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I. INTRODUCTION

The fact that acoustic waves could give optical effects in nematic liquid

crystals has been known since 1936. In that year Fredericks and Zolin1 excited

a neinatic liquid crystal by tuning forks of 200 to 600 Hz while making optical

observations with crossed polarizers. It was not until 1969 that Fergason
2

suggested that a liquid crystal device may be made for detecting acoustic in-

tensity. Since 1970 there have been approximately forty research articles pub-

lished in this area. However, the basic mechan ism causing the ef fec t was no t
3understood until the last three years. Differential acoustic absorption ,

transverse second—order stress,4 cybotac tic groups ,5 the piezoelec tric ef fec t
6

and anisotropy of acoustic speed have all been proposed to be the mechan ism

for the effect. In the early work, both experimental and theoretical 1 a

threshold of acoustic intensity was reported to be required . In 1976, three

groups: Sripaipan , Hayes , Fang; 7 Candau, Peters , Nagai;8 and Dion , DeFores t ;9

reported that there is in fact no threshold for the effect. The former t~io

groups attributed the effect to acoustic streaming. Further, whereas all of

the previous work had required some special proper ty of a liquid crys tal for

the effect acoustic streaming would result in any viscous liquid . It is simply

that acoustic streaming or any flow in a liquid crystal results in optical

effects. The streaming theory has been extended to include the simultaneous

effect of an electric field by Hayes’° in 1978. Again the streaming model

successfully explained the experimental results. The logical result of the

streaming cxplanation is that a cell to visualize an acoustic field could be

made by separa ting the liquid crystal into distinc t regions to conf ine the

flow. Nagai and Iizuka
11’~

2 
have made such a device. However, there has net

been a direct observation of the flows induced in these cells nor quantitative

~ ‘ii
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theoretical work performed giving the speeds of flow or the flow patterns in

the cell. It is the goal of this report to provide direct evidence for the

flows. In Section II a theory is presented which predicts the magnitude of

the flow speed and the form of the flow pattern one would expect in a vis-

cous fluid. In Section III results are presented for observations of these

fluid flows.
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II. THEORY OF FLUID MOTION

A. Non-viscous Limit

We will develop equations describing the motion induced in a disc shaped

liquid bound between two solids. The solid surfaces are assumed planar with an

ultrasonic wave traveling from one solid , through the fluid and on through the

second solid. We will take the cylindrical boundary of the disc to be open to

a gas of negligible density. Such a system could be made by placing a drop of

water between two glass microscope slides. We will further take the distance

be tween the i lanes , the height of the disc, to be smaller than the wavelength

of the ultrasonic wave. The oscillatory motion of the wave will produce a

static flow in the fluid , acoustic streaming. We will find the form of the

resulting f hew patterns and the magnitude of the fluid speed .

In order to understand the approximations which must be made to obtain

a tractable solution we will first investigate a simpler problem where vis-

coaity is omitted and the disc is assumed of infinite height.

Consider a column of non—viscous fluid with equilibrium density p0

supported by a piston. See Figure 1. We as3ume the piston—fluid interface

is located at z 0 and take the radius of the fluid to be R. The result of

the piston ’s veloc ity, Ae~~~t, is a compression wave which propagates along

the cylindrical axis of the column , the positive z axis. Because of the

boundary at r R there will also be laterall y induced waves as well. The

equation deacribing the pressure, P, in the column is

2 l~~~
2PV P~~~~~~p- (1)

where C is the speed of the wave in the fluid. At r R we must have P 0.

The solution to Eq. 1 satisfying this boundary condition is
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P — E A J (k r) e1
~~ 

z iwt 
(2)

where J( ) is the Bessel function of order zero,

k~~~~~~~~~~~~~~
- - k ” 2 

(3)

and

- k R = 2.405, 5.520, 8.654, 11.792 , . . . (4)

where

J0(ct~) = 0 n = 0, 1, 2, ... (5)

The partial differential equation relating the pressure to , the
fluid velocity is given by

= — V P  (6)

We have at a 0 the fur ther boundary condi tion :

—iwtv
~~

= A e  (7)

Combining Eq ’s. 2, 6, and 7 we have

p w A  = EA k” J (k r) (8)0 n n n  0 n

• Operating on both sides of Eq. 8 with 
~~ (~~~~)d(~) 

we obtain

A 2p0wA 
(9)n a~ k~ J1 (cz~)

Now solving Eq. 6 for V
r and taking r = R we find

~ ei k~ Z — iwt 
(10)
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From Eq. 3 and 4 we see the value of R may be adj usted with respect to

A to give k~ 0. This condition gives a resonance and stay occur for modes

n — 0, 1, 2 , . ..  . The corresponding values of R are:

K — .383 A , . 8 7 9  A , 1.38 A , 1.88 A , . . . (11)

Figure 2 shows the amplitudes of yR/A at z 0 as a function of R/A for modes

n 0  and I.

