different sampling period

than is the output sampler. This situation will be encountered later in

the analyses of multi-rate sampled systems. For single-rate sampled systems

2%




it can be appreciated that the partial fraction technique is quite ade-
quate for computing overall pulse transfer functions (from the output of

a sampler to the output of the previous one). This result pertains whether
or not there is a data hold involved, even though the data hold alters the

form of the answer dramatically.

Transfer functions for representative data holds are given in Table 3.
The data holds of greatest interest are the zero-order hold and the slewer
data hold. Their characteristics will be discussed at appropriate points 1

in the text.

TABLE 5. SOME REPRESENTATIVE DATA HOLDS

DATA HOLD TRANSFER FUNCTION

Zero-Order N 1 - o_GT |

Hold b s g
et e e e e e . . e e ey + — j

First-Order 1 ! 3

Mirst=0rde et )

Hold S ““(‘ T T)

Second-Order 3(.2 BE 1 1

Hold Se = ( i {J‘)

Triangular M M5 ST

Data Hold A b o

Slewer Data M ﬂg |

Hold Sleow T ~

E. AN INTRODUCTION TO MULTI-RATE SAMFLING |

Sufficient aspects of single-rate sampled systems have been reviewed
to this point that we may now consider analysis of a restricted class of
multi-rate sampled systems. A basic multi-rate sampled system element of

interest is shown in Fig. *.




* R RT WX i
; -————{:-——-— G(s) L——;:;——ﬂ.-

A Figure 3. Slow Input/Fast Output Sampling

It is required, in Fig. %, that N be an integer so that the output

sample rate is N times the input sample rate. Write the output equation

for the continuous variable C as it

c GRT (73)
so that i
T/N T/N '
c [GRT) (7%)
¥
i
To further reduce Eq. T4, we merely notice that Fig. 4 is equivalent

in an input-output sense to Fig. 3. The T input sampling operation in

Pig. 3 is replaced by two sampling operations which are equivalent to the

T
T T T/N
R / R/[R J’. G _C_/.L.- L
T T/N T/N

Figure 4. Equivalent Model for Fig. 3

/ I,
original one. The time functions [RTlT’N and RT are obviously equivalent, i
b

9

s
since the intermediate samples of the new, but fictitious, input [RT]T " are

zero. This "trick" does show that we may write




which is the correct result (see Appendix B),

The rule is, for sampling
operations such as

those shown in Fig. 3, that:

y il
"The outer sampliu.g operator [.] /N 'operates through' the
inner ones if the ratios of the inner sampling periods to

the outer sampling period, T/N, are integers."

Consider an example application. Let

p sT/
. r(t) wt) , G ?‘%fT R oST/N (76)
| Therefore
)
' T/N z
l g (”‘l“) [ul(£))"/N (77)
§ S +a )
; Referring to Table 2, write
‘T IN 2 _'N ) "'\l\
C - s
s .‘-«QT N N =

Note the important points. Since 2 has been defined as z ¢ oST/N  the

pulse transfer function corresponding to G(s) 1/(s + a) must represent
"y
the newly defined sample period, T/N. Moreover, the z-transform for

RT - ul(t) must be adjusted to reflect the resampling with period T/N.

M/
This adjustment is also required by the fact that = is defined as oST/N

m / =
as a result of the resampling.” The z-transform for [RTJT/N  RU s
obtained in two steps:

® Obtain the z-transform for R in the usual manner
with z 2 ST,

ST

& oS averywhere it occurs in RT(z) by
2N & (aST/N)N

<

*In this regard, some readers might find it helpful to read the review
material of Appendices A and B.




Suppose the problem is to find a continuous time response which when
sampled results in AI/N for the previous examples. The use of partial
fractions now requires an expansion of the right-hand side of Eq. 78 into
N +1 terms, since the denominator now has N+ 1 roots. This is not a
pleasant prospect, especially if N is large, say on the order of 100 or
more. When N is large, partial fraction expansion is not the best way to
proceed. A recursion equation approach is preferable. Rewrite Eq. 78 in

terms of the input RT:

R 7. LR (79)
2 -0

Divide Eq. 79 by z and write the corresponding recursion equation.

C Mg 4 RE’N (80)
where
0 if Frac (n/N) #0
Rog * ‘ (81)
l R(nT/N) if Frac (n/N) =0

The notation Ra,N

index of the recursion equation, n, to N; and take the fractional part of

is interpreted as follows. Form the ratio of the

the number that results. If this is zero, then nT/N is a point in time

for which an input sample is taken. However, if the fractional part of
this ratio is non-zero, we are at an inter-sample time point for the input.
Consequently, no input sample is taken, giving a zZero input value for this
sample point in time.

i .
To illustrate, let T = 1, & e 0.5 (a = 0.693%2), and compute the

transient response to a unit step input using

% » .f*

.
i




Ch eoT/N g Rg’N (82)
where
‘ 0 Frac (n/N) # O
Rpy = ? (83)
1 Frac (n/N) =0

The transient response is shown in Fig. 5. Notice that the absence
of a data~hold circuit forces the continuous output to be comprised of the

summation of a train of weighted impulse responses of the first-order s5ys-
tem 1/(s + a).

The following is accomplished by implementation in terms of this recur-
sion equation:

® The inter-sample response can be computed with

any desired degree of time resolution desired by
increasing N.

® Computer storage requirements are unchanged as N
is increased. The order of the recursion equation
(i.e., the number of states) is not affected by N.

2.0 F

CT/N L

-aT/N

O Frac(n/N) #Q
NG e R REasf

| Froc{n/N) =0

@]
3
1

figure 5. Step Response

|
l
{
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F. SLOW INPUT/FAST OUTPUT SAMPLING
WITH DATA HOLD

The inclusion of a data hold in the slow input/fast output sampling

problem introduces an additional consideration., Adding a data hold to the

block diagram of Fig. 3 gives Fig. 6. The output equation is

/N~ (am)t/NRT (84)

where M represents the transfer function of the data hold. It is important

to notice that the data hold is configured for a T second sampling period,
whereas the sampling operation on GM is for a T/N second sampling period.

An example will demonstrate the nature of the problem.

o heed 6 b
T T/N

Figure 6. Slow Input/Fast Output Sampling
with Data Hold

Let

Therefore,

(86)

~5T
m / - A ‘
(am) ™ /N l“ — Lo




Since z = eST/N it follows that
)

. e e-(sT/N)N -N
and
R el
= i
Moreover,
a By 1
3la T &)  ® S + a
so that the transform table gives
(L_ 1 )T/N 4 Bl z . z(1 - e“aT/N)
S S +a Z - 1 Z_e-a'l‘Zﬁ (z—l)(z—e_aT]N;
Therefore,
T/N zN - 4 z() = e—aT/N) l t
C = . R
zN (Z o 1)(2 e e—aT/N)

or

~aT /N
Z -e

I/ _ [1 = 8 (l 2" PR z-(N'1)>JRT

Comparing Eq. 91 with Eq. 79, it is seen that the inclusion of the

zero-order hold has introduced an additional multiplicative functions

-aT/N) 2N - 4 (- e—aT/N

ZN(Z-—]) Z

30

= )[1 +z_1 + o +z-(N'])]

(87)

(88)

(89)

(90)

(91)




Methods for treatlng this additional complication when N is a given large

number will be discussed in Section IV.
G. FAST INPUT/SLON OUTPUT SAMPLING

The next fundamental multi-rate configuration of interest is the fast j
input /slow output sampling configuration of Fig. 7. This presents a more
involved situation from a computational viewpoint than does the slow input/
fast output case studied previously.

&

Figure 7, Fast Input/Slow Output Sampling

As always,

€ = GMRT/N (92)

so that
i
|

et [GMRT/N (93)

In BEq. 93, the T operator can no longer "operate through" since the
ratio of the inner sampling period to the outer is not an integer. However,
it 1s legitimate to replace Fig. 7 wilth the equivalent block diagram shown
in Fig. 8.

R RT/N c CT/N CT
— M ey G L——-//-————--//——---
T/N T/N T
Figure 8, FEquivalent System '
\
|

3




It is readily apparent that the output cT is not affected by intro-
duction of the "phantom" T/N sampler, since the T output sampler rejects

all the unwanted samples of CT/N. One can write the following equation
directly, from Fig. 8,

c® = [oR™/N]T - [(m)T/NRT/N]T (94)

On the surface, this exercise does not appear to have been too fruitful, !
Since the T operator still cannot operate through. Nevertheless, Eq. 94 ]
offers a significant computational simplification, This is so because the
following routine procedure can now be followed:

® Compute (GM)T/N and RI/N z-transforms in the normal
manner, using z # eST/N

k

q

1

® Expand the product [(GM)T/NRT/N] in partial fractions ( 3
and use the transtorm table to find the continuous %

time function which, when sampled with period T/N,
results in [(GM)T/NRT/N]

® Find the z-transform of this sampled continuous
generating function, for a sampling period, T, and
z ¢ esT to obtain:

[(eM)T/NRT/N)T ~ ouge/N)T

IS

This process is in the spirit of the convolution approach described in

Appendix B. The main difference is that we avoid the use of a complex
inversion integral by substituting the procedure of going from the z-domain
for a T/N sampling period (i.c., with z & oST/N) to the time domain and then

™ s om
back to the z-domain for a T sampling period (i.e., with z ® o5T)

Notice that in the previous section for the slow input/fast output
problem, it was possible to separate out the transformed input from the
pulse transfer function for the system. Having done this, it is then pos-
sible to write a recursion equation in terms of an arbitrary input. Here,
a recursion equation for evaluation of Eq. 9% cannot be written until a
specific R is given, That is, the recursion equation for CT must be found

on a case=by-case basis, Nevertheless, the basic method described in this "




subsection will be valuable later for analysis of multi~-rate closed-loop
systems,

An example illustrates the computational method., Let

~sT /N
= —'—a—- = -‘—-‘:—?————— = O
G = T= s M - R , R = sinbt (95)

First, compute (GM)T/N s-transform. This is straightforward, since the
sampling operation on GM and the data hold are for the same sampling period,

T/N. Then obtain RT/N(Z) from the z-transform table, and form the product
[(GM)T/NRT/NJT/N,

T/N
(GM)T/N R e-ST/N)a / 1= e-aT/N , & oST/N 96)
- S(s + a) o e-—a’f?ﬁ 4 ks (96
Therefore,
T/N
(GM)T/NRI/N L= e:'ﬂ/n : 2 8in ?bT/N " (91
—-—e (z ~ cos bT/N)" + (sin bI/N)*

Expand in partial fractions:

fI/N - (gM)T/NRT/N
A;T = z sin bT/N + C-.\’.(:: — cos bT/N) g egfT/E
z=e ! (z = cos bT/N) + (sin dT/N)’
(98)
Compute f(t) such that (/N & /N
£(t) = Ae ™ 4+ B sin bt +C cos bt (99)




Compute FT

FT - [(agM)T/NRT/N|T Az , Bz sin bI + C?(: - cos bT?
2 —e (2 = cos bT)" + (sin bT)

e sT

(100)

Notice the clear resemblance of Eq. 98 to Eq. 100. The only difference
1

is that T/N in Eq. 98 is replaced by T in Eq. 100, This emphasizes that the 2

intermediate step of computing the generating time function is merely a con- k
venient conceptual step which may usually be skipped in the analysis of ]
single-rate systems. However, in a later section we shall see that execu-
tion of this step can be quite useful in sorting out delayed time functions

arising in the analysis of closed=loop multi-rate systems.

To complete the example, it may be verified that:

A = = = Ay sin bI/N (101) |

e-ﬂT’N

B = =g - cos bT/N) (100) ‘

where

N e—ﬂT'N
A() : ‘T’W - [a) B
(e - cos bT/N)* + (sin bT/N)

(r0%)

H. VECTOR BLOCK DIAGRAMS

As noted in the introduction, one objective is to present all results

in a vector notation which is compatible with either degree-of-freedom or '
state variable problem formulations. For example, consider the block ' |
diagram of Fig. 9 wherein the dimension of the G and H matrices are com- ]

patible with the dimensions of the C and E vectors. One can now develop

equations and pulse transfer functions for this closed-loop system in an
orderly manner.




Figure 9. Simple Closed-Loop Configuration

E = R = HGET (104)
so that

El = RT - (mo)TeT (105)
Thus,

el = [T+ (u)T]"&T (106)

Using Eq. 106, write an equation for the continuous output vector C:

G[I + (1e)T] RT (107)

Q
1}

One can now conceptually add a "phantom sampler" at the output C and obtain

¢T/N o GT/N[r 4 (mg)T) BT (108)

by using the results of Section II-E, Thus, values for the continucus out-
put C can be calculated at as many inter-sample points as desired.

Consider another example. Suppose the open-loop plant is formulated in
the first-order state variable form

e
]

Fx + Gu (109)

y = Hx (110)
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where x is the state vector ana y is the output vector. F, G, and H are

constant matrices of appropriate dimension. Laplace transforming, we obtain

© X(s) = (Is = F)"'[cU(s) + x(0)] = A(s)U(s) + B(s)x(0) (111)

Y(s) = HX(s) (112) ‘

In Eq. 111, X(0) represents the initial condition vector,

The open-loop plant, given by Egs. 111 and 112, might then be embedded
in the closed-loop configuration of Fig. 10 wherein W; and W- represent

compensation matrices which may be selected to achieve closed-loop design
objectives,

Suppose the objective is to find an expression for the (continuous)

state vector x. First, write

T
Ul = WIR' - WWL[HBx(0) + HAMU | (113)
or
U] = WIR' = WiWa(HB) x(0) = wiwn(tam)T Ul (114)
Therefore,
U'f = [+ (w“]’w?:)(HAM)TT' [w?RT - w'wa(HB)Tx(o)l (115)
x (o) ‘
8
T
U s U u X Y
Ll M - A l—-—*;}—-q H -
#
W2 g J
T l

Figure 10. A Representative Closed-Loop System f




Thus, U? is a function of the input vector R and the initial condition
vector_x(O\{.

To find the continuous state and output variables, x and y,
X - Bx(0) +amT (116)

Y HEx(0) + HAMU] - Hx (17)

The inter-sample response can be determined to any desired resolution:

7 /
KI/N 87/ Nx(0) + (AM)T'NU?

»

/N - 5 R0y + (am)t/T o WD o™ Wi —w?w?(HB)Tx(o)]}

(118)

In general, throughont the text care has been taken to develop all
equations in vector notation, even though most of the illustrative examples
are scalar, Note that thiv transform domain notation is applied just as
easily to state vector problem formulations as it is to degree-of-freedom

formulations.,
I. SWITCH DECOMPOSITION CONCEPT

The phantom sampler approach was introduced in Section II-G in connec-
tion with the fast input/slow output sampling format. Now that vector
notation has been discussed (Section II-H), we are able to present an
alternative description that includes the phantom sampler as well as the
"T/N" approach treated earlier in Section II-F. This alternative approach

is called "switch decomposition" (Ref. ©).

In essence, switch decomposition is a procedure wherein systems having
multiple sampling operations (occurring at fixed but unequal sampling inter-
vals, but with a sampling pattern which is repeated over a fixed, finite time
interval) are converted into an equivalent single sample rate form, As ori-

ginally introduced by Kranc, the method used a summing point methodology




]

which proved to be extremely cumbersome when the ratios of the sampling

periods become high, For this reason and also because evolving state tran-
ition methods were tending to push transform methods into the background, e
the method fell into disuse, However, there is much to recommend the switch
decomposition concept for use in both time domain and transform domain analy-
In the subsections that follow we will review the basic concept and
remove some earlier restrictions by recasting it in vector form. The vector
form simplifies matrix block diagram manipulation for multiloop, multi-rate
sampled systems; but, as we shall see, the dimensionality of problems for-

mulated using this approach can present a practical limitation.,
J. VECTOR SWITCH DECOMPOSITION

Consider the continuous signal shown in Fig. 1la to be sampled at
“/T samples/second. This results in the sample sequence shown in Fig. 11b.
The sampled values have been numbered for easy reference. Suppose now we
sample the continuous signal with a sampling period, T. This results in
the sample sequence consisting of 1, 4, 7, 10, 13, ... shown in Fig. 11c.

Define this sample sequence to be RL.

Next, advance the continuous signal R by T/3. Then sample the advanced
signal with a sampling period, T. This results in a sample sequence con-
sisting of 2, 5, 8, 11, 14, ... shown in Fig. 11d. Define this sample
sequence to be (eST/;R)T. Finally, advance the continuous signal R by
oT/3, and sample it with a sampling period, T. This results in the sequence

~

consisting of 3, 6, 9, 12, 15, ... shown in Fig., 1le, Define this signal

sequence to be (eST/?R)T,

The significance of the switch decomposition concept resides in its
ability to provide an alternative expression for the original sequence,
RT/B. This alternative expression for RT/3 consists of the sum of RT,
(eST/zR)T, and (eTST/"R)T each delayed by a time interval corresponding
to the advance.

- 3 g1/ ~sT/3
RT/:“ & RT + (CST'V R)T e-ST/ n (CST'%R)TC ST/ (]]9)

Equation 119 has a simple factored equivalent which is the product of two

vectors and the scalar, R,
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B2 L |y SEHE ) eST/ R
eQST/’)
W(W,R)T
where
w e ’ e—sT/? e-QST/*
and
B ey
1
W a eST/‘
28 £S5
e
i 8

This result can be generalized for any major sampling period, T,

which is an integer multiple of the minor sampling period. That is,

whenever
BN NG

where N is a finite positive integer and (T/N) is

period. The result for arbitrary positive N is

g w(w R)T
where
W W(s) & |1, e ST/N Sl L ety
and
W W,(s) 2 wW'(=s)

In Eq. 126, the prime denotes =a transpose.

the minor sampling

—(N=1)sT/N

(120)

(21

(122)

(123)

(125)




! Further generalization allows R to be a vector of continuous signals.