From Eq. 3 we see if R < .383 A then k~ will be imaginary making the wave

damp out in the z direction as seen from Eq. 2. The amount of damping depends

on how close to resonance the radius is. In Figure 3 yR/A is graphed as

a function of Z/A . We see for the mode 0 the damping is less the closer R/A

is to the resonant value. We also see that the mode n — 1 for R/A — .38 damps
out more quickly than mode n = 0 even for R/A as low as .22, about 40Z lower

than the resonant condition for that mode. We also see from Figures 1 and 2

that although the disc is being driven by a piston oscillating in the z direc-

tion the major motion can be radial.

From Eq. 6 we can also find the radial veloc ity as a function of r:

v ~ ~~~ 
j I ( ~~!iR) ~~ (12)r n R k ~ J1 (Cl~ )

From Eq. 12 we see at r - 0 all modes are zero. For the n 0 mode the maximum

velocity occurs at about 75% of the maximum radius . A different situation would

• exist for an infinite strip of fluid between two planes. In that case the

bessel func t ions would be replaced by sin ’s and cos ’s and the max imum speed

would occur at the fluid edge. For the n — 1 mode of oscillation the fluid

for r < . 7R is out of phase with the outer section . Again the maximum speed

for this mode does not occur at the edge but at about r — .35R.
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B. Viscous Model

With the aid of the results we have obtained from Section h A  we may

now proceed with a model closer to the physical system under study. Rather

than an infinite colum n for the fluid we will assume a height H with the origin

of Figure 1 moved along the a axis so the upper and lower boundaries occur at

a — H/2 and —H/2 respectively. Since we are now including viscosity we will

start with the Navier-Stokes equation:

~0[~~
+ ( .V )

] -C~~VP + flV 2;  + ( C +~~n) V (V •  ) (13)

Since we are assuming the hydrodynamic variables may be expanded about their

equilibrium values we will for now drop the higher order effects. We will

I 
- 

take for a rectilinear coordinate system in component form :

p
0 ~~~ -c2 ~~~~ ~V2 v~ + (~+~~)~-L (V. ) (14)

If we operate on Eq. 2 with ~~~~ and sum over I we have

= -c~~~
2 p + nV 2 V . +(~~~+~~~ n )V

2 (V .;) (15)

The hydrodynamic variables must also obey the continuity equation:

ap -,

~~~+V• (pv) = 0  (16)

where again to first order we have

~~~~~+ p~ V •~~~ = 0 (17)

Combining Eq ’s. 15 and 17 and assuming a time dependence e~~t we have

A0
V2p — p  (18)

where
i(~~ + ~~~fl) c2

A
0

— —  
wp~ 

(19)

- - - 
_ _
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The solution to Eq. 18 is

p — ~ J0 (k~r) ~~~ + ~~~~~ 
J0 (k~r) ~~~~~ ~~~ (20)

where we have dropped the i from in front of the k~~ factor since we will assume

R < .383 A and from Section IA we know for that case the a dependence is real .

We also have analogous to Eq. 3

— k”2 — (21)

In order to simplify the solution of the Navier—Stokes equation we define t~ o

new functions according to

(22)

and 
V - - 

~ (rd’) (23)

Now we have
V ‘ a V 2 qt ; (24)

so fran Eq’s. 17 and 18 we f ind ~ may be related to ~:

(25)
Po

The a component of Eq. 13 to first order is

p0 -c~~~~~ ~ V~~v5 ~~~~~~~~~~~~~~~~ 
(26)

Using Eq’s. 17, 18, 19, and 22 we obtain

—~~~ (27)

where

— ~ ~~~~ (r~J’)

Taking
k
2 • k ’~~~— ~~~~~~~~ (28)
it n fl
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the solution of Eq. 27 we take to be

— ~ [A 3 J0 (k r) ek
~~ + A ,,~~ J0 

(k r) e ’~ z] e~~
t 

(29)

From Eq. 28 then

= ~ 
[~~3n J1 ( k r ) ek~~ + A ~n J

o
(k r) e

_k
h1Z] e~~

t/k (30)