Equations 124 and 125 continue to apply. It is necessary to define a least

common sampling period, T, and a greatest common subinterval, To, with

respect to the R vector. The p elements of R may be sampled at different

fr minor sampling periods: Ty, ..., Tp, ..., Tp, respectively. It is further
assumed that the minor sampling periods are such that a finite positive T
exists such that

T = NiTy e++ = NyTy -+ = Nglp (127)
holds for a set of finite positive integers:
Ny, eoey Ny, ey N.p

The minimum T fcr which Eq. 127 holds is the least common sampling period

(for R). A subinterval can be found for which
T = NI, (128)

| and N/Nj is an integer for all i =1, 2, ..., p. The largest value of T,
ié satisfying these conditions is the greatest common subinterval (for R).
L Equation 128 defines N for the greatest common subinterval. Given values

for N, Nj, p, and T, the p X 2 N; block diagonal matrix, W, is

§ Wy 0

W = W(s)

]

(129)

§ where

=
)—l
|
\DJ,
)
S
=
e
[¢]
|
[}
~~~
[N
)
SN
H
=
=
e

e—s(Ni-1)T/Nil (130)
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The operator matrices W and W, can be used to represent multi-rate
sampling operations in terms of a single-rate sampling operation in vector

block diagrams. This is illustrated in Fig. 12.

Consider an example. Let R be a vector with three components. ILet
the first component be sampled with period T/6, the second with period T/3,
and the third with period T/2, That is,

/

&= Rf/6, R£/5, Rg/g (131)

The objective is to compute W in order to obtain an explicit expression for

R" via Egs. 129 and 124 (which is equivalent to Fig. 12b), For this example,

B =)

T 1is the least common sampling period
Ty = T/6, To = T/5, 15 =T
Ny = 6, Ns =3, Nz = 2

T/6 1is the greatest common subinterval

N = 6
Therefore,
[~ 9
1, e—-sT/é’ e-es'r/6, e—}sT/6, e-—hs'r/G, —DST/6 0 0
W = 0 1, e-2sT/6’ oisT/6 0
0 0 1, e 05T/6
(132)

This example gives us some insight as to how increased dimensionality can
complicate problems in practical application. Consider the vectors R, 3
and (W,R)T. These vectors have », 3, and 11 elements, respectively. The
vector (W,R)T will have pEZNi elements in general; whereas R and R will

only have p elements each. This is significant in that analyses will tend

L2

—
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e denote vector
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a) Vector Block Diagram for
Multi-Rate Sampling

R R*
i T

b) Equivalent Single Sample Rate
Vector Block Diagram

Figure 12, Vector Block Diagrams for Multi-Rate
Sampling Operations

to be conducted in terms of vectors like (W.R)T in distinction to vectors
like R". Consequently, the potential for expanded dimensionality in con-
nection with analyses of multi-rate sampled problems is great. For example,
consider a problem wherein there are two minor sampling periods, 39 ms and
%o ms. Tt is easy to verify that the dimensionality expansion factor, N,

is 1560.

Fortunately, minor sampling periods which are so little different are
not usually of practical interest. Furthermore, it is important to stress
the fact that the increase in dimensionality affects input and output vec-
tors, but it does not affect the dimension of the system state vector.

On the more positive side, matrix operations are routine. Consider
the system shown in Fig. 15. Once the vector multi-rate sampling operations
in Fig. 1%a have been replaced by the switch decomposition equivalent

(Fig. 13b), analytical manipulations are routine:

- R = Wy ) e )T E (133)

g S
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(a) (b)
Figure 1%5. A Multi-Rate Closed-Loop System
Theretfore
T - T - =] T fie s
E] T+ (W W) (wo,an T (W R) (134 )
and
! /
X W ,E} or R (aw, )L/ NE? (135)

Notice that the dimension of the inverse in Eq. 134 is determined by the
column dimension of Wq. If this dimensionality is high, and if the column
dimension of W~ is lower, then we can develop an alternate equation having
lower dimension. The alternative equation is in terms of the X? vector,

The dimension in this case is determined by the column dimension of W-.

X3 II * <wz».cw1>T<w1,wp>rr|_' (WouGH 1) (W R (136)
X = G, (w,,,R)T = (w,,,!{w:.)q \I,‘l (137)
or
/ r /
ol (Gw])r["N (W) R ¥ - (w“nw:‘)Tx'f (138)

A more concrete scalar example is shown in Fig. 14. The objective is to

develop the pulse transfer function relating ET and RT,

Wi
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W= Il,e"T/zl T/2 Sampler

Figure 14, A Scalar Two-Rate Example
To develop this pulse transfer function, start by writing an equution
for ET in terms of RT and ET.
T
|

I'[\
—;;T,/.‘ / —sT
] -0 f —sT /2 | - e J :
Ef R = (l. Ol )l ( < ) B (139)
3 oST /e 5

Coefficients of like terms in Eq. 139 are collected., Next, the various
factors are expressed in temms of the z-transforms for sampled time func-
tions which correspond to the Laplace transforms inside each of the sampling

operators, (+)T. The result is then simplified to obtain

(17/%)z + (5/4)r°
(2 = 1)°

o R, 2757 (1%0)

'l‘h(\ ro t‘{\l't‘ §

RU (141)
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once ET is known as a function of RY, it is a simple task to compute the

equations for the two continuous states:

o e-sT
X; = (-——-—-\-—-—)E‘T (142)

and

o e-—s‘[‘/‘.‘ e e'-ST - .
Xo ( — )( = ) E (143)

However, note that it was necessary to consider terms such as

—sT T
o S 2
\1 (o 1 euT‘/. } (]3&-’0)

in order to obtain the z-transformed functions required for Eq. 140. Thus,
a method for obtaining z-transforms for functions of this form is needed at
this point. An approach using the so-called advanced z-transform is pre-

sented in the next subsection,
K. ADVANCED z-TRANSFORMS

Matrix switch decomposition requires the z-transform of functions
advanced in time by some fraction, A, of the least common sampling period,

T. For example,

. =a{ tAT) ’
r(t) = e XMW o g (b+aT) < (£4T) (149)
By definition,
o - \)r[‘
P(z) 2 u_‘l(!H‘ a0 (146)
n=0
80 we may write
l.“( .\ \\-*l‘\l‘ E (‘.—““‘I‘ ‘.’,-n ( ]‘\', )
n=Q




The infinite summation is recognized as & geometric progression which

can be expressed in closed form. Therefore,

L —AT
L‘~‘|( ) it |:\T) : Z€ — ( 1')8)

8 - B

for Q. £ &<

Equation 148 can be used to generate a table of advanced z-transforms in the
: . —at .

same manmer as the z-transtorms of e woere used to generate a table of

s-transforms in Section II-C. Thus, we can let the parameter a in

ordinary
Eq. 148 take on new values to generate new entries for the table. Llet
a -= 8 + jb
—(a+jb)/ ~aAT L
ze (a+jo)AT ze (cos bAT = j Sin DLAT) )
—(a+jb)T ' —aT (149)
By S A (cos BT — J sin bT)

Rationalize Eq. 149 by multiplying numerator and denominator by the complex

conjugate of the denominator to obtain the intermediate result, [-’l(z);

-aT .05 br) = jeF sin bT]

Py (2) = ze_u‘\rl‘[cos bAT — j sin bAT jf(z — e
: —o—”T cos bT) + ,jeq‘lT sin bT][(‘.'.--eq"T cos bT) -~ je—nq sin bl

Multiplying out the factor and equating real and imaginary parts gives,
after a small amount of trigonometric manipulation:

ze ""m[gos bATZ — o *F o8 b(1-4)T]
OB

e-ﬁ(t*&) [cos b(t +AT) ~ J sin b(t +4T) & 2 T
2° — 2078 cos BTz + e

jze — [sin bATz + 3T sip E&%—A)ﬂ
22 = 26 %% cos bTZ + oo

This is the advanced z-transform for the exponentially damped cosine and

sine waves.,




Next, let a = O in Eq. 148 to obtain the advanced z-transform for a
unit step function:

{ e'— uA‘I‘ z ( )
S, T 150
i -—.—..T_ P

This states the obvious fact that a unit step, advanced by AT seconds, has

the same z-transform as the step function itself. Next, consider the
# z-transform of the time function:

(t « AT)e—u(twém) e-aAﬂ[té—nt + AT Bt (151)
r
Since we already know the z-transform of each individual term, a straight-
forward computation results in:
AT | zre™®T ZAT 2e L 1oAr 4 (1 =n)e 0T - ‘
e —aT.o P —aT (] —aT 2 (‘l‘) 4
(2= ") ‘z=le (z=~e ") | &
Similarly, { ;
|
' {
(t + Ap)2 e o(tHl) (£ + 2Tt + (A7)2)e 24T [78Y) (153) ‘

leads to the transform of the remaining terms needed in order to augment

Table 2 with an additional column of advanced z-transforms. Table 4 is an

abbreviated table that is sufficient for the purposes of this report.

L. A COMPARISON OF VECTOR SWITCH DECOMPOSITION
AND THE PHANTOM SAMPLER

We are now in a position to compare vector switch decomposition and

the phantom sampler. As already noted, the case of slow-input/fast-output

sampling poses no conceptual difficulties (refer to Fig. 15), since '

cI/N [avgT 1T/ [om]T/N (R (154)
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1 Figure 19, Slow-Input/Fast-Output Sampling

/
Thus, the output cT/N s represented as a product of two factors, one of

which describes the properties of the system and the other describes the
input. Separation of system and input characteristics is crucial as far
as conceptual closed-loop manipulations are concerned. For example, it is
necessary for the use of signal flow graphs, block diagram algebra, etce

The state of affairs is somewhat different for the fast-input /slow-output

sampling case shown in Fig. lo. The output in Fig. 10 is expressed as

¢t - [eMeT/N)T - [(em)/NRT/N)T (195
T/N T |

Figure 1o. Fast-Input/Slow-Output Sampling

where the extreme right-hand side is obtained by using the phantom sampler

concept (Eq. 9%). No simple product factorization for Eq. 199 into a system

pulse transfer function and a transform of the input signal is apparent.
While vector switch decomposition, depicted in Fig. V7, provides the scught-
after product factorization, this is at the expense of an increase in the
dimensionality of the problem since

\‘T

[aMWT [w R IT




T/N Sampler Model

R RT/N C CT
———w*-—f*w————GM-—/T———

Figure 17. Vector Switch Decomposition Model;
Fast -Input/Slow=Output Sampling

Specifically, the row dimension of [W‘R]T and the column dimension of

[GMV ]T are N for the fast-input/slow-output sampling case in Fig. 16.

On the other hand, if G(s) and R(s) are known prescribed functions,

the evaluation of Eq. 155 can be carried to completion using either the

vector switch decomposition or the phantom sampler concept.

Consider use of vector switch decomposition for analysis of the slow-
input /fast-output sampling case (Eq. 154 and Fig. 15). The equivalent
block diagram is shown in Fig. 18.

T =

N oyt - wiw,eM)T R (157)
Notice that system properties are separable from the input as is always the
case for the vector switch decomposition formulation., Also notice that

from an input/output viewpoint [i.e., considering (W[W,GM]T)] there is no

T/N Sampler Model

- 7 N -~
T T T/N
R R C D (o} C

Figure 18. Vector Switch Decomposition; Slow-Input/
Fast-Output Sampling
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N
5 increase in the dimension of the pulse transfer function matrix. If the
C vector has m elements and the R vector has p elements, then (W [W,GI\HT)
t‘i is an m X p matrix, However, one should also notice in connection with
ﬁ Eq. 157 that an intermediate vector, DT, has been defined (conceptually, 1 4
| F o }
[l at least) which has N elements. It is frequently the case that the analyst i
| |
& has no interest in DT, When this is so, application of vector switch decom- ]
é’{ position does not result in increased dimensions for slow-input/fast-output |
1 . . : . §
*( sampling elements like that shown in Fig. 18, L
| E
3 ; A~ e : A ‘
b We close with a specific numerical example to demonstrate the utility !
4 | ! 3
1 of advanced z=-transforms in conjunction with switch decomposition. Consider {
. Fig. 19, set up in a phantom sampler format.
1 s i
By switch decomposition,
Al m
o (aw |T (w,r ] (198)
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Figure 19, Illustrative Example

Note the manner in which w, written in terms of delay factors in Eq. 159

Bl

is converted to advanced factors in Eq. 160. Equation 160 is in a form

suitable for the use of the advanced z-transform

P e e

AT's —=a/\T'
e ze
s + a —aT
zZ ~e

Equation 160 becomes

r N
& =aT
) ==
P - e—SbT/3 e-bT/5 ”e-ﬂT/ﬁ y
Wi =7 = o7 =T (161)
Z —-e zZ - Z - Z -~
-2aT/3%
ze T/
e -&TJ
Therefore,
i -0 L3 /3 —bT /3 ~=2aT/3
! T 3 Z[Z e bT/ e_ﬂT, i@ bT & ﬁT/‘\] (1 -
| i il =T o7 o
‘ (e =g =" J{2=@a"")

Next, repeat the problem using the phantom sampler (Eq. 94):

(163)
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Z e : Z -
It is readily determined that
/2 //-{
B = e-bT / A —e-ﬂT ( 165 )

—bT/? -aT /3 ’
e -e
Equation 165 implies a continuous "generating" time function of the form

Bt} = fe ¥ xHe Y (166)

ol . Az Bz ST

e
&
n

D

(167)

Substituting for A and B and then clearing gives

=ObT /3 /3 3 0T /3
o . Bz e ot N R sl e, ] (168)
4 =T\, _ =T i
(=2 Nz=e )

-
-

Equation 168 is in agreement with the switch decomposition result of

Eq. 102,

One may conclude that the phantom sampler approach is more efficient
than the vector switch decomposition apprcach when both approaches apply.
On the other hand, vector switch decomposition always provides a means for
analyzing system properties independently of system input signals which are
unspecified or when various input signals are of interest. The computa-
tional approach one uses for any given problem should be selected on the

basis of these considerations,

misih bl iiee. ol il

.
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We may also note that the vector switch decomposition tool can be used
to model the computational throughput delay of the computer. This topic is
treated in Appendix F.

M. SECTION SUMMARY

A table of abbreviated transforms has been developed using the transform
for an exponential function of time together with several transform domain
properties. This table, coupled with partial fraction expansion, enables
us to move back and forth between the t-, s-, and z-domains with relative
ease. Basic background material for analysis of multi-rate sampled systems
was also developed. Included were discussions of the "phantom sampler,"
vector switch decomposition, and the "T/N" transform approach., Examples
have been used to demonstrate the strengths and weaknesses of each tool and
to call attention to points which will be developed in greater depth in the
text which follows.




SECTION IIT
ANALYSIS IN THE w'-DOMAIN

A. INTRODUCTION

During the 1950's and 1960's the need for simulating open- and closed-
loop aircraft responses furnished an appreciable impetus for the develop-
ment and refinement of discrete algorithms for the simulation of continuous
systems using digital computers (e.g., Refs, 11-1%), Thus, the Tustin
transform method and other similar techniques for the approximate discre-
tization of continuous systems made it feasible to replace analog computers
with digital computers for the simulation phases of a design effort. Now,
this approach is also commonly applied to design digital control laws for
fly-by-wire aircraft. First a continuous control law is synthesized, and
then it is adapted for digital implementation using one of the approximate
discretization methods originally developed for simulation (e.g., Refs. 1k4-

l¢). This procedure is called emulation.

This application of emulation for the design of a digital controller is
motivated both by a fundamental reliance on system design criteria developed
for analog systems and the justitiable desire to preserve the large body of
design experience built up over the past twenty-five years. Emulation is an
approximate procedure when the Tustin transform or other "direct substitu-

tion" methods are used. In general, emulation procedures fail to account

for multiplexer/data bus effects and, more importantly, require use of high
update rates (short computation frame times) in order that the inherent
approximations be valid. Thus there is a need for a direct digital design
procedure which is exact (in distinction to approximate), accounts for the
effects of data holds, computational delays, ete,, and yet preserves the
experience and physical insight developed over the years uaing conventional
design procedures. The main purpose of this section is to highlight the

properties of a design domain wherein these objectives are realized.

Specifically, attention is focused on the w'-domain — a domain related

to the well-known w-domain (Ref, 8) by an all-important scale factor. It
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\ is a domain wherein the non-minimum phase effects of the sampling and data
{ hold operations can be directly accounted for using conventional frequency
2! domain design tools such as root locus and Bode plots. These conventional

frequency domain design tools can be used to considerably greater advantage
in the w'-domain than in the w- or z-domains because severnl more powerful
analogies between the s-domain and the w'-~domain exist, These analogies

are, in a sense, the key to exploiting the w'-domain for design purpos s

making direct design in the w'-domain an attractive alternative to design

by emulation.

In the sections which follow, we first review basic properties which
make the w'-domain preferable to the z-domain or w-domain., Following this,
fl1lustrative examples are used to highlight the analogies between s and w'.

v

Next we demonstrate that satisfactory designs can be obtained using conven-

tional design approaches even for low data rates where approximate discre-

tization tecliniques are so seriously in error as to be invalid. Herein lies
the main contribution: recognition that the w'-domain models the sampling
and data hold operations exactly, regardless of the sampling rate employed,

and that the w'-variable is analogous to the s-variable in the sense that

all familiar frequency domain design concepts, procedures, and interpretua-

tions can be carried over directly.
B. RELATIONSHIPS BETWEEN z, w, AND w'

In the analysis of linear sampled dats systems, use of = ¢ exp(sT)
results in transfer functions which are rational polynomial functions of =.

This is in distinction to the corresponding transfer functions in s-domain

terms which are transcendental functions of s. It is also the case that
the left half of the s-plane is mapped into the interior of a unit circle
in the z-plane. A drawback of the z-domain is that conventional design
criteria, such as root locus and Bode plots, cre more difficult to inter-
pret. Moreover, at high sampling rates, the z-plane poles and zeros tend
to cluster on the unit circle, creating numerical problems of a substan-
tial magnitude. The region of the Z<plane corresponding to stable system
behavior is interior to the unit circle which prevents the direct applica-

tion of Routh's stability criteria. Historically (e.g., see Ref. 8), this |




fact prompted the application of an additional bilinear transformation
which maps a function of z into a domain where the region of stability is
once again the left half plane. This is the so-called w transformation
defined by the equation:

w & Bl (169)

One may use root locus and Bode plot methods in the w-domain with more
facility and insight than would be possible in the z-domain, even though

each domain contains exactly the same information.

However, the w-domain still lacks other desirable properties. Most
lmportant of these is the property that w approach s as the sampling

interval approaches zero. This property is not provided since

L A== ST — S :-‘ 2! DR
PP - AR eST | sT + (sT) /:‘. + (170)
z + 1 e &1 2 + 38T + (aT) /2l & ...

and in the limit, as T = 0, w approaches zero rather than s. A simple

scaling of the w-plane changes this situation dramatically. Define

' & 2 2 z=1 . e (T/e)w! e
e N iR 1'-—'?T‘,§:“'§w"‘ (171

: 2 g ~1 2 ST — 2 _ 8T +(8T)e/p! wuss
W = T” T s -—r 5T = > (1')
& T e>~ + 9 L 2481 + (8T)/3! & snn
In the limit as T —= 0 in Eq. 172, w' approaches s.
This property is significant in that 1t establishes the
conceptual basis for defining a quantity in the w'-domain
which is analogous to frequency in the s-domain. Further-
more, the analogy becomes an identity in the limiting case.
e
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| We are unable to cite a readily available reference for the transformation
! ' given in Eq. 172 even though the relationship is well known to many prac-

\ ticing control engineers.

One may, of course, use root locus and Bode plot methods in the w'-domain
as well. However, the relationship between angular frequency, w, and the

| imaginary part of w', v, is
4 v = é% tan of/2 (v o for |w| < n/2T) (17%)

The approximate relationship between v and w is significant in that the

designer/analyst may regard v as angular frequency (for |v| < 2/T) during
qualitative phases of design development. Conversion to actual angular
frequency units is almost always unnecessary. Moreover, (w')—1 itself is
the trapezoidal integration operator analogous to s_1 for continuous systems.
Finally, the unit delay, z_1, when expressed in the w'-domain, has break
parameters which are a function of sampling period, T, and has the form of

a first-order Pade approximation for a transport delay in the s-domain.

- 2/T
e (174)

==

To illustrate another basic relationship which exists between the
s-domain and the w'-domain, consider the z-transform for a continuous low-

pass filter section

a

BB = e (175)

obtained assuming the input signal to the filter has been reconstructed
using a zero-order hold (ZOH). The result is

(176)

29




Applying Bq. 171 to Eq. 176 gives

H(w') = =(T/2)w' + 1 . Bl g™st ~(T/2)w' + 1 (177)
B R B0 g e s
—_— T w' o+ 1 w' 4 —-— r——
R e--a i W

The equal-order over equal-order nature of Eq. 177 is, of course, a direct
consequence of the use of Eq. 171. At first one may feel that the analogy
between the s- and w'-domains is weak, since a proper rational function of
s will always map into a rational equal-order over equal-order function

of w'. However, this is not the case if zeros at infinity in the s-domain
are considered, for then the s-domain zeros at infinity correspond to the
"extra" finite zeros in the w'-plane. For example, Eq. 175 shows that H(s)
has a pole at s = —a and a zero at infinity. In the w'~plane the pole at

s = -~a is mapped into

o wie L
W om e el (w' = —a for |a| < n/2T) (178)
-aT
T 1 +e
while the zero at s = » is mapped into a zero at w' = 2/T. Obviously, as

T == 0, w' ~= s, the w'-domain pole goes to —a and the w'-domain zero
approaches infinity, its proper s-plane location. This is a general result;
every pole and zero in the w'-plane has its counterpart in the s-plane, as

long as the zeros at infinity in the s-plane are counted.

Notice now the clear resemblance of Eq. 177 to its s-domain counterpart.
This is in distinction to the z-domain counterpart (Eq. 176) which has a pole

that approaches the unit circle as T —= 0.

The zero at w' = 2/T is especially significant. This zero is introduced
by the ZOH used to reconstruct the input to H(s). It provides a nonminimum-
phase contribution which is the effect of the data hold sampling rate para-
meter. This provides another major advantage of the w'domain in comparison
to the z-domain since the effect of the data hold and sample rate will be
quite apparent in root locus or Bode plets. To emphasize this point, let

the input to the continuous filter be reconstructed with another type of

60




%

”~

data hold called the "slewer data hold." The slewer data hold results in |

B A <D gy L

: constant rate output between sampling instants and has no discontinuity

at the sampling instant. Using the slewer, one computes

-sT\¢
H(z) (8L i r (179)
Ts S + &
-aT I
l(']‘ - -L) + & ]z + l-l- - (T + __I_)C-a’l‘] i
a a a a i
= s - (180)
: Tz(z —e ) !
| |
: Or, using Eq. 171, ;

} [(T rZh /\1) Y (T o "/ﬂ)(’ w' o+ 1][_ "T',_ W' + ]]
: ’_‘(1 = e—cl'l) .

H(w') = o -aT
w'o+ 1]

[ 1 - e T

(181)

T
-—0~W'+1

=

e e e Bty iy i

Observe that the slewer data hold has both a pole and zero in the w'-plane

model. Thus it is seen that the use of a zero-order hold introduces a non-

minimum phase zero at w' = o/T (refer to Eq. 177), whereas the slewer intro-

‘& duces both a pole and zero. Finally, ncte that Eq. 181 reduces to {
{ 5
! lim ¢ B a Y
j T o HW') = g3 (182) :

as was the case with the zero-order hold.

Table © summarizes the relationships between the various planes for three
different filter sections assuming the use of a zero-order hold. One may
evaluate these transfer functions, using T as a parameter, to obtain a feel

g for the relative positioning of poles and zeros in the three domains.

Thus far, three important properties of the w'-domain have been enu-

merated:
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@® W' == s as T -= 0,

@® The nonminimum-phase effects of data holds become
clearly evident.

® Conventional methods for stability analyses continue
to be applicable since the left half of the w'-plane
corresponds to the left half of the s-plane.

A most important property of the w'-domain which remains to be shown

is:

® Conventional frequency domain synthesis methods (both
scalar and vector) continue to be applicable, even when
the sampling rate is so low as to cause large differ-
ences between s-plane and w'-plane pole and zero loca-
tions for a given plant.

This property is the topic of the next two subsections.

C. ILLUSTRATIVE DESIGN PROBLEM —
SHORT-PERIOD AIRCRAFT MODEL

Conventional frequency domain design methods are directly applicable
in the w'-domain. This will be demonstrated in two stages. In this sub-
section we first consider the design of a stability augmentation system
using a representative model of a short-period aircraft.” The use of the
second-order model will allow us to illustrate clearly the manner in which
the non-minimum phase contribution of the data hold affects closed-loop
system properties and responses. (Furthermore, these effects are different
for a disturbance input than they are for a command input.) The short-
period model will, however, tend to have modal frequencies well below the
folding frequency even for data rates as low as ten samples/second. Thus,
the most dramatic effect that folding (or aliasing) may have upon the plant
w' transfer functions will not be evident. Therefore, in the next subsec-
tion we consider a fourth-order aircraft model which includes a high fre-
quency, lightly damped bending mode for which the effects of folding are

dramatic, This will enable us to demonstrate that the w'-domain continues

*The technical details of the models used in this subsection and the | 8
next are contained in Ref. 17.




to yield satisfactory closed-loop designs even when the differences between

the s-domain and w'-domain modal representations are large.

Consider first the simplified aircraft model of Eq. 18%:

q -1 =37 q 50 el
= 4 Se
a 1 = a o) _

(18%)

In Eq. 183, &, is the control input, ag is the gust disturbance input, and

q (body axis pitch rate) and a (inertial angle-of-attack component) are the

states of the system. Suppose the continuous controller is designed using

the multiloop analysis technique cof R

efs. 18 and 19.

The block diagram of

Fig. 20 defines the closed-loop configuration with postulated compensation

networks Hj, Ho, and Hz, In Fig. 20, Hy, Hp, and H3 are to be determined

(designed), R is the command input, and xy and X» are used to represent the

states q and a, respectively. Application of the multiloop analysis method

H, 4____——7
i
x,(q oraq)
" =i
R 30
Hy b——={ A/C
- xa(a orny)
—
p———
Hy p—r—

Figure 20. Block Diagram, Illustrative Example
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yvields the matrix of closed-loop transfer functions directly. The theo-

retical details of the multiloop analysis method are documented in Chapter *

of Ref. 18, \
o LX) 1k
Ne, 1 ! Nag * HotsNgoge R
i el ek
X x? X XX
‘ Neols | N,° + ByEsN 0 | | %
\‘P » g F Uguve b \
T SRR - = (18%)
X, A+ HAlENGE + HylisNgl

The various numerators of kq. 184 are found using Cramer's rule applied to

the Laplace transform of Eq. 18% (see Eq. 185).

S + 1 37 X] -0 ~37 be
= (18%)

N?é. for example, is found by substituting the 8 column on the right-hand
side of Eq. 185 into the X, column on the left-hand side of' Eq. 185 and

evaluating the determinant of the array that results. A is the character-
istic open=loop polynomial and is the determinant of' the left-hand matrix

in Bq, 185. To illustrate

s + 1 21

A = = 82 + Lsg + ko (s + ?)? 4 (G)P (186)
-1 s + 3
x s +1 =50
NSS = = =50 (187)
~1 0
x‘ . \
Nt\‘ = =50(s + 3) (188)
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ng = «-iTs (189)
x;l
Nog =(3s 4 o) (190)
g b XX
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are foung by making two Column substltutions and comput ing the determinlnt
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===}

Figure 21. Digital Control Block Diagram

by a sampler. All the remaining elements of Fig. 21 are to be implemented
on a digital computer. For simplicity of presentation, the data hold is
assumed to be a zero-order hold; however, the synthesis procedure we are
about to explore will be directly applicable for other types of data holds

as well.

Taking the z-transform of the first-order set of differential equations

given in BEq. 183 gives:

]
2= .752776009 | 2.850789304 xy(z)
_________ Bl i i e o | R
—.07704836 | z2—.59867929 | | xa(z)
- = vy ' Y.
4. 490576597 | ~-2.850780%04 Se
= g o s s o ] - . - (103)
~. 212719539 : ~.L013%20710 Qg

Equation 19% may be developed from Eq. 183 using either time domain or

frequency domain approaches (refer to Appendix F). We have assumed the gust




+ 8

; input is sampled at 1/T samples/second and held. This is somewhat at vari-

ance with the physical reality of the problem since the plant is actually

excited by a continuous disturbance. This assumption has been made merely

i
{
!

because it has a simplifying effect upon this illustrative problem. It is

not essential. {

Because of the sampling assumption on ag, one can proceed conceptually
in terms of a completely discretized system; the state vector has been
sampled and fed to the digital computer, as has the scalar input R. One

may think of Fig. 20 (and Eq. 184) in terms of the z- and w'-domains as

well as in terms of the s-domain. That is, in Eq. 184 consider x,(s) to

be replaced by x;(z), Ngg(s) by Ngé(z), etc. Thus, one can proceed to
generate the z-domain equivalent of Eq. 192, given a sampling rate (assume
10 samples/second), and upon making computations of the characteristic poly-

nomial and numerators of the first and second kinds.

z-Domain
(= b9tz 4 3.29‘))1!31 (=2.851z + 2.851) + HpH3(=1.196) R(z) -
x,(2) (=21272— _18-—9;1; | (=.40132 + .0825) ;—}x;;(?.]_q_)— ag(z)
x(z) (22=1.3502 + .6703) + HoHz(—. 21272~ .1859) + HyHz (k. 191z +3.295)
(19%)

The closed-loop z-domain equation is not easily interpreted by methods use-

ful for interpreting the closed-loop s-domain equations. To facilitate

interpretation; it is our assertion that the w'-transform should be applied

to Eq. 194, i.e., z = [1 + (T/2)w']/[1 -~ (T/2)w']. The result is given in '
Eq. 195. The reader should compare the numerical values for the gains and !
break frequencies in Eq. 195 with the corresponding quantities in Eq. 19°.

Close correspondence for many of these numerical values should be noted.
w'-Domain

_.89hohw'(1 -;—01)—5.75}{2}13 (‘_%)2 R

’

_3_750000159(37"&?2 + ‘)H3 (l —%')
' ' ¥ l?
Xy -1.250000067&-29%.-8-'”1)“3(1-"—20) -l.ooooooosw(ﬁ:‘-"-ae—})+5.7pn,u5(r-?'x) \
2 ( w2 36k

o8 Tz om v ) - 1250000067 {gk g i1 ). 00005« s (1 - )

_

(195)
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It is our contention that the effects of the sample/hold operation, the
data rate, etc., are readily apparent in Eq. 195. Comparing Egs, 195 and

192 it is seen that:

® Numerators of the first kind pick up additional zeros at
2/T in such a way that they have the same degree as the
characteristic polynomial.

® Numerators of the second kind pick up additional zeros
at 2/T in such a way that they are equal in degree to the
characteristic polymomial.

® Every entry in the s-domain equation can be considered to
be equal-order over equal-order if the zeros at infinity
are included.

® Every cntry in the w'-plane equation is equal-order over
equal-order. Zeros at infinity in the s-plane move to
either 2/T or some other location, for example:

~1.25Hz(s) -»-1.?5(%— + 1)(1 - %)H_g(w') (196)

® The numerical values of gains and time constants in the
w'-plane are very similar to their s-plane counterparts.
(Although not demonstreted in this example, this obser-
vation holds only for modes having an s-plane modal fre-
quency which is well below the folding frequency (2Ws
equals U4n/T). The fact that this observation holds true
only under the stated conditions does not limit validity
of the w'-plane analysis techniques in any way when the
stated conditions are not satisfied. That this is so is
demonstrated in the next subsection.)

Thus, one may proceed in the w'~domain using all the familiar synthesis
tools of the s~domain. The direct digital design in the w'-~domain, however,
proceeds with additional explicit knowledge of the nonminimum-phase effects
introduced by the A/D and D/A conversion through the zeros introduced at 2/T
(equal to 20 rad/sec for this example). If these nonminimum-phase effects
become significant (the zeros move closer to the origin as the sampling rate
is decreased) then they can be regarded in exactly the same manner and

treated using the same techniques as are used in the s-domain.

The actual synthesis will not be carried out since the prime objective

was to highlight the analogy between the closed-loop transfer functions in

-
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the s-, z-, and w'-domains, A synthesis will be carried to completion

for the more complex aircraft model used in the next subsection.
D. SHORT-PERIOD AIRCRAFT WITH BENDING MODE

It remains to demonstrate the utility of the w'-~-domain in the face of
substantial folding effects. This can be done by modifying the example of
the previous section to present a more realistic design situation. Speci-