Eq ’s. 20, 25 and 30 may be used with Eq ’s. 22 and 23 respectively to obtain

V = 
i~~0k0 [A 1~ ek~~ + A2n e

_k
~Z] (31)

and 

+ .I
~ [~~3~ 

e
1
~~~ — A ,, e~~

1
~ }JJ 1 (k

n
r)e~~

t

v = ~~~~ [A e
1
~~ — A e ’4~] (32) 

-

•

Z fl~~ Pc in 2fl

— [A 3~e Z
A e

_
~~tz ]}  Jo(k r)e~~

t

Assuming a no—slip condition at a = ±H/2 we must have V
r 

= 0 there. For the

experiment we have performed H/ A = .055. From Figure 3 we see the amount of

damping c ’~ich has occurred as the wave traverses the vertical distance H of

the disc. We will therefore take as an acceptable although not excellent

approximation that v~ = Ae~~~
t at z = ±H/2. For these boundary conditions

we find
-2p0 k~ A

A
1 

= —A
2
~~ = 

iwA k~ ct~~J ( a ) (2k’ - k2 H) (33)

2k 2 HA
A 3~ A,, a J 1~~~~) (2k’ — k2H) k1 H/2 (34)

• • h



•— - •-—--~
•-- --•-.‘—• -s -- -.—

~~~~
-.——.,-, —‘-- — — - __

~~~-w 
~~~~~~~~~~~~~~~~~~~~— — — ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

9

For the case under study k’ >> k2H and k”H << 1. If we assume we are near the
n n n

mode 0 resonance condition from Figures 2 and 3 we see we may drop the higher

modes. Under these approximations we have

V aJ (u ) {_2z 
+ 
e1~i~

l2 (e 
_ e

_
~~
iZ)} J ( k r) e~~t (35)

iwt
= 

2 A J 0(k0r)eV ct .1 (a ) ~~~‘ ‘
0 1  0

From Eq. 28 we see that k~, is complex. For v what actually occurs is a

cos wt rather than the exponential. For the radial component:

Ak I ~~~ ( z H /2)
V = 

~~ j  °‘ct ) 4j _ 2z + H [e cos [Imk (z—H/2) + wtj
O j 0

_e Re~~~~ 
+ H/2 ) I + H/2 ) + wt}]}x J ( k r)

By setting r = R in the real form of V
r 

we may obtain a value of the radial

amplitude of oscillation compared with  that of the piston. For our sample

we have H = .032 cm, Re k’ = Im k’ = 1112/cm and at resonance R .22 cm. The

resulting ratio of radial velocity to maximum piston velocity (which equals

also the ratio of radial distance amplitude to vertical piston distance ampli—

tude) is plotted as a function of a in Figure 4. The resulting maximum ratio

shows for our case the radial motion has an amplitude less than 20% that of

for the piston. Therefore, the infinite ratio for mode 0 shown in Figure 2

turns out to be of the order of .1 when viscous effects are considered . Also

in Figure 4 a diagram is sh1wn which depicts the deformation of the disc cross

section. As the planes move upward the fluid bulges out at the bottom and in

at the top. As the planes then move downward the opposite occurs. 

. • • • . • ITTT~~~~
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Let us now return to Eq. 13 and examine the term we omitted . In light of

the solutions , Eq ’s. 35 and 36, we see that each term of Eq. 13 oscillates

sinusoidally in time. Al though in Eq ’s. 35 and 36 we have used the complex

exponen t ial form , since the velocity is real the term we earlier omitted from

Eq. 13, 
~~ 
; . V , will have a factor of cos

2 wt. Since cos
2 

~t (1 + cos 2~ t)/2

if the time average of the omitted term is taken a non—zero static value re-

sults. Therefore , the time average of the other terms in the equation must

also give non—zero static values. Since these other terms involve only the

hydrod ynamic variables to the first power we conclude a static value must be

added to the values we obtained in Eq ’s. 35 and 36. This static flow is called

acoustic streaming. We will denote the static addition to the variables with

a subscript 2 signifying the second order solution: v 2, Q2~ v 2. The time

3 average of Eq. 13 to second order is

P VV > — c 2 
~~~~~~ ~ V

2 v2 + (? +-~~
-
~~~)-~

--- (V . 
2~ 

(37)

p <~ Vv > = _
~~~
2 ~~ 

~ V2 v2 + (~ +-~n)-~—- (V v2) (38)

where the brackets denote a time average and merely involve replacing the

cos2 wt factor with 1/2. If we operate on Eq ’s. 37 and 38 by ~/~ z and ~I~’r ,

respectively, subtracting the results we obtain

p <~~~(~ VV) — .
~~
- (~~ V v ) > = 

~1 [
~ 

V2 v2
_
~~~ v