fically, the aircraft model is modified to include a lightly damped bending
mode at 25 rad/sec (this will be close to the 10 samples/second aliasing
frequency of 31.l rad/sec) and to include accelerometer and rate gyro out-
put equations. Thus, we will have one control input, one disturbance input,
four components in the state vector, and two components in the output vector.
The details of the model are given in Ref. 17. For our present purposes, it
is sufficient to modify our interpretation of the block diagram of Fig. 20.
Let the bending mode state be called x, the output of the accelerometer (n;)
be x;, and the output of the rate gyro (qg) be x,. The open-loop transfer
functions are given in Eqs. 197 and 198:

s~Domain
-117.72[. 141, 35.2][~.0314, 26.357]
X'[(S) ng [~ S \ LG
=3.7975 7065 * 1l [.0152, 24.346]
= = . £ E‘e (1‘)"'\
xA(s) ag [.355, 6.6751[.01. 25]
w'-plane (T = 0.1) 1
-1:?5.9(-—-9—7“-5-3 + 1)(-{—%%5 & 1)[.1, 32,62]
xp(w") Nz —5.79'(&(3.“’29 + 1)(-——;’5 + 1}[.069, 107.22] b ’5
Xo(w') Ag [.3789, 6.864][.0417, 60.137]

(198)
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In these equations quadratic factors [s© + 2tays +(u§] have been shown
in the shorthand form [, ay]. Comparison of the corresponding numerator

and characteristic polynomial roots in Egs. 197 and 198 leads to the

following observations:

® The short-period quadratic is essentially the same in
either the s- or w'-domains.

® The bending mode at 25 rad/sec s-domain has been shifted
upward to 60 rad/sec in the w'-domain. (A still lower
sampling rate could shift it downward,)

® The n; numerator, which is equal-order over equal-order
In the s-domain does not have the zero at w' = 2/T,
Clearly, we now have a design problem where the folding effects are signi-
ficant. However, the closed-loop design can still be synthesized using
conventional multiloop frequency domain techniques. The following compen-

sation was arrived at using mainly root locus techniques.

HiH; = 0.006 (199)
e W'+ 1,60k i
H‘\Hus =S 0.00B}W (200)

This translates back into the z-domain (and gives the required recursion

equation for the discrete control law) as:

HiHz = 0.006 (201)

.0079z = ,0067
z - 71875

HAH (202)

Q

The closed-loop relatiouships are given by Eq. 1nW, which is valid for
both the s- or w'-domains. Rather than give numerical comparison between
§ and w' using Eq. 171 (as was done in the previous section), it is our
preference to show Bode plots for the closed-loop system in the s- and
w'-domains. The Bode plots for the transfer functions of interest are
plotted in Figs. 22, 23, and 2k, Notice in particular the effect of the

nonminimum-phase zero on the magnitude and phase plots.
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At this point we come face to face with the central question, "Are
s-domain design procedures and concepts effective in the w'-domain?" We
proceeded with the design in the w'-domain on the hypothesis that these
design procedures and concepts are effective and with the knowledge that
the w'-domain transfer functions for the plant properly and comprehen-
sively incorporate all the effects of the data hold and sampling rate for
all modes. To demonstrate that this hypothesis is correct we must check
the time responses for the discrete controlled system to see if they are
acceptable. This is done for the q variable in Fig. 25. Notice that
there is no basis to conclude that the performance of the digitally con-
trolled system is inferior to that of the continuously controlled one or
vice versa. In fact, the use of an accelerometer feedback gain of 0.006
has resulted in a lower q/o[,g amplitude ratio at lower frequencies for the

digitally controlled system.

o——F—+ 0] e
q -5 -5
(deg/sec) _,, Cont. -10 10s/s
-15

Time(sec)

2
q (0]

(deg/sec) -5

-1.0

b) 10 deg Step ag

Figure 25. q Transient Responses of Continuous and
Digitally Controlled Systems
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E. SECTION SUMMARY

Analogies betwecn system formulations in the s- and w'-domains have
been drawn. To arrive at the w'-plane formulation one must first discre-
tize the problem by means of a valid mathematical technique if the effects
of data holds are to be represented exactly. This leads to a statement of
the discretized problem in the z-domain. The z-domain statement of the
problem is then converted to a w'-domain statement by means of a bilinear

algebraic transformation,

It has been demonstrated that direct digital control law synthesis in
the w'-domain is g viable and practical alternative to design by emulation
of a continuous system. Key properties of the w'-domain have been stated,
and the "visibility" of data hold and sampling rate non-minimum phase
effects in the w'-domain has been demonstrated. Most importantly, it has
been pointed out that conventional frequency domain design Procedures, such
as multiloop analysis, Bode plots, root locus, etec., are valid and useful
procedures in the w'-domain even in the presence of significant aliasing.
Finally, there is the convenience resulting from the fact that the imaginary
part of w', v, approximates angular frequency, w, for |w] < x/27 or lv] < 2/r.
The impact of this is that the control designer can now Synthesize digital
controllers using considerably lower Ssampling rates than are required when
an emulation design approach is used. Furthermore, the direct digital con-
trol law synthesis approach presented here requires no new analytical tech-
niques beyond those classical frequency domain brocedures required by the
emulation design approach. The analytical techniques are merely applied

and interpreted in the novel manner which we have described in this section,




SECTIN IV
MULTI-RATE TRANSFORM DOMAIN APPROACH

A. INTRODUCTION

The existing state of affairs with regard to the multi-rate problem

(introduced in Section II) can be reviewed with the aid of Fig. 26. Tt
may well be that our major interest in Fig. 26 is the response of the con-
tinuous output C in response to the input r(t). This can, of course, be

computed, since

c(s) = G(s)RI(s) (203)
CT/N
T/N
T
.—R_./T_‘-E—.1 G(S) E» -

Figure 26. A Basic Multi-Rate Configuration

For example, if G(s) = 1/(s +2) and R(s) = 1/s, then we may write, setting

2 = 8",
fey -+ Ae ae W (—l—)“ AR (0)
Therefora,
St} = e_ntll(t) + e—?(t-T) u(t = T) + é—p(t-QT\u(t - 2T) + «+«  (205)

Equation 205, while correct, is not very illuminating. We can gain more |

insight and increase computational efficiency by looking at the inter-sample A

e . ; - H
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T

=
|
|
1
E |
|

response at a finite number of points. This is indicated by the use of a

sampler working in a T/N frame time. The basic property of the transform

domain, discussed in Section II, can be invoked to give

T/N T/N_T .
Dl [GRT]/ = G/ R (206)
Letting z = oST/N gives, for our illustrative example,
T /N 2 T Z zN i
(6 —T—R = —T N (‘\O;)
2 —-e ey (z -8 QT/N)(ZN = 1)

e ; ;
We could pursue a cougrSe of action that would yield a "closed form" answer

by finding the N +1 poles of Eq. {07, expanding in partial fractions and

inverting the result back into the time domain, However, this "increased

dimension" approach is computationally burdensome, especially if the order
of N is high.

Suppose we elect to proceed via the recursion equation route. What

additional complexities are introduced by the multi-rate nature of the

problem? Suppose, in Eq. 7, that N is unity so that the recursion equa-

tion becomes

e C(n-I)T + TnT (08)

CnT

In practice, one usually makes a mental note of the frame time and sup-

presses the use of it in the recursion equation:

Sl R (709)

In general, the basic requirement is for four storage registers (r,, C,.i,
s 24 : 4 =
e » Cp)e Letting N be non-unity, define z = GST/N and suppress the T/N
frame time:

Cp-1 + I"YI;’N (.‘10)
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But, rg N merely indicates that r(t) is being sampled every T seconds and
b

therefore non-zero values result only for every Nth occurrence. Therefore,

‘ 0
I"!II‘,N S n =0, N, N, ... (211)
( r(t)

It is seen that the memory requirements of Eq. 210 are basically unchanged
from Eq. 09. There is, of course, the calculational logic needed to imple-

ment Eq. 211, For the example,

0 n/N # integer
. =2T/N ‘ 15
Ch e Ch-1 l (214 )

1 n/N = integer

While this pleasant state of affairs remains essentially unchanged when zero-
order holds are used as couplers, the use of higher-order data holds (such
as the slewer) does significantly increase the modeling complexity. These

cases are discussed in succeeding sections,
B. USE OF ZERO-ORDER HOLDS AS COUPLERS

Modifying Fig. 20 to include a zero-order hold (Z0H) gives Fig. 7. As
we shall see, the use of the zero-order hold will cause no increase in the

dimensionality or storage requirements.

R R c
—-{—»l-e | I 6(s) b—=

Figure 7. Zero«QOrder Hold Case




From Fig, 27,

A e—sT
¢ - c;(s)ﬁ——-;-__lRr (213)
Evaluate Eq., 213 at a sampling interval of T/N:
- T/N
; _ =T
AN [Q c S)[G(S)JJ .. (214)
Let z - eST/N SO that Eq. 214 becomes
T/N
/ zN /
M .__1[91_1 g
=N N
or
1T /N
; T S _ =sT/N 2 /
CTIN = ]) 1 > . )[G(b)] RT ('\]‘\)
> (: I 1) S
In Ea. 215 we have "inserted"
4 2 = z ~sT/N

L -1) = z d - F=p e )
in order to give the bracketed term the Same form as the Single-rate case
(see Eq. 21h4), |

Equation 215 simplifies to:
T/N
—sT /N ’
CTW/N = [1 4+ z—l + oo Z—(N-')] L S )[G(S)] RT (216)

Let the power series in z

2! operate on the input RT:
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o T anz® + a,z0~1 i ot B
T [9152 (1es ST)} pt - 0 e 3 p(z) (220)
8 zm+b1zm° +oeee o+ by

From Eq. 220 the recursion equation is written directly (let nT, the time
index, be represented by n):

Cn = =byCpq ~ bolpo = ove = bpCnem + aoR, + 81Rpoy + eoe 4+ apRpm  (221)

The recursion equation for CT/N has identically the same form as Eq. 221.
Simply recompute the a's and b's (the coefficients) using a T/N sampling
interval. Now let the index nT/N be n and write:

% 1 i T
Chn = =b1Cpq = Baihas ™ ve = ®rChem + A0Rn,y + 21Rp-,y + * aRnem, N

[alals)
L‘2‘:

In Eq. 222 the only noticeable change for the T/N case is the input notation
(refer to Eq. 219).

We illustrate with Several examples,

Examgle 1
Let
a
BOE = gemne =

The T recursion equation is

Chp = e"“Tcn_, + (1 = e—aT)Rn_] 3 ST (224)

whereas the T/N recursion equation is

s /
o—aT/N e—aT’N)R§L1,N , & = oST/K (225)

G-y + (1 =

(8]




n
+
log

G(S) = R (226)
so that
—aT/N
CT/N = Z _11 _Jb/a) +_L(b/a)e ] RT[T +Z—1 A ereel at Z-(N-1) (227)
—aT /N
zZ ~ e
The T recursion equation is
—aT b b ~—alT
Ch = e Chqg +Ry + (?; ot ek )Rn—l iz = (228)
whereas the T/N recursion equation is
-aT /N T b b —aT/N\._T
Ch = e /Cn_‘|+Rn’N+(-a~—1——a—e /)R-—'I,N ,ZzesT/N
(229)

In the next section, these basic ideas will be extended in a manner
that permits the analysis of multi-rate closed-loop systems containing
zern-order holds. Before proceeding, it will be instructive to exercise
Eq. 225 for a cosine wave input. This is done in Fig. 28 for the case
where T = 1, thus causing a sampling frequency of 2n rad/sec. The input
frequency in Fig. 28a is n/2 rad/sec, which bears an integer relationship
to the sampling frequency. On the other hand, the input frequency in
Fig. 28b is 1.5 rad/sec, giving a ratio of the sampling frequency to the
input frequency which is an irrational number. The effect of this on the
"steady state" response is clear. In the steady state, Fig. 28a has
acquired the additional attribute of periodicity, whereas Fig. 28b shows
the modulation caused by the non-integer relationship between the input

frequency and the sampling frequency.

The concept of the continuous frequency response of a discretely excited
system will be developed in Section V. This will provide the tool for iden=

tifying the spectral components of waveforms such as those shown in Fig. 28.
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O‘

5 10
-5L t —
Figure 28. Response to a Cosine Wave Input

C. MUITI-RATE FORMULATION

The type of recursion equation developed in the previous section can

be used to advantage in the analysis of closed-loop systems.

To develop

the basis ideas, we note that the transform approach states that if

then

given N/M is an integer (see also Appendix B).

appreciated by considering

The output equation is,

cI/N

oI/N

c(s) = Fy(s)FMs) (230)

F?/N FL/M (231)

The impact of this can be

Fig. 29.
letting z = eST/N,
| =ST/M T/N gT/M (232)
e t0) as)
s
8h
: w : i i RN




™ T/N
R R - c c
——/—— I-e o L—-—- G(s) —

T/M S T/N

Figure 29. An Open-Loop Multi-Rate System

or

I (“’“ )[_(_).] RI/M (233)

Rearranging gives

NI
I/ ZN/:i; LI — 1 l" a i:ST/ G(S)] RT/M (234)
bA

Again, let the power series in z ! operate on the input RT/M

cI/N ll — o ST/N G(S)' REME e™ h e o ,~[(N/M)=1] (235)

and then interpret the time domain implications

L I IR (7S] I R RS
(236)
RI/M

, for example, only has a non-zero value when the n index takes on a
value which is a multiple of T/M. Thus, the T/M value is "held" N/M times
before it is updated., Therefore, we can write
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T/M G
Rn,N/M (237) ;

In Eq. 237, T/M is the sampling interval of the input, n is the running 3
index of the recursion equation, N/M (which is an integer) is the number 1
of indexing periods for which the input is held constant before updating. |

D. A CLOSED-LOOP MULTI-RATE APPLICATION

The type of recursion equation developed in the previous section is !
very useful in the analysis of closed-loop systems. To illustrate, con-
sider the problem given in Fig. 30. From Fig. 30 we can write the trans-

formed equations

¥R - JsT/2

1 2 - {

Applying the results of the previous section:

XA ;EéﬁT gr/3 |t P g Ty T z_[(N/S)'1)l , M=3 (239)

{
l
~T/N ‘
YT/N - 1 s xT/P l’ + 2-1 + oo 4 z-[(N/Q)-1 ]l ’ M = D (2“0) :
PR |
73 2 i
IPONL I e PR O T R v TR O TR 5. S E
T/3 f s T/2 s $¢ f
4 E

o

Figure 30. Multi-Rate Example \
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Any desired integer value of N can be used which is commensurate with

3 and 2 (for example, 6, 12, 18, ..., etc.). The difference equations can

be written directly from Fig. 30. Noting that z = eST/N and E = R-Y
gives

T/3 T _T/3
X, = a1 =W Yn{1,n/5 il 5 Rn{y,N/s
(241)
~T /N ~T/N, [T/2
Iy = 8 / Uiaq %01 =8 ) Xn-l,N/2

where, for example,

T{“» 1 s (242)
]

Note that these two recursion equations completely define the system no

matter what value of N is selected. The response of this closed-loop

system to a sine wave input is shown in Fig. 31. Since the sampling fre-

quencies (T = 1) and the input frequency of = are commensurate, we see that
the "steady state" in Fig. 31 takes on the additional property of periodi-

city. This would not bé the case if the periods of the input wave were not
commensurate with the sampling frequencies. E

5 R=cos wt
:

Figure 31. Transient Response, Cosine Wave Input
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As mentioned previously, means for identifying the spectral content
in response to sine and cosine wave inputs will be developed in Section V.

It is important to note that the basic simplicity of the multi-rate
results is critically dependent on the use of zero-order holds, An indi-
cation of the type of complications which result from the use of more
sophisticated couplers will be given in the next subsection, where we
treat the slewer data hold.

E. THE SLEWER DATA HOLD

The impulse response of the familiar idealized triangular data hold
is shown in Fig. 32. The transfer function, in the s-domain, is

—sT,2
My = oo ) oo (23)
SL

Figure 32. Impulse Response of Triangular Data Hold

If the impulse response of Fig. 32 is delayed in time by T seconds, the
unrealizable triangular data hold becomes physically realizable and is
called the slewer data hold, a description first coined by Goff (Ref. 10).
Since a time advance of T seconds is introduced, the transfer function
becomes

Mg
T (2uk)

2
; ; g e-sT
SLEW i"ﬂ;;ﬁ"l‘




Thus, the transfer function of the slewer data hold is simply the square
of the transfer function of the ZOH divided by T.

In the presence of no additional dynamics, the implications of Eq. 2uk
are clear — one simply samples the input waveform, advances this value
T seconds, and ramps ("slews") to it (refer to Fig. 33). The basic property

! of the slewer is that it provides ramp-like waveforms, with no jump discon-

tinuities at the sampling instants. An inherent lag of one frametime is
introduced. This additional effective lag of one-half a period, when com-

pared with the ZOH, must be -aken into account in the synthesis of closed-
loop control systems.

It will be helpful to review the development of the ZOH recursion equa-
tions in order to place the differences and similarities encountered in the
use of the slewer into perspective. The basic open-loop equation

/N =(m9m§

(245)
reduces to
~sT T

o S (1 -se G) RY (246) ,'
Continuous ® ® \
Input |
Reconstructed L
lnput i
|

|

|
| + 4 \
T 2T 3T 4T ST 6T ‘
§ — @ @ 1‘
® ® |
t

Figure 33. Reconstruction Via the Slewer
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if M is permitted to be a ZOH and N is set equal to unity. More specifi-
cally, rewrite Eq. 46 as

¢t = “ﬂsﬂr (1 -z_')}RT (247)

where 1 = z ! is constrained to operate within the "curly" brackets. This
constraint is exercised because it is recognized that the [G(s)/s]T con=-
-1

)

tains the pole (1 = =z . Failure to recognize this by implementing the

recursion equation via
T GgszT X =1
C = e R°(1 =2 ") (248)

adds an additional state which is (eventually) cancelled out by a "zero"

operating on the input.

In the T/N case for the ZOH, set z = eST/N and write

!
l

cT/N

T/N N
ﬂzsll (1= :"){ o A= — (249)

1l =2

The 1 =z~ inside the curly bracket takes care of the pole of [G(s)/s]T/N
at z 1, and the term

Ll y A S 4 e et (250)

operates on the input, yielding the interpretation

N
RT-u—:—"_—]l = R:IIN (291)
| =2 g

That is, the zZero-order hold results in the "T" sampled function being held

at a constant value over the entire "T" frame time.
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_factor no longer operates on inter-sample points that are zero but rather

C o

Now consider the slewer where a similar situation pertains, Setting
M=Mg and N = 1 gives

{[—L}] ; RT (252)

In Eq. 252, the term (1 = z~1)? is constrained within the curly brackets
because [G(s)/’l‘s-’-‘]T will always produce a second-order pole at z = 1, and
hence should be cancelled out at the onset. Letting N be non-unity gives

cI/N - ‘[ 7 ]T/N ‘Z")ngT dLaS ;% e gFR/E
[ Lez)s? N[ - ) (25%)
Now the term in curly brackets is simply the "T" transform recomputed
with a T/N frame time. That is, if we know how to compute the pulse transfer
function using a slewer and a T frame time, then a recomputation for a T/N
frame time is a straightforward operation. The term operating on the input

can be rewritten as

pi [h - z-ﬂ]Q 4 [1 + AR g‘(N-l)]Q

254
[ - z"]g N ( )

The first [1 el +.-.<+zf(N-')] operates on the input creating the con-

stant value over the T frametime. Now the additional [1-+z-1-o...<+z_(N°1)]

sums the previous constant value with the present constant value. The only
complication is that not all the previous N—1 constant values are in the
same T frame; we now span values taken from two adjacent frames. The situa-
tion 1s depicted in Fig. 34 for the case where N = 5, Setting z = eST/s,

we first construct R£’5 . Two cases will demonstrate the additional logic
required. In Case 1 we add three constant values from the frame where

T < t < 3T and two constant values from the frame where T < t £ oT. In
Case 2, we add five values from the frame 4T < t < 5T, Thus it is seen that

9N




N=$ 2
e /_ Rn.5
r(t)
~R
{< i L 1 o 11
0 T 2T 3T a7 ST
t t —
if nis here if nis here
case | case 2

Figure 3k, Slewer Sampling Logic

the additional camplication introduced is the need for an indexing register,
call it k, which keeps track of numbers summed in the present frame and

those summed from the past frame. We adopt the notation

~

T - =(N=1) .
R[1 + 2 + eva 43 } R Xk 82 o
R = Ranx * ¥y Rn-N,Nl (253)
where
T k [T T &
RN,y * [Rn.N n-N.NJ 5 n_N)
— T
(N INT
% i
¢ R - R (256)
L n n=-N
N(T g N Bl T
INT INT




2

The index k varies between 1 and N and increments in unison with n, the

running index of the recursion equation. It is reset to unity whenever

'RT | takes on a new value, That is,
n,N
k ~» 1 if (n/N)myr = Integer (257)
or equivalently
In Eq. 255 RY is the first "back value", while RX _ ~ RV repres;nts
* 7777 Tn-N,N 2 n,N n-N,N *

the first back difference.

The reader should bear in mind that the pulse transfer obtained using
the slewer will always contain a free z in the denominator which will even-
tually end up operating on the input; hence, it is prudent to point out that

-1.T —i -(N=1)
2z R[1+42  +e+0 42 ] T K 1.7 .
N = Rn-(NH),N 'Y Rn-],N Rn-(NH),N (259)

F. ILLUSTRATIVE EXAMPLE

An example will serve to bring the details of the discussion into focus.
Let

6(s) = = z = ¢ST/N

so that

/N : 1 T/N (- z-l)Ql RT [1-+z-1-+... +z-(N-')]s (260)
-§-s2(s+1) ‘ s
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Therefore,

T/N

1 1 1 1 —12
G - A T [ ot

(2) /N [SQ g i 1} (1 =27)

z (z =1)°
(z = 1)2 %= r z - e'T;N] z°

7 _L_l;jT/N)z LT
T/N

s e

((TZN) - 14 e'T/N)Z +(1 = e MNrnmy 4 1])

The recursion equation is written directly as

A

—

==
P S P
= ATy [Rn-(HN),N s (Rn-1,N = Rn-(HN),N)}

(264)

: N T/N
z(z - e-T;N)
or
aoz + al

G(Z) g Zi Z - aes

The output, ¢T/N i5 then
e 3 (l 1.2
T/N ) Ml R ]RTA[I T e ])]
c = = : (263)

—————




In Eq. 264, the indexes k, and k, vary between 1 and N:

ky -—= 1 when [(n = 1)/N]ggac = ©
(265)
ko = 1 when [(n = ?)/N]FRAC =0

An actual computation of the terms in Bracket B is unnecessary, since

\1
Bracket B is Bracket A delayed by the factor e'ST/h . If N is set to unity
(recall that ag, aj, and ap are functions of N), we obtain the "T" recur-

sion equation as a check:
Ch = Il‘-Cn-‘ o aoRn_] + a, Rp.o (1\6(‘)

Using a sine wave input, the open-loop characteristic of the slewer can
be contrasted against the ZOH. This is done in Fig. 35. Note the added
attenuation and phase shift introduced by the slewer, On the other hand,
the output is considerably smoother. We remark at this point that the
"strength" of the slewer lies with its magnitude plot, whereas its weak-

ness is linked with the phase characteristic. This point will become

clearer in Section V.

Figure 35, Comparison Between Slewer and ZOH
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G. A MOTIVATING EXAMPLE

We have now demonstrated the application of the T/N approach both to

T e

i open- and closed-loop systems and to multi-rate systems., The primary
advantage of the technique is that the inter-sample response of multi-

rate systems is obtained without a significant increase in the complexity

of the defining recursion equations. The importance of being able to

compute the inter-sample points will be demonstrated with the use of a
We use this particular adjective because, even

"motivating" example.
though a step response is discussed, our true intent is to interest the

reader in the idea of finding the "continuous" frequency response of a

discretely controlled system.
Consider the block diagram of the single-rate closed-loop system shown

in Fig. 36. In Fig. 36, let

10 -
S R e e

so that the open-loop plant is either strongly stable or unstable, Let

M be either a slewer or a ZOH. As one of our design objectives we will i

R , RT uT U c
s GI /l"M‘-’}GL—?"

Figure 36. A Closed-Loop Single-Rate System
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require a closed-loop pole in the z-plane that has (s +0.5) as its s-plane
counterpart, The other objective will be to force a unity steady-state
step response. In addition, a 1 sec frame time will be utilized, forcing
a sampling frequency of 2r rad/sec and a folding frequency of « rad/sec.

Hence, the folding frequency will always be lower than the modulus of the
open-loop characteristic equation,

The details of picking the compensation networks Gq and Go which

achieve these objectives are discussed in Appendix H. The actual design

can be easily carried through in, among other domains, the w'-plane. The
resultant compensation is given in Table 6. (Note that the slewer design
was carried through for only one value of the open-loop root, since the

inter-sample response is quite smooth and therefore very similar for either
case.)

TABLE 6. COMPENSATION NETWORKS

DATA OPEN-LOOP

HOLD POLE G (z) 4%
ZOH (s = 4) =.0073k 137.2
ZOH (s +10) .393 - 1.54

Slewer (s + 10) Pl

- (|
SR EY 1.5M

The step responses are shown in Fig. 37. Note that at the sampling |

instants all three closed-loop designs give exactly the same performance.
However, the inter-sample responses present quite a different picture.
There is a very noticeable roughness or "ripple" in the ZOH designs, i
whereas the slewer response is smooth and well behaved. In addition, T
notice that it wes possible to overcome the additional phase lag, intro- |
duced by the slewer, through the use of a lead filter for G;(z).

Suppose this system was excited with a sinusoidal input signal. In
the next section we will show that the classical sampled spectrum of

z-transform theory would, like the step response evaluated at the sampling

gt
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Figure 37. Closed-Loop Step Responses

instants, be unable to differentiate between the three designs. This is
so because the sampled spectrum considers only the single sinusoid that
matches the output at the sampling instants. Our objective in Section V
will be to develop a tool that can define the spectral content for the

continuous states of the system. Such a tool would have a capability to
clearly differentiate between the three closed-loop systems of Fig, 37

[

H. SECTION SUMMARY

A classical property of sampled data control theory has been exploited

in order to develop a creditable tool for the analysis of the inter-sample

responses of multi-rate systems under the influence of discrete controllers

LAY

In particular, it was shown that the use of Z0H's leads to recursion equa-
tions capable of defining the inter-sample response with any desired degree

of fineness = yet the order of the recursion equation is not increased.

Here
a noticeable increase in the logic requirements was needed, even though the

The characteristics of the slewer data hold were also developed.

order of the recursion equation is not increased (when compared to the

single=rate recursion equation),

o\




SECTION V

FREQUENCY RESPONSE OF A DIGITALLY CONTROLLED
CONTINUOUS SYSTEM

A. INTRODUCTION

When a continuous (stable) linear system is excited by a sine wave,
the steady-state waveform is comprised of a single wave at the same fre-
quency as the input. It differs from the input wave only by a phase angle
and a magnitude factor. Moreover, it is unnecessary to compute the actual
transient response of the system when the behavior for large values of time
is of interest, since both the magnitude factor and phase angle can be read
from a Bode plot.

As we shall see, a similar but more complex situation pertains to a
discretely excited system. Given that the system is stable, the continuous
output waveform will contain more than just a wave at the fundamental fre-
quency; it will consist of the fundamental and all of its aliases. Thus, if
the system is forced with 1 sin bt, 0 < b < 2ﬂ/T; the output will contain
terms at frequencies b, b+ (2x/T), b +(4x/T), .... The relative amplitudes
and phase angles will depend on the dapa hold employed as well as the sys-
tem transfer function. Nevertheless, given a data hold and transfer function,
the magnitude and phase angle of each and every component can be read from
a particular "Bode plot." Note that this concept of frequency response is
more comprehensive than the traditional concept of the "sampled spectrum,"
which is limited to determining the single sinusoid that fits the system

output samples at the sampling instants.

In the subsections to follow we will first review the Bode plot con-
cept for a continuous system and then proceed to the frequency response of
a discretely excited open-loop system. We will conclude with demonstra-
tions of the manner in which closed-loop systems (both single and multi-

rate) are analyzed.
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B. CONTINUOUS SYSTEM BODE PLOTS

It will be helpful to first review the Bode plot concept for continu-
ous systems. Let R in Fig. 38 be a unit input sine wave with frequency
wp rad/sec. The output, in the frequency domain, is:

c(s) = G(s)R(s)

o .
" G(8) mpe—— (267)
S +u)°
R C

— G(s)

Figure 38, Continuous System

Equation 267 can be expanded in partial fractions as:

Terms associated
C(s) = 2Au>o - 2Bs + | with characteristic (268)
8 +ag s° + g polynomial of G(s)

Given that all poles of G(s) are in the left half plane, the bracketed
term in Eq. 268 represents time functions that vanish as t - «.

Thus,
the steady-state behavior is completely determined by the partial fraction

coefficients A and B, since once they are known the steady-state time
response can be written directly as:

c(t) Sia e A sin apt + B cos apt
t -
= VA2 4 57 sin (apt + ) (269)
where @ = tan ' (B/A).
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The details of solving for A and B clearly show the relationship between
the Bode plot and the steady-state waveform. To solve for A and B, one
multiplies BEq. 268 by [s° + mg] and evaluates the result for s = jay:

Terms associated _
R o Ftcr- oy R [
(270)

or

— -1
G(s)|s=3%% Agg + Bigg - a2 + g2 eJtan ' B/A tem)

To summarize, we see that a sinusoidal input at frequency ay produces a
steady-state waveform of the same frequency. It differs from the input
only by a magnitude factor and a phase shift. Both the magnitude factor
and phase shift for any given input frequency, w,, can be read directly
from the Bode plot for G(Jjw). That is, for any given input frequency wo,

A+ JB = G(s)' (272)

8=juwy

In the subsections that follow we will expand this "frequency response"
viewpoint to encompass discretely excited systems.

C. MATHEMATICAL PRELIMINARIES E

Let R be a sinugoid of unit amplitude with frequency b rad/sec. If R r

is sampled at 1/T samples/sec and then described in terms of a N/T samples/
sec model, we obtain

W . zN sin br o g Sptym

273 '
Y- (2 cos bT)£ﬂ7+ 1 (%63) '
For later use, it is necessary to find the N factors of the denominator of

Eq. 273 in a form which will permit a partial fraction expansion containing '

terms for which corresponding time functions are known. For example, if
£(t) = sin bt, then !




‘Q(t) = [ain bt]T = F(z) = e Z ::: ::z S (?7“)

but we do not know the time function corresponding to

2 sin bT

Mz =
(=) 2€ + 2 cos bTZz + 1

(275)

which will also occur among the N factors of the denominator of Eq. 2753.
This situation is remedied by adding n to the argument so that F(z) in
Eq. 275 becomes recognizable in the time domain. For example, Eq. 275
becomes :

s =2z sin [b + (x/T)]T R b i o
i S 22 =2 cos [b + (x/T)]Tz + 1 % AN g sin(b+ T)t (276)

The reasons for adding x, when obviously kx (k is an integer) would also

work, will become apparent at a later point. Consider the denominator of
Eq. 275 for the special case of N = 23

zl‘—:‘cos bTz” + 1 = (Z,‘—QCOSTZ'F‘)(Z:\-Q-?COSQZ+1) (:“T()'

"
I
n
7]
o
[7]
(=4
)
N
n
+
-
i

(z" - 2 cos b—?- z 4+ l)(z’»‘ - 2 cos [(b it %) %,z + 1)

(2718)

Thus, for N = 2, the partial fraction expansion of the output will require :
terms which account for not only the sine and cosine terms of the input fre=- ‘
quency b but also for the first alias, b + (2x/T), of the frequency b as

well,

Now repeat this exercise once more, for N = 4, After this the result
for arbitrary N will be apparent by induction,
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z¥ =2 cos bzh

+1

(zh—z cos-t-’-g-z‘?+1)(z"+2 cos%r-zgn) (279)

) bT 2 ( N
(z -2 cos < z +'l) 2" =2 cos b+T '— +'| (?.80)
In turn, write

b br 2 I - ol 2., T
z 2 cos > zc+1 = (z 2cost+1)(z +3cost+1)

(z2—2 cos .th z+1)(z2—2 cos [(b +-l¥£) %—] Z ¢ l) (281)

and
zh+2cos-be—Tz2+1 = zh—ecos[b +— —]z +1
= (22-2 cos[b +T -n-]z+1) z +2 cos[(b T]z+1
= (z2—2 cos [(b +%) -'f—]z + 1)(22—cos [(b +%’-‘-) -?:—]z + 1)
(282)

Substituting Eqs., 281 and 282 into Eq. 280 gives:

3
28 = 2 cos brzt 41 = n]'io (22—2 cos [(b +-2T"E) -%‘-]z +1) (283)

From Eq. 283, the result for arbitrary N is apparent by induction:

N-
z2N_2 cos bTZN +1 - II (22-—2 cos[ e —-]z+1 (28k)
n=0

2 EI; [(Z—cos [(b ‘\*ETﬂ) %])% (sin [(b +-2-TE) -Iﬁ—])al (285)

|




Equation 284 is true for arbitrary N even though the develomeni was
in terms of even N.

Thus, the b rad/sec sine wave, which is actually sampled on a T inter-
val, can be mathematically described in terms of a function having sinu-
foidal components at frequency b rad/sec and its first N—1 aliases (using
a T/N interval).

Consider the system of Fig. 39 where G(s) represents an arbitrary
transfer function and M represents an arbitrary data hold. Suppose R is
a unit amplitude sine wave and we wish to sample the output with a T/N
frame time.

N
M L (e - (/N IR , oz =T/ (086)

zN < 2 cos brzN + 1

Expand the right-hand side of Eq. 286 in partial fractions:

CT/“ : Ni‘ Apz sin an(T/N) + Buz[z = cos ay(T/N)]
n=0 z° = 2 cos wn(T/N)z + 1

+ [Terms due to modes of (GM)T/N] (287)

Assume that responses in the modes of (GM)T/N approach zero as t = o, i.e.,
that all modes are stable. In Eq. 287,

R RT c cT/“
—JT—— [ Y] }—-—— G r—g';—-b

Figure 39, Open-Loop Case
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oy = b+, n=0,1,2 ..., NI

For the present, we assume that b g ¢n/T. The steady-state waveform, at

the sampling instants, can be written as:

N-1
C(t)lt-—w = nz{:) (A sin apt + By cos apt) (288)

To solve for Ap and By, multiply each side of Eq. 287 by
[2° = 2 cos ay(T/N)z + 1] % 0<kg (N=1)