2
v ]  (39)

Again invoking the approximations used to obtain Eq ’s. 35 and 36 along with

k’ H>> l we find we may identify V” with ~‘/~z” and obtain with the help of

Eq ’s. 22 and 23
p A’N T i ~ kc~~) ~ J1(k~ r) 

~ 
z

= 2r 1 a 2 J (%) a(k r) 
~~ 

4( R k’ )3

~ [C
a
(COS a — sin a) + c~~~(cos h + sin b)] + c 1 z~~+c 2z

3+ c3z +

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
LA
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where
a = Re k~ (z — 11/2) (41)

b = Re k’ (z + 11/2) (42)

and where we have again taken the real part assuming Re k’ = In k ’ as we find

to be approximately true for our systems. The contribution from q can be

shown to be small so that Eq ’s. 22 and 23 become

V2r = a~p/3z (43)

1 3
v2 

= — — -
~~

---- (r~~)

The values of the C~ ’s may be found using the boundary conditions that both

V2r and v2 equal zero at z = ± H/2. Finally we obtain the second order

contributions to the velocity:

— 
p A2 k~ H J~ (k~r) 3 Ji (kpr) z a 

~ + 
—b 

~. bV
2 r~ c&~, J2(a0) 3(k r) 2(Re k’)2 Le S tt a e s n

3z 2 3
— 

2(Re k’)3 112 + 8(Re k’)3 (44)

= — 
p A2 k~ I ~~ ( J (k ) ~ Jt(kor)

V
7 2~ cx~, J2(a0) r 3r ~ r r 3 (k r)

X ~~ 4(Re k’)3 [e
a
(cos a — sin a) + e~~

’(cos b + sin b)]

— 
3z z 3

+ 8(Re k’)3 
— 

2(Re k’)3 H2 (45)

Eq ’s. 44 and 45 will be the basis of a comparison with the experimental result.s

we have obtained .
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III. EXPERIMENT

A barium titanate crystal was used to prod uce the ultrasonic wave (cw)

in the sample under study. The wave was transmitted from the crystal through

the conducting glass electrode immediately above the crysta l., through vacuum

grease which was used to mount the sample holder , through the bottom glass

slide,through the sample fluid disc, and on through the upper glass slide.