and evaluate for z = ldak(T/N). Since the only term which can survive on

the right-hand side occurs when n = k, the ¥ will, of course, disappear.

Then, if we so choose, the k notation can be changed back to n. To illus=-

trate,
/N 2N sin bT 2
(oM) W e (2€=2 cos ay(T/N)z +1]) g o

M-l (Age ein an(T/N)] + Ruz(z=cos an(T/M)] 5
Eo g TS [2=2 cos ay(T/N)z +1] et (1)

(289)

For any n # k, the right-hand side of Eq. 289 is identically zero since

22 = 2 cos aqy(T/N)z + 1 = [2 = cos ay(T/N)]° + [sin ay(T/N) 17 (290)
vanishes when

z = laag(T/N) = cos ay(T/N) + J sin oy (T/N)
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Specifically, we obtain

[cos ay(T/N) + J sin we(T/N) = cos ay(T/N)]° + [sin a(T/N)]2 = 0  (292)

For n = k, the cancellation of the common factor guarantees the survival
of an n = k term. Factoring out a common z gives

z :Ak sin an(T/N) + By[cos w(T/N) = cos gg(T/N) + § sin %(T/N)]f -

= (Ag + JBy)z sin ap(T/N)
k k “k z=14wk(T/N) (29%)

Therefore, Eq. 289 becomes

(G/M)T/n(z“ sin bT)[z°=2 cos a(T/N)z +1]

z sin a‘((T/N)(Ak"JBk) o zj-e cos bTz" +1 ‘
Z=1M(T/N) 4

(294) 7

At this point, let k revert to n. {
2 l

T/N zZN=1 gin br 2°=2 €08 wy(T/N)z +1 ;

Ap+3B, = (GM) " SIn ay(T/N) (295) '
. z=14u0,(T/N) sin an(T/N)  22N_5 cos brzl +1 2=18a(T/N) (

The last term on the right-hand side of Eq. 295 is indeterminate (0/0) when
z = 1% (T/N). Therefore, apply L'Hopital's rule once and obtain

N-1 3
= T/N ) Z 2[Z-COC %(T/N)] sin bT o 4

Aﬂ*JBn (G") z:lzmh('r/ﬂ) mzﬂ-‘(zﬂ - cos bT) sin (lh(T/N) zleh(T/N) (~9b) l
wethl, % T/N . [cos wn(T/N) +§ sin wp(T/N) = cos wn(T/N) ] sin bT ! ?

(i gt R z=14ay,(T/N) (cos wyT +J #in @,T = cos bT) sin ay(T/N) !

(:97) g
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A direct substitution for ay = b + 2m/T quickly shows that the last part
of the product in Eq. 297 is unity. Therefore,

22e8T/N
Ao+ 3By - g (@) (298)
2: 1.‘&L\n(T/N)

The superscript notation in Eq. 298 is for the purpose of calling out the
definition of z dbeing used in the evaluation.

To review the situation, the system is forced with the sin bt; then the

steady-state output waveform, sampled with a T/N frametime, has the form

N-1 T/N ,
/N _ .
¢ (t) E Ay sin apt + By cos apt (9)
n=Q
where
@y, b o+ -%‘-‘- Lo om On b, B e, B (%00)

The coefficients Ay and B, are computed using Eq. 298,

For example, let

1 sT X
B “—— t‘ @l — ": ?\
M - 3 G(s) g (*01)
so that
'IN 1 L‘—“T'; N ( T :-N)

-I‘T ()’ (500)

TN
N(z - g {taxt)

It is instructive to plot the Bode plot for Eq. 30" using N as a para-
meter. For the sake of clarity, we will plot versus w rather than log o
and, in addition, will omit the phase angle plot. Also, for reasons of
clarity, the ordinate scales will be displaced for the different values
of N (refer to Fig. 80). Note that, over the plotted range of 8x, the
N ] case repeats itself 4 times, In a like mamner, the N 2 case

repeats twice, whereas the N L goes through one cycle.
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Figure &0,

Magnitude Plot for N = 1, 2, !

Imagine that a unit amplitude sine wave is input with a frequency of
/2. In the N 1 case, our only interest is matching the sampling points
with a single sine wave. The magnitude and phase angle (not shown in

Fig. 40) could be read from this plot at w = n/2, x/2 + 21, n/2 + b,
n/ﬁ + 6, ...; each point gives the correct values. Assume next that the
input has a frequency b = (n/0

+ 4x). Clearly, if the objective is to

match the sample points with a single sinusoid, the frequency of the out-

put could be b plus any On/T multiple; the sampler cannot tell the differ-
ence. In fact, the "sub" aliases at b= r/T, b=lx/T will also work., These
"sub" alisses are the difference terms so prominent in modulation theory.

Figure %1 depicts this situation for a steady-state response given an
input frequency of b = n/2 rad/sec and assuming the system used in com-

puting the Bode plot of Fig. 40. For the sake of clarity, only two of the
many waves which fit the sample points are shown — one at /> rad/sec, the

other at [(a/0) = (2n/T)] rad/sec.
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© Sample Points o
= A sin[(w/2)]t+8cos[(¥/2)]t
Asin[(w/2)-(2w/T))1 +B cos[(x/2)-(20/T))1

A:-2048
®r g:-sse8 \

1S \
ALy
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c'(n)

-

0 -A—+ t e + ~
Jb ol
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Figure 41, Two Continuous Sine Waves Which
Match the Sample Points

The N = 1 plot in Fig. %0 corresponds to the "sampled spectrum" of
sampled data control theory. Turn now to the N = 2 case wherein the objec-
tive is to match one inter-sample point as well as the sample points. Let
the input frequency be x/2 and note that the points at w = n/2, n/C + On
give the correct answers, as would the points n/2 + 4n, n/2 + G6n. Suppose
next that the input frequency is b /o + 2n. Clearly, the second required
component could be read from the "first alias" at b + 2x/T or the first sub-

alias at b = 2x/T (or, for that matter, a whole host of other frequencies).
In the N 4 case, four sine waves are required to fit three inter-
sample points as well as the sampled points. If the input frequency were

b ¢ + 6, and if the plot of Fig. L0 with its limited range of 8n were

109




the only one available, clearly it would be to our advantage to use the
ndifference” frequency points at w = b — 25/T, b — 4x/T, and b — 65/T to
establish the magnitude and relative phase of the three remaining sine

waves.

This brief discussion serves to point out that the aliases and sub-
aliases can be associated with the sum and difference frequencies of modu~-
lation theory. One should not, however, think that both sum and difference
components must be simultaneously present in the output. Clearly, only
N components are needed. We can now remove the earlier constraint that

b < 2n/T. If b is less than 2x/T, it is certainly true that
o = b+ , n=0,1,2, ..., N-1 (303)

However, if b > 2x/T, let wg = 2n/T and use

. Sl (304)

to restate Eq. 303 as
wp, = b o n=ng, Ng+1l, «o., 0, 1, 2, ces, N=ng=1 (305)

Then

For our previous example where N = 4, suppose b = 6r + /2.

ngG = = (M) = -3
INT

2n

Thus,

w, = b+, n=-3, -2, -1,0

and we use three sub aliases, If b = n/2, then

x/2 :
ng = -< on )INT = 0
110




and we use

the "positive" aliases.

Keep in mind that all this represents a convention which the reader
may not necessarily elect to follow, What is important is a clear under-

standing which will permit one to pick a consistent set of N points from
the Bode plot.
Of interest is the case where N is extremely large. In fact, let

N ~= ® after evaluating Eq. 302 at z = 14w, (T/N):

Lo (1 = ™0 - oy i
, ¥ i
Nz — e 21Ny 3 _ 7 N[ 18y (T/N) = e 2T/N)[1 = 1= (2/N) ] :
z=1%y, (T/N) N],im

An indeterminate form is obtained. Therefore, use L'HSpital's rule twice
(substitute 14w, (T/N) = cos wp(T/N) + j sin w,(T/N), ete.) and obtain (see
Appendix TI):

1 [y =9t B8 R Baan 1 g PR (509)
T \s(s + 1) i Jay, T 1 + Jon sT 8 + 1
zv-.lmh(T/N)‘ 1im s=Jay,
N =~

That is, as N = ~, one simply divides GM by T and evaluates the coeffi-
cients at s = jwo,. This is representative of the general result discussed

in the next subsection.

E. OPEN LOOP FREQUENCY RESPONSE —
CONT INUOUS OUTPUT
In the previous section it was shown that

268T/N
i ) L z=e
/\n * JBn 'I'q'. ((lb‘l) '/N (':IO)
1-\\\]('1‘/1\”
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To deduce the behavior for infinite N, rewrite Eq. 310 as

W L] o)
|

T (311)

The T/N's cancel, and as N @ets very large only the k = O term contributes
3 since all the "aliased" spectra have moved to infinite frequency. There-
1 fore,

.87

\ m T/N) %7€ i _ GM 5
i N —=w T (GM) - (312)
\ z=14ay, (T/N) s=Jay,
§ wp = b+ i;ﬂ s M =hy, B+l ...

! where
i

The finite N example of the previous section can now be studied for the
X case of infinite N — therefore the "continuous" frequency response. Thus
» S e‘ST 1
Ap + JBy = T A (313)
S =jay
' This is shown in Fig. 42 where the components for input frequencies of
=1
‘ b |

0.1, 1.0, 4.0, 0.0 rad/sec have been indicated with different symbols.
The interpretation of Fig. 42 is as follows.

A
| at 1 rad/sec is input to the sampler.

Suppose a unit sine wave
]+ 4 YT,/T,

Then, if sine waves at 1, 1 + ox/T,

««, are added together, the resultant waveform will be an exact
match of the actual steady-state output waveform.

One would expect this
waveform to be relatively clean, since the first alias is down by something

m the order of 30 dB, relative to the input component. However, the
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Figure 42, Frequency Response and Spectral
Components of Output

transient response itself does not bear out this conjecture as can be seen
in Fig. 4%, The reason is that the higher terms are important. They do
not represent "hamonic" terms but are rather modulation components which
must add together properly in order to match conditions at the T transi-
tion points. As mentioned earlier in Section IV, it can be seen that the
"steady state" does not necessarily take on the additional attribute of
periodicity. This occurs only when the input frequency and the sampling
frequency bear an integer relationship with respect to one another. As
another example, the "frequency response" for a higher-order system is
shown in Flg. 44%. 1In this example, the sampling frequency was deliber-

ately picked to suppress the bending mode responses.
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"Steady-State" Transient Response
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A More Complex Case
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F. INPUT SIGNAL WITH PHASE SHIFT
If the input signal has the form
r(t) = Xk, sin bt + kp cos bt (314)

the results of the previous section are changed only by a complex constant,
Following exactly the procedures of Subsection D, except for using the more

general input given in Eq. 314, gives (see Appendix E):

22eST/N r

Ay + 5Ba = o ()N C (kg + Jko) (315) ,
z=1%ay (T/N) b
1
Limit N == 3

|

Ap + 3B = - GM © (ky + ko) (316)
S=Jjun

G. SINGLE-RATE CLOSED-LOOP FREQUENCY RESPONSE

The closed-loop results will be configuration dependent. However, the
mathematics are quite tractable and can be followed through on a case-by-
case basis. Thus it is more important, for the present, to have an insight
into the mathematical structure and the particular simplifications that sur-

face in a closed-loop analysis.

Consider the (vector) system shown in Fig. 4. The procedure we now
follow will be typical. First, solve for the vector component at the input
of the data holds.

s GfRT—G?GTQ(GM)TET (317)
Therefore
: BT = [1 +cTcl(aT]™ TR (318)
Next, solve for C(s):
¢ = (eM)[I +G'¥G'£(GM)T]-1 6T gT (319)
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Figure 45, Tllustrative Vector Closed-Loop Configuration

The spectrum of C(s) is what is really of interest; we seek it by finding
first the spectrum of CT/“ and going to the limiting case of N == x,

Let the input be a sine wave at frequency b rad/sec and let the delay
operator be

z—] L e‘-STfN (320)
so that
N o
RT = = 2 S1in bTN (5?1)
2% = 2 cos bz + 1
Therefore
I - (@)1 + T eT(em)T T T RT (302)
For the sake of brevity write Eq. 322 as
cI/N GE/NG'ERT (303)

Expand the right-hand side of Eq. 323 in partial fractions:

N
,‘T,/N T N . l‘ 4

~
&

. N
z - & ¢89 bilg =+ 1

= gi; Apz sin an(T/N) + Bpz[z = cos an(T/N)]
n=0 25 - 2 cos wy(T/N)z + 1

/
¢ [Terms due to modes of G? NGE]
' )
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Assume that responses in the modes of (}E/NGTB approach zero as t ===, i.e.,
that all modes are stable. In Eq. 32k,

ah = b+_. ’ n:o, 1, 2, ee oy N'l (325)

[More generally, n =ng, Ng+1, ..., N-ng—1, where ng = ~(/ws ) oy ) -

Note that Eq. 324 is exactly the seme as Eq. 287, except (GM)L/N has
been replaced by GE/ NG% . Hence we can write a crucial result using

Eq. 298:

1 2MA3
Ay + 3By = w G © (326)
n + JBn N Ui kB 2=k (T/N)
But
ol S wih (327)

Therefore, using

(120 (T/M Y = 12T
= cos T + J sin wpT

= cos [b + (2m/T)]T
+j sin [b + (2m/T)]T

= cos BT + j sin bT

we obtain

o 12w, (T/N) IV
B 1u (z/) s

11

G[12w,T] = G[150T] (328)

Thus, we can replace zN in G% with z and evaluate it at z = 14bT. At this
point we have

11

)




28e8T/N o yzleST
| . R
Ay (T/N) 2=15bT

Equation 370 is the basic result for the finite N case.

To reiterate, to

find the coefficients of the N sine waves for the T/N sampled output of C,

we compute the normal "T" transfer functions for

6g = [T +cTadem)’]" a7 (330)

and evaluate it for
1abT (331)

Next, compute the normal T/N pulsed transfer function for Gp; evaluate it

R

at = = 1xy(T/N) where ay = b + (2m/T),

Thus, \}[1‘ is periodic in (om/T) and it is superfluous to use a (T/N);

T
it suffices to use ©I. Moreover, only the Gp is a Munction of N; this
simplifies the procedure involved in the limiting case tremendously. For

the case of N ==, the continuous case, we obtain:

a_sT
£ M(s)G(s) C'l'( : ) el 330 |
Ap + JBp T : R(- (33¢ |
- Is=jwy 130T
|
. . . . N2 ‘
Equation %32 is the desired result for the given closed-loop configura-
tion.™® However, the mathematical ideas are what count; one can follow the | o
{
details through for other configurations quite easily.

*Accurate numerical determination of Vﬂl‘*'lz&b‘l‘ may prove difficult at
high sampling rates. This is the result ot small differences between large ‘
numbers which occur in the computations as poles and zeros approach the unit
circle. 1In this event, one is well advised to carry out equivalent compu-

tations in a domain where numerical conditioning is much improved (e.g., in ‘
terms of w' or w).
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H. THE "MOTIVATING" EXAMPLE REVISITED

Recall the single-rate design problem of Section IV wherein a closed-
loop system was designed to have exactly the same step transient response
at the sampling instants even though the open-loop parameter took on two

different values. For convenience, the step response is repeated in
mg- "'U.

Using the result of the previous subsection, we are now in a position
to examine the frequency response. The magnitude plot is given in Fig. 47
(the magnitude is plotted against w rather than log w).

Lo -

a=10 ZOH
Cc(t)

Slewer

—
o
F—

1 (sec)

Figure 4¢. (losed-Loop Step Response

Note that the "sampled spectrum," the N - 1 case, is unable to differ-

L

entiate as to whether the open-1loop parameter is either a ==\ or a

< = 10
Moreover, the difference in the frequency content of the steady state when
the ZOH is used cannot be distinguished from that when the slewer is used.

Certainly (at least for this example) the classical “sampled spectrum”

of limited use. On the other hand, the continuous spectrum (N ==« caso)

clearly displays the differences in the closed-loop designs. Note, in
particular, the added width of the notches when the slewer is used; the

ZOH notches are very sharp by comparison. Thus, one would expect the
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Figure 47, Magnitude Plot for Single-Rat
Cloged-i oon Qystem
slewer data hold to function wor g tive ly whe lized explicitl

as a notceh filter for purposes of witigatine Light iy asmped bending mode
effects.

BetOre leaving this exanple, let us take the ~prortunite o solidity

the meaning of the frequency response for the tinite N case. Consider

‘he n = 10 case and use the rocursio: equat i to generate the continuou

transient response for a unit amplitude sine wave with n frequency ot wx/
This is shown in Pig. 48, According *o theory we should be able o set

N = 1 and from the Bode plot read tha marmitude and vhase of the

single

sinusoid that fits the sample prints at the sample instant. This indeed

nroves to be the case and is shown in ¥igp, Lo In Pig. %9 a section of
the transient response has been "copied” and overlald with the sine wave

which results from the N 1 computation, namely

Ot = ot e engcm £
- A

18

|
s
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Equation 332

indicates that the value of the wave at the sampling instants
is of interest,

However, for expository burposes, we have shown a complete
cycle in the figure.

Next, consider the (N = 2) case wherein the desire is to fit not only

the sample point but one inter-sample point as well,
in Fig. =0.

This case is shown
The T/2 response equation is
aq sin l t + bo cos -7-f- t T/2
T/~‘
C(®)]ss | (334)
+ a, sin (—— + ;1) t + by cos (JL + ?;)t
l.\
Iy
&
3 by
\ 1 N=2
2F / Tz}
VAN
v
by
| -

t %*—‘—i
20 22 l| 24 | 26
| % 3 t(sec)
-1 b | l\ |
- (Y
“2f \ ,'\ |
\ | |
L |
-3 " I
|
\

Figure 50,

- S

Steady-State Sinusoidal Components, N




Again, for expository reasons we have shown the continuous waveform which
results from sines and cosines at w = n/2 and its first alias at

w = (x/2) + (2x/T). A half period for the N = 10 case is shown in Fig. 1.

The reader is reminded that the steady-state wave of this example is

periodic and free of modulation effects simply because the selected input

frequency bears an integer relationship to the sampling frequency. In

i general, the expansion of the steady state in terms of aliases is a non-
orthogonal series. For those special cases where the steady state is
periodic, it is readily apparent that the N = » case degenerates to a

Fourier series.

Figure 1. OSteady-State Sinusoidal Components, N = 10, Half Period




PRESE SR

It is also important to bear in mind that we are "matching" the sample
points; thus the ag term for N = 1 will be unequal to the ay term for
N = 2. This is demonstrated in Table 7 for N = 1, 2, and L (let b= n/2).

TABLE 7. COMPONENT COEFFICIENTS N =1, 2, k4

B =1 N=2 N==54
ag —0.174468021 | ag =0.048579760 | ag  0.002998683
b

by =0.287649137 | by =0.306381976 | by =0.302606086

b, 2n a; =0.125888261 | a; —0.046197029
= b; 0.018732839 | by =0.043548018

o, b ay, =0.051578443
* b, =0.003775889

., 6n az —0.079691232
s bz 0.062280857

I. A PARTICULAR MULTI-RATE CONFIGURATION

As with the analysis of closed-loop single-rate systems, the analysis
of the multi-rate closed-loop case is configuration dependent. However,
the mathematics remain quite tractable, as we shall attempt to demonstrate
in this and the succeeding subsections. Here we consider a particularly
simple multi-rate configuration; the next subsection will treat a more

complex configuration.

Consider the two-rate system shown in Fig. 52. In Fig. 92, Wy and Wo
are compensation networks, M is & data hold, and G represents the open-
loop system dynamics. One may consider these to be matricec of the proper

dimensions.

The objective is to find the "frequency response" for the output

vector C. As in the single-rate case, we shall assume that C undergoes




Figure ©2. A Specific Two-Rate Closed-Loop Configuration

a phantom T/N sampling operation and then secek the limit as

Fig. 52 it is seen that

¥
¢ amet/M

or

T/N

¢ ((‘.M)P/N g/

,  N/M an integer

N == . From

(z‘:‘(\)

: / § : :
Thus, the first task is to solve for EL/M, This is a non-trivial task;

the details must be followed with care.

E W,RY = wowh(ameT/M)T
Therefore,

gI/M w]/MgT - w‘%‘/Mw"I‘.(GmT/M)T
Pre-multiply Eq. 33%8 by GM and sample at a T interval.
(aMET/MT— (aMT/MTRT (i T/M)T WD (/M
Solve Eq. %39 for (GMET/M)T:

(GMET/M)T (1 + (owT/MTwe ]! (G T/ gT

12%

(338)

(3%9)

(340)

T ———



Substitute Eq. %40 into Eq. %%8 and clear through, The result is:
1 1

/M w'{/M:I -~ WwE[r + (GW'%‘/M)'J‘ e (Gm'{'/M)lg RT (841)

__For brevity, let

v/ ¥ )
gl /M wf/M Gp RY (340)

s T ; 5 T /MyT it
The evaluation of GA is non-trivial; for example, the (GM'J].‘ )" element of
G'}\‘ will have to be computed using either switch decomposition or the phantom ,

sampler, Via the phantom sampler,

",
\ S m i/ ! i
(um'}/“)r [((‘.M)I/Mw{ M)t (343)
i
(
So far, the two-rate example yields: -
*/M o (am)T/MyT/MgT gT (3h4)
!'
and we see that the only new element added over the single-rate case is the
addition of a term sampled on a T/M interval and the additional censtraint g
that N/M be an integer. |
Let
o8T/N (3h) ‘
|
g0 that a unit amplitude sinusoidal input at b rad/sec has the transtform |
’ N o
RI' ‘ & sin bT (‘\l‘(\)
2N = o cos breN 4+ |




As in the single-rate case, substitute Eq. 346 into Eq. 3kk:

N
T/N _ T/NyT/M T z*" sin bT :
C = (GM) W Gy — e — Al
( L AN _ o cos brzN 4+ (347)

Expand Eq. 347 into partial fractions':

T/N =] Apz sin wn(T/N) +Byz[z—cos ay(T/N)) Terms due to | :
gt R, > B rmemr| GO
n=0 z2 =2 cos ay(T/N)z +1 (GM) Nw,' Ga

where

Qy, = b + ;%ﬂ (349)

(Keep in mind that we can no longer pick N arbitrarily, Thus, if M = 3, we
cannot look at CT within the present problem structure; however, we can look
at CT/g, CT/“, CT/9, etc., since N/M is an integer. Thus, as we let N -,

we would have to do so in multiples of 3,)

Assume that the terms due to (GM)T/NW?/MG% vanish as t —== ., Thus,

the steady-state response, at the sampling instants, is given by:

N=1

C(t)'t'ﬁ-\\\ = EO An Sin (lht t Bn CcOoSs (l\‘t ("‘“0)
n=

To find Ap and Bn, multiply Eqs. 347 and 348 by [2° = 2 cos ag(T/N)z + 1]
(note the dummy index).

*At this point we may fall back on the results of previous subsections
and proceed directly to Eq. 398. However, it is a worthwhile exercise to
complete the proof in order to gain familiarity with the notation,




.
<

N B
T/NT/M.T % Sin bT[2“=2 cos ay(T/N)z +1)
(GM) /NW1 MGA Zw

-2 cos szjw+1

N-1 +
v il s o (T/N)z +1] > Apz sin ;)n(T/N) +Bpz[z=cos wn(T/N)]
n=0 2°~2 cos wy(T/N)z +1

+ [29~cos %(T/N)zn][(cm)T/Nw?/Mcf] & (351)

Evaluate both sides for z = cos ay(T/N) + j sin ay(T/N). Thus, the only
term which survives in the summation on the right-hand side is when n = k,

We may as well drop the k notation and retain n (the choice is ours).

So far,

Apnz sin wn(T/N) + jByz sin an(T/N)

N sin bT[z¢ — 2 cos ay(T/N)z + 1]
2N — 2 cos bTzN +

(GM)T/NWT/McT g
z=14ay, (T/N) (352)

or
N-1 . 2
: T/ANT/MT Z sin bT[2" =2 cos ay(T/N)z +1]
#n * 3% S /Nw‘ i sin an(T/N) (2N =2 cos bIZ +1)
z=1%ay, (T/N)
(353)
Note:

14wy, (T/N) = cos ay(T/N) + j sin w,(T/N)

The right-hand side of Eq. *53 is indeterminate when z = 1%wn(T/N).

Therefore, use L'Hopital's rule,
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%1 " T/NwT/MGT 2N sin br e an(T/N) (354)
Ap + jBn (M) A W m(zm'l-cos UTZN-1) ]zswn(T/N)
T/ /M B sin vr L)z~ cos wn(T/N)] (355)
TR on(T/N) A, N |
(GM) Nb sin op @y (z —~cos bT) 15‘»“('1‘/1\[)
Ap+JBy = (GM)T/NW?/MGX‘ ’

15wy, (T/N)

. Sin VI[cos wrtT/N) +J sin wn(T/N) = cos wntT7N) ] (356) 1

[sin wn(T/N) IN(coS w,T +J sin w,T —cos or)

Therefore,
: 1 T/N T/ T !
Ap+j = = (GM)*/"W3i/TG ?
n*JBn v L Alm»n('r/N) %
(sin bT)[J sin-og(T/N)] (357)
& [sw](cos wnT +J sin wpT=cos bT] 2
but, i

[1z$a>n(T/N)]N-cos BT = 14wyT —cos bT
= cos wnT +J sin wyT —cos bT
= cos [b+(2m/T)]T + j sin [b + (2m/T)]T —cos bT
= cos bT +Jj sin bT =cos bT

j sin bT

Therefore,

SR L N =




T
‘

R )

iRl

}
{
|
)

Next,
GX GA(ZN)
Therefore,
G, (2N = Gy [, (T/N) N
A(z 1y, (T/N) A L1 3y, (T/
= Ga(12nT) = Gy (1401) (359)

That is, take the "T" z-transform of Gp, and evaluate at z - 14bT. Now,

the "new" element, W$/M:

M ey

(360)

Therefore, "
U sy = 1 Dy (361)
= W, [13an(T/M)] (362)

That is, take the "T/M" z-transform of Wi and evaluate it at z = 1%y (T /M),

At this point, only GM depends on N and we o

N ==,

an go to the limit of

280ST/M 24eST
472 co
z2 = 13, (T/M) 2=1XbT

(remember N - M, M, etec.). As
» the coefficients of the continuous spectrum

z2eST /M p
Z- 1%y, (T/M) 5

An + 0By - [(GM)T/N

22eST/N
J[WT/M
2=1%w, (T/N)

This is the desired result for finite N
N == are given by

z2eST
J (364)

Ay + B, - 7%-(GM)I 3 [w$/M o
S= [(V)) 2=
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An example which illustrates the use of Eq, 364 is given in Fig. 5%.
This frequency response (which is plotted on a linear scale rather than
log @) can be contrasted with the single-rate results shown in Fig. 54. 1In
each case, the design objective was to force unity DC gain and a closed-loop
short period at A = (s +2)2+(2)2 when the open loop was D = (s +2)2+(6)°.

Note that the two-rate configuration requires a significant increase
in the feedback gain. Also, the first "notch" does not occur until
w = 100 rad/sec.

J. A FAST INNER-LOOP, SLON OUTER-LOOP PROBLEM

The vector configuration of Fig. 55 is typical of the "fast sampled"
inner-loop, "slow sampled" outer-loop format. This type of configuration
is particularly easy to analyze; closed-form analytical solutions can usually

be obtained. This will be demonstrated using the configuration of Fig. 5%.

= e — Hepu e/ (365)
Therefore
or Nov
_‘] .

M < 11+ ()M (G e T BT (367)
Let :

AM =T+ (He) T (G )M (-8)
so that &

<

Next, solve for ET in terms of RT:

E = R~C

A

(570)




2w

/4
z2se* Ts= 35
o R , _ | oenraaoiz 2 e - (40/3)s+3) |c¢ /_cr'.
oy T 2-8260705 | T/4 v [se 212+ o] T
-20k _/r -16.20445743
4 Design Objectives:
-a0f 1) Force C" —(s+2)%+(2)*
2) Unity D.C. Gain
Iclgs L :
_60 -
-ao -
1 1 ke % [ | | P ok 1 yaccal]: 1 ] 1 J
0 20 40 60 80 100 120 140

w (rad/sec)

Figure 53. Magnitude Plot T/4, T, Closed-Loop System

2-386430478 T

T .
rase22008z | o | o 13333(s+3) | © , €

-\

[(s+2)2+(612]

-3.21921162

L 1 3 L 1 L 1 L L l

0 20 40 60 80 100
w(rad/sec)

1 1
120 140

Figure 54, Magnitude Plot T, Closed-Loop System
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c, -ci™ c
- G, —a] My; L= G, e
T/M
H g

Figure 55. Fast Inner-loop, Slow Outer-Loop Example
Therefore
e - gl - (¢ EMQGE/M)TET
and we can solve for ET

gl [z + (cppl/MT ™ BT (371)

Since

Q
i

o CT/M - GaeeT/MET (372)

we can use Eq. 371 to obtain a closed-form analytical relationship for the

continuous output vector C. The result is
¢ - oMEMI + (o el o7

where GX/M is defined by Eq. 368. Notice that either vector switch decom-
position or the phantom sampler concept must be used to evaluate (GQMfGX/M)T.

Let
¢} = (r+ (@pel/MmT (374)
so that
c - oMo/ MelRt (375)
133
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Next we use the T/N concept to obtain

cI/N . (e M,)T/NGE/ MG RT (376)

which requires than N/M be an integer. For finite N the spectral coeffi-
cients are given by

Ap + JB (GMo)T/N GTMgT (377)
n n S i !
A "Bl (apI'/N)

where
Wy b + —Tnl]' ("‘TS)
and
r(t) sin bt (379)

In the limit, as N - «, we obtain the continuous signal spectrum coeffi-

cients
: GoMo oy 2T p|zte®!
Ap + jBn = - GA' GB (380)
S = Jjay 2=13(w,T /M) 2=1%bT

240ST/M

means compute the z-transform of Gp
z=13ay, (T /M)
with respect to a T/M second frame time and evaluate it at =
+ J sin ay(T/M).

As usual, the notation GX/M

cos ap(T /M)
In a similar fashion the z-transform of Gg is computed

with respect to a T frame time and evaluated at = cos bT + j sin bT

To this point in the development, all results apply regardless of

whether Fig. %% is a scalar or a vector block diagram,

It is worthwhile to go through a simple scalar illustrative example
in order to bring the mathematical details sharply into focus.

Example
Let g
. 5 e—sT‘M
&  ee— - 5 38
e . s + 1 3" ! > N s (381)
~ 3 -sT
G = 333 M, - (280)

]"'n‘l

N
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Reviewing the equations it is seen that we must compute:
£ q

1) (HG.M,)T/M
T/
2) (a7

) (I + (HGMo)T/M]™
) - /
by GlM [+ (e /M (6T
5 (o M oT/MyT
) \('.\M‘.\UA )
=

6) 6 = [1+ (G.\M;\GR/M)T

Let us now compute Items 1-0 noting as we go the "tricky points" that one

may have a tendency to stumble over.

Item 1

T/M
(HGMH) - l TR

This is a trivial computation since the frame time of the sampling opera-

tion and the frame time of the data hold involved are the same, Let

A z OST,/M:
/ ,
(oM,)TM - « (;:_l) CRREN B il NG T el (383)

Sth el
(e )T/M l e ) Lo

We proceed a little more carefully with this computation since the frame
time of the sampling operation is shorter than the frame time of the data

hold. Again we use © eST/M,
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D7/
zM — { z(1 —e ?T’M)

=]
™ -0 -32N
Therefore,
—oT /M M
T /M 1—e z' - 1 o
(G1My) - (384)
e — e M (TN
Item 3
-1
~r/
[T+ (Hooe) /M l1 5t
zZ—e
e—T/M
 — (385)
Item 4
, ‘ g
GT/M g o T gl T Tl (386)
A S S 7 3

Steps * and 4 were straightforward. The next step is the "hardest." To

evaluate it we resort to the phantom sampler concept.

Item

/ ‘/ T
(GaMaf /M |<c?M.¢>Tv'“GK ”l
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Since
(Ga)™M - L= p s
z - e /M
we obtain

e 71 (PR =) S

Rewrite Eq. 387 in « mor¢ illuminating form:

)T/MGE/M P e‘T/M)y - e—Zl‘/M)

-1 o (M-1)
(z = 1)(z — e 2/

(GaMo S R (383)

The incentive for rewriting Eq. 387 in the form of Eq. 388 is simply that
we recognize that this system only has two poles; the other poles, zM‘],
have been forced on us by the difference in the frame time of the sampling

operation and the frame time of the computer.

Next, recall that a function of z has a corresponding continuous time
function which we can visualize as being the "generator" of the sampled

function. For example, we can say that the function

~OT /M pF
zZll= o i z 5
(z =1)(z - e'ET;M) R e o e_gr]ﬁ (389)

rxj
—~
[
~
|

was generated by sampling f(t) at intervals T/M where

£(t) = (1 =) u(t)

and u(t) is a unit step function. This insures that f£(t) = 0 for t < O.
We can find [GZMQ)T/MGE/M]T by taking advantage of this observation; simply
find the continuous time "generator" for (GEMD)T/MGX/M and resample it using

a T sampling interval! Thus we can rewrite Eq. 388:

137




| (O = My, _ o, (&t e, 3 LM,
| (2 = 1)(s = o™ 0/M,y

(1 ~ o~T/My

—

It we set

() (1= e /My o gm0t (501) \

the cont inuogs " enerator" to be samplod o
f

[(G.M)T/MGT/MT If' (‘ g ‘T‘) “(' & nl‘)

it |

|

er 2 !

HE ~ =) [t - 2% $5 (=T (= 1) Q2) ,
:x(l M).I(( M)' taY( " ) l, (

Lt one refers, Laplace transforms can be used,  For oxam e, If M
1 1

m/s/ sy m -'I‘ L LR
(G M) 'c./'\ " '(—'—~ ' ) e SL/

can be readi ly evalunted using a table of' advanced S=transtforms, 20 Lllusw
Lratoe,

~aT /> [=ST />
v

There tore 5

[(\';“I\l")"'."\}x 2
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§
{

om ey ::ll / . .
where @ is understood to be = u“l. It we Kkeep e L/ 2 as our refer-

ence, hen

(] v “—Jl‘ ‘)‘L(l o ,\—ll')_-v" OJI [ (,-'1 s .\\—;T)l (:‘\)(‘)
( - l\(."‘ - (‘—,VI‘\

/o S onT
(e p)2al/ )

For frequency response purposes, we oan use kBq. 9% evaluated at

laay,T or Bq. 590 evaluated at 1A (T/2); the answers will, of course,
be the same.,
Return now to the basic problem at hand., Instead of setting M 2, let

it be arbitrary and re-cvaluate Eq. 39 as

(oM )T Mg /M)T
l(“:M ) k"/\ |
( ’»\)'l')

To derive Bq. 397, simply write the generic term for the delayed u-trans form,
: : = i -M :

recogniving that the sum resulting from (= 4 sse + 7 ) can be placed in

closed form since it is a geometric progression, This concludes the evalua-

tion of Item ; it was the most difticunlt step.
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We are now ready to evaluate Eq. 380.

—sT/M -T/M M ~2T/M
An+jBn=[";F 1] [Z-e Z ~1 1=c¢ /

B le:jwn (z - ]F‘T ZM:‘l_ Z - e—mL:M(uhT/M)

~2T Y
o (z » 1)(z = e )] (ko1)
[ | 2t 8,2 + a, ]z»-MbT

\
i where w, = b + (2m/T). 3

k One must remember that the terms in Eq. 401 do not cancel. For example, 1

the z~=1 in the numerator of the last term does not cancel a z=1 in the
denominator of the second term, since each bracketed term is being evaluated

at a different value of z.

.
For comparison purposes, we can define a reference "analog" system by |
1
removing the sample and holds from Fig. 5. The transfer function would

then be

C = Gpo[I + mgl"'m[r + Ga(T + W) G,]"R (402)

For this scalar illustrative example the reference transfer function becomes !

¢ (=

—_— = —————— e

(.‘307\)
R S2 + 28 + 2

&

The Bode plot obtained using Eq. 403 can be compared against those obtain
using Eq. 401,

ed
Some comparative results are shown in Fig. “¢ for the case
where M = 2, Note that for rates as low as 10 samples/second (T = 0.1)
that there is no discernible difference in the magnitude plot = at least
in the portion of the first fold that is shown in Fig. %6, However, the
difference in the phase plots is noticeable. Of course, the difference
becomes quite large when the frame time is set at 1 second (T = 1).
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K. GENERAL RESULTS

It is worthwhile at this point to pull together in a compact form the

general results of Section V. The reader may be a little apprehensive

over the prospect of practically applying the detailed techniques outlined
in this section for obtaining the frequency response coefficients (Ap+ Bpj).
It may appear that each time a new system configuration is encountered, a
detailed algebraic and limiting process using partial fraction expansion

must be carried out to formulate the trequency response expression for a

discretely controlled system. Fortunately, some generalities exist that

allow us to bypass much of this detailed derivation process and replace it
with a simple substitution procedure.

The first observation we make is that the vector algebraic expression
tfor the output CT/N (see igs. 39, 45, %2, and 5%) is configuration depen-
dent but can take on three forms:

Open—Loop

¢I/N _ (o) T/NRT (40k)
Closed-Loop Single-Rate

TN - (amyT/NGTRT (405)
Closed-Loop Multi-Rate

cT/N - (am)T/N Gy f ain/Mk g1 (406)

N/Mg = Integer ; K=l 0 Sl SR T

T
The number of GK/NK terms in the product expression equals the number of

different sampling rates in the system (excluding the "T'" sampling rate).

for example, if a particular system has samplers operating at T, T/10, T/°0,
and T/50 (N = 100)

oT/100 KGM\'1‘/100 G{ G']r/lo Gzl:/r‘o c.%/ 0 BT (407)
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With the CT/N expression formulated using block diagram algebra, the

following identities allow the frequency response expression (A, + jB,) to

be written directly from inspection of each term in the CT/N vector equa-

tion.
Finite N
zgeST/N
/Y - -I-‘v-(GM)T/N(z) 2 1 (/) (408) ;
- z4eST é
Gy —= Gy(2) 2= 1%bT (409)
48T/ My
MM o MMy (410)
. 2= 10, (/M)
28eST/N 22eST
A+ 3B = [% (aw) /N (z2) HG (2) ]x |