Various fluids were used : water, a choles ter ic liquid crystal , a nematic li-

quid crystal and a transparent vegetable oil. The oil’s Viscosity is closer

to the nematic whose motion we will ultimately consider. Therefore, measure-

ments reported here concern the velocity induced in the oil. To measure the

magnitude of the flow in the disc the oil was doped with a hydrocarbon base

ferrofluid (0.1% concentration). Aggregates of magnetite can then

be seen in the oil by means of a polarizing microscope. By measuring the

speed of these par ticles the speed of the oil may be determined. The parti-

cles were of the order of one micron in diameter. The thickness of the disc

was .032 cm so the particle size was small compared to the distance over which

the speed of the fluid changed appreciably. The diamter of the disc was from

one to four mm, small compared to the 12.7 mm diameter of the barium titanate

crystal. The microscope was calibrated so the vertical position of the par-

ticle whose speed was being measured could be determined when the microscope

was focused on that partic~e. A sealed container was also used so that the

ultrasonic wave would first travel through one cm of water before reaching

the fluid disc. Using a capillary viscometer the ratio of viscosity to den-

sity of the oil was deter~ iucd , fl/p 0.66 ± 0.03 cm2/sec. From Eq. 28 we

st~e k ’ can now be determined if we know the frequency and wave speed. We

take c 1.46 x 10~ cm/sec and £ = .26 MHz. We find the real part of k’2

small so k’ — 1112 (1 + i)/cm.

~~~~~~~
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From Eq. 44 we see that the radial flow goes to zero at r 0 due to the

J1(k0r) factor. It becomes larger for larger values of r and then goes to zero

near the edge r = R due to the derivative of J1(k0r). The value of v2~ on the

other hand is larger at r = 0 and decreases as r is increased and finally is

larger but with a differen t sign near r = R. A diagram of the flows our equa-

tions predict is shown in Figure 5. The upper diagram , I, depicts the flow

pattern although actually H is much smaller with respect to R than we have

drawn. The lower pattern is not what we predict from our equations but the

flow patterns that would pertain if the models proposed by other authors were

applicable. If the fluid is observed at r = R/2 as one focuses from the top

to the bottom the particles can be seen to flow toward the center near the

top, toward the edge near the middle and toward the center near the bottom , in

accordance with the pattern I which our equations predict. A more quantitative

comparison is presented in Figure 6. The graph shows the fluid speed in the

radial direction (toward the center is taken as positive) as a function of z.

For the data shown R/A = .21 and the frequency was .26 MHz. The taller (labeled

I) peaked curve in Figure 6 is the best fit of the quantity in brackets in

Eq. 44 using our experimentally determined value for k’ . Since everything in

the brackets is determined a best fit was made of the data to a constant times

the bracket. The constant so determined was (13 ± 1) x ~~~ cm3 sec/micron and

= 2.3. The smaller peaked curve (labeled II) in Figure 6 is a best fit

where both k’ and the constant are to be found. Their values are respectively

470 ± 10/cm and 2.0 ± o.1 x l0~ cm~,~ec/micron with = 0.3. The later va t uc

of k ’0 appears unacceptable in light of the small error on viscosity and the

better fit we take to be fortuitous. It is noteworthy that the fit is so good

since for the data plotted R/X is about half of the resonant value for which

Eq. 44 was derived. Notice the peak near the top of the disc, the one on the

- : i :~~~~~
—

~~-
-
~ 

- -
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right in Figure 6, is slightly less than the one on the left. The reason for

the difference has to do with our assumption that v~ — Aei(Ot both at the top

and bottom of the disc . Making the boundary condition that v~ 0 at the top

decreases the top peak to about 20% of the bottom peak. The data seems to be

in between these two extremes and it would appear we have taken the better

approximation in allowing the upper boundary to move. Data was taken for R/X

equal to .21 , .29, .30, .36,. 39, and .45. All of the radial velocity pro— 4

files have the same basic pattern as those data shown in Figure 6.

Frequencies of .26, .77, .68, and 1.07 MHz were used both for direct con—

tact of the sample holder with the barium titanate crystal and with the crystal

in a cell, so that the wave was propagated through about one cm of water before

reaching the sample. All of the flow patterns observed in the microscope using

the water cell, were radial. For the direct contact case for certain frequen-

cies and locations on the crystal it was possible to induce patterns of either

two or four rather circular flow patterns. The discs became slightly distorted

from circular to ellipsoidal in shape for these non—radial patterns. These

patterns are assumed due to non—uniform oscillation of the crystal. For these

cases the pressure in Eq. 1 must be assumed to be a function of angle. The

solutions are similar to the well studied oscillating drunthead.

The radial velocity in Eq. 44 is proportional to A
2
, the square of the

t piston velocity amplitude. But this amplitude should be proportional to the

voltage applied to the barium titanate crystal. In Figure 7 therefore we have

plotted the radial velocity measured at a fixed r and z as a function of vol-

tage. The solid line is a fit to a voltage square curve.
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Figure 1. Diagram for calculations of the infinite non—viscous

cylindrical fluid. The piston driving the oscillations

is in the xy plane. For the viscous disc of height H

the origin is moved along the z axis a distance Hf2.



-
- 

_ _  _ _ _  

-- - --- -
~
-
~~~~~~

_ —
~~~~~~~~~~~~~

-
~~~~~~~ ~~~~

17 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I 

V

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V A E

--



—~~~. _ _ ~~~~~~T~~~ ~~~~~~~~~~

18

Figure 2 . Graph for the ratio of radial speed amplitude to piston

speed amplitude versus the ratio of cylindrical radius

to acoustic wavelength .
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Figure 3. Graph of velocity ratio versus z/),.. The velocity ratio

is the ratio of radial speed amplitude to piston speed

amplitude. I
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Figure 4. Velocity ratio (radial to piston ’s) versus distance

along the z axis. The model assumes no—slip at the

boundaries and incorporates viscosity.
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Figure 5. Flow patterns in the disc due to acoustic streaming.

The upper diagram , I, is the pattern predicted from

our second order solutions. The lower pattern , II ,

is that assumed in other theories. 
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Figure 6. Velocity of fluid due to acoustic streaming versus

distance through the disc at r = R/2. Curve I is

a best fit to the data using our measured value of k’ .0

Curve II is a best fit allowing k’ to be determined

by the fitting process itself.
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Figure 7. Velocity of the fluid due to acoustic streaming versus

vol tage app lied to the transducer. The solid line is

a best fit to a voltage square dependence.
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