2=1%wn (T /N) 2=14bT
Kk zgeST/Mk t
T /My f
[I'I G/ %(2) z=1m>n(T/Mk)] (k11) [
!
N == | 4
(@)™ — L(am(s)| (412) ‘
s=Jun |
|
T T, .| 2z2e5T |
G, —= G, 413) .
A al2) - ( f
4 8T/Mg | '8
M T M(z)| T an B
2= 12wy (T/Mg )
13




1 p, |24
Ap+ 3By = | (GM)(s) G, (2) X
Szj(n,,: E 2=14bT
k z‘=‘esT/Mk
[H G;I;/M‘(ZT- ] (41%)
z= 1%y, (T/My)
an = b+ 58
n=ng ng+l, ..., 0, 1, 2, ¢«o., N—ngy—1
no Sy (b/ws)INT

The notation used in these identities indicates the definition of "z"
to be used in calculating each z-transform expression and the subsequent
evaluation performed to calculate coefficients for the fundamental and alias
terms in the output waveform (A, + jBy). That is,

Take the T/N z-transform of (GM) and evaluate at
z = 1%, (T/N).

Take the T z-transform of Gp and evaluate at

2 = 14bT.

Take the T/Mx z-transform of each Gy term and

evaluate at z = 13 (T/M).
Then, for the (GM) term. directly calculate the normal z-transform expres-
sion via the partial fraction expansion/table lookup approach of Section II
and then replace each "T" in this expression with "T/N." Follow the same
procedure for Gp and Gy with "T" replaced with "T/My" in the resulting
z-transform expression for the Gy terms. Now with (GM), Gp, and Gg in
z-transform form, each term is individually evaluated at the appropriate

value of "z" as indicated by the notation.

Even though the tables of Section IT essentially assume z = 5T, these
tables can be used for any sampling period T/N, T/M, etc., by simply replac-
ing "T" in these tables with T/N, T/My, etc. The definition of "z" is then
completely arbitrary (as far as sampling rate is concerned) and must be

axplicitly indicated with each pulse transfer function, i.e.,
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% (GM)(2) = =-=----- , n=eST/N
Ga(Z) = =mee-a- , %=l

| Ox(z) = --eoee , 3=/
:‘l .
' Example :
4
, C'r/mo 3 (GM)1/100(,’{(;11'/106%'/:‘00%/50 T (416)

‘ 28¢8T/100 2857 28e8T/10 h
3 A+ 3By = [ (G T/100( ) Gy (2) GT/w(z) |
2= 1%, (T/100) 2= 14bT z=1%a, (T/10) |
1 7
: |
| 28e8T/20 g z2eST/50 :
| x |61/20(2) cg/’o(z) (W1 7)

5 z= 1%y, (T/20) z= 15wy, (T/50)
'.

{ i
L
\ 2m
j Wy = b o+ = =
,j Bo*Noy Ng*ly seey Op ¥y 8 wivy Nong=1
1 no = = (v/wg) 1y

Thus it is not necessary to carry out the detailed algebraic and
limiting process each time a new system confliguration is encountered. Once
4 the CT/N expression has been determined for the system, simple substitution
produces the exact frequency response expression for either the finite N

case or the limiting case of N —= ., Using this expression, the coefti-

! cients (Ap + jBp) for the fundamental and its aliases present in the output |
4 wavetorm can then be determined. A summary of the steps required is as
f'ollows: |
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@ Obtain the cT/N expression using block diagram/
signal flow algebra.

® Apply the identities ouytlined in this subsection
to each term in the CT/N expression.

® Calculate the individual z-transform expressions
using the appropriate definition of "z."

® Evaluate each z-transform expression at the appro-
priate values of “z."

As a final remark, it should be noted that these simplitfications still
do not relieve us from the non-trivial nature of obtaining z-transform
expressions such as (GMW?/M\T. This type of expression will require the
use of either switch decomposition or the phantom sampler as illustrated

in preceding subsections.

L. SECTION SUMMARY

The "sampled spectrum" concept of sampled data control theory is con-
cerned with determining the simple sinusoid that fits the output samples
of a single-rate system at the sampling instants. In this section, the
frequency concept has been extended to encompass the continuous spectrum
of the continuous variables in a discretely controlled system. Moreover,
the theory considers the finite N case wherein one is concerned with the
group of N sinusoids that matches the data not only at the sample points
but at N=1 inter-sample points as well. This is an important aspect since
bench validation of digital hardware is often specified in terms of an end-
to-end "frequency response." Since output data are taken at a finite number
of points, it will be important to compute finite N results; the coeffi-

cients will differ significantly from the continuous (N == ) values.

The results for the closed-loop cases have been configuration depen=-
dent; however, the basic technique is relatively clear. One starts at the
continuous state vector and writes the system equations back to the first
input point. The next fundamental step is to convert that input into an
equation which contains the sinusoidal input as the basic forcing function.
Then one may always invoke the basic equations which apply to the open=loop
case, The equations which summarize the cases considered in this section

are given in Tables 8«11,
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B TABLE 8. AN OPEN-LOOP CONFIGURAT ION
| L]
i
R C CT'/N
E | ALY 4 —_—{ M — G -*/—-..
b i T T/N
[ | '
!
k r(t) sin bt '
'. : N-1 , ?
;l‘ \'\‘l N\;:;: ( Z A, sin apt + By, cos \\\nt)T £ f
n-=0 ;
2m i
B = b'T 5 RA=UQERY e N
Finite N f
2,8T/N
A, + iB L ()TN =E s
i - W Z=1%wy, (T/N)
134y, (T/N) cos a,(T/N) + j sin awn (T/N)
Lim N ==
A+ J'Bn GM
§ J'(vh
3
Note: If r(t) Ky sin bt + k-~ cos bt
Finite N 4
i 28eST/N
Ap + 3B, = <+ (qm)I/¥ s * (ky + ko) ‘
- 5 N &=13ay, (T/N) ! e :
Lim N —= « §
—————
Ap + JB %M * (ky o+ ko) 3
S =jay d




e S

i
% TABLE 9. A SINGLE-RATE CLOSED-LOOP CONFIGURATION
|
i
T T
¢ R E , »
| - T T T
q‘ L Gy =0 o
(4
|
1 : .
r(t) = sin bt ~
N-1 T/N
cT/N . " (E Apn sin apt + By cos ayﬂt)
n=0
@, = b+ 5%2 s Ul S N
(
Finite N ;
8.ST/N :
; o 1 T/N 28¢5/ T, z2eST
Ap + JBy = N (GM) = GB
z= 14wy, (T/N) z=1XbT
where { :'
6y = [T +a]ad(amT]™ T i 1
3 k.

Infinite N

|
; |
An + JBy (%M) ; Gg(z) sl l:




TABLE 10, A PARTICULAR MULTI-RATE CONFIGURATION

M
T M T
R R W, ES B DATA i (o /__S
T T/M | HOLD
]
/ Wz g
o
4
6
r(t) = sin bt
N-1 T/N
CT/N gy = ( 2: Ap sin unt + B, cos ahf)
n=0
P b"?'TnE gl N, i, B
Finite N
22eST/N 286ST/M 28eST
. 1 T/N M
L NN I
2=13wy (T/N) z=1%a, (T /M) z=1%bT
where
Gy = IT=wilr + (aw/MTWIT™" (oil/M)T

Infinite N

An+3Bp =

oM

S =,](‘l§_l

. (w}"/M

z4eST/M

z= 12y, (T /M)

) (%

z2esT

2=1%bT

)

)
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TABLE 11. A FAST INNER-LOOP, SLOW QUTER-LOOP CONFIGURAT ION
R g EY gy A CTW c
- M L=l G — M G, ——
ikl G = TAM
R e —

r(t) sin bt

= N-1 e
C'rl"’N"‘o ( Z [\“ sin \L\]t- + Bll cos8 \L\Et

Wy b+ —,‘I,Lll 4 e =y b aey =il
Finite N
m /| z8eST/N 28a8T /M 28eST
' GaMp \T/N = /M = B! E
Afl + JB“ T UA ’ UR
15wy, (T/N) 2= 13wy (T/M) z=14H7
where
ar/M [T+ (o) T/M (6, )T/M
Gg [T + (G.MGY /M)T =1
Infinite N
GAM, T /M z2eST/M T‘:aesT
An + JB, —1‘_ Gp [ : GB
|s=Jay, 1213y, (T /M) 2=13bT
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SECTION VI
FLYING QUALITIES APPLICATIONS

A. INTRODUCTION

As noted in Section I, increasingly stringent operational demands on
military aircraft have forced the use of more complex stability and control
augmentation systems. An augmented aircraft may have, for example, short-
period characteristics that apparently satisfy the MIL-F-8785B specification
and yet, because of the additional modes introduced by the flight control
system, the aircraft actually responds as if it had short-period character-
istics which do not meet the specification. Txamples of these anomalies

are given in Ref. L, one of which is used here.

The purpose of the (specially constructed) examples in Ref. 4 was to
point out possible loopholes in interpretation of the short-period frequency
requirements of MIL-F-8785B (Para. 3.2.2.1.1). The problem stems from the
fact that, although the specification refers to "short period response in
angle of attack,'" the requirement was based on configurations for which this
response was defined by a natural short-period mode. The specification does
not consider additional modes which might be introduced by the FCS. Since
the pilot senses the total response (sum of natural airframe modes plus FCS
modes), specification of the short-period roots alone does not necessarily
define the physical situation or insure acceptable flying qualities. Now,
the trend towards the use of digital flight control systems gives the flexi-
bility which tends to yield additional FCS modes, but also introduces addi-

tional effects due to the digital implementation.

One method proposed (e.g., Refs. 1 and 4) to treat such situations is
to develop lower-order models of higher-order systems that can be compared
against the MIL-F-8785B requirements as they are presently stated. To see
how this method works, we will review an example from Ref. 4 which deals
with the effects of FCS modes on the MIL-F-878%B requirements. This con-
trived example considers a tactical fighter which requires some type of

flight control system (FCS) to maintain the short-period frequency within
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acceptable limits at low speeds. Pitch rate feedback is intentionally used
to illustrate the possible pitfalls in designing a control system to meet
MIL-F-8785B requirements using an equivalent low-order system. It will
become obvious that pitch rate feedback alone can not increase the effec-

tive unaugmented short-period frequency.

The subsequent digital implementation of this example from Ref. L will
not attempt to cure the obviously inadequate analog design, but will attempt
to bring into sharp focus the manner in which the equivilent low-order model
should be modified in order to account for the additional artitacts intro-
duced when the analog controller is replaced with a digital implementation.
It is our intention to illustrate how the techniques developed in this report
can be used to include the effects of digital implementation in the parameters
ot a lower-order model of airplane dynamics and not digitally design for good
Clying qualities. The same gencral flying qualities design techniques and
philosophies used for analog controller design apply equally as well in a

valid discrete domain synthesis such as in the w'-domain (Section 111).

It is readily concluded that, to use the equivalent model concept, an
exact Bode plot for the closed-loop digital system which includes all the
effects of the digital artifacts (e.g., sampling, data holds, and computa-
tional delay) is needed. This can be obtained for any single-rate or multi-
rate system using the digital trequency response methods of Section V. These
methods are in contrast to the traditional concept of "sampled spectrum" of
sampled data theory which is limited to determining the amplitude and phase
of the single sinusoid that fits the output samples of a single-rate system

at the sampling instants.

The example used in this section will be closed loop with a washout net-
work in the pitch rate teedback loop. The Tustin transform is used to obtain
a digital implementation of the analog washout tilter to illustrate the dis-
advantage of this emulation procedure (i.c., the Tustin transform does not
account for the phase lag introduced by the D/A conversion). The eftects of
throughput delay will also be incorporated into the analysis. This is done
in order to indicate a procedure tor modeling computational delay via vector

switch decomposition (Section [1) and to also indicate the effects of the

delay on the closed-loop Bode plot.




Even though the washout filter is emulated for illustration purposes,
it should be noted that direct digital synthesis in the w'-domain (Sec-
tion 111) would produce lead compensation to oftset the throughput delay
and nonminimum phase A/D, D/A effects. This is assuming that a match of
the already established inadequate analog design is wanted. As covered in
detail in Section 111, direct digital desigh in the w'-domain is straight-
forward following the same procedures as an analog s-domain design. It
should be noted that the power of a w'-domain direct digital design is that
all effects of digital implementation (e.g., sampling, data holds, and com-
putational delay) is directly and naturally accounted for in the resulting
w'-domain control law. That is, the resulting design in the w'-domain is
exact in the same sense as the analog control law is in the continuous
s~domain synthesis. Then, from a practical and realistic standpoint, a
complete redesign of the control law tor the example in this section using
different feedbnck schemes (e.g., angle-of-attack feedback) should be done
either in the s-domain tfor the anatog system or in the w'-domain for the

digital system.
B. TACTICAL FIGHTER — ANALOG CONTROLLER

Current trends in fighter design frequently require some type of FCS
to maintain the short-period ftrequency within acceptable limits at low
speed. The airplane characteristics used in this example are typical of
modern tighter aircraft in the power approach configuration. The attitude

transfer tunction is given as:

t =1.6(0.1)(0.6) 5 ~1,6(0.6) (118)
— _ L
be {0.05, 0.1]{0.7, 0.5} (s){0.7, 0.5]
where
(8 w] => a2 + 2Lws + a2 ;3 (1/7) => g + 1/T

Some type of compensation is desired because the low short-period frequency
violates MIL-F-87858 and produces a sluggish pitch response. As we will
see, teedback of lagged piteh rate results in an apparent increase in short-

period frequency (and damping). 7This signal would be washed out to prevent
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the pitch damper from receiving low-frequency signals which might saturate

the system. The example FCS is shown in Fig. 57 along with a system survey

to indicate the effect of gain (K;) on the system. Since the phugoid fre-
quency is only 20 percent of the short period, the two-degree-of-freedom

constant-speed approximation is used for the sake of clarity. Closing the
loop at K§ = —0.63 results in short-period poles at 1.35 rad/sec. The aug- |

mented attitude dynamics are then given as:

—-1.6(0.6)(0.5)(2.0) (419)
s(0.68)(0.2)[0.86, 1.35] y

m?'g

From Fig. 57 it appears that the FCS increases the short-period undamped
natural frequency and, apparently, specification compliance has been achieved.

However, an equivalent lower-order system which gives approximately the same

frequency response is:

5700, 5
(t_w) . =1.47(0.5) ("eo)
eff

Op sll1, 0.:5]

This effective second-order system fitted to the actual system has a natural
frequency of only 0.5 rad/sec and is critically damped. Plotting the appar-
ent augmented wgp and the "effective wgp" on the MIL-F-8785B requirement
illustrates the danger in considering only the short-period pole for speci-
fication compliance when a FCS is employed (see Fig. 58). Note that even
though the FCS apparently increased Wgp from 0.5 to: 1.5% rad/sec. the eftec-
tive response indicates that pitch rate feedback only increased damping.

The sluggish characteristics of' the augmented airframe are indicated in the
pitch rate time history to a step input of bp as shown in Fig. 59. Note
that the time responses for the actual and effective transfer functions are

in close agreement. ;

The above augmentation scheme is obviously unsatisfactory, making a
sluggish response even worse. It still serves our purposes to consider the

digital mechanization of this system.
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Consider a possible model for one implementation of a digital controller
for the tactical fighter shown in Fig. 60.
is shown in Fig. 61.

The associated timing diagram
In Fig, 61 the timing events are:

@ p 1s sampled and stored in buffer register; q is

sampled and stored for computation of the feedback
portion of the control law.

C) Computation completed; control algorithm output to
control actuator through a zero-order hold.

In Fig. 60 advantage has been taken of the fact that a Sampling operation

which is delayed with respect to the sampling operation of a reference sampler

by To seconds can be modeled by switch decomposition (refer to Appendix F)

as shown in Fig. 62. From Fig. 60 the equations which pertain can be written:

Ui = (e¥Tom)Tel - (5Toy)T H' (GMe~5To)T ¢, (k21)
But
T
~sT
(esTo M)T = [eSTO (l___se__f_)] (422)

and the table of advanced z-transforms (Table 4, Section II) shows that

T
3 —ST)(eSTO) _ Z= z e (423)
( - e s = —z._ m = o 3

given 0 g Ty < T.
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Figure 60. Digital Implementation of FCS
for Tactical Fighter
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Figure 61. Digital FCS Timing Diagram
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Equation 415 simplifies to

s, T
v - 8] - uT(aw™0) vy ‘ (k2
or
o=
U - [I + W (GMe—ST0) 52 (426)
p
The output is then given by
! L el
a - (eMe~Toy|r + T (aMeTo) \ g
=Ty T T =
(GM)O OGA bp \!I,(“

The "continuous" spectrum, given that &, is a sine wave input, can be

obtained (using the tools of Section V) by a limiting procedure on qT/N.

—sTn. T/N :
qt/N (Gme3T0) / G{&l . (427)

The spectral coefficients for the o response<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>